Sample records for maximum autocorrelation factor

  1. Sources of variation in Landsat autocorrelation

    NASA Technical Reports Server (NTRS)

    Craig, R. G.; Labovitz, M. L.

    1980-01-01

    Analysis of sixty-four scan lines representing diverse conditions across satellites, channels, scanners, locations and cloud cover confirms that Landsat data are autocorrelated and consistently follow an Arima (1,0,1) pattern. The AR parameter varies significantly with location and the MA coefficient with cloud cover. Maximum likelihood classification functions are considerably in error unless this autocorrelation is compensated for in sampling.

  2. Predicting the potential distribution of the amphibian pathogen Batrachochytrium dendrobatidis in East and Southeast Asia.

    PubMed

    Moriguchi, Sachiko; Tominaga, Atsushi; Irwin, Kelly J; Freake, Michael J; Suzuki, Kazutaka; Goka, Koichi

    2015-04-08

    Batrachochytrium dendrobatidis (Bd) is the pathogen responsible for chytridiomycosis, a disease that is associated with a worldwide amphibian population decline. In this study, we predicted the potential distribution of Bd in East and Southeast Asia based on limited occurrence data. Our goal was to design an effective survey area where efforts to detect the pathogen can be focused. We generated ecological niche models using the maximum-entropy approach, with alleviation of multicollinearity and spatial autocorrelation. We applied eigenvector-based spatial filters as independent variables, in addition to environmental variables, to resolve spatial autocorrelation, and compared the model's accuracy and the degree of spatial autocorrelation with those of a model estimated using only environmental variables. We were able to identify areas of high suitability for Bd with accuracy. Among the environmental variables, factors related to temperature and precipitation were more effective in predicting the potential distribution of Bd than factors related to land use and cover type. Our study successfully predicted the potential distribution of Bd in East and Southeast Asia. This information should now be used to prioritize survey areas and generate a surveillance program to detect the pathogen.

  3. Studies of the micromorphology of sputtered TiN thin films by autocorrelation techniques

    NASA Astrophysics Data System (ADS)

    Smagoń, Kamil; Stach, Sebastian; Ţălu, Ştefan; Arman, Ali; Achour, Amine; Luna, Carlos; Ghobadi, Nader; Mardani, Mohsen; Hafezi, Fatemeh; Ahmadpourian, Azin; Ganji, Mohsen; Grayeli Korpi, Alireza

    2017-12-01

    Autocorrelation techniques are crucial tools for the study of the micromorphology of surfaces: They provide the description of anisotropic properties and the identification of repeated patterns on the surface, facilitating the comparison of samples. In the present investigation, some fundamental concepts of these techniques including the autocorrelation function and autocorrelation length have been reviewed and applied in the study of titanium nitride thin films by atomic force microscopy (AFM). The studied samples were grown on glass substrates by reactive magnetron sputtering at different substrate temperatures (from 25 {}°C to 400 {}°C , and their micromorphology was studied by AFM. The obtained AFM data were analyzed using MountainsMap Premium software obtaining the correlation function, the structure of isotropy and the spatial parameters according to ISO 25178 and EUR 15178N. These studies indicated that the substrate temperature during the deposition process is an important parameter to modify the micromorphology of sputtered TiN thin films and to find optimized surface properties. For instance, the autocorrelation length exhibited a maximum value for the sample prepared at a substrate temperature of 300 {}°C , and the sample obtained at 400 {}°C presented a maximum angle of the direction of the surface structure.

  4. Stochastic modelling of the monthly average maximum and minimum temperature patterns in India 1981-2015

    NASA Astrophysics Data System (ADS)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-04-01

    The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.

  5. The Effects of Autocorrelation on the Curve-of-Factors Growth Model

    ERIC Educational Resources Information Center

    Murphy, Daniel L.; Beretvas, S. Natasha; Pituch, Keenan A.

    2011-01-01

    This simulation study examined the performance of the curve-of-factors model (COFM) when autocorrelation and growth processes were present in the first-level factor structure. In addition to the standard curve-of factors growth model, 2 new models were examined: one COFM that included a first-order autoregressive autocorrelation parameter, and a…

  6. Global Autocorrelation Scales of the Partial Pressure of Oceanic CO2

    NASA Technical Reports Server (NTRS)

    Li, Zhen; Adamec, David; Takahashi, Taro; Sutherland, Stewart C.

    2004-01-01

    A global database of approximately 1.7 million observations of the partial pressure of carbon dioxide in surface ocean waters (pCO2) collected between 1970 and 2003 is used to estimate its spatial autocorrelation structure. The patterns of the lag distance where the autocorrelation exceeds 0.8 is similar to patterns in the spatial distribution of the first baroclinic Rossby radius of deformation indicating that ocean circulation processes play a significant role in determining the spatial variability of pCO2. For example, the global maximum of the distance at which autocorrelations exceed 0.8 averages about 140 km in the equatorial Pacific. Also, the lag distance at which the autocorrelation exceed 0.8 is greater in the vicinity of the Gulf Stream than it is near the Kuroshio, approximately 50 km near the Gulf Stream as opposed to 20 km near the Kuroshio. Separate calculations for times when the sun is north and south of the equator revealed no obvious seasonal dependence of the spatial autocorrelation scales. The pCO2 measurements at Ocean Weather Station (OWS) 'P', in the eastern subarctic Pacific (50 N, 145 W) is the only fixed location where an uninterrupted time series of sufficient length exists to calculate a meaningful temporal autocorrelation function for lags greater than a few days. The estimated temporal autocorrelation function at OWS 'P', is highly variable. A spectral analysis of the longest four pCO2 time series indicates a high level of variability occurring over periods from the atmospheric synoptic to the maximum length of the time series, in this case 42 days. It is likely that a relative peak in variability with a period of 3-6 days is related to atmospheric synoptic period variability and ocean mixing events due to wind stirring. However, the short length of available time series makes identifying temporal relationships between pCO2 and atmospheric or ocean processes problematic.

  7. The Use of Time Series Analysis and t Tests with Serially Correlated Data Tests.

    ERIC Educational Resources Information Center

    Nicolich, Mark J.; Weinstein, Carol S.

    1981-01-01

    Results of three methods of analysis applied to simulated autocorrelated data sets with an intervention point (varying in autocorrelation degree, variance of error term, and magnitude of intervention effect) are compared and presented. The three methods are: t tests; maximum likelihood Box-Jenkins (ARIMA); and Bayesian Box Jenkins. (Author/AEF)

  8. Spectrum sensing algorithm based on autocorrelation energy in cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Ren, Shengwei; Zhang, Li; Zhang, Shibing

    2016-10-01

    Cognitive radio networks have wide applications in the smart home, personal communications and other wireless communication. Spectrum sensing is the main challenge in cognitive radios. This paper proposes a new spectrum sensing algorithm which is based on the autocorrelation energy of signal received. By taking the autocorrelation energy of the received signal as the statistics of spectrum sensing, the effect of the channel noise on the detection performance is reduced. Simulation results show that the algorithm is effective and performs well in low signal-to-noise ratio. Compared with the maximum generalized eigenvalue detection (MGED) algorithm, function of covariance matrix based detection (FMD) algorithm and autocorrelation-based detection (AD) algorithm, the proposed algorithm has 2 11 dB advantage.

  9. Characteristic measurement for femtosecond laser pulses using a GaAs PIN photodiode as a two-photon photovoltaic receiver

    NASA Astrophysics Data System (ADS)

    Chen, Junbao; Xia, Wei; Wang, Ming

    2017-06-01

    Photodiodes that exhibit a two-photon absorption effect within the spectral communication band region can be useful for building an ultra-compact autocorrelator for the characteristic inspection of optical pulses. In this work, we develop an autocorrelator for measuring the temporal profile of pulses at 1550 nm from an erbium-doped fiber laser based on the two-photon photovoltaic (TPP) effect in a GaAs PIN photodiode. The temporal envelope of the autocorrelation function contains two symmetrical temporal side lobes due to the third order dispersion of the laser pulses. Moreover, the joint time-frequency distribution of the dispersive pulses and the dissimilar two-photon response spectrum of GaAs and Si result in different delays for the appearance of the temporal side lobes. Compared with Si, GaAs displays a greater sensitivity for pulse shape reconstruction at 1550 nm, benefiting from the higher signal-to-noise ratio of the side lobes and the more centralized waveform of the autocorrelation trace. We also measure the pulse width using the GaAs PIN photodiode, and the resolution of the measured full width at half maximum of the TPP autocorrelation trace is 0.89 fs, which is consistent with a conventional second-harmonic generation crystal autocorrelator. The GaAs PIN photodiode is shown to be highly suitable for real-time second-order autocorrelation measurements of femtosecond optical pulses. It is used both for the generation and detection of the autocorrelation signal, allowing the construction of a compact and inexpensive intensity autocorrelator.

  10. Characterization, parameter estimation, and aircraft response statistics of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1981-01-01

    A nonGaussian three component model of atmospheric turbulence is postulated that accounts for readily observable features of turbulence velocity records, their autocorrelation functions, and their spectra. Methods for computing probability density functions and mean exceedance rates of a generic aircraft response variable are developed using nonGaussian turbulence characterizations readily extracted from velocity recordings. A maximum likelihood method is developed for optimal estimation of the integral scale and intensity of records possessing von Karman transverse of longitudinal spectra. Formulas for the variances of such parameter estimates are developed. The maximum likelihood and least-square approaches are combined to yield a method for estimating the autocorrelation function parameters of a two component model for turbulence.

  11. The calculation of transport properties in quantum liquids using the maximum entropy numerical analytic continuation method: Application to liquid para-hydrogen

    PubMed Central

    Rabani, Eran; Reichman, David R.; Krilov, Goran; Berne, Bruce J.

    2002-01-01

    We present a method based on augmenting an exact relation between a frequency-dependent diffusion constant and the imaginary time velocity autocorrelation function, combined with the maximum entropy numerical analytic continuation approach to study transport properties in quantum liquids. The method is applied to the case of liquid para-hydrogen at two thermodynamic state points: a liquid near the triple point and a high-temperature liquid. Good agreement for the self-diffusion constant and for the real-time velocity autocorrelation function is obtained in comparison to experimental measurements and other theoretical predictions. Improvement of the methodology and future applications are discussed. PMID:11830656

  12. Comparison of Kasai Autocorrelation and Maximum Likelihood Estimators for Doppler Optical Coherence Tomography

    PubMed Central

    Chan, Aaron C.; Srinivasan, Vivek J.

    2013-01-01

    In optical coherence tomography (OCT) and ultrasound, unbiased Doppler frequency estimators with low variance are desirable for blood velocity estimation. Hardware improvements in OCT mean that ever higher acquisition rates are possible, which should also, in principle, improve estimation performance. Paradoxically, however, the widely used Kasai autocorrelation estimator’s performance worsens with increasing acquisition rate. We propose that parametric estimators based on accurate models of noise statistics can offer better performance. We derive a maximum likelihood estimator (MLE) based on a simple additive white Gaussian noise model, and show that it can outperform the Kasai autocorrelation estimator. In addition, we also derive the Cramer Rao lower bound (CRLB), and show that the variance of the MLE approaches the CRLB for moderate data lengths and noise levels. We note that the MLE performance improves with longer acquisition time, and remains constant or improves with higher acquisition rates. These qualities may make it a preferred technique as OCT imaging speed continues to improve. Finally, our work motivates the development of more general parametric estimators based on statistical models of decorrelation noise. PMID:23446044

  13. Spatial design and strength of spatial signal: Effects on covariance estimation

    USGS Publications Warehouse

    Irvine, Kathryn M.; Gitelman, Alix I.; Hoeting, Jennifer A.

    2007-01-01

    In a spatial regression context, scientists are often interested in a physical interpretation of components of the parametric covariance function. For example, spatial covariance parameter estimates in ecological settings have been interpreted to describe spatial heterogeneity or “patchiness” in a landscape that cannot be explained by measured covariates. In this article, we investigate the influence of the strength of spatial dependence on maximum likelihood (ML) and restricted maximum likelihood (REML) estimates of covariance parameters in an exponential-with-nugget model, and we also examine these influences under different sampling designs—specifically, lattice designs and more realistic random and cluster designs—at differing intensities of sampling (n=144 and 361). We find that neither ML nor REML estimates perform well when the range parameter and/or the nugget-to-sill ratio is large—ML tends to underestimate the autocorrelation function and REML produces highly variable estimates of the autocorrelation function. The best estimates of both the covariance parameters and the autocorrelation function come under the cluster sampling design and large sample sizes. As a motivating example, we consider a spatial model for stream sulfate concentration.

  14. [Spatial Distribution Characteristics of Different Species Mercury in Water Body of Changshou Lake in Three Gorges Reservoir Region].

    PubMed

    Bai, Wei-yang; Zhang, Cheng; Zhao, Zheng; Tang, Zhen-ya; Wang, Ding-yong

    2015-08-01

    An investigation on the concentrations and the spatial distribution characteristics of different species of mercury in the water body of Changshou Lake in Three Gorges Reservoir region was carried out based on the AreGIS statistics module. The results showed that the concentration of the total mercury in Changshou Lake surface water ranged from 0.50 to 3.78 ng x L(-1), with an average of 1.51 ng x L(-1); the concentration of the total MeHg (methylmercury) ranged from 0.10 to 0.75 ng x L(-1), with an average of 0.23 ng x L(-1). The nugget effect value of total mercury in surface water (50.65%), dissolved mercury (49.80%), particulate mercury (29.94%) and the activity mercury (26.95%) were moderate spatial autocorrelation. It indicated that the autocorrelation was impacted by the intrinsic properties of sediments (such as parent materials and rocks, geological mineral and terrain), and on the other hand it was also disturbed by the exogenous input factors (such as aquaculture, industrial activities, farming etc). The nugget effect value of dissolved methylmercury (DMeHg) in Changshou lake surface water (3.49%) was less than 25%, showing significant strong spatial autocorrelation. The distribution was mainly controlled by environmental factors in water. The proportion of total MeHg in total Hg in Changshou Lake water reached 30% which was the maximum ratio of the total MeHg to total Hg in freshwater lakes and rivers. It implied that mercury was easily methylated in the environment of Chanashou Lake.

  15. Autocorrelation factors and intelligibility of Japanese monosyllables in individuals with sensorineural hearing loss.

    PubMed

    Shimokura, Ryota; Akasaka, Sakie; Nishimura, Tadashi; Hosoi, Hiroshi; Matsui, Toshie

    2017-02-01

    Some Japanese monosyllables contain consonants that are not easily discernible for individuals with sensorineural hearing loss. However, the acoustic features that make these monosyllables difficult to discern have not been clearly identified. Here, this study used the autocorrelation function (ACF), which can capture temporal features of signals, to clarify the factors influencing speech intelligibility. For each monosyllable, five factors extracted from the ACF [Φ(0): total energy; τ 1 and ϕ 1 : delay time and amplitude of the maximum peak; τ e : effective duration; W ϕ (0) : spectral centroid], voice onset time, speech intelligibility index, and loudness level were compared with the percentage of correctly perceived articulations (144 ears) obtained by 50 Japanese vowel and consonant-vowel monosyllables produced by one female speaker. Results showed that median effective duration [(τ e ) med ] was strongly correlated with the percentage of correctly perceived articulations of the consonants (r = 0.87, p < 0.01). (τ e ) med values were computed by running ACFs with the time lag at which the magnitude of the logarithmic-ACF envelope had decayed to -10 dB. Effective duration is a measure of temporal pattern persistence, i.e., the duration over which the waveform maintains a stable pattern. The authors postulate that low recognition ability is related to degraded perception of temporal fluctuation patterns.

  16. Analysis of Spatiotemporal Characteristics of Pandemic SARS Spread in Mainland China.

    PubMed

    Cao, Chunxiang; Chen, Wei; Zheng, Sheng; Zhao, Jian; Wang, Jinfeng; Cao, Wuchun

    2016-01-01

    Severe acute respiratory syndrome (SARS) is one of the most severe emerging infectious diseases of the 21st century so far. SARS caused a pandemic that spread throughout mainland China for 7 months, infecting 5318 persons in 194 administrative regions. Using detailed mainland China epidemiological data, we study spatiotemporal aspects of this person-to-person contagious disease and simulate its spatiotemporal transmission dynamics via the Bayesian Maximum Entropy (BME) method. The BME reveals that SARS outbreaks show autocorrelation within certain spatial and temporal distances. We use BME to fit a theoretical covariance model that has a sine hole spatial component and exponential temporal component and obtain the weights of geographical and temporal autocorrelation factors. Using the covariance model, SARS dynamics were estimated and simulated under the most probable conditions. Our study suggests that SARS transmission varies in its epidemiological characteristics and SARS outbreak distributions exhibit palpable clusters on both spatial and temporal scales. In addition, the BME modelling demonstrates that SARS transmission features are affected by spatial heterogeneity, so we analyze potential causes. This may benefit epidemiological control of pandemic infectious diseases.

  17. Analysis of Spatiotemporal Characteristics of Pandemic SARS Spread in Mainland China

    PubMed Central

    Cao, Chunxiang; Zheng, Sheng; Zhao, Jian; Wang, Jinfeng; Cao, Wuchun

    2016-01-01

    Severe acute respiratory syndrome (SARS) is one of the most severe emerging infectious diseases of the 21st century so far. SARS caused a pandemic that spread throughout mainland China for 7 months, infecting 5318 persons in 194 administrative regions. Using detailed mainland China epidemiological data, we study spatiotemporal aspects of this person-to-person contagious disease and simulate its spatiotemporal transmission dynamics via the Bayesian Maximum Entropy (BME) method. The BME reveals that SARS outbreaks show autocorrelation within certain spatial and temporal distances. We use BME to fit a theoretical covariance model that has a sine hole spatial component and exponential temporal component and obtain the weights of geographical and temporal autocorrelation factors. Using the covariance model, SARS dynamics were estimated and simulated under the most probable conditions. Our study suggests that SARS transmission varies in its epidemiological characteristics and SARS outbreak distributions exhibit palpable clusters on both spatial and temporal scales. In addition, the BME modelling demonstrates that SARS transmission features are affected by spatial heterogeneity, so we analyze potential causes. This may benefit epidemiological control of pandemic infectious diseases. PMID:27597972

  18. Exploratory spatial data analysis of global MODIS active fire data

    NASA Astrophysics Data System (ADS)

    Oom, D.; Pereira, J. M. C.

    2013-04-01

    We performed an exploratory spatial data analysis (ESDA) of autocorrelation patterns in the NASA MODIS MCD14ML Collection 5 active fire dataset, for the period 2001-2009, at the global scale. The dataset was screened, resulting in an annual rate of false alarms and non-vegetation fires ranging from a minimum of 3.1% in 2003 to a maximum of 4.4% in 2001. Hot bare soils and gas flares were the major sources of false alarms and non-vegetation fires. The data were aggregated at 0.5° resolution for the global and local spatial autocorrelation Fire counts were found to be positively correlated up to distances of around 200 km, and negatively for larger distances. A value of 0.80 (p = 0.001, α = 0.05) for Moran's I indicates strong spatial autocorrelation between fires at global scale, with 60% of all cells displaying significant positive or negative spatial correlation. Different types of spatial autocorrelation were mapped and regression diagnostics allowed for the identification of spatial outlier cells, with fire counts much higher or lower than expected, considering their spatial context.

  19. A Comparison of Local Variance, Fractal Dimension, and Moran's I as Aids to Multispectral Image Classification

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Sig-NganLam, Nina; Quattrochi, Dale A.

    2004-01-01

    The accuracy of traditional multispectral maximum-likelihood image classification is limited by the skewed statistical distributions of reflectances from the complex heterogenous mixture of land cover types in urban areas. This work examines the utility of local variance, fractal dimension and Moran's I index of spatial autocorrelation in segmenting multispectral satellite imagery. Tools available in the Image Characterization and Modeling System (ICAMS) were used to analyze Landsat 7 imagery of Atlanta, Georgia. Although segmentation of panchromatic images is possible using indicators of spatial complexity, different land covers often yield similar values of these indices. Better results are obtained when a surface of local fractal dimension or spatial autocorrelation is combined as an additional layer in a supervised maximum-likelihood multispectral classification. The addition of fractal dimension measures is particularly effective at resolving land cover classes within urbanized areas, as compared to per-pixel spectral classification techniques.

  20. Analysis of spatial autocorrelation patterns of heavy and super-heavy rainfall in Iran

    NASA Astrophysics Data System (ADS)

    Rousta, Iman; Doostkamian, Mehdi; Haghighi, Esmaeil; Ghafarian Malamiri, Hamid Reza; Yarahmadi, Parvane

    2017-09-01

    Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord G i statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.

  1. A Predictive Risk Model for A(H7N9) Human Infections Based on Spatial-Temporal Autocorrelation and Risk Factors: China, 2013–2014

    PubMed Central

    Dong, Wen; Yang, Kun; Xu, Quan-Li; Yang, Yu-Lian

    2015-01-01

    This study investigated the spatial distribution, spatial autocorrelation, temporal cluster, spatial-temporal autocorrelation and probable risk factors of H7N9 outbreaks in humans from March 2013 to December 2014 in China. The results showed that the epidemic spread with significant spatial-temporal autocorrelation. In order to describe the spatial-temporal autocorrelation of H7N9, an improved model was developed by introducing a spatial-temporal factor in this paper. Logistic regression analyses were utilized to investigate the risk factors associated with their distribution, and nine risk factors were significantly associated with the occurrence of A(H7N9) human infections: the spatial-temporal factor φ (OR = 2546669.382, p < 0.001), migration route (OR = 0.993, p < 0.01), river (OR = 0.861, p < 0.001), lake(OR = 0.992, p < 0.001), road (OR = 0.906, p < 0.001), railway (OR = 0.980, p < 0.001), temperature (OR = 1.170, p < 0.01), precipitation (OR = 0.615, p < 0.001) and relative humidity (OR = 1.337, p < 0.001). The improved model obtained a better prediction performance and a higher fitting accuracy than the traditional model: in the improved model 90.1% (91/101) of the cases during February 2014 occurred in the high risk areas (the predictive risk > 0.70) of the predictive risk map, whereas 44.6% (45/101) of which overlaid on the high risk areas (the predictive risk > 0.70) for the traditional model, and the fitting accuracy of the improved model was 91.6% which was superior to the traditional model (86.1%). The predictive risk map generated based on the improved model revealed that the east and southeast of China were the high risk areas of A(H7N9) human infections in February 2014. These results provided baseline data for the control and prevention of future human infections. PMID:26633446

  2. Logistic regression for southern pine beetle outbreaks with spatial and temporal autocorrelation

    Treesearch

    M. L. Gumpertz; C.-T. Wu; John M. Pye

    2000-01-01

    Regional outbreaks of southern pine beetle (Dendroctonus frontalis Zimm.) show marked spatial and temporal patterns. While these patterns are of interest in themselves, we focus on statistical methods for estimating the effects of underlying environmental factors in the presence of spatial and temporal autocorrelation. The most comprehensive available information on...

  3. Temporal and spatiotemporal autocorrelation of daily concentrations of Alnus, Betula, and Corylus pollen in Poland.

    PubMed

    Nowosad, J; Stach, A; Kasprzyk, I; Grewling, Ł; Latałowa, M; Puc, M; Myszkowska, D; Weryszko-Chmielewska, E; Piotrowska-Weryszko, K; Chłopek, K; Majkowska-Wojciechowska, B; Uruska, A

    The aim of the study was to determine the characteristics of temporal and space-time autocorrelation of pollen counts of Alnus , Betula , and Corylus in the air of eight cities in Poland. Daily average pollen concentrations were monitored over 8 years (2001-2005 and 2009-2011) using Hirst-designed volumetric spore traps. The spatial and temporal coherence of data was investigated using the autocorrelation and cross-correlation functions. The calculation and mathematical modelling of 61 correlograms were performed for up to 25 days back. The study revealed an association between temporal variations in Alnus , Betula , and Corylus pollen counts in Poland and three main groups of factors such as: (1) air mass exchange after the passage of a single weather front (30-40 % of pollen count variation); (2) long-lasting factors (50-60 %); and (3) random factors, including diurnal variations and measurements errors (10 %). These results can help to improve the quality of forecasting models.

  4. Estimation of Random Medium Parameters from 2D Post-Stack Seismic Data and Its Application in Seismic Inversion

    NASA Astrophysics Data System (ADS)

    Yang, X.; Zhu, P.; Gu, Y.; Xu, Z.

    2015-12-01

    Small scale heterogeneities of subsurface medium can be characterized conveniently and effectively using a few simple random medium parameters (RMP), such as autocorrelation length, angle and roughness factor, etc. The estimation of these parameters is significant in both oil reservoir prediction and metallic mine exploration. Poor accuracy and low stability existed in current estimation approaches limit the application of random medium theory in seismic exploration. This study focuses on improving the accuracy and stability of RMP estimation from post-stacked seismic data and its application in the seismic inversion. Experiment and theory analysis indicate that, although the autocorrelation of random medium is related to those of corresponding post-stacked seismic data, the relationship is obviously affected by the seismic dominant frequency, the autocorrelation length, roughness factor and so on. Also the error of calculation of autocorrelation in the case of finite and discrete model decreases the accuracy. In order to improve the precision of estimation of RMP, we design two improved approaches. Firstly, we apply region growing algorithm, which often used in image processing, to reduce the influence of noise in the autocorrelation calculated by the power spectrum method. Secondly, the orientation of autocorrelation is used as a new constraint in the estimation algorithm. The numerical experiments proved that it is feasible. In addition, in post-stack seismic inversion of random medium, the estimated RMP may be used to constrain inverse procedure and to construct the initial model. The experiment results indicate that taking inversed model as random medium and using relatively accurate estimated RMP to construct initial model can get better inversion result, which contained more details conformed to the actual underground medium.

  5. [Characteristics of temporal-spatial differentiation in landscape pattern vulnerability in Nansihu Lake wetland, China.

    PubMed

    Liang, Jia Xin; Li, Xin Ju

    2018-02-01

    With remote sensing images from 1985, 2000 Lantsat 5 TM and 2015 Lantsat 8 OLI as data sources, we tried to select the suitable research scale and examine the temporal-spatial diffe-rentiation with such scale in the Nansihu Lake wetland by using landscape pattern vulnerability index constructed by sensitivity index and adaptability index, and combined with space statistics such as semivariogram and spatial autocorrelation. The results showed that 1 km × 1 km equidistant grid was the suitable research scale, which could eliminate the influence of spatial heterogeneity induced by random factors. From 1985 to 2015, the landscape pattern vulnerability in the Nansihu Lake wetland deteriorated gradually. The high-risk area of landscape pattern vulnerability dramatically expanded with time. The spatial heterogeneity of landscape pattern vulnerability increased, and the influence of non-structural factors on landscape pattern vulnerability strengthened. Spatial variability affected by spatial autocorrelation slightly weakened. Landscape pattern vulnerability had strong general spatial positive correlation, with the significant form of spatial agglomeration. The positive spatial autocorrelation continued to increase and the phenomenon of spatial concentration was more and more obvious over time. The local autocorrelation mainly based on high-high accumulation zone and low-low accumulation zone had stronger spatial autocorrelation among neighboring space units. The high-high accumulation areas showed the strongest level of significance, and the significant level of low-low accumulation zone increased with time. Natural factors, such as temperature and precipitation, affected water-level and landscape distribution, and thus changed the landscape patterns vulnerability of Nansihu Lake wetland. The dominant driver for the deterioration of landscape patterns vulnerability was human activities, including social economy activity and policy system.

  6. Modeling Seasonal Influenza Transmission and Its Association with Climate Factors in Thailand Using Time-Series and ARIMAX Analyses.

    PubMed

    Chadsuthi, Sudarat; Iamsirithaworn, Sopon; Triampo, Wannapong; Modchang, Charin

    2015-01-01

    Influenza is a worldwide respiratory infectious disease that easily spreads from one person to another. Previous research has found that the influenza transmission process is often associated with climate variables. In this study, we used autocorrelation and partial autocorrelation plots to determine the appropriate autoregressive integrated moving average (ARIMA) model for influenza transmission in the central and southern regions of Thailand. The relationships between reported influenza cases and the climate data, such as the amount of rainfall, average temperature, average maximum relative humidity, average minimum relative humidity, and average relative humidity, were evaluated using cross-correlation function. Based on the available data of suspected influenza cases and climate variables, the most appropriate ARIMA(X) model for each region was obtained. We found that the average temperature correlated with influenza cases in both central and southern regions, but average minimum relative humidity played an important role only in the southern region. The ARIMAX model that includes the average temperature with a 4-month lag and the minimum relative humidity with a 2-month lag is the appropriate model for the central region, whereas including the minimum relative humidity with a 4-month lag results in the best model for the southern region.

  7. A phase match based frequency estimation method for sinusoidal signals

    NASA Astrophysics Data System (ADS)

    Shen, Yan-Lin; Tu, Ya-Qing; Chen, Lin-Jun; Shen, Ting-Ao

    2015-04-01

    Accurate frequency estimation affects the ranging precision of linear frequency modulated continuous wave (LFMCW) radars significantly. To improve the ranging precision of LFMCW radars, a phase match based frequency estimation method is proposed. To obtain frequency estimation, linear prediction property, autocorrelation, and cross correlation of sinusoidal signals are utilized. The analysis of computational complex shows that the computational load of the proposed method is smaller than those of two-stage autocorrelation (TSA) and maximum likelihood. Simulations and field experiments are performed to validate the proposed method, and the results demonstrate the proposed method has better performance in terms of frequency estimation precision than methods of Pisarenko harmonic decomposition, modified covariance, and TSA, which contribute to improving the precision of LFMCW radars effectively.

  8. Autocorrelation structure of convective rainfall in semiarid-arid climate derived from high-resolution X-Band radar estimates

    NASA Astrophysics Data System (ADS)

    Marra, Francesco; Morin, Efrat

    2018-02-01

    Small scale rainfall variability is a key factor driving runoff response in fast responding systems, such as mountainous, urban and arid catchments. In this paper, the spatial-temporal autocorrelation structure of convective rainfall is derived with extremely high resolutions (60 m, 1 min) using estimates from an X-Band weather radar recently installed in a semiarid-arid area. The 2-dimensional spatial autocorrelation of convective rainfall fields and the temporal autocorrelation of point-wise and distributed rainfall fields are examined. The autocorrelation structures are characterized by spatial anisotropy, correlation distances 1.5-2.8 km and rarely exceeding 5 km, and time-correlation distances 1.8-6.4 min and rarely exceeding 10 min. The observed spatial variability is expected to negatively affect estimates from rain gauges and microwave links rather than satellite and C-/S-Band radars; conversely, the temporal variability is expected to negatively affect remote sensing estimates rather than rain gauges. The presented results provide quantitative information for stochastic weather generators, cloud-resolving models, dryland hydrologic and agricultural models, and multi-sensor merging techniques.

  9. Energy normalization of TV viewed optical correlation (automated correlation plane analyzer for an optical processor)

    NASA Technical Reports Server (NTRS)

    Grumet, A.

    1981-01-01

    An automatic correlation plane processor that can rapidly acquire, identify, and locate the autocorrelation outputs of a bank of multiple optical matched filters is described. The read-only memory (ROM) stored digital silhouette of each image associated with each matched filter allows TV video to be used to collect image energy to provide accurate normalization of autocorrelations. The resulting normalized autocorrelations are independent of the illumination of the matched input. Deviation from unity of a normalized correlation can be used as a confidence measure of correct image identification. Analog preprocessing circuits permit digital conversion and random access memory (RAM) storage of those video signals with the correct amplitude, pulse width, rising slope, and falling slope. TV synchronized addressing of 3 RAMs permits on-line storage of: (1) the maximum unnormalized amplitude, (2) the image x location, and (3) the image y location of the output of each of up to 99 matched filters. A fourth RAM stores all normalized correlations. A normalization approach, normalization for cross correlations, a system's description with block diagrams, and system's applications are discussed.

  10. MIXREG: a computer program for mixed-effects regression analysis with autocorrelated errors.

    PubMed

    Hedeker, D; Gibbons, R D

    1996-05-01

    MIXREG is a program that provides estimates for a mixed-effects regression model (MRM) for normally-distributed response data including autocorrelated errors. This model can be used for analysis of unbalanced longitudinal data, where individuals may be measured at a different number of timepoints, or even at different timepoints. Autocorrelated errors of a general form or following an AR(1), MA(1), or ARMA(1,1) form are allowable. This model can also be used for analysis of clustered data, where the mixed-effects model assumes data within clusters are dependent. The degree of dependency is estimated jointly with estimates of the usual model parameters, thus adjusting for clustering. MIXREG uses maximum marginal likelihood estimation, utilizing both the EM algorithm and a Fisher-scoring solution. For the scoring solution, the covariance matrix of the random effects is expressed in its Gaussian decomposition, and the diagonal matrix reparameterized using the exponential transformation. Estimation of the individual random effects is accomplished using an empirical Bayes approach. Examples illustrating usage and features of MIXREG are provided.

  11. A new radial strain and strain rate estimation method using autocorrelation for carotid artery

    NASA Astrophysics Data System (ADS)

    Ye, Jihui; Kim, Hoonmin; Park, Jongho; Yeo, Sunmi; Shim, Hwan; Lim, Hyungjoon; Yoo, Yangmo

    2014-03-01

    Atherosclerosis is a leading cause of cardiovascular disease. The early diagnosis of atherosclerosis is of clinical interest since it can prevent any adverse effects of atherosclerotic vascular diseases. In this paper, a new carotid artery radial strain estimation method based on autocorrelation is presented. In the proposed method, the strain is first estimated by the autocorrelation of two complex signals from the consecutive frames. Then, the angular phase from autocorrelation is converted to strain and strain rate and they are analyzed over time. In addition, a 2D strain image over region of interest in a carotid artery can be displayed. To evaluate the feasibility of the proposed radial strain estimation method, radiofrequency (RF) data of 408 frames in the carotid artery of a volunteer were acquired by a commercial ultrasound system equipped with a research package (V10, Samsung Medison, Korea) by using a L5-13IS linear array transducer. From in vivo carotid artery data, the mean strain estimate was -0.1372 while its minimum and maximum values were -2.961 and 0.909, respectively. Moreover, the overall strain estimates are highly correlated with the reconstructed M-mode trace. Similar results were obtained from the estimation of the strain rate change over time. These results indicate that the proposed carotid artery radial strain estimation method is useful for assessing the arterial wall's stiffness noninvasively without increasing the computational complexity.

  12. Velocity and stress autocorrelation decay in isothermal dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Chaudhri, Anuj; Lukes, Jennifer R.

    2010-02-01

    The velocity and stress autocorrelation decay in a dissipative particle dynamics ideal fluid model is analyzed in this paper. The autocorrelation functions are calculated at three different friction parameters and three different time steps using the well-known Groot/Warren algorithm and newer algorithms including self-consistent leap-frog, self-consistent velocity Verlet and Shardlow first and second order integrators. At low friction values, the velocity autocorrelation function decays exponentially at short times, shows slower-than exponential decay at intermediate times, and approaches zero at long times for all five integrators. As friction value increases, the deviation from exponential behavior occurs earlier and is more pronounced. At small time steps, all the integrators give identical decay profiles. As time step increases, there are qualitative and quantitative differences between the integrators. The stress correlation behavior is markedly different for the algorithms. The self-consistent velocity Verlet and the Shardlow algorithms show very similar stress autocorrelation decay with change in friction parameter, whereas the Groot/Warren and leap-frog schemes show variations at higher friction factors. Diffusion coefficients and shear viscosities are calculated using Green-Kubo integration of the velocity and stress autocorrelation functions. The diffusion coefficients match well-known theoretical results at low friction limits. Although the stress autocorrelation function is different for each integrator, fluctuates rapidly, and gives poor statistics for most of the cases, the calculated shear viscosities still fall within range of theoretical predictions and nonequilibrium studies.

  13. Synchronous scattering and diffraction from gold nanotextured surfaces with structure factors

    NASA Astrophysics Data System (ADS)

    Gu, Min-Jhong; Lee, Ming-Tsang; Huang, Chien-Hsun; Wu, Chi-Chun; Chen, Yu-Bin

    2018-05-01

    Synchronous scattering and diffraction were demonstrated using reflectance from gold nanotextured surfaces at oblique (θi = 15° and 60°) incidence of wavelength λ = 405 nm. Two samples of unique auto-correlation functions were cost-effectively fabricated. Multiple structure factors of their profiles were confirmed with Fourier expansions. Bi-directional reflectance function (BRDF) from these samples provided experimental proofs. On the other hand, standard deviation of height and unique auto-correlation function of each sample were used to generate surfaces numerically. Comparing their BRDF with those of totally random rough surfaces further suggested that structure factors in profile could reduce specular reflection more than totally random roughness.

  14. Spatial statistical network models for stream and river temperature in New England, USA

    NASA Astrophysics Data System (ADS)

    Detenbeck, Naomi E.; Morrison, Alisa C.; Abele, Ralph W.; Kopp, Darin A.

    2016-08-01

    Watershed managers are challenged by the need for predictive temperature models with sufficient accuracy and geographic breadth for practical use. We described thermal regimes of New England rivers and streams based on a reduced set of metrics for the May-September growing season (July or August median temperature, diurnal rate of change, and magnitude and timing of growing season maximum) chosen through principal component analysis of 78 candidate metrics. We then developed and assessed spatial statistical models for each of these metrics, incorporating spatial autocorrelation based on both distance along the flow network and Euclidean distance between points. Calculation of spatial autocorrelation based on travel or retention time in place of network distance yielded tighter-fitting Torgegrams with less scatter but did not improve overall model prediction accuracy. We predicted monthly median July or August stream temperatures as a function of median air temperature, estimated urban heat island effect, shaded solar radiation, main channel slope, watershed storage (percent lake and wetland area), percent coarse-grained surficial deposits, and presence or maximum depth of a lake immediately upstream, with an overall root-mean-square prediction error of 1.4 and 1.5°C, respectively. Growing season maximum water temperature varied as a function of air temperature, local channel slope, shaded August solar radiation, imperviousness, and watershed storage. Predictive models for July or August daily range, maximum daily rate of change, and timing of growing season maximum were statistically significant but explained a much lower proportion of variance than the above models (5-14% of total).

  15. Spatial Analysis of China Province-level Perinatal Mortality

    PubMed Central

    XIANG, Kun; SONG, Deyong

    2016-01-01

    Background: Using spatial analysis tools to determine the spatial patterns of China province-level perinatal mortality and using spatial econometric model to examine the impacts of health care resources and different socio-economic factors on perinatal mortality. Methods: The Global Moran’s I index is used to examine whether the spatial autocorrelation exists in selected regions and Moran’s I scatter plot to examine the spatial clustering among regions. Spatial econometric models are used to investigate the spatial relationships between perinatal mortality and contributing factors. Results: The overall Moran’s I index indicates that perinatal mortality displays positive spatial autocorrelation. Moran’s I scatter plot analysis implies that there is a significant clustering of mortality in both high-rate regions and low-rate regions. The spatial econometric models analyses confirm the existence of a direct link between perinatal mortality and health care resources, socio-economic factors. Conclusions: Since a positive spatial autocorrelation has been detected in China province-level perinatal mortality, the upgrading of regional economic development and medical service level will affect the mortality not only in region itself but also its adjacent regions. PMID:27398334

  16. Low Streamflow Forcasting using Minimum Relative Entropy

    NASA Astrophysics Data System (ADS)

    Cui, H.; Singh, V. P.

    2013-12-01

    Minimum relative entropy spectral analysis is derived in this study, and applied to forecast streamflow time series. Proposed method extends the autocorrelation in the manner that the relative entropy of underlying process is minimized so that time series data can be forecasted. Different prior estimation, such as uniform, exponential and Gaussian assumption, is taken to estimate the spectral density depending on the autocorrelation structure. Seasonal and nonseasonal low streamflow series obtained from Colorado River (Texas) under draught condition is successfully forecasted using proposed method. Minimum relative entropy determines spectral of low streamflow series with higher resolution than conventional method. Forecasted streamflow is compared to the prediction using Burg's maximum entropy spectral analysis (MESA) and Configurational entropy. The advantage and disadvantage of each method in forecasting low streamflow is discussed.

  17. A new estimator method for GARCH models

    NASA Astrophysics Data System (ADS)

    Onody, R. N.; Favaro, G. M.; Cazaroto, E. R.

    2007-06-01

    The GARCH (p, q) model is a very interesting stochastic process with widespread applications and a central role in empirical finance. The Markovian GARCH (1, 1) model has only 3 control parameters and a much discussed question is how to estimate them when a series of some financial asset is given. Besides the maximum likelihood estimator technique, there is another method which uses the variance, the kurtosis and the autocorrelation time to determine them. We propose here to use the standardized 6th moment. The set of parameters obtained in this way produces a very good probability density function and a much better time autocorrelation function. This is true for both studied indexes: NYSE Composite and FTSE 100. The probability of return to the origin is investigated at different time horizons for both Gaussian and Laplacian GARCH models. In spite of the fact that these models show almost identical performances with respect to the final probability density function and to the time autocorrelation function, their scaling properties are, however, very different. The Laplacian GARCH model gives a better scaling exponent for the NYSE time series, whereas the Gaussian dynamics fits better the FTSE scaling exponent.

  18. Usage Autocorrelation Function in the Capacity of Indicator Shape of the Signal in Acoustic Emission Testing of Intricate Castings

    NASA Astrophysics Data System (ADS)

    Popkov, Artem

    2016-01-01

    The article contains information about acoustic emission signals analysing using autocorrelation function. Operation factors were analysed, such as shape of signal, the origins time and carrier frequency. The purpose of work is estimating the validity of correlations methods analysing signals. Acoustic emission signal consist of different types of waves, which propagate on different trajectories in object of control. Acoustic emission signal is amplitude-, phase- and frequency-modeling signal. It was described by carrier frequency at a given point of time. Period of signal make up 12.5 microseconds and carrier frequency make up 80 kHz for analysing signal. Usage autocorrelation function like indicator the origin time of acoustic emission signal raises validity localization of emitters.

  19. Break point on the auto-correlation function of Elsässer variable z- in the super-Alfvénic solar wind fluctuations

    NASA Astrophysics Data System (ADS)

    Wang, X.; Tu, C. Y.; He, J.; Wang, L.

    2017-12-01

    It has been a longstanding debate on what the nature of Elsässer variables z- observed in the Alfvénic solar wind is. It is widely believed that z- represents inward propagating Alfvén waves and undergoes non-linear interaction with z+ to produce energy cascade. However, z- variations sometimes show nature of convective structures. Here we present a new data analysis on z- autocorrelation functions to get some definite information on its nature. We find that there is usually a break point on the z- auto-correlation function when the fluctuations show nearly pure Alfvénicity. The break point observed by Helios-2 spacecraft near 0.3 AU is at the first time lag ( 81 s), where the autocorrelation coefficient has the value less than that at zero-time lag by a factor of more than 0.4. The autocorrelation function breaks also appear in the WIND observations near 1 AU. The z- autocorrelation function is separated by the break into two parts: fast decreasing part and slowly decreasing part, which cannot be described in a whole by an exponential formula. The breaks in the z- autocorrelation function may represent that the z- time series are composed of high-frequency white noise and low-frequency apparent structures, which correspond to the flat and steep parts of the function, respectively. This explanation is supported by a simple test with a superposition of an artificial random data series and a smoothed random data series. Since in many cases z- autocorrelation functions do not decrease very quickly at large time lag and cannot be considered as the Lanczos type, no reliable value for correlation-time can be derived. Our results showed that in these cases with high Alfvénicity, z- should not be considered as inward-propagating wave. The power-law spectrum of z+ should be made by fluid turbulence cascade process presented by Kolmogorov.

  20. Improvement of signal to noise ratio of time domain mutliplexing fiber Bragg grating sensor network with Golay complementary codes

    NASA Astrophysics Data System (ADS)

    Elgaud, M. M.; Zan, M. S. D.; Abushagur, A. G.; Bakar, A. Ashrif A.

    2017-07-01

    This paper reports the employment of autocorrelation properties of Golay complementary codes (GCC) to enhance the performance of the time domain multiplexing fiber Bragg grating (TDM-FBG) sensing network. By encoding the light from laser with a stream of non-return-to-zero (NRZ) form of GCC and launching it into the sensing area that consists of the FBG sensors, we have found that the FBG signals can be decoded correctly with the autocorrelation calculations, confirming the successful demonstration of coded TDM-FBG sensor network. OptiGrating and OptiSystem simulators were used to design customized FBG sensors and perform the coded TDM-FBG sensor simulations, respectively. Results have substantiated the theoretical dependence of SNR enhancement on the code length of GCC, where the maximum SNR improvement of about 9 dB is achievable with the use of 256 bits of GCC compared to that of 4 bits case. Furthermore, the GCC has also extended the strain exposure up to 30% higher compared to the maximum of the conventional single pulse case. The employment of GCC in the TDM-FBG sensor system provides overall performance enhancement over the conventional single pulse case, under the same conditions.

  1. Temporal trend and climate factors of hemorrhagic fever with renal syndrome epidemic in Shenyang City, China

    PubMed Central

    2011-01-01

    Background Hemorrhagic fever with renal syndrome (HFRS) is an important infectious disease caused by different species of hantaviruses. As a rodent-borne disease with a seasonal distribution, external environmental factors including climate factors may play a significant role in its transmission. The city of Shenyang is one of the most seriously endemic areas for HFRS. Here, we characterized the dynamic temporal trend of HFRS, and identified climate-related risk factors and their roles in HFRS transmission in Shenyang, China. Methods The annual and monthly cumulative numbers of HFRS cases from 2004 to 2009 were calculated and plotted to show the annual and seasonal fluctuation in Shenyang. Cross-correlation and autocorrelation analyses were performed to detect the lagged effect of climate factors on HFRS transmission and the autocorrelation of monthly HFRS cases. Principal component analysis was constructed by using climate data from 2004 to 2009 to extract principal components of climate factors to reduce co-linearity. The extracted principal components and autocorrelation terms of monthly HFRS cases were added into a multiple regression model called principal components regression model (PCR) to quantify the relationship between climate factors, autocorrelation terms and transmission of HFRS. The PCR model was compared to a general multiple regression model conducted only with climate factors as independent variables. Results A distinctly declining temporal trend of annual HFRS incidence was identified. HFRS cases were reported every month, and the two peak periods occurred in spring (March to May) and winter (November to January), during which, nearly 75% of the HFRS cases were reported. Three principal components were extracted with a cumulative contribution rate of 86.06%. Component 1 represented MinRH0, MT1, RH1, and MWV1; component 2 represented RH2, MaxT3, and MAP3; and component 3 represented MaxT2, MAP2, and MWV2. The PCR model was composed of three principal components and two autocorrelation terms. The association between HFRS epidemics and climate factors was better explained in the PCR model (F = 446.452, P < 0.001, adjusted R2 = 0.75) than in the general multiple regression model (F = 223.670, P < 0.000, adjusted R2 = 0.51). Conclusion The temporal distribution of HFRS in Shenyang varied in different years with a distinctly declining trend. The monthly trends of HFRS were significantly associated with local temperature, relative humidity, precipitation, air pressure, and wind velocity of the different previous months. The model conducted in this study will make HFRS surveillance simpler and the control of HFRS more targeted in Shenyang. PMID:22133347

  2. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  3. An experimental investigation of a three dimensional wall jet. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Catalano, G. D.

    1977-01-01

    One and two point statistical properties are measured in the flow fields of a coflowing turbulent jet. Two different confining surfaces (one flat, one with large curvature) are placed adjacent to the lip of the circular nozzle; and the resultant effects on the flow field are determined. The one point quantities measured include mean velocities, turbulent intensities, velocity and concentration autocorrelations and power spectral densities, and intermittencies. From the autocorrelation curves, the Taylor microscale and the integral length scale are calculated. Two point quantities measured include velocity and concentration space-time correlations and pressure velocity correlations. From the velocity space-time correlations, iso-correlation contours are constructed along with the lines of maximum maximorum. These lines allow a picture of the flow pattern to be determined. The pressures monitored in the pressure velocity correlations are measured both in the flow field and at the surface of the confining wall(s).

  4. Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements

    NASA Astrophysics Data System (ADS)

    Hadwin, Paul J.; Sipkens, T. A.; Thomson, K. A.; Liu, F.; Daun, K. J.

    2016-01-01

    Auto-correlated laser-induced incandescence (AC-LII) infers the soot volume fraction (SVF) of soot particles by comparing the spectral incandescence from laser-energized particles to the pyrometrically inferred peak soot temperature. This calculation requires detailed knowledge of model parameters such as the absorption function of soot, which may vary with combustion chemistry, soot age, and the internal structure of the soot. This work presents a Bayesian methodology to quantify such uncertainties. This technique treats the additional "nuisance" model parameters, including the soot absorption function, as stochastic variables and incorporates the current state of knowledge of these parameters into the inference process through maximum entropy priors. While standard AC-LII analysis provides a point estimate of the SVF, Bayesian techniques infer the posterior probability density, which will allow scientists and engineers to better assess the reliability of AC-LII inferred SVFs in the context of environmental regulations and competing diagnostics.

  5. Autocorrelation Function for Monitoring the Gap between The Steel Plates During Laser Welding

    NASA Astrophysics Data System (ADS)

    Mrna, Libor; Hornik, Petr

    Proper alignment of the plates prior to laser welding represents an important factor that determines the quality of the resulting weld. A gap between the plates in a butt or overlap joint affects the oscillations of the keyhole and the surrounding weld pool. We present an experimental study of the butt and overlap welds with the artificial gap of the different thickness of the plates. The welds were made on a 2 kW fiber laser machine for the steel plates and the various welding parameters settings. The eigenfrequency of the keyhole oscillations and its changes were determined from the light emissions of the plasma plume using an autocorrelation function. As a result, we describe the relations between the autocorrelation characteristics, the thickness of the gap between plates and the weld geometry.

  6. Explaining local-scale species distributions: relative contributions of spatial autocorrelation and landscape heterogeneity for an avian assemblage

    USGS Publications Warehouse

    Mattsson, Brady J.; Zipkin, Elise F.; Gardner, Beth; Blank, Peter J.; Sauer, John R.; Royle, J. Andrew

    2013-01-01

    Understanding interactions between mobile species distributions and landcover characteristics remains an outstanding challenge in ecology. Multiple factors could explain species distributions including endogenous evolutionary traits leading to conspecific clustering and endogenous habitat features that support life history requirements. Birds are a useful taxon for examining hypotheses about the relative importance of these factors among species in a community. We developed a hierarchical Bayes approach to model the relationships between bird species occupancy and local landcover variables accounting for spatial autocorrelation, species similarities, and partial observability. We fit alternative occupancy models to detections of 90 bird species observed during repeat visits to 316 point-counts forming a 400-m grid throughout the Patuxent Wildlife Research Refuge in Maryland, USA. Models with landcover variables performed significantly better than our autologistic and null models, supporting the hypothesis that local landcover heterogeneity is important as an exogenous driver for species distributions. Conspecific clustering alone was a comparatively poor descriptor of local community composition, but there was evidence for spatial autocorrelation in all species. Considerable uncertainty remains whether landcover combined with spatial autocorrelation is most parsimonious for describing bird species distributions at a local scale. Spatial structuring may be weaker at intermediate scales within which dispersal is less frequent, information flows are localized, and landcover types become spatially diversified and therefore exhibit little aggregation. Examining such hypotheses across species assemblages contributes to our understanding of community-level associations with conspecifics and landscape composition.

  7. Explaining local-scale species distributions: relative contributions of spatial autocorrelation and landscape heterogeneity for an avian assemblage.

    PubMed

    Mattsson, Brady J; Zipkin, Elise F; Gardner, Beth; Blank, Peter J; Sauer, John R; Royle, J Andrew

    2013-01-01

    Understanding interactions between mobile species distributions and landcover characteristics remains an outstanding challenge in ecology. Multiple factors could explain species distributions including endogenous evolutionary traits leading to conspecific clustering and endogenous habitat features that support life history requirements. Birds are a useful taxon for examining hypotheses about the relative importance of these factors among species in a community. We developed a hierarchical Bayes approach to model the relationships between bird species occupancy and local landcover variables accounting for spatial autocorrelation, species similarities, and partial observability. We fit alternative occupancy models to detections of 90 bird species observed during repeat visits to 316 point-counts forming a 400-m grid throughout the Patuxent Wildlife Research Refuge in Maryland, USA. Models with landcover variables performed significantly better than our autologistic and null models, supporting the hypothesis that local landcover heterogeneity is important as an exogenous driver for species distributions. Conspecific clustering alone was a comparatively poor descriptor of local community composition, but there was evidence for spatial autocorrelation in all species. Considerable uncertainty remains whether landcover combined with spatial autocorrelation is most parsimonious for describing bird species distributions at a local scale. Spatial structuring may be weaker at intermediate scales within which dispersal is less frequent, information flows are localized, and landcover types become spatially diversified and therefore exhibit little aggregation. Examining such hypotheses across species assemblages contributes to our understanding of community-level associations with conspecifics and landscape composition.

  8. Explaining Local-Scale Species Distributions: Relative Contributions of Spatial Autocorrelation and Landscape Heterogeneity for an Avian Assemblage

    PubMed Central

    Mattsson, Brady J.; Zipkin, Elise F.; Gardner, Beth; Blank, Peter J.; Sauer, John R.; Royle, J. Andrew

    2013-01-01

    Understanding interactions between mobile species distributions and landcover characteristics remains an outstanding challenge in ecology. Multiple factors could explain species distributions including endogenous evolutionary traits leading to conspecific clustering and endogenous habitat features that support life history requirements. Birds are a useful taxon for examining hypotheses about the relative importance of these factors among species in a community. We developed a hierarchical Bayes approach to model the relationships between bird species occupancy and local landcover variables accounting for spatial autocorrelation, species similarities, and partial observability. We fit alternative occupancy models to detections of 90 bird species observed during repeat visits to 316 point-counts forming a 400-m grid throughout the Patuxent Wildlife Research Refuge in Maryland, USA. Models with landcover variables performed significantly better than our autologistic and null models, supporting the hypothesis that local landcover heterogeneity is important as an exogenous driver for species distributions. Conspecific clustering alone was a comparatively poor descriptor of local community composition, but there was evidence for spatial autocorrelation in all species. Considerable uncertainty remains whether landcover combined with spatial autocorrelation is most parsimonious for describing bird species distributions at a local scale. Spatial structuring may be weaker at intermediate scales within which dispersal is less frequent, information flows are localized, and landcover types become spatially diversified and therefore exhibit little aggregation. Examining such hypotheses across species assemblages contributes to our understanding of community-level associations with conspecifics and landscape composition. PMID:23393564

  9. Spatial variation in mandibular bone elastic modulus and its effect on structural bending stiffness: A test case using the Taï Forest monkeys.

    PubMed

    Le, Kim N; Marsik, Matthew; Daegling, David J; Duque, Ana; McGraw, William Scott

    2017-03-01

    We investigated how heterogeneity in material stiffness affects structural stiffness in the cercopithecid mandibular cortical bone. We assessed (1) whether this effect changes the interpretation of interspecific structural stiffness variation across four primate species, (2) whether the heterogeneity is random, and (3) whether heterogeneity mitigates bending stress in the jaw associated with food processing. The sample consisted of Taï Forest, Cote d'Ivoire, monkeys: Cercocebus atys, Piliocolobus badius, Colobus polykomos, and Cercopithecus diana. Vickers indentation hardness samples estimated elastic moduli throughout the cortical bone area of each coronal section of postcanine corpus. For each section, we calculated maximum area moment of inertia, I max (structural mechanical property), under three models of material heterogeneity, as well as spatial autocorrelation statistics (Moran's I, I MORAN ). When the model considered material stiffness variation and spatial patterning, I max decreased and individual ranks based on structural stiffness changed. Rank changes were not significant across models. All specimens showed positive (nonrandom) spatial autocorrelation. Differences in I MORAN were not significant among species, and there were no discernable patterns of autocorrelation within species. Across species, significant local I MORAN was often attributed to proximity of low moduli in the alveolar process and high moduli in the basal process. While our sample did not demonstrate species differences in the degree of spatial autocorrelation of elastic moduli, there may be mechanical effects of heterogeneity (relative strength and rigidity) that do distinguish at the species or subfamilial level (i.e., colobines vs. cercopithecines). The potential connections of heterogeneity to diet and/or taxonomy remain to be discovered. © 2016 Wiley Periodicals, Inc.

  10. Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses.

    PubMed

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika; Le, Tuan; Stingl, Andreas; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-06-20

    For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected.

  11. Reliabilities of Intraindividual Variability Indicators with Autocorrelated Longitudinal Data: Implications for Longitudinal Study Designs.

    PubMed

    Du, Han; Wang, Lijuan

    2018-04-23

    Intraindividual variability can be measured by the intraindividual standard deviation ([Formula: see text]), intraindividual variance ([Formula: see text]), estimated hth-order autocorrelation coefficient ([Formula: see text]), and mean square successive difference ([Formula: see text]). Unresolved issues exist in the research on reliabilities of intraindividual variability indicators: (1) previous research only studied conditions with 0 autocorrelations in the longitudinal responses; (2) the reliabilities of [Formula: see text] and [Formula: see text] have not been studied. The current study investigates reliabilities of [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and the intraindividual mean, with autocorrelated longitudinal data. Reliability estimates of the indicators were obtained through Monte Carlo simulations. The impact of influential factors on reliabilities of the intraindividual variability indicators is summarized, and the reliabilities are compared across the indicators. Generally, all the studied indicators of intraindividual variability were more reliable with a more reliable measurement scale and more assessments. The reliabilities of [Formula: see text] were generally lower than those of [Formula: see text] and [Formula: see text], the reliabilities of [Formula: see text] were usually between those of [Formula: see text] and [Formula: see text] unless the scale reliability was large and/or the interindividual standard deviation in autocorrelation coefficients was large, and the reliabilities of the intraindividual mean were generally the highest. An R function is provided for planning longitudinal studies to ensure sufficient reliabilities of the intraindividual indicators are achieved.

  12. Bayesian Estimates of Autocorrelations in Single-Case Designs

    ERIC Educational Resources Information Center

    Shadish, William R.; Rindskopf, David M.; Hedges, Larry V.; Sullivan, Kristynn J.

    2012-01-01

    Researchers in the single-case design tradition have debated the size and importance of the observed autocorrelations in those designs. All of the past estimates of the autocorrelation in that literature have taken the observed autocorrelation estimates as the data to be used in the debate. However, estimates of the autocorrelation are subject to…

  13. Spatial Dependence and Heterogeneity in Bayesian Factor Analysis: A Cross-National Investigation of Schwartz Values

    ERIC Educational Resources Information Center

    Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel

    2012-01-01

    In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…

  14. [Spatial differentiation and impact factors of Yutian Oasis's soil surface salt based on GWR model].

    PubMed

    Yuan, Yu Yun; Wahap, Halik; Guan, Jing Yun; Lu, Long Hui; Zhang, Qin Qin

    2016-10-01

    In this paper, topsoil salinity data gathered from 24 sampling sites in the Yutian Oasis were used, nine different kinds of environmental variables closely related to soil salinity were selec-ted as influencing factors, then, the spatial distribution characteristics of topsoil salinity and spatial heterogeneity of influencing factors were analyzed by combining the spatial autocorrelation with traditional regression analysis and geographically weighted regression model. Results showed that the topsoil salinity in Yutian Oasis was not of random distribution but had strong spatial dependence, and the spatial autocorrelation index for topsoil salinity was 0.479. Groundwater salinity, groundwater depth, elevation and temperature were the main factors influencing topsoil salt accumulation in arid land oases and they were spatially heterogeneous. The nine selected environmental variables except soil pH had significant influences on topsoil salinity with spatial disparity. GWR model was superior to the OLS model on interpretation and estimation of spatial non-stationary data, also had a remarkable advantage in visualization of modeling parameters.

  15. High-Responsivity Graphene-Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit.

    PubMed

    Shiue, Ren-Jye; Gao, Yuanda; Wang, Yifei; Peng, Cheng; Robertson, Alexander D; Efetov, Dmitri K; Assefa, Solomon; Koppens, Frank H L; Hone, James; Englund, Dirk

    2015-11-11

    Graphene and other two-dimensional (2D) materials have emerged as promising materials for broadband and ultrafast photodetection and optical modulation. These optoelectronic capabilities can augment complementary metal-oxide-semiconductor (CMOS) devices for high-speed and low-power optical interconnects. Here, we demonstrate an on-chip ultrafast photodetector based on a two-dimensional heterostructure consisting of high-quality graphene encapsulated in hexagonal boron nitride. Coupled to the optical mode of a silicon waveguide, this 2D heterostructure-based photodetector exhibits a maximum responsivity of 0.36 A/W and high-speed operation with a 3 dB cutoff at 42 GHz. From photocurrent measurements as a function of the top-gate and source-drain voltages, we conclude that the photoresponse is consistent with hot electron mediated effects. At moderate peak powers above 50 mW, we observe a saturating photocurrent consistent with the mechanisms of electron-phonon supercollision cooling. This nonlinear photoresponse enables optical on-chip autocorrelation measurements with picosecond-scale timing resolution and exceptionally low peak powers.

  16. Diffusion and viscosity of liquid tin: Green-Kubo relationship-based calculations from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mouas, Mohamed; Gasser, Jean-Georges; Hellal, Slimane; Grosdidier, Benoît; Makradi, Ahmed; Belouettar, Salim

    2012-03-01

    Molecular dynamics (MD) simulations of liquid tin between its melting point and 1600 °C have been performed in order to interpret and discuss the ionic structure. The interactions between ions are described by a new accurate pair potential built within the pseudopotential formalism and the linear response theory. The calculated structure factor that reflects the main information on the local atomic order in liquids is compared to diffraction measurements. Having some confidence in the ability of this pair potential to give a good representation of the atomic structure, we then focused our attention on the investigation of the atomic transport properties through the MD computations of the velocity autocorrelation function and stress autocorrelation function. Using the Green-Kubo formula (for the first time to our knowledge for liquid tin) we determine the macroscopic transport properties from the corresponding microscopic time autocorrelation functions. The selfdiffusion coefficient and the shear viscosity as functions of temperature are found to be in good agreement with the experimental data.

  17. A spatial analysis of social and economic determinants of tuberculosis in Brazil.

    PubMed

    Harling, Guy; Castro, Marcia C

    2014-01-01

    We investigated the spatial distribution, and social and economic correlates, of tuberculosis in Brazil between 2002 and 2009 using municipality-level age/sex-standardized tuberculosis notification data. Rates were very strongly spatially autocorrelated, being notably high in urban areas on the eastern seaboard and in the west of the country. Non-spatial ecological regression analyses found higher rates associated with urbanicity, population density, poor economic conditions, household crowding, non-white population and worse health and healthcare indicators. These associations remained in spatial conditional autoregressive models, although the effect of poverty appeared partially confounded by urbanicity, race and spatial autocorrelation, and partially mediated by household crowding. Our analysis highlights both the multiple relationships between socioeconomic factors and tuberculosis in Brazil, and the importance of accounting for spatial factors in analysing socioeconomic determinants of tuberculosis. © 2013 Published by Elsevier Ltd.

  18. A Regional Analysis of Non-Methane Hydrocarbons And Meteorology of The Rural Southeast United States

    DTIC Science & Technology

    1996-01-01

    Zt is an ARIMA time series. This is a typical regression model , except that it allows for autocorrelation in the error term Z. In this work, an ARMA...data=folder; var residual; run; II Statistical output of 1992 regression model on 1993 ozone data ARIMA Procedure Maximum Likelihood Estimation Approx...at each of the sites, and to show the effect of synoptic meteorology on high ozone by examining NOAA daily weather maps and climatic data

  19. Correlation lifetimes of quiet and magnetic granulation from the SOUP instrument on Spacelab 2

    NASA Astrophysics Data System (ADS)

    Title, A.; Tarbell, T.; Topka, K.; Acton, L.; Duncan, D.; Ferguson, S.; Finch, M.; Frank, Z.; Kelly, G.; Lindgren, R.; Morrill, M.; Pope, T.; Reeves, R.; Rehse, R.; Shine, R.; Simon, G.; Harvey, J.; Leibacher, J.; Livingston, W.; November, L.; Zirker, J.

    The time sequences of diffraction limited granulation images obtained by the Solar Optical Universal Polarimeter on Spacelab 2 are presented. The uncorrection autocorrelation limetime in magnetic regions is dominated by the 5-min oscillation. The removal of this oscillation causes the autocorrelation lifetime to increase by more than a factor of 2. The results suggest that a significant fraction of granule lifetimes are terminated by nearby explosions. Horizontal displacements and transverse velocities in the intensity field are measured. Lower limits to the lifetime in the quiet and magnetic sun are set at 440 s and 950 s, respectively.

  20. Correlation lifetimes of quiet and magnetic granulation from the SOUP instrument on Spacelab 2. [Solar Optical Universal Polarimeter

    NASA Technical Reports Server (NTRS)

    Title, A.; Tarbell, T.; Topka, K.; Acton, L.; Duncan, D.

    1988-01-01

    The time sequences of diffraction limited granulation images obtained by the Solar Optical Universal Polarimeter on Spacelab 2 are presented. The uncorrection autocorrelation limetime in magnetic regions is dominated by the 5-min oscillation. The removal of this oscillation causes the autocorrelation lifetime to increase by more than a factor of 2. The results suggest that a significant fraction of granule lifetimes are terminated by nearby explosions. Horizontal displacements and transverse velocities in the intensity field are measured. Lower limits to the lifetime in the quiet and magnetic sun are set at 440 s and 950 s, respectively.

  1. Design of a fast echo matching algorithm to reduce crosstalk with Doppler shifts in ultrasonic ranging

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Guo, Rui; Wu, Jun-an

    2017-02-01

    Crosstalk is a main factor for wrong distance measurement by ultrasonic sensors, and this problem becomes more difficult to deal with under Doppler effects. In this paper, crosstalk reduction with Doppler shifts on small platforms is focused on, and a fast echo matching algorithm (FEMA) is proposed on the basis of chaotic sequences and pulse coding technology, then verified through applying it to match practical echoes. Finally, we introduce how to select both better mapping methods for chaotic sequences, and algorithm parameters for higher achievable maximum of cross-correlation peaks. The results indicate the following: logistic mapping is preferred to generate good chaotic sequences, with high autocorrelation even when the length is very limited; FEMA can not only match echoes and calculate distance accurately with an error degree mostly below 5%, but also generates nearly the same calculation cost level for static or kinematic ranging, much lower than that by direct Doppler compensation (DDC) with the same frequency compensation step; The sensitivity to threshold value selection and performance of FEMA depend significantly on the achievable maximum of cross-correlation peaks, and a higher peak is preferred, which can be considered as a criterion for algorithm parameter optimization under practical conditions.

  2. Extracting the time scales of conformational dynamics from single-molecule single-photon fluorescence statistics.

    PubMed

    Shang, Jianyuan; Geva, Eitan

    2007-04-26

    The quenching rate of a fluorophore attached to a macromolecule can be rather sensitive to its conformational state. The decay of the corresponding fluorescence lifetime autocorrelation function can therefore provide unique information on the time scales of conformational dynamics. The conventional way of measuring the fluorescence lifetime autocorrelation function involves evaluating it from the distribution of delay times between photoexcitation and photon emission. However, the time resolution of this procedure is limited by the time window required for collecting enough photons in order to establish this distribution with sufficient signal-to-noise ratio. Yang and Xie have recently proposed an approach for improving the time resolution, which is based on the argument that the autocorrelation function of the delay time between photoexcitation and photon emission is proportional to the autocorrelation function of the square of the fluorescence lifetime [Yang, H.; Xie, X. S. J. Chem. Phys. 2002, 117, 10965]. In this paper, we show that the delay-time autocorrelation function is equal to the autocorrelation function of the square of the fluorescence lifetime divided by the autocorrelation function of the fluorescence lifetime. We examine the conditions under which the delay-time autocorrelation function is approximately proportional to the autocorrelation function of the square of the fluorescence lifetime. We also investigate the correlation between the decay of the delay-time autocorrelation function and the time scales of conformational dynamics. The results are demonstrated via applications to a two-state model and an off-lattice model of a polypeptide.

  3. Mapping hard magnetic recording disks by TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Spool, A.; Forrest, J.

    2008-12-01

    Mapping of hard magnetic recording disks by TOF-SIMS was performed both to produce significant analytical results for the understanding of the disk surface and the head disk interface in hard disk drives, and as an example of a macroscopic non-rectangular mapping problem for the technique. In this study, maps were obtained by taking discrete samples of the disk surface at set intervals in R and Θ. Because both in manufacturing, and in the disk drive, processes that may affect the disk surface are typically circumferential in nature, changes in the surface are likely to be blurred in the Θ direction. An algorithm was developed to determine the optimum relative sampling ratio in R and Θ. The results confirm what the experience of the analysts suggested, that changes occur more rapidly on disks in the radial direction, and that more sampling in the radial direction is desired. The subsequent use of statistical methods principle component analysis (PCA), maximum auto-correlation factors (MAF), and the algorithm inverse distance weighting (IDW) are explored.

  4. A spatial regression procedure for evaluating the relationship between AVHRR-NDVI and climate in the northern Great Plains

    USGS Publications Warehouse

    Ji, Lei; Peters, Albert J.

    2004-01-01

    The relationship between vegetation and climate in the grassland and cropland of the northern US Great Plains was investigated with Normalized Difference Vegetation Index (NDVI) (1989–1993) images derived from the Advanced Very High Resolution Radiometer (AVHRR), and climate data from automated weather stations. The relationship was quantified using a spatial regression technique that adjusts for spatial autocorrelation inherent in these data. Conventional regression techniques used frequently in previous studies are not adequate, because they are based on the assumption of independent observations. Six climate variables during the growing season; precipitation, potential evapotranspiration, daily maximum and minimum air temperature, soil temperature, solar irradiation were regressed on NDVI derived from a 10-km weather station buffer. The regression model identified precipitation and potential evapotranspiration as the most significant climatic variables, indicating that the water balance is the most important factor controlling vegetation condition at an annual timescale. The model indicates that 46% and 24% of variation in NDVI is accounted for by climate in grassland and cropland, respectively, indicating that grassland vegetation has a more pronounced response to climate variation than cropland. Other factors contributing to NDVI variation include environmental factors (soil, groundwater and terrain), human manipulation of crops, and sensor variation.

  5. Spatial autocorrelation analysis of health care hotspots in Taiwan in 2006

    PubMed Central

    2009-01-01

    Background Spatial analytical techniques and models are often used in epidemiology to identify spatial anomalies (hotspots) in disease regions. These analytical approaches can be used to not only identify the location of such hotspots, but also their spatial patterns. Methods In this study, we utilize spatial autocorrelation methodologies, including Global Moran's I and Local Getis-Ord statistics, to describe and map spatial clusters, and areas in which these are situated, for the 20 leading causes of death in Taiwan. In addition, we use the fit to a logistic regression model to test the characteristics of similarity and dissimilarity by gender. Results Gender is compared in efforts to formulate the common spatial risk. The mean found by local spatial autocorrelation analysis is utilized to identify spatial cluster patterns. There is naturally great interest in discovering the relationship between the leading causes of death and well-documented spatial risk factors. For example, in Taiwan, we found the geographical distribution of clusters where there is a prevalence of tuberculosis to closely correspond to the location of aboriginal townships. Conclusions Cluster mapping helps to clarify issues such as the spatial aspects of both internal and external correlations for leading health care events. This is of great aid in assessing spatial risk factors, which in turn facilitates the planning of the most advantageous types of health care policies and implementation of effective health care services. PMID:20003460

  6. Separating temperature from other factors in phenological measurements

    NASA Astrophysics Data System (ADS)

    Schwartz, Mark D.; Hanes, Jonathan M.; Liang, Liang

    2014-09-01

    Phenological observations offer a simple and effective way to measure climate change effects on the biosphere. While some species in northern mixed forests show a highly sensitive site preference to microenvironmental differences (i.e., the species is present in certain areas and absent in others), others with a more plastic environmental response (e.g., Acer saccharum, sugar maple) allow provisional separation of the universal "background" phenological variation caused by in situ (possibly biological/genetic) variation from the microclimatic gradients in air temperature. Moran's I tests for spatial autocorrelation among the phenological data showed significant ( α ≤ 0.05) clustering across the study area, but random patterns within the microclimates themselves, with isolated exceptions. In other words, the presence of microclimates throughout the study area generally results in spatial autocorrelation because they impact the overall phenological development of sugar maple trees. However, within each microclimate (where temperature conditions are relatively uniform) there is little or no spatial autocorrelation because phenological differences are due largely to randomly distributed in situ factors. The phenological responses from 2008 and 2009 for two sugar maple phenological stages showed the relationship between air temperature degree-hour departure and phenological change ranged from 0.5 to 1.2 days earlier for each additional 100 degree-hours. Further, the standard deviations of phenological event dates within individual microclimates (for specific events and years) ranged from 2.6 to 3.8 days. Thus, that range of days is inferred to be the "background" phenological variation caused by factors other than air temperature variations, such as genetic differences between individuals.

  7. High-Responsivity Graphene–Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiue, Ren-Jye; Gao, Yuanda; Wang, Yifei

    2015-11-11

    Graphene and other two-dimensional (2D) materials have emerged as promising materials for broadband and ultrafast photodetection and optical modulation. These optoelectronic capabilities can augment complementary metal–oxide–semiconductor (CMOS) devices for high-speed and low-power optical interconnects. Here, we demonstrate an on-chip ultrafast photodetector based on a two-dimensional heterostructure consisting of high-quality graphene encapsulated in hexagonal boron nitride. Coupled to the optical mode of a silicon waveguide, this 2D heterostructure-based photodetector exhibits a maximum responsivity of 0.36 A/W and high-speed operation with a 3 dB cutoff at 42 GHz. From photocurrent measurements as a function of the top-gate and source-drain voltages, we concludemore » that the photoresponse is consistent with hot electron mediated effects. At moderate peak powers above 50 mW, we observe a saturating photocurrent consistent with the mechanisms of electron–phonon supercollision cooling. This nonlinear photoresponse enables optical on-chip autocorrelation measurements with picosecond-scale timing resolution and exceptionally low peak powers.« less

  8. LETTER TO THE EDITOR: Exhaustive search for low-autocorrelation binary sequences

    NASA Astrophysics Data System (ADS)

    Mertens, S.

    1996-09-01

    Binary sequences with low autocorrelations are important in communication engineering and in statistical mechanics as ground states of the Bernasconi model. Computer searches are the main tool in the construction of such sequences. Owing to the exponential size 0305-4470/29/18/005/img1 of the configuration space, exhaustive searches are limited to short sequences. We discuss an exhaustive search algorithm with run-time characteristic 0305-4470/29/18/005/img2 and apply it to compile a table of exact ground states of the Bernasconi model up to N = 48. The data suggest F > 9 for the optimal merit factor in the limit 0305-4470/29/18/005/img3.

  9. The Spatial Distribution of Adult Obesity Prevalence in Denver County, Colorado: An Empirical Bayes Approach to Adjust EHR-Derived Small Area Estimates.

    PubMed

    Tabano, David C; Bol, Kirk; Newcomer, Sophia R; Barrow, Jennifer C; Daley, Matthew F

    2017-12-06

    Measuring obesity prevalence across geographic areas should account for environmental and socioeconomic factors that contribute to spatial autocorrelation, the dependency of values in estimates across neighboring areas, to mitigate the bias in measures and risk of type I errors in hypothesis testing. Dependency among observations across geographic areas violates statistical independence assumptions and may result in biased estimates. Empirical Bayes (EB) estimators reduce the variability of estimates with spatial autocorrelation, which limits the overall mean square-error and controls for sample bias. Using the Colorado Body Mass Index (BMI) Monitoring System, we modeled the spatial autocorrelation of adult (≥ 18 years old) obesity (BMI ≥ 30 kg m 2 ) measurements using patient-level electronic health record data from encounters between January 1, 2009, and December 31, 2011. Obesity prevalence was estimated among census tracts with >=10 observations in Denver County census tracts during the study period. We calculated the Moran's I statistic to test for spatial autocorrelation across census tracts, and mapped crude and EB obesity prevalence across geographic areas. In Denver County, there were 143 census tracts with 10 or more observations, representing a total of 97,710 adults with a valid BMI. The crude obesity prevalence for adults in Denver County was 29.8 percent (95% CI 28.4-31.1%) and ranged from 12.8 to 45.2 percent across individual census tracts. EB obesity prevalence was 30.2 percent (95% CI 28.9-31.5%) and ranged from 15.3 to 44.3 percent across census tracts. Statistical tests using the Moran's I statistic suggest adult obesity prevalence in Denver County was distributed in a non-random pattern. Clusters of EB obesity estimates were highly significant (alpha=0.05) in neighboring census tracts. Concentrations of obesity estimates were primarily in the west and north in Denver County. Statistical tests reveal adult obesity prevalence exhibit spatial autocorrelation in Denver County at the census tract level. EB estimates for obesity prevalence can be used to control for spatial autocorrelation between neighboring census tracts and may produce less biased estimates of obesity prevalence.

  10. Autocorrelation of the susceptible-infected-susceptible process on networks

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Van Mieghem, Piet

    2018-06-01

    In this paper, we focus on the autocorrelation of the susceptible-infected-susceptible (SIS) process on networks. The N -intertwined mean-field approximation (NIMFA) is applied to calculate the autocorrelation properties of the exact SIS process. We derive the autocorrelation of the infection state of each node and the fraction of infected nodes both in the steady and transient states as functions of the infection probabilities of nodes. Moreover, we show that the autocorrelation can be used to estimate the infection and curing rates of the SIS process. The theoretical results are compared with the simulation of the exact SIS process. Our work fully utilizes the potential of the mean-field method and shows that NIMFA can indeed capture the autocorrelation properties of the exact SIS process.

  11. Climatic factors associated with amyotrophic lateral sclerosis: a spatial analysis from Taiwan.

    PubMed

    Tsai, Ching-Piao; Tzu-Chi Lee, Charles

    2013-11-01

    Few studies have assessed the spatial association of amyotrophic lateral sclerosis (ALS) incidence in the world. The aim of this study was to identify the association of climatic factors and ALS incidence in Taiwan. A total of 1,434 subjects with the primary diagnosis of ALS between years 1997 and 2008 were identified in the national health insurance research database. The diagnosis was also verified by the national health insurance programme, which had issued and providing them with "serious disabling disease (SDD) certificates". Local indicators of spatial association were employed to investigate spatial clustering of age-standardised incidence ratios in the townships of the study area. Spatial regression was utilised to reveal any association of annual average climatic factors and ALS incidence for the 12-year study period. The climatic factors included the annual average time of sunlight exposure, average temperature, maximum temperature, minimum temperature, atmospheric pressure, rainfall, relative humidity and wind speed with spatial autocorrelation controlled. Significant correlations were only found for exposure to sunlight and rainfall and it was similar in both genders. The annual average of the former was found to be negatively correlated with ALS, while the latter was positively correlated with ALS incidence. While accepting that ALS is most probably multifactorial, it was concluded that sunlight deprivation and/or rainfall are associated to some degree with ALS incidence in Taiwan.

  12. Glutamate receptor-channel gating. Maximum likelihood analysis of gigaohm seal recordings from locust muscle.

    PubMed Central

    Bates, S E; Sansom, M S; Ball, F G; Ramsey, R L; Usherwood, P N

    1990-01-01

    Gigaohm recordings have been made from glutamate receptor channels in excised, outside-out patches of collagenase-treated locust muscle membrane. The channels in the excised patches exhibit the kinetic state switching first seen in megaohm recordings from intact muscle fibers. Analysis of channel dwell time distributions reveals that the gating mechanism contains at least four open states and at least four closed states. Dwell time autocorrelation function analysis shows that there are at least three gateways linking the open states of the channel with the closed states. A maximum likelihood procedure has been used to fit six different gating models to the single channel data. Of these models, a cooperative model yields the best fit, and accurately predicts most features of the observed channel gating kinetics. PMID:1696510

  13. Path integral Liouville dynamics: Applications to infrared spectra of OH, water, ammonia, and methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian, E-mail: jianliupku@pku.edu.cn; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871; Zhang, Zhijun

    Path integral Liouville dynamics (PILD) is applied to vibrational dynamics of several simple but representative realistic molecular systems (OH, water, ammonia, and methane). The dipole-derivative autocorrelation function is employed to obtain the infrared spectrum as a function of temperature and isotopic substitution. Comparison to the exact vibrational frequency shows that PILD produces a reasonably accurate peak position with a relatively small full width at half maximum. PILD offers a potentially useful trajectory-based quantum dynamics approach to compute vibrational spectra of molecular systems.

  14. Statistics of some atmospheric turbulence records relevant to aircraft response calculations

    NASA Technical Reports Server (NTRS)

    Mark, W. D.; Fischer, R. W.

    1981-01-01

    Methods for characterizing atmospheric turbulence are described. The methods illustrated include maximum likelihood estimation of the integral scale and intensity of records obeying the von Karman transverse power spectral form, constrained least-squares estimation of the parameters of a parametric representation of autocorrelation functions, estimation of the power spectra density of the instantaneous variance of a record with temporally fluctuating variance, and estimation of the probability density functions of various turbulence components. Descriptions of the computer programs used in the computations are given, and a full listing of these programs is included.

  15. Spatial autocorrelation in uptake of antenatal care and relationship to individual, household and village-level factors: results from a community-based survey of pregnant women in six districts in western Kenya.

    PubMed

    Prudhomme O'Meara, Wendy; Platt, Alyssa; Naanyu, Violet; Cole, Donald; Ndege, Samson

    2013-12-07

    The majority of maternal deaths, stillbirths, and neonatal deaths are concentrated in a few countries, many of which have weak health systems, poor access to health services, and low coverage of key health interventions. Early and consistent antenatal care (ANC) attendance could significantly reduce maternal and neonatal morbidity and mortality. Despite this, most Kenyan mothers initiate ANC care late in pregnancy and attend fewer than the recommended visits. We used survey data from 6,200 pregnant women across six districts in western Kenya to understand demand-side factors related to use of ANC. Bayesian multi-level models were developed to explore the relative importance of individual, household and village-level factors in relation to ANC use. There is significant spatial autocorrelation of ANC attendance in three of the six districts and considerable heterogeneity in factors related to ANC use between districts. Working outside the home limited ANC attendance. Maternal age, the number of small children in the household, and ownership of livestock were important in some districts, but not all. Village proportions of pregnancy in women of child-bearing age was significantly correlated to ANC use in three of the six districts. Geographic distance to health facilities and the type of nearest facility was not correlated with ANC use. After incorporating individual, household and village-level covariates, no residual spatial autocorrelation remained in the outcome. ANC attendance was consistently low across all the districts, but factors related to poor attendance varied. This heterogeneity is expected for an outcome that is highly influenced by socio-cultural values and local context. Interventions to improve use of ANC must be tailored to local context and should include explicit approaches to reach women who work outside the home.

  16. Geographical Environment Factors and Risk Assessment of Tick-Borne Encephalitis in Hulunbuir, Northeastern China.

    PubMed

    Li, Yifan; Wang, Juanle; Gao, Mengxu; Fang, Liqun; Liu, Changhua; Lyu, Xin; Bai, Yongqing; Zhao, Qiang; Li, Hairong; Yu, Hongjie; Cao, Wuchun; Feng, Liqiang; Wang, Yanjun; Zhang, Bin

    2017-05-26

    Tick-borne encephalitis (TBE) is one of natural foci diseases transmitted by ticks. Its distribution and transmission are closely related to geographic and environmental factors. Identification of environmental determinates of TBE is of great importance to understanding the general distribution of existing and potential TBE natural foci. Hulunbuir, one of the most severe endemic areas of the disease, is selected as the study area. Statistical analysis, global and local spatial autocorrelation analysis, and regression methods were applied to detect the spatiotemporal characteristics, compare the impact degree of associated factors, and model the risk distribution using the heterogeneity. The statistical analysis of gridded geographic and environmental factors and TBE incidence show that the TBE patients mainly occurred during spring and summer and that there is a significant positive spatial autocorrelation between the distribution of TBE cases and environmental characteristics. The impact degree of these factors on TBE risks has the following descending order: temperature, relative humidity, vegetation coverage, precipitation and topography. A high-risk area with a triangle shape was determined in the central part of Hulunbuir; the low-risk area is located in the two belts next to the outside edge of the central triangle. The TBE risk distribution revealed that the impact of the geographic factors changed depending on the heterogeneity.

  17. Inference for local autocorrelations in locally stationary models.

    PubMed

    Zhao, Zhibiao

    2015-04-01

    For non-stationary processes, the time-varying correlation structure provides useful insights into the underlying model dynamics. We study estimation and inferences for local autocorrelation process in locally stationary time series. Our constructed simultaneous confidence band can be used to address important hypothesis testing problems, such as whether the local autocorrelation process is indeed time-varying and whether the local autocorrelation is zero. In particular, our result provides an important generalization of the R function acf() to locally stationary Gaussian processes. Simulation studies and two empirical applications are developed. For the global temperature series, we find that the local autocorrelations are time-varying and have a "V" shape during 1910-1960. For the S&P 500 index, we conclude that the returns satisfy the efficient-market hypothesis whereas the magnitudes of returns show significant local autocorrelations.

  18. Evaluating Bayesian spatial methods for modelling species distributions with clumped and restricted occurrence data.

    PubMed

    Redding, David W; Lucas, Tim C D; Blackburn, Tim M; Jones, Kate E

    2017-01-01

    Statistical approaches for inferring the spatial distribution of taxa (Species Distribution Models, SDMs) commonly rely on available occurrence data, which is often clumped and geographically restricted. Although available SDM methods address some of these factors, they could be more directly and accurately modelled using a spatially-explicit approach. Software to fit models with spatial autocorrelation parameters in SDMs are now widely available, but whether such approaches for inferring SDMs aid predictions compared to other methodologies is unknown. Here, within a simulated environment using 1000 generated species' ranges, we compared the performance of two commonly used non-spatial SDM methods (Maximum Entropy Modelling, MAXENT and boosted regression trees, BRT), to a spatial Bayesian SDM method (fitted using R-INLA), when the underlying data exhibit varying combinations of clumping and geographic restriction. Finally, we tested how any recommended methodological settings designed to account for spatially non-random patterns in the data impact inference. Spatial Bayesian SDM method was the most consistently accurate method, being in the top 2 most accurate methods in 7 out of 8 data sampling scenarios. Within high-coverage sample datasets, all methods performed fairly similarly. When sampling points were randomly spread, BRT had a 1-3% greater accuracy over the other methods and when samples were clumped, the spatial Bayesian SDM method had a 4%-8% better AUC score. Alternatively, when sampling points were restricted to a small section of the true range all methods were on average 10-12% less accurate, with greater variation among the methods. Model inference under the recommended settings to account for autocorrelation was not impacted by clumping or restriction of data, except for the complexity of the spatial regression term in the spatial Bayesian model. Methods, such as those made available by R-INLA, can be successfully used to account for spatial autocorrelation in an SDM context and, by taking account of random effects, produce outputs that can better elucidate the role of covariates in predicting species occurrence. Given that it is often unclear what the drivers are behind data clumping in an empirical occurrence dataset, or indeed how geographically restricted these data are, spatially-explicit Bayesian SDMs may be the better choice when modelling the spatial distribution of target species.

  19. A Bayesian Approach for Summarizing and Modeling Time-Series Exposure Data with Left Censoring.

    PubMed

    Houseman, E Andres; Virji, M Abbas

    2017-08-01

    Direct reading instruments are valuable tools for measuring exposure as they provide real-time measurements for rapid decision making. However, their use is limited to general survey applications in part due to issues related to their performance. Moreover, statistical analysis of real-time data is complicated by autocorrelation among successive measurements, non-stationary time series, and the presence of left-censoring due to limit-of-detection (LOD). A Bayesian framework is proposed that accounts for non-stationary autocorrelation and LOD issues in exposure time-series data in order to model workplace factors that affect exposure and estimate summary statistics for tasks or other covariates of interest. A spline-based approach is used to model non-stationary autocorrelation with relatively few assumptions about autocorrelation structure. Left-censoring is addressed by integrating over the left tail of the distribution. The model is fit using Markov-Chain Monte Carlo within a Bayesian paradigm. The method can flexibly account for hierarchical relationships, random effects and fixed effects of covariates. The method is implemented using the rjags package in R, and is illustrated by applying it to real-time exposure data. Estimates for task means and covariates from the Bayesian model are compared to those from conventional frequentist models including linear regression, mixed-effects, and time-series models with different autocorrelation structures. Simulations studies are also conducted to evaluate method performance. Simulation studies with percent of measurements below the LOD ranging from 0 to 50% showed lowest root mean squared errors for task means and the least biased standard deviations from the Bayesian model compared to the frequentist models across all levels of LOD. In the application, task means from the Bayesian model were similar to means from the frequentist models, while the standard deviations were different. Parameter estimates for covariates were significant in some frequentist models, but in the Bayesian model their credible intervals contained zero; such discrepancies were observed in multiple datasets. Variance components from the Bayesian model reflected substantial autocorrelation, consistent with the frequentist models, except for the auto-regressive moving average model. Plots of means from the Bayesian model showed good fit to the observed data. The proposed Bayesian model provides an approach for modeling non-stationary autocorrelation in a hierarchical modeling framework to estimate task means, standard deviations, quantiles, and parameter estimates for covariates that are less biased and have better performance characteristics than some of the contemporary methods. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2017.

  20. Diagnostic System Based on the Human AUDITORY-BRAIN Model for Measuring Environmental NOISE—AN Application to Railway Noise

    NASA Astrophysics Data System (ADS)

    SAKAI, H.; HOTEHAMA, T.; ANDO, Y.; PRODI, N.; POMPOLI, R.

    2002-02-01

    Measurements of railway noise were conducted by use of a diagnostic system of regional environmental noise. The system is based on the model of the human auditory-brain system. The model consists of the interplay of autocorrelators and an interaural crosscorrelator acting on the pressure signals arriving at the ear entrances, and takes into account the specialization of left and right human cerebral hemispheres. Different kinds of railway noise were measured through binaural microphones of a dummy head. To characterize the railway noise, physical factors, extracted from the autocorrelation functions (ACF) and interaural crosscorrelation function (IACF) of binaural signals, were used. The factors extracted from ACF were (1) energy represented at the origin of the delay, Φ (0), (2) effective duration of the envelope of the normalized ACF, τe, (3) the delay time of the first peak, τ1, and (4) its amplitude,ø1 . The factors extracted from IACF were (5) IACC, (6) interaural delay time at which the IACC is defined, τIACC, and (7) width of the IACF at the τIACC,WIACC . The factor Φ (0) can be represented as a geometrical mean of energies at both ears as listening level, LL.

  1. An Overdetermined System for Improved Autocorrelation Based Spectral Moment Estimator Performance

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.

    1996-01-01

    Autocorrelation based spectral moment estimators are typically derived using the Fourier transform relationship between the power spectrum and the autocorrelation function along with using either an assumed form of the autocorrelation function, e.g., Gaussian, or a generic complex form and applying properties of the characteristic function. Passarelli has used a series expansion of the general complex autocorrelation function and has expressed the coefficients in terms of central moments of the power spectrum. A truncation of this series will produce a closed system of equations which can be solved for the central moments of interest. The autocorrelation function at various lags is estimated from samples of the random process under observation. These estimates themselves are random variables and exhibit a bias and variance that is a function of the number of samples used in the estimates and the operational signal-to-noise ratio. This contributes to a degradation in performance of the moment estimators. This dissertation investigates the use autocorrelation function estimates at higher order lags to reduce the bias and standard deviation in spectral moment estimates. In particular, Passarelli's series expansion is cast in terms of an overdetermined system to form a framework under which the application of additional autocorrelation function estimates at higher order lags can be defined and assessed. The solution of the overdetermined system is the least squares solution. Furthermore, an overdetermined system can be solved for any moment or moments of interest and is not tied to a particular form of the power spectrum or corresponding autocorrelation function. As an application of this approach, autocorrelation based variance estimators are defined by a truncation of Passarelli's series expansion and applied to simulated Doppler weather radar returns which are characterized by a Gaussian shaped power spectrum. The performance of the variance estimators determined from a closed system is shown to improve through the application of additional autocorrelation lags in an overdetermined system. This improvement is greater in the narrowband spectrum region where the information is spread over more lags of the autocorrelation function. The number of lags needed in the overdetermined system is a function of the spectral width, the number of terms in the series expansion, the number of samples used in estimating the autocorrelation function, and the signal-to-noise ratio. The overdetermined system provides a robustness to the chosen variance estimator by expanding the region of spectral widths and signal-to-noise ratios over which the estimator can perform as compared to the closed system.

  2. Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble.

    PubMed

    Willis, R T; Becerra, F E; Orozco, L A; Rolston, S L

    2011-07-18

    We present measurements of the polarization correlation and photon statistics of photon pairs that emerge from a laser-pumped warm rubidium vapor cell. The photon pairs occur at 780 nm and 1367 nm and are polarization entangled. We measure the autocorrelation of each of the generated fields as well as the cross-correlation function, and observe a strong violation of the two-beam Cauchy-Schwartz inequality. We evaluate the performance of the system as source of heralded single photons at a telecommunication wavelength. We measure the heralded autocorrelation and see that coincidences are suppressed by a factor of ≈ 20 from a Poissonian source at a generation rate of 1500 s(-1), a heralding efficiency of 10%, and a narrow spectral width.

  3. The basis function approach for modeling autocorrelation in ecological data

    USGS Publications Warehouse

    Hefley, Trevor J.; Broms, Kristin M.; Brost, Brian M.; Buderman, Frances E.; Kay, Shannon L.; Scharf, Henry; Tipton, John; Williams, Perry J.; Hooten, Mevin B.

    2017-01-01

    Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data.

  4. DECONV-TOOL: An IDL based deconvolution software package

    NASA Technical Reports Server (NTRS)

    Varosi, F.; Landsman, W. B.

    1992-01-01

    There are a variety of algorithms for deconvolution of blurred images, each having its own criteria or statistic to be optimized in order to estimate the original image data. Using the Interactive Data Language (IDL), we have implemented the Maximum Likelihood, Maximum Entropy, Maximum Residual Likelihood, and sigma-CLEAN algorithms in a unified environment called DeConv_Tool. Most of the algorithms have as their goal the optimization of statistics such as standard deviation and mean of residuals. Shannon entropy, log-likelihood, and chi-square of the residual auto-correlation are computed by DeConv_Tool for the purpose of determining the performance and convergence of any particular method and comparisons between methods. DeConv_Tool allows interactive monitoring of the statistics and the deconvolved image during computation. The final results, and optionally, the intermediate results, are stored in a structure convenient for comparison between methods and review of the deconvolution computation. The routines comprising DeConv_Tool are available via anonymous FTP through the IDL Astronomy User's Library.

  5. Impact of Autocorrelation on Functional Connectivity

    PubMed Central

    Arbabshirani, Mohammad R.; Damaraju, Eswar; Phlypo, Ronald; Plis, Sergey; Allen, Elena; Ma, Sai; Mathalon, Daniel; Preda, Adrian; Vaidya, Jatin G.; Adali, Tülay; Calhoun, Vince D.

    2014-01-01

    Although the impact of serial correlation (autocorrelation) in residuals of general linear models for fMRI time-series has been studied extensively, the effect of autocorrelation on functional connectivity studies has been largely neglected until recently. Some recent studies based on results from economics have questioned the conventional estimation of functional connectivity and argue that not correcting for autocorrelation in fMRI time-series results in “spurious” correlation coefficients. In this paper, first we assess the effect of autocorrelation on Pearson correlation coefficient through theoretical approximation and simulation. Then we present this effect on real fMRI data. To our knowledge this is the first work comprehensively investigating the effect of autocorrelation on functional connectivity estimates. Our results show that although FC values are altered, even following correction for autocorrelation, results of hypothesis testing on FC values remain very similar to those before correction. In real data we show this is true for main effects and also for group difference testing between healthy controls and schizophrenia patients. We further discuss model order selection in the context of autoregressive processes, effects of frequency filtering and propose a preprocessing pipeline for connectivity studies. PMID:25072392

  6. ASSESSMENT OF SPATIAL AUTOCORRELATION IN EMPIRICAL MODELS IN ECOLOGY

    EPA Science Inventory

    Statistically assessing ecological models is inherently difficult because data are autocorrelated and this autocorrelation varies in an unknown fashion. At a simple level, the linking of a single species to a habitat type is a straightforward analysis. With some investigation int...

  7. Time-Frequency Based Instantaneous Frequency Estimation of Sparse Signals from an Incomplete Set of Samples

    DTIC Science & Technology

    2014-06-17

    100 0 2 4 Wigner distribution 0 50 100 0 0.5 1 Auto-correlation function 0 50 100 0 2 4 L- Wigner distribution 0 50 100 0 0.5 1 Auto-correlation function ...bilinear or higher order autocorrelation functions will increase the number of missing samples, the analysis shows that accurate instantaneous...frequency estimation can be achieved even if we deal with only few samples, as long as the auto-correlation function is properly chosen to coincide with

  8. The basis function approach for modeling autocorrelation in ecological data.

    PubMed

    Hefley, Trevor J; Broms, Kristin M; Brost, Brian M; Buderman, Frances E; Kay, Shannon L; Scharf, Henry R; Tipton, John R; Williams, Perry J; Hooten, Mevin B

    2017-03-01

    Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data. © 2016 by the Ecological Society of America.

  9. Intrinsic autocorrelation time of picoseconds for thermal noise in water.

    PubMed

    Zhu, Zhi; Sheng, Nan; Wan, Rongzheng; Fang, Haiping

    2014-10-02

    Whether thermal noise is colored or white is of fundamental importance. In conventional theory, thermal noise is usually treated as white noise so that there are no directional transportations in the asymmetrical systems without external inputs, since only the colored fluctuations with appropriate autocorrelation time length can lead to directional transportations in the asymmetrical systems. Here, on the basis of molecular dynamics simulations, we show that the autocorrelation time length of thermal noise in water is ~10 ps at room temperature, which indicates that thermal noise is not white in the molecular scale while thermal noise can be reasonably assumed as white in macro- and meso-scale systems. The autocorrelation time length of thermal noise is intrinsic, since the value is almost unchanged for different temperature coupling methods. Interestingly, the autocorrelation time of thermal noise is correlated with the lifetime of hydrogen bonds, suggesting that the finite autocorrelation time length of thermal noise mainly comes from the finite lifetime of the interactions between neighboring water molecules.

  10. Statistical regularities of Carbon emission trading market: Evidence from European Union allowances

    NASA Astrophysics Data System (ADS)

    Zheng, Zeyu; Xiao, Rui; Shi, Haibo; Li, Guihong; Zhou, Xiaofeng

    2015-05-01

    As an emerging financial market, the trading value of carbon emission trading market has definitely increased. In recent years, the carbon emission allowances have already become a way of investment. They are bought and sold not only by carbon emitters but also by investors. In this paper, we analyzed the price fluctuations of the European Union allowances (EUA) futures in European Climate Exchange (ECX) market from 2007 to 2011. The symmetric and power-law probability density function of return time series was displayed. We found that there are only short-range correlations in price changes (return), while long-range correlations in the absolute of price changes (volatility). Further, detrended fluctuation analysis (DFA) approach was applied with focus on long-range autocorrelations and Hurst exponent. We observed long-range power-law autocorrelations in the volatility that quantify risk, and found that they decay much more slowly than the autocorrelation of return time series. Our analysis also showed that the significant cross correlations exist between return time series of EUA and many other returns. These cross correlations exist in a wide range of fields, including stock markets, energy concerned commodities futures, and financial futures. The significant cross-correlations between energy concerned futures and EUA indicate the physical relationship between carbon emission and energy production process. Additionally, the cross-correlations between financial futures and EUA indicate that the speculation behavior may become an important factor that can affect the price of EUA. Finally we modeled the long-range volatility time series of EUA with a particular version of the GARCH process, and the result also suggests long-range volatility autocorrelations.

  11. Fine-scale natal homing and localized movement as shaped by sex and spawning habitat in chinook salmon

    USGS Publications Warehouse

    Neville, Helen; Isaak, Daniel; Dunham, J.B.; Thurow, Russel; Rieman, B.

    2006-01-01

    Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of fine-scale genetic structuring due to the spatial clustering of related individuals on spawning grounds. Thus, we explored the spatial resolution of natal homing using genetic associations among individual Chinook salmon (Oncorhynchus tshawytscha) in an interconnected stream network. We also investigated the relationship between genetic patterns and two factors hypothesized to influence natal homing and localized movements at finer scales in this species, localized patterns in the distribution of spawning gravels and sex. Spatial autocorrelation analyses showed that spawning locations in both sub-basins of our study site were spatially clumped, but the upper sub-basin generally had a larger spatial extent and continuity of redd locations than the lower sub-basin, where the distribution of redds and associated habitat conditions were more patchy. Male genotypes were not autocorrelated at any spatial scale in either sub-basin. Female genotypes showed significant spatial autocorrelation and genetic patterns for females varied in the direction predicted between the two sub-basins, with much stronger autocorrelation in the sub-basin with less continuity in spawning gravels. The patterns observed here support predictions about differential constraints and breeding tactics between the two sexes and the potential for fine-scale habitat structure to influence the precision of natal homing and localized movements of individual Chinook salmon on their breeding grounds.

  12. Unidirectional trends in annual and seasonal climate and extremes in Egypt

    NASA Astrophysics Data System (ADS)

    Nashwan, Mohamed Salem; Shahid, Shamsuddin; Abd Rahim, Norhan

    2018-05-01

    The presence of short- and long-term autocorrelations can lead to considerable change in significance of trend in hydro-climatic time series. Therefore, past findings of climatic trend studies that did not consider autocorrelations became a questionable issue. The spatial patterns in the trends of annual and seasonal temperature, rainfall, and related extremes in Egypt have been assessed in this paper using modified Mann-Kendal (MMK) trend test which can detect unidirectional trends in time series in the presence of short- and long-term autocorrelations. The trends obtained using the MMK test was compared with that obtained using standard Mann-Kendall (MK) test to show how natural variability in climate affects the trends. The daily rainfall and temperature data of Princeton Global Meteorological Forcing for the period 1948-2010 having a spatial resolution of 0.25° × 0.25° was used for this purpose. The results showed a large difference between the trends obtained using MMK and MK tests. The MMK test showed increasing trends in temperature and a number of temperature extremes in Egypt, but almost no change in rainfall and rainfall extremes. The minimum temperature was found to increase (0.08-0.29 °C/decade) much faster compared to maximum temperature (0.07-0.24 °C/decade) and therefore, a decrease in diurnal temperature range (- 0.01 to - 0.16 °C/decade) in most part of Egypt. The number of winter hot days and nights are increasing, while the number of cold days is decreasing in most part of the country. The study provides a more realistic scenario of the changes in climate and weather extremes of Egypt.

  13. Dual-window dual-bandwidth spectroscopic optical coherence tomography metric for qualitative scatterer size differentiation in tissues.

    PubMed

    Tay, Benjamin Chia-Meng; Chow, Tzu-Hao; Ng, Beng-Koon; Loh, Thomas Kwok-Seng

    2012-09-01

    This study investigates the autocorrelation bandwidths of dual-window (DW) optical coherence tomography (OCT) k-space scattering profile of different-sized microspheres and their correlation to scatterer size. A dual-bandwidth spectroscopic metric defined as the ratio of the 10% to 90% autocorrelation bandwidths is found to change monotonically with microsphere size and gives the best contrast enhancement for scatterer size differentiation in the resulting spectroscopic image. A simulation model supports the experimental results and revealed a tradeoff between the smallest detectable scatterer size and the maximum scatterer size in the linear range of the dual-window dual-bandwidth (DWDB) metric, which depends on the choice of the light source optical bandwidth. Spectroscopic OCT (SOCT) images of microspheres and tonsil tissue samples based on the proposed DWDB metric showed clear differentiation between different-sized scatterers as compared to those derived from conventional short-time Fourier transform metrics. The DWDB metric significantly improves the contrast in SOCT imaging and can aid the visualization and identification of dissimilar scatterer size in a sample. Potential applications include the early detection of cell nuclear changes in tissue carcinogenesis, the monitoring of healing tendons, and cell proliferation in tissue scaffolds.

  14. Molecular dynamics of liquid SiO2 under high pressure

    NASA Technical Reports Server (NTRS)

    Rustad, James R.; Yuen, David A.; Spera, Frank J.

    1990-01-01

    The molecular dynamics of pure SiO2 liquids was investigated up to pressures of 20 GPa at 4000 K using 252, 498, 864, and 1371 particles. The results obtained suggest that the pressure-induced maxima in the self-diffusion coefficients of both oxygen and silicon are dependent on the system size. In the case of larger systems, the maximum decreases and shifts to lower pressures. Changes in the velocity autocorrelation function with increasing pressure are described. The populations of anomalously coordinated silicon and oxygen are then discussed as a function of pressure and system size.

  15. PERIODIC AUTOREGRESSIVE-MOVING AVERAGE (PARMA) MODELING WITH APPLICATIONS TO WATER RESOURCES.

    USGS Publications Warehouse

    Vecchia, A.V.

    1985-01-01

    Results involving correlation properties and parameter estimation for autogressive-moving average models with periodic parameters are presented. A multivariate representation of the PARMA model is used to derive parameter space restrictions and difference equations for the periodic autocorrelations. Close approximation to the likelihood function for Gaussian PARMA processes results in efficient maximum-likelihood estimation procedures. Terms in the Fourier expansion of the parameters are sequentially included, and a selection criterion is given for determining the optimal number of harmonics to be included. Application of the techniques is demonstrated through analysis of a monthly streamflow time series.

  16. Autocorrelated process control: Geometric Brownian Motion approach versus Box-Jenkins approach

    NASA Astrophysics Data System (ADS)

    Salleh, R. M.; Zawawi, N. I.; Gan, Z. F.; Nor, M. E.

    2018-04-01

    Existing of autocorrelation will bring a significant effect on the performance and accuracy of process control if the problem does not handle carefully. When dealing with autocorrelated process, Box-Jenkins method will be preferred because of the popularity. However, the computation of Box-Jenkins method is too complicated and challenging which cause of time-consuming. Therefore, an alternative method which known as Geometric Brownian Motion (GBM) is introduced to monitor the autocorrelated process. One real case of furnace temperature data is conducted to compare the performance of Box-Jenkins and GBM methods in monitoring autocorrelation process. Both methods give the same results in terms of model accuracy and monitoring process control. Yet, GBM is superior compared to Box-Jenkins method due to its simplicity and practically with shorter computational time.

  17. Imaging the Lower Crust and Moho Beneath Long Beach, CA Using Autocorrelations

    NASA Astrophysics Data System (ADS)

    Clayton, R. W.

    2017-12-01

    Three-dimensional images of the lower crust and Moho in a 10x10 km region beneath Long Beach, CA are constructed from autocorrelations of ambient noise. The results show the Moho at a depth of 15 km at the coast and dipping at 45 degrees inland to a depth of 25 km. The shape of the Moho interface is irregular in both the coast perpendicular and parallel directions. The lower crust appears as a zone of enhanced reflectivity with numerous small-scale structures. The autocorrelations are constructed from virtual source gathers that were computed from the dense Long Beach array that were used in the Lin et al (2013) study. All near zero-offset traces within a 200 m disk are stacked to produce a single autocorrelation at that point. The stack typically is over 50-60 traces. To convert the auto correlation to reflectivity as in Claerbout (1968), the noise source autocorrelation, which is estimated as the average of all autocorrelations is subtracted from each trace. The subsurface image is then constructed with a 0.1-2 Hz filter and AGC scaling. The main features of the image are confirmed with broadband receiver functions from the LASSIE survey (Ma et al, 2016). The use of stacked autocorrelations extends ambient noise into the lower crust.

  18. [Prediction and spatial distribution of recruitment trees of natural secondary forest based on geographically weighted Poisson model].

    PubMed

    Zhang, Ling Yu; Liu, Zhao Gang

    2017-12-01

    Based on the data collected from 108 permanent plots of the forest resources survey in Maoershan Experimental Forest Farm during 2004-2016, this study investigated the spatial distribution of recruitment trees in natural secondary forest by global Poisson regression and geographically weighted Poisson regression (GWPR) with four bandwidths of 2.5, 5, 10 and 15 km. The simulation effects of the 5 regressions and the factors influencing the recruitment trees in stands were analyzed, a description was given to the spatial autocorrelation of the regression residuals on global and local levels using Moran's I. The results showed that the spatial distribution of the number of natural secondary forest recruitment was significantly influenced by stands and topographic factors, especially average DBH. The GWPR model with small scale (2.5 km) had high accuracy of model fitting, a large range of model parameter estimates was generated, and the localized spatial distribution effect of the model parameters was obtained. The GWPR model at small scale (2.5 and 5 km) had produced a small range of model residuals, and the stability of the model was improved. The global spatial auto-correlation of the GWPR model residual at the small scale (2.5 km) was the lowe-st, and the local spatial auto-correlation was significantly reduced, in which an ideal spatial distribution pattern of small clusters with different observations was formed. The local model at small scale (2.5 km) was much better than the global model in the simulation effect on the spatial distribution of recruitment tree number.

  19. Spatio-temporal patterns of Barmah Forest virus disease in Queensland, Australia.

    PubMed

    Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu

    2011-01-01

    Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ(2) = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland.

  20. Characterizing groundwater quality ranks for drinking purposes in Sylhet district, Bangladesh, using entropy method, spatial autocorrelation index, and geostatistics.

    PubMed

    Islam, Abu Reza Md Towfiqul; Ahmed, Nasir; Bodrud-Doza, Md; Chu, Ronghao

    2017-12-01

    Drinking water is susceptible to the poor quality of contaminated water affecting the health of humans. Thus, it is an essential study to investigate factors affecting groundwater quality and its suitability for drinking uses. In this paper, the entropy theory, multivariate statistics, spatial autocorrelation index, and geostatistics are applied to characterize groundwater quality and its spatial variability in the Sylhet district of Bangladesh. A total of 91samples have been collected from wells (e.g., shallow, intermediate, and deep tube wells at 15-300-m depth) from the study area. The results show that NO 3 - , then SO 4 2- , and As are the most contributed parameters influencing the groundwater quality according to the entropy theory. The principal component analysis (PCA) and correlation coefficient also confirm the results of the entropy theory. However, Na + has the highest spatial autocorrelation and the most entropy, thus affecting the groundwater quality. Based on the entropy-weighted water quality index (EWQI) and groundwater quality index (GWQI) classifications, it is observed that 60.45 and 53.86% of water samples are classified as having an excellent to good qualities, while the remaining samples vary from medium to extremely poor quality domains for drinking purposes. Furthermore, the EWQI classification provides the more reasonable results than GWQIs due to its simplicity, accuracy, and ignoring of artificial weight. A Gaussian semivariogram model has been chosen to the best fit model, and groundwater quality indices have a weak spatial dependence, suggesting that both geogenic and anthropogenic factors play a pivotal role in spatial heterogeneity of groundwater quality oscillations.

  1. Small area-level variation in the incidence of psychotic disorders in an urban area in France: an ecological study.

    PubMed

    Szoke, Andrei; Pignon, Baptiste; Baudin, Grégoire; Tortelli, Andrea; Richard, Jean-Romain; Leboyer, Marion; Schürhoff, Franck

    2016-07-01

    We sought to determine whether significant variation in the incidence of clinically relevant psychoses existed at an ecological level in an urban French setting, and to examine possible factors associated with this variation. We aimed to advance the literature by testing this hypothesis in a novel population setting and by comparing a variety of spatial models. We sought to identify all first episode cases of non-affective and affective psychotic disorders presenting in a defined urban catchment area over a 4 years period, over more than half a million person-years at-risk. Because data from geographic close neighbourhoods usually show spatial autocorrelation, we used for our analyses Bayesian modelling. We included small area neighbourhood measures of deprivation, migrants' density and social fragmentation as putative explanatory variables in the models. Incidence of broad psychotic disorders shows spatial patterning with the best fit for models that included both strong autocorrelation between neighbouring areas and weak autocorrelation between areas further apart. Affective psychotic disorders showed similar spatial patterning and were associated with the proportion of migrants/foreigners in the area (inverse correlation). In contrast, non-affective psychoses did not show spatial patterning. At ecological level, the variation in the number of cases and the factors that influence this variation are different for non-affective and affective psychotic disorders. Important differences in results-compared with previous studies in different settings-point to the importance of the context and the necessity of further studies to understand these differences.

  2. MATLAB-Based Program for Teaching Autocorrelation Function and Noise Concepts

    ERIC Educational Resources Information Center

    Jovanovic Dolecek, G.

    2012-01-01

    An attractive MATLAB-based tool for teaching the basics of autocorrelation function and noise concepts is presented in this paper. This tool enhances traditional in-classroom lecturing. The demonstrations of the tool described here highlight the description of the autocorrelation function (ACF) in a general case for wide-sense stationary (WSS)…

  3. Spatial autocorrelation in growth of undisturbed natural pine stands across Georgia

    Treesearch

    Raymond L. Czaplewski; Robin M. Reich; William A. Bechtold

    1994-01-01

    Moran's I statistic measures the spatial autocorrelation in a random variable measured at discrete locations in space. Permutation procedures test the null hypothesis that the observed Moran's I value is no greater than that expected by chance. The spatial autocorrelation of gross basal area increment is analyzed for undisturbed, naturally regenerated stands...

  4. Longitudinal and bulk viscosities of Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Tankeshwar, K.; Pathak, K. N.; Ranganathan, S.

    1996-12-01

    Expressions for the longitudinal and bulk viscosities have been derived using Green Kubo formulae involving the time integral of the longitudinal and bulk stress autocorrelation functions. The time evolution of stress autocorrelation functions are determined using the Mori formalism and a memory function which is obtained from the Mori equation of motion. The memory function is of hyperbolic secant form and involves two parameters which are related to the microscopic sum rules of the respective autocorrelation function. We have derived expressions for the zeroth-, second-and fourth- order sum rules of the longitudinal and bulk stress autocorrelation functions. These involve static correlation functions up to four particles. The final expressions for these have been put in a form suitable for numerical calculations using low- order decoupling approximations. The numerical results have been obtained for the sum rules of longitudinal and bulk stress autocorrelation functions. These have been used to calculate the longitudinal and bulk viscosities and time evolution of the longitudinal stress autocorrelation function of the Lennard-Jones fluids over wide ranges of densities and temperatures. We have compared our results with the available computer simulation data and found reasonable agreement.

  5. Constant-Envelope Waveform Design for Optimal Target-Detection and Autocorrelation Performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Satyabrata

    2013-01-01

    We propose an algorithm to directly synthesize in time-domain a constant-envelope transmit waveform that achieves the optimal performance in detecting an extended target in the presence of signal-dependent interference. This approach is in contrast to the traditional indirect methods that synthesize the transmit signal following the computation of the optimal energy spectral density. Additionally, we aim to maintain a good autocorrelation property of the designed signal. Therefore, our waveform design technique solves a bi-objective optimization problem in order to simultaneously improve the detection and autocorrelation performances, which are in general conflicting in nature. We demonstrate this compromising characteristics of themore » detection and autocorrelation performances with numerical examples. Furthermore, in the absence of the autocorrelation criterion, our designed signal is shown to achieve a near-optimum detection performance.« less

  6. Climate Change and Its Impact on the Yield of Major Food Crops: Evidence from Pakistan

    PubMed Central

    Ali, Sajjad; Liu, Ying; Ishaq, Muhammad; Shah, Tariq; Abdullah; Ilyas, Aasir; Din, Izhar Ud

    2017-01-01

    Pakistan is vulnerable to climate change, and extreme climatic conditions are threatening food security. This study examines the effects of climate change (e.g., maximum temperature, minimum temperature, rainfall, relative humidity, and the sunshine) on the major crops of Pakistan (e.g., wheat, rice, maize, and sugarcane). The methods of feasible generalized least square (FGLS) and heteroscedasticity and autocorrelation (HAC) consistent standard error were employed using time series data for the period 1989 to 2015. The results of the study reveal that maximum temperature adversely affects wheat production, while the effect of minimum temperature is positive and significant for all crops. Rainfall effect towards the yield of a selected crop is negative, except for wheat. To cope with and mitigate the adverse effects of climate change, there is a need for the development of heat- and drought-resistant high-yielding varieties to ensure food security in the country. PMID:28538704

  7. Climate Change and Its Impact on the Yield of Major Food Crops: Evidence from Pakistan.

    PubMed

    Ali, Sajjad; Liu, Ying; Ishaq, Muhammad; Shah, Tariq; Abdullah; Ilyas, Aasir; Din, Izhar Ud

    2017-05-24

    Pakistan is vulnerable to climate change, and extreme climatic conditions are threatening food security. This study examines the effects of climate change (e.g., maximum temperature, minimum temperature, rainfall, relative humidity, and the sunshine) on the major crops of Pakistan (e.g., wheat, rice, maize, and sugarcane). The methods of feasible generalized least square (FGLS) and heteroscedasticity and autocorrelation (HAC) consistent standard error were employed using time series data for the period 1989 to 2015. The results of the study reveal that maximum temperature adversely affects wheat production, while the effect of minimum temperature is positive and significant for all crops. Rainfall effect towards the yield of a selected crop is negative, except for wheat. To cope with and mitigate the adverse effects of climate change, there is a need for the development of heat- and drought-resistant high-yielding varieties to ensure food security in the country.

  8. 408-fs SESAM mode locked Cr:ZnSe laser

    NASA Astrophysics Data System (ADS)

    Bu, Xiangbao; Shi, Yuhang; Xu, Jia; Li, Huijuan; Wang, Pu

    2018-01-01

    We report self-starting femtosecond operation of a 127-MHz SESAM mode locked Cr:ZnSe laser around 2420 nm. A thulium doped double clad fiber laser at 1908 nm was used as the pumping source. In the normal dispersion regime, stable pulse pairs with constant phase differences in the multipulse regime were observed. The maximum output power was 342 mW with respect to incident pump power of 4.8 W and the corresponding slope efficiency was 10.4%. By inserting a piece of sapphire plate, dispersion compensation was achieved and the intra-cavity dispersion was moved to the anomalous regime. A maximum output power of 403 mW was obtained and the corresponding slope efficiency was 12.2%. Pulse width was measured to be 408 fs by a collinear autocorrelator using two-photon absorption in an InGaAs photodiode. The laser spectrum in multipulse operation showed a clear periodic modulation.

  9. Estimation of the spatial autocorrelation function: consequences of sampling dynamic populations in space and time

    Treesearch

    Patrick C. Tobin

    2004-01-01

    The estimation of spatial autocorrelation in spatially- and temporally-referenced data is fundamental to understanding an organism's population biology. I used four sets of census field data, and developed an idealized space-time dynamic system, to study the behavior of spatial autocorrelation estimates when a practical method of sampling is employed. Estimates...

  10. Spectra of empirical autocorrelation matrices: A random-matrix-theory-inspired perspective

    NASA Astrophysics Data System (ADS)

    Jamali, Tayeb; Jafari, G. R.

    2015-07-01

    We construct an autocorrelation matrix of a time series and analyze it based on the random-matrix theory (RMT) approach. The autocorrelation matrix is capable of extracting information which is not easily accessible by the direct analysis of the autocorrelation function. In order to provide a precise conclusion based on the information extracted from the autocorrelation matrix, the results must be first evaluated. In other words they need to be compared with some sort of criterion to provide a basis for the most suitable and applicable conclusions. In the context of the present study, the criterion is selected to be the well-known fractional Gaussian noise (fGn). We illustrate the applicability of our method in the context of stock markets. For the former, despite the non-Gaussianity in returns of the stock markets, a remarkable agreement with the fGn is achieved.

  11. [Correlation coefficient-based classification method of hydrological dependence variability: With auto-regression model as example].

    PubMed

    Zhao, Yu Xi; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi

    2018-04-01

    Hydrological process evaluation is temporal dependent. Hydrological time series including dependence components do not meet the data consistency assumption for hydrological computation. Both of those factors cause great difficulty for water researches. Given the existence of hydrological dependence variability, we proposed a correlationcoefficient-based method for significance evaluation of hydrological dependence based on auto-regression model. By calculating the correlation coefficient between the original series and its dependence component and selecting reasonable thresholds of correlation coefficient, this method divided significance degree of dependence into no variability, weak variability, mid variability, strong variability, and drastic variability. By deducing the relationship between correlation coefficient and auto-correlation coefficient in each order of series, we found that the correlation coefficient was mainly determined by the magnitude of auto-correlation coefficient from the 1 order to p order, which clarified the theoretical basis of this method. With the first-order and second-order auto-regression models as examples, the reasonability of the deduced formula was verified through Monte-Carlo experiments to classify the relationship between correlation coefficient and auto-correlation coefficient. This method was used to analyze three observed hydrological time series. The results indicated the coexistence of stochastic and dependence characteristics in hydrological process.

  12. Dispersal leads to spatial autocorrelation in species distributions: A simulation model

    USGS Publications Warehouse

    Bahn, V.; Krohn, W.B.; O'Connor, R.J.

    2008-01-01

    Compared to population growth regulated by local conditions, dispersal has been underappreciated as a central process shaping the spatial distribution of populations. This paper asks: (a) which conditions increase the importance of dispersers relative to local recruits in determining population sizes? and (b) how does dispersal influence the spatial distribution patterns of abundances among connected populations? We approached these questions with a simulation model of populations on a coupled lattice with cells of continuously varying habitat quality expressed as carrying capacities. Each cell contained a population with the basic dynamics of density-regulated growth, and was connected to other populations by immigration and emigration. The degree to which dispersal influenced the distribution of population sizes depended most strongly on the absolute amount of dispersal, and then on the potential population growth rate. Dispersal decaying in intensity with distance left close neighbours more alike in population size than distant populations, leading to an increase in spatial autocorrelation. The spatial distribution of species with low potential growth rates is more dependent on dispersal than that of species with high growth rates; therefore, distribution modelling for species with low growth rates requires particular attention to autocorrelation, and conservation management of these species requires attention to factors curtailing dispersal, such as fragmentation and dispersal barriers. ?? 2007 Elsevier B.V. All rights reserved.

  13. Simulating land-use changes by incorporating spatial autocorrelation and self-organization in CLUE-S modeling: a case study in Zengcheng District, Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Mei, Zhixiong; Wu, Hao; Li, Shiyun

    2018-06-01

    The Conversion of Land Use and its Effects at Small regional extent (CLUE-S), which is a widely used model for land-use simulation, utilizes logistic regression to estimate the relationships between land use and its drivers, and thus, predict land-use change probabilities. However, logistic regression disregards possible spatial autocorrelation and self-organization in land-use data. Autologistic regression can depict spatial autocorrelation but cannot address self-organization, while logistic regression by considering only self-organization (NElogistic regression) fails to capture spatial autocorrelation. Therefore, this study developed a regression (NE-autologistic regression) method, which incorporated both spatial autocorrelation and self-organization, to improve CLUE-S. The Zengcheng District of Guangzhou, China was selected as the study area. The land-use data of 2001, 2005, and 2009, as well as 10 typical driving factors, were used to validate the proposed regression method and the improved CLUE-S model. Then, three future land-use scenarios in 2020: the natural growth scenario, ecological protection scenario, and economic development scenario, were simulated using the improved model. Validation results showed that NE-autologistic regression performed better than logistic regression, autologistic regression, and NE-logistic regression in predicting land-use change probabilities. The spatial allocation accuracy and kappa values of NE-autologistic-CLUE-S were higher than those of logistic-CLUE-S, autologistic-CLUE-S, and NE-logistic-CLUE-S for the simulations of two periods, 2001-2009 and 2005-2009, which proved that the improved CLUE-S model achieved the best simulation and was thereby effective to a certain extent. The scenario simulation results indicated that under all three scenarios, traffic land and residential/industrial land would increase, whereas arable land and unused land would decrease during 2009-2020. Apparent differences also existed in the simulated change sizes and locations of each land-use type under different scenarios. The results not only demonstrate the validity of the improved model but also provide a valuable reference for relevant policy-makers.

  14. Parallel auto-correlative statistics with VTK.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pebay, Philippe Pierre; Bennett, Janine Camille

    2013-08-01

    This report summarizes existing statistical engines in VTK and presents both the serial and parallel auto-correlative statistics engines. It is a sequel to [PT08, BPRT09b, PT09, BPT09, PT10] which studied the parallel descriptive, correlative, multi-correlative, principal component analysis, contingency, k-means, and order statistics engines. The ease of use of the new parallel auto-correlative statistics engine is illustrated by the means of C++ code snippets and algorithm verification is provided. This report justifies the design of the statistics engines with parallel scalability in mind, and provides scalability and speed-up analysis results for the autocorrelative statistics engine.

  15. False alarms: How early warning signals falsely predict abrupt sea ice loss

    NASA Astrophysics Data System (ADS)

    Wagner, Till J. W.; Eisenman, Ian

    2016-04-01

    Uncovering universal early warning signals for critical transitions has become a coveted goal in diverse scientific disciplines, ranging from climate science to financial mathematics. There has been a flurry of recent research proposing such signals, with increasing autocorrelation and increasing variance being among the most widely discussed candidates. A number of studies have suggested that increasing autocorrelation alone may suffice to signal an impending transition, although some others have questioned this. Here we consider variance and autocorrelation in the context of sea ice loss in an idealized model of the global climate system. The model features no bifurcation, nor increased rate of retreat, as the ice disappears. Nonetheless, the autocorrelation of summer sea ice area is found to increase in a global warming scenario. The variance, by contrast, decreases. A simple physical mechanism is proposed to explain the occurrence of increasing autocorrelation but not variance when there is no approaching bifurcation. Additionally, a similar mechanism is shown to allow an increase in both indicators with no physically attainable bifurcation. This implies that relying on autocorrelation and variance as early warning signals can raise false alarms in the climate system, warning of "tipping points" that are not actually there.

  16. On the Seasonality of Sudden Stratospheric Warmings

    NASA Astrophysics Data System (ADS)

    Reichler, T.; Horan, M.

    2017-12-01

    The downward influence of sudden stratospheric warmings (SSWs) creates significant tropospheric circulation anomalies that last for weeks. It is therefore of theoretical and practical interest to understand the time when SSWs are most likely to occur and the controlling factors for the temporal distribution of SSWs. Conceivably, the distribution between mid-winter and late-winter is controlled by the interplay between decreasing eddy convergence in the region of the polar vortex and the weakening strength of the polar vortex. General circulation models (GCMs) tend to produce SSW maxima later in winter than observations, which has been considered as a model deficiency. However, the observed record is short, suggesting that under-sampling of SSWs may contribute to this discrepancy. Here, we study the climatological frequency distribution of SSWs and related events in a long control simulation with a stratosphere resolving GCM. We also create a simple statistical model to determine the primary factors controlling the SSW distribution. The statistical model is based on the daily climatological mean, standard deviation, and autocorrelation of stratospheric winds, and assumes that the winds follow a normal distribution. We find that the null hypothesis, that model and observations stem from the same distribution, cannot be rejected, suggesting that the mid-winter SSW maximum seen in the observations is due to sampling uncertainty. We also find that the statistical model faithfully reproduces the seasonal distribution of SSWs, and that the decreasing climatological strength of the polar vortex is the primary factor for it. We conclude that the late-winter SSW maximum seen in most models is realistic and that late events will be more prominent in future observations. We further conclude that SSWs simply form the tail of normally distributed stratospheric winds, suggesting that there is a continuum of weak polar vortex states and that statistically there is nothing special about the zero-threshold used to define SSWs.

  17. Under-reported data analysis with INAR-hidden Markov chains.

    PubMed

    Fernández-Fontelo, Amanda; Cabaña, Alejandra; Puig, Pedro; Moriña, David

    2016-11-20

    In this work, we deal with correlated under-reported data through INAR(1)-hidden Markov chain models. These models are very flexible and can be identified through its autocorrelation function, which has a very simple form. A naïve method of parameter estimation is proposed, jointly with the maximum likelihood method based on a revised version of the forward algorithm. The most-probable unobserved time series is reconstructed by means of the Viterbi algorithm. Several examples of application in the field of public health are discussed illustrating the utility of the models. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murokh, A.; Pellegrini, C.; Rosenzweig, J.

    The VISA (Visible to Infrared SASE Amplifier) project is designed to be a SASE-FEL driven to saturation in the sub-micron wavelength region. Its goal is to test various aspects of the existing theory of Self-Amplified Spontaneous Emission, as well as numerical codes. Measurements include: angular and spectral distribution of the FEL light at the exit and inside of the undulator; electron beam micro-bunching using CTR; single-shot time resolved measurements of the pulse profile, using auto-correlation technique and FROG algorithm. The diagnostics are designed to provide maximum information on the physics of the SASE-FEL process, to ensure a close comparison ofmore » the experimental results with theory and simulations.« less

  19. Optimal periodic binary codes of lengths 28 to 64

    NASA Technical Reports Server (NTRS)

    Tyler, S.; Keston, R.

    1980-01-01

    Results from computer searches performed to find repeated binary phase coded waveforms with optimal periodic autocorrelation functions are discussed. The best results for lengths 28 to 64 are given. The code features of major concern are where (1) the peak sidelobe in the autocorrelation function is small and (2) the sum of the squares of the sidelobes in the autocorrelation function is small.

  20. Indexed semi-Markov process for wind speed modeling.

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. In a previous work we proposed different semi-Markov models, showing their ability to reproduce the autocorrelation structures of wind speed data. In that paper we showed also that the autocorrelation is higher with respect to the Markov model. Unfortunately this autocorrelation was still too small compared to the empirical one. In order to overcome the problem of low autocorrelation, in this paper we propose an indexed semi-Markov model. More precisely we assume that wind speed is described by a discrete time homogeneous semi-Markov process. We introduce a memory index which takes into account the periods of different wind activities. With this model the statistical characteristics of wind speed are faithfully reproduced. The wind is a very unstable phenomenon characterized by a sequence of lulls and sustained speeds, and a good wind generator must be able to reproduce such sequences. To check the validity of the predictive semi-Markovian model, the persistence of synthetic winds were calculated, then averaged and computed. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy 28 (2003) 1787-1802.

  1. Spatio-Temporal Patterns of Barmah Forest Virus Disease in Queensland, Australia

    PubMed Central

    Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu

    2011-01-01

    Background Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. Methods/Principal Findings We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ2 = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. Conclusions/Significance This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland. PMID:22022430

  2. Superthermal photon bunching in terms of simple probability distributions

    NASA Astrophysics Data System (ADS)

    Lettau, T.; Leymann, H. A. M.; Melcher, B.; Wiersig, J.

    2018-05-01

    We analyze the second-order photon autocorrelation function g(2 ) with respect to the photon probability distribution and discuss the generic features of a distribution that results in superthermal photon bunching [g(2 )(0 ) >2 ]. Superthermal photon bunching has been reported for a number of optical microcavity systems that exhibit processes such as superradiance or mode competition. We show that a superthermal photon number distribution cannot be constructed from the principle of maximum entropy if only the intensity and the second-order autocorrelation are given. However, for bimodal systems, an unbiased superthermal distribution can be constructed from second-order correlations and the intensities alone. Our findings suggest modeling superthermal single-mode distributions by a mixture of a thermal and a lasinglike state and thus reveal a generic mechanism in the photon probability distribution responsible for creating superthermal photon bunching. We relate our general considerations to a physical system, i.e., a (single-emitter) bimodal laser, and show that its statistics can be approximated and understood within our proposed model. Furthermore, the excellent agreement of the statistics of the bimodal laser and our model reveals that the bimodal laser is an ideal source of bunched photons, in the sense that it can generate statistics that contain no other features but the superthermal bunching.

  3. The use of spatio-temporal correlation to forecast critical transitions

    NASA Astrophysics Data System (ADS)

    Karssenberg, Derek; Bierkens, Marc F. P.

    2010-05-01

    Complex dynamical systems may have critical thresholds at which the system shifts abruptly from one state to another. Such critical transitions have been observed in systems ranging from the human body system to financial markets and the Earth system. Forecasting the timing of critical transitions before they are reached is of paramount importance because critical transitions are associated with a large shift in dynamical regime of the system under consideration. However, it is hard to forecast critical transitions, because the state of the system shows relatively little change before the threshold is reached. Recently, it was shown that increased spatio-temporal autocorrelation and variance can serve as alternative early warning signal for critical transitions. However, thus far these second order statistics have not been used for forecasting in a data assimilation framework. Here we show that the use of spatio-temporal autocorrelation and variance in the state of the system reduces the uncertainty in the predicted timing of critical transitions compared to classical approaches that use the value of the system state only. This is shown by assimilating observed spatio-temporal autocorrelation and variance into a dynamical system model using a Particle Filter. We adapt a well-studied distributed model of a logistically growing resource with a fixed grazing rate. The model describes the transition from an underexploited system with high resource biomass to overexploitation as grazing pressure crosses the critical threshold, which is a fold bifurcation. To represent limited prior information, we use a large variance in the prior probability distributions of model parameters and the system driver (grazing rate). First, we show that the rate of increase in spatio-temporal autocorrelation and variance prior to reaching the critical threshold is relatively consistent across the uncertainty range of the driver and parameter values used. This indicates that an increase in spatio-temporal autocorrelation and variance are consistent predictors of a critical transition, even under the condition of a poorly defined system. Second, we perform data assimilation experiments using an artificial exhaustive data set generated by one realization of the model. To mimic real-world sampling, an observational data set is created from this exhaustive data set. This is done by sampling on a regular spatio-temporal grid, supplemented by sampling locations at a short distance. Spatial and temporal autocorrelation in this observational data set is calculated for different spatial and temporal separation (lag) distances. To assign appropriate weights to observations (here, autocorrelation values and variance) in the Particle Filter, the covariance matrix of the error in these observations is required. This covariance matrix is estimated using Monte Carlo sampling, selecting a different random position of the sampling network relative to the exhaustive data set for each realization. At each update moment in the Particle Filter, observed autocorrelation values are assimilated into the model and the state of the model is updated. Using this approach, it is shown that the use of autocorrelation reduces the uncertainty in the forecasted timing of a critical transition compared to runs without data assimilation. The performance of the use of spatial autocorrelation versus temporal autocorrelation depends on the timing and number of observational data. This study is restricted to a single model only. However, it is becoming increasingly clear that spatio-temporal autocorrelation and variance can be used as early warning signals for a large number of systems. Thus, it is expected that spatio-temporal autocorrelation and variance are valuable in data assimilation frameworks in a large number of dynamical systems.

  4. Inferential Precision in Single-Case Time-Series Data Streams: How Well Does the EM Procedure Perform When Missing Observations Occur in Autocorrelated Data?

    PubMed Central

    Smith, Justin D.; Borckardt, Jeffrey J.; Nash, Michael R.

    2013-01-01

    The case-based time-series design is a viable methodology for treatment outcome research. However, the literature has not fully addressed the problem of missing observations with such autocorrelated data streams. Mainly, to what extent do missing observations compromise inference when observations are not independent? Do the available missing data replacement procedures preserve inferential integrity? Does the extent of autocorrelation matter? We use Monte Carlo simulation modeling of a single-subject intervention study to address these questions. We find power sensitivity to be within acceptable limits across four proportions of missing observations (10%, 20%, 30%, and 40%) when missing data are replaced using the Expectation-Maximization Algorithm, more commonly known as the EM Procedure (Dempster, Laird, & Rubin, 1977).This applies to data streams with lag-1 autocorrelation estimates under 0.80. As autocorrelation estimates approach 0.80, the replacement procedure yields an unacceptable power profile. The implications of these findings and directions for future research are discussed. PMID:22697454

  5. Effects of autocorrelation upon LANDSAT classification accuracy. [Richmond, Virginia and Denver, Colorado

    NASA Technical Reports Server (NTRS)

    Craig, R. G. (Principal Investigator)

    1983-01-01

    Richmond, Virginia and Denver, Colorado were study sites in an effort to determine the effect of autocorrelation on the accuracy of a parallelopiped classifier of LANDSAT digital data. The autocorrelation was assumed to decay to insignificant levels when sampled at distances of at least ten pixels. Spectral themes developed using blocks of adjacent pixels, and using groups of pixels spaced at least 10 pixels apart were used. Effects of geometric distortions were minimized by using only pixels from the interiors of land cover sections. Accuracy was evaluated for three classes; agriculture, residential and "all other"; both type 1 and type 2 errors were evaluated by means of overall classification accuracy. All classes give comparable results. Accuracy is approximately the same in both techniques; however, the variance in accuracy is significantly higher using the themes developed from autocorrelated data. The vectors of mean spectral response were nearly identical regardless of sampling method used. The estimated variances were much larger when using autocorrelated pixels.

  6. Negligible influence of spatial autocorrelation in the assessment of fire effects in a mixed conifer forest

    USGS Publications Warehouse

    van Mantgem, P.J.; Schwilk, D.W.

    2009-01-01

    Fire is an important feature of many forest ecosystems, although the quantification of its effects is compromised by the large scale at which fire occurs and its inherent unpredictability. A recurring problem is the use of subsamples collected within individual burns, potentially resulting in spatially autocorrelated data. Using subsamples from six different fires (and three unburned control areas) we show little evidence for strong spatial autocorrelation either before or after burning for eight measures of forest conditions (both fuels and vegetation). Additionally, including a term for spatially autocorrelated errors provided little improvement for simple linear models contrasting the effects of early versus late season burning. While the effects of spatial autocorrelation should always be examined, it may not always greatly influence assessments of fire effects. If high patch scale variability is common in Sierra Nevada mixed conifer forests, even following more than a century of fire exclusion, treatments designed to encourage further heterogeneity in forest conditions prior to the reintroduction of fire will likely be unnecessary.

  7. Calling depths of baleen whales from single sensor data: development of an autocorrelation method using multipath localization.

    PubMed

    Valtierra, Robert D; Glynn Holt, R; Cholewiak, Danielle; Van Parijs, Sofie M

    2013-09-01

    Multipath localization techniques have not previously been applied to baleen whale vocalizations due to difficulties in application to tonal vocalizations. Here it is shown that an autocorrelation method coupled with the direct reflected time difference of arrival localization technique can successfully resolve location information. A derivation was made to model the autocorrelation of a direct signal and its overlapping reflections to illustrate that an autocorrelation may be used to extract reflection information from longer duration signals containing a frequency sweep, such as some calls produced by baleen whales. An analysis was performed to characterize the difference in behavior of the autocorrelation when applied to call types with varying parameters (sweep rate, call duration). The method's feasibility was tested using data from playback transmissions to localize an acoustic transducer at a known depth and location. The method was then used to estimate the depth and range of a single North Atlantic right whale (Eubalaena glacialis) and humpback whale (Megaptera novaeangliae) from two separate experiments.

  8. Rapid and stable measurement of respiratory rate from Doppler radar signals using time domain autocorrelation model.

    PubMed

    Sun, Guanghao; Matsui, Takemi

    2015-01-01

    Noncontact measurement of respiratory rate using Doppler radar will play a vital role in future clinical practice. Doppler radar remotely monitors the tiny chest wall movements induced by respiration activity. The most competitive advantage of this technique is to allow users fully unconstrained with no biological electrode attachments. However, the Doppler radar, unlike other contact-type sensors, is easily affected by the random body movements. In this paper, we proposed a time domain autocorrelation model to process the radar signals for rapid and stable estimation of the respiratory rate. We tested the autocorrelation model on 8 subjects in laboratory, and compared the respiratory rates detected by noncontact radar with reference contact-type respiratory effort belt. Autocorrelation model showed the effects of reducing the random body movement noise added to Doppler radar's respiration signals. Moreover, the respiratory rate can be rapidly calculated from the first main peak in the autocorrelation waveform within 10 s.

  9. Quantification of hourly variability in NO(x) emissions for baseload coal-fired power plants.

    PubMed

    Abdel-Aziz, Amr; Frey, H Christopher

    2003-11-01

    The objectives of this paper are to (1) quantify variability in hourly utility oxides of nitrogen (NO(x)) emission factors, activity factors, and total emissions; (2) investigate the autocorrelation structure and evaluate cyclic effects at short and long scales of the time series of total hourly emissions; (3) compare emissions for the ozone (O3) season versus the entire year to identify seasonal differences, if any; and (4) evaluate interannual variability. Continuous emissions monitoring data were analyzed for 1995 and 1998 for 32 units from nine baseload power plants in the Charlotte, NC, airshed. Unit emissions have a strong 24-hr cycle attributable primarily to the capacity factor. Typical ranges of the coefficient of variation for emissions at a given hour of the day were from 0.2 to 0.45. Little difference was found when comparing weekend emissions with the entire week or when comparing the O3 season with the entire year. There were substantial differences in the mean and standard deviation of emissions when comparing 1995 and 1998 data, indicative of the effect of retrofits of control technology during the intervening time. The wide range of variability and its autocorrelation should be accounted for when developing probabilistic utility emission inventories for analysis of near-term future episodes.

  10. [Spatial pattern of land surface dead combustible fuel load in Huzhong forest area in Great Xing'an Mountains].

    PubMed

    Liu, Zhi-Hua; Chang, Yu; Chen, Hong-Wei; Zhou, Rui; Jing, Guo-Zhi; Zhang, Hong-Xin; Zhang, Chang-Meng

    2008-03-01

    By using geo-statistics and based on time-lag classification standard, a comparative study was made on the land surface dead combustible fuels in Huzhong forest area in Great Xing'an Mountains. The results indicated that the first level land surface dead combustible fuel, i. e., 1 h time-lag dead fuel, presented stronger spatial auto-correlation, with an average of 762.35 g x m(-2) and contributing to 55.54% of the total load. Its determining factors were species composition and stand age. The second and third levels land surface dead combustible fuel, i. e., 10 h and 100 h time-lag dead fuels, had a sum of 610.26 g x m(-2), and presented weaker spatial auto-correlation than 1 h time-lag dead fuel. Their determining factor was the disturbance history of forest stand. The complexity and heterogeneity of the factors determining the quality and quantity of forest land surface dead combustible fuels were the main reasons for the relatively inaccurate interpolation. However, the utilization of field survey data coupled with geo-statistics could easily and accurately interpolate the spatial pattern of forest land surface dead combustible fuel loads, and indirectly provide a practical basis for forest management.

  11. Early Warning Signals for Abrupt Change Raise False Alarm During Sea Ice Loss

    NASA Astrophysics Data System (ADS)

    Wagner, T. J. W.; Eisenman, I.

    2015-12-01

    Uncovering universal early warning signals for critical transitions has become a coveted goal in diverse scientific disciplines, ranging from climate science to financial mathematics. There has been a flurry of recent research proposing such signals, with increasing autocorrelation and increasing variance being among the most widely discussed candidates. A number of studies have suggested that increasing autocorrelation alone may suffice to signal an impending transition, although some others have questioned this. Here, we consider variance and autocorrelation in the context of sea ice loss in an idealized model of the global climate system. The model features no bifurcation, nor increased rate of retreat, as the ice disappears. Nonetheless, the autocorrelation of summer sea ice area is found to increase with diminishing sea ice cover in a global warming scenario. The variance, by contrast, decreases. A simple physical mechanism is proposed to explain the occurrence of increasing autocorrelation but not variance in the model when there is no approaching bifurcation. Additionally, a similar mechanism is shown to allow an increase in both indicators with no physically attainable bifurcation. This implies that relying on autocorrelation and variance as early warning signals can raise false alarms in the climate system, warning of "tipping points" that are not actually there.

  12. A new phase correction method in NMR imaging based on autocorrelation and histogram analysis.

    PubMed

    Ahn, C B; Cho, Z H

    1987-01-01

    A new statistical approach to phase correction in NMR imaging is proposed. The proposed scheme consists of first-and zero-order phase corrections each by the inverse multiplication of estimated phase error. The first-order error is estimated by the phase of autocorrelation calculated from the complex valued phase distorted image while the zero-order correction factor is extracted from the histogram of phase distribution of the first-order corrected image. Since all the correction procedures are performed on the spatial domain after completion of data acquisition, no prior adjustments or additional measurements are required. The algorithm can be applicable to most of the phase-involved NMR imaging techniques including inversion recovery imaging, quadrature modulated imaging, spectroscopic imaging, and flow imaging, etc. Some experimental results with inversion recovery imaging as well as quadrature spectroscopic imaging are shown to demonstrate the usefulness of the algorithm.

  13. The Azimuth Structure of Nuclear Collisions — I

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.; Kettler, David T.

    We describe azimuth structure commonly associated with elliptic and directed flow in the context of 2D angular autocorrelations for the purpose of precise separation of so-called nonflow (mainly minijets) from flow. We extend the Fourier-transform description of azimuth structure to include power spectra and autocorrelations related by the Wiener-Khintchine theorem. We analyze several examples of conventional flow analysis in that context and question the relevance of reaction plane estimation to flow analysis. We introduce the 2D angular autocorrelation with examples from data analysis and describe a simulation exercise which demonstrates precise separation of flow and nonflow using the 2D autocorrelation method. We show that an alternative correlation measure based on Pearson's normalized covariance provides a more intuitive measure of azimuth structure.

  14. Monitoring autocorrelated process: A geometric Brownian motion process approach

    NASA Astrophysics Data System (ADS)

    Li, Lee Siaw; Djauhari, Maman A.

    2013-09-01

    Autocorrelated process control is common in today's modern industrial process control practice. The current practice of autocorrelated process control is to eliminate the autocorrelation by using an appropriate model such as Box-Jenkins models or other models and then to conduct process control operation based on the residuals. In this paper we show that many time series are governed by a geometric Brownian motion (GBM) process. Therefore, in this case, by using the properties of a GBM process, we only need an appropriate transformation and model the transformed data to come up with the condition needs in traditional process control. An industrial example of cocoa powder production process in a Malaysian company will be presented and discussed to illustrate the advantages of the GBM approach.

  15. Statistical analysis of simulated global soil moisture and its memory in an ensemble of CMIP5 general circulation models

    NASA Astrophysics Data System (ADS)

    Wiß, Felix; Stacke, Tobias; Hagemann, Stefan

    2014-05-01

    Soil moisture and its memory can have a strong impact on near surface temperature and precipitation and have the potential to promote severe heat waves, dry spells and floods. To analyze how soil moisture is simulated in recent general circulation models (GCMs), soil moisture data from a 23 model ensemble of Atmospheric Model Intercomparison Project (AMIP) type simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are examined for the period 1979 to 2008 with regard to parameterization and statistical characteristics. With respect to soil moisture processes, the models vary in their maximum soil and root depth, the number of soil layers, the water-holding capacity, and the ability to simulate freezing which all together leads to very different soil moisture characteristics. Differences in the water-holding capacity are resulting in deviations in the global median soil moisture of more than one order of magnitude between the models. In contrast, the variance shows similar absolute values when comparing the models to each other. Thus, the input and output rates by precipitation and evapotranspiration, which are computed by the atmospheric component of the models, have to be in the same range. Most models simulate great variances in the monsoon areas of the tropics and north western U.S., intermediate variances in Europe and eastern U.S., and low variances in the Sahara, continental Asia, and central and western Australia. In general, the variance decreases with latitude over the high northern latitudes. As soil moisture trends in the models were found to be negligible, the soil moisture anomalies were calculated by subtracting the 30 year monthly climatology from the data. The length of the memory is determined from the soil moisture anomalies by calculating the first insignificant autocorrelation for ascending monthly lags (insignificant autocorrelation folding time). The models show a great spread of autocorrelation length from a few months in the tropics, north western Canada, eastern U.S. and northern Europe up to few years in the Sahara, the Arabian Peninsula, continental Eurasia and central U.S. Some models simulate very long memory all over the globe. This behavior is associated with differences between the models in the maximum root and soil depth. Models with shallow roots and deep soils exhibit longer memories than models with similar soil and root depths. Further analysis will be conducted to clearly divide models into groups based on their inter-model spatial correlation of simulated soil moisture characteristics.

  16. Analysis of intermediate period correlations of coda from deep earthquakes

    NASA Astrophysics Data System (ADS)

    Poli, Piero; Campillo, Michel; de Hoop, Maarten

    2017-11-01

    We aim at assessing quantitatively the nature of the signals that appear in coda wave correlations at periods >20 s. These signals contain transient constituents with arrival times corresponding to deep seismic phases. These (body-wave) constituents can be used for imaging. To evaluate this approach, we calculate the autocorrelations of the vertical component seismograms for the Mw 8.4 sea of Okhotsk earthquake at 400 stations in the Eastern US, using data from 1 h before to 50 h after the earthquake. By using array analysis and modes identification, we discover the dominant role played by high quality factor normal modes in the emergence of strong coherent phases as ScS-like, and P'P'df-like. We then make use of geometrical quantization to derive the constituent rays associated with particular modes, and gain insights about the ballistic reverberation of the rays that contributes to the emergence of body waves. Our study indicates that the signals measured in the spatially averaged autocorrelations have a physical significance, but a direct interpretation of ScS-like and P'P'df-like is not trivial. Indeed, even a single simple measurement of long period late coda in a limited period band could provide valuable information on the deep structure by using the temporal information of its autocorrelation, a procedure that could be also useful for planetary exploration.

  17. Spectral factorization of wavefields and wave operators

    NASA Astrophysics Data System (ADS)

    Rickett, James Edward

    Spectral factorization is the problem of finding a minimum-phase function with a given power spectrum. Minimum phase functions have the property that they are causal with a causal (stable) inverse. In this thesis, I factor multidimensional systems into their minimum-phase components. Helical boundary conditions resolve any ambiguities over causality, allowing me to factor multi-dimensional systems with conventional one-dimensional spectral factorization algorithms. In the first part, I factor passive seismic wavefields recorded in two-dimensional spatial arrays. The result provides an estimate of the acoustic impulse response of the medium that has higher bandwidth than autocorrelation-derived estimates. Also, the function's minimum-phase nature mimics the physics of the system better than the zero-phase autocorrelation model. I demonstrate this on helioseismic data recorded by the satellite-based Michelson Doppler Imager (MDI) instrument, and shallow seismic data recorded at Long Beach, California. In the second part of this thesis, I take advantage of the stable-inverse property of minimum-phase functions to solve wave-equation partial differential equations. By factoring multi-dimensional finite-difference stencils into minimum-phase components, I can invert them efficiently, facilitating rapid implicit extrapolation without the azimuthal anisotropy that is observed with splitting approximations. The final part of this thesis describes how to calculate diagonal weighting functions that approximate the combined operation of seismic modeling and migration. These weighting functions capture the effects of irregular subsurface illumination, which can be the result of either the surface-recording geometry, or focusing and defocusing of the seismic wavefield as it propagates through the earth. Since they are diagonal, they can be easily both factored and inverted to compensate for uneven subsurface illumination in migrated images. Experimental results show that applying these weighting functions after migration leads to significantly improved estimates of seismic reflectivity.

  18. Characterization of the frequency stability of an optical frequency standard at 1.39 µm based upon noise-immune cavity-enhanced optical heterodyne molecular spectroscopy.

    PubMed

    Dinesan, H; Fasci, E; D'Addio, A; Castrillo, A; Gianfrani, L

    2015-01-26

    Frequency fluctuations of an optical frequency standard at 1.39 µm have been measured by means of a highly-sensitive optical frequency discriminator based on the fringe-side transmission of a high finesse optical resonator. Built on a Zerodur spacer, the optical resonator exhibits a finesse of 5500 and a cavity-mode width of about 120 kHz. The optical frequency standard consists of an extended-cavity diode laser that is tightly stabilized against the center of a sub-Doppler H(2) (18)O line, this latter being detected by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. The emission linewidth has been carefully determined from the frequency-noise power spectral density by using a rather simple approximation, known as β-line approach, as well as the exact method based on the autocorrelation function of the laser light field. It turns out that the linewidth of the optical frequency standard amounts to about 7 kHz (full width at half maximum) for an observation time of 1 ms. Compared to the free-running laser, the measured width corresponds to a line narrowing by a factor of ~220.

  19. Coherence resonance in low-density jets

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanhang; Gupta, Vikrant; Li, Larry K. B.

    2017-11-01

    Coherence resonance is a phenomenon in which the response of a stable nonlinear system to noise exhibits a peak in coherence at an intermediate noise amplitude. We report the first experimental evidence of coherence resonance in a purely hydrodynamic system, a low-density jet whose variants can be found in many natural and engineering systems. This evidence comprises four parts: (i) the jet's response amplitude increases as the Reynolds number approaches the instability boundary under a constant noise amplitude; (ii) as the noise amplitude increases, the amplitude distribution of the jet response first becomes unimodal, then bimodal, and finally unimodal again; (iii) a distinct peak emerges in the coherence factor at an intermediate noise amplitude; and (iv) for a subcritical Hopf bifurcation, the decay rate of the autocorrelation function exhibits a maximum at an intermediate noise amplitude, but for a supercritical Hopf bifurcation, the decay rate decreases monotonically with increasing noise amplitude. It is clear that coherence resonance can provide valuable information about a system's nonlinearity even in the unconditionally stable regime, opening up new possibilities for its use in system identification and flow control. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  20. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiviluoma, Juha; Holttinen, Hannele; Weir, David

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1more » h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.« less

  1. Inferential precision in single-case time-series data streams: how well does the em procedure perform when missing observations occur in autocorrelated data?

    PubMed

    Smith, Justin D; Borckardt, Jeffrey J; Nash, Michael R

    2012-09-01

    The case-based time-series design is a viable methodology for treatment outcome research. However, the literature has not fully addressed the problem of missing observations with such autocorrelated data streams. Mainly, to what extent do missing observations compromise inference when observations are not independent? Do the available missing data replacement procedures preserve inferential integrity? Does the extent of autocorrelation matter? We use Monte Carlo simulation modeling of a single-subject intervention study to address these questions. We find power sensitivity to be within acceptable limits across four proportions of missing observations (10%, 20%, 30%, and 40%) when missing data are replaced using the Expectation-Maximization Algorithm, more commonly known as the EM Procedure (Dempster, Laird, & Rubin, 1977). This applies to data streams with lag-1 autocorrelation estimates under 0.80. As autocorrelation estimates approach 0.80, the replacement procedure yields an unacceptable power profile. The implications of these findings and directions for future research are discussed. Copyright © 2011. Published by Elsevier Ltd.

  2. New approaches for calculating Moran's index of spatial autocorrelation.

    PubMed

    Chen, Yanguang

    2013-01-01

    Spatial autocorrelation plays an important role in geographical analysis; however, there is still room for improvement of this method. The formula for Moran's index is complicated, and several basic problems remain to be solved. Therefore, I will reconstruct its mathematical framework using mathematical derivation based on linear algebra and present four simple approaches to calculating Moran's index. Moran's scatterplot will be ameliorated, and new test methods will be proposed. The relationship between the global Moran's index and Geary's coefficient will be discussed from two different vantage points: spatial population and spatial sample. The sphere of applications for both Moran's index and Geary's coefficient will be clarified and defined. One of theoretical findings is that Moran's index is a characteristic parameter of spatial weight matrices, so the selection of weight functions is very significant for autocorrelation analysis of geographical systems. A case study of 29 Chinese cities in 2000 will be employed to validate the innovatory models and methods. This work is a methodological study, which will simplify the process of autocorrelation analysis. The results of this study will lay the foundation for the scaling analysis of spatial autocorrelation.

  3. Asymmetric multiscale multifractal analysis of wind speed signals

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaonei; Zeng, Ming; Meng, Qinghao

    We develop a new method called asymmetric multiscale multifractal analysis (A-MMA) to explore the multifractality and asymmetric autocorrelations of the signals with a variable scale range. Three numerical experiments are provided to demonstrate the effectiveness of our approach. Then, the proposed method is applied to investigate multifractality and asymmetric autocorrelations of difference sequences between wind speed fluctuations with uptrends or downtrends. The results show that these sequences appear to be far more complex and contain abundant fractal dynamics information. Through analyzing the Hurst surfaces of nine difference sequences, we found that all series exhibit multifractal properties and multiscale structures. Meanwhile, the asymmetric autocorrelations are observed in all variable scale ranges and the asymmetry results are of good consistency within a certain spatial range. The sources of multifractality and asymmetry in nine difference series are further discussed using the corresponding shuffled series and surrogate series. We conclude that the multifractality of these series is due to both long-range autocorrelation and broad probability density function, but the major source of multifractality is long-range autocorrelation, and the source of asymmetry is affected by the spatial distance.

  4. Scattering images from autocorrelation functions of P-wave seismic velocity images: the case of Tenerife Island (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    García-Yeguas, A.; Sánchez-Alzola, A.; De Siena, L.; Prudencio, J.; Díaz-Moreno, A.; Ibáñez, J. M.

    2018-03-01

    We present a P-wave scattering image of the volcanic structures under Tenerife Island using the autocorrelation functions of P-wave vertical velocity fluctuations. We have applied a cluster analysis to total quality factor attenuation ( {Q}_t^{-1} ) and scattering quality factor attenuation ( {Q}_{PSc}^{-1} ) images to interpret the structures in terms of intrinsic and scattering attenuation variations on a 2D plane, corresponding to a depth of 2000 m, and check the robustness of the scattering imaging. The results show that scattering patterns are similar to total attenuation patterns in the south of the island. There are two main areas where patterns differ: at Cañadas-Teide-Pico Viejo Complex, high total attenuation and average-to-low scattering values are observed. We interpret the difference as induced by intrinsic attenuation. In the Santiago Ridge Zone (SRZ) region, high scattering values correspond to average total attenuation. In our interpretation, the anomaly is induced by an extended scatterer, geometrically related to the surficial traces of Garachico and El Chinyero historical eruptions and the area of highest seismic activity during the 2004-2008 seismic crises.

  5. Predicting anthropogenic soils across the Amazonia

    NASA Astrophysics Data System (ADS)

    Mcmichael, C.; Palace, M. W.; Bush, M. B.; Braswell, B. H.; Hagen, S. C.; Silman, M.; Neves, E.; Czarnecki, C.

    2012-12-01

    Hidden under the forest canopy in lowland Amazonia are nutrient-enriched soils, called terra pretas (or Amazonian black earths), which were formed by prehistoric indigenous populations. These anthrosols are in stark contrast to typical nutrient-poor Amazonian soils, and have retained increased nutrient levels for hundreds of years. Because of their long-term nutrient retaining ability, terra pretas may be crucial for developing sustainable agricultural practices in Amazonia, especially given the deforestation necessary for traditional slash-and-burn systems. However, the frequency and distribution of terra preta soils across the landscape remains debatable, and archaeologists have estimated that terra pretas cover anywhere from 0.1% to 10% of the lowland Amazonian forests. The highest concentration of terra preta soils has been found along the central and eastern portions of the Amazon River and its major tributaries, but whether this is a true pattern or simply reflects sampling bias remains unknown. A possible explanation is that specific environmental or biotic conditions were preferred for human settlement and terra preta formation. Here, we use environmental parameters to predict the probabilities of terra preta soils across lowland Amazonian forests. We compiled a database of 2708 sites across Amazonia, including locations that contain terra pretas (n = 917), and those that are known to be terra preta-free (n = 1791). More than 20 environmental variables, including precipitation, elevation, slope, soil fertility, and distance to river were converted into 90-m resolution raster images across Amazonia and used to model the probability of terra preta occurrence. The relationship between the predictor variables and the occurrence of terra preta was examined using three modeling techniques: logistic regression, auto-logistic regression, and maximum entropy estimations. All three techniques provided similar predictions for terra preta distributions and the amount of area covered by terra preta. Distance to river, locations of bluffs, elevation, and soil fertility were important factors in determining distributions of terra preta, while other environmental variables had less effect. Terra pretas were most likely to be found in central and eastern Amazonia near the confluences of the Amazon River and its major tributaries. Within this general area of higher probability, terra pretas are most likely found atop the bluffs overlooking the rivers as opposed to lying on the floodplain. Interestingly, terra pretas are more probable in areas with less-fertile and more highly weathered soils. Although all three modeling techniques provided similar predictions of terra preta across Amazonia, we suggest that maximum entropy modeling is the best technique to predict anthropogenic soils across the vast Amazonian landscape. The auto-logistic regression corrects for spatial autocorrelation inherent to archaeological surveys, but still requires absence data, which was collected at different times and on different spatial scales than the presence data. The maximum entropy model requires presence only data, accounts for spatial autocorrelation, and is not affected by the differential soil sampling techniques.

  6. Field test comparison of an autocorrelation technique for determining grain size using a digital 'beachball' camera versus traditional methods

    USGS Publications Warehouse

    Barnard, P.L.; Rubin, D.M.; Harney, J.; Mustain, N.

    2007-01-01

    This extensive field test of an autocorrelation technique for determining grain size from digital images was conducted using a digital bed-sediment camera, or 'beachball' camera. Using 205 sediment samples and >1200 images from a variety of beaches on the west coast of the US, grain size ranging from sand to granules was measured from field samples using both the autocorrelation technique developed by Rubin [Rubin, D.M., 2004. A simple autocorrelation algorithm for determining grain size from digital images of sediment. Journal of Sedimentary Research, 74(1): 160-165.] and traditional methods (i.e. settling tube analysis, sieving, and point counts). To test the accuracy of the digital-image grain size algorithm, we compared results with manual point counts of an extensive image data set in the Santa Barbara littoral cell. Grain sizes calculated using the autocorrelation algorithm were highly correlated with the point counts of the same images (r2 = 0.93; n = 79) and had an error of only 1%. Comparisons of calculated grain sizes and grain sizes measured from grab samples demonstrated that the autocorrelation technique works well on high-energy dissipative beaches with well-sorted sediment such as in the Pacific Northwest (r2 ??? 0.92; n = 115). On less dissipative, more poorly sorted beaches such as Ocean Beach in San Francisco, results were not as good (r2 ??? 0.70; n = 67; within 3% accuracy). Because the algorithm works well compared with point counts of the same image, the poorer correlation with grab samples must be a result of actual spatial and vertical variability of sediment in the field; closer agreement between grain size in the images and grain size of grab samples can be achieved by increasing the sampling volume of the images (taking more images, distributed over a volume comparable to that of a grab sample). In all field tests the autocorrelation method was able to predict the mean and median grain size with ???96% accuracy, which is more than adequate for the majority of sedimentological applications, especially considering that the autocorrelation technique is estimated to be at least 100 times faster than traditional methods.

  7. Effect of Climatic Factors on Hand, Foot, and Mouth Disease in South Korea, 2010-2013.

    PubMed

    Kim, Bryan Inho; Ki, Hyunok; Park, Sunhee; Cho, Eunhi; Chun, Byung Chul

    2016-01-01

    Hand, foot, and mouth disease (HFMD) causes characteristic blisters and sores mainly in infants and children, and has been monitored in South Korea through sentinel surveillance since 2009. We described the patterns of HFMD occurrence and analyzed the effect of climatic factors on national HFMD incidence. Weekly clinically diagnosed HFMD case rates (per 1,000 outpatients) in sentinel sites and weekly climatic factors, such as average temperature, relative humidity, duration of sunshine, precipitation, and wind speed from 2010 to 2013, were used in this study. A generalized additive model with smoothing splines and climatic variables with time lags of up to 2 weeks were considered in the modeling process. To account for long-term trends and seasonality, we controlled for each year and their corresponding weeks. The autocorrelation issue was also adjusted by using autocorrelation variables. At an average temperature below 18°C, the HFMD rate increased by 10.3% for every 1°C rise in average temperature (95% confidence interval (CI): 8.4, 12.3%). We also saw a 6.6% increase in HFMD rate (95% CI: 3.6, 9.7%) with every 1% increase in relative humidity under 65%, with a 1.5% decrease in HFMD rate observed (95% CI: 0.4, 2.7%) with each 1% humidity increase above 65%. Modeling results have shown that average temperature and relative humidity are related to HFMD rate. Additional research on the environmental risk factors of HFMD transmission is required to understand the underlying mechanism between climatic factors and HFMD incidence.

  8. Measurement of Regional Environmental Noise by Use of a Pc-Based System. A Application to the Noise Near Airport ``G. Marconi'' in Bologna

    NASA Astrophysics Data System (ADS)

    Sakai, H.; Sato, S.; Prodi, N.; Pompoli, R.

    2001-03-01

    Measurements of aircraft noise were made at the airport "G. Marconi" in Bologna by using a measurement system for regional environmental noise. The system is based on the model of the human auditory-brain system, which is based on the interplay of autocorrelators and an interaural cross-correlator acting on the pressure signals arriving at the ear entrances, and takes into account the specialization of left and right human cerebral hemispheres (see reference [8]). Measurements were taken through dual microphones at ear entrances of a dummy head. The aircraft noise was characterized with the following physical factors calculated from the autocorrelation function (ACF) and interaural cross-correlation function (IACF) for binaural signals. From the ACF analysis, (1) energy represented at the origin of delay,Φ (0), (2) effective duration of the envelope of the normalized ACF, τe, (3) the delay time of the first peak, τ1, and (4) its amplitude, φ1were extracted. From the IACF analysis, (5) IACC, (6) interaural delay time at which the IACC is defined, τIACC, and (7) width of the IACF at the τIACC, WIACCwere extracted. The factorΦ (0) can be represented as the geometrical mean of the energies at both ears. A noise source may be identified by these factors as timbre.

  9. Manifestation of peripherial coding in the effect of increasing loudness and enhanced discrimination of the intensity of tone bursts before and after tone burst noise

    NASA Astrophysics Data System (ADS)

    Rimskaya-Korsavkova, L. K.

    2017-07-01

    To find the possible reasons for the midlevel elevation of the Weber fraction in intensity discrimination of a tone burst, a comparison was performed for the complementary distributions of spike activity of an ensemble of space nerves, such as the distribution of time instants when spikes occur, the distribution of interspike intervals, and the autocorrelation function. The distribution properties were detected in a poststimulus histogram, an interspike interval histogram, and an autocorrelation histogram—all obtained from the reaction of an ensemble of model space nerves in response to an auditory noise burst-useful tone burst complex. Two configurations were used: in the first, the peak amplitude of the tone burst was varied and the noise amplitude was fixed; in the other, the tone burst amplitude was fixed and the noise amplitude was varied. Noise could precede or follow the tone burst. The noise and tone burst durations, as well as the interval between them, was 4 kHz and corresponded to the characteristic frequencies of the model space nerves. The profiles of all the mentioned histograms had two maxima. The values and the positions of the maxima in the poststimulus histogram corresponded to the amplitudes and mutual time position of the noise and the tone burst. The maximum that occurred in response to the tone burst action could be a basis for the formation of the loudness of the latter (explicit loudness). However, the positions of the maxima in the other two histograms did not depend on the positions of tone bursts and noise in the combinations. The first maximum fell in short intervals and united intervals corresponding to the noise and tone burst durations. The second maximum fell in intervals corresponding to a tone burst delay with respect to noise, and its value was proportional to the noise amplitude or tone burst amplitude that was smaller in the complex. An increase in tone burst or noise amplitudes was caused by nonlinear variations in the two maxima and the ratio between them. The size of the first maximum in the of interspike interval distribution could be the basis for the formation of the loudness of the masked tone burst (implicit loudness), and the size of the second maximum, for the formation of intensity in the periodicity pitch of the complex. The auditory effect of the midlevel enhancement of tone burst loudness could be the result of variations in the implicit tone burst loudness caused by variations in tone-burst or noise intensity. The reason for the enhancement of the Weber fraction could be competitive interaction between such subjective qualities as explicit and implicit tone-burst loudness and the intensity of the periodicity pitch of the complex.

  10. A comparative simulation study of AR(1) estimators in short time series.

    PubMed

    Krone, Tanja; Albers, Casper J; Timmerman, Marieke E

    2017-01-01

    Various estimators of the autoregressive model exist. We compare their performance in estimating the autocorrelation in short time series. In Study 1, under correct model specification, we compare the frequentist r 1 estimator, C-statistic, ordinary least squares estimator (OLS) and maximum likelihood estimator (MLE), and a Bayesian method, considering flat (B f ) and symmetrized reference (B sr ) priors. In a completely crossed experimental design we vary lengths of time series (i.e., T = 10, 25, 40, 50 and 100) and autocorrelation (from -0.90 to 0.90 with steps of 0.10). The results show a lowest bias for the B sr , and a lowest variability for r 1 . The power in different conditions is highest for B sr and OLS. For T = 10, the absolute performance of all measurements is poor, as expected. In Study 2, we study robustness of the methods through misspecification by generating the data according to an ARMA(1,1) model, but still analysing the data with an AR(1) model. We use the two methods with the lowest bias for this study, i.e., B sr and MLE. The bias gets larger when the non-modelled moving average parameter becomes larger. Both the variability and power show dependency on the non-modelled parameter. The differences between the two estimation methods are negligible for all measurements.

  11. Intelligent mapping of alluvial aquifer characteristics in the Otago region, New Zealand

    NASA Astrophysics Data System (ADS)

    Friedel, Michael; Rawlinson, Zara; Westerhoff, Rogier

    2015-04-01

    We adopt a hybrid approach to map the 3D hydrostratigraphy of an alluvial aquifer using big data collected in the Ettrick basin, Otago New Zealand. First, a subset (1%) of the 18 million regional helicopter frequency-domain electromagnetic (HEM) sounding measurements (300 Hz, Horizontal co-planar; 3300 Hz, vertical co-planar; 8200 Hz, horizontal co-planar; 40 kHz, horizontal co-planar; 137 kHz horizontal coplanar) and their numerically-inverted 1D resistivity (50¬-100 Ω-m) profiles are randomly split. For example, 50% of these data are used for training an unsupervised machine-learning (ML) network, and 50% of these data are used for performance at independent locations. The remaining set of HEM measurements are then presented to the vetted ML network to estimate regional resistivity structure which is compared to previously inverted resistivity. Second, about 50 borehole autocorrelation functions are computed based on cross-component correlations of quantized borehole locations sampled for lithology and HEM sounding data. Third, an unsupervised ML network is trained and performance tested using sparse borehole lithology (fractions of sand, silt, clay, mudstone, schist) and hydraulic properties (storage, hydraulic conductivity), and those HEM sounding data occurring within a radius defined by the maximum borehole autocorrelation distances. Fourth, this ML network is then used together with independent HEM sounding measurements to map the spatial distribution of physical aquifer properties and hydraulic properties across the basin.

  12. Decorrelation scales for Arctic Ocean hydrography - Part I: Amerasian Basin

    NASA Astrophysics Data System (ADS)

    Sumata, Hiroshi; Kauker, Frank; Karcher, Michael; Rabe, Benjamin; Timmermans, Mary-Louise; Behrendt, Axel; Gerdes, Rüdiger; Schauer, Ursula; Shimada, Koji; Cho, Kyoung-Ho; Kikuchi, Takashi

    2018-03-01

    Any use of observational data for data assimilation requires adequate information of their representativeness in space and time. This is particularly important for sparse, non-synoptic data, which comprise the bulk of oceanic in situ observations in the Arctic. To quantify spatial and temporal scales of temperature and salinity variations, we estimate the autocorrelation function and associated decorrelation scales for the Amerasian Basin of the Arctic Ocean. For this purpose, we compile historical measurements from 1980 to 2015. Assuming spatial and temporal homogeneity of the decorrelation scale in the basin interior (abyssal plain area), we calculate autocorrelations as a function of spatial distance and temporal lag. The examination of the functional form of autocorrelation in each depth range reveals that the autocorrelation is well described by a Gaussian function in space and time. We derive decorrelation scales of 150-200 km in space and 100-300 days in time. These scales are directly applicable to quantify the representation error, which is essential for use of ocean in situ measurements in data assimilation. We also describe how the estimated autocorrelation function and decorrelation scale should be applied for cost function calculation in a data assimilation system.

  13. High Frequency Sampling of TTL Pulses on a Raspberry Pi for Diffuse Correlation Spectroscopy Applications.

    PubMed

    Tivnan, Matthew; Gurjar, Rajan; Wolf, David E; Vishwanath, Karthik

    2015-08-12

    Diffuse Correlation Spectroscopy (DCS) is a well-established optical technique that has been used for non-invasive measurement of blood flow in tissues. Instrumentation for DCS includes a correlation device that computes the temporal intensity autocorrelation of a coherent laser source after it has undergone diffuse scattering through a turbid medium. Typically, the signal acquisition and its autocorrelation are performed by a correlation board. These boards have dedicated hardware to acquire and compute intensity autocorrelations of rapidly varying input signal and usually are quite expensive. Here we show that a Raspberry Pi minicomputer can acquire and store a rapidly varying time-signal with high fidelity. We show that this signal collected by a Raspberry Pi device can be processed numerically to yield intensity autocorrelations well suited for DCS applications. DCS measurements made using the Raspberry Pi device were compared to those acquired using a commercial hardware autocorrelation board to investigate the stability, performance, and accuracy of the data acquired in controlled experiments. This paper represents a first step toward lowering the instrumentation cost of a DCS system and may offer the potential to make DCS become more widely used in biomedical applications.

  14. High Frequency Sampling of TTL Pulses on a Raspberry Pi for Diffuse Correlation Spectroscopy Applications

    PubMed Central

    Tivnan, Matthew; Gurjar, Rajan; Wolf, David E.; Vishwanath, Karthik

    2015-01-01

    Diffuse Correlation Spectroscopy (DCS) is a well-established optical technique that has been used for non-invasive measurement of blood flow in tissues. Instrumentation for DCS includes a correlation device that computes the temporal intensity autocorrelation of a coherent laser source after it has undergone diffuse scattering through a turbid medium. Typically, the signal acquisition and its autocorrelation are performed by a correlation board. These boards have dedicated hardware to acquire and compute intensity autocorrelations of rapidly varying input signal and usually are quite expensive. Here we show that a Raspberry Pi minicomputer can acquire and store a rapidly varying time-signal with high fidelity. We show that this signal collected by a Raspberry Pi device can be processed numerically to yield intensity autocorrelations well suited for DCS applications. DCS measurements made using the Raspberry Pi device were compared to those acquired using a commercial hardware autocorrelation board to investigate the stability, performance, and accuracy of the data acquired in controlled experiments. This paper represents a first step toward lowering the instrumentation cost of a DCS system and may offer the potential to make DCS become more widely used in biomedical applications. PMID:26274961

  15. New Approaches for Calculating Moran’s Index of Spatial Autocorrelation

    PubMed Central

    Chen, Yanguang

    2013-01-01

    Spatial autocorrelation plays an important role in geographical analysis; however, there is still room for improvement of this method. The formula for Moran’s index is complicated, and several basic problems remain to be solved. Therefore, I will reconstruct its mathematical framework using mathematical derivation based on linear algebra and present four simple approaches to calculating Moran’s index. Moran’s scatterplot will be ameliorated, and new test methods will be proposed. The relationship between the global Moran’s index and Geary’s coefficient will be discussed from two different vantage points: spatial population and spatial sample. The sphere of applications for both Moran’s index and Geary’s coefficient will be clarified and defined. One of theoretical findings is that Moran’s index is a characteristic parameter of spatial weight matrices, so the selection of weight functions is very significant for autocorrelation analysis of geographical systems. A case study of 29 Chinese cities in 2000 will be employed to validate the innovatory models and methods. This work is a methodological study, which will simplify the process of autocorrelation analysis. The results of this study will lay the foundation for the scaling analysis of spatial autocorrelation. PMID:23874592

  16. Accelerating Convergence in Molecular Dynamics Simulations of Solutes in Lipid Membranes by Conducting a Random Walk along the Bilayer Normal.

    PubMed

    Neale, Chris; Madill, Chris; Rauscher, Sarah; Pomès, Régis

    2013-08-13

    All molecular dynamics simulations are susceptible to sampling errors, which degrade the accuracy and precision of observed values. The statistical convergence of simulations containing atomistic lipid bilayers is limited by the slow relaxation of the lipid phase, which can exceed hundreds of nanoseconds. These long conformational autocorrelation times are exacerbated in the presence of charged solutes, which can induce significant distortions of the bilayer structure. Such long relaxation times represent hidden barriers that induce systematic sampling errors in simulations of solute insertion. To identify optimal methods for enhancing sampling efficiency, we quantitatively evaluate convergence rates using generalized ensemble sampling algorithms in calculations of the potential of mean force for the insertion of the ionic side chain analog of arginine in a lipid bilayer. Umbrella sampling (US) is used to restrain solute insertion depth along the bilayer normal, the order parameter commonly used in simulations of molecular solutes in lipid bilayers. When US simulations are modified to conduct random walks along the bilayer normal using a Hamiltonian exchange algorithm, systematic sampling errors are eliminated more rapidly and the rate of statistical convergence of the standard free energy of binding of the solute to the lipid bilayer is increased 3-fold. We compute the ratio of the replica flux transmitted across a defined region of the order parameter to the replica flux that entered that region in Hamiltonian exchange simulations. We show that this quantity, the transmission factor, identifies sampling barriers in degrees of freedom orthogonal to the order parameter. The transmission factor is used to estimate the depth-dependent conformational autocorrelation times of the simulation system, some of which exceed the simulation time, and thereby identify solute insertion depths that are prone to systematic sampling errors and estimate the lower bound of the amount of sampling that is required to resolve these sampling errors. Finally, we extend our simulations and verify that the conformational autocorrelation times estimated by the transmission factor accurately predict correlation times that exceed the simulation time scale-something that, to our knowledge, has never before been achieved.

  17. Analysis of data from NASA B-57B gust gradient program

    NASA Technical Reports Server (NTRS)

    Frost, W.; Lin, M. C.; Chang, H. P.; Ringnes, E.

    1985-01-01

    Statistical analysis of the turbulence measured in flight 6 of the NASA B-57B over Denver, Colorado, from July 7 to July 23, 1982 included the calculations of average turbulence parameters, integral length scales, probability density functions, single point autocorrelation coefficients, two point autocorrelation coefficients, normalized autospectra, normalized two point autospectra, and two point cross sectra for gust velocities. The single point autocorrelation coefficients were compared with the theoretical model developed by von Karman. Theoretical analyses were developed which address the effects spanwise gust distributions, using two point spatial turbulence correlations.

  18. Assessing spatial inequalities in accessing community pharmacies: a mixed geographically weighted approach.

    PubMed

    Domnich, Alexander; Arata, Lucia; Amicizia, Daniela; Signori, Alessio; Gasparini, Roberto; Panatto, Donatella

    2016-11-16

    Geographical accessibility is an important determinant for the utilisation of community pharmacies. The present study explored patterns of spatial accessibility with respect to pharmacies in Liguria, Italy, a region with particular geographical and demographic features. Municipal density of pharmacies was proxied as the number of pharmacies per capita and per km2, and spatial autocorrelation analysis was performed to identify spatial clusters. Both non-spatial and spatial models were constructed to predict the study outcome. Spatial autocorrelation analysis showed a highly significant clustered pattern in the density of pharmacies per capita (I=0.082) and per km2 (I=0.295). Potentially under-supplied areas were mostly located in the mountainous hinterland. Ordinary least-squares (OLS) regressions established a significant positive relationship between the density of pharmacies and income among municipalities located at high altitudes, while no such association was observed in lower-lying areas. However, residuals of the OLS models were spatially auto-correlated. The best-fitting mixed geographically weighted regression (GWR) models outperformed the corresponding OLS models. Pharmacies per capita were best predicted by two local predictors (altitude and proportion of immigrants) and two global ones (proportion of elderly residents and income), while the local terms population, mean altitude and rural status and the global term income functioned as independent variables predicting pharmacies per km2. The density of pharmacies in Liguria was found to be associated with both socio-economic and landscape factors. Mapping of mixed GWR results would be helpful to policy-makers.

  19. Testing Pairwise Association between Spatially Autocorrelated Variables: A New Approach Using Surrogate Lattice Data

    PubMed Central

    Deblauwe, Vincent; Kennel, Pol; Couteron, Pierre

    2012-01-01

    Background Independence between observations is a standard prerequisite of traditional statistical tests of association. This condition is, however, violated when autocorrelation is present within the data. In the case of variables that are regularly sampled in space (i.e. lattice data or images), such as those provided by remote-sensing or geographical databases, this problem is particularly acute. Because analytic derivation of the null probability distribution of the test statistic (e.g. Pearson's r) is not always possible when autocorrelation is present, we propose instead the use of a Monte Carlo simulation with surrogate data. Methodology/Principal Findings The null hypothesis that two observed mapped variables are the result of independent pattern generating processes is tested here by generating sets of random image data while preserving the autocorrelation function of the original images. Surrogates are generated by matching the dual-tree complex wavelet spectra (and hence the autocorrelation functions) of white noise images with the spectra of the original images. The generated images can then be used to build the probability distribution function of any statistic of association under the null hypothesis. We demonstrate the validity of a statistical test of association based on these surrogates with both actual and synthetic data and compare it with a corrected parametric test and three existing methods that generate surrogates (randomization, random rotations and shifts, and iterative amplitude adjusted Fourier transform). Type I error control was excellent, even with strong and long-range autocorrelation, which is not the case for alternative methods. Conclusions/Significance The wavelet-based surrogates are particularly appropriate in cases where autocorrelation appears at all scales or is direction-dependent (anisotropy). We explore the potential of the method for association tests involving a lattice of binary data and discuss its potential for validation of species distribution models. An implementation of the method in Java for the generation of wavelet-based surrogates is available online as supporting material. PMID:23144961

  20. Development of a local size hierarchy causes regular spacing of trees in an even-aged Abies forest: analyses using spatial autocorrelation and the mark correlation function.

    PubMed

    Suzuki, Satoshi N; Kachi, Naoki; Suzuki, Jun-Ichirou

    2008-09-01

    During the development of an even-aged plant population, the spatial distribution of individuals often changes from a clumped pattern to a random or regular one. The development of local size hierarchies in an Abies forest was analysed for a period of 47 years following a large disturbance in 1959. In 1980 all trees in an 8 x 8 m plot were mapped and their height growth after the disturbance was estimated. Their mortality and growth were then recorded at 1- to 4-year intervals between 1980 and 2006. Spatial distribution patterns of trees were analysed by the pair correlation function. Spatial correlations between tree heights were analysed with a spatial autocorrelation function and the mark correlation function. The mark correlation function was able to detect a local size hierarchy that could not be detected by the spatial autocorrelation function alone. The small-scale spatial distribution pattern of trees changed from clumped to slightly regular during the 47 years. Mortality occurred in a density-dependent manner, which resulted in regular spacing between trees after 1980. The spatial autocorrelation and mark correlation functions revealed the existence of tree patches consisting of large trees at the initial stage. Development of a local size hierarchy was detected within the first decade after the disturbance, although the spatial autocorrelation was not negative. Local size hierarchies that developed persisted until 2006, and the spatial autocorrelation became negative at later stages (after about 40 years). This is the first study to detect local size hierarchies as a prelude to regular spacing using the mark correlation function. The results confirm that use of the mark correlation function together with the spatial autocorrelation function is an effective tool to analyse the development of a local size hierarchy of trees in a forest.

  1. Crustal thickness across the Trans-European Suture Zone from ambient noise autocorrelations

    NASA Astrophysics Data System (ADS)

    Becker, G.; Knapmeyer-Endrun, B.

    2018-02-01

    We derive autocorrelations from ambient seismic noise to image the reflectivity of the subsurface and to extract the Moho depth beneath the stations for two different data sets in Central Europe. The autocorrelations are calculated by smoothing the spectrum of the data in order to suppress high amplitude, narrow-band signals of industrial origin, applying a phase autocorrelation algorithm and time-frequency domain phase-weighted stacking. The stacked autocorrelation results are filtered and analysed predominantly in the frequency range of 1-2 Hz. Moho depth is automatically picked inside uncertainty windows obtained from prior information. The processing scheme we developed is applied to data from permanent seismic stations located in different geological provinces across Europe, with varying Moho depths between 25 and 50 km, and to the mainly short period temporary PASSEQ stations along seismic profile POLONAISE P4. The autocorrelation results are spatially and temporarily stable, but show a clear correlation with the existence of cultural noise. On average, a minimum of six months of data is needed to obtain stable results. The obtained Moho depth results are in good agreement with the subsurface model provided by seismic profiling, receiver function estimates and the European Moho depth map. In addition to extracting the Moho depth, it is possible to identify an intracrustal layer along the profile, again closely matching the seismic model. For more than half of the broad-band stations, another change in reflectivity within the mantle is observed and can be correlated with the lithosphere-asthenosphere boundary to the west and a mid-lithospheric discontinuity beneath the East European Craton. With the application of the developed autocorrelation processing scheme to different stations with varying crustal thicknesses, it is shown that Moho depth can be extracted independent of subsurface structure, when station coverage is low, when no strong seismic sources are present, and when only limited amounts of data are available.

  2. Autocorrelation of location estimates and the analysis of radiotracking data

    USGS Publications Warehouse

    Otis, D.L.; White, Gary C.

    1999-01-01

    The wildlife literature has been contradictory about the importance of autocorrelation in radiotracking data used for home range estimation and hypothesis tests of habitat selection. By definition, the concept of a home range involves autocorrelated movements, but estimates or hypothesis tests based on sampling designs that predefine a time frame of interest, and that generate representative samples of an animal's movement during this time frame, should not be affected by length of the sampling interval and autocorrelation. Intensive sampling of the individual's home range and habitat use during the time frame of the study leads to improved estimates for the individual, but use of location estimates as the sample unit to compare across animals is pseudoreplication. We therefore recommend against use of habitat selection analysis techniques that use locations instead of individuals as the sample unit. We offer a general outline for sampling designs for radiotracking studies.

  3. Assessing the significance of global and local correlations under spatial autocorrelation: a nonparametric approach.

    PubMed

    Viladomat, Júlia; Mazumder, Rahul; McInturff, Alex; McCauley, Douglas J; Hastie, Trevor

    2014-06-01

    We propose a method to test the correlation of two random fields when they are both spatially autocorrelated. In this scenario, the assumption of independence for the pair of observations in the standard test does not hold, and as a result we reject in many cases where there is no effect (the precision of the null distribution is overestimated). Our method recovers the null distribution taking into account the autocorrelation. It uses Monte-Carlo methods, and focuses on permuting, and then smoothing and scaling one of the variables to destroy the correlation with the other, while maintaining at the same time the initial autocorrelation. With this simulation model, any test based on the independence of two (or more) random fields can be constructed. This research was motivated by a project in biodiversity and conservation in the Biology Department at Stanford University. © 2014, The International Biometric Society.

  4. General simulation algorithm for autocorrelated binary processes.

    PubMed

    Serinaldi, Francesco; Lombardo, Federico

    2017-02-01

    The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.

  5. Method and apparatus for in-situ characterization of energy storage and energy conversion devices

    DOEpatents

    Christophersen, Jon P [Idaho Falls, ID; Motloch, Chester G [Idaho Falls, ID; Morrison, John L [Butte, MT; Albrecht, Weston [Layton, UT

    2010-03-09

    Disclosed are methods and apparatuses for determining an impedance of an energy-output device using a random noise stimulus applied to the energy-output device. A random noise signal is generated and converted to a random noise stimulus as a current source correlated to the random noise signal. A bias-reduced response of the energy-output device to the random noise stimulus is generated by comparing a voltage at the energy-output device terminal to an average voltage signal. The random noise stimulus and bias-reduced response may be periodically sampled to generate a time-varying current stimulus and a time-varying voltage response, which may be correlated to generate an autocorrelated stimulus, an autocorrelated response, and a cross-correlated response. Finally, the autocorrelated stimulus, the autocorrelated response, and the cross-correlated response may be combined to determine at least one of impedance amplitude, impedance phase, and complex impedance.

  6. Data Analysis Methods for Synthetic Polymer Mass Spectrometry: Autocorrelation

    PubMed Central

    Wallace, William E.; Guttman, Charles M.

    2002-01-01

    Autocorrelation is shown to be useful in describing the periodic patterns found in high- resolution mass spectra of synthetic polymers. Examples of this usefulness are described for a simple linear homopolymer to demonstrate the method fundamentals, a condensation polymer to demonstrate its utility in understanding complex spectra with multiple repeating patterns on different mass scales, and a condensation copolymer to demonstrate how it can elegantly and efficiently reveal unexpected phenomena. It is shown that using autocorrelation to determine where the signal devolves into noise can be useful in determining molecular mass distributions of synthetic polymers, a primary focus of the NIST synthetic polymer mass spectrometry effort. The appendices describe some of the effects of transformation from time to mass space when time-of-flight mass separation is used, as well as the effects of non-trivial baselines on the autocorrelation function. PMID:27446716

  7. Lévy flights, autocorrelation, and slow convergence

    NASA Astrophysics Data System (ADS)

    Figueiredo, Annibal; Gleria, Iram; Matsushita, Raul; Da Silva, Sergio

    2004-06-01

    Previously we have put forward that the sluggish convergence of truncated Lévy flights to a Gaussian (Phys. Rev. Lett. 73 (1994) 2946) together with the scaling power laws in their probability of return to the origin (Nature 376 (1995) 46) can be explained by autocorrelation in data (Physica A 323 (2003) 601; Phys. Lett. A 315 (2003) 51). A purpose of this paper is to improve and enlarge the scope of such a result. The role of the autocorrelations in the convergence process as well as the problem of establishing the distance of a given distribution to the Gaussian are analyzed in greater detail. We show that whereas power laws in the second moment can still be explained by linear correlation of pairs, sluggish convergence can now emerge from nonlinear autocorrelations. Our approach is exemplified with data from the British pound-US dollar exchange rate.

  8. Geostatistics for spatial genetic structures: study of wild populations of perennial ryegrass.

    PubMed

    Monestiez, P; Goulard, M; Charmet, G

    1994-04-01

    Methods based on geostatistics were applied to quantitative traits of agricultural interest measured on a collection of 547 wild populations of perennial ryegrass in France. The mathematical background of these methods, which resembles spatial autocorrelation analysis, is briefly described. When a single variable is studied, the spatial structure analysis is similar to spatial autocorrelation analysis, and a spatial prediction method, called "kriging", gives a filtered map of the spatial pattern over all the sampled area. When complex interactions of agronomic traits with different evaluation sites define a multivariate structure for the spatial analysis, geostatistical methods allow the spatial variations to be broken down into two main spatial structures with ranges of 120 km and 300 km, respectively. The predicted maps that corresponded to each range were interpreted as a result of the isolation-by-distance model and as a consequence of selection by environmental factors. Practical collecting methodology for breeders may be derived from such spatial structures.

  9. Spatiotemporal estimation of historical PM2.5 concentrations using PM10, meteorological variables, and spatial effect

    NASA Astrophysics Data System (ADS)

    Li, Lianfa; Wu, Anna H.; Cheng, Iona; Chen, Jiu-Chiuan; Wu, Jun

    2017-10-01

    Monitoring of fine particulate matter with diameter <2.5 μm (PM2.5) started from 1999 in the US and even later in many other countries. The lack of historical PM2.5 data limits epidemiological studies of long-term exposure of PM2.5 and health outcomes such as cancer. In this study, we aimed to design a flexible approach to reliably estimate historical PM2.5 concentrations by incorporating spatial effect and the measurements of existing co-pollutants such as particulate matter with diameter <10 μm (PM10) and meteorological variables. Monitoring data of PM10, PM2.5, and meteorological variables covering the entire state of California were obtained from 1999 through 2013. We developed a spatiotemporal model that quantified non-linear associations between PM2.5 concentrations and the following predictor variables: spatiotemporal factors (PM10 and meteorological variables), spatial factors (land-use patterns, traffic, elevation, distance to shorelines, and spatial autocorrelation), and season. Our model accounted for regional-(county) scale spatial autocorrelation, using spatial weight matrix, and local-scale spatiotemporal variability, using local covariates in additive non-linear model. The spatiotemporal model was evaluated, using leaving-one-site-month-out cross validation. Our final daily model had an R2 of 0.81, with PM10, meteorological variables, and spatial autocorrelation, explaining 55%, 10%, and 10% of the variance in PM2.5 concentrations, respectively. The model had a cross-validation R2 of 0.83 for monthly PM2.5 concentrations (N = 8170) and 0.79 for daily PM2.5 concentrations (N = 51,421) with few extreme values in prediction. Further, the incorporation of spatial effects reduced bias in predictions. Our approach achieved a cross validation R2 of 0.61 for the daily model when PM10 was replaced by total suspended particulate. Our model can robustly estimate historical PM2.5 concentrations in California when PM2.5 measurements were not available.

  10. Using geographical semi-variogram method to quantify the difference between NO2 and PM2.5 spatial distribution characteristics in urban areas.

    PubMed

    Song, Weize; Jia, Haifeng; Li, Zhilin; Tang, Deliang

    2018-08-01

    Urban air pollutant distribution is a concern in environmental and health studies. Particularly, the spatial distribution of NO 2 and PM 2.5 , which represent photochemical smog and haze pollution in urban areas, is of concern. This paper presents a study quantifying the seasonal differences between urban NO 2 and PM 2.5 distributions in Foshan, China. A geographical semi-variogram analysis was conducted to delineate the spatial variation in daily NO 2 and PM 2.5 concentrations. The data were collected from 38 sites in the government-operated monitoring network. The results showed that the total spatial variance of NO 2 is 38.5% higher than that of PM 2.5 . The random spatial variance of NO 2 was 1.6 times than that of PM 2.5 . The nugget effect (i.e., random to total spatial variance ratio) values of NO 2 and PM 2.5 were 29.7 and 20.9%, respectively. This indicates that urban NO 2 distribution was affected by both local and regional influencing factors, while urban PM 2.5 distribution was dominated by regional influencing factors. NO 2 had a larger seasonally averaged spatial autocorrelation distance (48km) than that of PM 2.5 (33km). The spatial range of NO 2 autocorrelation was larger in winter than the other seasons, and PM 2.5 has a smaller range of spatial autocorrelation in winter than the other seasons. Overall, the geographical semi-variogram analysis is a very effective method to enrich the understanding of NO 2 and PM 2.5 distributions. It can provide scientific evidences for the buffering radius selection of spatial predictors for land use regression models. It will also be beneficial for developing the targeted policies and measures to reduce NO 2 and PM 2.5 pollution levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Concentration dependence of the wings of a dipole-broadened magnetic resonance line in magnetically diluted lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zobov, V. E., E-mail: rsa@iph.krasn.ru; Kucherov, M. M.

    2017-01-15

    The singularities of the time autocorrelation functions (ACFs) of magnetically diluted spin systems with dipole–dipole interaction (DDI), which determine the high-frequency asymptotics of autocorrelation functions and the wings of a magnetic resonance line, are studied. Using the self-consistent fluctuating local field approximation, nonlinear equations are derived for autocorrelation functions averaged over the independent random arrangement of spins (magnetic atoms) in a diamagnetic lattice with different spin concentrations. The equations take into account the specificity of the dipole–dipole interaction. First, due to its axial symmetry in a strong static magnetic field, the autocorrelation functions of longitudinal and transverse spin components aremore » described by different equations. Second, the long-range type of the dipole–dipole interaction is taken into account by separating contributions into the local field from distant and near spins. The recurrent equations are obtained for the expansion coefficients of autocorrelation functions in power series in time. From them, the numerical value of the coordinate of the nearest singularity of the autocorrelation function is found on the imaginary time axis, which is equal to the radius of convergence of these expansions. It is shown that in the strong dilution case, the logarithmic concentration dependence of the coordinate of the singularity is observed, which is caused by the presence of a cluster of near spins whose fraction is small but contribution to the modulation frequency is large. As an example a silicon crystal with different {sup 29}Si concentrations in magnetic fields directed along three crystallographic axes is considered.« less

  12. White Gaussian Noise - Models for Engineers

    NASA Astrophysics Data System (ADS)

    Jondral, Friedrich K.

    2018-04-01

    This paper assembles some information about white Gaussian noise (WGN) and its applications. It starts from a description of thermal noise, i. e. the irregular motion of free charge carriers in electronic devices. In a second step, mathematical models of WGN processes and their most important parameters, especially autocorrelation functions and power spectrum densities, are introduced. In order to proceed from mathematical models to simulations, we discuss the generation of normally distributed random numbers. The signal-to-noise ratio as the most important quality measure used in communications, control or measurement technology is accurately introduced. As a practical application of WGN, the transmission of quadrature amplitude modulated (QAM) signals over additive WGN channels together with the optimum maximum likelihood (ML) detector is considered in a demonstrative and intuitive way.

  13. Mode-locked fiber laser using SU8 resist incorporating carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hernandez-Romano, Ivan; Mandridis, Dimitrios; May-Arrioja, Daniel A.; Sanchez-Mondragon, Jose J.; Delfyett, Peter J.

    2011-06-01

    We report the fabrication of a saturable absorber made of a novel polymer SU8 doped with Single Wall Carbon Nanotubes (SWCNTs). A passive mode-locked ring cavity fiber laser was built with a 100 μm thick SU8/SWCNT film inserted between two FC/APC connectors. Self-starting passively mode-locked lasing operation was observed at 1572.04 nm, with a FWHM of 3.26 nm. The autocorrelation trace was 1.536 ps corresponding to a pulse-width of 871 fs. The time-bandwidth product was 0.344, which is close enough to transform-limited sech squared pulses. The repetition rate was 21.27 MHz, and a maximum average output power of 1 mW was also measured.

  14. Growth history and crown vine coverage are principal factors influencing growth and mortality rates of big-leaf mahogany Swietenia macrophylla in Brazil

    Treesearch

    James Grogan; R. Matthew Landis

    2009-01-01

    1. Current efforts to model population dynamics of high-value tropical timber species largely assume that individual growth history is unimportant to population dynamics, yet growth autocorrelation is known to adversely affect model predictions. In this study, we analyse a decade of annual census data from a natural population of big-leaf mahogany Swietenia macrophylla...

  15. Factors Influencing Army Accessions.

    DTIC Science & Technology

    1982-12-01

    partial autocorrelations were examined for significant lags or a recognizable pattern such as a damped exponential or a sine wave. The TSP prugrams...decreasing function indicating nonstation- *arity or a very long sine wave where only a small portion of the wave is plotted. The partial...plot of the raw data appeared (Appendix E-1) to be either the middle of a long sine wave or a linearly decreasing function. This pattern is recognized

  16. Spatial variation of air quality index and urban driving factors linkages: evidence from Chinese cities.

    PubMed

    Pu, Haixia; Luo, Kunli; Wang, Pin; Wang, Shaobin; Kang, Shun

    2017-02-01

    Daily air quality index (AQI) of 161 Chinese cities obtained from the Ministry of Environmental Protection of China in 2015 is conducted. In this study, to better explore spatial distribution and regional characteristic of AQI, global and local spatial autocorrelation is utilized. Pearson's correlation is introduced to determine the influence of single urban indicator on AQI value. Meanwhile, multiple linear stepwise regression is chosen to estimate quantitatively the most influential urban indicators on AQI. The spatial autocorrelation analysis indicates that the AQI value of Chinese 161 cities shows a spatial dependency. Higher AQI is mainly located in north and northwest regions, whereas low AQI is concentrated in the south and the Qinghai-Tibet regions. The low AQI and high AQI values in China both exhibit relative immobility through seasonal variation. The influence degree of three adverse urban driving factors on AQI value is ranked from high to low: coal consumption of manufacturing > building area > coal consumption of the power industry. It is worth noting that the risk of exposed population to poor quality is greater in the northern region than in other regions. The results of the study provide a reference for the formulation of urban policy and improvement of air quality in China.

  17. DS/LPI autocorrelation detection in noise plus random-tone interference. [Direct Sequence Low-Probabilty of Intercept

    NASA Technical Reports Server (NTRS)

    Hinedi, S.; Polydoros, A.

    1988-01-01

    The authors present and analyze a frequency-noncoherent two-lag autocorrelation statistic for the wideband detection of random BPSK signals in noise-plus-random-multitone interference. It is shown that this detector is quite robust to the presence or absence of interference and its specific parameter values, contrary to the case of an energy detector. The rule assumes knowledge of the data rate and the active scenario under H0. It is concluded that the real-time autocorrelation domain and its samples (lags) are a viable approach for detecting random signals in dense environments.

  18. An empirical analysis of the distribution of the duration of overshoots in a stationary gaussian stochastic process

    NASA Technical Reports Server (NTRS)

    Parrish, R. S.; Carter, M. C.

    1974-01-01

    This analysis utilizes computer simulation and statistical estimation. Realizations of stationary gaussian stochastic processes with selected autocorrelation functions are computer simulated. Analysis of the simulated data revealed that the mean and the variance of a process were functionally dependent upon the autocorrelation parameter and crossing level. Using predicted values for the mean and standard deviation, by the method of moments, the distribution parameters was estimated. Thus, given the autocorrelation parameter, crossing level, mean, and standard deviation of a process, the probability of exceeding the crossing level for a particular length of time was calculated.

  19. A technique to detect periodic and non-periodic ultra-rapid flux time variations with standard radio-astronomical data

    NASA Astrophysics Data System (ADS)

    Borra, Ermanno F.; Romney, Jonathan D.; Trottier, Eric

    2018-06-01

    We demonstrate that extremely rapid and weak periodic and non-periodic signals can easily be detected by using the autocorrelation of intensity as a function of time. We use standard radio-astronomical observations that have artificial periodic and non-periodic signals generated by the electronics of terrestrial origin. The autocorrelation detects weak signals that have small amplitudes because it averages over long integration times. Another advantage is that it allows a direct visualization of the shape of the signals, while it is difficult to see the shape with a Fourier transform. Although Fourier transforms can also detect periodic signals, a novelty of this work is that we demonstrate another major advantage of the autocorrelation, that it can detect non-periodic signals while the Fourier transform cannot. Another major novelty of our work is that we use electric fields taken in a standard format with standard instrumentation at a radio observatory and therefore no specialized instrumentation is needed. Because the electric fields are sampled every 15.625 ns, they therefore allow detection of very rapid time variations. Notwithstanding the long integration times, the autocorrelation detects very rapid intensity variations as a function of time. The autocorrelation could also detect messages from Extraterrestrial Intelligence as non-periodic signals.

  20. Applying spatial regression to evaluate risk factors for microbiological contamination of urban groundwater sources in Juba, South Sudan

    NASA Astrophysics Data System (ADS)

    Engström, Emma; Mörtberg, Ulla; Karlström, Anders; Mangold, Mikael

    2017-06-01

    This study developed methodology for statistically assessing groundwater contamination mechanisms. It focused on microbial water pollution in low-income regions. Risk factors for faecal contamination of groundwater-fed drinking-water sources were evaluated in a case study in Juba, South Sudan. The study was based on counts of thermotolerant coliforms in water samples from 129 sources, collected by the humanitarian aid organisation Médecins Sans Frontières in 2010. The factors included hydrogeological settings, land use and socio-economic characteristics. The results showed that the residuals of a conventional probit regression model had a significant positive spatial autocorrelation (Moran's I = 3.05, I-stat = 9.28); therefore, a spatial model was developed that had better goodness-of-fit to the observations. The most significant factor in this model ( p-value 0.005) was the distance from a water source to the nearest Tukul area, an area with informal settlements that lack sanitation services. It is thus recommended that future remediation and monitoring efforts in the city be concentrated in such low-income regions. The spatial model differed from the conventional approach: in contrast with the latter case, lowland topography was not significant at the 5% level, as the p-value was 0.074 in the spatial model and 0.040 in the traditional model. This study showed that statistical risk-factor assessments of groundwater contamination need to consider spatial interactions when the water sources are located close to each other. Future studies might further investigate the cut-off distance that reflects spatial autocorrelation. Particularly, these results advise research on urban groundwater quality.

  1. Effect of the spatial autocorrelation of empty sites on the evolution of cooperation

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Wang, Li; Hou, Dongshuang

    2016-02-01

    An evolutionary game model is constructed to investigate the spatial autocorrelation of empty sites on the evolution of cooperation. Each individual is assumed to imitate the strategy of the one who scores the highest in its neighborhood including itself. Simulation results illustrate that the evolutionary dynamics based on the Prisoner's Dilemma game (PD) depends severely on the initial conditions, while the Snowdrift game (SD) is hardly affected by that. A high degree of autocorrelation of empty sites is beneficial for the evolution of cooperation in the PD, whereas it shows diversification effects depending on the parameter of temptation to defect in the SD. Moreover, for the repeated game with three strategies, 'always defect' (ALLD), 'tit-for-tat' (TFT), and 'always cooperate' (ALLC), simulations reveal that an amazing evolutionary diversity appears for varying of parameters of the temptation to defect and the probability of playing in the next round of the game. The spatial autocorrelation of empty sites can have profound effects on evolutionary dynamics (equilibrium and oscillation) and spatial distribution.

  2. Superaging and Subaging Phenomena in a Nonequilibrium Critical Behavior of the Structurally Disordered Two-Dimensional XY Model

    NASA Astrophysics Data System (ADS)

    Prudnikov, V. V.; Prudnikov, P. V.; Popov, I. S.

    2018-03-01

    A Monte Carlo numerical simulation of the specific features of nonequilibrium critical behavior is carried out for the two-dimensional structurally disordered XY model during its evolution from a low-temperature initial state. On the basis of the analysis of the two-time dependence of autocorrelation functions and dynamic susceptibility for systems with spin concentrations of p = 1.0, 0.9, and 0.6, aging phenomena characterized by a slowing down of the relaxation system with increasing waiting time and the violation of the fluctuation-dissipation theorem (FDT) are revealed. The values of the universal limiting fluctuation-dissipation ratio (FDR) are obtained for the systems considered. As a result of the analysis of the two-time scaling dependence for spin-spin and connected spin autocorrelation functions, it is found that structural defects lead to subaging phenomena in the behavior of the spin-spin autocorrelation function and superaging phenomena in the behavior of the connected spin autocorrelation function.

  3. Performance of signal-to-noise ratio estimation for scanning electron microscope using autocorrelation Levinson-Durbin recursion model.

    PubMed

    Sim, K S; Lim, M S; Yeap, Z X

    2016-07-01

    A new technique to quantify signal-to-noise ratio (SNR) value of the scanning electron microscope (SEM) images is proposed. This technique is known as autocorrelation Levinson-Durbin recursion (ACLDR) model. To test the performance of this technique, the SEM image is corrupted with noise. The autocorrelation function of the original image and the noisy image are formed. The signal spectrum based on the autocorrelation function of image is formed. ACLDR is then used as an SNR estimator to quantify the signal spectrum of noisy image. The SNR values of the original image and the quantified image are calculated. The ACLDR is then compared with the three existing techniques, which are nearest neighbourhood, first-order linear interpolation and nearest neighbourhood combined with first-order linear interpolation. It is shown that ACLDR model is able to achieve higher accuracy in SNR estimation. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  4. Microchannel plate cross-talk mitigation for spatial autocorrelation measurements

    NASA Astrophysics Data System (ADS)

    Lipka, Michał; Parniak, Michał; Wasilewski, Wojciech

    2018-05-01

    Microchannel plates (MCP) are the basis for many spatially resolved single-particle detectors such as ICCD or I-sCMOS cameras employing image intensifiers (II), MCPs with delay-line anodes for the detection of cold gas particles or Cherenkov radiation detectors. However, the spatial characterization provided by an MCP is severely limited by cross-talk between its microchannels, rendering MCP and II ill-suited for autocorrelation measurements. Here, we present a cross-talk subtraction method experimentally exemplified for an I-sCMOS based measurement of pseudo-thermal light second-order intensity autocorrelation function at the single-photon level. The method merely requires a dark counts measurement for calibration. A reference cross-correlation measurement certifies the cross-talk subtraction. While remaining universal for MCP applications, the presented cross-talk subtraction, in particular, simplifies quantum optical setups. With the possibility of autocorrelation measurements, the signal needs no longer to be divided into two camera regions for a cross-correlation measurement, reducing the experimental setup complexity and increasing at least twofold the simultaneously employable camera sensor region.

  5. Coherence solution for bidirectional reflectance distributions of surfaces with wavelength-scale statistics.

    PubMed

    Hoover, Brian G; Gamiz, Victor L

    2006-02-01

    The scalar bidirectional reflectance distribution function (BRDF) due to a perfectly conducting surface with roughness and autocorrelation width comparable with the illumination wavelength is derived from coherence theory on the assumption of a random reflective phase screen and an expansion valid for large effective roughness. A general quadratic expansion of the two-dimensional isotropic surface autocorrelation function near the origin yields representative Cauchy and Gaussian BRDF solutions and an intermediate general solution as the sum of an incoherent component and a nonspecular coherent component proportional to an integral of the plasma dispersion function in the complex plane. Plots illustrate agreement of the derived general solution with original bistatic BRDF data due to a machined aluminum surface, and comparisons are drawn with previously published data in the examination of variations with incident angle, roughness, illumination wavelength, and autocorrelation coefficients in the bistatic and monostatic geometries. The general quadratic autocorrelation expansion provides a BRDF solution that smoothly interpolates between the well-known results of the linear and parabolic approximations.

  6. Bayesian image reconstruction - The pixon and optimal image modeling

    NASA Technical Reports Server (NTRS)

    Pina, R. K.; Puetter, R. C.

    1993-01-01

    In this paper we describe the optimal image model, maximum residual likelihood method (OptMRL) for image reconstruction. OptMRL is a Bayesian image reconstruction technique for removing point-spread function blurring. OptMRL uses both a goodness-of-fit criterion (GOF) and an 'image prior', i.e., a function which quantifies the a priori probability of the image. Unlike standard maximum entropy methods, which typically reconstruct the image on the data pixel grid, OptMRL varies the image model in order to find the optimal functional basis with which to represent the image. We show how an optimal basis for image representation can be selected and in doing so, develop the concept of the 'pixon' which is a generalized image cell from which this basis is constructed. By allowing both the image and the image representation to be variable, the OptMRL method greatly increases the volume of solution space over which the image is optimized. Hence the likelihood of the final reconstructed image is greatly increased. For the goodness-of-fit criterion, OptMRL uses the maximum residual likelihood probability distribution introduced previously by Pina and Puetter (1992). This GOF probability distribution, which is based on the spatial autocorrelation of the residuals, has the advantage that it ensures spatially uncorrelated image reconstruction residuals.

  7. Determination of modulation transfer function of a printer by measuring the autocorrelation of the transmission function of a printed Ronchi grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madanipour, Khosro; Tavassoly, Mohammad T

    2009-02-01

    We show theoretically and verify experimentally that the modulation transfer function (MTF) of a printing system can be determined by measuring the autocorrelation of a printed Ronchi grating. In practice, two similar Ronchi gratings are printed on two transparencies and the transparencies are superimposed with parallel grating lines. Then, the gratings are uniformly illuminated and the transmitted light from a large section is measured versus the displacement of one grating with respect to the other in a grating pitch interval. This measurement provides the required autocorrelation function for determination of the MTF.

  8. Hydrodynamics of confined colloidal fluids in two dimensions

    NASA Astrophysics Data System (ADS)

    Sané, Jimaan; Padding, Johan T.; Louis, Ard A.

    2009-05-01

    We apply a hybrid molecular dynamics and mesoscopic simulation technique to study the dynamics of two-dimensional colloidal disks in confined geometries. We calculate the velocity autocorrelation functions and observe the predicted t-1 long-time hydrodynamic tail that characterizes unconfined fluids, as well as more complex oscillating behavior and negative tails for strongly confined geometries. Because the t-1 tail of the velocity autocorrelation function is cut off for longer times in finite systems, the related diffusion coefficient does not diverge but instead depends logarithmically on the overall size of the system. The Langevin equation gives a poor approximation to the velocity autocorrelation function at both short and long times.

  9. Autocorrelations of stellar light and mass at z˜ 0 and ˜1: from SDSS to DEEP2

    NASA Astrophysics Data System (ADS)

    Li, Cheng; White, Simon D. M.; Chen, Yanmei; Coil, Alison L.; Davis, Marc; De Lucia, Gabriella; Guo, Qi; Jing, Y. P.; Kauffmann, Guinevere; Willmer, Christopher N. A.; Zhang, Wei

    2012-01-01

    We present measurements of projected autocorrelation functions wp(rp) for the stellar mass of galaxies and for their light in the U, B and V bands, using data from the third data release of the DEEP2 Galaxy Redshift Survey and the final data release of the Sloan Digital Sky Survey (SDSS). We investigate the clustering bias of stellar mass and light by comparing these to projected autocorrelations of dark matter estimated from the Millennium Simulations (MS) at z= 1 and 0.07, the median redshifts of our galaxy samples. All of the autocorrelation and bias functions show systematic trends with spatial scale and waveband which are impressively similar at the two redshifts. This shows that the well-established environmental dependence of stellar populations in the local Universe is already in place at z= 1. The recent MS-based galaxy formation simulation of Guo et al. reproduces the scale-dependent clustering of luminosity to an accuracy better than 30 per cent in all bands and at both redshifts, but substantially overpredicts mass autocorrelations at separations below about 2 Mpc. Further comparison of the shapes of our stellar mass bias functions with those predicted by the model suggests that both the SDSS and DEEP2 data prefer a fluctuation amplitude of σ8˜ 0.8 rather than the σ8= 0.9 assumed by the MS.

  10. The Generalized Multilevel Facets Model for Longitudinal Data

    ERIC Educational Resources Information Center

    Hung, Lai-Fa; Wang, Wen-Chung

    2012-01-01

    In the human sciences, ability tests or psychological inventories are often repeatedly conducted to measure growth. Standard item response models do not take into account possible autocorrelation in longitudinal data. In this study, the authors propose an item response model to account for autocorrelation. The proposed three-level model consists…

  11. Exploring Online Learning Data Using Fractal Dimensions. Research Report. ETS RR-17-15

    ERIC Educational Resources Information Center

    Guo, Hongwen

    2017-01-01

    Data collected from online learning and tutoring systems for individual students showed strong autocorrelation or dependence because of content connection, knowledge-based dependency, or persistence of learning behavior. When the response data show little dependence or negative autocorrelations for individual students, it is suspected that…

  12. VizieR Online Data Catalog: Molecular clumps in W51 giant molecular cloud (Parsons+, 2012)

    NASA Astrophysics Data System (ADS)

    Parsons, H.; Thompson, M. A.; Clark, J. S.; Chrysostomou, A.

    2013-04-01

    The W51 GMC was mapped using the Heterodyne Array Receiver Programme (HARP) receiver with the back-end digital autocorrelator spectrometer Auto-Correlation Spectral Imaging System (ACSIS) on the James Clerk Maxwell Telescope (JCMT). Data were taken in 2008 May. (2 data files).

  13. Spatial Autocorrelation And Autoregressive Models In Ecology

    Treesearch

    Jeremy W. Lichstein; Theodore R. Simons; Susan A. Shriner; Kathleen E. Franzreb

    2003-01-01

    Abstract. Recognition and analysis of spatial autocorrelation has defined a new paradigm in ecology. Attention to spatial pattern can lead to insights that would have been otherwise overlooked, while ignoring space may lead to false conclusions about ecological relationships. We used Gaussian spatial autoregressive models, fit with widely available...

  14. Industry-Wide Surveillance of Marek's Disease Virus on Commercial Poultry Farms.

    PubMed

    Kennedy, David A; Cairns, Christopher; Jones, Matthew J; Bell, Andrew S; Salathé, Rahel M; Baigent, Susan J; Nair, Venugopal K; Dunn, Patricia A; Read, Andrew F

    2017-06-01

    Marek's disease virus is a herpesvirus of chickens that costs the worldwide poultry industry more than US$1 billion annually. Two generations of Marek's disease vaccines have shown reduced efficacy over the last half century due to evolution of the virus. Understanding where the virus is present may give insight into whether continued reductions in efficacy are likely. We conducted a 3-yr surveillance study to assess the prevalence of Marek's disease virus on commercial poultry farms, determine the effect of various factors on virus prevalence, and document virus dynamics in broiler chicken houses over short (weeks) and long (years) timescales. We extracted DNA from dust samples collected from commercial chicken and egg production facilities in Pennsylvania, USA. Quantitative PCR was used to assess wild-type virus detectability and concentration. Using data from 1018 dust samples with Bayesian generalized linear mixed effects models, we determined the factors that correlated with virus prevalence across farms. Maximum likelihood and autocorrelation function estimation on 3727 additional dust samples were used to document and characterize virus concentrations within houses over time. Overall, wild-type virus was detectable at least once on 36 of 104 farms at rates that varied substantially between farms. Virus was detected in one of three broiler-breeder operations (companies), four of five broiler operations, and three of five egg layer operations. Marek's disease virus detectability differed by production type, bird age, day of the year, operation (company), farm, house, flock, and sample. Operation (company) was the most important factor, accounting for between 12% and 63.4% of the variation in virus detectability. Within individual houses, virus concentration often dropped below detectable levels and reemerged later. These data characterize Marek's disease virus dynamics, which are potentially important to the evolution of the virus.

  15. The Rhic Azimuth Quadrupole:. "perfect Liquid" or Gluonic Radiation?

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.

    Large elliptic flow at RHIC seems to indicate that ideal hydrodynamics provides a good description of Au-Au collisions, at least at the maximum RHIC energy. The medium formed has been interpreted as a nearly perfect (low-viscosity) liquid, and connections have been made to gravitation through string theory. Recently, claimed observations of large flow fluctuations comparable to participant eccentricity fluctuations seem to confirm the ideal hydro scenario. However, determination of the azimuth quadrupole with 2D angular autocorrelations, which accurately distinguish "flow" (quadrupole) from "nonflow" (minijets), contradicts conventional interpretations. Centrality trends may depend only on the initial parton geometry, and methods used to isolate flow fluctuations are sensitive instead mainly to minijet correlations. The results presented in this paper suggest that the azimuth quadrupole may be a manifestation of gluonic multipole radiation.

  16. Autocorrelation peaks in congruential pseudorandom number generators

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Merrick, R. B.

    1976-01-01

    The complete correlation structure of several congruential pseudorandom number generators (PRNG) of the same type and small cycle length was studied to deal with the problem of congruential PRNG almost repeating themselves at intervals smaller than their cycle lengths, during simulation of bandpass filtered normal random noise. Maximum period multiplicative and mixed congruential generators were studied, with inferences drawn from examination of several tractable members of a class of random number generators, and moduli from 2 to the 5th power to 2 to the 9th power. High correlation is shown to exist in mixed and multiplicative congruential random number generators and prime moduli Lehmer generators for shifts a fraction of their cycle length. The random noise sequences in question are required when simulating electrical noise, air turbulence, or time variation of wind parameters.

  17. Temporal measurement on and using pulses from spectrally narrowed emission in styrylpyridinium cyanine dye

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Aditya K.; Bhowmik, Achintya K.; Ahyi, Ayayi C.; Thakur, Mrinal

    2001-11-01

    Highly efficient spectrally narrowed emission (SNE) was observed in the solution of strylpyridinium cyanine dye (SPCD) pumped by fundamental and second harmonic of a picosecond Nd:YAG laser in two separate arrangements. A highly directional emission was observed in both the pumping arrangements without incorporating any mirrors. The pulse duration of the SNE was measured by background free SHG intensity autocorrelation technique. The measured duration of the pulses was 40 ps. These pulses, having a spectral linewidth of 10 nm (full width at half maximum), were used as a probe to measure the transient changes in the transmission in SPCD solution using a pump-probe setup. The transient optical transmission indicated a gain at the overlap and no gain was observed beyond a delay of 40 ps.

  18. Evaluation of extreme temperature events in northern Spain based on process control charts

    NASA Astrophysics Data System (ADS)

    Villeta, M.; Valencia, J. L.; Saá, A.; Tarquis, A. M.

    2018-02-01

    Extreme climate events have recently attracted the attention of a growing number of researchers because these events impose a large cost on agriculture and associated insurance planning. This study focuses on extreme temperature events and proposes a new method for their evaluation based on statistical process control tools, which are unusual in climate studies. A series of minimum and maximum daily temperatures for 12 geographical areas of a Spanish region between 1931 and 2009 were evaluated by applying statistical process control charts to statistically test whether evidence existed for an increase or a decrease of extreme temperature events. Specification limits were determined for each geographical area and used to define four types of extreme anomalies: lower and upper extremes for the minimum and maximum anomalies. A new binomial Markov extended process that considers the autocorrelation between extreme temperature events was generated for each geographical area and extreme anomaly type to establish the attribute control charts for the annual fraction of extreme days and to monitor the occurrence of annual extreme days. This method was used to assess the significance of changes and trends of extreme temperature events in the analysed region. The results demonstrate the effectiveness of an attribute control chart for evaluating extreme temperature events. For example, the evaluation of extreme maximum temperature events using the proposed statistical process control charts was consistent with the evidence of an increase in maximum temperatures during the last decades of the last century.

  19. Application of ultrasound-tagged photons for measurement of amplitude of vibration of tissue caused by ultrasound: theory, simulation, and experiments.

    PubMed

    Devi, C Usha; Vasu, R M; Sood, A K

    2006-01-01

    We investigate the modulation of an optical field caused by its interaction with an ultrasound beam in a tissue mimicking phantom. This modulation appears as a modulation in the intensity autocorrelation, which is measured by a photon counting correlator. The factors contributing to the modulation are: 1. amplitude of vibration of the particles of the tissue, 2. refractive index modulation, and 3. absorption coefficient in the region of the tissue intercepted by the ultrasound beam and light. We show in this work that a significant part of the contribution to this modulation comes from displacement of the tissue particles, which in turn is governed by the elastic properties of the tissue. We establish, both through simulations and experiments using an optical elastography phantom, the effects of the elasticity and absorption coefficient variations on the modulation of intensity autocorrelation. In the case where there is no absorption coefficient variation, we suggest that the depth of modulation can be calibrated to measure the displacement of tissue particles that, in turn, can be used to measure the tissue elasticity.

  20. Investment Dynamics with Natural Expectations.

    PubMed

    Fuster, Andreas; Hebert, Benjamin; Laibson, David

    2010-01-01

    We study an investment model in which agents have the wrong beliefs about the dynamic properties of fundamentals. Specifically, we assume that agents underestimate the rate of mean reversion. The model exhibits the following six properties: (i) Beliefs are excessively optimistic in good times and excessively pessimistic in bad times. (ii) Asset prices are too volatile. (iii) Excess returns are negatively autocorrelated. (iv) High levels of corporate profits predict negative future excess returns. (v) Real economic activity is excessively volatile; the economy experiences amplified investment cycles. (vi) Corporate profits are positively autocorrelated in the short run and negatively autocorrelated in the medium run. The paper provides an illustrative model of animal spirits, amplified business cycles, and excess volatility.

  1. Complete chirp analysis of a gain-switched pulse using an interferometric two-photon absorption autocorrelation.

    PubMed

    Chin, Sang Hoon; Kim, Young Jae; Song, Ho Seong; Kim, Dug Young

    2006-10-10

    We propose a simple but powerful scheme for the complete analysis of the frequency chirp of a gain-switched optical pulse using a fringe-resolved interferometric two-photon absorption autocorrelator. A frequency chirp imposed on the gain-switched pulse from a laser diode was retrieved from both the intensity autocorrelation trace and the envelope of the second-harmonic interference fringe pattern. To verify the accuracy of the proposed phase retrieval method, we have performed an optical pulse compression experiment by using dispersion-compensating fibers with different lengths. We have obtained close agreement by less than a 1% error between the compressed pulse widths and numerically calculated pulse widths.

  2. Noise-tolerant instantaneous heart rate and R-peak detection using short-term autocorrelation for wearable healthcare systems.

    PubMed

    Fujii, Takahide; Nakano, Masanao; Yamashita, Ken; Konishi, Toshihiro; Izumi, Shintaro; Kawaguchi, Hiroshi; Yoshimoto, Masahiko

    2013-01-01

    This paper describes a robust method of Instantaneous Heart Rate (IHR) and R-peak detection from noisy electrocardiogram (ECG) signals. Generally, the IHR is calculated from the R-wave interval. Then, the R-waves are extracted from the ECG using a threshold. However, in wearable bio-signal monitoring systems, noise increases the incidence of misdetection and false detection of R-peaks. To prevent incorrect detection, we introduce a short-term autocorrelation (STAC) technique and a small-window autocorrelation (SWAC) technique, which leverages the similarity of QRS complex waveforms. Simulation results show that the proposed method improves the noise tolerance of R-peak detection.

  3. Investment Dynamics with Natural Expectations*

    PubMed Central

    Fuster, Andreas; Hebert, Benjamin; Laibson, David

    2012-01-01

    We study an investment model in which agents have the wrong beliefs about the dynamic properties of fundamentals. Specifically, we assume that agents underestimate the rate of mean reversion. The model exhibits the following six properties: (i) Beliefs are excessively optimistic in good times and excessively pessimistic in bad times. (ii) Asset prices are too volatile. (iii) Excess returns are negatively autocorrelated. (iv) High levels of corporate profits predict negative future excess returns. (v) Real economic activity is excessively volatile; the economy experiences amplified investment cycles. (vi) Corporate profits are positively autocorrelated in the short run and negatively autocorrelated in the medium run. The paper provides an illustrative model of animal spirits, amplified business cycles, and excess volatility. PMID:23243469

  4. 15 pixels digital autocorrelation spectrometer system

    NASA Astrophysics Data System (ADS)

    Lee, Changhoon; Kim, Hyo-Ryung; Kim, Kwang-Dong; Chung, Mun-Hee; Timoc, C.

    2006-06-01

    In this paper describes the system configuration and the some performance test results of the 15 pixels digital autocorrelation spectrometer to be used at the Taeduk Radio Astronomy Observatory (TRAO) of Korea. This autocorrelation spectrometer instrument enclosed in a 3-slot VXI module and controlled via a USB port by a backend PC. This spectrometer system consists of the 4 band-pass filters unit, the digitizer, the 512 lags correlator, the clock distribution unit, and USB controller. And here we describe the frequency accuracy and the root-mean-square noise characteristic of this spectrometer. After some calibration procedure, this spectrometer can be use as the back-end system at TRAO for the 3x5 focal plane array receivers.

  5. A general statistical test for correlations in a finite-length time series.

    PubMed

    Hanson, Jeffery A; Yang, Haw

    2008-06-07

    The statistical properties of the autocorrelation function from a time series composed of independently and identically distributed stochastic variables has been studied. Analytical expressions for the autocorrelation function's variance have been derived. It has been found that two common ways of calculating the autocorrelation, moving-average and Fourier transform, exhibit different uncertainty characteristics. For periodic time series, the Fourier transform method is preferred because it gives smaller uncertainties that are uniform through all time lags. Based on these analytical results, a statistically robust method has been proposed to test the existence of correlations in a time series. The statistical test is verified by computer simulations and an application to single-molecule fluorescence spectroscopy is discussed.

  6. Single-channel autocorrelation functions: the effects of time interval omission.

    PubMed Central

    Ball, F G; Sansom, M S

    1988-01-01

    We present a general mathematical framework for analyzing the dynamic aspects of single channel kinetics incorporating time interval omission. An algorithm for computing model autocorrelation functions, incorporating time interval omission, is described. We show, under quite general conditions, that the form of these autocorrelations is identical to that which would be obtained if time interval omission was absent. We also show, again under quite general conditions, that zero correlations are necessarily a consequence of the underlying gating mechanism and not an artefact of time interval omission. The theory is illustrated by a numerical study of an allosteric model for the gating mechanism of the locust muscle glutamate receptor-channel. PMID:2455553

  7. Elephants in space and time

    Treesearch

    Samuel A. Cushman; Michael Chase; Curtice Griffin

    2005-01-01

    Autocorrelation in animal movements can be both a serious nuisance to analysis and a source of valuable information about the scale and patterns of animal behavior, depending on the question and the techniques employed. In this paper we present an approach to analyzing the patterns of autocorrelation in animal movements that provides a detailed picture of seasonal...

  8. Estimating the Autocorrelated Error Model with Trended Data: Further Results,

    DTIC Science & Technology

    1979-11-01

    Perhaps the most serious deficiency of OLS in the presence of autocorrelation is not inefficiency but bias in its estimated standard errors--a bias...k for all t has variance var(b) = o2/ Tk2 2This refutes Maeshiro’s (1976) conjecture that "an estimator utilizing relevant extraneous information

  9. Using Exponential Smoothing to Specify Intervention Models for Interrupted Time Series.

    ERIC Educational Resources Information Center

    Mandell, Marvin B.; Bretschneider, Stuart I.

    1984-01-01

    The authors demonstrate how exponential smoothing can play a role in the identification of the intervention component of an interrupted time-series design model that is analogous to the role that the sample autocorrelation and partial autocorrelation functions serve in the identification of the noise portion of such a model. (Author/BW)

  10. An improved triple collocation algorithm for decomposing autocorrelated and white soil moisture retrieval errors

    USDA-ARS?s Scientific Manuscript database

    If not properly account for, auto-correlated errors in observations can lead to inaccurate results in soil moisture data analysis and reanalysis. Here, we propose a more generalized form of the triple collocation algorithm (GTC) capable of decomposing the total error variance of remotely-sensed surf...

  11. Modified Exponential Weighted Moving Average (EWMA) Control Chart on Autocorrelation Data

    NASA Astrophysics Data System (ADS)

    Herdiani, Erna Tri; Fandrilla, Geysa; Sunusi, Nurtiti

    2018-03-01

    In general, observations of the statistical process control are assumed to be mutually independence. However, this assumption is often violated in practice. Consequently, statistical process controls were developed for interrelated processes, including Shewhart, Cumulative Sum (CUSUM), and exponentially weighted moving average (EWMA) control charts in the data that were autocorrelation. One researcher stated that this chart is not suitable if the same control limits are used in the case of independent variables. For this reason, it is necessary to apply the time series model in building the control chart. A classical control chart for independent variables is usually applied to residual processes. This procedure is permitted provided that residuals are independent. In 1978, Shewhart modification for the autoregressive process was introduced by using the distance between the sample mean and the target value compared to the standard deviation of the autocorrelation process. In this paper we will examine the mean of EWMA for autocorrelation process derived from Montgomery and Patel. Performance to be investigated was investigated by examining Average Run Length (ARL) based on the Markov Chain Method.

  12. Spatial occupancy models applied to atlas data show Southern Ground Hornbills strongly depend on protected areas.

    PubMed

    Broms, Kristin M; Johnson, Devin S; Altwegg, Res; Conquest, Loveday L

    2014-03-01

    Determining the range of a species and exploring species--habitat associations are central questions in ecology and can be answered by analyzing presence--absence data. Often, both the sampling of sites and the desired area of inference involve neighboring sites; thus, positive spatial autocorrelation between these sites is expected. Using survey data for the Southern Ground Hornbill (Bucorvus leadbeateri) from the Southern African Bird Atlas Project, we compared advantages and disadvantages of three increasingly complex models for species occupancy: an occupancy model that accounted for nondetection but assumed all sites were independent, and two spatial occupancy models that accounted for both nondetection and spatial autocorrelation. We modeled the spatial autocorrelation with an intrinsic conditional autoregressive (ICAR) model and with a restricted spatial regression (RSR) model. Both spatial models can readily be applied to any other gridded, presence--absence data set using a newly introduced R package. The RSR model provided the best inference and was able to capture small-scale variation that the other models did not. It showed that ground hornbills are strongly dependent on protected areas in the north of their South African range, but less so further south. The ICAR models did not capture any spatial autocorrelation in the data, and they took an order, of magnitude longer than the RSR models to run. Thus, the RSR occupancy model appears to be an attractive choice for modeling occurrences at large spatial domains, while accounting for imperfect detection and spatial autocorrelation.

  13. Cobble cam: Grain-size measurements of sand to boulder from digital photographs and autocorrelation analyses

    USGS Publications Warehouse

    Warrick, J.A.; Rubin, D.M.; Ruggiero, P.; Harney, J.N.; Draut, A.E.; Buscombe, D.

    2009-01-01

    A new application of the autocorrelation grain size analysis technique for mixed to coarse sediment settings has been investigated. Photographs of sand- to boulder-sized sediment along the Elwha River delta beach were taken from approximately 1??2 m above the ground surface, and detailed grain size measurements were made from 32 of these sites for calibration and validation. Digital photographs were found to provide accurate estimates of the long and intermediate axes of the surface sediment (r2 > 0??98), but poor estimates of the short axes (r2 = 0??68), suggesting that these short axes were naturally oriented in the vertical dimension. The autocorrelation method was successfully applied resulting in total irreducible error of 14% over a range of mean grain sizes of 1 to 200 mm. Compared with reported edge and object-detection results, it is noted that the autocorrelation method presented here has lower error and can be applied to a much broader range of mean grain sizes without altering the physical set-up of the camera (~200-fold versus ~6-fold). The approach is considerably less sensitive to lighting conditions than object-detection methods, although autocorrelation estimates do improve when measures are taken to shade sediments from direct sunlight. The effects of wet and dry conditions are also evaluated and discussed. The technique provides an estimate of grain size sorting from the easily calculated autocorrelation standard error, which is correlated with the graphical standard deviation at an r2 of 0??69. The technique is transferable to other sites when calibrated with linear corrections based on photo-based measurements, as shown by excellent grain-size analysis results (r2 = 0??97, irreducible error = 16%) from samples from the mixed grain size beaches of Kachemak Bay, Alaska. Thus, a method has been developed to measure mean grain size and sorting properties of coarse sediments. ?? 2009 John Wiley & Sons, Ltd.

  14. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts.

    PubMed

    Crase, Beth; Liedloff, Adam; Vesk, Peter A; Fukuda, Yusuke; Wintle, Brendan A

    2014-08-01

    Species distribution models (SDMs) are widely used to forecast changes in the spatial distributions of species and communities in response to climate change. However, spatial autocorrelation (SA) is rarely accounted for in these models, despite its ubiquity in broad-scale ecological data. While spatial autocorrelation in model residuals is known to result in biased parameter estimates and the inflation of type I errors, the influence of unmodeled SA on species' range forecasts is poorly understood. Here we quantify how accounting for SA in SDMs influences the magnitude of range shift forecasts produced by SDMs for multiple climate change scenarios. SDMs were fitted to simulated data with a known autocorrelation structure, and to field observations of three mangrove communities from northern Australia displaying strong spatial autocorrelation. Three modeling approaches were implemented: environment-only models (most frequently applied in species' range forecasts), and two approaches that incorporate SA; autologistic models and residuals autocovariate (RAC) models. Differences in forecasts among modeling approaches and climate scenarios were quantified. While all model predictions at the current time closely matched that of the actual current distribution of the mangrove communities, under the climate change scenarios environment-only models forecast substantially greater range shifts than models incorporating SA. Furthermore, the magnitude of these differences intensified with increasing increments of climate change across the scenarios. When models do not account for SA, forecasts of species' range shifts indicate more extreme impacts of climate change, compared to models that explicitly account for SA. Therefore, where biological or population processes induce substantial autocorrelation in the distribution of organisms, and this is not modeled, model predictions will be inaccurate. These results have global importance for conservation efforts as inaccurate forecasts lead to ineffective prioritization of conservation activities and potentially to avoidable species extinctions. © 2014 John Wiley & Sons Ltd.

  15. From fast fluorescence imaging to molecular diffusion law on live cell membranes in a commercial microscope.

    PubMed

    Di Rienzo, Carmine; Gratton, Enrico; Beltram, Fabio; Cardarelli, Francesco

    2014-10-09

    It has become increasingly evident that the spatial distribution and the motion of membrane components like lipids and proteins are key factors in the regulation of many cellular functions. However, due to the fast dynamics and the tiny structures involved, a very high spatio-temporal resolution is required to catch the real behavior of molecules. Here we present the experimental protocol for studying the dynamics of fluorescently-labeled plasma-membrane proteins and lipids in live cells with high spatiotemporal resolution. Notably, this approach doesn't need to track each molecule, but it calculates population behavior using all molecules in a given region of the membrane. The starting point is a fast imaging of a given region on the membrane. Afterwards, a complete spatio-temporal autocorrelation function is calculated correlating acquired images at increasing time delays, for example each 2, 3, n repetitions. It is possible to demonstrate that the width of the peak of the spatial autocorrelation function increases at increasing time delay as a function of particle movement due to diffusion. Therefore, fitting of the series of autocorrelation functions enables to extract the actual protein mean square displacement from imaging (iMSD), here presented in the form of apparent diffusivity vs average displacement. This yields a quantitative view of the average dynamics of single molecules with nanometer accuracy. By using a GFP-tagged variant of the Transferrin Receptor (TfR) and an ATTO488 labeled 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine (PPE) it is possible to observe the spatiotemporal regulation of protein and lipid diffusion on µm-sized membrane regions in the micro-to-milli-second time range.

  16. The Latent Curve ARMA (P, Q) Panel Model: Longitudinal Data Analysis in Educational Research and Evaluation

    ERIC Educational Resources Information Center

    Sivo, Stephen; Fan, Xitao

    2008-01-01

    Autocorrelated residuals in longitudinal data are widely reported as common to longitudinal data. Yet few, if any, researchers modeling growth processes evaluate a priori whether their data have this feature. Sivo, Fan, and Witta (2005) found that not modeling autocorrelated residuals present in longitudinal data severely biases latent curve…

  17. DETAILED DATA ANALYSIS OF ECHO I, ECHO II AND MOON REFLECTED SIGNALS. VOLUME 2. AUTOCORRELATION FUNCTIONS OF ECHO II REFLECTED SIGNALS,

    DTIC Science & Technology

    techniques is presented. Two methods for linearizing the data are given. An expression for the specular-to-spattered power ratio is derived, and the inverse ... transform of the autocorrelation function is discussed. The surface roughness of the reflector, the discrete fading rates, and fading frequencies

  18. Lag-One Autocorrelation in Short Series: Estimation and Hypotheses Testing

    ERIC Educational Resources Information Center

    Solanas, Antonio; Manolov, Rumen; Sierra, Vicenta

    2010-01-01

    In the first part of the study, nine estimators of the first-order autoregressive parameter are reviewed and a new estimator is proposed. The relationships and discrepancies between the estimators are discussed in order to achieve a clear differentiation. In the second part of the study, the precision in the estimation of autocorrelation is…

  19. Autocorrelation as a source of truncated Lévy flights in foreign exchange rates

    NASA Astrophysics Data System (ADS)

    Figueiredo, Annibal; Gleria, Iram; Matsushita, Raul; Da Silva, Sergio

    2003-05-01

    We suggest that the ultraslow speed of convergence associated with truncated Lévy flights (Phys. Rev. Lett. 73 (1994) 2946) may well be explained by autocorrelations in data. We show how a particular type of autocorrelation generates power laws consistent with a truncated Lévy flight. Stock exchanges have been suggested to be modeled by a truncated Lévy flight (Nature 376 (1995) 46; Physica A 297 (2001) 509; Econom. Bull. 7 (2002) 1). Here foreign exchange rate data are taken instead. Scaling power laws in the “probability of return to the origin” are shown to emerge for most currencies. A novel approach to measure how distant a process is from a Gaussian regime is presented.

  20. The problem of the periodicity of the epidemic process. [solar activity effects on diphtheria outbreak

    NASA Technical Reports Server (NTRS)

    Yagodinskiy, V. N.; Konovalenko, Z. P.; Druzhinin, I. P.

    1974-01-01

    An analysis of data from epidemics makes it possible to determine their principal causes, governed by environmental factors (solar activity, etc.) The results of an analysis of the periodicity of the epidemic process in the case of diphtheria are presented which was conducted with the aid of autocorrelation and spectral methods of analysis. Numerical data (annual figures) are used on the dynamics of diphtheria in 50 regions (points) with a total duration of 2,777 years.

  1. Multiple Diffusion Mechanisms Due to Nanostructuring in Crowded Environments

    PubMed Central

    Sanabria, Hugo; Kubota, Yoshihisa; Waxham, M. Neal

    2007-01-01

    One of the key questions regarding intracellular diffusion is how the environment affects molecular mobility. Mostly, intracellular diffusion has been described as hindered, and the physical reasons for this behavior are: immobile barriers, molecular crowding, and binding interactions with immobile or mobile molecules. Using results from multi-photon fluorescence correlation spectroscopy, we describe how immobile barriers and crowding agents affect translational mobility. To study the hindrance produced by immobile barriers, we used sol-gels (silica nanostructures) that consist of a continuous solid phase and aqueous phase in which fluorescently tagged molecules diffuse. In the case of molecular crowding, translational mobility was assessed in increasing concentrations of 500 kDa dextran solutions. Diffusion of fluorescent tracers in both sol-gels and dextran solutions shows clear evidence of anomalous subdiffusion. In addition, data from the autocorrelation function were analyzed using the maximum entropy method as adapted to fluorescence correlation spectroscopy data and compared with the standard model that incorporates anomalous diffusion. The maximum entropy method revealed evidence of different diffusion mechanisms that had not been revealed using the anomalous diffusion model. These mechanisms likely correspond to nanostructuring in crowded environments and to the relative dimensions of the crowding agent with respect to the tracer molecule. Analysis with the maximum entropy method also revealed information about the degree of heterogeneity in the environment as reported by the behavior of diffusive molecules. PMID:17040979

  2. Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities.

    PubMed

    Lilleskov, Erik A; Bruns, Thomas D; Horton, Thomas R; Taylor, D; Grogan, Paul

    2004-08-01

    Ectomycorrhizal fungal (EMF) communities are highly diverse at the stand level. To begin to understand what might lead to such diversity, and to improve sampling designs, we investigated the spatial structure of these communities. We used EMF community data from a number of studies carried out in seven mature and one recently fire-initiated forest stand. We applied various measures of spatial pattern to characterize distributions at EMF community and species levels: Mantel tests, Mantel correlograms, variance/mean and standardized variograms. Mantel tests indicated that in four of eight sites community similarity decreased with distance, whereas Mantel correlograms also found spatial autocorrelation in those four plus two additional sites. In all but one of these sites elevated similarity was evident only at relatively small spatial scales (< 2.6 m), whereas one exhibited a larger scale pattern ( approximately 25 m). Evenness of biomass distribution among cores varied widely among taxa. Standardized variograms indicated that most of the dominant taxa showed patchiness at a scale of less than 3 m, with a range from 0 to < or =17 m. These results have implications for both sampling scale and intensity to achieve maximum efficiency of community sampling. In the systems we examined, cores should be at least 3 m apart to achieve the greatest sampling efficiency for stand-level community analysis. In some cases even this spacing may result in reduced sampling efficiency arising from patterns of spatial autocorrelation. Interpretation of the causes and significance of these patterns requires information on the genetic identity of individuals in the communities.

  3. Analysis of extreme rainfall events using attributes control charts in temporal rainfall processes

    NASA Astrophysics Data System (ADS)

    Villeta, María; Valencia, Jose Luis; Saá-Requejo, Antonio; María Tarquis, Ana

    2015-04-01

    The impacts of most intense rainfall events on agriculture and insurance industry can be very severe. This research focuses in the analysis of extreme rainfall events throughout the use of attributes control charts, which constitutes a usual tool in Statistical Process Control (SPC) but unusual in climate studios. Here, series of daily precipitations for the years 1931-2009 within a Spanish region are analyzed, based on a new type of attributes control chart that takes into account the autocorrelation between the extreme rainfall events. The aim is to conclude if there exist or not evidence of a change in the extreme rainfall model of the considered series. After adjusting seasonally the precipitation series and considering the data of the first 30 years, a frequency-based criterion allowed fixing specification limits in order to discriminate between extreme observed rainfall days and normal observed rainfall days. The autocorrelation amongst maximum precipitation is taken into account by a New Binomial Markov Extended Process obtained for each rainfall series. These modelling of the extreme rainfall processes provide a way to generate the attributes control charts for the annual fraction of rainfall extreme days. The extreme rainfall processes along the rest of the years under study can then be monitored by such attributes control charts. The results of the application of this methodology show evidence of change in the model of extreme rainfall events in some of the analyzed precipitation series. This suggests that the attributes control charts proposed for the analysis of the most intense precipitation events will be of practical interest to agriculture and insurance sectors in next future.

  4. Image correlation microscopy for uniform illumination.

    PubMed

    Gaborski, T R; Sealander, M N; Ehrenberg, M; Waugh, R E; McGrath, J L

    2010-01-01

    Image cross-correlation microscopy is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. Image cross-correlation microscopy has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy. In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy. Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning image cross-correlation microscopy, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function. Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function depends strongly on particle size and not particle shape. In this report, we establish the relationships between the spatial autocorrelation function feature size, temporal autocorrelation function characteristic time and the diffusion coefficient for uniform illumination image correlation microscopy using analytical, Monte Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate uniform illumination image correlation microscopy analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils.

  5. Linking landscape characteristics to local grizzly bear abundance using multiple detection methods in a hierarchical model

    USGS Publications Warehouse

    Graves, T.A.; Kendall, Katherine C.; Royle, J. Andrew; Stetz, J.B.; Macleod, A.C.

    2011-01-01

    Few studies link habitat to grizzly bear Ursus arctos abundance and these have not accounted for the variation in detection or spatial autocorrelation. We collected and genotyped bear hair in and around Glacier National Park in northwestern Montana during the summer of 2000. We developed a hierarchical Markov chain Monte Carlo model that extends the existing occupancy and count models by accounting for (1) spatially explicit variables that we hypothesized might influence abundance; (2) separate sub-models of detection probability for two distinct sampling methods (hair traps and rub trees) targeting different segments of the population; (3) covariates to explain variation in each sub-model of detection; (4) a conditional autoregressive term to account for spatial autocorrelation; (5) weights to identify most important variables. Road density and per cent mesic habitat best explained variation in female grizzly bear abundance; spatial autocorrelation was not supported. More female bears were predicted in places with lower road density and with more mesic habitat. Detection rates of females increased with rub tree sampling effort. Road density best explained variation in male grizzly bear abundance and spatial autocorrelation was supported. More male bears were predicted in areas of low road density. Detection rates of males increased with rub tree and hair trap sampling effort and decreased over the sampling period. We provide a new method to (1) incorporate multiple detection methods into hierarchical models of abundance; (2) determine whether spatial autocorrelation should be included in final models. Our results suggest that the influence of landscape variables is consistent between habitat selection and abundance in this system.

  6. The Effect of Alcohol on Emotional Inertia: A Test of Alcohol Myopia

    PubMed Central

    Fairbairn, Catharine E.; Sayette, Michael A.

    2017-01-01

    Alcohol Myopia (AM) has emerged as one of the most widely-researched theories of alcohol’s effects on emotional experience. Given this theory’s popularity it is notable that a central tenet of AM has not been tested—namely, that alcohol creates a myopic focus on the present moment, limiting the extent to which the present is permeated by emotions derived from prior experience. We aimed to test the impact of alcohol on moment-to-moment fluctuations in affect, applying advances in emotion assessment and statistical analysis to test this aspect of AM without drawing the attention of participants to their own emotional experiences. We measured emotional fluctuations using autocorrelation, a statistic borrowed from time-series analysis measuring the correlation between successive observations in time. High emotion autocorrelation is termed “emotional inertia” and linked to negative mood outcomes. Seven-hundred-twenty social drinkers consumed alcohol, placebo, or control beverages in groups of three over a 36-min group formation task. We indexed affect using the Duchenne smile, recorded continuously during the interaction (34.9 million video frames) according to Paul Ekman’s Facial Action Coding System. Autocorrelation of Duchenne smiling emerged as the most consistent predictor of self-reported mood and social bonding when compared with Duchenne smiling mean, standard deviation, and linear trend. Alcohol reduced affective autocorrelation, and autocorrelation mediated the link between alcohol and self-reported mood and social outcomes. Findings suggest that alcohol enhances our ability to freely enjoy the present moment untethered by past experience and highlight the importance of emotion dynamics in research examining affective correlates of psychopathology. PMID:24016015

  7. The method of trend analysis of parameters time series of gas-turbine engine state

    NASA Astrophysics Data System (ADS)

    Hvozdeva, I.; Myrhorod, V.; Derenh, Y.

    2017-10-01

    This research substantiates an approach to interval estimation of time series trend component. The well-known methods of spectral and trend analysis are used for multidimensional data arrays. The interval estimation of trend component is proposed for the time series whose autocorrelation matrix possesses a prevailing eigenvalue. The properties of time series autocorrelation matrix are identified.

  8. Periodicity in the autocorrelation function as a mechanism for regularly occurring zero crossings or extreme values of a Gaussian process.

    PubMed

    Wilson, Lorna R M; Hopcraft, Keith I

    2017-12-01

    The problem of zero crossings is of great historical prevalence and promises extensive application. The challenge is to establish precisely how the autocorrelation function or power spectrum of a one-dimensional continuous random process determines the density function of the intervals between the zero crossings of that process. This paper investigates the case where periodicities are incorporated into the autocorrelation function of a smooth process. Numerical simulations, and statistics about the number of crossings in a fixed interval, reveal that in this case the zero crossings segue between a random and deterministic point process depending on the relative time scales of the periodic and nonperiodic components of the autocorrelation function. By considering the Laplace transform of the density function, we show that incorporating correlation between successive intervals is essential to obtaining accurate results for the interval variance. The same method enables prediction of the density function tail in some regions, and we suggest approaches for extending this to cover all regions. In an ever-more complex world, the potential applications for this scale of regularity in a random process are far reaching and powerful.

  9. Periodicity in the autocorrelation function as a mechanism for regularly occurring zero crossings or extreme values of a Gaussian process

    NASA Astrophysics Data System (ADS)

    Wilson, Lorna R. M.; Hopcraft, Keith I.

    2017-12-01

    The problem of zero crossings is of great historical prevalence and promises extensive application. The challenge is to establish precisely how the autocorrelation function or power spectrum of a one-dimensional continuous random process determines the density function of the intervals between the zero crossings of that process. This paper investigates the case where periodicities are incorporated into the autocorrelation function of a smooth process. Numerical simulations, and statistics about the number of crossings in a fixed interval, reveal that in this case the zero crossings segue between a random and deterministic point process depending on the relative time scales of the periodic and nonperiodic components of the autocorrelation function. By considering the Laplace transform of the density function, we show that incorporating correlation between successive intervals is essential to obtaining accurate results for the interval variance. The same method enables prediction of the density function tail in some regions, and we suggest approaches for extending this to cover all regions. In an ever-more complex world, the potential applications for this scale of regularity in a random process are far reaching and powerful.

  10. [Temporal and spatial characteristics of ecological risk in Shunyi, Beijing, China based on landscape structure.

    PubMed

    Qing, Feng Ting; Peng, Yu

    2016-05-01

    Based on the remote sensing data in 1997, 2001, 2005, 2009 and 2013, this article classified the landscape types of Shunyi, and the ecological risk index was built based on landscape disturbance index and landscape fragility. The spatial auto-correlation and geostatistical analysis by GS + and ArcGIS was used to study temporal and spatial changes of ecological risk. The results showed that eco-risk degree in the study region had positive spatial correlation which decreased with the increasing grain size. Within a certain grain range (<12 km), the spatial auto-correlation had an obvious dependence on scale. The random variation of spatial heterogeneity was less than spatial auto-correlation variation from 1997 to 2013, which meant the auto-correlation had a dominant role in spatial heterogeneity. The ecological risk of Shunyi was mainly at moderate level during the study period. The area of the district with higher and lower ecological risk increased, while that of mode-rate ecological risk decreased. The area with low ecological risk was mainly located in the airport region and forest of southeast Shunyi, while that with high ecological risk was mainly concentrated in the water landscape, such as the banks of Chaobai River.

  11. Frequency-resolved optical gating system with a tellurium crystal for characterizing free-electron lasers in the wavelength range of 10-30 {mu}m

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iijima, Hokuto; Nagai, Ryoji; Nishimori, Nobuyuki

    2009-12-15

    A second-harmonic generation frequency-resolved optical gating (SHG-FROG) system has been developed for the complete characterization of laser pulses in the wavelength range of 10-30 {mu}m. A tellurium crystal is used so that spectrally resolved autocorrelation signals with a good signal-to-noise ratio are obtained. Pulses (wavelength {approx}22 {mu}m) generated from a free-electron laser are measured by the SHG-FROG system. The SHG intensity profile and the spectrum obtained by FROG measurements are well consistent with those of independent measurements of the pulse length and spectrum. The pulse duration and spectral width determined from the FROG trace are 0.6 ps and 5.2 THzmore » at full width half maximum, respectively.« less

  12. GC/MS analysis of pesticides in the Ferrara area (Italy) surface water: a chemometric study.

    PubMed

    Pasti, Luisa; Nava, Elisabetta; Morelli, Marco; Bignami, Silvia; Dondi, Francesco

    2007-01-01

    The development of a network to monitor surface waters is a critical element in the assessment, restoration and protection of water quality. In this study, concentrations of 42 pesticides--determined by GC-MS on samples from 11 points along the Ferrara area rivers--have been analyzed by chemometric tools. The data were collected over a three-year period (2002-2004). Principal component analysis of the detected pesticides was carried out in order to define the best spatial locations for the sampling points. The results obtained have been interpreted in view of agricultural land use. Time series data regarding pesticide contents in surface waters has been analyzed using the Autocorrelation function. This chemometric tool allows for seasonal trends and makes it possible to optimize sampling frequency in order to detect the effective maximum pesticide content.

  13. Bi-orthogonal Symbol Mapping and Detection in Optical CDMA Communication System

    NASA Astrophysics Data System (ADS)

    Liu, Maw-Yang

    2017-12-01

    In this paper, the bi-orthogonal symbol mapping and detection scheme is investigated in time-spreading wavelength-hopping optical CDMA communication system. The carrier-hopping prime code is exploited as signature sequence, whose put-of-phase autocorrelation is zero. Based on the orthogonality of carrier-hopping prime code, the equal weight orthogonal signaling scheme can be constructed, and the proposed scheme using bi-orthogonal symbol mapping and detection can be developed. The transmitted binary data bits are mapped into corresponding bi-orthogonal symbols, where the orthogonal matrix code and its complement are utilized. In the receiver, the received bi-orthogonal data symbol is fed into the maximum likelihood decoder for detection. Under such symbol mapping and detection, the proposed scheme can greatly enlarge the Euclidean distance; hence, the system performance can be drastically improved.

  14. Influence and predictive capacity of climate anomalies on daily to decadal extremes in canopy photosynthesis.

    PubMed

    Desai, Ankur R

    2014-02-01

    Significant advances have been made over the past decades in capabilities to simulate diurnal and seasonal variation of leaf-level and canopy-scale photosynthesis in temperate and boreal forests. However, long-term prediction of future forest productivity in a changing climate may be more dependent on how climate and biological anomalies influence extremes in interannual to decadal variability of canopy ecosystem carbon exchanges. These exchanges can differ markedly from leaf level responses, especially owing to the prevalence of long lags in nutrient and water cycling. Until recently, multiple long-term (10+ year) high temporal frequency (daily) observations of canopy exchange were not available to reliably assess this claim. An analysis of one of the longest running North American eddy covariance flux towers reveals that single climate variables do not adequately explain carbon exchange anomalies beyond the seasonal timescale. Daily to weekly lagged anomalies of photosynthesis positively autocorrelate with daily photosynthesis. This effect suggests a negative feedback in photosynthetic response to climate extremes, such as anomalies in evapotranspiration and maximum temperature. Moisture stress in the prior season did inhibit photosynthesis, but mechanisms are difficult to assess. A complex interplay of integrated and lagged productivity and moisture-limiting factors indicate a critical role of seasonal thresholds that limit growing season length and peak productivity. These results lead toward a new conceptual framework for improving earth system models with long-term flux tower observations.

  15. A Possible Application of Coherent Light Scattering on Biological Fluids

    NASA Astrophysics Data System (ADS)

    Chicea, Dan; Chicea, Liana Maria

    2007-04-01

    Human urine from both healthy patients and patients with different diseases was used as scattering medium in a coherent light scattering experiment. The time variation of the light intensity in the far field speckle image was acquired using a data acquisition system on a PC and a time series resulted for each sample. The autocorrelation function for each sample was calculated and the autocorrelation time was determined. The same samples were analyzed in a medical laboratory using the standard procedure. We found so far that the autocorrelation time is differently modified by the presence of pus, albumin, urobilin and sediments. The results suggest a fast procedure that can be used as laboratory test to detect the presence not of each individual component in suspensions but of big conglomerates as albumin, cylinders, oxalate crystals.

  16. Employing the Hilbert-Huang Transform to analyze observed natural complex signals: Calm wind meandering cases

    NASA Astrophysics Data System (ADS)

    Martins, Luis Gustavo Nogueira; Stefanello, Michel Baptistella; Degrazia, Gervásio Annes; Acevedo, Otávio Costa; Puhales, Franciano Scremin; Demarco, Giuliano; Mortarini, Luca; Anfossi, Domenico; Roberti, Débora Regina; Costa, Felipe Denardin; Maldaner, Silvana

    2016-11-01

    In this study we analyze natural complex signals employing the Hilbert-Huang spectral analysis. Specifically, low wind meandering meteorological data are decomposed into turbulent and non turbulent components. These non turbulent movements, responsible for the absence of a preferential direction of the horizontal wind, provoke negative lobes in the meandering autocorrelation functions. The meandering characteristic time scales (meandering periods) are determined from the spectral peak provided by the Hilbert-Huang marginal spectrum. The magnitudes of the temperature and horizontal wind meandering period obtained agree with the results found from the best fit of the heuristic meandering autocorrelation functions. Therefore, the new method represents a new procedure to evaluate meandering periods that does not employ mathematical expressions to represent observed meandering autocorrelation functions.

  17. Spatial structure, sampling design and scale in remotely-sensed imagery of a California savanna woodland

    NASA Technical Reports Server (NTRS)

    Mcgwire, K.; Friedl, M.; Estes, J. E.

    1993-01-01

    This article describes research related to sampling techniques for establishing linear relations between land surface parameters and remotely-sensed data. Predictive relations are estimated between percentage tree cover in a savanna environment and a normalized difference vegetation index (NDVI) derived from the Thematic Mapper sensor. Spatial autocorrelation in original measurements and regression residuals is examined using semi-variogram analysis at several spatial resolutions. Sampling schemes are then tested to examine the effects of autocorrelation on predictive linear models in cases of small sample sizes. Regression models between image and ground data are affected by the spatial resolution of analysis. Reducing the influence of spatial autocorrelation by enforcing minimum distances between samples may also improve empirical models which relate ground parameters to satellite data.

  18. Gravity field models from kinematic orbits of CHAMP, GRACE and GOCE satellites

    NASA Astrophysics Data System (ADS)

    Bezděk, Aleš; Sebera, Josef; Klokočník, Jaroslav; Kostelecký, Jan

    2014-02-01

    The aim of our work is to generate Earth's gravity field models from GPS positions of low Earth orbiters. Our inversion method is based on Newton's second law, which relates the observed acceleration of the satellite with forces acting on it. The observed acceleration is obtained as numerical second derivative of kinematic positions. Observation equations are formulated using the gradient of the spherical harmonic expansion of the geopotential. Other forces are either modelled (lunisolar perturbations, tides) or provided by onboard measurements (nongravitational perturbations). From this linear regression model the geopotential harmonic coefficients are obtained. To this basic scheme of the acceleration approach we added some original elements, which may be useful in other inversion techniques as well. We tried to develop simple, straightforward and still statistically correct model of observations. (i) The model is linear in the harmonic coefficients, no a priori gravity field model is needed, no regularization is applied. (ii) We use the generalized least squares to successfully mitigate the strong amplification of noise due to numerical second derivative. (iii) The number of other fitted parameters is very small, in fact we use only daily biases, thus we can monitor their behaviour. (iv) GPS positions have correlated errors. The sample autocorrelation function and especially the partial autocorrelation function indicate suitability of an autoregressive model to represent the correlation structure. The decorrelation of residuals improved the accuracy of harmonic coefficients by a factor of 2-3. (v) We found it better to compute separate solutions in the three local reference frame directions than to compute them together at the same time; having obtained separate solutions for along-track, cross-track and radial components, we combine them using the normal matrices. Relative contribution of the along-track component to the combined solution is 50 percent on average. (vi) The computations were performed on an ordinary PC up to maximum degree and order 120. We applied the presented method to orbits of CHAMP and GRACE spanning seven years (2003-2009) and to two months of GOCE (Nov/Dec 2009). The obtained long-term static gravity field models are of similar or better quality compared to other published solutions. We also tried to extract the time-variable gravity signal from CHAMP and GRACE orbits. The acquired average annual signal shows clearly the continental areas with important and known hydrological variations.

  19. An Expert System for the Evaluation of Cost Models

    DTIC Science & Technology

    1990-09-01

    contrast to the condition of equal error variance, called homoscedasticity. (Reference: Applied Linear Regression Models by John Neter - page 423...normal. (Reference: Applied Linear Regression Models by John Neter - page 125) Click Here to continue -> Autocorrelation Click Here for the index - Index...over time. Error terms correlated over time are said to be autocorrelated or serially correlated. (REFERENCE: Applied Linear Regression Models by John

  20. Moho depth across the Trans-European Suture Zone from ambient vibration autocorrelations

    NASA Astrophysics Data System (ADS)

    Becker, Gesa; Knapmeyer-Endrun, Brigitte

    2017-04-01

    In 2018 the InSight mission to Mars will deploy a seismic station on the planet. This seismic station will consist of a three-component very broadband seismic sensor and a collocated three-component short period seismometer. Single station methods are therefore needed to extract information from the data and learn more about the interior structure of Mars. One potential method is the extraction of reflected phases from autocorrelations. Here autocorrelations are derived from ambient seismic noise to make the most of the data expected, as seismicity on Mars is likely less abundant than on Earth. These autocorrelations are calculated using a phase autocorrelation algorithm and time-frequency domain phase-weighted stacking as the main processing steps in addition to smoothing the spectrum of the data with a short term-long term average algorithm. Afterward the obtained results are filtered and analyzed in the frequency range of 1-2 Hz. The developed processing scheme is applied to data from permanent seismic stations located in different geological provinces across Europe, i.e. the Upper Rhine Graben, Central European Platform, Bohemian Massif, Northern German and Polish Basin, and the East European Craton, with varying Moho depths between 25-50 km. These crustal thicknesses are comparable to various estimates for Mars, therefore providing a good reference and indication of resolvability for Moho depths that might be encountered at the landing site. Changes in reflectivity can be observed in the calculated autocorrelations. The lag times of these changes are converted into depths with the help of available velocity information (EPcrust and local models for Poland and the Czech Republic, respectively) and the results are compared to existing information on Moho depths, which show good agreement. The results are temporarily stable, but show a clear correlation with the existence of cultural noise. Based on the closely located broadband and short period stations of the GERESS-array, it is shown that the processing scheme is also applicable to short period stations. Subsequently it is applied to the mainly short period and temporary stations of the PASSEQ network along the seismic profile POLONAISE P4, running from Eastern Germany to Lithuania crossing the Trans-European Suture Zone.

  1. Using PPI network autocorrelation in hierarchical multi-label classification trees for gene function prediction.

    PubMed

    Stojanova, Daniela; Ceci, Michelangelo; Malerba, Donato; Dzeroski, Saso

    2013-09-26

    Ontologies and catalogs of gene functions, such as the Gene Ontology (GO) and MIPS-FUN, assume that functional classes are organized hierarchically, that is, general functions include more specific ones. This has recently motivated the development of several machine learning algorithms for gene function prediction that leverages on this hierarchical organization where instances may belong to multiple classes. In addition, it is possible to exploit relationships among examples, since it is plausible that related genes tend to share functional annotations. Although these relationships have been identified and extensively studied in the area of protein-protein interaction (PPI) networks, they have not received much attention in hierarchical and multi-class gene function prediction. Relations between genes introduce autocorrelation in functional annotations and violate the assumption that instances are independently and identically distributed (i.i.d.), which underlines most machine learning algorithms. Although the explicit consideration of these relations brings additional complexity to the learning process, we expect substantial benefits in predictive accuracy of learned classifiers. This article demonstrates the benefits (in terms of predictive accuracy) of considering autocorrelation in multi-class gene function prediction. We develop a tree-based algorithm for considering network autocorrelation in the setting of Hierarchical Multi-label Classification (HMC). We empirically evaluate the proposed algorithm, called NHMC (Network Hierarchical Multi-label Classification), on 12 yeast datasets using each of the MIPS-FUN and GO annotation schemes and exploiting 2 different PPI networks. The results clearly show that taking autocorrelation into account improves the predictive performance of the learned models for predicting gene function. Our newly developed method for HMC takes into account network information in the learning phase: When used for gene function prediction in the context of PPI networks, the explicit consideration of network autocorrelation increases the predictive performance of the learned models. Overall, we found that this holds for different gene features/ descriptions, functional annotation schemes, and PPI networks: Best results are achieved when the PPI network is dense and contains a large proportion of function-relevant interactions.

  2. Source localization of narrow band signals in multipath environments, with application to marine mammals

    NASA Astrophysics Data System (ADS)

    Valtierra, Robert Daniel

    Passive acoustic localization has benefited from many major developments and has become an increasingly important focus point in marine mammal research. Several challenges still remain. This work seeks to address several of these challenges such as tracking the calling depths of baleen whales. In this work, data from an array of widely spaced Marine Acoustic Recording Units (MARUs) was used to achieve three dimensional localization by combining the methods Time Difference of Arrival (TDOA) and Direct-Reflected Time Difference of Arrival (DRTD) along with a newly developed autocorrelation technique. TDOA was applied to data for two dimensional (latitude and longitude) localization and depth was resolved using DRTD. Previously, DRTD had been limited to pulsed broadband signals, such as sperm whale or dolphin echolocation, where individual direct and reflected signals are separated in time. Due to the length of typical baleen whale vocalizations, individual multipath signal arrivals can overlap making time differences of arrival difficult to resolve. This problem can be solved using an autocorrelation, which can extract reflection information from overlapping signals. To establish this technique, a derivation was made to model the autocorrelation of a direct signal and its overlapping reflection. The model was exploited to derive performance limits allowing for prediction of the minimum resolvable direct-reflected time difference for a known signal type. The dependence on signal parameters (sweep rate, call duration) was also investigated. The model was then verified using both recorded and simulated data from two analysis cases for North Atlantic right whales (NARWs, Eubalaena glacialis) and humpback whales (Megaptera noveaengliae). The newly developed autocorrelation technique was then combined with DRTD and tested using data from playback transmissions to localize an acoustic transducer at a known depth and location. The combined DRTD-autocorrelation methods enabled calling depth and range estimations of a vocalizing NARW and humpback whale in two separate cases. The DRTD-autocorrelation method was then combined with TDOA to create a three dimensional track of a NARW in the Stellwagen Bank National Marine Sanctuary. Results from these experiments illustrated the potential of the combined methods to successfully resolve baleen calling depths in three dimensions.

  3. Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreinberg, Sören; Chow, Weng W.; Wolters, Janik

    Measured and calculated results are presented for the emission properties of a new class of emitters operating in the cavity quantum electrodynamics regime. The structures are based on high-finesse GaAs/AlAs micropillar cavities, each with an active medium consisting of a layer of InGaAs quantum dots (QDs) and the distinguishing feature of having a substantial fraction of spontaneous emission channeled into one cavity mode (high β-factor). This paper demonstrates that the usual criterion for lasing with a conventional (low β-factor) cavity, that is, a sharp non-linearity in the input–output curve accompanied by noticeable linewidth narrowing, has to be reinforced by themore » equal-time second-order photon autocorrelation function to confirm lasing. The article also shows that the equal-time second-order photon autocorrelation function is useful for recognizing superradiance, a manifestation of the correlations possible in high-β microcavities operating with QDs. In terms of consolidating the collected data and identifying the physics underlying laser action, both theory and experiment suggest a sole dependence on intracavity photon number. Evidence for this assertion comes from all our measured and calculated data on emission coherence and fluctuation, for devices ranging from light-emitting diodes (LEDs) and cavity-enhanced LEDs to lasers, lying on the same two curves: one for linewidth narrowing versus intracavity photon number and the other for g( 2)(0) versus intracavity photon number.« less

  4. Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling

    DOE PAGES

    Kreinberg, Sören; Chow, Weng W.; Wolters, Janik; ...

    2017-02-28

    Measured and calculated results are presented for the emission properties of a new class of emitters operating in the cavity quantum electrodynamics regime. The structures are based on high-finesse GaAs/AlAs micropillar cavities, each with an active medium consisting of a layer of InGaAs quantum dots (QDs) and the distinguishing feature of having a substantial fraction of spontaneous emission channeled into one cavity mode (high β-factor). This paper demonstrates that the usual criterion for lasing with a conventional (low β-factor) cavity, that is, a sharp non-linearity in the input–output curve accompanied by noticeable linewidth narrowing, has to be reinforced by themore » equal-time second-order photon autocorrelation function to confirm lasing. The article also shows that the equal-time second-order photon autocorrelation function is useful for recognizing superradiance, a manifestation of the correlations possible in high-β microcavities operating with QDs. In terms of consolidating the collected data and identifying the physics underlying laser action, both theory and experiment suggest a sole dependence on intracavity photon number. Evidence for this assertion comes from all our measured and calculated data on emission coherence and fluctuation, for devices ranging from light-emitting diodes (LEDs) and cavity-enhanced LEDs to lasers, lying on the same two curves: one for linewidth narrowing versus intracavity photon number and the other for g( 2)(0) versus intracavity photon number.« less

  5. Effects of multiple founder populations on spatial genetic structure of reintroduced American martens.

    PubMed

    Williams, Bronwyn W; Scribner, Kim T

    2010-01-01

    Reintroductions and translocations are increasingly used to repatriate or increase probabilities of persistence for animal and plant species. Genetic and demographic characteristics of founding individuals and suitability of habitat at release sites are commonly believed to affect the success of these conservation programs. Genetic divergence among multiple source populations of American martens (Martes americana) and well documented introduction histories permitted analyses of post-introduction dispersion from release sites and development of genetic clusters in the Upper Peninsula (UP) of Michigan <50 years following release. Location and size of spatial genetic clusters and measures of individual-based autocorrelation were inferred using 11 microsatellite loci. We identified three genetic clusters in geographic proximity to original release locations. Estimated distances of effective gene flow based on spatial autocorrelation varied greatly among genetic clusters (30-90 km). Spatial contiguity of genetic clusters has been largely maintained with evidence for admixture primarily in localized regions, suggesting recent contact or locally retarded rates of gene flow. Data provide guidance for future studies of the effects of permeabilities of different land-cover and land-use features to dispersal and of other biotic and environmental factors that may contribute to the colonization process and development of spatial genetic associations.

  6. Animal movement constraints improve resource selection inference in the presence of telemetry error

    USGS Publications Warehouse

    Brost, Brian M.; Hooten, Mevin B.; Hanks, Ephraim M.; Small, Robert J.

    2016-01-01

    Multiple factors complicate the analysis of animal telemetry location data. Recent advancements address issues such as temporal autocorrelation and telemetry measurement error, but additional challenges remain. Difficulties introduced by complicated error structures or barriers to animal movement can weaken inference. We propose an approach for obtaining resource selection inference from animal location data that accounts for complicated error structures, movement constraints, and temporally autocorrelated observations. We specify a model for telemetry data observed with error conditional on unobserved true locations that reflects prior knowledge about constraints in the animal movement process. The observed telemetry data are modeled using a flexible distribution that accommodates extreme errors and complicated error structures. Although constraints to movement are often viewed as a nuisance, we use constraints to simultaneously estimate and account for telemetry error. We apply the model to simulated data, showing that it outperforms common ad hoc approaches used when confronted with measurement error and movement constraints. We then apply our framework to an Argos satellite telemetry data set on harbor seals (Phoca vitulina) in the Gulf of Alaska, a species that is constrained to move within the marine environment and adjacent coastlines.

  7. nMoldyn: a program package for a neutron scattering oriented analysis of molecular dynamics simulations.

    PubMed

    Róg, T; Murzyn, K; Hinsen, K; Kneller, G R

    2003-04-15

    We present a new implementation of the program nMoldyn, which has been developed for the computation and decomposition of neutron scattering intensities from Molecular Dynamics trajectories (Comp. Phys. Commun 1995, 91, 191-214). The new implementation extends the functionality of the original version, provides a much more convenient user interface (both graphical/interactive and batch), and can be used as a tool set for implementing new analysis modules. This was made possible by the use of a high-level language, Python, and of modern object-oriented programming techniques. The quantities that can be calculated by nMoldyn are the mean-square displacement, the velocity autocorrelation function as well as its Fourier transform (the density of states) and its memory function, the angular velocity autocorrelation function and its Fourier transform, the reorientational correlation function, and several functions specific to neutron scattering: the coherent and incoherent intermediate scattering functions with their Fourier transforms, the memory function of the coherent scattering function, and the elastic incoherent structure factor. The possibility to compute memory function is a new and powerful feature that allows to relate simulation results to theoretical studies. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 657-667, 2003

  8. Pattern, growth, and aging in aggregation kinetics of a Vicsek-like active matter model

    NASA Astrophysics Data System (ADS)

    Das, Subir K.

    2017-01-01

    Via molecular dynamics simulations, we study kinetics in a Vicsek-like phase-separating active matter model. Quantitative results, for isotropic bicontinuous pattern, are presented on the structure, growth, and aging. These are obtained via the two-point equal-time density-density correlation function, the average domain length, and the two-time density autocorrelation function. Both the correlation functions exhibit basic scaling properties, implying self-similarity in the pattern dynamics, for which the average domain size exhibits a power-law growth in time. The equal-time correlation has a short distance behavior that provides reasonable agreement between the corresponding structure factor tail and the Porod law. The autocorrelation decay is a power-law in the average domain size. Apart from these basic similarities, the overall quantitative behavior of the above-mentioned observables is found to be vastly different from those of the corresponding passive limit of the model which also undergoes phase separation. The functional forms of these have been quantified. An exceptionally rapid growth in the active system occurs due to fast coherent motion of the particles, mean-squared-displacements of which exhibit multiple scaling regimes, including a long time ballistic one.

  9. On a method to detect long-latency excitations and inhibitions of single hand muscle motoneurons in man.

    PubMed

    Awiszus, F; Feistner, H; Schäfer, S S

    1991-01-01

    The peri-stimulus-time histogram (PSTH) analysis of stimulus-related neuronal spike train data is usually regarded as a method to detect stimulus-induced excitations or inhibitions. However, for a fairly regularly discharging neuron such as the human alpha-motoneuron, long-latency modulations of a PSTH are difficult to interpret as PSTH modulations can also occur as a consequence of a modulated neuronal autocorrelation. The experiments reported here were made (i) to investigate the extent to which a PSTH of a human hand-muscle motoneuron may be contaminated by features of the autocorrelation and (ii) to develop methods that display the motoneuronal excitations and inhibitions without such contamination. Responses of 29 single motor units to electrical ulnar nerve stimulation below motor threshold were investigated in the first dorsal interosseous muscle of three healthy volunteers using an experimental protocol capable of demonstrating the presence of autocorrelative modulations in the neuronal response. It was found for all units that the PSTH as well as the cumulative sum (CUSUM) derived from these responses were severely affected by the presence of autocorrelative features. On the other hand, calculating the CUSUM in a slightly modified form yielded--for all units investigated--a neuronal output feature sensitive only to motoneuronal excitations and inhibitions induced by the afferent volley. The price that has to be paid to arrive at such a modified CUSUM (mCUSUM) was a high computational effort prohibiting the on-line availability of this output feature during the experiment. It was found, however, that an interspike interval superposition plot (IISP)--easily obtainable during the experiment--is also free of autocorrelative features.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Life expectancy impacts due to heating energy utilization in China: Distribution, relations, and policy implications.

    PubMed

    Wang, Shaobin; Luo, Kunli

    2018-01-01

    The relation between life expectancy and energy utilization is of particular concern. Different viewpoints concerned the health impacts of heating policy in China. However, it is still obscure that what kind of heating energy or what pattern of heating methods is the most related with the difference of life expectancies in China. The aim of this paper is to comprehensively investigate the spatial relations between life expectancy at birth (LEB) and different heating energy utilization in China by using spatial autocorrelation models including global spatial autocorrelation, local spatial autocorrelation and hot spot analysis. The results showed that: (1) Most of heating energy exhibit a distinct north-south difference, such as central heating supply, stalks and domestic coal. Whereas spatial distribution of domestic natural gas and electricity exhibited west-east differences. (2) Consumption of central heating, stalks and domestic coal show obvious spatial dependence. Whereas firewood, natural gas and electricity did not show significant spatial autocorrelation. It exhibited an extinct south-north difference of heat supply, stalks and domestic coal which were identified to show significant positive spatial autocorrelation. (3) Central heating, residential boilers and natural gas did not show any significant correlations with LEB. While, the utilization of domestic coal and biomass showed significant negative correlations with LEB, and household electricity shows positive correlations. The utilization of domestic coal in China showed a negative effect on LEB, rather than central heating. To improve the solid fuel stoves and control consumption of domestic coal consumption and other low quality solid fuel is imperative to improve the public health level in China in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Assessment of drug-induced arrhythmic risk using limit cycle and autocorrelation analysis of human iPSC-cardiomyocyte contractility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, R. Jason

    2016-08-15

    Cardiac safety assays incorporating label-free detection of human stem-cell derived cardiomyocyte contractility provide human relevance and medium throughput screening to assess compound-induced cardiotoxicity. In an effort to provide quantitative analysis of the large kinetic datasets resulting from these real-time studies, we applied bioinformatic approaches based on nonlinear dynamical system analysis, including limit cycle analysis and autocorrelation function, to systematically assess beat irregularity. The algorithms were integrated into a software program to seamlessly generate results for 96-well impedance-based data. Our approach was validated by analyzing dose- and time-dependent changes in beat patterns induced by known proarrhythmic compounds and screening a cardiotoxicitymore » library to rank order compounds based on their proarrhythmic potential. We demonstrate a strong correlation for dose-dependent beat irregularity monitored by electrical impedance and quantified by autocorrelation analysis to traditional manual patch clamp potency values for hERG blockers. In addition, our platform identifies non-hERG blockers known to cause clinical arrhythmia. Our method provides a novel suite of medium-throughput quantitative tools for assessing compound effects on cardiac contractility and predicting compounds with potential proarrhythmia and may be applied to in vitro paradigms for pre-clinical cardiac safety evaluation. - Highlights: • Impedance-based monitoring of human iPSC-derived cardiomyocyte contractility • Limit cycle analysis of impedance data identifies aberrant oscillation patterns. • Nonlinear autocorrelation function quantifies beat irregularity. • Identification of hERG and non-hERG inhibitors with known risk of arrhythmia • Automated software processes limit cycle and autocorrelation analyses of 96w data.« less

  12. Spatial and temporal changes in the structure of groundwater nitrate concentration time series (1935 1999) as demonstrated by autoregressive modelling

    NASA Astrophysics Data System (ADS)

    Jones, A. L.; Smart, P. L.

    2005-08-01

    Autoregressive modelling is used to investigate the internal structure of long-term (1935-1999) records of nitrate concentration for five karst springs in the Mendip Hills. There is a significant short term (1-2 months) positive autocorrelation at three of the five springs due to the availability of sufficient nitrate within the soil store to maintain concentrations in winter recharge for several months. The absence of short term (1-2 months) positive autocorrelation in the other two springs is due to the marked contrast in land use between the limestone and swallet parts of the catchment, rapid concentrated recharge from the latter causing short term switching in the dominant water source at the spring and thus fluctuating nitrate concentrations. Significant negative autocorrelation is evident at lags varying from 4 to 7 months through to 14-22 months for individual springs, with positive autocorrelation at 19-20 months at one site. This variable timing is explained by moderation of the exhaustion effect in the soil by groundwater storage, which gives longer residence times in large catchments and those with a dominance of diffuse flow. The lags derived from autoregressive modelling may therefore provide an indication of average groundwater residence times. Significant differences in the structure of the autocorrelation function for successive 10-year periods are evident at Cheddar Spring, and are explained by the effect the ploughing up of grasslands during the Second World War and increased fertiliser usage on available nitrogen in the soil store. This effect is moderated by the influence of summer temperatures on rates of mineralization, and of both summer and winter rainfall on the timing and magnitude of nitrate leaching. The pattern of nitrate leaching also appears to have been perturbed by the 1976 drought.

  13. The relationship between affective state and the rhythmicity of activity in bipolar disorder.

    PubMed

    Gonzalez, Robert; Tamminga, Carol A; Tohen, Mauricio; Suppes, Trisha

    2014-04-01

    The aim of this study was to test the relationships between mood state and rhythm disturbances as measured via actigraphy in bipolar disorder by assessing the correlations between manic and depressive symptoms as measured via Young Mania Rating Scale (YMRS) and 30-item Inventory for Depressive Symptomatology, Clinician-Rated (IDS-C-30) scores and the actigraphic measurements of rhythm, the 24-hour autocorrelation coefficient and circadian quotient. The research was conducted at the University of Texas Southwestern Medical Center at Dallas from February 2, 2009, to March 30, 2010. 42 patients with a DSM-IV-TR diagnosis of bipolar I disorder were included in the study. YMRS and the IDS-C-30 were used to determine symptom severity. Subjects wore the actigraph continuously for 7 days. The 24-hour autocorrelation coefficient was used as an indicator of overall rhythmicity. The circadian quotient was used to characterize the strength of a circadian rhythm. A greater severity of manic symptoms correlated with a lower degree of rhythmicity and less robust rhythms of locomotor activity as indicated by lower 24-hour autocorrelation (r = -0.3406, P = .03) and circadian quotient (r = -0.5485, P = .0002) variables, respectively. No relationship was noted between the degree of depression and 24-hour autocorrelation scores (r = -0.1190, P = .45) or circadian quotient (r = 0.0083, P = .96). Correlation was noted between the 24-hour autocorrelation and circadian quotient scores (r = 0.6347, P < .0001). These results support the notion that circadian rhythm disturbances are associated with bipolar disorder and that these disturbances may be associated with clinical signatures of the disorder. Further assessment of rhythm disturbances in bipolar disorder is warranted. © Copyright 2014 Physicians Postgraduate Press, Inc.

  14. Environmental drivers of spatial variation in whole-tree transpiration in an aspen-dominated upland-to-wetland forest gradient

    NASA Astrophysics Data System (ADS)

    Loranty, Michael M.; Mackay, D. Scott; Ewers, Brent E.; Adelman, Jonathan D.; Kruger, Eric L.

    2008-02-01

    Assumed representative center-of-stand measurements are typical inputs to models that scale forest transpiration to stand and regional extents. These inputs do not consider gradients in transpiration at stand boundaries or along moisture gradients and therefore potentially bias the large-scale estimates. We measured half-hourly sap flux (JS) for 173 trees in a spatially explicit cyclic sampling design across a topographically controlled gradient between a forested wetland and upland forest in northern Wisconsin. Our analyses focused on three dominant species in the site: quaking aspen (Populus tremuloides Michx), speckled alder (Alnus incana (DuRoi) Spreng), and white cedar (Thuja occidentalis L.). Sapwood area (AS) was used to scale JS to whole tree transpiration (EC). Because spatial patterns imply underlying processes, geostatistical analyses were employed to quantify patterns of spatial autocorrelation across the site. A simple Jarvis type model parameterized using a Monte Carlo sampling approach was used to simulate EC (EC-SIM). EC-SIM was compared with observed EC(EC-OBS) and found to reproduce both the temporal trends and spatial variance of canopy transpiration. EC-SIM was then used to examine spatial autocorrelation as a function of environmental drivers. We found no spatial autocorrelation in JS across the gradient from forested wetland to forested upland. EC was spatially autocorrelated and this was attributed to spatial variation in AS which suggests species spatial patterns are important for understanding spatial estimates of transpiration. However, the range of autocorrelation in EC-SIM decreased linearly with increasing vapor pressure deficit, implying that consideration of spatial variation in the sensitivity of canopy stomatal conductance to D is also key to accurately scaling up transpiration in space.

  15. Stochastic resonance in micro/nano cantilever sensors

    NASA Astrophysics Data System (ADS)

    Singh, Priyanka; Yadava, R. D. S.

    2018-05-01

    In this paper we present a comparative study on the stochastic resonance in micro/nano cantilever resonators due to fluctuations in the fundamental frequency or the damping coefficient. Considering DC+AC electrostatic actuation in the presence of zero-mean Gaussian noise with exponential autocorrelation we analyze stochastic resonance behaviors for the frequency and the damping fluctuations separately, and compare the effects of stochastic resonance on Q-factor of the resonators for different levels of damping losses. It is found that even though the stochastic resonance occurs for both types of fluctuations, only the damping fluctuation produces right cooperative influence on the fundamental resonance that improves both the amplitude response and the quality factor of the resonator.

  16. Autocorrelation exponent of conserved spin systems in the scaling regime following a critical quench.

    PubMed

    Sire, Clément

    2004-09-24

    We study the autocorrelation function of a conserved spin system following a quench at the critical temperature. Defining the correlation length L(t) approximately t(1/z), we find that for times t' and t satisfying L(t')infinity limit, we show that lambda(')(c)=d+2 and phi=z/2. We give a heuristic argument suggesting that this result is, in fact, valid for any dimension d and spin vector dimension n. We present numerical simulations for the conserved Ising model in d=1 and d=2, which are fully consistent with the present theory.

  17. A recursive linear predictive vocoder

    NASA Astrophysics Data System (ADS)

    Janssen, W. A.

    1983-12-01

    A non-real time 10 pole recursive autocorrelation linear predictive coding vocoder was created for use in studying effects of recursive autocorrelation on speech. The vocoder is composed of two interchangeable pitch detectors, a speech analyzer, and speech synthesizer. The time between updating filter coefficients is allowed to vary from .125 msec to 20 msec. The best quality was found using .125 msec between each update. The greatest change in quality was noted when changing from 20 msec/update to 10 msec/update. Pitch period plots for the center clipping autocorrelation pitch detector and simplified inverse filtering technique are provided. Plots of speech into and out of the vocoder are given. Formant versus time three dimensional plots are shown. Effects of noise on pitch detection and formants are shown. Noise effects the voiced/unvoiced decision process causing voiced speech to be re-constructed as unvoiced.

  18. Long-range correlations in time series generated by time-fractional diffusion: A numerical study

    NASA Astrophysics Data System (ADS)

    Barbieri, Davide; Vivoli, Alessandro

    2005-09-01

    Time series models showing power law tails in autocorrelation functions are common in econometrics. A special non-Markovian model for such kind of time series is provided by the random walk introduced by Gorenflo et al. as a discretization of time fractional diffusion. The time series so obtained are analyzed here from a numerical point of view in terms of autocorrelations and covariance matrices.

  19. Generalizability Assessment of Autocorrelated Direct Observation Data: The Applicability of the Tiao-Tan Method and Alternative.

    ERIC Educational Resources Information Center

    Suen, Hoi K.; And Others

    The applicability is explored of the Bayesian random-effect analysis of variance (ANOVA) model developed by G. C. Tiao and W. Y. Tan (1966) and a method suggested by H. K. Suen and P. S. Lee (1987) for the generalizability analysis of autocorrelated data. According to Tiao and Tan, if time series data could be described as a first-order…

  20. Geostatistical Prediction of Microbial Water Quality Throughout a Stream Network Using Meteorology, Land Cover, and Spatiotemporal Autocorrelation.

    PubMed

    Holcomb, David A; Messier, Kyle P; Serre, Marc L; Rowny, Jakob G; Stewart, Jill R

    2018-06-25

    Predictive modeling is promising as an inexpensive tool to assess water quality. We developed geostatistical predictive models of microbial water quality that empirically modeled spatiotemporal autocorrelation in measured fecal coliform (FC) bacteria concentrations to improve prediction. We compared five geostatistical models featuring different autocorrelation structures, fit to 676 observations from 19 locations in North Carolina's Jordan Lake watershed using meteorological and land cover predictor variables. Though stream distance metrics (with and without flow-weighting) failed to improve prediction over the Euclidean distance metric, incorporating temporal autocorrelation substantially improved prediction over the space-only models. We predicted FC throughout the stream network daily for one year, designating locations "impaired", "unimpaired", or "unassessed" if the probability of exceeding the state standard was ≥90%, ≤10%, or >10% but <90%, respectively. We could assign impairment status to more of the stream network on days any FC were measured, suggesting frequent sample-based monitoring remains necessary, though implementing spatiotemporal predictive models may reduce the number of concurrent sampling locations required to adequately assess water quality. Together, these results suggest that prioritizing sampling at different times and conditions using geographically sparse monitoring networks is adequate to build robust and informative geostatistical models of water quality impairment.

  1. The Error Structure of the SMAP Single and Dual Channel Soil Moisture Retrievals

    NASA Astrophysics Data System (ADS)

    Dong, Jianzhi; Crow, Wade T.; Bindlish, Rajat

    2018-01-01

    Knowledge of the temporal error structure for remotely sensed surface soil moisture retrievals can improve our ability to exploit them for hydrologic and climate studies. This study employs a triple collocation analysis to investigate both the total variance and temporal autocorrelation of errors in Soil Moisture Active and Passive (SMAP) products generated from two separate soil moisture retrieval algorithms, the vertically polarized brightness temperature-based single-channel algorithm (SCA-V, the current baseline SMAP algorithm) and the dual-channel algorithm (DCA). A key assumption made in SCA-V is that real-time vegetation opacity can be accurately captured using only a climatology for vegetation opacity. Results demonstrate that while SCA-V generally outperforms DCA, SCA-V can produce larger total errors when this assumption is significantly violated by interannual variability in vegetation health and biomass. Furthermore, larger autocorrelated errors in SCA-V retrievals are found in areas with relatively large vegetation opacity deviations from climatological expectations. This implies that a significant portion of the autocorrelated error in SCA-V is attributable to the violation of its vegetation opacity climatology assumption and suggests that utilizing a real (as opposed to climatological) vegetation opacity time series in the SCA-V algorithm would reduce the magnitude of autocorrelated soil moisture retrieval errors.

  2. Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media

    PubMed Central

    Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J.

    2016-01-01

    We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality. PMID:26832264

  3. Non-Markovian spin-resolved counting statistics and an anomalous relation between autocorrelations and cross correlations in a three-terminal quantum dot

    NASA Astrophysics Data System (ADS)

    Luo, JunYan; Yan, Yiying; Huang, Yixiao; Yu, Li; He, Xiao-Ling; Jiao, HuJun

    2017-01-01

    We investigate the noise correlations of spin and charge currents through an electron spin resonance (ESR)-pumped quantum dot, which is tunnel coupled to three electrodes maintained at an equivalent chemical potential. A recursive scheme is employed with inclusion of the spin degrees of freedom to account for the spin-resolved counting statistics in the presence of non-Markovian effects due to coupling with a dissipative heat bath. For symmetric spin-up and spin-down tunneling rates, an ESR-induced spin flip mechanism generates a pure spin current without an accompanying net charge current. The stochastic tunneling of spin carriers, however, produces universal shot noises of both charge and spin currents, revealing the effective charge and spin units of quasiparticles in transport. In the case of very asymmetric tunneling rates for opposite spins, an anomalous relationship between noise autocorrelations and cross correlations is revealed, where super-Poissonian autocorrelation is observed in spite of a negative cross correlation. Remarkably, with strong dissipation strength, non-Markovian memory effects give rise to a positive cross correlation of the charge current in the absence of a super-Poissonian autocorrelation. These unique noise features may offer essential methods for exploiting internal spin dynamics and various quasiparticle tunneling processes in mesoscopic transport.

  4. Bridging the gulf between correlated random walks and Lévy walks: autocorrelation as a source of Lévy walk movement patterns.

    PubMed

    Reynolds, Andy M

    2010-12-06

    For many years, the dominant conceptual framework for describing non-oriented animal movement patterns has been the correlated random walk (CRW) model in which an individual's trajectory through space is represented by a sequence of distinct, independent randomly oriented 'moves'. It has long been recognized that the transformation of an animal's continuous movement path into a broken line is necessarily arbitrary and that probability distributions of move lengths and turning angles are model artefacts. Continuous-time analogues of CRWs that overcome this inherent shortcoming have appeared in the literature and are gaining prominence. In these models, velocities evolve as a Markovian process and have exponential autocorrelation. Integration of the velocity process gives the position process. Here, through a simple scaling argument and through an exact analytical analysis, it is shown that autocorrelation inevitably leads to Lévy walk (LW) movement patterns on timescales less than the autocorrelation timescale. This is significant because over recent years there has been an accumulation of evidence from a variety of experimental and theoretical studies that many organisms have movement patterns that can be approximated by LWs, and there is now intense debate about the relative merits of CRWs and LWs as representations of non-orientated animal movement patterns.

  5. Spatial heterogeneity distribution of soil total nitrogen and total phosphorus in the Yaoxiang watershed in a hilly area of northern China based on geographic information system and geostatistics.

    PubMed

    Liu, Yu; Gao, Peng; Zhang, Liyong; Niu, Xiang; Wang, Bing

    2016-10-01

    Soil total nitrogen (STN) and total phosphorus (STP) are important indicators of soil nutrients and the important indexes of soil fertility and soil quality evaluation. Using geographic information system (GIS) and geostatistics, the spatial heterogeneity distribution of STN and STP in the Yaoxiang watershed in a hilly area of northern China was studied. The results showed that: (1) The STN and STP contents showed a declining trend with the increase in soil depth; the variation coefficients ( C v ) of STN and STP in the 0- to 10-cm soil layer (42.25% and 14.77%, respectively) were higher than in the 10- to 30-cm soil layer (28.77% and 11.60%, respectively). Moreover, the C v of STN was higher than that of STP. (2) The maximum C 0 /( C 0  +  C 1 ) of STN and STP in the soil layers was less than 25%, this indicated that a strong spatial distribution autocorrelation existed for STN and STP; and the STP showed higher intensity and more stable variation than the STN. (3) From the correlation analysis, we concluded that the topographic indexes such as elevation and slope direction all influenced the spatial distribution of STN and STP (correlation coefficients were 0.688 and 0.518, respectively). (4) The overall distribution of STN and STP in the Yaoxiang watershed decreased from the northwest to the southeast. This variation trend was similar to the watershed DEM trend and was significantly influenced by vegetation and topographic factors. These results revealed the spatial heterogeneity distribution of STN and STP, and addressed the influences of forest vegetation coverage, elevation, and other topographic factors on the spatial distribution of STN and STP at the watershed scale.

  6. A dynamic factor model of the evaluation of the financial crisis in Turkey.

    PubMed

    Sezgin, F; Kinay, B

    2010-01-01

    Factor analysis has been widely used in economics and finance in situations where a relatively large number of variables are believed to be driven by few common causes of variation. Dynamic factor analysis (DFA) which is a combination of factor and time series analysis, involves autocorrelation matrices calculated from multivariate time series. Dynamic factor models were traditionally used to construct economic indicators, macroeconomic analysis, business cycles and forecasting. In recent years, dynamic factor models have become more popular in empirical macroeconomics. They have more advantages than other methods in various respects. Factor models can for instance cope with many variables without running into scarce degrees of freedom problems often faced in regression-based analysis. In this study, a model which determines the effect of the global crisis on Turkey is proposed. The main aim of the paper is to analyze how several macroeconomic quantities show an alteration before the evolution of the crisis and to decide if a crisis can be forecasted or not.

  7. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses

    PubMed Central

    Takahashi, Eiji J.; Lan, Pengfei; Mücke, Oliver D.; Nabekawa, Yasuo; Midorikawa, Katsumi

    2013-01-01

    High-energy isolated attosecond pulses required for the most intriguing nonlinear attosecond experiments as well as for attosecond-pump/attosecond-probe spectroscopy are still lacking at present. Here we propose and demonstrate a robust generation method of intense isolated attosecond pulses, which enable us to perform a nonlinear attosecond optics experiment. By combining a two-colour field synthesis and an energy-scaling method of high-order harmonic generation, the maximum pulse energy of the isolated attosecond pulse reaches as high as 1.3 μJ. The generated pulse with a duration of 500 as, as characterized by a nonlinear autocorrelation measurement, is the shortest and highest-energy pulse ever with the ability to induce nonlinear phenomena. The peak power of our tabletop light source reaches 2.6 GW, which even surpasses that of an extreme-ultraviolet free-electron laser. PMID:24158092

  8. Constrained signal reconstruction from wavelet transform coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brislawn, C.M.

    1991-12-31

    A new method is introduced for reconstructing a signal from an incomplete sampling of its Discrete Wavelet Transform (DWT). The algorithm yields a minimum-norm estimate satisfying a priori upper and lower bounds on the signal. The method is based on a finite-dimensional representation theory for minimum-norm estimates of bounded signals developed by R.E. Cole. Cole`s work has its origins in earlier techniques of maximum-entropy spectral estimation due to Lang and McClellan, which were adapted by Steinhardt, Goodrich and Roberts for minimum-norm spectral estimation. Cole`s extension of their work provides a representation for minimum-norm estimates of a class of generalized transformsmore » in terms of general correlation data (not just DFT`s of autocorrelation lags, as in spectral estimation). One virtue of this great generality is that it includes the inverse DWT. 20 refs.« less

  9. The use of copula functions for predictive analysis of correlations between extreme storm tides

    NASA Astrophysics Data System (ADS)

    Domino, Krzysztof; Błachowicz, Tomasz; Ciupak, Maurycy

    2014-11-01

    In this paper we present a method used in quantitative description of weakly predictable hydrological, extreme events at inland sea. Investigations for correlations between variations of individual measuring points, employing combined statistical methods, were carried out. As a main tool for this analysis we used a two-dimensional copula function sensitive for correlated extreme effects. Additionally, a new proposed methodology, based on Detrended Fluctuations Analysis (DFA) and Anomalous Diffusion (AD), was used for the prediction of negative and positive auto-correlations and associated optimum choice of copula functions. As a practical example we analysed maximum storm tides data recorded at five spatially separated places at the Baltic Sea. For the analysis we used Gumbel, Clayton, and Frank copula functions and introduced the reversed Clayton copula. The application of our research model is associated with modelling the risk of high storm tides and possible storm flooding.

  10. Spatiotemporal Co-occurrence of Flanders and West Nile Viruses Within Culex Populations in Shelby County, Tennessee.

    PubMed

    Lucero, D E; Carlson, T C; Delisle, J; Poindexter, S; Jones, T F; Moncayo, A C

    2016-05-01

    West Nile virus (WNV) and Flanders virus (FLAV) can cocirculate in Culex mosquitoes in parts of North America. A large dataset of mosquito pools tested for WNV and FLAV was queried to understand the spatiotemporal relationship between these two viruses in Shelby County, TN. We found strong evidence of global clustering (i.e., spatial autocorrelation) and overlapping of local clustering (i.e., Hot Spots based on Getis Ord Gi*) of maximum likelihood estimates (MLE) of infection rates (IR) during 2008-2013. Temporally, FLAV emerges and peaks on average 10.2 wk prior to WNV based on IR. Higher levels of WNV IR were detected within 3,000 m of FLAV-positive pool buffers than outside these buffers. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Partial correlation properties of pseudonoise /PN/ codes in noncoherent synchronization/detection schemes

    NASA Technical Reports Server (NTRS)

    Cartier, D. E.

    1976-01-01

    This concise paper considers the effect on the autocorrelation function of a pseudonoise (PN) code when the acquisition scheme only integrates coherently over part of the code and then noncoherently combines these results. The peak-to-null ratio of the effective PN autocorrelation function is shown to degrade to the square root of n, where n is the number of PN symbols over which coherent integration takes place.

  12. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    NASA Astrophysics Data System (ADS)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  13. An investigation of turbulent transport in the extreme lower atmosphere

    NASA Technical Reports Server (NTRS)

    Koper, C. A., Jr.; Sadeh, W. Z.

    1975-01-01

    A model in which the Lagrangian autocorrelation is expressed by a domain integral over a set of usual Eulerian autocorrelations acquired concurrently at all points within a turbulence box is proposed along with a method for ascertaining the statistical stationarity of turbulent velocity by creating an equivalent ensemble to investigate the flow in the extreme lower atmosphere. Simultaneous measurements of turbulent velocity on a turbulence line along the wake axis were carried out utilizing a longitudinal array of five hot-wire anemometers remotely operated. The stationarity test revealed that the turbulent velocity is approximated as a realization of a weakly self-stationary random process. Based on the Lagrangian autocorrelation it is found that: (1) large diffusion time predominated; (2) ratios of Lagrangian to Eulerian time and spatial scales were smaller than unity; and, (3) short and long diffusion time scales and diffusion spatial scales were constrained within their Eulerian counterparts.

  14. Detection limit used for early warning in public health surveillance.

    PubMed

    Kobari, Tsuyoshi; Iwaki, Kazuo; Nagashima, Tomomi; Ishii, Fumiyoshi; Hayashi, Yuzuru; Yajima, Takehiko

    2009-06-01

    A theory of detection limit, developed in analytical chemistry, is applied to public health surveillance to detect an outbreak of national emergencies such as natural disaster and bioterrorism. In this investigation, the influenza epidemic around the Tokyo area from 2003 to 2006 is taken as a model of normal and large-scale epidemics. The detection limit of the normal epidemic is used as a threshold with a specified level of significance to identify a sign of the abnormal epidemic among the daily variation in anti-influenza drug sales at community pharmacies. While auto-correlation of data is often an obstacle to an unbiased estimator of standard deviation involved in the detection limit, the analytical theory (FUMI) can successfully treat the auto-correlation of the drug sales in the same way as the auto-correlation appearing as 1/f noise in many analytical instruments.

  15. The influence of autocorrelation in signature extraction: An example from a geobotanical investigation of Cotter Basin, Montana

    NASA Technical Reports Server (NTRS)

    Labovitz, M. L.; Masuoka, E. J. (Principal Investigator)

    1981-01-01

    The presence of positive serial correlation (autocorrelation) in remotely sensed data results in an underestimate of the variance-covariance matrix when calculated using contiguous pixels. This underestimate produces an inflation in F statistics. For a set of Thematic Mapper Simulator data (TMS), used to test the ability to discriminate a known geobotanical anomaly from its background, the inflation in F statistics related to serial correlation is between 7 and 70 times. This means that significance tests of means of the spectral bands initially appear to suggest that the anomalous site is very different in spectral reflectance and emittance from its background sites. However, this difference often disappears and is always dramatically reduced when compared to frequency distributions of test statistics produced by the comparison of simulated training sets possessing equal means, but which are composed of autocorrelated observations.

  16. Autocorrelation and cross-correlation in time series of homicide and attempted homicide

    NASA Astrophysics Data System (ADS)

    Machado Filho, A.; da Silva, M. F.; Zebende, G. F.

    2014-04-01

    We propose in this paper to establish the relationship between homicides and attempted homicides by a non-stationary time-series analysis. This analysis will be carried out by Detrended Fluctuation Analysis (DFA), Detrended Cross-Correlation Analysis (DCCA), and DCCA cross-correlation coefficient, ρ(n). Through this analysis we can identify a positive cross-correlation between homicides and attempted homicides. At the same time, looked at from the point of view of autocorrelation (DFA), this analysis can be more informative depending on time scale. For short scale (days), we cannot identify auto-correlations, on the scale of weeks DFA presents anti-persistent behavior, and for long time scales (n>90 days) DFA presents a persistent behavior. Finally, the application of this new type of statistical analysis proved to be efficient and, in this sense, this paper can contribute to a more accurate descriptive statistics of crime.

  17. Evaluation of terrain complexity by autocorrelation. [geomorphology and geobotany

    NASA Technical Reports Server (NTRS)

    Craig, R. G.

    1982-01-01

    The topographic complexity of various sections of the Ozark, Appalachian, and Interior Low Plateaus, as well as of the New England, Piedmont, Blue Ridge, Ouachita, and Valley and Ridge Provinces of the Eastern United States were characterized. The variability of autocorrelation within a small area (7 1/2-ft quadrangle) to the variability at widely separated and diverse areas within the same physiographic region was compared to measure the degree of uniformity of the processes which can be expected to be encountered within a given physiographic province. The variability of autocorrelation across the eight geomorphic regions was compared and contrasted. The total study area was partitioned into subareas homogeneous in terrain complexity. The relation between the complexity measured, the geomorphic process mix implied, and the way in which geobotanical information is modified into a more or less recognizable entity is demonstrated. Sampling strategy is described.

  18. Effect of long-term mechanical perturbation on intertidal soft-bottom meiofaunal community spatial structure

    NASA Astrophysics Data System (ADS)

    Boldina, Inna; Beninger, Peter G.; Le Coz, Maïwen

    2014-01-01

    Situated at the interface of the microbial and macrofaunal compartments, soft-bottom meiofauna accomplish important ecological functions. However, little is known of their spatial distribution in the benthic environment. To assess the effects of long-term mechanical disturbance on soft-bottom meiofaunal spatial distribution, we compared a site subjected to long-term clam digging to a nearby site untouched by such activities, in Bourgneuf Bay, on the Atlantic coast of France. Six patterned replicate samples were taken at 3, 6, 9, 12, 15, 18, 21 and 24 cm lags, all sampling stations being separated by 5 m. A combined correlogram-variogram approach was used to enhance interpretation of the meiofaunal spatial distribution; in particular, the definition of autocorrelation strength and its statistical significance, as well as the detailed characteristics of the periodic spatial structure of nematode assemblages, and the determination of the maximum distance of their spatial autocorrelation. At both sites, nematodes and copepods clearly exhibited aggregated spatial structure at the meso scale; this structure was attenuated at the impacted site. The nematode spatial distribution showed periodicity at the non-impacted site, but not at the impacted site. This is the first explicit report of a periodic process in meiofaunal spatial distribution. No such cyclic spatial process was observed for the more motile copepods at either site. This first study to indicate the impacts of long-term anthropogenic mechanical perturbation on meiofaunal spatial structure opens the door to a new dimension of mudflat ecology. Since macrofaunal predator search behaviour is known to be strongly influenced by prey spatial structure, the alteration of this structure may have important consequences for ecosystem functioning.

  19. Adjusting for sampling variability in sparse data: geostatistical approaches to disease mapping

    PubMed Central

    2011-01-01

    Background Disease maps of crude rates from routinely collected health data indexed at a small geographical resolution pose specific statistical problems due to the sparse nature of the data. Spatial smoothers allow areas to borrow strength from neighboring regions to produce a more stable estimate of the areal value. Geostatistical smoothers are able to quantify the uncertainty in smoothed rate estimates without a high computational burden. In this paper, we introduce a uniform model extension of Bayesian Maximum Entropy (UMBME) and compare its performance to that of Poisson kriging in measures of smoothing strength and estimation accuracy as applied to simulated data and the real data example of HIV infection in North Carolina. The aim is to produce more reliable maps of disease rates in small areas to improve identification of spatial trends at the local level. Results In all data environments, Poisson kriging exhibited greater smoothing strength than UMBME. With the simulated data where the true latent rate of infection was known, Poisson kriging resulted in greater estimation accuracy with data that displayed low spatial autocorrelation, while UMBME provided more accurate estimators with data that displayed higher spatial autocorrelation. With the HIV data, UMBME performed slightly better than Poisson kriging in cross-validatory predictive checks, with both models performing better than the observed data model with no smoothing. Conclusions Smoothing methods have different advantages depending upon both internal model assumptions that affect smoothing strength and external data environments, such as spatial correlation of the observed data. Further model comparisons in different data environments are required to provide public health practitioners with guidelines needed in choosing the most appropriate smoothing method for their particular health dataset. PMID:21978359

  20. Adjusting for sampling variability in sparse data: geostatistical approaches to disease mapping.

    PubMed

    Hampton, Kristen H; Serre, Marc L; Gesink, Dionne C; Pilcher, Christopher D; Miller, William C

    2011-10-06

    Disease maps of crude rates from routinely collected health data indexed at a small geographical resolution pose specific statistical problems due to the sparse nature of the data. Spatial smoothers allow areas to borrow strength from neighboring regions to produce a more stable estimate of the areal value. Geostatistical smoothers are able to quantify the uncertainty in smoothed rate estimates without a high computational burden. In this paper, we introduce a uniform model extension of Bayesian Maximum Entropy (UMBME) and compare its performance to that of Poisson kriging in measures of smoothing strength and estimation accuracy as applied to simulated data and the real data example of HIV infection in North Carolina. The aim is to produce more reliable maps of disease rates in small areas to improve identification of spatial trends at the local level. In all data environments, Poisson kriging exhibited greater smoothing strength than UMBME. With the simulated data where the true latent rate of infection was known, Poisson kriging resulted in greater estimation accuracy with data that displayed low spatial autocorrelation, while UMBME provided more accurate estimators with data that displayed higher spatial autocorrelation. With the HIV data, UMBME performed slightly better than Poisson kriging in cross-validatory predictive checks, with both models performing better than the observed data model with no smoothing. Smoothing methods have different advantages depending upon both internal model assumptions that affect smoothing strength and external data environments, such as spatial correlation of the observed data. Further model comparisons in different data environments are required to provide public health practitioners with guidelines needed in choosing the most appropriate smoothing method for their particular health dataset.

  1. Groundwater-level trends in the U.S. glacial aquifer system, 1964-2013

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Dudley, Robert W.; Nielsen, Martha G.; Renard, Benjamin; Qi, Sharon L.

    2017-01-01

    The glacial aquifer system in the United States is a major source of water supply but previous work on historical groundwater trends across the system is lacking. Trends in annual minimum, mean, and maximum groundwater levels for 205 monitoring wells were analyzed across three regions of the system (East, Central, West Central) for four time periods: 1964-2013, 1974-2013, 1984-2013, and 1994-2013. Trends were computed separately for wells in the glacial aquifer system with low potential for human influence on groundwater levels and ones with high potential influence from activities such as groundwater pumping. Generally there were more wells with significantly increasing groundwater levels (levels closer to ground surface) than wells with significantly decreasing levels. The highest numbers of significant increases for all four time periods were with annual minimum and/or mean levels. There were many more wells with significant increases from 1964 to 2013 than from more recent periods, consistent with low precipitation in the 1960s. Overall there were low numbers of wells with significantly decreasing trends regardless of time period considered; the highest number of these were generally for annual minimum groundwater levels at wells with likely human influence. There were substantial differences in the number of wells with significant groundwater-level trends over time, depending on whether the historical time series are assumed to be independent, have short-term persistence, or have long-term persistence. Mean annual groundwater levels have significant lag-one-year autocorrelation at 26.0% of wells in the East region, 65.4% of wells in the Central region, and 100% of wells in the West Central region. Annual precipitation across the glacial aquifer system, on the other hand, has significant autocorrelation at only 5.5% of stations, about the percentage expected due to chance.

  2. Autocorrelation descriptor improvements for QSAR: 2DA_Sign and 3DA_Sign

    NASA Astrophysics Data System (ADS)

    Sliwoski, Gregory; Mendenhall, Jeffrey; Meiler, Jens

    2016-03-01

    Quantitative structure-activity relationship (QSAR) is a branch of computer aided drug discovery that relates chemical structures to biological activity. Two well established and related QSAR descriptors are two- and three-dimensional autocorrelation (2DA and 3DA). These descriptors encode the relative position of atoms or atom properties by calculating the separation between atom pairs in terms of number of bonds (2DA) or Euclidean distance (3DA). The sums of all values computed for a given small molecule are collected in a histogram. Atom properties can be added with a coefficient that is the product of atom properties for each pair. This procedure can lead to information loss when signed atom properties are considered such as partial charge. For example, the product of two positive charges is indistinguishable from the product of two equivalent negative charges. In this paper, we present variations of 2DA and 3DA called 2DA_Sign and 3DA_Sign that avoid information loss by splitting unique sign pairs into individual histograms. We evaluate these variations with models trained on nine datasets spanning a range of drug target classes. Both 2DA_Sign and 3DA_Sign significantly increase model performance across all datasets when compared with traditional 2DA and 3DA. Lastly, we find that limiting 3DA_Sign to maximum atom pair distances of 6 Å instead of 12 Å further increases model performance, suggesting that conformational flexibility may hinder performance with longer 3DA descriptors. Consistent with this finding, limiting the number of bonds in 2DA_Sign from 11 to 5 fails to improve performance.

  3. Ultralow-Power Digital Correlator for Microwave Polarimetry

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Hass, K. Joseph

    2004-01-01

    A recently developed high-speed digital correlator is especially well suited for processing readings of a passive microwave polarimeter. This circuit computes the autocorrelations of, and the cross-correlations among, data in four digital input streams representing samples of in-phase (I) and quadrature (Q) components of two intermediate-frequency (IF) signals, denoted A and B, that are generated in heterodyne reception of two microwave signals. The IF signals arriving at the correlator input terminals have been digitized to three levels (-1,0,1) at a sampling rate up to 500 MHz. Two bits (representing sign and magnitude) are needed to represent the instantaneous datum in each input channel; hence, eight bits are needed to represent the four input signals during any given cycle of the sampling clock. The accumulation (integration) time for the correlation is programmable in increments of 2(exp 8) cycles of the sampling clock, up to a maximum of 2(exp 24) cycles. The basic functionality of the correlator is embodied in 16 correlation slices, each of which contains identical logic circuits and counters (see figure). The first stage of each correlation slice is a logic gate that computes one of the desired correlations (for example, the autocorrelation of the I component of A or the negative of the cross-correlation of the I component of A and the Q component of B). The sampling of the output of the logic gate output is controlled by the sampling-clock signal, and an 8-bit counter increments in every clock cycle when the logic gate generates output. The most significant bit of the 8-bit counter is sampled by a 16-bit counter with a clock signal at 2(exp 8) the frequency of the sampling clock. The 16-bit counter is incremented every time the 8-bit counter rolls over.

  4. Population stochastic modelling (PSM)--an R package for mixed-effects models based on stochastic differential equations.

    PubMed

    Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode; Overgaard, Rune Viig; Madsen, Henrik

    2009-06-01

    The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model development, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 109-141; C.W. Tornøe, R.V. Overgaard, H. Agersø, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8)) (2005) 1247-1258; R.V. Overgaard, N. Jonsson, C.W. Tornøe, H. Madsen, Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 85-107; U. Picchini, S. Ditlevsen, A. De Gaetano, Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics, Math. Med. Biol. 25 (June(2)) (2008) 141-155]. PK/PD models are traditionally based ordinary differential equations (ODEs) with an observation link that incorporates noise. This state-space formulation only allows for observation noise and not for system noise. Extending to SDEs allows for a Wiener noise component in the system equations. This additional noise component enables handling of autocorrelated residuals originating from natural variation or systematic model error. Autocorrelated residuals are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE(1) approximation to the population likelihood which is generated from the individual likelihoods that are approximated using the Extended Kalman Filter's one-step predictions.

  5. Correlation Factors Describing Primary and Spatial Sensations of Sound Fields

    NASA Astrophysics Data System (ADS)

    ANDO, Y.

    2002-11-01

    The theory of subjective preference of the sound field in a concert hall is established based on the model of human auditory-brain system. The model consists of the autocorrelation function (ACF) mechanism and the interaural crosscorrelation function (IACF) mechanism for signals arriving at two ear entrances, and the specialization of human cerebral hemispheres. This theory can be developed to describe primary sensations such as pitch or missing fundamental, loudness, timbre and, in addition, duration sensation which is introduced here as a fourth. These four primary sensations may be formulated by the temporal factors extracted from the ACF associated with the left hemisphere and, spatial sensations such as localization in the horizontal plane, apparent source width and subjective diffuseness are described by the spatial factors extracted from the IACF associated with the right hemisphere. Any important subjective responses of sound fields may be described by both temporal and spatial factors.

  6. Spatial and Temporal Changes of Aerosol Optical Depth and its Driving Factors Based on Modis in Jiangsu Province

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Xu, Q.; Gu, Y. K.; Qian, X. Y.; He, J. N.

    2018-04-01

    Aerosol Optical Depth (AOD) is of great value for studying air mass and its changes. In this paper, we studied the spatial-temporal changes of AOD and its driving factors based on spatial autocorrelation model, gravity model and multiple regression analysis in Jiangsu Province from 2007 to 2016. The results showed that in terms of spatial distribution, the southern AOD value is higher, and the high-value aggregation areas are significant, while the northern AOD value is lower, but the low-value aggregation areas constantly change. The AOD gravity centers showed a clear point-like aggregation. In terms of temporal changes, the overall AOD in Jiangsu Province increased year by year in fluctuation. In terms of driving factors, the total amount of vehicles, precipitation and temperature are important factors for the growth of AOD.

  7. Accounting for autocorrelation in multi-drug resistant tuberculosis predictors using a set of parsimonious orthogonal eigenvectors aggregated in geographic space.

    PubMed

    Jacob, Benjamin J; Krapp, Fiorella; Ponce, Mario; Gottuzzo, Eduardo; Griffith, Daniel A; Novak, Robert J

    2010-05-01

    Spatial autocorrelation is problematic for classical hierarchical cluster detection tests commonly used in multi-drug resistant tuberculosis (MDR-TB) analyses as considerable random error can occur. Therefore, when MDRTB clusters are spatially autocorrelated the assumption that the clusters are independently random is invalid. In this research, a product moment correlation coefficient (i.e., the Moran's coefficient) was used to quantify local spatial variation in multiple clinical and environmental predictor variables sampled in San Juan de Lurigancho, Lima, Peru. Initially, QuickBird 0.61 m data, encompassing visible bands and the near infra-red bands, were selected to synthesize images of land cover attributes of the study site. Data of residential addresses of individual patients with smear-positive MDR-TB were geocoded, prevalence rates calculated and then digitally overlaid onto the satellite data within a 2 km buffer of 31 georeferenced health centers, using a 10 m2 grid-based algorithm. Geographical information system (GIS)-gridded measurements of each health center were generated based on preliminary base maps of the georeferenced data aggregated to block groups and census tracts within each buffered area. A three-dimensional model of the study site was constructed based on a digital elevation model (DEM) to determine terrain covariates associated with the sampled MDR-TB covariates. Pearson's correlation was used to evaluate the linear relationship between the DEM and the sampled MDR-TB data. A SAS/GIS(R) module was then used to calculate univariate statistics and to perform linear and non-linear regression analyses using the sampled predictor variables. The estimates generated from a global autocorrelation analyses were then spatially decomposed into empirical orthogonal bases using a negative binomial regression with a non-homogeneous mean. Results of the DEM analyses indicated a statistically non-significant, linear relationship between georeferenced health centers and the sampled covariate elevation. The data exhibited positive spatial autocorrelation and the decomposition of Moran's coefficient into uncorrelated, orthogonal map pattern components revealed global spatial heterogeneities necessary to capture latent autocorrelation in the MDR-TB model. It was thus shown that Poisson regression analyses and spatial eigenvector mapping can elucidate the mechanics of MDR-TB transmission by prioritizing clinical and environmental-sampled predictor variables for identifying high risk populations.

  8. Non-isotropic noise correlation in PET data reconstructed by FBP but not by OSEM demonstrated using auto-correlation function.

    PubMed

    Razifar, Pasha; Lubberink, Mark; Schneider, Harald; Långström, Bengt; Bengtsson, Ewert; Bergström, Mats

    2005-05-13

    BACKGROUND: Positron emission tomography (PET) is a powerful imaging technique with the potential of obtaining functional or biochemical information by measuring distribution and kinetics of radiolabelled molecules in a biological system, both in vitro and in vivo. PET images can be used directly or after kinetic modelling to extract quantitative values of a desired physiological, biochemical or pharmacological entity. Because such images are generally noisy, it is essential to understand how noise affects the derived quantitative values. A pre-requisite for this understanding is that the properties of noise such as variance (magnitude) and texture (correlation) are known. METHODS: In this paper we explored the pattern of noise correlation in experimentally generated PET images, with emphasis on the angular dependence of correlation, using the autocorrelation function (ACF). Experimental PET data were acquired in 2D and 3D acquisition mode and reconstructed by analytical filtered back projection (FBP) and iterative ordered subsets expectation maximisation (OSEM) methods. The 3D data was rebinned to a 2D dataset using FOurier REbinning (FORE) followed by 2D reconstruction using either FBP or OSEM. In synthetic images we compared the ACF results with those from covariance matrix. The results were illustrated as 1D profiles and also visualized as 2D ACF images. RESULTS: We found that the autocorrelation images from PET data obtained after FBP were not fully rotationally symmetric or isotropic if the object deviated from a uniform cylindrical radioactivity distribution. In contrast, similar autocorrelation images obtained after OSEM reconstruction were isotropic even when the phantom was not circular. Simulations indicated that the noise autocorrelation is non-isotropic in images created by FBP when the level of noise in projections is angularly variable. Comparison between 1D cross profiles on autocorrelation images obtained by FBP reconstruction and covariance matrices produced almost identical results in a simulation study. CONCLUSION: With asymmetric radioactivity distribution in PET, reconstruction using FBP, in contrast to OSEM, generates images in which the noise correlation is non-isotropic when the noise magnitude is angular dependent, such as in objects with asymmetric radioactivity distribution. In this respect, iterative reconstruction is superior since it creates isotropic noise correlations in the images.

  9. Broadband distortion modeling in Lyman-α forest BAO fitting

    DOE PAGES

    Blomqvist, Michael; Kirkby, David; Bautista, Julian E.; ...

    2015-11-23

    Recently, the Lyman-α absorption observed in the spectra of high-redshift quasars has been used as a tracer of large-scale structure by means of the three-dimensional Lyman-α forest auto-correlation function at redshift z≃ 2.3, but the need to fit the quasar continuum in every absorption spectrum introduces a broadband distortion that is difficult to correct and causes a systematic error for measuring any broadband properties. Here, we describe a k-space model for this broadband distortion based on a multiplicative correction to the power spectrum of the transmitted flux fraction that suppresses power on scales corresponding to the typical length of amore » Lyman-α forest spectrum. In implementing the distortion model in fits for the baryon acoustic oscillation (BAO) peak position in the Lyman-α forest auto-correlation, we find that the fitting method recovers the input values of the linear bias parameter b F and the redshift-space distortion parameter β F for mock data sets with a systematic error of less than 0.5%. Applied to the auto-correlation measured for BOSS Data Release 11, our method improves on the previous treatment of broadband distortions in BAO fitting by providing a better fit to the data using fewer parameters and reducing the statistical errors on βF and the combination b F(1+β F) by more than a factor of seven. The measured values at redshift z=2.3 are βF=1.39 +0.11 +0.24 +0.38 -0.10 -0.19 -0.28 and bF(1+βF)=-0.374 +0.007 +0.013 +0.020 -0.007 -0.014 -0.022 (1σ, 2σ and 3σ statistical errors). Our fitting software and the input files needed to reproduce our main results are publicly available.« less

  10. Deciphering the adjustment between environment and life history in annuals: lessons from a geographically-explicit approach in Arabidopsis thaliana.

    PubMed

    Manzano-Piedras, Esperanza; Marcer, Arnald; Alonso-Blanco, Carlos; Picó, F Xavier

    2014-01-01

    The role that different life-history traits may have in the process of adaptation caused by divergent selection can be assessed by using extensive collections of geographically-explicit populations. This is because adaptive phenotypic variation shifts gradually across space as a result of the geographic patterns of variation in environmental selective pressures. Hence, large-scale experiments are needed to identify relevant adaptive life-history traits as well as their relationships with putative selective agents. We conducted a field experiment with 279 geo-referenced accessions of the annual plant Arabidopsis thaliana collected across a native region of its distribution range, the Iberian Peninsula. We quantified variation in life-history traits throughout the entire life cycle. We built a geographic information system to generate an environmental data set encompassing climate, vegetation and soil data. We analysed the spatial autocorrelation patterns of environmental variables and life-history traits, as well as the relationship between environmental and phenotypic data. Almost all environmental variables were significantly spatially autocorrelated. By contrast, only two life-history traits, seed weight and flowering time, exhibited significant spatial autocorrelation. Flowering time, and to a lower extent seed weight, were the life-history traits with the highest significant correlation coefficients with environmental factors, in particular with annual mean temperature. In general, individual fitness was higher for accessions with more vigorous seed germination, higher recruitment and later flowering times. Variation in flowering time mediated by temperature appears to be the main life-history trait by which A. thaliana adjusts its life history to the varying Iberian environmental conditions. The use of extensive geographically-explicit data sets obtained from field experiments represents a powerful approach to unravel adaptive patterns of variation. In a context of current global warming, geographically-explicit approaches, evaluating the match between organisms and the environments where they live, may contribute to better assess and predict the consequences of global warming.

  11. Temporal and spatial distribution characteristics in the natural plague foci of Chinese Mongolian gerbils based on spatial autocorrelation.

    PubMed

    Du, Hai-Wen; Wang, Yong; Zhuang, Da-Fang; Jiang, Xiao-San

    2017-08-07

    The nest flea index of Meriones unguiculatus is a critical indicator for the prevention and control of plague, which can be used not only to detect the spatial and temporal distributions of Meriones unguiculatus, but also to reveal its cluster rule. This research detected the temporal and spatial distribution characteristics of the plague natural foci of Mongolian gerbils by body flea index from 2005 to 2014, in order to predict plague outbreaks. Global spatial autocorrelation was used to describe the entire spatial distribution pattern of the body flea index in the natural plague foci of typical Chinese Mongolian gerbils. Cluster and outlier analysis and hot spot analysis were also used to detect the intensity of clusters based on geographic information system methods. The quantity of M. unguiculatus nest fleas in the sentinel surveillance sites from 2005 to 2014 and host density data of the study area from 2005 to 2010 used in this study were provided by Chinese Center for Disease Control and Prevention. The epidemic focus regions of the Mongolian gerbils remain the same as the hot spot regions relating to the body flea index. High clustering areas possess a similar pattern as the distribution pattern of the body flea index indicating that the transmission risk of plague is relatively high. In terms of time series, the area of the epidemic focus gradually increased from 2005 to 2007, declined rapidly in 2008 and 2009, and then decreased slowly and began trending towards stability from 2009 to 2014. For the spatial change, the epidemic focus regions began moving northward from the southwest epidemic focus of the Mongolian gerbils from 2005 to 2007, and then moved from north to south in 2007 and 2008. The body flea index of Chinese gerbil foci reveals significant spatial and temporal aggregation characteristics through the employing of spatial autocorrelation. The diversity of temporary and spatial distribution is mainly affected by seasonal variation, the human activity and natural factors.

  12. A method to identify differential expression profiles of time-course gene data with Fourier transformation.

    PubMed

    Kim, Jaehee; Ogden, Robert Todd; Kim, Haseong

    2013-10-18

    Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization.The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be potentially used to identify genes which have the same patterns or biological processes, and help facing the present and forthcoming challenges of data analysis in functional genomics.

  13. Broadband distortion modeling in Lyman-α forest BAO fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blomqvist, Michael; Kirkby, David; Margala, Daniel, E-mail: cblomqvi@uci.edu, E-mail: dkirkby@uci.edu, E-mail: dmargala@uci.edu

    2015-11-01

    In recent years, the Lyman-α absorption observed in the spectra of high-redshift quasars has been used as a tracer of large-scale structure by means of the three-dimensional Lyman-α forest auto-correlation function at redshift z≅ 2.3, but the need to fit the quasar continuum in every absorption spectrum introduces a broadband distortion that is difficult to correct and causes a systematic error for measuring any broadband properties. We describe a k-space model for this broadband distortion based on a multiplicative correction to the power spectrum of the transmitted flux fraction that suppresses power on scales corresponding to the typical length of amore » Lyman-α forest spectrum. Implementing the distortion model in fits for the baryon acoustic oscillation (BAO) peak position in the Lyman-α forest auto-correlation, we find that the fitting method recovers the input values of the linear bias parameter b{sub F} and the redshift-space distortion parameter β{sub F} for mock data sets with a systematic error of less than 0.5%. Applied to the auto-correlation measured for BOSS Data Release 11, our method improves on the previous treatment of broadband distortions in BAO fitting by providing a better fit to the data using fewer parameters and reducing the statistical errors on β{sub F} and the combination b{sub F}(1+β{sub F}) by more than a factor of seven. The measured values at redshift z=2.3 are β{sub F}=1.39{sup +0.11 +0.24 +0.38}{sub −0.10 −0.19 −0.28} and b{sub F}(1+β{sub F})=−0.374{sup +0.007 +0.013 +0.020}{sub −0.007 −0.014 −0.022} (1σ, 2σ and 3σ statistical errors). Our fitting software and the input files needed to reproduce our main results are publicly available.« less

  14. Integrated autocorrelator based on superconducting nanowires.

    PubMed

    Sahin, Döndü; Gaggero, Alessandro; Hoang, Thang Ba; Frucci, Giulia; Mattioli, Francesco; Leoni, Roberto; Beetz, Johannes; Lermer, Matthias; Kamp, Martin; Höfling, Sven; Fiore, Andrea

    2013-05-06

    We demonstrate an integrated autocorrelator based on two superconducting single-photon detectors patterned on top of a GaAs ridge waveguide. This device enables the on-chip measurement of the second-order intensity correlation function g(2)(τ). A polarization-independent device quantum efficiency in the 1% range is reported, with a timing jitter of 88 ps at 1300 nm. g(2)(τ) measurements of continuous-wave and pulsed laser excitations are demonstrated with no measurable crosstalk within our measurement accuracy.

  15. User's guide to Monte Carlo methods for evaluating path integrals

    NASA Astrophysics Data System (ADS)

    Westbroek, Marise J. E.; King, Peter R.; Vvedensky, Dimitri D.; Dürr, Stephan

    2018-04-01

    We give an introduction to the calculation of path integrals on a lattice, with the quantum harmonic oscillator as an example. In addition to providing an explicit computational setup and corresponding pseudocode, we pay particular attention to the existence of autocorrelations and the calculation of reliable errors. The over-relaxation technique is presented as a way to counter strong autocorrelations. The simulation methods can be extended to compute observables for path integrals in other settings.

  16. Testing algorithms for critical slowing down

    NASA Astrophysics Data System (ADS)

    Cossu, Guido; Boyle, Peter; Christ, Norman; Jung, Chulwoo; Jüttner, Andreas; Sanfilippo, Francesco

    2018-03-01

    We present the preliminary tests on two modifications of the Hybrid Monte Carlo (HMC) algorithm. Both algorithms are designed to travel much farther in the Hamiltonian phase space for each trajectory and reduce the autocorrelations among physical observables thus tackling the critical slowing down towards the continuum limit. We present a comparison of costs of the new algorithms with the standard HMC evolution for pure gauge fields, studying the autocorrelation times for various quantities including the topological charge.

  17. The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach

    NASA Astrophysics Data System (ADS)

    Smith, Tony E.; Lee, Ka Lok

    2012-01-01

    There is a common belief that the presence of residual spatial autocorrelation in ordinary least squares (OLS) regression leads to inflated significance levels in beta coefficients and, in particular, inflated levels relative to the more efficient spatial error model (SEM). However, our simulations show that this is not always the case. Hence, the purpose of this paper is to examine this question from a geometric viewpoint. The key idea is to characterize the OLS test statistic in terms of angle cosines and examine the geometric implications of this characterization. Our first result is to show that if the explanatory variables in the regression exhibit no spatial autocorrelation, then the distribution of test statistics for individual beta coefficients in OLS is independent of any spatial autocorrelation in the error term. Hence, inferences about betas exhibit all the optimality properties of the classic uncorrelated error case. However, a second more important series of results show that if spatial autocorrelation is present in both the dependent and explanatory variables, then the conventional wisdom is correct. In particular, even when an explanatory variable is statistically independent of the dependent variable, such joint spatial dependencies tend to produce "spurious correlation" that results in over-rejection of the null hypothesis. The underlying geometric nature of this problem is clarified by illustrative examples. The paper concludes with a brief discussion of some possible remedies for this problem.

  18. Spatial autocorrelation of radiation measured by the Earth Radiation Budget Experiment: Scene inhomogeneity and reciprocity violation

    NASA Technical Reports Server (NTRS)

    Davies, Roger

    1994-01-01

    The spatial autocorrelation functions of broad-band longwave and shortwave radiances measured by the Earth Radiation Budget Experiment (ERBE) are analyzed as a function of view angle in an investigation of the general effects of scene inhomogeneity on radiation. For nadir views, the correlation distance of the autocorrelation function is about 900 km for longwave radiance and about 500 km for shortwave radiance, consistent with higher degrees of freedom in shortwave reflection. Both functions rise monotonically with view angle, but there is a substantial difference in the relative angular dependence of the shortwave and longwave functions, especially for view angles less than 50 deg. In this range, the increase with angle of the longwave functions is found to depend only on the expansion of pixel area with angle, whereas the shortwave functions show an additional dependence on angle that is attributed to the occlusion of inhomogeneities by cloud height variations. Beyond a view angle of about 50 deg, both longwave and shortwave functions appear to be affected by cloud sides. The shortwave autocorrelation functions do not satisfy the principle of directional reciprocity, thereby proving that the average scene is horizontally inhomogeneous over the scale of an ERBE pixel (1500 sq km). Coarse stratification of the measurements by cloud amount, however, indicates that the average cloud-free scene does satisfy directional reciprocity on this scale.

  19. An asymptotic theory for cross-correlation between auto-correlated sequences and its application on neuroimaging data.

    PubMed

    Zhou, Yunyi; Tao, Chenyang; Lu, Wenlian; Feng, Jianfeng

    2018-04-20

    Functional connectivity is among the most important tools to study brain. The correlation coefficient, between time series of different brain areas, is the most popular method to quantify functional connectivity. Correlation coefficient in practical use assumes the data to be temporally independent. However, the time series data of brain can manifest significant temporal auto-correlation. A widely applicable method is proposed for correcting temporal auto-correlation. We considered two types of time series models: (1) auto-regressive-moving-average model, (2) nonlinear dynamical system model with noisy fluctuations, and derived their respective asymptotic distributions of correlation coefficient. These two types of models are most commonly used in neuroscience studies. We show the respective asymptotic distributions share a unified expression. We have verified the validity of our method, and shown our method exhibited sufficient statistical power for detecting true correlation on numerical experiments. Employing our method on real dataset yields more robust functional network and higher classification accuracy than conventional methods. Our method robustly controls the type I error while maintaining sufficient statistical power for detecting true correlation in numerical experiments, where existing methods measuring association (linear and nonlinear) fail. In this work, we proposed a widely applicable approach for correcting the effect of temporal auto-correlation on functional connectivity. Empirical results favor the use of our method in functional network analysis. Copyright © 2018. Published by Elsevier B.V.

  20. Two Point Autocorrelation Analysis of Auger Highest Energy Events Backtracked in Galactic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Petrov, Yevgeniy

    2009-10-01

    Searches for sources of the highest-energy cosmic rays traditionally have included looking for clusters of event arrival directions on the sky. The smallest cluster is a pair of events falling within some angular window. In contrast to the standard two point (2-pt) autocorrelation analysis, this work takes into account influence of the galactic magnetic field (GMF). The highest energy events, those above 50EeV, collected by the surface detector of the Pierre Auger Observatory between January 1, 2004 and May 31, 2009 are used in the analysis. Having assumed protons as primaries, events are backtracked through BSS/S, BSS/A, ASS/S and ASS/A versions of Harari-Mollerach-Roulet (HMR) model of the GMF. For each version of the model, a 2-pt autocorrelation analysis is applied to the backtracked events and to 105 isotropic Monte Carlo realizations weighted by the Auger exposure. Scans in energy, separation angular window and different model parameters reveal clustering at different angular scales. Small angle clustering at 2-3 deg is particularly interesting and it is compared between different field scenarios. The strength of the autocorrelation signal at those angular scales differs between BSS and ASS versions of the HMR model. The BSS versions of the model tend to defocus protons as they arrive to Earth whereas for the ASS, in contrary, it is more likely to focus them.

  1. Identifying areas at risk of low birth weight using spatial epidemiology: A small area surveillance study.

    PubMed

    Insaf, Tabassum Z; Talbot, Thomas

    2016-07-01

    To assess the geographic distribution of Low Birth Weight (LBW) in New York State among singleton births using a spatial regression approach in order to identify priority areas for public health actions. LBW was defined as birth weight less than 2500g. Geocoded data from 562,586 birth certificates in New York State (years 2008-2012) were merged with 2010 census data at the tract level. To provide stable estimates and maintain confidentiality, data were aggregated to yield 1268 areas of analysis. LBW prevalence among singleton births was related with area-level behavioral, socioeconomic and demographic characteristics using a Poisson mixed effects spatial error regression model. Observed low birth weight showed statistically significant auto-correlation in our study area (Moran's I 0.16 p value 0.0005). After over-dispersion correction and accounting for fixed effects for selected social determinants, spatial autocorrelation was fully accounted for (Moran's I-0.007 p value 0.241). The proportion of LBW was higher in areas with larger Hispanic or Black populations and high smoking prevalence. Smoothed maps with predicted prevalence were developed to identify areas at high risk of LBW. Spatial patterns of residual variation were analyzed to identify unique risk factors. Neighborhood racial composition contributes to disparities in LBW prevalence beyond differences in behavioral and socioeconomic factors. Small-area analyses of LBW can identify areas for targeted interventions and display unique local patterns that should be accounted for in prevention strategies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Investigation of the marked and long-standing spatial inhomogeneity of the Hungarian suicide rate: a spatial regression approach.

    PubMed

    Balint, Lajos; Dome, Peter; Daroczi, Gergely; Gonda, Xenia; Rihmer, Zoltan

    2014-02-01

    In the last century Hungary had astonishingly high suicide rates characterized by marked regional within-country inequalities, a spatial pattern which has been quite stable over time. To explain the above phenomenon at the level of micro-regions (n=175) in the period between 2005 and 2011. Our dependent variable was the age and gender standardized mortality ratio (SMR) for suicide while explanatory variables were factors which are supposed to influence suicide risk, such as measures of religious and political integration, travel time accessibility of psychiatric services, alcohol consumption, unemployment and disability pensionery. When applying the ordinary least squared regression model, the residuals were found to be spatially autocorrelated, which indicates the violation of the assumption on the independence of error terms and - accordingly - the necessity of application of a spatial autoregressive (SAR) model to handle this problem. According to our calculations the SARlag model was a better way (versus the SARerr model) of addressing the problem of spatial autocorrelation, furthermore its substantive meaning is more convenient. SMR was significantly associated with the "political integration" variable in a negative and with "lack of religious integration" and "disability pensionery" variables in a positive manner. Associations were not significant for the remaining explanatory variables. Several important psychiatric variables were not available at the level of micro-regions. We conducted our analysis on aggregate data. Our results may draw attention to the relevance and abiding validity of the classic Durkheimian suicide risk factors - such as lack of social integration - apropos of the spatial pattern of Hungarian suicides. © 2013 Published by Elsevier B.V.

  3. Time-series analysis of delta13C from tree rings. I. Time trends and autocorrelation.

    PubMed

    Monserud, R A; Marshall, J D

    2001-09-01

    Univariate time-series analyses were conducted on stable carbon isotope ratios obtained from tree-ring cellulose. We looked for the presence and structure of autocorrelation. Significant autocorrelation violates the statistical independence assumption and biases hypothesis tests. Its presence would indicate the existence of lagged physiological effects that persist for longer than the current year. We analyzed data from 28 trees (60-85 years old; mean = 73 years) of western white pine (Pinus monticola Dougl.), ponderosa pine (Pinus ponderosa Laws.), and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca) growing in northern Idaho. Material was obtained by the stem analysis method from rings laid down in the upper portion of the crown throughout each tree's life. The sampling protocol minimized variation caused by changing light regimes within each tree. Autoregressive moving average (ARMA) models were used to describe the autocorrelation structure over time. Three time series were analyzed for each tree: the stable carbon isotope ratio (delta(13)C); discrimination (delta); and the difference between ambient and internal CO(2) concentrations (c(a) - c(i)). The effect of converting from ring cellulose to whole-leaf tissue did not affect the analysis because it was almost completely removed by the detrending that precedes time-series analysis. A simple linear or quadratic model adequately described the time trend. The residuals from the trend had a constant mean and variance, thus ensuring stationarity, a requirement for autocorrelation analysis. The trend over time for c(a) - c(i) was particularly strong (R(2) = 0.29-0.84). Autoregressive moving average analyses of the residuals from these trends indicated that two-thirds of the individual tree series contained significant autocorrelation, whereas the remaining third were random (white noise) over time. We were unable to distinguish between individuals with and without significant autocorrelation beforehand. Significant ARMA models were all of low order, with either first- or second-order (i.e., lagged 1 or 2 years, respectively) models performing well. A simple autoregressive (AR(1)), model was the most common. The most useful generalization was that the same ARMA model holds for each of the three series (delta(13)C, delta, c(a) - c(i)) for an individual tree, if the time trend has been properly removed for each series. The mean series for the two pine species were described by first-order ARMA models (1-year lags), whereas the Douglas-fir mean series were described by second-order models (2-year lags) with negligible first-order effects. Apparently, the process of constructing a mean time series for a species preserves an underlying signal related to delta(13)C while canceling some of the random individual tree variation. Furthermore, the best model for the overall mean series (e.g., for a species) cannot be inferred from a consensus of the individual tree model forms, nor can its parameters be estimated reliably from the mean of the individual tree parameters. Because two-thirds of the individual tree time series contained significant autocorrelation, the normal assumption of a random structure over time is unwarranted, even after accounting for the time trend. The residuals of an appropriate ARMA model satisfy the independence assumption, and can be used to make hypothesis tests.

  4. Autocorrelation analysis of the infrared spectra of synthetic and biogenic carbonates along the calcite-dolomite join

    NASA Astrophysics Data System (ADS)

    Jenkins, David M.; Holmes, Zachary F.; Ishida, Kiyotaka; Manuel, Phillip D.

    2018-01-01

    Autocorrelation analysis of infrared spectra can provide insights on the strain energy associated with cation substitutions along a solid-solution compositional join which to date has been applied primarily to silicate minerals. In this study, the method is applied to carbonates synthesized at 10 mol% increments along the calcite-dolomite (CaCO3-CaMg(CO3)2) join in the range of 1000-1150 °C and 0.6-2.5 GPa for the purpose of determining how the band broadening in both the far- and mid-infrared ranges, as represented by the autocorrelation parameter δΔCorr, compares with the existing enthalpy of mixing data for this join. It was found that the carbonate internal vibration ν2 (out-of-plane bending) in the mid-infrared range, and the sum of the three internal vibration modes ν4 + ν2 + ν3 most closely matched the enthalpy of mixing data for the synthetic carbonates. Autocorrelation analysis of a series of biogenic carbonates in the mid-infrared range showed only a systematic variation for the ν2 band. Using the biogenic carbonate with the lowest Mg content for reference, the trend in δΔCorr for biogenic carbonates shows a steady increase with increasing Mg content suggesting a steady increase in solubility with Mg content. The results from this study indicate that autocorrelation analysis of carbonates in the mid-infrared range provides an independent and reliable assessment of the crystallographic strain energy of carbonates. In particular, inorganic carbonates in the range of 0-17 mol% MgCO3 experience a minimum in strain energy and a corresponding minimum in the enthalpy of mixing, whereas biogenic carbonates show a steady increase in strain energy with increasing MgCO3 content. In the event of increasing ocean acidification, biogenic carbonates in the range of 0-17 mol% MgCO3 will dissolve more readily than the compositionally equivalent inorganic carbonates.

  5. Autocorrelation analysis of the infrared spectra of synthetic and biogenic carbonates along the calcite-dolomite join

    NASA Astrophysics Data System (ADS)

    Jenkins, David M.; Holmes, Zachary F.; Ishida, Kiyotaka; Manuel, Phillip D.

    2018-06-01

    Autocorrelation analysis of infrared spectra can provide insights on the strain energy associated with cation substitutions along a solid-solution compositional join which to date has been applied primarily to silicate minerals. In this study, the method is applied to carbonates synthesized at 10 mol% increments along the calcite-dolomite (CaCO3-CaMg(CO3)2) join in the range of 1000-1150 °C and 0.6-2.5 GPa for the purpose of determining how the band broadening in both the far- and mid-infrared ranges, as represented by the autocorrelation parameter δΔCorr, compares with the existing enthalpy of mixing data for this join. It was found that the carbonate internal vibration ν2 (out-of-plane bending) in the mid-infrared range, and the sum of the three internal vibration modes ν4 + ν2 + ν3 most closely matched the enthalpy of mixing data for the synthetic carbonates. Autocorrelation analysis of a series of biogenic carbonates in the mid-infrared range showed only a systematic variation for the ν2 band. Using the biogenic carbonate with the lowest Mg content for reference, the trend in δΔCorr for biogenic carbonates shows a steady increase with increasing Mg content suggesting a steady increase in solubility with Mg content. The results from this study indicate that autocorrelation analysis of carbonates in the mid-infrared range provides an independent and reliable assessment of the crystallographic strain energy of carbonates. In particular, inorganic carbonates in the range of 0-17 mol% MgCO3 experience a minimum in strain energy and a corresponding minimum in the enthalpy of mixing, whereas biogenic carbonates show a steady increase in strain energy with increasing MgCO3 content. In the event of increasing ocean acidification, biogenic carbonates in the range of 0-17 mol% MgCO3 will dissolve more readily than the compositionally equivalent inorganic carbonates.

  6. a Study of the Concentration Dependence of Macromolecular Diffusion Using Photon Correlation Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Marlowe, Robert Lloyd

    The dynamic light scattering technique of photon correlation spectroscopy has been used to investigate the dependence of the mutual diffusion coefficient of a macromolecular system upon concentration. The first part of the research was devoted to the design and construction of a single-clipping autocorrelator based on newly-developed integrated circuits. The resulting 128 channel instrument can perform real time autocorrelation for sample time intervals >(, )10 (mu)s, and batch processed autocorrelation for intervals down to 3 (mu)s. An improved design for a newer, all-digital autocorrelator is given. Homodyne light scattering experiments were then undertaken on monodisperse solutions of polystyrene spheres. The single-mode TEM(,oo) beam of an argon-ion laser ((lamda) = 5145 (ANGSTROM)) was used as the light source; all solutions were studied at room temperature. The scattering angle was varied from 30(DEGREES) to 110(DEGREES). Excellent agreement with the manufacturer's specification for the particle size was obtained from the photon correlation studies. Finally, aqueous solutions of the globular protein ovalbumin, ranging in concentration from 18.9 to 244.3 mg/ml, were illuminated under the same conditions of temperature and wavelength as before; the homodyne scattered light was detected at a fixed scattering angle of 30(DEGREES). The single-clipped photocount autocorrelation function was analyzed using the homodyne exponential integral method of Meneely et al. The resulting diffusion coefficients showed a general linear dependence upon concentration, as predicted by the generalized Stokes-Einstein equation. However, a clear peak in the data was evident at c (TURNEQ) 100 mg/ml, which could not be explained on the basis of a non -interacting particle theory. A semi-quantitative approach based on the Debye-Huckel theory of electrostatic interactions is suggested as the probable cause for the peak's rise, and an excluded volume effect for its decline.

  7. Structure of the North Anatolian Fault Zone from the Auto-Correlation of Ambient Seismic Noise Recorded at a Dense Seismometer Array

    NASA Astrophysics Data System (ADS)

    Taylor, D. G.; Rost, S.; Houseman, G.

    2015-12-01

    In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquake or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct reflection images for the entire crust and upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using auto-correlations of vertical and horizontal components of ground motion, both P- and S-wave velocity information can be retrieved from the wavefield to constrain crustal structure further to established methods. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the fault zone in the region. The combined analysis of auto-correlations using vertical and horizontal components will lead to further insight into the fault zone structure throughout the crust and upper mantle.

  8. The spatial distribution of gender differences in obesity prevalence differs from overall obesity prevalence among US adults

    PubMed Central

    Gartner, Danielle R.; Taber, Daniel R.; Hirsch, Jana A.; Robinson, Whitney R.

    2016-01-01

    Purpose While obesity disparities between racial and socioeconomic groups have been well characterized, those based on gender and geography have not been as thoroughly documented. This study describes obesity prevalence by state, gender, and race/ethnicity to (1) characterize obesity gender inequality, (2) determine if the geographic distribution of inequality is spatially clustered and (3) contrast the spatial clustering patterns of obesity gender inequality with overall obesity prevalence. Methods Data from the Centers for Disease Control and Prevention’s 2013 Behavioral Risk Factor Surveillance System (BRFSS) were used to calculate state-specific obesity prevalence and gender inequality measures. Global and Local Moran’s Indices were calculated to determine spatial autocorrelation. Results Age-adjusted, state-specific obesity prevalence difference and ratio measures show spatial autocorrelation (z-score=4.89, p-value <0.001). Local Moran’s Indices indicate the spatial distributions of obesity prevalence and obesity gender inequalities are not the same. High and low values of obesity prevalence and gender inequalities cluster in different areas of the U.S. Conclusion Clustering of gender inequality suggests that spatial processes operating at the state level, such as occupational or physical activity policies or social norms, are involved in the etiology of the inequality and necessitate further attention to the determinates of obesity gender inequality. PMID:27039046

  9. A method of noise reduction in heterodyne interferometric vibration metrology by combining auto-correlation analysis and spectral filtering

    NASA Astrophysics Data System (ADS)

    Hao, Hongliang; Xiao, Wen; Chen, Zonghui; Ma, Lan; Pan, Feng

    2018-01-01

    Heterodyne interferometric vibration metrology is a useful technique for dynamic displacement and velocity measurement as it can provide a synchronous full-field output signal. With the advent of cost effective, high-speed real-time signal processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. However, due to the coherent nature of the laser sources, the sequence of heterodyne interferogram are corrupted by a mixture of coherent speckle and incoherent additive noise, which can severely degrade the accuracy of the demodulated signal and the optical display. In this paper, a new heterodyne interferometric demodulation method by combining auto-correlation analysis and spectral filtering is described leading to an expression for the dynamic displacement and velocity of the object under test that is significantly more accurate in both the amplitude and frequency of the vibrating waveform. We present a mathematical model of the signals obtained from interferograms that contain both vibration information of the measured objects and the noise. A simulation of the signal demodulation process is presented and used to investigate the noise from the system and external factors. The experimental results show excellent agreement with measurements from a commercial Laser Doppler Velocimetry (LDV).

  10. A NEW METHOD FOR FINDING POINT SOURCES IN HIGH-ENERGY NEUTRINO DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Ke; Miller, M. Coleman

    The IceCube collaboration has reported the first detection of high-energy astrophysical neutrinos, including ∼50 high-energy starting events, but no individual sources have been identified. It is therefore important to develop the most sensitive and efficient possible algorithms to identify the point sources of these neutrinos. The most popular current method works by exploring a dense grid of possible directions to individual sources, and identifying the single direction with the maximum probability of having produced multiple detected neutrinos. This method has numerous strengths, but it is computationally intensive and because it focuses on the single best location for a point source,more » additional point sources are not included in the evidence. We propose a new maximum likelihood method that uses the angular separations between all pairs of neutrinos in the data. Unlike existing autocorrelation methods for this type of analysis, which also use angular separations between neutrino pairs, our method incorporates information about the point-spread function and can identify individual point sources. We find that if the angular resolution is a few degrees or better, then this approach reduces both false positive and false negative errors compared to the current method, and is also more computationally efficient up to, potentially, hundreds of thousands of detected neutrinos.« less

  11. Microfluidic volumetric flow determination using optical coherence tomography speckle: An autocorrelation approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Pretto, Lucas R., E-mail: lucas.de.pretto@usp.br; Nogueira, Gesse E. C.; Freitas, Anderson Z.

    2016-04-28

    Functional modalities of Optical Coherence Tomography (OCT) based on speckle analysis are emerging in the literature. We propose a simple approach to the autocorrelation of OCT signal to enable volumetric flow rate differentiation, based on decorrelation time. Our results show that this technique could distinguish flows separated by 3 μl/min, limited by the acquisition speed of the system. We further perform a B-scan of gradient flow inside a microchannel, enabling the visualization of the drag effect on the walls.

  12. Schistosomiasis mansoni incidence data in Rwanda can improve prevalence assessments, by providing high-resolution hotspot and risk factors identification.

    PubMed

    Nyandwi, E; Veldkamp, A; Amer, S; Karema, C; Umulisa, I

    2017-10-25

    Schistosomiasis mansoni constitutes a significant public health problem in Rwanda. The nationwide prevalence mapping conducted in 2007-2008 revealed that prevalence per district ranges from 0 to 69.5% among school children. In response, mass drug administration campaigns were initiated. However, a few years later some additional small-scale studies revealed the existence of areas of high transmission in districts formerly classified as low endemic suggesting the need for a more accurate methodology for identification of hotspots. This study investigated if confirmed cases of schistosomiasis recorded at health facility level can be used to, next to existing prevalence data, detect geographically more accurate hotspots of the disease and its associated risk factors. A GIS-based spatial and statistical analysis was carried out. Confirmed cases, recorded at primary health facilities level, were combined with demographic data to calculate incidence rates for each of 367 health facility service area. Empirical Bayesian smoothing was used to deal with rate instability. Incidence rates were compared with prevalence data to identify their level of agreement. Spatial autocorrelation of the incidence rates was analyzed using Moran's Index, to check if spatial clustering occurs. Finally, the spatial relationship between schistosomiasis distribution and potential risk factors was assessed using multiple regression. Incidence rates for 2007-2008 were highly correlated with prevalence values (R 2  = 0.79), indicating that in the case of Rwanda incidence data can be used as a proxy for prevalence data. We observed a focal distribution of schistosomiasis with a significant spatial autocorrelation (Moran's I > 0: 0,05-0.20 and p ≤ 0,05), indicating the occurrence of hotspots. Regarding risk factors, it was identified that the spatial pattern of schistosomiasis is significantly associated with wetland conditions and rice cultivation. In Rwanda the high density of health facilities and the standardized microscopic laboratory diagnostic allow the derived data to be used to complement prevalence studies to identify hotspots of schistosomiasis and its associated risk factors. This type of information, in turn, can support disease control interventions and monitoring.

  13. The Association between Environmental Factors and Scarlet Fever Incidence in Beijing Region: Using GIS and Spatial Regression Models

    PubMed Central

    Mahara, Gehendra; Wang, Chao; Yang, Kun; Chen, Sipeng; Guo, Jin; Gao, Qi; Wang, Wei; Wang, Quanyi; Guo, Xiuhua

    2016-01-01

    (1) Background: Evidence regarding scarlet fever and its relationship with meteorological, including air pollution factors, is not very available. This study aimed to examine the relationship between ambient air pollutants and meteorological factors with scarlet fever occurrence in Beijing, China. (2) Methods: A retrospective ecological study was carried out to distinguish the epidemic characteristics of scarlet fever incidence in Beijing districts from 2013 to 2014. Daily incidence and corresponding air pollutant and meteorological data were used to develop the model. Global Moran’s I statistic and Anselin’s local Moran’s I (LISA) were applied to detect the spatial autocorrelation (spatial dependency) and clusters of scarlet fever incidence. The spatial lag model (SLM) and spatial error model (SEM) including ordinary least squares (OLS) models were then applied to probe the association between scarlet fever incidence and meteorological including air pollution factors. (3) Results: Among the 5491 cases, more than half (62%) were male, and more than one-third (37.8%) were female, with the annual average incidence rate 14.64 per 100,000 population. Spatial autocorrelation analysis exhibited the existence of spatial dependence; therefore, we applied spatial regression models. After comparing the values of R-square, log-likelihood and the Akaike information criterion (AIC) among the three models, the OLS model (R2 = 0.0741, log likelihood = −1819.69, AIC = 3665.38), SLM (R2 = 0.0786, log likelihood = −1819.04, AIC = 3665.08) and SEM (R2 = 0.0743, log likelihood = −1819.67, AIC = 3665.36), identified that the spatial lag model (SLM) was best for model fit for the regression model. There was a positive significant association between nitrogen oxide (p = 0.027), rainfall (p = 0.036) and sunshine hour (p = 0.048), while the relative humidity (p = 0.034) had an adverse association with scarlet fever incidence in SLM. (4) Conclusions: Our findings indicated that meteorological, as well as air pollutant factors may increase the incidence of scarlet fever; these findings may help to guide scarlet fever control programs and targeting the intervention. PMID:27827946

  14. The Association between Environmental Factors and Scarlet Fever Incidence in Beijing Region: Using GIS and Spatial Regression Models.

    PubMed

    Mahara, Gehendra; Wang, Chao; Yang, Kun; Chen, Sipeng; Guo, Jin; Gao, Qi; Wang, Wei; Wang, Quanyi; Guo, Xiuhua

    2016-11-04

    (1) Background: Evidence regarding scarlet fever and its relationship with meteorological, including air pollution factors, is not very available. This study aimed to examine the relationship between ambient air pollutants and meteorological factors with scarlet fever occurrence in Beijing, China. (2) Methods: A retrospective ecological study was carried out to distinguish the epidemic characteristics of scarlet fever incidence in Beijing districts from 2013 to 2014. Daily incidence and corresponding air pollutant and meteorological data were used to develop the model. Global Moran's I statistic and Anselin's local Moran's I (LISA) were applied to detect the spatial autocorrelation (spatial dependency) and clusters of scarlet fever incidence. The spatial lag model (SLM) and spatial error model (SEM) including ordinary least squares (OLS) models were then applied to probe the association between scarlet fever incidence and meteorological including air pollution factors. (3) Results: Among the 5491 cases, more than half (62%) were male, and more than one-third (37.8%) were female, with the annual average incidence rate 14.64 per 100,000 population. Spatial autocorrelation analysis exhibited the existence of spatial dependence; therefore, we applied spatial regression models. After comparing the values of R-square, log-likelihood and the Akaike information criterion (AIC) among the three models, the OLS model (R² = 0.0741, log likelihood = -1819.69, AIC = 3665.38), SLM (R² = 0.0786, log likelihood = -1819.04, AIC = 3665.08) and SEM (R² = 0.0743, log likelihood = -1819.67, AIC = 3665.36), identified that the spatial lag model (SLM) was best for model fit for the regression model. There was a positive significant association between nitrogen oxide ( p = 0.027), rainfall ( p = 0.036) and sunshine hour ( p = 0.048), while the relative humidity ( p = 0.034) had an adverse association with scarlet fever incidence in SLM. (4) Conclusions: Our findings indicated that meteorological, as well as air pollutant factors may increase the incidence of scarlet fever; these findings may help to guide scarlet fever control programs and targeting the intervention.

  15. A population-based study of prevalence trends and geospatial analysis of hypospadias and cryptorchidism compared with non-endocrine mediated congenital anomalies.

    PubMed

    Lane, Ciaran; Boxall, James; MacLellan, Dawn; Anderson, Peter A; Dodds, Linda; Romao, Rodrigo L P

    2017-06-01

    Several reports have suggested an increase in the prevalence of hypospadias and cryptorchidism over the last few decades. Endocrine disruption caused by exposure to environmental chemicals has been postulated as a possible cause. The objectives of our study were: 1) to determine whether the prevalence of hypospadias and cryptorchidism is increasing compared with other congenital anomalies not known to be mediated by endocrine factors; and 2) to perform a geospatial analysis of these congenital malformations looking for clustering that could offer insight into environmental risk factors. Data were obtained from the Nova Scotia ATLEE Perinatal Database containing the perinatal records of all live births in Nova Scotia, Canada since 1988. Records from 1988 to 2013 defined the study cohort. Overall prevalence rates and prevalence trends by year were calculated for hypospadias, cryptorchidism, gastroschisis, and clubfoot. County of residence was collected and spatial autocorrelation testing for clustering was performed for each of the congenital anomalies. There were 258,147 live births during the study period. Overall prevalence rates for the four malformations over the study period were: hypospadias 78 per 10,000 male births, cryptorchidism 75 per 10,000 male births, clubfoot 24 per 10,000 total births, and gastroschisis 4 per 10,000 total births. Incidence rate ratios per year for hypospadias, cryptorchidism, clubfoot, and gastroschisis were 1.00 (0.99-1.01), 0.99 (0.98-1.00), 0.98 (0.97-0.99), and 1.04 (1.04-1.07), respectively. During the study period, the prevalence rates in the region were unchanged for hypospadias, slightly reduced for cryptorchidism and clubfoot, and rising for gastroschisis (Figure). Spatial autocorrelation testing revealed statistically significant clustering for hypospadias (p = 0.03) and cryptorchidism (p = 0.03), while no spatial autocorrelation was observed for the other malformations. Contrary to previous studies we show that hypospadias and cryptorchidism prevalence rates are not increasing over time in our region. Nonetheless, rates for these conditions in our area are high compared with other regions of the world. Local clustering of these congenital anomalies without clustering of the control, non-endocrine mediated congenital malformations supports a possible unique spatial distribution associated with environmental exposure. The hotspots identified for hypospadias and cryptorchidism are associated with intense agricultural activity. Our study found no increase in hypospadias and cryptorchidism prevalence over a 26-year period compared with other congenital anomalies not known to be associated with endocrine factors. Geospatial analysis supports high clustering for hypospadias and cryptorchidism in areas of intense agricultural activity. Copyright © 2017 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  16. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ge; Wang, Jun; Fang, Wen, E-mail: fangwen@bjtu.edu.cn

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also definedmore » in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.« less

  17. Aging Wiener-Khinchin theorem and critical exponents of 1/f^{β} noise.

    PubMed

    Leibovich, N; Dechant, A; Lutz, E; Barkai, E

    2016-11-01

    The power spectrum of a stationary process may be calculated in terms of the autocorrelation function using the Wiener-Khinchin theorem. We here generalize the Wiener-Khinchin theorem for nonstationary processes and introduce a time-dependent power spectrum 〈S_{t_{m}}(ω)〉 where t_{m} is the measurement time. For processes with an aging autocorrelation function of the form 〈I(t)I(t+τ)〉=t^{Υ}ϕ_{EA}(τ/t), where ϕ_{EA}(x) is a nonanalytic function when x is small, we find aging 1/f^{β} noise. Aging 1/f^{β} noise is characterized by five critical exponents. We derive the relations between the scaled autocorrelation function and these exponents. We show that our definition of the time-dependent spectrum retains its interpretation as a density of Fourier modes and discuss the relation to the apparent infrared divergence of 1/f^{β} noise. We illustrate our results for blinking-quantum-dot models, single-file diffusion, and Brownian motion in a logarithmic potential.

  18. Method to manage integration error in the Green-Kubo method.

    PubMed

    Oliveira, Laura de Sousa; Greaney, P Alex

    2017-02-01

    The Green-Kubo method is a commonly used approach for predicting transport properties in a system from equilibrium molecular dynamics simulations. The approach is founded on the fluctuation dissipation theorem and relates the property of interest to the lifetime of fluctuations in its thermodynamic driving potential. For heat transport, the lattice thermal conductivity is related to the integral of the autocorrelation of the instantaneous heat flux. A principal source of error in these calculations is that the autocorrelation function requires a long averaging time to reduce remnant noise. Integrating the noise in the tail of the autocorrelation function becomes conflated with physically important slow relaxation processes. In this paper we present a method to quantify the uncertainty on transport properties computed using the Green-Kubo formulation based on recognizing that the integrated noise is a random walk, with a growing envelope of uncertainty. By characterizing the noise we can choose integration conditions to best trade off systematic truncation error with unbiased integration noise, to minimize uncertainty for a given allocation of computational resources.

  19. Use of autocorrelation scanning in DNA copy number analysis.

    PubMed

    Zhang, Liangcai; Zhang, Li

    2013-11-01

    Data quality is a critical issue in the analyses of DNA copy number alterations obtained from microarrays. It is commonly assumed that copy number alteration data can be modeled as piecewise constant and the measurement errors of different probes are independent. However, these assumptions do not always hold in practice. In some published datasets, we find that measurement errors are highly correlated between probes that interrogate nearby genomic loci, and the piecewise-constant model does not fit the data well. The correlated errors cause problems in downstream analysis, leading to a large number of DNA segments falsely identified as having copy number gains and losses. We developed a simple tool, called autocorrelation scanning profile, to assess the dependence of measurement error between neighboring probes. Autocorrelation scanning profile can be used to check data quality and refine the analysis of DNA copy number data, which we demonstrate in some typical datasets. lzhangli@mdanderson.org. Supplementary data are available at Bioinformatics online.

  20. Environmental variability uncovers disruptive effects of species' interactions on population dynamics.

    PubMed

    Gudmundson, Sara; Eklöf, Anna; Wennergren, Uno

    2015-08-07

    How species respond to changes in environmental variability has been shown for single species, but the question remains whether these results are transferable to species when incorporated in ecological communities. Here, we address this issue by analysing the same species exposed to a range of environmental variabilities when (i) isolated or (ii) embedded in a food web. We find that all species in food webs exposed to temporally uncorrelated environments (white noise) show the same type of dynamics as isolated species, whereas species in food webs exposed to positively autocorrelated environments (red noise) can respond completely differently compared with isolated species. This is owing to species following their equilibrium densities in a positively autocorrelated environment that in turn enables species-species interactions to come into play. Our results give new insights into species' response to environmental variation. They especially highlight the importance of considering both species' interactions and environmental autocorrelation when studying population dynamics in a fluctuating environment. © 2015 The Author(s).

  1. Building a three-dimensional model of CYP2C9 inhibition using the Autocorrelator: an autonomous model generator.

    PubMed

    Lardy, Matthew A; Lebrun, Laurie; Bullard, Drew; Kissinger, Charles; Gobbi, Alberto

    2012-05-25

    In modern day drug discovery campaigns, computational chemists have to be concerned not only about improving the potency of molecules but also reducing any off-target ADMET activity. There are a plethora of antitargets that computational chemists may have to consider. Fortunately many antitargets have crystal structures deposited in the PDB. These structures are immediately useful to our Autocorrelator: an automated model generator that optimizes variables for building computational models. This paper describes the use of the Autocorrelator to construct high quality docking models for cytochrome P450 2C9 (CYP2C9) from two publicly available crystal structures. Both models result in strong correlation coefficients (R² > 0.66) between the predicted and experimental determined log(IC₅₀) values. Results from the two models overlap well with each other, converging on the same scoring function, deprotonated charge state, and predicted the binding orientation for our collection of molecules.

  2. Method to manage integration error in the Green-Kubo method

    NASA Astrophysics Data System (ADS)

    Oliveira, Laura de Sousa; Greaney, P. Alex

    2017-02-01

    The Green-Kubo method is a commonly used approach for predicting transport properties in a system from equilibrium molecular dynamics simulations. The approach is founded on the fluctuation dissipation theorem and relates the property of interest to the lifetime of fluctuations in its thermodynamic driving potential. For heat transport, the lattice thermal conductivity is related to the integral of the autocorrelation of the instantaneous heat flux. A principal source of error in these calculations is that the autocorrelation function requires a long averaging time to reduce remnant noise. Integrating the noise in the tail of the autocorrelation function becomes conflated with physically important slow relaxation processes. In this paper we present a method to quantify the uncertainty on transport properties computed using the Green-Kubo formulation based on recognizing that the integrated noise is a random walk, with a growing envelope of uncertainty. By characterizing the noise we can choose integration conditions to best trade off systematic truncation error with unbiased integration noise, to minimize uncertainty for a given allocation of computational resources.

  3. Environmental variability uncovers disruptive effects of species' interactions on population dynamics

    PubMed Central

    Gudmundson, Sara; Eklöf, Anna; Wennergren, Uno

    2015-01-01

    How species respond to changes in environmental variability has been shown for single species, but the question remains whether these results are transferable to species when incorporated in ecological communities. Here, we address this issue by analysing the same species exposed to a range of environmental variabilities when (i) isolated or (ii) embedded in a food web. We find that all species in food webs exposed to temporally uncorrelated environments (white noise) show the same type of dynamics as isolated species, whereas species in food webs exposed to positively autocorrelated environments (red noise) can respond completely differently compared with isolated species. This is owing to species following their equilibrium densities in a positively autocorrelated environment that in turn enables species–species interactions to come into play. Our results give new insights into species' response to environmental variation. They especially highlight the importance of considering both species' interactions and environmental autocorrelation when studying population dynamics in a fluctuating environment. PMID:26224705

  4. Real-time autocorrelator for fluorescence correlation spectroscopy based on graphical-processor-unit architecture: method, implementation, and comparative studies

    NASA Astrophysics Data System (ADS)

    Laracuente, Nicholas; Grossman, Carl

    2013-03-01

    We developed an algorithm and software to calculate autocorrelation functions from real-time photon-counting data using the fast, parallel capabilities of graphical processor units (GPUs). Recent developments in hardware and software have allowed for general purpose computing with inexpensive GPU hardware. These devices are more suited for emulating hardware autocorrelators than traditional CPU-based software applications by emphasizing parallel throughput over sequential speed. Incoming data are binned in a standard multi-tau scheme with configurable points-per-bin size and are mapped into a GPU memory pattern to reduce time-expensive memory access. Applications include dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) experiments. We ran the software on a 64-core graphics pci card in a 3.2 GHz Intel i5 CPU based computer running Linux. FCS measurements were made on Alexa-546 and Texas Red dyes in a standard buffer (PBS). Software correlations were compared to hardware correlator measurements on the same signals. Supported by HHMI and Swarthmore College

  5. Map LineUps: Effects of spatial structure on graphical inference.

    PubMed

    Beecham, Roger; Dykes, Jason; Meulemans, Wouter; Slingsby, Aidan; Turkay, Cagatay; Wood, Jo

    2017-01-01

    Fundamental to the effective use of visualization as an analytic and descriptive tool is the assurance that presenting data visually provides the capability of making inferences from what we see. This paper explores two related approaches to quantifying the confidence we may have in making visual inferences from mapped geospatial data. We adapt Wickham et al.'s 'Visual Line-up' method as a direct analogy with Null Hypothesis Significance Testing (NHST) and propose a new approach for generating more credible spatial null hypotheses. Rather than using as a spatial null hypothesis the unrealistic assumption of complete spatial randomness, we propose spatially autocorrelated simulations as alternative nulls. We conduct a set of crowdsourced experiments (n=361) to determine the just noticeable difference (JND) between pairs of choropleth maps of geographic units controlling for spatial autocorrelation (Moran's I statistic) and geometric configuration (variance in spatial unit area). Results indicate that people's abilities to perceive differences in spatial autocorrelation vary with baseline autocorrelation structure and the geometric configuration of geographic units. These results allow us, for the first time, to construct a visual equivalent of statistical power for geospatial data. Our JND results add to those provided in recent years by Klippel et al. (2011), Harrison et al. (2014) and Kay & Heer (2015) for correlation visualization. Importantly, they provide an empirical basis for an improved construction of visual line-ups for maps and the development of theory to inform geospatial tests of graphical inference.

  6. Study of trabecular bone microstructure using spatial autocorrelation analysis

    NASA Astrophysics Data System (ADS)

    Wald, Michael J.; Vasilic, Branimir; Saha, Punam K.; Wehrli, Felix W.

    2005-04-01

    The spatial autocorrelation analysis method represents a powerful, new approach to quantitative characterization of structurally quasi-periodic anisotropic materials such as trabecular bone (TB). The method is applicable to grayscale images and thus does not require any preprocessing, such as segmentation which is difficult to achieve in the limited resolution regime of in vivo imaging. The 3D autocorrelation function (ACF) can be efficiently calculated using the Fourier transform. The resulting trabecular thickness and spacing measurements are robust to the presence of noise and produce values within the expected range as determined by other methods from μCT and μMRI datasets. TB features found from the ACF are shown to correlate well with those determined by the Fuzzy Distance transform (FDT) in the transverse plane, i.e. the plane orthogonal to bone"s major axis. The method is further shown to be applicable to in-vivo μMRI data. Using the ACF, we examine data acquired in a previous study aimed at evaluating the structural implications of male hypogonadism characterized by testosterone deficiency and reduced bone mass. Specifically, we consider the hypothesis that eugonadal and hypogonadal men differ in the anisotropy of their trabecular networks. The analysis indicates a significant difference in trabecular bone thickness and longitudinal spacing between the control group and the testosterone deficient group. We conclude that spatial autocorrelation analysis is able to characterize the 3D structure and anisotropy of trabecular bone and provides new insight into the structural changes associated with osteoporotic trabecular bone loss.

  7. The effects of environmental and socioeconomic factors on land-use changes: a study of Alberta, Canada.

    PubMed

    Ruan, Xiaofeng; Qiu, Feng; Dyck, Miles

    2016-08-01

    Various environmental and socioeconomic issues have been attributed to land-use changes, and therefore, the underlying mechanisms merit investigation and quantification. This study assesses a comprehensive series of land-use conversions that were implemented over a recent 12-year period in the province of Alberta, Canada, where rapid economic and population growth has occurred. Spatial autocorrelation models are applied to identify the comprehensive effects of environmental and socioeconomic factors in each conversion case. The empirical results show that the impacts of key environmental and socioeconomic factors varied in intensity depending on the type of land-use conversion involved. Overall, land suitability for agricultural uses, road density, elevation, and population growth were found to be significant predictors of land-use changes. High land suitability, low elevation, and moderate road density were associated with land conversion for agricultural purposes.

  8. Thermophysical properties of liquid Ni around the melting temperature from molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozas, R. E.; Department of Physics, University of Bío-Bío, Av. Collao 1202, P.O. Box 5C, Concepción; Demiraǧ, A. D.

    Thermophysical properties of liquid nickel (Ni) around the melting temperature are investigated by means of classical molecular dynamics (MD) simulation, using three different embedded atom method potentials to model the interactions between the Ni atoms. Melting temperature, enthalpy, static structure factor, self-diffusion coefficient, shear viscosity, and thermal diffusivity are compared to recent experimental results. Using ab initio MD simulation, we also determine the static structure factor and the mean-squared displacement at the experimental melting point. For most of the properties, excellent agreement is found between experiment and simulation, provided the comparison relative to the corresponding melting temperature. We discuss themore » validity of the Hansen-Verlet criterion for the static structure factor as well as the Stokes-Einstein relation between self-diffusion coefficient and shear viscosity. The thermal diffusivity is extracted from the autocorrelation function of a wavenumber-dependent temperature fluctuation variable.« less

  9. Autocorrelated residuals in inverse modelling of soil hydrological processes: a reason for concern or something that can safely be ignored?

    NASA Astrophysics Data System (ADS)

    Scharnagl, Benedikt; Durner, Wolfgang

    2013-04-01

    Models are inherently imperfect because they simplify processes that are themselves imperfectly known and understood. Moreover, the input variables and parameters needed to run a model are typically subject to various sources of error. As a consequence of these imperfections, model predictions will always deviate from corresponding observations. In most applications in soil hydrology, these deviations are clearly not random but rather show a systematic structure. From a statistical point of view, this systematic mismatch may be a reason for concern because it violates one of the basic assumptions made in inverse parameter estimation: the assumption of independence of the residuals. But what are the consequences of simply ignoring the autocorrelation in the residuals, as it is current practice in soil hydrology? Are the parameter estimates still valid even though the statistical foundation they are based on is partially collapsed? Theory and practical experience from other fields of science have shown that violation of the independence assumption will result in overconfident uncertainty bounds and that in some cases it may lead to significantly different optimal parameter values. In our contribution, we present three soil hydrological case studies, in which the effect of autocorrelated residuals on the estimated parameters was investigated in detail. We explicitly accounted for autocorrelated residuals using a formal likelihood function that incorporates an autoregressive model. The inverse problem was posed in a Bayesian framework, and the posterior probability density function of the parameters was estimated using Markov chain Monte Carlo simulation. In contrast to many other studies in related fields of science, and quite surprisingly, we found that the first-order autoregressive model, often abbreviated as AR(1), did not work well in the soil hydrological setting. We showed that a second-order autoregressive, or AR(2), model performs much better in these applications, leading to parameter and uncertainty estimates that satisfy all the underlying statistical assumptions. For theoretical reasons, these estimates are deemed more reliable than those estimates based on the neglect of autocorrelation in the residuals. In compliance with theory and results reported in the literature, our results showed that parameter uncertainty bounds were substantially wider if autocorrelation in the residuals was explicitly accounted for, and also the optimal parameter vales were slightly different in this case. We argue that the autoregressive model presented here should be used as a matter of routine in inverse modeling of soil hydrological processes.

  10. Mixed memory, (non) Hurst effect, and maximum entropy of rainfall in the tropical Andes

    NASA Astrophysics Data System (ADS)

    Poveda, Germán

    2011-02-01

    Diverse linear and nonlinear statistical parameters of rainfall under aggregation in time and the kind of temporal memory are investigated. Data sets from the Andes of Colombia at different resolutions (15 min and 1-h), and record lengths (21 months and 8-40 years) are used. A mixture of two timescales is found in the autocorrelation and autoinformation functions, with short-term memory holding for time lags less than 15-30 min, and long-term memory onwards. Consistently, rainfall variance exhibits different temporal scaling regimes separated at 15-30 min and 24 h. Tests for the Hurst effect evidence the frailty of the R/ S approach in discerning the kind of memory in high resolution rainfall, whereas rigorous statistical tests for short-memory processes do reject the existence of the Hurst effect. Rainfall information entropy grows as a power law of aggregation time, S( T) ˜ Tβ with < β> = 0.51, up to a timescale, TMaxEnt (70-202 h), at which entropy saturates, with β = 0 onwards. Maximum entropy is reached through a dynamic Generalized Pareto distribution, consistently with the maximum information-entropy principle for heavy-tailed random variables, and with its asymptotically infinitely divisible property. The dynamics towards the limit distribution is quantified. Tsallis q-entropies also exhibit power laws with T, such that Sq( T) ˜ Tβ( q) , with β( q) ⩽ 0 for q ⩽ 0, and β( q) ≃ 0.5 for q ⩾ 1. No clear patterns are found in the geographic distribution within and among the statistical parameters studied, confirming the strong variability of tropical Andean rainfall.

  11. An event- and network-level analysis of college students' maximum drinking day.

    PubMed

    Meisel, Matthew K; DiBello, Angelo M; Balestrieri, Sara G; Ott, Miles Q; DiGuiseppi, Graham T; Clark, Melissa A; Barnett, Nancy P

    2018-04-01

    Heavy episodic drinking is common among college students and remains a serious public health issue. Previous event-level research among college students has examined behaviors and individual-level characteristics that drive consumption and related consequences but often ignores the social network of people with whom these heavy drinking episodes occur. The main aim of the current study was to investigate the network of social connections between drinkers on their heaviest drinking occasions. Sociocentric network methods were used to collect information from individuals in the first-year class (N=1342) at one university. Past-month drinkers (N=972) reported on the characteristics of their heaviest drinking occasion in the past month and indicated who else among their network connections was present during this occasion. Average max drinking day indegree, or the total number of times a participant was nominated as being present on another students' heaviest drinking occasion, was 2.50 (SD=2.05). Network autocorrelation models indicated that max drinking day indegree (e.g., popularity on heaviest drinking occassions) and peers' number of drinks on their own maximum drinking occasions were significantly associated with participant maximum number of drinks, after controlling for demographic variables, pregaming, and global network indegree (e.g., popularity in the entire first-year class). Being present at other peers' heaviest drinking occasions is associated with greater drinking quantities on one's own heaviest drinking occasion. These findings suggest the potential for interventions that target peer influences within close social networks of drinkers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions.

    PubMed

    Ding, Qian; Cheng, Gong; Wang, Yong; Zhuang, Dafang

    2017-02-01

    Various studies have shown that soils surrounding mining areas are seriously polluted with heavy metals. Determining the effects of natural factors on spatial distribution of heavy metals is important for determining the distribution characteristics of heavy metals in soils. In this study, an 8km buffer zone surrounding a typical non-ferrous metal mine in Suxian District of Hunan Province, China, was selected as the study area, and statistical, spatial autocorrelation and spatial interpolation analyses were used to obtain descriptive statistics and spatial autocorrelation characteristics of As, Pb, Cu, and Zn in soil. Additionally, the distributions of soil heavy metals under the influences of natural factors, including terrain (elevation and slope), wind direction and distance from a river, were determined. Layout of sampling sites, spatial changes of heavy metal contents at high elevations and concentration differences between upwind and downwind directions were then evaluated. The following results were obtained: (1) At low elevations, heavy metal concentrations decreased slightly, then increased considerably with increasing elevation. At high elevations, heavy metal concentrations first decreased, then increased, then decreased with increasing elevation. As the slope increased, heavy metal contents increased then decreased. (2) Heavy metal contents changed consistently in the upwind and downwind directions. Heavy metal contents were highest in 1km buffer zone and decreased with increasing distance from the mining area. The largest decrease in heavy metal concentrations was in 2km buffer zone. Perennial wind promotes the transport of heavy metals in downwind direction. (3) The spatial extent of the influence of the river on Pb, Zn and Cu in the soil was 800m. (4) The influence of the terrain on the heavy metal concentrations was greater than that of the wind. These results provide a scientific basis for preventing and mitigating heavy metal soil pollution in areas surrounding mines. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Identifying the time scale of synchronous movement: a study on tropical snakes.

    PubMed

    Lindström, Tom; Phillips, Benjamin L; Brown, Gregory P; Shine, Richard

    2015-01-01

    Individual movement is critical to organismal fitness and also influences broader population processes such as demographic stochasticity and gene flow. Climatic change and habitat fragmentation render the drivers of individual movement especially critical to understand. Rates of movement of free-ranging animals through the landscape are influenced both by intrinsic attributes of an organism (e.g., size, body condition, age), and by external forces (e.g., weather, predation risk). Statistical modelling can clarify the relative importance of those processes, because externally-imposed pressures should generate synchronous displacements among individuals within a population, whereas intrinsic factors should generate consistency through time within each individual. External and intrinsic factors may vary in importance at different time scales. In this study we focused on daily displacement of an ambush-foraging snake from tropical Australia (the Northern Death Adder Acanthophis praelongus), based on a radiotelemetric study. We used a mixture of spectral representation and Bayesian inference to study synchrony in snake displacement by phase shift analysis. We further studied autocorrelation in fluctuations of displacement distances as "one over f noise". Displacement distances were positively autocorrelated with all considered noise colour parameters estimated as >0. We show how the methodology can reveal time scales of particular interest for synchrony and found that for the analysed data, synchrony was only present at time scales above approximately three weeks. We conclude that the spectral representation combined with Bayesian inference is a promising approach for analysis of movement data. Applying the framework to telemetry data of A. praelongus, we were able to identify a cut-off time scale above which we found support for synchrony, thus revealing a time scale where global external drivers have a larger impact on the movement behaviour. Our results suggest that for the considered study period, movement at shorter time scales was primarily driven by factors at the individual level; daily fluctuations in weather conditions had little effect on snake movement.

  14. Contrasting patterns of fine-scale herb layer species composition in temperate forests

    NASA Astrophysics Data System (ADS)

    Chudomelová, Markéta; Zelený, David; Li, Ching-Feng

    2017-04-01

    Although being well described at the landscape level, patterns in species composition of forest herb layer are rarely studied at smaller scales. Here, we examined fine-scale environmental determinants and spatial structures of herb layer communities in thermophilous oak- and hornbeam dominated forests of the south-eastern part of the Czech Republic. Species composition of herb layer vegetation and environmental variables were recorded within a fixed grid of 2 × 2 m subplots regularly distributed within 1-ha quadrate plots in three forest stands. For each site, environmental models best explaining species composition were constructed using constrained ordination analysis. Spatial eigenvector mapping was used to model and account for spatial structures in community variation. Mean Ellenberg indicator values calculated for each subplot were used for ecological interpretation of spatially structured residual variation. The amount of variation explained by environmental and spatial models as well as the selection of variables with the best explanatory power differed among sites. As an important environmental factor, relative elevation was common to all three sites, while pH and canopy openness were shared by two sites. Both environmental and community variation was mostly coarse-scaled, as was the spatially structured portion of residual variation. When corrected for bias due to spatial autocorrelation, those environmental factors with already weak explanatory power lost their significance. Only a weak evidence of possibly omitted environmental predictor was found for autocorrelated residuals of site models using mean Ellenberg indicator values. Community structure was determined by different factors at different sites. The relative importance of environmental filtering vs. spatial processes was also site specific, implying that results of fine-scale studies tend to be shaped by local conditions. Contrary to expectations based on other studies, overall dominance of spatial processes at fine scale has not been detected. Ecologists should keep this in mind when making generalizations about community dynamics.

  15. Long-term correlations and cross-correlations in IBovespa and constituent companies

    NASA Astrophysics Data System (ADS)

    de Lima, Neílson F.; Fernandes, Leonardo H. S.; Jale, Jader S.; de Mattos Neto, Paulo S. G.; Stošić, Tatijana; Stošić, Borko; Ferreira, Tiago A. E.

    2018-02-01

    We study auto-correlations and cross-correlations of IBovespa index and its constituent companies. We use Detrended Fluctuation Analysis (DFA) to quantify auto-correlations and Detrended Cross-Correlation Analysis (DCCA) to quantify cross-correlations in absolute returns of daily closing prices of IBovespa and the individual companies. We find persistent long-term correlations and cross-correlations which are weaker than those found for USA market. Our results indicate that market indices of developing markets exhibit weaker coupling with its constituents than for mature developed markets.

  16. Machine Learning Prediction of the Energy Gap of Graphene Nanoflakes Using Topological Autocorrelation Vectors.

    PubMed

    Fernandez, Michael; Abreu, Jose I; Shi, Hongqing; Barnard, Amanda S

    2016-11-14

    The possibility of band gap engineering in graphene opens countless new opportunities for application in nanoelectronics. In this work, the energy gaps of 622 computationally optimized graphene nanoflakes were mapped to topological autocorrelation vectors using machine learning techniques. Machine learning modeling revealed that the most relevant correlations appear at topological distances in the range of 1 to 42 with prediction accuracy higher than 80%. The data-driven model can statistically discriminate between graphene nanoflakes with different energy gaps on the basis of their molecular topology.

  17. Developing a dengue forecast model using machine learning: A case study in China.

    PubMed

    Guo, Pi; Liu, Tao; Zhang, Qin; Wang, Li; Xiao, Jianpeng; Zhang, Qingying; Luo, Ganfeng; Li, Zhihao; He, Jianfeng; Zhang, Yonghui; Ma, Wenjun

    2017-10-01

    In China, dengue remains an important public health issue with expanded areas and increased incidence recently. Accurate and timely forecasts of dengue incidence in China are still lacking. We aimed to use the state-of-the-art machine learning algorithms to develop an accurate predictive model of dengue. Weekly dengue cases, Baidu search queries and climate factors (mean temperature, relative humidity and rainfall) during 2011-2014 in Guangdong were gathered. A dengue search index was constructed for developing the predictive models in combination with climate factors. The observed year and week were also included in the models to control for the long-term trend and seasonality. Several machine learning algorithms, including the support vector regression (SVR) algorithm, step-down linear regression model, gradient boosted regression tree algorithm (GBM), negative binomial regression model (NBM), least absolute shrinkage and selection operator (LASSO) linear regression model and generalized additive model (GAM), were used as candidate models to predict dengue incidence. Performance and goodness of fit of the models were assessed using the root-mean-square error (RMSE) and R-squared measures. The residuals of the models were examined using the autocorrelation and partial autocorrelation function analyses to check the validity of the models. The models were further validated using dengue surveillance data from five other provinces. The epidemics during the last 12 weeks and the peak of the 2014 large outbreak were accurately forecasted by the SVR model selected by a cross-validation technique. Moreover, the SVR model had the consistently smallest prediction error rates for tracking the dynamics of dengue and forecasting the outbreaks in other areas in China. The proposed SVR model achieved a superior performance in comparison with other forecasting techniques assessed in this study. The findings can help the government and community respond early to dengue epidemics.

  18. Effect of Climatic Factors and Population Density on the Distribution of Dengue in Sri Lanka: A GIS Based Evaluation for Prediction of Outbreaks.

    PubMed

    Sirisena, Pdnn; Noordeen, Faseeha; Kurukulasuriya, Harithra; Romesh, Thanuja Alar; Fernando, LakKumar

    2017-01-01

    Dengue is one of the major hurdles to the public health in Sri Lanka, causing high morbidity and mortality. The present study focuses on the use of geographical information systems (GIS) to map and evaluate the spatial and temporal distribution of dengue in Sri Lanka from 2009 to 2014 and to elucidate the association of climatic factors with dengue incidence. Epidemiological, population and meteorological data were collected from the Epidemiology Unit, Department of Census and Statistics and the Department of Meteorology of Sri Lanka. Data were analyzed using SPSS (Version 20, 2011) and R studio (2012) and the maps were generated using Arc GIS 10.2. The dengue incidence showed a significant positive correlation with rainfall (p<0.0001). No positive correlation was observed between dengue incidence and temperature (p = 0.107) or humidity (p = 0.084). Rainfall prior to 2 and 5 months and a rise in the temperature prior to 9 months positively correlated with dengue incidence as based on the auto-correlation values. A rise in humidity prior to 1 month had a mild positive correlation with dengue incidence. However, a rise in humidity prior to 9 months had a significant negative correlation with dengue incidence based on the auto-correlation values. Remote sensing and GIS technologies give near real time utility of climatic data together with the past dengue incidence for the prediction of dengue outbreaks. In that regard, GIS will be applicable in outbreak predictions including prompt identification of locations with dengue incidence and forecasting future risks and thus direct control measures to minimize major outbreaks.

  19. Effect of Climatic Factors and Population Density on the Distribution of Dengue in Sri Lanka: A GIS Based Evaluation for Prediction of Outbreaks

    PubMed Central

    Sirisena, PDNN; Noordeen, Faseeha; Kurukulasuriya, Harithra; Romesh, Thanuja ALAR; Fernando, LakKumar

    2017-01-01

    Dengue is one of the major hurdles to the public health in Sri Lanka, causing high morbidity and mortality. The present study focuses on the use of geographical information systems (GIS) to map and evaluate the spatial and temporal distribution of dengue in Sri Lanka from 2009 to 2014 and to elucidate the association of climatic factors with dengue incidence. Epidemiological, population and meteorological data were collected from the Epidemiology Unit, Department of Census and Statistics and the Department of Meteorology of Sri Lanka. Data were analyzed using SPSS (Version 20, 2011) and R studio (2012) and the maps were generated using Arc GIS 10.2. The dengue incidence showed a significant positive correlation with rainfall (p<0.0001). No positive correlation was observed between dengue incidence and temperature (p = 0.107) or humidity (p = 0.084). Rainfall prior to 2 and 5 months and a rise in the temperature prior to 9 months positively correlated with dengue incidence as based on the auto-correlation values. A rise in humidity prior to 1 month had a mild positive correlation with dengue incidence. However, a rise in humidity prior to 9 months had a significant negative correlation with dengue incidence based on the auto-correlation values. Remote sensing and GIS technologies give near real time utility of climatic data together with the past dengue incidence for the prediction of dengue outbreaks. In that regard, GIS will be applicable in outbreak predictions including prompt identification of locations with dengue incidence and forecasting future risks and thus direct control measures to minimize major outbreaks. PMID:28068339

  20. Modelling soil properties in a crop field located in Croatia

    NASA Astrophysics Data System (ADS)

    Bogunovic, Igor; Pereira, Paulo; Millan, Mesic; Percin, Aleksandra; Zgorelec, Zeljka

    2016-04-01

    Development of tillage activities had negative effects on soil quality as destruction of soil horizons, compacting and aggregates destruction, increasing soil erosion and loss of organic matter. For a better management in order to mitigate the effects of intensive soil management in land degradation it is fundamental to map the spatial distribution of soil properties (Brevik et al., 2016). The understanding the distribution of the variables in space is very important for a sustainable management, in order to identify areas that need a potential intervention and decrease the economic losses (Galiati et al., 2016). The objective of this work is study the spatial distribution of some topsoil properties as clay, fine silt, coarse silt, fine sand, coarse sand, penetration resistance, moisture and organic matter in a crop field located in Croatia. A grid with 275x25 (625 m2) was designed and a total of 48 samples were collected. Previous to data modelling, data normality was checked using the Shapiro wilk-test. As in previous cases (Pereira et al., 2015), data did not followed the normal distribution, even after a logarithmic (Log), square-root, and box cox transformation. Thus, for modeling proposes, we used the log transformed data, since was the closest to the normality. In order to identify groups among the variables we applied a principal component analysis (PCA), based on the correlation matrix. On average clay content was 15.47% (±3.23), fine silt 24.24% (±4.08), coarse silt 35.34% (±3.12), fine sand 20.93% (±4.68), coarse sand 4.02% (±1.69), penetration resistance 0.66 MPa (±0.28), organic matter 1.51% (±0.25) and soil moisture 32.04% (±3.27). The results showed that the PCA identified three factors explained at least one of the variables. The first factor had high positive loadings in soil clay, fine silt and organic matter and a high negative loading in fine sand. The second factor had high positive loadings in coarse sand and moisture and a high negative loading in coarse silt. Finally, the factor 3 had a positive loading in penetration resistance. The loadings of these three factors were mapped using ordinary kriging method. The analysis of incremental spatial correlation identified that the highest spatial correlation in the factor 1 was identified at 41.87 m, in factor 2 at 75.61 m and factor 3 at 143.9 m. In the case of factor 2, the maximum peak of spatial autocorrelation was significant at a p<0.05. This showed that the variable has a random distribution, as confirmed with the Moran's I spatial correlation analysis. In relation to the other factors the maximum peaks were significantly clustered at a p<0.001. These results suggested that the each factor has a different spatial pattern and the studied soil properties explained by each factor had a different spatial distribution. References Breivik, E., Baumgarten, A., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Jordán, A. Soil mapping, classification, and modelling: history and future directions. Geoderma, 264, Part B, 256-274. Galiati, A., Gristina, L., Crescimanno, Barone, E., Novara, A. (2016) Towards more efficient incentives for agri-environment measures in degraded and eroded vineyards. Land Degradation and Development, DOI: 10.1002/ldr.2389 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. (2015) Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development, 26, 180-192.

  1. Meteorological analysis of symptom data for people with seasonal affective disorder.

    PubMed

    Sarran, Christophe; Albers, Casper; Sachon, Patrick; Meesters, Ybe

    2017-11-01

    It is thought that variation in natural light levels affect people with Seasonal Affective Disorder (SAD). Several meteorological factors related to luminance can be forecast but little is known about which factors are most indicative of worsening SAD symptoms. The aim of this meteorological analysis is to determine which factors are linked to SAD symptoms. The symptoms of 291 individuals with SAD in and near Groningen have been evaluated over the period 2003-2009. Meteorological factors linked to periods of low natural light (sunshine, global radiation, horizontal visibility, cloud cover and mist) and others (temperature, humidity and pressure) were obtained from weather observation stations. A Bayesian zero adjusted auto-correlated multilevel Poisson model was carried out to assess which variables influence the SAD symptom score BDI-II. The outcome of the study suggests that the variable sunshine duration, for both the current and previous week, and global radiation for the previous week, are significantly linked to SAD symptoms. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  2. A spatially explicit approach to the study of socio-demographic inequality in the spatial distribution of trees across Boston neighborhoods.

    PubMed

    Duncan, Dustin T; Kawachi, Ichiro; Kum, Susan; Aldstadt, Jared; Piras, Gianfranco; Matthews, Stephen A; Arbia, Giuseppe; Castro, Marcia C; White, Kellee; Williams, David R

    2014-04-01

    The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran's I for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran's I range from 0.24 to 0.86, all P =0.001), for tree density (Global Moran's I =0.452, P =0.001), and in the OLS regression residuals (Global Moran's I range from 0.32 to 0.38, all P <0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (r S =-0.19; conventional P -value=0.016; spatially adjusted P -value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (r S =-0.18; conventional P -value=0.019; spatially adjusted P -value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed.

  3. The geography of recreational open space: influence of neighborhood racial composition and neighborhood poverty.

    PubMed

    Duncan, Dustin T; Kawachi, Ichiro; White, Kellee; Williams, David R

    2013-08-01

    The geography of recreational open space might be inequitable in terms of minority neighborhood racial/ethnic composition and neighborhood poverty, perhaps due in part to residential segregation. This study evaluated the association between minority neighborhood racial/ethnic composition, neighborhood poverty, and recreational open space in Boston, Massachusetts (US). Across Boston census tracts, we computed percent non-Hispanic Black, percent Hispanic, and percent families in poverty as well as recreational open space density. We evaluated spatial autocorrelation in study variables and in the ordinary least squares (OLS) regression residuals via the Global Moran's I. We then computed Spearman correlations between the census tract socio-demographic characteristics and recreational open space density, including correlations adjusted for spatial autocorrelation. After this, we computed OLS regressions or spatial regressions as appropriate. Significant positive spatial autocorrelation was found for neighborhood socio-demographic characteristics (all p value = 0.001). We found marginally significant positive spatial autocorrelation in recreational open space (Global Moran's I = 0.082; p value = 0.053). However, we found no spatial autocorrelation in the OLS regression residuals, which indicated that spatial models were not appropriate. There was a negative correlation between census tract percent non-Hispanic Black and recreational open space density (r S = -0.22; conventional p value = 0.005; spatially adjusted p value = 0.019) as well as a negative correlation between predominantly non-Hispanic Black census tracts (>60 % non-Hispanic Black in a census tract) and recreational open space density (r S = -0.23; conventional p value = 0.003; spatially adjusted p value = 0.007). In bivariate and multivariate OLS models, percent non-Hispanic Black in a census tract and predominantly Black census tracts were associated with decreased density of recreational open space (p value < 0.001). Consistent with several previous studies in other geographic locales, we found that Black neighborhoods in Boston were less likely to have recreational open spaces, indicating the need for policy interventions promoting equitable access. Such interventions may contribute to reductions and disparities in obesity.

  4. Dangers and uses of cross-correlation in analyzing time series in perception, performance, movement, and neuroscience: The importance of constructing transfer function autoregressive models.

    PubMed

    Dean, Roger T; Dunsmuir, William T M

    2016-06-01

    Many articles on perception, performance, psychophysiology, and neuroscience seek to relate pairs of time series through assessments of their cross-correlations. Most such series are individually autocorrelated: they do not comprise independent values. Given this situation, an unfounded reliance is often placed on cross-correlation as an indicator of relationships (e.g., referent vs. response, leading vs. following). Such cross-correlations can indicate spurious relationships, because of autocorrelation. Given these dangers, we here simulated how and why such spurious conclusions can arise, to provide an approach to resolving them. We show that when multiple pairs of series are aggregated in several different ways for a cross-correlation analysis, problems remain. Finally, even a genuine cross-correlation function does not answer key motivating questions, such as whether there are likely causal relationships between the series. Thus, we illustrate how to obtain a transfer function describing such relationships, informed by any genuine cross-correlations. We illustrate the confounds and the meaningful transfer functions by two concrete examples, one each in perception and performance, together with key elements of the R software code needed. The approach involves autocorrelation functions, the establishment of stationarity, prewhitening, the determination of cross-correlation functions, the assessment of Granger causality, and autoregressive model development. Autocorrelation also limits the interpretability of other measures of possible relationships between pairs of time series, such as mutual information. We emphasize that further complexity may be required as the appropriate analysis is pursued fully, and that causal intervention experiments will likely also be needed.

  5. Effect of site level environmental variables, spatial autocorrelation and sampling intensity on arthropod communities in an ancient temperate lowland woodland area.

    PubMed

    Horak, Jakub

    2013-01-01

    The interaction of arthropods with the environment and the management of their populations is a focus of the ecological agenda. Spatial autocorrelation and under-sampling may generate bias and, when they are ignored, it is hard to determine if results can in any way be trusted. Arthropod communities were studied during two seasons and using two methods: window and panel traps, in an area of ancient temperate lowland woodland of Zebracka (Czech Republic). The composition of arthropod communities was studied focusing on four site level variables (canopy openness, diameter in the breast height and height of tree, and water distance) and finally analysed using two approaches: with and without effects of spatial autocorrelation. I found that the proportion of variance explained by space cannot be ignored (≈20% in both years). Potential bias in analyses of the response of arthropods to site level variables without including spatial co-variables is well illustrated by redundancy analyses. Inclusion of space led to more accurate results, as water distance and tree diameter were significant, showing approximately the same ratio of explained variance and direction in both seasons. Results without spatial co-variables were much more disordered and were difficult to explain. This study showed that neglecting the effects of spatial autocorrelation could lead to wrong conclusions in site level studies and, furthermore, that inclusion of space may lead to more accurate and unambiguous outcomes. Rarefactions showed that lower sampling intensity, when appropriately designed, can produce sufficient results without exploitation of the environment.

  6. Distributions of Autocorrelated First-Order Kinetic Outcomes: Illness Severity

    PubMed Central

    Englehardt, James D.

    2015-01-01

    Many complex systems produce outcomes having recurring, power law-like distributions over wide ranges. However, the form necessarily breaks down at extremes, whereas the Weibull distribution has been demonstrated over the full observed range. Here the Weibull distribution is derived as the asymptotic distribution of generalized first-order kinetic processes, with convergence driven by autocorrelation, and entropy maximization subject to finite positive mean, of the incremental compounding rates. Process increments represent multiplicative causes. In particular, illness severities are modeled as such, occurring in proportion to products of, e.g., chronic toxicant fractions passed by organs along a pathway, or rates of interacting oncogenic mutations. The Weibull form is also argued theoretically and by simulation to be robust to the onset of saturation kinetics. The Weibull exponential parameter is shown to indicate the number and widths of the first-order compounding increments, the extent of rate autocorrelation, and the degree to which process increments are distributed exponential. In contrast with the Gaussian result in linear independent systems, the form is driven not by independence and multiplicity of process increments, but by increment autocorrelation and entropy. In some physical systems the form may be attracting, due to multiplicative evolution of outcome magnitudes towards extreme values potentially much larger and smaller than control mechanisms can contain. The Weibull distribution is demonstrated in preference to the lognormal and Pareto I for illness severities versus (a) toxicokinetic models, (b) biologically-based network models, (c) scholastic and psychological test score data for children with prenatal mercury exposure, and (d) time-to-tumor data of the ED01 study. PMID:26061263

  7. Disentangling the effects of forage, social rank, and risk on movement autocorrelation of elephants using Fourier and wavelet analyses

    PubMed Central

    Wittemyer, George; Polansky, Leo; Douglas-Hamilton, Iain; Getz, Wayne M.

    2008-01-01

    The internal state of an individual—as it relates to thirst, hunger, fear, or reproductive drive—can be inferred by referencing points on its movement path to external environmental and sociological variables. Using time-series approaches to characterize autocorrelative properties of step-length movements collated every 3 h for seven free-ranging African elephants, we examined the influence of social rank, predation risk, and seasonal variation in resource abundance on periodic properties of movement. The frequency domain methods of Fourier and wavelet analyses provide compact summaries of temporal autocorrelation and show both strong diurnal and seasonal based periodicities in the step-length time series. This autocorrelation is weaker during the wet season, indicating random movements are more common when ecological conditions are good. Periodograms of socially dominant individuals are consistent across seasons, whereas subordinate individuals show distinct differences diverging from that of dominants during the dry season. We link temporally localized statistical properties of movement to landscape features and find that diurnal movement correlation is more common within protected wildlife areas, and multiday movement correlations found among lower ranked individuals are typically outside of protected areas where predation risks are greatest. A frequency-related spatial analysis of movement-step lengths reveal that rest cycles related to the spatial distribution of critical resources (i.e., forage and water) are responsible for creating the observed patterns. Our approach generates unique information regarding the spatial-temporal interplay between environmental and individual characteristics, providing an original approach for understanding the movement ecology of individual animals and the spatial organization of animal populations. PMID:19060207

  8. Retrieval of P wave Basin Response from Autocorrelation of Seismic Noise-Jakarta, Indonesia

    NASA Astrophysics Data System (ADS)

    Saygin, E.; Cummins, P. R.; Lumley, D. E.

    2016-12-01

    Indonesia's capital city, Jakarta, is home to a very large (over 10 million), vulnerable population and is proximate to known active faults, as well as to the subduction of Australian plate, which has a megathrust at abut 300 km distance, as well as intraslab seismicity extending to directly beneath the city. It is also located in a basin filled with a thick layer of unconsolidated and poorly consolidated sediment, which increases the seismic hazard the city is facing. Therefore, the information on the seismic velocity structure of the basin is crucial for increasing our knowledge of the seismic risk. We undertook a passive deployment of broadband seismographs throughout the city over a 3-month interval in 2013-2014, recording ambient seismic noise at over 90 sites for intervals of 1 month or more. Here we consider autocorrelations of the vertical component of the continuously recorded seismic wavefield across this dense network to image the shallow P wave velocity structure of Jakarta, Indonesia. Unlike the surface wave Green's functions used in ambient noise tomography, the vertical-component autocorrelograms are dominated by body wave energy that is potentially sensitive to sharp velocity contrasts, which makes them useful in seismic imaging. Results show autocorrelograms at different seismic stations with travel time variations that largely reflect changes in sediment thickness across the basin. We also confirm the validity our interpretation of the observed autocorrelation waveforms by conducting 2D finite difference full waveform numerical modeling for randomly distributed seismic sources to retrieve the reflection response through autocorrelation.

  9. Statistical analyses of influence of solar and geomagnetic activities on car accident events

    NASA Astrophysics Data System (ADS)

    Alania, M. V.; Gil, A.; Wieliczuk, R.

    2001-01-01

    Statistical analyses of the influence of Solar and geomagnetic activity, sector structure of the interplanetary magnetic field and galactic cosmic ray Forbush effects on car accident events in Poland for the period of 1990-1999 have been carried out. Using auto-correlation, cross-correlation, spectral analyses and superposition epochs methods it has been shown that there are separate periods when car accident events have direct correlation with Ap index of the geomagnetic activity, sector structure of the interplanetary magnetic field and Forbush decreases of galactic cosmic rays. Nevertheless, the single-valued direct correlation is not possible to reveal for the whole period of 1990-1999. Periodicity of 7 days and its second harmonic (3.5 days) has been reliably revealed in the car accident events data in Poland for the each year of the period 1990-1999. It is shown that the maximum car accident events take place in Poland on Friday and practically does not depend on the level of solar and geomagnetic activities.

  10. Distinct persistence barriers in two types of ENSO: PERSISTENCE BARRIERS OF TWO ENSO TYPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Hong-Li; Jin, Fei-Fei; Tian, Ben

    El Niño–Southern Oscillation (ENSO) is usually subject to a persistence barrier (PB) in boreal spring. This study quantifies the PB and then reveals its distinct features in the two types of ENSO, the eastern Pacific (EP) and central Pacific (CP) types. We suggest that the PB of ENSO can be measured by the maximum rate of autocorrelation decline of Niño sea surface temperature anomaly (SSTA) indices. Results show that the PB of ENSO generally occurs in boreal late spring to early summer in terms of Niño3.4 index, and the EP ENSO has the PB in late spring, while the CPmore » type has the PB in summer. By defining an index to quantify PB intensity of ENSO, we find that the CP ENSO type features a much weaker PB, compared to the EP type, and the PB intensity of equatorial SSTAs is larger over the EP than the western Pacific and the far EP.« less

  11. Extraction of repetitive transients with frequency domain multipoint kurtosis for bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Liao, Yuhe; Sun, Peng; Wang, Baoxiang; Qu, Lei

    2018-05-01

    The appearance of repetitive transients in a vibration signal is one typical feature of faulty rolling element bearings. However, accurate extraction of these fault-related characteristic components has always been a challenging task, especially when there is interference from large amplitude impulsive noises. A frequency domain multipoint kurtosis (FDMK)-based fault diagnosis method is proposed in this paper. The multipoint kurtosis is redefined in the frequency domain and the computational accuracy is improved. An envelope autocorrelation function is also presented to estimate the fault characteristic frequency, which is used to set the frequency hunting zone of the FDMK. Then, the FDMK, instead of kurtosis, is utilized to generate a fast kurtogram and only the optimal band with maximum FDMK value is selected for envelope analysis. Negative interference from both large amplitude impulsive noise and shaft rotational speed related harmonic components are therefore greatly reduced. The analysis results of simulation and experimental data verify the capability and feasibility of this FDMK-based method

  12. Calculation of power spectrums from digital time series with missing data points

    NASA Technical Reports Server (NTRS)

    Murray, C. W., Jr.

    1980-01-01

    Two algorithms are developed for calculating power spectrums from the autocorrelation function when there are missing data points in the time series. Both methods use an average sampling interval to compute lagged products. One method, the correlation function power spectrum, takes the discrete Fourier transform of the lagged products directly to obtain the spectrum, while the other, the modified Blackman-Tukey power spectrum, takes the Fourier transform of the mean lagged products. Both techniques require fewer calculations than other procedures since only 50% to 80% of the maximum lags need be calculated. The algorithms are compared with the Fourier transform power spectrum and two least squares procedures (all for an arbitrary data spacing). Examples are given showing recovery of frequency components from simulated periodic data where portions of the time series are missing and random noise has been added to both the time points and to values of the function. In addition the methods are compared using real data. All procedures performed equally well in detecting periodicities in the data.

  13. Distinct persistence barriers in two types of ENSO: PERSISTENCE BARRIERS OF TWO ENSO TYPES

    DOE PAGES

    Ren, Hong-Li; Jin, Fei-Fei; Tian, Ben; ...

    2016-10-30

    El Niño–Southern Oscillation (ENSO) is usually subject to a persistence barrier (PB) in boreal spring. This study quantifies the PB and then reveals its distinct features in the two types of ENSO, the eastern Pacific (EP) and central Pacific (CP) types. We suggest that the PB of ENSO can be measured by the maximum rate of autocorrelation decline of Niño sea surface temperature anomaly (SSTA) indices. Results show that the PB of ENSO generally occurs in boreal late spring to early summer in terms of Niño3.4 index, and the EP ENSO has the PB in late spring, while the CPmore » type has the PB in summer. By defining an index to quantify PB intensity of ENSO, we find that the CP ENSO type features a much weaker PB, compared to the EP type, and the PB intensity of equatorial SSTAs is larger over the EP than the western Pacific and the far EP.« less

  14. Rapid soft X-ray fluctuations in solar flares observed with the X-ray polychromator

    NASA Technical Reports Server (NTRS)

    Zarro, D. M.; Saba, J. L. R.; Strong, K. T.

    1986-01-01

    Three flares observed by the Soft X-Ray Polychromator on the Solar Maximum Mission were studied. Flare light curves from the Flat Crystal Spectrometer and Bent Crystal Spectrometer were examined for rapid signal variations. Each flare was characterized by an initial fast (less than 1 min) burst, observed by the Hard X-Ray Burst Spectrometer (HXRBS), followed by softer gradual X-ray emission lasting several minutes. From an autocorrelation function analysis, evidence was found for quasi-periodic fluctuations with rise and decay times of 10 s in the Ca XIX and Fe XXV light curves. These variations were of small amplitude (less than 20%), often coincided with hard X-ray emissions, and were prominent during the onset of the gradual phase after the initial hard X-ray burst. It is speculated that these fluctuations were caused by repeated energy injections in a coronal loop that had already been heated and filled with dense plasma associated with the initial hard X-ray burst.

  15. Coarse-grained modeling of polyethylene melts: Effect on dynamics

    DOE PAGES

    Peters, Brandon L.; Salerno, K. Michael; Agrawal, Anupriya; ...

    2017-05-23

    The distinctive viscoelastic behavior of polymers results from a coupled interplay of motion on multiple length and time scales. Capturing the broad time and length scales of polymer motion remains a challenge. Using polyethylene (PE) as a model macromolecule, we construct coarse-grained (CG) models of PE with three to six methyl groups per CG bead and probe two critical aspects of the technique: pressure corrections required after iterative Boltzmann inversion (IBI) to generate CG potentials that match the pressure of reference fully atomistic melt simulations and the transferability of CG potentials across temperatures. While IBI produces nonbonded pair potentials thatmore » give excellent agreement between the atomistic and CG pair correlation functions, the resulting pressure for the CG models is large compared with the pressure of the atomistic system. We find that correcting the potential to match the reference pressure leads to nonbonded interactions with much deeper minima and slightly smaller effective bead diameter. However, simulations with potentials generated by IBI and pressure-corrected IBI result in similar mean-square displacements (MSDs) and stress autocorrelation functions G( t) for PE melts. While the time rescaling factor required to match CG and atomistic models is the same for pressure- and non-pressure-corrected CG models, it strongly depends on temperature. Furthermore, transferability was investigated by comparing the MSDs and stress autocorrelation functions for potentials developed at different temperatures.« less

  16. The spatial distribution of gender differences in obesity prevalence differs from overall obesity prevalence among US adults.

    PubMed

    Gartner, Danielle R; Taber, Daniel R; Hirsch, Jana A; Robinson, Whitney R

    2016-04-01

    Although obesity disparities between racial and socioeconomic groups have been well characterized, those based on gender and geography have not been as thoroughly documented. This study describes obesity prevalence by state, gender, and race and/or ethnicity to (1) characterize obesity gender inequality, (2) determine if the geographic distribution of inequality is spatially clustered, and (3) contrast the spatial clustering patterns of obesity gender inequality with overall obesity prevalence. Data from the Centers for Disease Control and Prevention's 2013 Behavioral Risk Factor Surveillance System were used to calculate state-specific obesity prevalence and gender inequality measures. Global and local Moran's indices were calculated to determine spatial autocorrelation. Age-adjusted, state-specific obesity prevalence difference and ratio measures show spatial autocorrelation (z-score = 4.89, P-value < .001). Local Moran's indices indicate the spatial distributions of obesity prevalence and obesity gender inequalities are not the same. High and low values of obesity prevalence and gender inequalities cluster in different areas of the United States. Clustering of gender inequality suggests that spatial processes operating at the state level, such as occupational or physical activity policies or social norms, are involved in the etiology of the inequality and necessitate further attention to the determinates of obesity gender inequality. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Coarse-grained modeling of polyethylene melts: Effect on dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Brandon L.; Salerno, K. Michael; Agrawal, Anupriya

    The distinctive viscoelastic behavior of polymers results from a coupled interplay of motion on multiple length and time scales. Capturing the broad time and length scales of polymer motion remains a challenge. Using polyethylene (PE) as a model macromolecule, we construct coarse-grained (CG) models of PE with three to six methyl groups per CG bead and probe two critical aspects of the technique: pressure corrections required after iterative Boltzmann inversion (IBI) to generate CG potentials that match the pressure of reference fully atomistic melt simulations and the transferability of CG potentials across temperatures. While IBI produces nonbonded pair potentials thatmore » give excellent agreement between the atomistic and CG pair correlation functions, the resulting pressure for the CG models is large compared with the pressure of the atomistic system. We find that correcting the potential to match the reference pressure leads to nonbonded interactions with much deeper minima and slightly smaller effective bead diameter. However, simulations with potentials generated by IBI and pressure-corrected IBI result in similar mean-square displacements (MSDs) and stress autocorrelation functions G( t) for PE melts. While the time rescaling factor required to match CG and atomistic models is the same for pressure- and non-pressure-corrected CG models, it strongly depends on temperature. Furthermore, transferability was investigated by comparing the MSDs and stress autocorrelation functions for potentials developed at different temperatures.« less

  18. Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression.

    PubMed

    Chen, Yanguang

    2016-01-01

    In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson's statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran's index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China's regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test.

  19. Geomagnetic storm under laboratory conditions: randomized experiment

    NASA Astrophysics Data System (ADS)

    Gurfinkel, Yu I.; Vasin, A. L.; Pishchalnikov, R. Yu; Sarimov, R. M.; Sasonko, M. L.; Matveeva, T. A.

    2017-10-01

    The influence of the previously recorded geomagnetic storm (GS) on human cardiovascular system and microcirculation has been studied under laboratory conditions. Healthy volunteers in lying position were exposed under two artificially created conditions: quiet (Q) and storm (S). The Q regime playbacks a noise-free magnetic field (MF) which is closed to the natural geomagnetic conditions on Moscow's latitude. The S regime playbacks the initially recorded 6-h geomagnetic storm which is repeated four times sequentially. The cardiovascular response to the GS impact was assessed by measuring capillary blood velocity (CBV) and blood pressure (BP) and by the analysis of the 24-h ECG recording. A storm-to-quiet ratio for the cardio intervals (CI) and the heart rate variability (HRV) was introduced in order to reveal the average over group significant differences of HRV. An individual sensitivity to the GS was estimated using the autocorrelation function analysis of the high-frequency (HF) part of the CI spectrum. The autocorrelation analysis allowed for detection a group of subjects of study which autocorrelation functions (ACF) react differently in the Q and S regimes of exposure.

  20. Spatial autocorrelation among automated geocoding errors and its effects on testing for disease clustering

    PubMed Central

    Li, Jie; Fang, Xiangming

    2010-01-01

    Automated geocoding of patient addresses is an important data assimilation component of many spatial epidemiologic studies. Inevitably, the geocoding process results in positional errors. Positional errors incurred by automated geocoding tend to reduce the power of tests for disease clustering and otherwise affect spatial analytic methods. However, there are reasons to believe that the errors may often be positively spatially correlated and that this may mitigate their deleterious effects on spatial analyses. In this article, we demonstrate explicitly that the positional errors associated with automated geocoding of a dataset of more than 6000 addresses in Carroll County, Iowa are spatially autocorrelated. Furthermore, through two simulation studies of disease processes, including one in which the disease process is overlain upon the Carroll County addresses, we show that spatial autocorrelation among geocoding errors maintains the power of two tests for disease clustering at a level higher than that which would occur if the errors were independent. Implications of these results for cluster detection, privacy protection, and measurement-error modeling of geographic health data are discussed. PMID:20087879

  1. Geomagnetic storm under laboratory conditions: randomized experiment.

    PubMed

    Gurfinkel, Yu I; Vasin, A L; Pishchalnikov, R Yu; Sarimov, R M; Sasonko, M L; Matveeva, T A

    2018-04-01

    The influence of the previously recorded geomagnetic storm (GS) on human cardiovascular system and microcirculation has been studied under laboratory conditions. Healthy volunteers in lying position were exposed under two artificially created conditions: quiet (Q) and storm (S). The Q regime playbacks a noise-free magnetic field (MF) which is closed to the natural geomagnetic conditions on Moscow's latitude. The S regime playbacks the initially recorded 6-h geomagnetic storm which is repeated four times sequentially. The cardiovascular response to the GS impact was assessed by measuring capillary blood velocity (CBV) and blood pressure (BP) and by the analysis of the 24-h ECG recording. A storm-to-quiet ratio for the cardio intervals (CI) and the heart rate variability (HRV) was introduced in order to reveal the average over group significant differences of HRV. An individual sensitivity to the GS was estimated using the autocorrelation function analysis of the high-frequency (HF) part of the CI spectrum. The autocorrelation analysis allowed for detection a group of subjects of study which autocorrelation functions (ACF) react differently in the Q and S regimes of exposure.

  2. A Comparison of Weights Matrices on Computation of Dengue Spatial Autocorrelation

    NASA Astrophysics Data System (ADS)

    Suryowati, K.; Bekti, R. D.; Faradila, A.

    2018-04-01

    Spatial autocorrelation is one of spatial analysis to identify patterns of relationship or correlation between locations. This method is very important to get information on the dispersal patterns characteristic of a region and linkages between locations. In this study, it applied on the incidence of Dengue Hemorrhagic Fever (DHF) in 17 sub districts in Sleman, Daerah Istimewa Yogyakarta Province. The link among location indicated by a spatial weight matrix. It describe the structure of neighbouring and reflects the spatial influence. According to the spatial data, type of weighting matrix can be divided into two types: point type (distance) and the neighbourhood area (contiguity). Selection weighting function is one determinant of the results of the spatial analysis. This study use queen contiguity based on first order neighbour weights, queen contiguity based on second order neighbour weights, and inverse distance weights. Queen contiguity first order and inverse distance weights shows that there is the significance spatial autocorrelation in DHF, but not by queen contiguity second order. Queen contiguity first and second order compute 68 and 86 neighbour list

  3. Autocorrelation-based time synchronous averaging for condition monitoring of planetary gearboxes in wind turbines

    NASA Astrophysics Data System (ADS)

    Ha, Jong M.; Youn, Byeng D.; Oh, Hyunseok; Han, Bongtae; Jung, Yoongho; Park, Jungho

    2016-03-01

    We propose autocorrelation-based time synchronous averaging (ATSA) to cope with the challenges associated with the current practice of time synchronous averaging (TSA) for planet gears in planetary gearboxes of wind turbine (WT). An autocorrelation function that represents physical interactions between the ring, sun, and planet gears in the gearbox is utilized to define the optimal shape and range of the window function for TSA using actual kinetic responses. The proposed ATSA offers two distinctive features: (1) data-efficient TSA processing and (2) prevention of signal distortion during the TSA process. It is thus expected that an order analysis with the ATSA signals significantly improves the efficiency and accuracy in fault diagnostics of planet gears in planetary gearboxes. Two case studies are presented to demonstrate the effectiveness of the proposed method: an analytical signal from a simulation and a signal measured from a 2 kW WT testbed. It can be concluded from the results that the proposed method outperforms conventional TSA methods in condition monitoring of the planetary gearbox when the amount of available stationary data is limited.

  4. Graphene photonics for resonator-enhanced electro-optic devices and all-optical interactions

    DOEpatents

    Englund, Dirk R.; Gan, Xuetao

    2017-03-21

    Techniques for coupling light into graphene using a planar photonic crystal having a resonant cavity characterized by a mode volume and a quality factor and at least one graphene layer positioned in proximity to the planar photonic crystal to at least partially overlap with an evanescent field of the resonant cavity. At least one mode of the resonant cavity can couple into the graphene layer via evanescent coupling. The optical properties of the graphene layer can be controlled, and characteristics of the graphene-cavity system can be detected. Coupling light into graphene can include electro-optic modulation of light, photodetection, saturable absorption, bistability, and autocorrelation.

  5. Biased Metropolis Sampling for Rugged Free Energy Landscapes

    NASA Astrophysics Data System (ADS)

    Berg, Bernd A.

    2003-11-01

    Metropolis simulations of all-atom models of peptides (i.e. small proteins) are considered. Inspired by the funnel picture of Bryngelson and Wolyness, a transformation of the updating probabilities of the dihedral angles is defined, which uses probability densities from a higher temperature to improve the algorithmic performance at a lower temperature. The method is suitable for canonical as well as for generalized ensemble simulations. A simple approximation to the full transformation is tested at room temperature for Met-Enkephalin in vacuum. Integrated autocorrelation times are found to be reduced by factors close to two and a similar improvement due to generalized ensemble methods enters multiplicatively.

  6. Rugged Metropolis sampling with simultaneous updating of two dynamical variables

    NASA Astrophysics Data System (ADS)

    Berg, Bernd A.; Zhou, Huan-Xiang

    2005-07-01

    The rugged Metropolis (RM) algorithm is a biased updating scheme which aims at directly hitting the most likely configurations in a rugged free-energy landscape. Details of the one-variable (RM1) implementation of this algorithm are presented. This is followed by an extension to simultaneous updating of two dynamical variables (RM2) . In a test with the brain peptide Met-Enkephalin in vacuum RM2 improves conventional Metropolis simulations by a factor of about 4. Correlations between three or more dihedral angles appear to prevent larger improvements at low temperatures. We also investigate a multihit Metropolis scheme, which spends more CPU time on variables with large autocorrelation times.

  7. Atom-Resonant Heralded Single Photons by Interaction-Free Measurement

    NASA Astrophysics Data System (ADS)

    Wolfgramm, Florian; de Icaza Astiz, Yannick A.; Beduini, Federica A.; Cerè, Alessandro; Mitchell, Morgan W.

    2011-02-01

    We demonstrate the generation of rubidium-resonant heralded single photons for quantum memories. Photon pairs are created by cavity-enhanced down-conversion and narrowed in bandwidth to 7 MHz with a novel atom-based filter operating by “interaction-free measurement” principles. At least 94% of the heralded photons are atom-resonant as demonstrated by a direct absorption measurement with rubidium vapor. A heralded autocorrelation measurement shows gc(2)(0)=0.040±0.012, i.e., suppression of multiphoton contributions by a factor of 25 relative to a coherent state. The generated heralded photons can readily be used in quantum memories and quantum networks.

  8. Using diel movement behavior to infer foraging strategies related to ecological and social factors in elephants.

    PubMed

    Polansky, Leo; Douglas-Hamilton, Iain; Wittemyer, George

    2013-01-01

    Adaptive movement behaviors allow individuals to respond to fluctuations in resource quality and distribution in order to maintain fitness. Classically, studies of the interaction between ecological conditions and movement behavior have focused on such metrics as travel distance, velocity, home range size or patch occupancy time as the salient metrics of behavior. Driven by the emergence of very regular high frequency data, more recently the importance of interpreting the autocorrelation structure of movement as a behavioral metric has become apparent. Studying movement of a free ranging African savannah elephant population, we evaluated how two movement metrics, diel displacement (DD) and movement predictability (MP - the degree of autocorrelated movement activity at diel time scales), changed in response to variation in resource availability as measured by the Normalized Difference Vegetation Index. We were able to capitalize on long term (multi-year) yet high resolution (hourly) global positioning system tracking datasets, the sample size of which allows robust analysis of complex models. We use optimal foraging theory predictions as a framework to interpret our results, in particular contrasting the behaviors across changes in social rank and resource availability to infer which movement behaviors at diel time scales may be optimal in this highly social species. Both DD and MP increased with increasing forage availability, irrespective of rank, reflecting increased energy expenditure and movement predictability during time periods of overall high resource availability. However, significant interactions between forage availability and social rank indicated a stronger response in DD, and a weaker response in MP, with increasing social status. Relative to high ranking individuals, low ranking individuals expended more energy and exhibited less behavioral movement autocorrelation during lower forage availability conditions, likely reflecting sub-optimal movement behavior. Beyond situations of contest competition, rank status appears to influence the extent to which individuals can modify their movement strategies across periods with differing forage availability. Large-scale spatiotemporal resource complexity not only impacts fine scale movement and optimal foraging strategies directly, but likely impacts rates of inter- and intra-specific interactions and competition resulting in socially based movement responses to ecological dynamics.

  9. A method to identify differential expression profiles of time-course gene data with Fourier transformation

    PubMed Central

    2013-01-01

    Background Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. Results This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization. The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Conclusions Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be potentially used to identify genes which have the same patterns or biological processes, and help facing the present and forthcoming challenges of data analysis in functional genomics. PMID:24134721

  10. An improved portmanteau test for autocorrelated errors in interrupted time-series regression models.

    PubMed

    Huitema, Bradley E; McKean, Joseph W

    2007-08-01

    A new portmanteau test for autocorrelation among the errors of interrupted time-series regression models is proposed. Simulation results demonstrate that the inferential properties of the proposed Q(H-M) test statistic are considerably more satisfactory than those of the well known Ljung-Box test and moderately better than those of the Box-Pierce test. These conclusions generally hold for a wide variety of autoregressive (AR), moving averages (MA), and ARMA error processes that are associated with time-series regression models of the form described in Huitema and McKean (2000a, 2000b).

  11. Monte Carlo errors with less errors

    NASA Astrophysics Data System (ADS)

    Wolff, Ulli; Alpha Collaboration

    2004-01-01

    We explain in detail how to estimate mean values and assess statistical errors for arbitrary functions of elementary observables in Monte Carlo simulations. The method is to estimate and sum the relevant autocorrelation functions, which is argued to produce more certain error estimates than binning techniques and hence to help toward a better exploitation of expensive simulations. An effective integrated autocorrelation time is computed which is suitable to benchmark efficiencies of simulation algorithms with regard to specific observables of interest. A Matlab code is offered for download that implements the method. It can also combine independent runs (replica) allowing to judge their consistency.

  12. Forecasting coconut production in the Philippines with ARIMA model

    NASA Astrophysics Data System (ADS)

    Lim, Cristina Teresa

    2015-02-01

    The study aimed to depict the situation of the coconut industry in the Philippines for the future years applying Autoregressive Integrated Moving Average (ARIMA) method. Data on coconut production, one of the major industrial crops of the country, for the period of 1990 to 2012 were analyzed using time-series methods. Autocorrelation (ACF) and partial autocorrelation functions (PACF) were calculated for the data. Appropriate Box-Jenkins autoregressive moving average model was fitted. Validity of the model was tested using standard statistical techniques. The forecasting power of autoregressive moving average (ARMA) model was used to forecast coconut production for the eight leading years.

  13. Personality and place.

    PubMed

    Gelade, Garry A

    2013-02-01

    This paper examines the distribution of national personality dimensions in geographical space. The relationship between geographical location and aggregate personality in a wide range of nations is quantified using spatial autocorrelation, and it is found that the personalities of nations that are geographical neighbours are more similar than those that are far apart. The five factors of both the Revised NEO Personality Inventory (NEO-PI-R) and the Big Five Inventory (BFI), all show a significant degree of spatial organization. The personality factors most strongly associated with geographical location are NEO-PI-R extraversion and BFI conscientiousness; both vary with position around the globe about as much as the physical climate. These findings support previous research suggesting associations between aggregate personality and geography, and imply that the sources of variation in national personality are themselves geographically organized. © 2012 The British Psychological Society.

  14. Auto-correlation of journal impact factor for consensus research reporting statements: a cohort study.

    PubMed

    Shanahan, Daniel R

    2016-01-01

    Background. The Journal Citation Reports journal impact factors (JIFs) are widely used to rank and evaluate journals, standing as a proxy for the relative importance of a journal within its field. However, numerous criticisms have been made of use of a JIF to evaluate importance. This problem is exacerbated when the use of JIFs is extended to evaluate not only the journals, but the papers therein. The purpose of this study was therefore to investigate the relationship between the number of citations and journal IF for identical articles published simultaneously in multiple journals. Methods. Eligible articles were consensus research reporting statements listed on the EQUATOR Network website that were published simultaneously in three or more journals. The correlation between the citation count for each article and the median journal JIF over the published period, and between the citation count and number of article accesses was calculated for each reporting statement. Results. Nine research reporting statements were included in this analysis, representing 85 articles published across 58 journals in biomedicine. The number of citations was strongly correlated to the JIF for six of the nine reporting guidelines, with moderate correlation shown for the remaining three guidelines (median r = 0.66, 95% CI [0.45-0.90]). There was also a strong positive correlation between the number of citations and the number of article accesses (median r = 0.71, 95% CI [0.5-0.8]), although the number of data points for this analysis were limited. When adjusted for the individual reporting guidelines, each logarithm unit of JIF predicted a median increase of 0.8 logarithm units of citation counts (95% CI [-0.4-5.2]), and each logarithm unit of article accesses predicted a median increase of 0.1 logarithm units of citation counts (95% CI [-0.9-1.4]). This model explained 26% of the variance in citations (median adjusted r (2) = 0.26, range 0.18-1.0). Conclusion. The impact factor of the journal in which a reporting statement was published was shown to influence the number of citations that statement will gather over time. Similarly, the number of article accesses also influenced the number of citations, although to a lesser extent than the impact factor. This demonstrates that citation counts are not purely a reflection of scientific merit and the impact factor is, in fact, auto-correlated.

  15. Application of spatial and non-spatial data analysis in determination of the factors that impact municipal solid waste generation rates in Turkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keser, Saniye; Duzgun, Sebnem; Department of Geodetic and Geographic Information Technologies, Middle East Technical University, 06800 Ankara

    Highlights: Black-Right-Pointing-Pointer Spatial autocorrelation exists in municipal solid waste generation rates for different provinces in Turkey. Black-Right-Pointing-Pointer Traditional non-spatial regression models may not provide sufficient information for better solid waste management. Black-Right-Pointing-Pointer Unemployment rate is a global variable that significantly impacts the waste generation rates in Turkey. Black-Right-Pointing-Pointer Significances of global parameters may diminish at local scale for some provinces. Black-Right-Pointing-Pointer GWR model can be used to create clusters of cities for solid waste management. - Abstract: In studies focusing on the factors that impact solid waste generation habits and rates, the potential spatial dependency in solid waste generation datamore » is not considered in relating the waste generation rates to its determinants. In this study, spatial dependency is taken into account in determination of the significant socio-economic and climatic factors that may be of importance for the municipal solid waste (MSW) generation rates in different provinces of Turkey. Simultaneous spatial autoregression (SAR) and geographically weighted regression (GWR) models are used for the spatial data analyses. Similar to ordinary least squares regression (OLSR), regression coefficients are global in SAR model. In other words, the effect of a given independent variable on a dependent variable is valid for the whole country. Unlike OLSR or SAR, GWR reveals the local impact of a given factor (or independent variable) on the waste generation rates of different provinces. Results show that provinces within closer neighborhoods have similar MSW generation rates. On the other hand, this spatial autocorrelation is not very high for the exploratory variables considered in the study. OLSR and SAR models have similar regression coefficients. GWR is useful to indicate the local determinants of MSW generation rates. GWR model can be utilized to plan waste management activities at local scale including waste minimization, collection, treatment, and disposal. At global scale, the MSW generation rates in Turkey are significantly related to unemployment rate and asphalt-paved roads ratio. Yet, significances of these variables may diminish at local scale for some provinces. At local scale, different factors may be important in affecting MSW generation rates.« less

  16. Detection of Subtle Hydromechanical Medium Changes Caused By a Small-Magnitude Earthquake Swarm in NE Brazil

    NASA Astrophysics Data System (ADS)

    D'Hour, V.; Schimmel, M.; Do Nascimento, A. F.; Ferreira, J. M.; Lima Neto, H. C.

    2016-04-01

    Ambient noise correlation analyses are largely used in seismology to map heterogeneities and to monitor the temporal evolution of seismic velocity changes associated mostly with stress field variations and/or fluid movements. Here we analyse a small earthquake swarm related to a main mR 3.7 intraplate earthquake in North-East of Brazil to study the corresponding post-seismic effects on the medium. So far, post-seismic effects have been observed mainly for large magnitude events. In our study, we show that we were able to detect localized structural changes even for a small earthquake swarm in an intraplate setting. Different correlation strategies are presented and their performances are also shown. We compare the classical auto-correlation with and without pre-processing, including 1-bit normalization and spectral whitening, and the phase auto-correlation. The worst results were obtained for the pre-processed data due to the loss of waveform details. The best results were achieved with the phase cross-correlation which is amplitude unbiased and sensitive to small amplitude changes as long as there exist waveform coherence superior to other unrelated signals and noise. The analysis of 6 months of data using phase auto-correlation and cross-correlation resulted in the observation of a progressive medium change after the major recorded event. The progressive medium change is likely related to the swarm activity through opening new path ways for pore fluid diffusion. We further observed for the auto-correlations a lag time frequency-dependent change which likely indicates that the medium change is localized in depth. As expected, the main change is observed along the fault.

  17. A geostatistical state-space model of animal densities for stream networks.

    PubMed

    Hocking, Daniel J; Thorson, James T; O'Neil, Kyle; Letcher, Benjamin H

    2018-06-21

    Population dynamics are often correlated in space and time due to correlations in environmental drivers as well as synchrony induced by individual dispersal. Many statistical analyses of populations ignore potential autocorrelations and assume that survey methods (distance and time between samples) eliminate these correlations, allowing samples to be treated independently. If these assumptions are incorrect, results and therefore inference may be biased and uncertainty under-estimated. We developed a novel statistical method to account for spatio-temporal correlations within dendritic stream networks, while accounting for imperfect detection in the surveys. Through simulations, we found this model decreased predictive error relative to standard statistical methods when data were spatially correlated based on stream distance and performed similarly when data were not correlated. We found that increasing the number of years surveyed substantially improved the model accuracy when estimating spatial and temporal correlation coefficients, especially from 10 to 15 years. Increasing the number of survey sites within the network improved the performance of the non-spatial model but only marginally improved the density estimates in the spatio-temporal model. We applied this model to Brook Trout data from the West Susquehanna Watershed in Pennsylvania collected over 34 years from 1981 - 2014. We found the model including temporal and spatio-temporal autocorrelation best described young-of-the-year (YOY) and adult density patterns. YOY densities were positively related to forest cover and negatively related to spring temperatures with low temporal autocorrelation and moderately-high spatio-temporal correlation. Adult densities were less strongly affected by climatic conditions and less temporally variable than YOY but with similar spatio-temporal correlation and higher temporal autocorrelation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Time-series network analysis of civil aviation in Japan (1985-2005)

    NASA Astrophysics Data System (ADS)

    Michishita, Ryo; Xu, Bing; Yamada, Ikuho

    2008-10-01

    Due to the airline deregulation in 1985, a series of new airport developments in the 1990s and 2000s, and the reorganization of airline companies in the 2000s, Japan's air passenger transportation has been dramatically altered in the last two decades in many ways. In this paper, the authors examine how the network and flow structures of domestic air passenger transportation in Japan have geographically changed since 1985. For this purpose, passenger flow data in 1985, 1995, and 2005 were extracted from the Air Transportation Statistical Survey conducted by the Ministry of Land, Infrastructure and Transport, Japan. First, national and regional hub airports are identified via dominant flow and hub function analysis. Then the roles of the hub airports and individual connections over the network are examined with respect to their spatial and network autocorrelations. Spatial and network autocorrelations were evaluated both globally and locally using Moran's I and LISA statistics. The passenger flow data were first examined as a whole and then divided into 3 airline-based categories. Dominant flow and hub function enabled us to detect the hub airports. Structural processes of the hub-and-spoke network were confirmed in each airline through spatial autocorrelation analysis. Network autocorrelation analysis showed that all airlines ingeniously optimized their networks by connecting their routes with large numbers of passengers to other routes with large numbers of passengers, and routes with small numbers of passengers to other routes with small numbers of passengers. The effects of political events and the changes in the strategies of each airline on the whole networks were strongly reflected in the results of this study.

  19. Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal - A Demonstration Using Bird and Mammal Range Maps.

    PubMed

    Boucher-Lalonde, Véronique; Currie, David J

    2016-01-01

    Species' geographic ranges could primarily be physiological tolerances drawn in space. Alternatively, geographic ranges could be only broadly constrained by physiological climatic tolerances: there could generally be much more proximate constraints on species' ranges (dispersal limitation, biotic interactions, etc.) such that species often occupy a small and unpredictable subset of tolerable climates. In the literature, species' climatic tolerances are typically estimated from the set of conditions observed within their geographic range. Using this method, studies have concluded that broader climatic niches permit larger ranges. Similarly, other studies have investigated the biological causes of incomplete range filling. But, when climatic constraints are measured directly from species' ranges, are correlations between species' range size and climate necessarily consistent with a causal link? We evaluated the extent to which variation in range size among 3277 bird and 1659 mammal species occurring in the Americas is statistically related to characteristics of species' realized climatic niches. We then compared how these relationships differed from the ones expected in the absence of a causal link. We used a null model that randomizes the predictor variables (climate), while retaining their broad spatial autocorrelation structure, thereby removing any causal relationship between range size and climate. We found that, although range size is strongly positively related to climatic niche breadth, range filling and, to a lesser extent, niche position in nature, the observed relationships are not always stronger than expected from spatial autocorrelation alone. Thus, we conclude that equally strong relationships between range size and climate would result from any processes causing ranges to be highly spatially autocorrelated.

  20. Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal — A Demonstration Using Bird and Mammal Range Maps

    PubMed Central

    Boucher-Lalonde, Véronique; Currie, David J.

    2016-01-01

    Species’ geographic ranges could primarily be physiological tolerances drawn in space. Alternatively, geographic ranges could be only broadly constrained by physiological climatic tolerances: there could generally be much more proximate constraints on species’ ranges (dispersal limitation, biotic interactions, etc.) such that species often occupy a small and unpredictable subset of tolerable climates. In the literature, species’ climatic tolerances are typically estimated from the set of conditions observed within their geographic range. Using this method, studies have concluded that broader climatic niches permit larger ranges. Similarly, other studies have investigated the biological causes of incomplete range filling. But, when climatic constraints are measured directly from species’ ranges, are correlations between species’ range size and climate necessarily consistent with a causal link? We evaluated the extent to which variation in range size among 3277 bird and 1659 mammal species occurring in the Americas is statistically related to characteristics of species’ realized climatic niches. We then compared how these relationships differed from the ones expected in the absence of a causal link. We used a null model that randomizes the predictor variables (climate), while retaining their broad spatial autocorrelation structure, thereby removing any causal relationship between range size and climate. We found that, although range size is strongly positively related to climatic niche breadth, range filling and, to a lesser extent, niche position in nature, the observed relationships are not always stronger than expected from spatial autocorrelation alone. Thus, we conclude that equally strong relationships between range size and climate would result from any processes causing ranges to be highly spatially autocorrelated. PMID:27855201

  1. Possible Noise Nature of Elsässer Variable z- in Highly Alfvénic Solar Wind Fluctuations

    NASA Astrophysics Data System (ADS)

    Wang, X.; Tu, C.-Y.; He, J.-S.; Wang, L.-H.; Yao, S.; Zhang, L.

    2018-01-01

    It has been a long-standing debate on the nature of Elsässer variable z- observed in the solar wind fluctuations. It is widely believed that z- represents inward propagating Alfvén waves and interacts nonlinearly with z+ (outward propagating Alfvén waves) to generate energy cascade. However, z- variations sometimes show a feature of convective structures. Here we present a new data analysis on autocorrelation functions of z- in order to get some definite information on its nature. We find that there is usually a large drop on the z- autocorrelation function when the solar wind fluctuations are highly Alfvénic. The large drop observed by Helios 2 spacecraft near 0.3 AU appears at the first nonzero time lag τ = 81 s, where the value of the autocorrelation coefficient drops to 25%-65% of that at τ = 0 s. Beyond the first nonzero time lag, the autocorrelation coefficient decreases gradually to zero. The drop of z- correlation function also appears in the Wind observations near 1 AU. These features of the z- correlation function may suggest that z- fluctuations consist of two components: high-frequency white noise and low-frequency pseudo structures, which correspond to flat and steep parts of z- power spectrum, respectively. This explanation is confirmed by doing a simple test on an artificial time series, which is obtained from the superposition of a random data series on its smoothed sequence. Our results suggest that in highly Alfvénic fluctuations, z- may not contribute importantly to the interactions with z+ to produce energy cascade.

  2. Preliminary Field Demonstration of Passive Radio Sounding Using the Sun as a Signal for Echo Detection

    NASA Astrophysics Data System (ADS)

    Peters, S. T.; Schroeder, D. M.; Romero-Wolf, A.; Haynes, M.

    2017-12-01

    The Radar for Icy Moon Exploration (RIME) and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) have been identified as potential candidates for the implementation of passive sounding as additional observing modes for the ESA and NASA missions to Ganymede and Europa. Recent work has shown the theoretical potential for Jupiter's decametric radiation to be used as a source for passive radio sounding of its icy moons. We are further developing and adapting this geophysical approach for use in terrestrial glaciology. Here, we present results from preliminary field testing of a prototype passive radio sounder from cliffs along the California coast. This includes both using a Lloyd's mirror to measure the Sun's direct path and its reflection off the ocean's surface and exploiting autocorrelation to detect the delay time of the echo. This is the first in-situ demonstration of the autocorrelation-based passive-sounding approach using an astronomical white noise signal. We also discuss preliminary field tests on rougher terrestrial and subglacial surfaces, including at Store Glacier in Greenland. Additionally, we present modeling and experimental results that demonstrate the feasibility of applying presumming approaches to the autocorrelations to achieve coherent gain from an inherently random signal. We note that while recording with wider bandwidths and greater delays places fundamental limits on the Lloyd's mirror approach, our new autocorrelation method has no such limitation. Furthermore, we show how achieving wide bandwidths via spectral-stitching methods allows us to obtain a finer range resolution than given by the receiver's instantaneous bandwidth. Finally, we discuss the potential for this technique to eliminate the need for active transmitters in certain types of ice sounding experiments, thereby reducing the complexity, power consumption, and cost of systems and observations.

  3. Weather variability and the incidence of cryptosporidiosis: comparison of time series poisson regression and SARIMA models.

    PubMed

    Hu, Wenbiao; Tong, Shilu; Mengersen, Kerrie; Connell, Des

    2007-09-01

    Few studies have examined the relationship between weather variables and cryptosporidiosis in Australia. This paper examines the potential impact of weather variability on the transmission of cryptosporidiosis and explores the possibility of developing an empirical forecast system. Data on weather variables, notified cryptosporidiosis cases, and population size in Brisbane were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics for the period of January 1, 1996-December 31, 2004, respectively. Time series Poisson regression and seasonal auto-regression integrated moving average (SARIMA) models were performed to examine the potential impact of weather variability on the transmission of cryptosporidiosis. Both the time series Poisson regression and SARIMA models show that seasonal and monthly maximum temperature at a prior moving average of 1 and 3 months were significantly associated with cryptosporidiosis disease. It suggests that there may be 50 more cases a year for an increase of 1 degrees C maximum temperature on average in Brisbane. Model assessments indicated that the SARIMA model had better predictive ability than the Poisson regression model (SARIMA: root mean square error (RMSE): 0.40, Akaike information criterion (AIC): -12.53; Poisson regression: RMSE: 0.54, AIC: -2.84). Furthermore, the analysis of residuals shows that the time series Poisson regression appeared to violate a modeling assumption, in that residual autocorrelation persisted. The results of this study suggest that weather variability (particularly maximum temperature) may have played a significant role in the transmission of cryptosporidiosis. A SARIMA model may be a better predictive model than a Poisson regression model in the assessment of the relationship between weather variability and the incidence of cryptosporidiosis.

  4. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Miao, Yonghao; Zhao, Ming; Lin, Jing; Lei, Yaguo

    2017-08-01

    The extraction of periodic impulses, which are the important indicators of rolling bearing faults, from vibration signals is considerably significance for fault diagnosis. Maximum correlated kurtosis deconvolution (MCKD) developed from minimum entropy deconvolution (MED) has been proven as an efficient tool for enhancing the periodic impulses in the diagnosis of rolling element bearings and gearboxes. However, challenges still exist when MCKD is applied to the bearings operating under harsh working conditions. The difficulties mainly come from the rigorous requires for the multi-input parameters and the complicated resampling process. To overcome these limitations, an improved MCKD (IMCKD) is presented in this paper. The new method estimates the iterative period by calculating the autocorrelation of the envelope signal rather than relies on the provided prior period. Moreover, the iterative period will gradually approach to the true fault period through updating the iterative period after every iterative step. Since IMCKD is unaffected by the impulse signals with the high kurtosis value, the new method selects the maximum kurtosis filtered signal as the final choice from all candidates in the assigned iterative counts. Compared with MCKD, IMCKD has three advantages. First, without considering prior period and the choice of the order of shift, IMCKD is more efficient and has higher robustness. Second, the resampling process is not necessary for IMCKD, which is greatly convenient for the subsequent frequency spectrum analysis and envelope spectrum analysis without resetting the sampling rate. Third, IMCKD has a significant performance advantage in diagnosing the bearing compound-fault which expands the application range. Finally, the effectiveness and superiority of IMCKD are validated by a number of simulated bearing fault signals and applying to compound faults and single fault diagnosis of a locomotive bearing.

  5. Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann-Kendall test

    NASA Astrophysics Data System (ADS)

    Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun

    2017-11-01

    This study assesses the spatial pattern of changes in rainfall extremes of Sarawak in recent years (1980-2014). The Mann-Kendall (MK) test along with modified Mann-Kendall (m-MK) test, which can discriminate multi-scale variability of unidirectional trend, was used to analyze the changes at 31 stations. Taking account of the scaling effect through eliminating the effect of autocorrelation, m-MK was employed to discriminate multi-scale variability of the unidirectional trends of the annual rainfall in Sarawak. It can confirm the significance of the MK test. The annual rainfall trend from MK test showed significant changes at 95% confidence level at five stations. The seasonal trends from MK test indicate an increasing rate of rainfall during the Northeast monsoon and a decreasing trend during the Southwest monsoon in some region of Sarawak. However, the m-MK test detected an increasing trend in annual rainfall only at one station and no significant trend in seasonal rainfall at any stations. The significant increasing trends of the 1-h maximum rainfall from the MK test are detected mainly at the stations located in the urban area giving concern to the occurrence of the flash flood. On the other hand, the m-MK test detected no significant trend in 1- and 3-h maximum rainfalls at any location. On the contrary, it detected significant trends in 6- and 72-h maximum rainfalls at a station located in the Lower Rajang basin area which is an extensive low-lying agricultural area and prone to stagnant flood. These results indicate that the trends in rainfall and rainfall extremes reported in Malaysia and surrounding region should be verified with m-MK test as most of the trends may result from scaling effect.

  6. Spatial patterns of March and September streamflow trends in Pacific Northwest Streams, 1958-2008

    USGS Publications Warehouse

    Chang, Heejun; Jung, Il-Won; Steele, Madeline; Gannett, Marshall

    2012-01-01

    Summer streamflow is a vital water resource for municipal and domestic water supplies, irrigation, salmonid habitat, recreation, and water-related ecosystem services in the Pacific Northwest (PNW) in the United States. This study detects significant negative trends in September absolute streamflow in a majority of 68 stream-gauging stations located on unregulated streams in the PNW from 1958 to 2008. The proportion of March streamflow to annual streamflow increases in most stations over 1,000 m elevation, with a baseflow index of less than 50, while absolute March streamflow does not increase in most stations. The declining trends of September absolute streamflow are strongly associated with seven-day low flow, January–March maximum temperature trends, and the size of the basin (19–7,260 km2), while the increasing trends of the fraction of March streamflow are associated with elevation, April 1 snow water equivalent, March precipitation, center timing of streamflow, and October–December minimum temperature trends. Compared with ordinary least squares (OLS) estimated regression models, spatial error regression and geographically weighted regression (GWR) models effectively remove spatial autocorrelation in residuals. The GWR model results show spatial gradients of local R 2 values with consistently higher local R 2 values in the northern Cascades. This finding illustrates that different hydrologic landscape factors, such as geology and seasonal distribution of precipitation, also influence streamflow trends in the PNW. In addition, our spatial analysis model results show that considering various geographic factors help clarify the dynamics of streamflow trends over a large geographical area, supporting a spatial analysis approach over aspatial OLS-estimated regression models for predicting streamflow trends. Results indicate that transitional rain–snow surface water-dominated basins are likely to have reduced summer streamflow under warming scenarios. Consequently, a better understanding of the relationships among summer streamflow, precipitation, snowmelt, elevation, and geology can help water managers predict the response of regional summer streamflow to global warming.

  7. Changes over 50 years in fish fauna of a temperate coastal sea: Degradation of trophic structure and nursery function

    NASA Astrophysics Data System (ADS)

    van der Veer, Henk W.; Dapper, Rob; Henderson, Peter A.; Jung, A. Sarina; Philippart, Catharina J. M.; Witte, Johannes IJ.; Zuur, Alain F.

    2015-03-01

    The ongoing daily sampling programme of the fish fauna in the Dutch Wadden Sea using fixed gear was analysed for the years 1960-2011. Spring sampling caught immigrating fish from the coastal zone and autumn samples reflected emigration of young-of-the-year. In total 82 fish species were caught with no clear trend in biodiversity. In both spring and autumn total daily catch fluctuated and peaked in the late 1970s. From 1980 to the present catches of both pelagic and demersal species showed a 10-fold decrease in total biomass. Mean individual biomass decreased in spring between 1980 and the present from about 150 to 20 g wet weight. No trend was found in autumn mean individual biomass which fluctuated around 20 g wet weight. The trophic structure remained constant for both the demersal and benthopelagic fish fauna from 1980 to 2011, whilst the trophic position of pelagic fish in spring fell from about 3.9 to 3.1. Min/max auto-correlation factor analysis showed similar trends in spring and autumn species biomass time series: the first axis represented a decrease from the 1960s followed by stabilization from the mid-1990s. The second trend showed an increase with a maximum around 1980 followed by a steady decrease in spring and a decrease and stabilization from 2000 in autumn. It is argued that the most likely explanatory variables are a combination of external factors: increased water temperature, habitat destruction in the coastal zone (sand dredging and beach nourishment, fishing) and increased predation by top predators for the first trend, and large-scale hydrodynamic circulation for the second trend. We conclude that both the trophic structure of the coastal zone fauna and the nursery function of the Wadden Sea have been reduced since the 1980s. Our findings corroborate that ecological change in coastal ecosystems has not only occurred in the past but still continues.

  8. [Influence of road on breeding habitat of Nipponia nippon based on MaxEnt model].

    PubMed

    Zhang, Hui; Gao, Ji Xi; Ma, Meng Xiao; Shao, Fang Ze; Wang, Qiao; Li, Guang Yu; Qiu, Jie; Zhou, Ke Xin

    2017-04-18

    Quantitative study on effects of roads on suitable breeding habitats of wildlife is one of topics that need in-depth research in road ecology. Crested ibis (Nipponia nippon), a first class nationally protected bird species, is the species of interest in this research. Using the Maximum Entropy Models (MaxEnt) in the Species Distribution Model (SDM) toolbox of ArcGIS, autocorrelation of environmental variables were analyzed and environmental variables with r>0.8 were removed. Ten environmental variables were chosen as impact factors for the breeding habitat of crested ibis, including mean temperature of coldest quarter, landscape type, normalized difference vegetation index(NDVI), slope, aspect, distance to waters, distance to paddy field, distance to high-grade roads (expressway, national way, provincial way), and distance to low-grade roads (country road). By analyzing the contribution rate of each environmental variable, the results showed that the mean temperature of coldest quarter, landscape type, distance to paddy field, and distance to high-grade roads were the main factors determining breeding habitat of crested ibis. The suitable distribution of crested ibis' nesting area was under the following scenarios: variable road present (scenario1), high-grade road absent (scenario2), and low-grade road absent (scenario 3). The results showed that the presence of roads affected suitable nesting areas of crested ibis with high-grade roads showing a larger influence than low-grade roads. The presence of high-grade roads and low-grade roads decreased the suitable nesting areas of crested ibis by 66.23 and 35.69 km 2 , respectively. The crested ibis preferred to nest in areas distant from high-grade roads, with an average road avoidance distance of 1500 m. This study was of great significance for formulating management measures to protect crested ibis and provide a reference for quantitative assessment on impacts of engineering and construction projects on wildlife.

  9. Spatio-temporal Analysis of African Swine Fever in Sardinia (2012-2014): Trends in Domestic Pigs and Wild Boar.

    PubMed

    Iglesias, I; Rodríguez, A; Feliziani, F; Rolesu, S; de la Torre, A

    2017-04-01

    African swine fever (ASF) is a notifiable viral disease affecting domestic pigs and wild boars that has been endemic in Sardinia since 1978. Several risk factors complicate the control of ASF in Sardinia: generally poor level of biosecurity, traditional breeding practices, illegal behaviour in movements and feeding of pigs, and sporadic occurrence of long-term carriers. A previous study describes the disease in Sardinia during 1978-2013. The aim of this study was to gain more in-depth knowledge of the spatio-temporal pattern of ASF in Sardinia during 2012 to May 2014, comparing patterns of occurrence in domestic pigs and wild boar and identifying areas of local transmission. African swine fever notifications were studied considering seasonality, spatial autocorrelation, spatial point pattern and spatio-temporal clusters. Results showed differences in temporal and spatial pattern of wild boar and domestic pig notifications. The peak in wild boar notifications (October 2013 to February 2014) occurred six months after than in domestic pig (May to early summer 2013). Notifications of cases in both host species tended to be clustered, with a maximum significant distance of spatial association of 15 and 25 km in domestic pigs and wild boars, respectively. Five clusters for local ASF transmission were identified for domestic pigs, with a mean radius and duration of 4 km (3-9 km) and 38 days (6-55 days), respectively. Any wild boar clusters were found. The apparently secondary role of wild boar in ASF spread in Sardinia could be explained by certain socio-economic factors (illegal free-range pig breeding or the mingling of herds. The lack of effectiveness of previous surveillance and control programmes reveals the necessity of employing a new approach). Results present here provide better knowledge of the dynamics of ASF in Sardinia, which could be used in a more comprehensive risk analysis necessary to introduce a new approach in the eradication strategy. © 2015 Blackwell Verlag GmbH.

  10. Spatial and environmental correlates of organism colonization and infection in the neonatal intensive care unit.

    PubMed

    Goldstein, Neal D; Tuttle, Deborah; Tabb, Loni P; Paul, David A; Eppes, Stephen C

    2018-05-01

    To examine organism colonization and infection in the neonatal intensive care unit as a result of environmental and spatial factors. A retrospective cohort of infants admitted between 2006 and 2015 (n = 11 428), to assess the relationship between location and four outcomes: methicillin-resistant Staphylococcus aureus (MRSA) colonization; culture-confirmed late-onset sepsis; and, if intubated, endotracheal tube colonization with Pseudomonas aeruginosa or Klebsiella pneumonia. Independent risk factors were identified with mixed-effects logistic regression models and Moran's I for spatial autocorrelation. All four outcomes statistically clustered by location; neighboring colonization also influenced risk of MRSA (p < 0.05). For P. aeruginosa, being in a location with space for more medical equipment was associated with 2.61 times the odds of colonization (95% CrI: 1.19, 5.78). Extrinsic factors partially explained risk for neonatal colonization and infection. For P. aeruginosa, infection prevention efforts at locations with space for more equipment may lower future colonization.

  11. Reducing child mortality in Nigeria: a case study of immunization and systemic factors.

    PubMed

    Nwogu, Rufus; Ngowu, Rufus; Larson, James S; Kim, Min Su

    2008-07-01

    The purpose of the study is to assess the outcome of the Expanded Program on Immunization (EPI) in Nigeria, as well as to examine systemic factors influencing its high under-five mortality rate (UFMR). The principal objective of the EPI program when it was implemented in 1978 was to reduce mortality, morbidity and disability associated with six vaccine preventable diseases namely tuberculosis, tetanus, diphtheria, measles, pertussis and poliomyelitis. The methodological approach to this study is quantitative, using secondary time series data from 1970 to 2003. The study tested three hypotheses using time series multiple regression analysis with autocorrelation adjustment as a statistical model. The results showed that the EPI program had little effect on UFMR in Nigeria. Only the literacy rate and domestic spending on healthcare had statistically significant effects on the UFMR. The military government was not a significant factor in reducing or increasing the UFMR. It appears that Nigeria needs a unified approach to healthcare delivery, rather than fragmented programs, to overcome cultural and political divisions in society.

  12. Measurement of nonlinear optical refraction of composite material based on sapphire with silver by Kerr-lens autocorrelation method.

    PubMed

    Yu, Xiang-xiang; Wang, Yu-hua

    2014-01-13

    Silver nanoparticles synthesized in a synthetic sapphire matrix were fabricated by ion implantation using the metal vapor vacuum arc ion source. The optical absorption spectrum of the Ag: Al2O3 composite material has been measured. The analysis of the supercontinuum spectrum displayed the nonlinear refractive property of this kind of sample. Nonlinear optical refraction index was identified at 800 nm excitation using the Kerr-lens autocorrelation (KLAC) technique. The spectrum showed that the material possessed self-defocusing property (n(2) = -1.1 × 10(-15) cm(2)W). The mechanism of nonlinear refraction has been discussed.

  13. Polarization-correlation study of biotissue multifractal structure

    NASA Astrophysics Data System (ADS)

    Olar, O. I.; Ushenko, A. G.

    2003-09-01

    This paper presents the results of polarization-correlation study of multifractal collagen structure of physiologically normal and pathologically changed tissues of women"s reproductive sphere and skin. The technique of polarization selection of coherent images of biotissues with further determination of their autocorrelation functions and spectral densities is suggested. The correlation-optical criteria of early diagnostics of appearance of pathological changes in the cases of myometry (forming the germ of fibromyoma) and skin (psoriasis) are determined. This study is directed to investigate the possibilities of recognition of pathological changes of biotissue morphological structure by determining the polarization-dependent autocorrelation functions (ACF) and corresponding spectral densities of tissue coherent images.

  14. Polarization-correlation investigation of biotissue multifractal structure and diagnostics of its pathological change

    NASA Astrophysics Data System (ADS)

    Angelsky, Oleg V.; Pishak, Vasyl P.; Ushenko, Alexander G.; Burkovets, Dimitry N.; Pishak, Olga V.

    2001-05-01

    The paper presents the results of polarization-correlation investigation of multifractal collagen structure of physiologically normal and pathologically changed tissues of women's reproductive sphere and of skin. The technique of polarization selection of coherent biotissues' images followed by determination of their autocorrelation functions and spectral densities is suggested. The correlation- optical criteria of early diagnostics of pathological changes' appearance of myometry (forming of the germ of fibromyoma) and of skin (psoriasis) are determined. The present paper examines the possibilities of diagnostics of pathological changes of biotissues' morphological structure by means of determining the polarizationally filtered autocorrelation functions (ACF) and corresponding spectral densities of their coherent images.

  15. A generalization of random matrix theory and its application to statistical physics.

    PubMed

    Wang, Duan; Zhang, Xin; Horvatic, Davor; Podobnik, Boris; Eugene Stanley, H

    2017-02-01

    To study the statistical structure of crosscorrelations in empirical data, we generalize random matrix theory and propose a new method of cross-correlation analysis, known as autoregressive random matrix theory (ARRMT). ARRMT takes into account the influence of auto-correlations in the study of cross-correlations in multiple time series. We first analytically and numerically determine how auto-correlations affect the eigenvalue distribution of the correlation matrix. Then we introduce ARRMT with a detailed procedure of how to implement the method. Finally, we illustrate the method using two examples taken from inflation rates for air pressure data for 95 US cities.

  16. An empirical analysis of the distribution of overshoots in a stationary Gaussian stochastic process

    NASA Technical Reports Server (NTRS)

    Carter, M. C.; Madison, M. W.

    1973-01-01

    The frequency distribution of overshoots in a stationary Gaussian stochastic process is analyzed. The primary processes involved in this analysis are computer simulation and statistical estimation. Computer simulation is used to simulate stationary Gaussian stochastic processes that have selected autocorrelation functions. An analysis of the simulation results reveals a frequency distribution for overshoots with a functional dependence on the mean and variance of the process. Statistical estimation is then used to estimate the mean and variance of a process. It is shown that for an autocorrelation function, the mean and the variance for the number of overshoots, a frequency distribution for overshoots can be estimated.

  17. Dynamical analyses of the time series for three foreign exchange rates

    NASA Astrophysics Data System (ADS)

    Kim, Sehyun; Kim, Soo Yong; Jung, Jae-Won; Kim, Kyungsik

    2012-05-01

    In this study, we investigate the multifractal properties of three foreign exchange rates (USD-KRW, USD-JPY, and EUR-USD) that are quoted with different economic scales. We estimate and analyze both the generalized Hurst exponent and the autocorrelation function in three foreign exchange rates. The USD-KRW is shown to have the strongest of the Hurst exponents when compared with the other two foreign exchange rates. In particular, the autocorrelation function of the USD-KRW has the largest memory behavior among three foreign exchange rates. It also exhibits a long-memory property in the first quarter, more than those in the other quarters.

  18. Daily diaries of respiratory symptoms and air pollution: Methodological issues and results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, J.; Wypij, D.; Dockery D.

    1991-01-01

    Daily diaries of respiratory symptoms are a powerful technique for detecting acute effects of air pollution exposure. While conceptually simple, these diary studies can be difficult to analyze. The daily symptom rates are highly correlated, even after adjustment for covariates, and this lack of independence must be considered in the analysis. Possible approaches include the use of incidence instead of prevalence rates and autoregressive models. Heterogeneity among subjects also induces dependencies in the data. These can be addressed by stratification and by two-stage models such as those developed by Korn and Whittemore. These approaches have been applied to two datamore » sets: a cohort of school children participating in the Harvard Six Cities Study and a cohort of student nurses in Los Angeles. Both data sets provide evidence of autocorrelation and heterogeneity. Controlling for autocorrelation corrects the precision estimates, and because diary data are usually positively autocorrelated, this leads to larger variance estimates. Controlling for heterogeneity among subjects appears to increase the effect sizes for air pollution exposure. Preliminary results indicate associations between sulfur dioxide and cough incidence in children and between nitrogen dioxide and phlegm incidence in student nurses.« less

  19. A New Methodology of Spatial Cross-Correlation Analysis

    PubMed Central

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran’s index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson’s correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China’s urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes. PMID:25993120

  20. A new methodology of spatial cross-correlation analysis.

    PubMed

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran's index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson's correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China's urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes.

  1. Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression

    PubMed Central

    Chen, Yanguang

    2016-01-01

    In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson’s statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran’s index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China’s regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test. PMID:26800271

  2. Dispersion relation for electromagnetic propagation in stochastic dielectric and magnetic helical photonic crystals

    NASA Astrophysics Data System (ADS)

    Avendaño, Carlos G.; Reyes, Arturo

    2017-03-01

    We theoretically study the dispersion relation for axially propagating electromagnetic waves throughout a one-dimensional helical structure whose pitch and dielectric and magnetic properties are spatial random functions with specific statistical characteristics. In the system of coordinates rotating with the helix, by using a matrix formalism, we write the set of differential equations that governs the expected value of the electromagnetic field amplitudes and we obtain the corresponding dispersion relation. We show that the dispersion relation depends strongly on the noise intensity introduced in the system and the autocorrelation length. When the autocorrelation length increases at fixed fluctuation and when the fluctuation augments at fixed autocorrelation length, the band gap widens and the attenuation coefficient of electromagnetic waves propagating in the random medium gets larger. By virtue of the degeneracy in the imaginary part of the eigenvalues associated with the propagating modes, the random medium acts as a filter for circularly polarized electromagnetic waves, in which only the propagating backward circularly polarized wave can propagate with no attenuation. Our results are valid for any kind of dielectric and magnetic structures which possess a helical-like symmetry such as cholesteric and chiral smectic-C liquid crystals, structurally chiral materials, and stressed cholesteric elastomers.

  3. Hotspot detection using image pattern recognition based on higher-order local auto-correlation

    NASA Astrophysics Data System (ADS)

    Maeda, Shimon; Matsunawa, Tetsuaki; Ogawa, Ryuji; Ichikawa, Hirotaka; Takahata, Kazuhiro; Miyairi, Masahiro; Kotani, Toshiya; Nojima, Shigeki; Tanaka, Satoshi; Nakagawa, Kei; Saito, Tamaki; Mimotogi, Shoji; Inoue, Soichi; Nosato, Hirokazu; Sakanashi, Hidenori; Kobayashi, Takumi; Murakawa, Masahiro; Higuchi, Tetsuya; Takahashi, Eiichi; Otsu, Nobuyuki

    2011-04-01

    Below 40nm design node, systematic variation due to lithography must be taken into consideration during the early stage of design. So far, litho-aware design using lithography simulation models has been widely applied to assure that designs are printed on silicon without any error. However, the lithography simulation approach is very time consuming, and under time-to-market pressure, repetitive redesign by this approach may result in the missing of the market window. This paper proposes a fast hotspot detection support method by flexible and intelligent vision system image pattern recognition based on Higher-Order Local Autocorrelation. Our method learns the geometrical properties of the given design data without any defects as normal patterns, and automatically detects the design patterns with hotspots from the test data as abnormal patterns. The Higher-Order Local Autocorrelation method can extract features from the graphic image of design pattern, and computational cost of the extraction is constant regardless of the number of design pattern polygons. This approach can reduce turnaround time (TAT) dramatically only on 1CPU, compared with the conventional simulation-based approach, and by distributed processing, this has proven to deliver linear scalability with each additional CPU.

  4. Water Quality Sensing and Spatio-Temporal Monitoring Structure with Autocorrelation Kernel Methods.

    PubMed

    Vizcaíno, Iván P; Carrera, Enrique V; Muñoz-Romero, Sergio; Cumbal, Luis H; Rojo-Álvarez, José Luis

    2017-10-16

    Pollution on water resources is usually analyzed with monitoring campaigns, which consist of programmed sampling, measurement, and recording of the most representative water quality parameters. These campaign measurements yields a non-uniform spatio-temporal sampled data structure to characterize complex dynamics phenomena. In this work, we propose an enhanced statistical interpolation method to provide water quality managers with statistically interpolated representations of spatial-temporal dynamics. Specifically, our proposal makes efficient use of the a priori available information of the quality parameter measurements through Support Vector Regression (SVR) based on Mercer's kernels. The methods are benchmarked against previously proposed methods in three segments of the Machángara River and one segment of the San Pedro River in Ecuador, and their different dynamics are shown by statistically interpolated spatial-temporal maps. The best interpolation performance in terms of mean absolute error was the SVR with Mercer's kernel given by either the Mahalanobis spatial-temporal covariance matrix or by the bivariate estimated autocorrelation function. In particular, the autocorrelation kernel provides with significant improvement of the estimation quality, consistently for all the six water quality variables, which points out the relevance of including a priori knowledge of the problem.

  5. Water Quality Sensing and Spatio-Temporal Monitoring Structure with Autocorrelation Kernel Methods

    PubMed Central

    Vizcaíno, Iván P.; Muñoz-Romero, Sergio; Cumbal, Luis H.

    2017-01-01

    Pollution on water resources is usually analyzed with monitoring campaigns, which consist of programmed sampling, measurement, and recording of the most representative water quality parameters. These campaign measurements yields a non-uniform spatio-temporal sampled data structure to characterize complex dynamics phenomena. In this work, we propose an enhanced statistical interpolation method to provide water quality managers with statistically interpolated representations of spatial-temporal dynamics. Specifically, our proposal makes efficient use of the a priori available information of the quality parameter measurements through Support Vector Regression (SVR) based on Mercer’s kernels. The methods are benchmarked against previously proposed methods in three segments of the Machángara River and one segment of the San Pedro River in Ecuador, and their different dynamics are shown by statistically interpolated spatial-temporal maps. The best interpolation performance in terms of mean absolute error was the SVR with Mercer’s kernel given by either the Mahalanobis spatial-temporal covariance matrix or by the bivariate estimated autocorrelation function. In particular, the autocorrelation kernel provides with significant improvement of the estimation quality, consistently for all the six water quality variables, which points out the relevance of including a priori knowledge of the problem. PMID:29035333

  6. A spatially explicit approach to the study of socio-demographic inequality in the spatial distribution of trees across Boston neighborhoods

    PubMed Central

    Duncan, Dustin T.; Kawachi, Ichiro; Kum, Susan; Aldstadt, Jared; Piras, Gianfranco; Matthews, Stephen A.; Arbia, Giuseppe; Castro, Marcia C.; White, Kellee; Williams, David R.

    2017-01-01

    The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran’s I for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran’s I range from 0.24 to 0.86, all P=0.001), for tree density (Global Moran’s I=0.452, P=0.001), and in the OLS regression residuals (Global Moran’s I range from 0.32 to 0.38, all P<0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (rS=−0.19; conventional P-value=0.016; spatially adjusted P-value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (rS=−0.18; conventional P-value=0.019; spatially adjusted P-value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed. PMID:29354668

  7. 0.1 Trend analysis of δ18O composition of precipitation in Germany: Combining Mann-Kendall trend test and ARIMA models to correct for higher order serial correlation

    NASA Astrophysics Data System (ADS)

    Klaus, Julian; Pan Chun, Kwok; Stumpp, Christine

    2015-04-01

    Spatio-temporal dynamics of stable oxygen (18O) and hydrogen (2H) isotopes in precipitation can be used as proxies for changing hydro-meteorological and regional and global climate patterns. While spatial patterns and distributions gained much attention in recent years the temporal trends in stable isotope time series are rarely investigated and our understanding of them is still limited. These might be a result of a lack of proper trend detection tools and effort for exploring trend processes. Here we make use of an extensive data set of stable isotope in German precipitation. In this study we investigate temporal trends of δ18O in precipitation at 17 observation station in Germany between 1978 and 2009. For that we test different approaches for proper trend detection, accounting for first and higher order serial correlation. We test if significant trends in the isotope time series based on different models can be observed. We apply the Mann-Kendall trend tests on the isotope series, using general multiplicative seasonal autoregressive integrate moving average (ARIMA) models which account for first and higher order serial correlations. With the approach we can also account for the effects of temperature, precipitation amount on the trend. Further we investigate the role of geographic parameters on isotope trends. To benchmark our proposed approach, the ARIMA results are compared to a trend-free prewhiting (TFPW) procedure, the state of the art method for removing the first order autocorrelation in environmental trend studies. Moreover, we explore whether higher order serial correlations in isotope series affects our trend results. The results show that three out of the 17 stations have significant changes when higher order autocorrelation are adjusted, and four stations show a significant trend when temperature and precipitation effects are considered. Significant trends in the isotope time series are generally observed at low elevation stations (≤315 m a.s.l.). Higher order autoregressive processes are important in the isotope time series analysis. Our results show that the widely used trend analysis with only the first order autocorrelation adjustment may not adequately take account of the high order autocorrelated processes in the stable isotope series. The investigated time series analysis method including higher autocorrelation and external climate variable adjustments is shown to be a better alternative.

  8. Statistical process control of mortality series in the Australian and New Zealand Intensive Care Society (ANZICS) adult patient database: implications of the data generating process.

    PubMed

    Moran, John L; Solomon, Patricia J

    2013-05-24

    Statistical process control (SPC), an industrial sphere initiative, has recently been applied in health care and public health surveillance. SPC methods assume independent observations and process autocorrelation has been associated with increase in false alarm frequency. Monthly mean raw mortality (at hospital discharge) time series, 1995-2009, at the individual Intensive Care unit (ICU) level, were generated from the Australia and New Zealand Intensive Care Society adult patient database. Evidence for series (i) autocorrelation and seasonality was demonstrated using (partial)-autocorrelation ((P)ACF) function displays and classical series decomposition and (ii) "in-control" status was sought using risk-adjusted (RA) exponentially weighted moving average (EWMA) control limits (3 sigma). Risk adjustment was achieved using a random coefficient (intercept as ICU site and slope as APACHE III score) logistic regression model, generating an expected mortality series. Application of time-series to an exemplar complete ICU series (1995-(end)2009) was via Box-Jenkins methodology: autoregressive moving average (ARMA) and (G)ARCH ((Generalised) Autoregressive Conditional Heteroscedasticity) models, the latter addressing volatility of the series variance. The overall data set, 1995-2009, consisted of 491324 records from 137 ICU sites; average raw mortality was 14.07%; average(SD) raw and expected mortalities ranged from 0.012(0.113) and 0.013(0.045) to 0.296(0.457) and 0.278(0.247) respectively. For the raw mortality series: 71 sites had continuous data for assessment up to or beyond lag40 and 35% had autocorrelation through to lag40; and of 36 sites with continuous data for ≥ 72 months, all demonstrated marked seasonality. Similar numbers and percentages were seen with the expected series. Out-of-control signalling was evident for the raw mortality series with respect to RA-EWMA control limits; a seasonal ARMA model, with GARCH effects, displayed white-noise residuals which were in-control with respect to EWMA control limits and one-step prediction error limits (3SE). The expected series was modelled with a multiplicative seasonal autoregressive model. The data generating process of monthly raw mortality series at the ICU level displayed autocorrelation, seasonality and volatility. False-positive signalling of the raw mortality series was evident with respect to RA-EWMA control limits. A time series approach using residual control charts resolved these issues.

  9. Reflection Response of the Parnaíba Basin (NE Brazil) from Seismic Ambient Noise Autocorrelation Functions

    NASA Astrophysics Data System (ADS)

    Julià, Jordi; Schimmel, Martin; Cedraz, Victória

    2017-04-01

    Reflected-wave interferometry relies on the recording of transient seismic signals from random wavefields located beneath recording stations. Under vertical incidence, the recordings contain the full transmission response, which includes the direct wave as well as multiple reverberations from seismic discontinuities located between the wavefields and the receiver. It has been shown that, under those assumptions, the reflection response of the medium can be recovered from the autocorrelation function (ACF) of the transmission response at a given receiver, as if the wavefields had originated themselves at the free surface. This passive approach to seismic reflection profiling has the obvious advantage of being low-cost and non-invasive when compared to its active-source counterpart, and it has been successfully utilized in other sedimentary basins worldwide. In this paper we evaluate the ability of the autocorrelation of ambient seismic noise recorded in the Parnaíba basin - a large Paleozoic basin in NE Brazil - to recover the reflection response of the basin. The dataset was acquired by the Universidade Federal do Rio Grande do Norte during 2015 and 2016 under the Parnaíba Basin Analysis Project (PBAP), a multi-disciplinary and multi-institutional effort funded by BP Energy do Brasil aimed at improving our current understanding of the architecture of this cratonic basin. The dataset consists of about 1 year of continuous ground motion data from 10 short-period, 3-component stations located in the central portion of the basin. The stations were co-located with an existing (active-source) seismic reflection profile that was shot in 2012, making a linear array of about 100 km in aperture and about 10 km inter-station spacing. To develop the autocorrelation at a given station we considered the vertical component of ground motion only, which should result in the P-wave response. The vertical recordings were first split into 10 min-long windows, demeaned, de-trended, re-sampled, and band-pass filtered between 8 and 16 Hz before autocorrelation, and then stacked with phase-weighting to enhance coherency of the retrieved signal. The ACFs show coherent signal is recovered at lag times between 0.5 and 2 s, which we interpret as P- and S-wave energy reflected on top of an intra-sedimentary discontinuity. Our results are consistent, to first-order, with a previously developed active-source reflection response of the basin.

  10. Single ion dynamics in molten sodium bromide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcaraz, O.; Trullas, J.; Demmel, F.

    We present a study on the single ion dynamics in the molten alkali halide NaBr. Quasielastic neutron scattering was employed to extract the self-diffusion coefficient of the sodium ions at three temperatures. Molecular dynamics simulations using rigid and polarizable ion models have been performed in parallel to extract the sodium and bromide single dynamics and ionic conductivities. Two methods have been employed to derive the ion diffusion, calculating the mean squared displacements and the velocity autocorrelation functions, as well as analysing the increase of the line widths of the self-dynamic structure factors. The sodium diffusion coefficients show a remarkable goodmore » agreement between experiment and simulation utilising the polarisable potential.« less

  11. Theory of acoustic design of opera house and a design proposal

    NASA Astrophysics Data System (ADS)

    Ando, Yoichi

    2004-05-01

    First of all, the theory of subjective preference for sound fields based on the model of auditory-brain system is briefly mentioned. It consists of the temporal factors and spatial factors associated with the left and right cerebral hemispheres, respectively. The temporal criteria are the initial time delay gap between the direct sound and the first Reflection (Dt1) and the subsequent reverberation time (Tsub). These preferred conditions are related to the minimum value of effective duration of the running autocorrelation function of source signals (te)min. The spatial criteria are binaural listening level (LL) and the IACC, which may be extracted from the interaural crosscorrelation function. In the opera house, there are two different kind of sound sources, i.e., the vocal source of relatively short values of (te)min in the stage and the orchestra music of long values of (te)min in the pit. For these sources, a proposal is made here.

  12. A spatial model of bird abundance as adjusted for detection probability

    USGS Publications Warehouse

    Gorresen, P.M.; Mcmillan, G.P.; Camp, R.J.; Pratt, T.K.

    2009-01-01

    Modeling the spatial distribution of animals can be complicated by spatial and temporal effects (i.e. spatial autocorrelation and trends in abundance over time) and other factors such as imperfect detection probabilities and observation-related nuisance variables. Recent advances in modeling have demonstrated various approaches that handle most of these factors but which require a degree of sampling effort (e.g. replication) not available to many field studies. We present a two-step approach that addresses these challenges to spatially model species abundance. Habitat, spatial and temporal variables were handled with a Bayesian approach which facilitated modeling hierarchically structured data. Predicted abundance was subsequently adjusted to account for imperfect detection and the area effectively sampled for each species. We provide examples of our modeling approach for two endemic Hawaiian nectarivorous honeycreepers: 'i'iwi Vestiaria coccinea and 'apapane Himatione sanguinea. ?? 2009 Ecography.

  13. Analysis of Thematic Mapper data for studying the suspended matter distribution in the coastal area of the German Bight (North Sea)

    NASA Technical Reports Server (NTRS)

    Doerffer, R.; Fischer, J.; Stoessel, M.; Brockmann, C.; Grassl, H.

    1989-01-01

    Thematic Mapper data were analyzed with respect to its capability for mapping the complex structure and dynamics of suspended matter distribution in the coastal area of the German Bight (North Sea). Three independent pieces of information were found by factor analysis of all seven TM channels: suspended matter concentration, atmospheric scattering, and sea surface temperature. For the required atmospheric correction, the signal-to-noise ratios of Channels 5 and 7 have to be improved by averaging over 25 x 25 pixels, which also makes it possible to monitor the aerosol optical depth and aerosol type over cloud-free water surfaces. Near-surface suspended matter concentrations may be detected with an accuracy of factor less than 2 by using an algorithm derived from radiative transfer model calculation. The patchiness of suspended matter and its relation to underwater topography was analyzed with autocorrelation and cross-correlation.

  14. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field

    NASA Technical Reports Server (NTRS)

    Franklin, Rima B.; Mills, Aaron L.

    2003-01-01

    To better understand the distribution of soil microbial communities at multiple spatial scales, a survey was conducted to examine the spatial organization of community structure in a wheat field in eastern Virginia (USA). Nearly 200 soil samples were collected at a variety of separation distances ranging from 2.5 cm to 11 m. Whole-community DNA was extracted from each sample, and community structure was compared using amplified fragment length polymorphism (AFLP) DNA fingerprinting. Relative similarity was calculated between each pair of samples and compared using geostatistical variogram analysis to study autocorrelation as a function of separation distance. Spatial autocorrelation was found at scales ranging from 30 cm to more than 6 m, depending on the sampling extent considered. In some locations, up to four different correlation length scales were detected. The presence of nested scales of variability suggests that the environmental factors regulating the development of the communities in this soil may operate at different scales. Kriging was used to generate maps of the spatial organization of communities across the plot, and the results demonstrated that bacterial distributions can be highly structured, even within a habitat that appears relatively homogeneous at the plot and field scale. Different subsets of the microbial community were distributed differently across the plot, and this is thought to be due to the variable response of individual populations to spatial heterogeneity associated with soil properties. c2003 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

  15. Spatial distribution of cutaneous leishmaniasis in the state of Paraná, Brazil.

    PubMed

    Melo, Helen Aline; Rossoni, Diogo Francisco; Teodoro, Ueslei

    2017-01-01

    The geographic distribution of cutaneous leishmaniasis (CL) makes it a disease of major clinical importance in Brazil, where it is endemic in the state of Paraná. The objective of this study was to analyze the spatial distribution of CL in Paraná between 2001 and 2015, based on data from the Sistema de Informação de Agravos de Notificação (Information System for Notifiable Diseases) regarding autochthonous CL cases. Spatial autocorrelation was performed using Moran's Global Index and the Local Indicator of Spatial Association (LISA). The construction of maps was based on categories of association (high-high, low-low, high-low, and low-high). A total of 4,557 autochthonous cases of CL were registered in the state of Paraná, with an annual average of 303.8 (± 135.2) and a detection coefficient of 2.91. No correlation was found between global indices and their respective significance in 2001 (I = -0.456, p = 0.676), but evidence of spatial autocorrelation was found in other years (p< 0.05). In the construction and analysis of the cluster maps, areas with a high-high positive association were found in the Ivaí-Pirapó, Tibagi, Cinzas-Laranjinha, and Ribeira areas. The state of Paraná should keep a constant surveillance over CL due to the prominent presence of socioeconomic and environmental factors such as the favorable circumstances for the vectors present in peri-urban and agriculture áreas.

  16. Spatial distribution of cutaneous leishmaniasis in the state of Paraná, Brazil

    PubMed Central

    2017-01-01

    The geographic distribution of cutaneous leishmaniasis (CL) makes it a disease of major clinical importance in Brazil, where it is endemic in the state of Paraná. The objective of this study was to analyze the spatial distribution of CL in Paraná between 2001 and 2015, based on data from the Sistema de Informação de Agravos de Notificação (Information System for Notifiable Diseases) regarding autochthonous CL cases. Spatial autocorrelation was performed using Moran’s Global Index and the Local Indicator of Spatial Association (LISA). The construction of maps was based on categories of association (high-high, low-low, high-low, and low-high). A total of 4,557 autochthonous cases of CL were registered in the state of Paraná, with an annual average of 303.8 (± 135.2) and a detection coefficient of 2.91. No correlation was found between global indices and their respective significance in 2001 (I = -0.456, p = 0.676), but evidence of spatial autocorrelation was found in other years (p< 0.05). In the construction and analysis of the cluster maps, areas with a high-high positive association were found in the Ivaí-Pirapó, Tibagi, Cinzas-Laranjinha, and Ribeira areas. The state of Paraná should keep a constant surveillance over CL due to the prominent presence of socioeconomic and environmental factors such as the favorable circumstances for the vectors present in peri-urban and agriculture áreas. PMID:28938013

  17. Characteristics of train noise in above-ground and underground stations with side and island platforms

    NASA Astrophysics Data System (ADS)

    Shimokura, Ryota; Soeta, Yoshiharu

    2011-04-01

    Railway stations can be principally classified by their locations, i.e., above-ground or underground stations, and by their platform styles, i.e., side or island platforms. However, the effect of the architectural elements on the train noise in stations is not well understood. The aim of the present study is to determine the different acoustical characteristics of the train noise for each station style. The train noise was evaluated by (1) the A-weighted equivalent continuous sound pressure level ( LAeq), (2) the amplitude of the maximum peak of the interaural cross-correlation function (IACC), (3) the delay time ( τ1) and amplitude ( ϕ1) of the first maximum peak of the autocorrelation function. The IACC, τ1 and ϕ1 are related to the subjective diffuseness, pitch and pitch strength, respectively. Regarding the locations, the LAeq in the underground stations was 6.4 dB higher than that in the above-ground stations, and the pitch in the underground stations was higher and stronger. Regarding the platform styles, the LAeq on the side platforms was 3.3 dB higher than on the island platforms of the above-ground stations. For the underground stations, the LAeq on the island platforms was 3.3 dB higher than that on the side platforms when a train entered the station. The IACC on the island platforms of the above-ground stations was higher than that in the other stations.

  18. Local-scale spatial modelling for interpolating climatic temperature variables to predict agricultural plant suitability

    NASA Astrophysics Data System (ADS)

    Webb, Mathew A.; Hall, Andrew; Kidd, Darren; Minansy, Budiman

    2016-05-01

    Assessment of local spatial climatic variability is important in the planning of planting locations for horticultural crops. This study investigated three regression-based calibration methods (i.e. traditional versus two optimized methods) to relate short-term 12-month data series from 170 temperature loggers and 4 weather station sites with data series from nearby long-term Australian Bureau of Meteorology climate stations. The techniques trialled to interpolate climatic temperature variables, such as frost risk, growing degree days (GDDs) and chill hours, were regression kriging (RK), regression trees (RTs) and random forests (RFs). All three calibration methods produced accurate results, with the RK-based calibration method delivering the most accurate validation measures: coefficients of determination ( R 2) of 0.92, 0.97 and 0.95 and root-mean-square errors of 1.30, 0.80 and 1.31 °C, for daily minimum, daily maximum and hourly temperatures, respectively. Compared with the traditional method of calibration using direct linear regression between short-term and long-term stations, the RK-based calibration method improved R 2 and reduced root-mean-square error (RMSE) by at least 5 % and 0.47 °C for daily minimum temperature, 1 % and 0.23 °C for daily maximum temperature and 3 % and 0.33 °C for hourly temperature. Spatial modelling indicated insignificant differences between the interpolation methods, with the RK technique tending to be the slightly better method due to the high degree of spatial autocorrelation between logger sites.

  19. Maximum Entropy Method applied to Real-time Time-Dependent Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Zempo, Yasunari; Toogoshi, Mitsuki; Kano, Satoru S.

    Maximum Entropy Method (MEM) is widely used for the analysis of a time-series data such as an earthquake, which has fairly long-periodicity but short observable data. We have examined MEM to apply to the optical analysis of the time-series data from the real-time TDDFT. In the analysis, usually Fourier Transform (FT) is used, and we have to pay our attention to the lower energy part such as the band gap, which requires the long time evolution. The computational cost naturally becomes quite expensive. Since MEM is based on the autocorrelation of the signal, in which the periodicity can be described as the difference of time-lags, its value in the lower energy naturally gets small compared to that in the higher energy. To improve the difficulty, our MEM has the two features: the raw data is repeated it many times and concatenated, which provides the lower energy resolution in high resolution; together with the repeated data, an appropriate phase for the target frequency is introduced to reduce the side effect of the artificial periodicity. We have compared our improved MEM and FT spectrum using small-to-medium size molecules. We can see the clear spectrum of MEM, compared to that of FT. Our new technique provides higher resolution in fewer steps, compared to that of FT. This work was partially supported by JSPS Grants-in-Aid for Scientific Research (C) Grant number 16K05047, Sumitomo Chemical, Co. Ltd., and Simulatio Corp.

  20. Fractal analysis of multiscale spatial autocorrelation among point data

    USGS Publications Warehouse

    De Cola, L.

    1991-01-01

    The analysis of spatial autocorrelation among point-data quadrats is a well-developed technique that has made limited but intriguing use of the multiscale aspects of pattern. In this paper are presented theoretical and algorithmic approaches to the analysis of aggregations of quadrats at or above a given density, in which these sets are treated as multifractal regions whose fractal dimension, D, may vary with phenomenon intensity, scale, and location. The technique is illustrated with Matui's quadrat house-count data, which yield measurements consistent with a nonautocorrelated simulated Poisson process but not with an orthogonal unit-step random walk. The paper concludes with a discussion of the implications of such analysis for multiscale geographic analysis systems. -Author

  1. Efficiencies of joint non-local update moves in Monte Carlo simulations of coarse-grained polymers

    NASA Astrophysics Data System (ADS)

    Austin, Kieran S.; Marenz, Martin; Janke, Wolfhard

    2018-03-01

    In this study four update methods are compared in their performance in a Monte Carlo simulation of polymers in continuum space. The efficiencies of the update methods and combinations thereof are compared with the aid of the autocorrelation time with a fixed (optimal) acceptance ratio. Results are obtained for polymer lengths N = 14, 28 and 42 and temperatures below, at and above the collapse transition. In terms of autocorrelation, the optimal acceptance ratio is approximately 0.4. Furthermore, an overview of the step sizes of the update methods that correspond to this optimal acceptance ratio is given. This shall serve as a guide for future studies that rely on efficient computer simulations.

  2. Multiple scaling behaviour and nonlinear traits in music scores

    PubMed Central

    Larralde, Hernán; Martínez-Mekler, Gustavo; Müller, Markus

    2017-01-01

    We present a statistical analysis of music scores from different composers using detrended fluctuation analysis (DFA). We find different fluctuation profiles that correspond to distinct autocorrelation structures of the musical pieces. Further, we reveal evidence for the presence of nonlinear autocorrelations by estimating the DFA of the magnitude series, a result validated by a corresponding study of appropriate surrogate data. The amount and the character of nonlinear correlations vary from one composer to another. Finally, we performed a simple experiment in order to evaluate the pleasantness of the musical surrogate pieces in comparison with the original music and find that nonlinear correlations could play an important role in the aesthetic perception of a musical piece. PMID:29308256

  3. Errors in radial velocity variance from Doppler wind lidar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.; Barthelmie, R. J.; Doubrawa, P.

    A high-fidelity lidar turbulence measurement technique relies on accurate estimates of radial velocity variance that are subject to both systematic and random errors determined by the autocorrelation function of radial velocity, the sampling rate, and the sampling duration. Our paper quantifies the effect of the volumetric averaging in lidar radial velocity measurements on the autocorrelation function and the dependence of the systematic and random errors on the sampling duration, using both statistically simulated and observed data. For current-generation scanning lidars and sampling durations of about 30 min and longer, during which the stationarity assumption is valid for atmospheric flows, themore » systematic error is negligible but the random error exceeds about 10%.« less

  4. Skewness, long-time memory, and non-stationarity: Application to leverage effect in financial time series

    NASA Astrophysics Data System (ADS)

    Roman, H. E.; Porto, M.; Dose, C.

    2008-10-01

    We analyze daily log-returns data for a set of 1200 stocks, taken from US stock markets, over a period of 2481 trading days (January 1996-November 2005). We estimate the degree of non-stationarity in daily market volatility employing a polynomial fit, used as a detrending function. We find that the autocorrelation function of absolute detrended log-returns departs strongly from the corresponding original data autocorrelation function, while the observed leverage effect depends only weakly on trends. Such effect is shown to occur when both skewness and long-time memory are simultaneously present. A fractional derivative random walk model is discussed yielding a quantitative agreement with the empirical results.

  5. Sign reversals of the output autocorrelation function for the stochastic Bernoulli-Verhulst equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumi, N., E-mail: Neeme.Lumi@tlu.ee; Mankin, R., E-mail: Romi.Mankin@tlu.ee

    2015-10-28

    We consider a stochastic Bernoulli-Verhulst equation as a model for population growth processes. The effect of fluctuating environment on the carrying capacity of a population is modeled as colored dichotomous noise. Relying on the composite master equation an explicit expression for the stationary autocorrelation function (ACF) of population sizes is found. On the basis of this expression a nonmonotonic decay of the ACF by increasing lag-time is shown. Moreover, in a certain regime of the noise parameters the ACF demonstrates anticorrelation as well as related sign reversals at some values of the lag-time. The conditions for the appearance of thismore » highly unexpected effect are also discussed.« less

  6. Pathogenic changes of dispersion and contrast of coherent images of biotissues

    NASA Astrophysics Data System (ADS)

    Pishak, Olga V.

    2002-02-01

    The paper presents the results of polarization-correlation investigation of multifractal collagen structure of physiologically normal and pathologically changed tissues of women's reproductive sphere and of skin. The technique of polarization selection of coherent biotissues' images with the following determination of their autocorrelation functions and spectral densities is suggested. The correlation-optical criteria of early diagnostics of pathological changes' appearance of myometry (forming of the germ of fibromyoma) and of skin(psoriasis) are determined. The suggested paper is directed to investigation of the possibilities of pathological changes of biotissues' morphological structure by means of determining the polarizationally filtered autocorrelation functions (ACF) and corresponding spectral densities of their coherent images.

  7. Multiple scaling behaviour and nonlinear traits in music scores

    NASA Astrophysics Data System (ADS)

    González-Espinoza, Alfredo; Larralde, Hernán; Martínez-Mekler, Gustavo; Müller, Markus

    2017-12-01

    We present a statistical analysis of music scores from different composers using detrended fluctuation analysis (DFA). We find different fluctuation profiles that correspond to distinct autocorrelation structures of the musical pieces. Further, we reveal evidence for the presence of nonlinear autocorrelations by estimating the DFA of the magnitude series, a result validated by a corresponding study of appropriate surrogate data. The amount and the character of nonlinear correlations vary from one composer to another. Finally, we performed a simple experiment in order to evaluate the pleasantness of the musical surrogate pieces in comparison with the original music and find that nonlinear correlations could play an important role in the aesthetic perception of a musical piece.

  8. Fluctuation analysis of proficient and dysgraphic handwriting in children

    NASA Astrophysics Data System (ADS)

    Rosenblum, S.; Roman, H. E.

    2009-03-01

    We analyze handwriting records from several school children with the aim of characterizing the fluctuating behavior of the writing speed. It will be concluded that remarkable differences exist between proficient and dysgraphic handwritings which were unknown so far. It is shown that in the case of proficient handwriting, the variations in handwriting speed are strongly autocorrelated within times corresponding to the completion of a single character or letter, while become uncorrelated at longer times. In the case of dysgraphia, such correlations persist on longer time scales and the autocorrelation function seems to display algebraic time decay, indicating the presence of strong anomalies in the handwriting process. Applications of the results in educational/clinical programs are envisaged.

  9. Double-resolution electron holography with simple Fourier transform of fringe-shifted holograms.

    PubMed

    Volkov, V V; Han, M G; Zhu, Y

    2013-11-01

    We propose a fringe-shifting holographic method with an appropriate image wave recovery algorithm leading to exact solution of holographic equations. With this new method the complex object image wave recovered from holograms appears to have much less traditional artifacts caused by the autocorrelation band present practically in all Fourier transformed holograms. The new analytical solutions make possible a double-resolution electron holography free from autocorrelation band artifacts and thus push the limits for phase resolution. The new image wave recovery algorithm uses a popular Fourier solution of the side band-pass filter technique, while the fringe-shifting holographic method is simple to implement in practice. Published by Elsevier B.V.

  10. Errors in radial velocity variance from Doppler wind lidar

    DOE PAGES

    Wang, H.; Barthelmie, R. J.; Doubrawa, P.; ...

    2016-08-29

    A high-fidelity lidar turbulence measurement technique relies on accurate estimates of radial velocity variance that are subject to both systematic and random errors determined by the autocorrelation function of radial velocity, the sampling rate, and the sampling duration. Our paper quantifies the effect of the volumetric averaging in lidar radial velocity measurements on the autocorrelation function and the dependence of the systematic and random errors on the sampling duration, using both statistically simulated and observed data. For current-generation scanning lidars and sampling durations of about 30 min and longer, during which the stationarity assumption is valid for atmospheric flows, themore » systematic error is negligible but the random error exceeds about 10%.« less

  11. [Spatial heterogeneity and influencing factors of soil phosphorus concentration in a mid-subtropical Choerospondias axillaris deciduous broad-leaved forest, China.

    PubMed

    Hu, Rui Bin; Fang, Xi; Xiang, Wen Hua; Jiang, Fang; Lei, Pi Feng; Zhao, Li Juan; Zhu, Wen Juan; Deng, Xiang Wen

    2016-03-01

    In order to investigate spatial variations in soil phosphorus (P) concentration and the influencing factors, one permanent plot of 1 hm 2 was established and stand structure was surveyed in Choerospondias axillaries deciduous broadleaved forest in Dashanchong Forest Park in Changsha County, Hunan Province, China. Soil samples were collected with equidistant grid point sampling method and soil P concentration and its spatial variation were analyzed by using geo-statistics and geographical information system (GIS) techniques. The results showed that the variations of total P and available P concentrations in humus layer and in the soil profile at depth of 0-10, 10-20 and 20-30 cm were moderate and the available P showed higher variability in a specific soil layer compared with total P. Concentrations of total P and available P in soil decreased, while the variations increased with the increase in soil depth. The total P and available P showed high spatial autocorrelation, primarily resulted from the structural factors. The spatial heterogeneity of available P was stronger than that of total P, and the spatial autocorrelation ranges of total P and available P varied from 92.80 to 168.90 m and from 79.43 to 106.20 m in different soil layers, respectively. At the same soil depth, fractal dimensions of total P were higher than that of available P, with more complex spatial pattern, while available P showed stronger spatial correlation with stronger spatial structure. In humus layer and soil depths of 0-10, 10-20 and 20-30 cm, the spatial variation pattern of total P and available P concentrations showed an apparent belt-shaped and spot massive gradient change. The high value appeared at low elevation and valley position, and the low value appeared in the high elevation and ridge area. The total P and available P concentrations showed significantly negative correlation with elevation and litter, but the relationship with convexity, species, numbers and soil pH was not significant. The total P and available P exhibited significant positive correlations with soil organic carbon (SOC), total nitrogen concentration, indicating the leaching characteristics of soil P. Its spatial variability was affected by many interactive factors.

  12. Developing a dengue forecast model using machine learning: A case study in China

    PubMed Central

    Zhang, Qin; Wang, Li; Xiao, Jianpeng; Zhang, Qingying; Luo, Ganfeng; Li, Zhihao; He, Jianfeng; Zhang, Yonghui; Ma, Wenjun

    2017-01-01

    Background In China, dengue remains an important public health issue with expanded areas and increased incidence recently. Accurate and timely forecasts of dengue incidence in China are still lacking. We aimed to use the state-of-the-art machine learning algorithms to develop an accurate predictive model of dengue. Methodology/Principal findings Weekly dengue cases, Baidu search queries and climate factors (mean temperature, relative humidity and rainfall) during 2011–2014 in Guangdong were gathered. A dengue search index was constructed for developing the predictive models in combination with climate factors. The observed year and week were also included in the models to control for the long-term trend and seasonality. Several machine learning algorithms, including the support vector regression (SVR) algorithm, step-down linear regression model, gradient boosted regression tree algorithm (GBM), negative binomial regression model (NBM), least absolute shrinkage and selection operator (LASSO) linear regression model and generalized additive model (GAM), were used as candidate models to predict dengue incidence. Performance and goodness of fit of the models were assessed using the root-mean-square error (RMSE) and R-squared measures. The residuals of the models were examined using the autocorrelation and partial autocorrelation function analyses to check the validity of the models. The models were further validated using dengue surveillance data from five other provinces. The epidemics during the last 12 weeks and the peak of the 2014 large outbreak were accurately forecasted by the SVR model selected by a cross-validation technique. Moreover, the SVR model had the consistently smallest prediction error rates for tracking the dynamics of dengue and forecasting the outbreaks in other areas in China. Conclusion and significance The proposed SVR model achieved a superior performance in comparison with other forecasting techniques assessed in this study. The findings can help the government and community respond early to dengue epidemics. PMID:29036169

  13. Revisiting the Aqueous Solutions of Dimethyl Sulfoxide by Spectroscopy in the Mid- and Near-Infrared: Experiments and Car-Parrinello Simulations.

    PubMed

    Wallace, Victoria M; Dhumal, Nilesh R; Zehentbauer, Florian M; Kim, Hyung J; Kiefer, Johannes

    2015-11-19

    The infrared and near-infrared spectra of the aqueous solutions of dimethyl sulfoxide are revisited. Experimental and computational vibrational spectra are analyzed and compared. The latter are determined as the Fourier transformation of the velocity autocorrelation function of data obtained from Car-Parrinello molecular dynamics simulations. The experimental absorption spectra are deconvolved, and the excess spectra are determined. The two-dimensional excess contour plot provides a means of visualizing and identifying spectral regions and concentration ranges exhibiting nonideal behavior. In the binary mixtures, the analysis of the SO stretching band provides a semiquantitative picture of the formation and dissociation of hydrogen-bonded DMSO-water complexes. A maximum concentration of these clusters is found in the equimolar mixture. At high DMSO concentration, the formation of rather stable 3DMSO:1water complexes is suggested. The formation of 1DMSO:2water clusters, in which the water oxygen atoms interact with the sulfoxide methyl groups, is proposed as a possible reason for the marked depression of the freezing temperature at the eutectic point.

  14. Thermal transport processes in stable boundary layers

    NASA Astrophysics Data System (ADS)

    Gutierrez, Walter; Araya, Guillermo; Kiliyanpilakkil, Praju; Basu, Sukanta; Ruiz-Columbie, Arquimedes; Castillo, Luciano

    2014-11-01

    Using the 200-m tower data (Reese, Texas), profiler and Mesonet data, and WRF runs, a 4-dim model is introduced which summarizes the main features of the Low Level Jet (LLJ) in stable boundary conditions over the aforementioned region and shows its patterns along the year. We also demonstrate the importance of LLJs for wind energy production. It has been observed that during a LLJ event the level of turbulence intensities and TKE are significantly much lower than those during unstable conditions. The major salient results from this study include: the vertical shears in the LLJ are very large at the current wind turbine heights, causing higher static and cyclical aerodynamic loads. The WRF model has accurately captured the beginning and end of the LLJ event; however, the local maximum wind speed at the LLJ ``nose'' has been under-predicted by approximately 15%, which highlights the difficulties WRF still faces in predicting this phenomenon. Furthermore, power spectra and time-autocorrelations of thermal fluctuations will help us in the understanding of the thermal coherent structures involved in moderate and strong LLJ.

  15. The geography of hospital admission in a national health service with patient choice.

    PubMed

    Fabbri, Daniele; Robone, Silvana

    2010-09-01

    Each year about 20% of the 10 million hospital inpatients in Italy get admitted to hospitals outside the Local Health Authority of residence. In this paper we carefully explore this phenomenon and estimate gravity equations for 'trade' in hospital care using a Poisson pseudo-maximum likelihood method. Consistency of the PPML estimator is guaranteed under the null of independence provided that the conditional mean is correctly specified. In our case we find that patients' flows are affected by network autocorrelation. We correct for it by relying upon spatial filtering. Our results suggest that the gravity model is a good framework for explaining patient mobility in most of the examined diagnostic groups. We find that the ability to restrain patients' outflows increases with the size of the pool of enrollees. Moreover, the ability to attract patients' inflows is reduced by the size of pool of enrollees for all LHAs except for the very big LHAs. For LHAs in the top quintile of size of enrollees, the ability to attract inflows increases with the size of the pool. Copyright (c) 2010 John Wiley & Sons, Ltd.

  16. Topographic modelling of haptic properties of tissue products

    NASA Astrophysics Data System (ADS)

    Rosen, B.-G.; Fall, A.; Rosen, S.; Farbrot, A.; Bergström, P.

    2014-03-01

    The way a product or material feels when touched, haptics, has been shown to be a property that plays an important role when consumers determine the quality of products For tissue products in constant touch with the skin, softness" becomes a primary quality parameter. In the present work, the relationship between topography and the feeling of the surface has been investigated for commercial tissues with varying degree of texture from the low textured crepe tissue to the highly textured embossed- and air-dried tissue products. A trained sensory panel at was used to grade perceived haptic "roughness". The technique used to characterize the topography was Digital light projection (DLP) technique, By the use of multivariate statistics, strong correlations between perceived roughness and topography were found with predictability of above 90 percent even though highly textured products were included. Characterization was made using areal ISO 25178-2 topography parameters in combination with non-contacting topography measurement. The best prediction ability was obtained when combining haptic properties with the topography parameters auto-correlation length (Sal), peak material volume (Vmp), core roughness depth (Sk) and the maximum height of the surface (Sz).

  17. Noise-like pulse generation in an ytterbium-doped fiber laser using tungsten disulphide

    NASA Astrophysics Data System (ADS)

    Zhang, Wenping; Song, Yanrong; Guoyu, Heyang; Xu, Runqin; Dong, Zikai; Li, Kexuan; Tian, Jinrong; Gong, Shuang

    2017-12-01

    We demonstrated the noise-like pulse (NLP) generation in an ytterbium-doped fiber (YDF) laser with tungsten disulphide (WS2). Stable fundamental mode locking and second-order harmonic mode locking were observed. The saturable absorber (SA) was a WS2-polyvinyl alcohol film. The modulation depth of the WS2 film was 2.4%, and the saturable optical intensity was 155 MW cm-2. Based on this SA, the fundamental NLP with a pulse width of 20 ns and repetition rate of 7 MHz were observed. The autocorrelation trace of output pulses had a coherent spike, which came from NLP. The average pulse width of the spike was 550 fs on the top of a broad pedestal. The second-order harmonic NLP had a spectral bandwidth of 1.3 nm and pulse width of 10 ns. With the pump power of 400 mW, the maximum output power was 22.2 mW. To the best of our knowledge, this is the first time a noise-like mode locking in an YDF laser based on WS2-SA in an all normal dispersion regime was obtained.

  18. Dynamic Singularity Spectrum Distribution of Sea Clutter

    NASA Astrophysics Data System (ADS)

    Xiong, Gang; Yu, Wenxian; Zhang, Shuning

    2015-12-01

    The fractal and multifractal theory have provided new approaches for radar signal processing and target-detecting under the background of ocean. However, the related research mainly focuses on fractal dimension or multifractal spectrum (MFS) of sea clutter. In this paper, a new dynamic singularity analysis method of sea clutter using MFS distribution is developed, based on moving detrending analysis (DMA-MFSD). Theoretically, we introduce the time information by using cyclic auto-correlation of sea clutter. For transient correlation series, the instantaneous singularity spectrum based on multifractal detrending moving analysis (MF-DMA) algorithm is calculated, and the dynamic singularity spectrum distribution of sea clutter is acquired. In addition, we analyze the time-varying singularity exponent ranges and maximum position function in DMA-MFSD of sea clutter. For the real sea clutter data, we analyze the dynamic singularity spectrum distribution of real sea clutter in level III sea state, and conclude that the radar sea clutter has the non-stationary and time-varying scale characteristic and represents the time-varying singularity spectrum distribution based on the proposed DMA-MFSD method. The DMA-MFSD will also provide reference for nonlinear dynamics and multifractal signal processing.

  19. Synchrony of forest responses to climate from the aspect of tree mortality in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, M.; Lee, W. K.; Piao, D.; Choi, G. M.; Gang, H. U.

    2016-12-01

    Mortality is a key process in forest-stand dynamics. However, tree mortality is not well understood, particularly in relation to climatic factors. The objectives of this study were to: (i) determine the patterns of maximum stem number (MSN) per ha over dominant tree height from 5-year remeasurements of the permanent sample plots for temperate forests [Red pine (Pinus densiflora), Japanese larch (Larix kaempferi), Korean pine (Pinus koraiensis), Chinese cork oak (Quercus variabilis), and Mongolian oak (Quercus mongolica)] using Sterba's theory and Korean National Forest Inventory (NFI) data, (ii) develop a stand-level mortality (self-thinning) model using the MSN curve, and (iii) assess the impact of temperature on tree mortality in semi-variogram and linear regression models. The MSN curve represents the upper range of observed stem numbers per ha. The mortality model and validation statistic reveal significant differences between the observed data and the model predictions (R2 = 0.55-0.81), and no obvious dependencies or patterns that indicate systematic trends between the residuals and the independent variable. However, spatial autocorrelation was detected from residuals of coniferous species (Red pine, Japanese larch and Korean pine), but not of oak species (Chinese cork oak and Mongolian oak). Based on linear regression from residuals, we found that the mortality of coniferous forests tended to increase when the annual mean temperature increased. Conversely, oak mortality nonsignificantly decreased with increasing temperature. These findings indicate that enhanced tree mortality due to rising temperatures in response to climate change is possible, especially in coniferous forests, and are expected to contribute to policy decisions to support and forest management practices.

  20. Spatial distribution of soil organic carbon and total nitrogen based on GIS and geostatistics in a small watershed in a hilly area of northern China.

    PubMed

    Peng, Gao; Bing, Wang; Guangpo, Geng; Guangcan, Zhang

    2013-01-01

    The spatial variability of soil organic carbon (SOC) and total nitrogen (STN) levels is important in both global carbon-nitrogen cycle and climate change research. There has been little research on the spatial distribution of SOC and STN at the watershed scale based on geographic information systems (GIS) and geostatistics. Ninety-seven soil samples taken at depths of 0-20 cm were collected during October 2010 and 2011 from the Matiyu small watershed (4.2 km(2)) of a hilly area in Shandong Province, northern China. The impacts of different land use types, elevation, vegetation coverage and other factors on SOC and STN spatial distributions were examined using GIS and a geostatistical method, regression-kriging. The results show that the concentration variations of SOC and STN in the Matiyu small watershed were moderate variation based on the mean, median, minimum and maximum, and the coefficients of variation (CV). Residual values of SOC and STN had moderate spatial autocorrelations, and the Nugget/Sill were 0.2% and 0.1%, respectively. Distribution maps of regression-kriging revealed that both SOC and STN concentrations in the Matiyu watershed decreased from southeast to northwest. This result was similar to the watershed DEM trend and significantly correlated with land use type, elevation and aspect. SOC and STN predictions with the regression-kriging method were more accurate than those obtained using ordinary kriging. This research indicates that geostatistical characteristics of SOC and STN concentrations in the watershed were closely related to both land-use type and spatial topographic structure and that regression-kriging is suitable for investigating the spatial distributions of SOC and STN in the complex topography of the watershed.

  1. Spatial Distribution of Soil Organic Carbon and Total Nitrogen Based on GIS and Geostatistics in a Small Watershed in a Hilly Area of Northern China

    PubMed Central

    Peng, Gao; Bing, Wang; Guangpo, Geng; Guangcan, Zhang

    2013-01-01

    The spatial variability of soil organic carbon (SOC) and total nitrogen (STN) levels is important in both global carbon-nitrogen cycle and climate change research. There has been little research on the spatial distribution of SOC and STN at the watershed scale based on geographic information systems (GIS) and geostatistics. Ninety-seven soil samples taken at depths of 0–20 cm were collected during October 2010 and 2011 from the Matiyu small watershed (4.2 km2) of a hilly area in Shandong Province, northern China. The impacts of different land use types, elevation, vegetation coverage and other factors on SOC and STN spatial distributions were examined using GIS and a geostatistical method, regression-kriging. The results show that the concentration variations of SOC and STN in the Matiyu small watershed were moderate variation based on the mean, median, minimum and maximum, and the coefficients of variation (CV). Residual values of SOC and STN had moderate spatial autocorrelations, and the Nugget/Sill were 0.2% and 0.1%, respectively. Distribution maps of regression-kriging revealed that both SOC and STN concentrations in the Matiyu watershed decreased from southeast to northwest. This result was similar to the watershed DEM trend and significantly correlated with land use type, elevation and aspect. SOC and STN predictions with the regression-kriging method were more accurate than those obtained using ordinary kriging. This research indicates that geostatistical characteristics of SOC and STN concentrations in the watershed were closely related to both land-use type and spatial topographic structure and that regression-kriging is suitable for investigating the spatial distributions of SOC and STN in the complex topography of the watershed. PMID:24391791

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, R.

    The spatial autocorrelation functions of broad-band longwave and shortwave radiances measured by the Earth Radiation Budget Experiment (ERBE) are analyzed as a function of view angle in an investigation of the general effects of scene inhomogeneity on radiation. For nadir views, the correlation distance of the autocorrelation function is about 900 km for longwave radiance and about 500 km for shortwave radiance, consistent with higher degrees of freedom in shortwave reflection. Both functions rise monotonically with view angle, but there is a substantial difference in the relative angular dependence of the shortwave and longwave functions, especially for view angles lessmore » than 50 deg. In this range, the increase with angle of the longwave functions is found to depend only on the expansion of pixel area with angle, whereas the shortwave functions show an additional dependence on angle that is attributed to the occlusion of inhomogeneities by cloud height variations. Beyond a view angle of about 50 deg, both longwave and shortwave functions appear to be affected by cloud sides. The shortwave autocorrelation functions do not satisfy the principle of directional reciprocity, thereby proving that the average scene is horizontally inhomogeneous over the scale of an ERBE pixel (1500 sq km). Coarse stratification of the measurements by cloud amount, however, indicates that the average cloud-free scene does satisfy directional reciprocity on this scale.« less

  3. Probabilistic density function method for nonlinear dynamical systems driven by colored noise.

    PubMed

    Barajas-Solano, David A; Tartakovsky, Alexandre M

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integrodifferential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified large-eddy-diffusivity (LED) closure. In contrast to the classical LED closure, the proposed closure accounts for advective transport of the PDF in the approximate temporal deconvolution of the integrodifferential equation. In addition, we introduce the generalized local linearization approximation for deriving a computable PDF equation in the form of a second-order partial differential equation. We demonstrate that the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary autocorrelation time. We apply the proposed PDF method to analyze a set of Kramers equations driven by exponentially autocorrelated Gaussian colored noise to study nonlinear oscillators and the dynamics and stability of a power grid. Numerical experiments show the PDF method is accurate when the noise autocorrelation time is either much shorter or longer than the system's relaxation time, while the accuracy decreases as the ratio of the two timescales approaches unity. Similarly, the PDF method accuracy decreases with increasing standard deviation of the noise.

  4. Correction of Spatial Bias in Oligonucleotide Array Data

    PubMed Central

    Lemieux, Sébastien

    2013-01-01

    Background. Oligonucleotide microarrays allow for high-throughput gene expression profiling assays. The technology relies on the fundamental assumption that observed hybridization signal intensities (HSIs) for each intended target, on average, correlate with their target's true concentration in the sample. However, systematic, nonbiological variation from several sources undermines this hypothesis. Background hybridization signal has been previously identified as one such important source, one manifestation of which appears in the form of spatial autocorrelation. Results. We propose an algorithm, pyn, for the elimination of spatial autocorrelation in HSIs, exploiting the duality of desirable mutual information shared by probes in a common probe set and undesirable mutual information shared by spatially proximate probes. We show that this correction procedure reduces spatial autocorrelation in HSIs; increases HSI reproducibility across replicate arrays; increases differentially expressed gene detection power; and performs better than previously published methods. Conclusions. The proposed algorithm increases both precision and accuracy, while requiring virtually no changes to users' current analysis pipelines: the correction consists merely of a transformation of raw HSIs (e.g., CEL files for Affymetrix arrays). A free, open-source implementation is provided as an R package, compatible with standard Bioconductor tools. The approach may also be tailored to other platform types and other sources of bias. PMID:23573083

  5. Boundary versus bulk behavior of time-dependent correlation functions in one-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Eliëns, I. S.; Ramos, F. B.; Xavier, J. C.; Pereira, R. G.

    2016-05-01

    We study the influence of reflective boundaries on time-dependent responses of one-dimensional quantum fluids at zero temperature beyond the low-energy approximation. Our analysis is based on an extension of effective mobile impurity models for nonlinear Luttinger liquids to the case of open boundary conditions. For integrable models, we show that boundary autocorrelations oscillate as a function of time with the same frequency as the corresponding bulk autocorrelations. This frequency can be identified as the band edge of elementary excitations. The amplitude of the oscillations decays as a power law with distinct exponents at the boundary and in the bulk, but boundary and bulk exponents are determined by the same coupling constant in the mobile impurity model. For nonintegrable models, we argue that the power-law decay of the oscillations is generic for autocorrelations in the bulk, but turns into an exponential decay at the boundary. Moreover, there is in general a nonuniversal shift of the boundary frequency in comparison with the band edge of bulk excitations. The predictions of our effective field theory are compared with numerical results obtained by time-dependent density matrix renormalization group (tDMRG) for both integrable and nonintegrable critical spin-S chains with S =1 /2 , 1, and 3 /2 .

  6. Capturing the effect of [PF3(C2F5)3]-vs. [PF6]-, flexible anion vs. rigid, and scaled charge vs. unit on the transport properties of [bmim]+-based ionic liquids: a comparative MD study.

    PubMed

    Kowsari, Mohammad H; Ebrahimi, Soraya

    2018-05-16

    Comprehensive molecular dynamics simulations are performed to study the average single-particle dynamics and the transport properties of 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], and 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, [bmim][FAP], ionic liquids (ILs) at 400 K. We applied one of the most widely used nonpolarizable all-atom force fields for ILs, both with the original unit (±1) charges on each ion and with the partial charges uniformly scaled to 80-85%, taking into account the average polarizability and tracing the experimentally compatible transport properties. In all simulations, [bmim]+ was considered to be flexible, while the effect of a flexible vs. rigid structure of the anions and the effect of two applied charge sets on the calculated properties were separately investigated in detail. The simulation results showed that replacing [PF6]- with [FAP]-, considering anion flexibility, and applying the charge-scaled model significantly enhanced the ionic self-diffusion, ionic conductivity, inverse viscosity, and hyper anion preference (HAP). Both of the calculated self-diffusion coefficients from the long-time linear slope of the mean-square displacement (MSD) and from the integration of the velocity autocorrelation function (VACF) for the centers of mass of the ions were used for evaluation of the ionic transference number, HAP, ideal Nernst-Einstein ionic conductivity (σNE), and the Stokes-Einstein viscosity. In addition, for quantification of the degree of complicated ionic association (known as the Nernst-Einstein deviation parameter, Δ) and ionicity phenomena in the two studied ILs, the ionic conductivity was determined more rigorously by the Green-Kubo integral of the electric-current autocorrelation function (ECACF), and then the σGK/σNE ratio was evaluated. It was found that the correlated motion of the (cationanion) neighbors in [bmim][FAP] is smaller than in [bmim][PF6]. The relaxation times of the normalized reorientational autocorrelation functions were computed to gain a deep, molecular-level insight into the rotational motion of the ions. The geometric shape of the ion is a key factor in determining its reorientational dynamics. [bmim]+ shows faster translational and slower rotational dynamics in contrast to [PF6]-.

  7. Damage detection and isolation via autocorrelation: a step toward passive sensing

    NASA Astrophysics Data System (ADS)

    Chang, Y. S.; Yuan, F. G.

    2018-03-01

    Passive sensing technique may eliminate the need of expending power from actuators and thus provide a means of developing a compact and simple structural health monitoring system. More importantly, it may provide a solution for monitoring the aircraft subjected to environmental loading from air flow during operation. In this paper, a non-contact auto-correlation based technique is exploited as a feasibility study for passive sensing application to detect damage and isolate the damage location. Its theoretical basis bears some resemblance to reconstructing Green's function from diffusive wavefield through cross-correlation. Localized high pressure air from air compressor are randomly and continuously applied on the one side surface of the aluminum panels through the air blow gun. A laser Doppler vibrometer (LDV) was used to scan a 90 mm × 90 mm area to create a 6 × 6 2D-array signals from the opposite side of the panels. The scanned signals were auto-correlated to reconstruct a "selfimpulse response" (or Green's function). The premise for stably reconstructing the accurate Green's function requires long sensing times. For a 609.6 mm × 609.6 mm flat aluminum panel, the sensing times roughly at least four seconds is sufficient to establish converged Green's function through correlation. For the integral stiffened aluminum panel, the geometrical features of the panel expedite the formation of the diffusive wavefield and thus shorten the sensing times. The damage is simulated by gluing a magnet onto the panels. Reconstructed Green's functions (RGFs) are used for damage detection and damage isolation based on an imaging condition with mean square deviation of the RGFs from the pristine and the damaged structure and the results are shown in color maps. The auto-correlation based technique is shown to consistently detect the simulated damage, image and isolate the damage in the structure subjected to high pressure air excitation. This technique may be transformed into passive sensing applied on the aircraft during operation.

  8. Chemometric modeling of 5-Phenylthiophenecarboxylic acid derivatives as anti-rheumatic agents.

    PubMed

    Adhikari, Nilanjan; Jana, Dhritiman; Halder, Amit K; Mondal, Chanchal; Maiti, Milan K; Jha, Tarun

    2012-09-01

    Arthritis involves joint inflammation, synovial proliferation and damage of cartilage. Interleukin-1 undergoes acute and chronic inflammatory mechanisms of arthritis. Non-steroidal anti-inflammatory drugs can produce symptomatic relief but cannot act through mechanisms of arthritis. Diseases modifying anti-rheumatoid drugs reduce the symptoms of arthritis like decrease in pain and disability score, reduction of swollen joints, articular index and serum concentration of acute phage proteins. Recently, some literature references are obtained on molecular modeling of antirheumatic agents. We have tried chemometric modeling through 2D-QSAR studies on a dataset of fifty-one compounds out of which forty-four 5-Phenylthiophenecarboxylic acid derivatives have IL-1 inhibitory activity and forty-six 5-Phenylthiophenecarboxylic acid derivatives have %AIA suppressive activity. The work was done to find out the structural requirements of these anti-rheumatic agents. 2D QSAR models were generated by 2D and 3D descriptors by using multiple linear regression and partial least square method where IL-1 antagonism was considered as the biological activity parameter. Statistically significant models were developed on the training set developed by k-means cluster analysis. Sterimol parameters, electronic interaction at atom number 9, 2D autocorrelation descriptors, information content descriptor, average connectivity index chi-3, radial distribution function, Balaban 3D index and 3D-MoRSE descriptors were found to play crucial roles to modulate IL-1 inhibitory activity. 2D autocorrelation descriptors like Broto-Moreau autocorrelation of topological structure-lag 3 weighted by atomic van der Waals volumes, Geary autocorrelation-lag 7 associated with weighted atomic Sanderson electronegativities and 3D-MoRSE descriptors like 3D-MoRSE-signal 22 related to atomic van der Waals volumes, 3D-MoRSE-signal 28 related to atomic van der Waals volumes and 3D-MoRSE-signal 9 which was unweighted, were found to play important roles to model %AIA suppressive activity.

  9. Old document image segmentation using the autocorrelation function and multiresolution analysis

    NASA Astrophysics Data System (ADS)

    Mehri, Maroua; Gomez-Krämer, Petra; Héroux, Pierre; Mullot, Rémy

    2013-01-01

    Recent progress in the digitization of heterogeneous collections of ancient documents has rekindled new challenges in information retrieval in digital libraries and document layout analysis. Therefore, in order to control the quality of historical document image digitization and to meet the need of a characterization of their content using intermediate level metadata (between image and document structure), we propose a fast automatic layout segmentation of old document images based on five descriptors. Those descriptors, based on the autocorrelation function, are obtained by multiresolution analysis and used afterwards in a specific clustering method. The method proposed in this article has the advantage that it is performed without any hypothesis on the document structure, either about the document model (physical structure), or the typographical parameters (logical structure). It is also parameter-free since it automatically adapts to the image content. In this paper, firstly, we detail our proposal to characterize the content of old documents by extracting the autocorrelation features in the different areas of a page and at several resolutions. Then, we show that is possible to automatically find the homogeneous regions defined by similar indices of autocorrelation without knowledge about the number of clusters using adapted hierarchical ascendant classification and consensus clustering approaches. To assess our method, we apply our algorithm on 316 old document images, which encompass six centuries (1200-1900) of French history, in order to demonstrate the performance of our proposal in terms of segmentation and characterization of heterogeneous corpus content. Moreover, we define a new evaluation metric, the homogeneity measure, which aims at evaluating the segmentation and characterization accuracy of our methodology. We find a 85% of mean homogeneity accuracy. Those results help to represent a document by a hierarchy of layout structure and content, and to define one or more signatures for each page, on the basis of a hierarchical representation of homogeneous blocks and their topology.

  10. Geographical and Temporal Body Size Variation in a Reptile: Roles of Sex, Ecology, Phylogeny and Ecology Structured in Phylogeny

    PubMed Central

    Aragón, Pedro; Fitze, Patrick S.

    2014-01-01

    Geographical body size variation has long interested evolutionary biologists, and a range of mechanisms have been proposed to explain the observed patterns. It is considered to be more puzzling in ectotherms than in endotherms, and integrative approaches are necessary for testing non-exclusive alternative mechanisms. Using lacertid lizards as a model, we adopted an integrative approach, testing different hypotheses for both sexes while incorporating temporal, spatial, and phylogenetic autocorrelation at the individual level. We used data on the Spanish Sand Racer species group from a field survey to disentangle different sources of body size variation through environmental and individual genetic data, while accounting for temporal and spatial autocorrelation. A variation partitioning method was applied to separate independent and shared components of ecology and phylogeny, and estimated their significance. Then, we fed-back our models by controlling for relevant independent components. The pattern was consistent with the geographical Bergmann's cline and the experimental temperature-size rule: adults were larger at lower temperatures (and/or higher elevations). This result was confirmed with additional multi-year independent data-set derived from the literature. Variation partitioning showed no sex differences in phylogenetic inertia but showed sex differences in the independent component of ecology; primarily due to growth differences. Interestingly, only after controlling for independent components did primary productivity also emerge as an important predictor explaining size variation in both sexes. This study highlights the importance of integrating individual-based genetic information, relevant ecological parameters, and temporal and spatial autocorrelation in sex-specific models to detect potentially important hidden effects. Our individual-based approach devoted to extract and control for independent components was useful to reveal hidden effects linked with alternative non-exclusive hypothesis, such as those of primary productivity. Also, including measurement date allowed disentangling and controlling for short-term temporal autocorrelation reflecting sex-specific growth plasticity. PMID:25090025

  11. Structure of the North Anatolian Fault Zone from the Autocorrelation of Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Taylor, George; Rost, Sebastian; Houseman, Gregory

    2016-04-01

    In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquakes or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct body wave images for the entire crust and the shallow upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using autocorrelations of the vertical component of ground motion, P-wave reflections can be retrieved from the wavefield to constrain crustal structure. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the northern branch of the fault zone, indicating that the NAFZ reaches the upper mantle as a narrow structure. The southern branch has a less clear effect on crustal structure. We also see evidence of several discontinuities in the mid-crust in addition to an upper mantle reflector that we interpret to represent the Hales discontinuity.

  12. Recommended number of strides for automatic assessment of gait symmetry and regularity in above-knee amputees by means of accelerometry and autocorrelation analysis

    PubMed Central

    2012-01-01

    Background Symmetry and regularity of gait are essential outcomes of gait retraining programs, especially in lower-limb amputees. This study aims presenting an algorithm to automatically compute symmetry and regularity indices, and assessing the minimum number of strides for appropriate evaluation of gait symmetry and regularity through autocorrelation of acceleration signals. Methods Ten transfemoral amputees (AMP) and ten control subjects (CTRL) were studied. Subjects wore an accelerometer and were asked to walk for 70 m at their natural speed (twice). Reference values of step and stride regularity indices (Ad1 and Ad2) were obtained by autocorrelation analysis of the vertical and antero-posterior acceleration signals, excluding initial and final strides. The Ad1 and Ad2 coefficients were then computed at different stages by analyzing increasing portions of the signals (considering both the signals cleaned by initial and final strides, and the whole signals). At each stage, the difference between Ad1 and Ad2 values and the corresponding reference values were compared with the minimum detectable difference, MDD, of the index. If that difference was less than MDD, it was assumed that the portion of signal used in the analysis was of sufficient length to allow reliable estimation of the autocorrelation coefficient. Results All Ad1 and Ad2 indices were lower in AMP than in CTRL (P < 0.0001). Excluding initial and final strides from the analysis, the minimum number of strides needed for reliable computation of step symmetry and stride regularity was about 2.2 and 3.5, respectively. Analyzing the whole signals, the minimum number of strides increased to about 15 and 20, respectively. Conclusions Without the need to identify and eliminate the phases of gait initiation and termination, twenty strides can provide a reasonable amount of information to reliably estimate gait regularity in transfemoral amputees. PMID:22316184

  13. Statistical process control of mortality series in the Australian and New Zealand Intensive Care Society (ANZICS) adult patient database: implications of the data generating process

    PubMed Central

    2013-01-01

    Background Statistical process control (SPC), an industrial sphere initiative, has recently been applied in health care and public health surveillance. SPC methods assume independent observations and process autocorrelation has been associated with increase in false alarm frequency. Methods Monthly mean raw mortality (at hospital discharge) time series, 1995–2009, at the individual Intensive Care unit (ICU) level, were generated from the Australia and New Zealand Intensive Care Society adult patient database. Evidence for series (i) autocorrelation and seasonality was demonstrated using (partial)-autocorrelation ((P)ACF) function displays and classical series decomposition and (ii) “in-control” status was sought using risk-adjusted (RA) exponentially weighted moving average (EWMA) control limits (3 sigma). Risk adjustment was achieved using a random coefficient (intercept as ICU site and slope as APACHE III score) logistic regression model, generating an expected mortality series. Application of time-series to an exemplar complete ICU series (1995-(end)2009) was via Box-Jenkins methodology: autoregressive moving average (ARMA) and (G)ARCH ((Generalised) Autoregressive Conditional Heteroscedasticity) models, the latter addressing volatility of the series variance. Results The overall data set, 1995-2009, consisted of 491324 records from 137 ICU sites; average raw mortality was 14.07%; average(SD) raw and expected mortalities ranged from 0.012(0.113) and 0.013(0.045) to 0.296(0.457) and 0.278(0.247) respectively. For the raw mortality series: 71 sites had continuous data for assessment up to or beyond lag40 and 35% had autocorrelation through to lag40; and of 36 sites with continuous data for ≥ 72 months, all demonstrated marked seasonality. Similar numbers and percentages were seen with the expected series. Out-of-control signalling was evident for the raw mortality series with respect to RA-EWMA control limits; a seasonal ARMA model, with GARCH effects, displayed white-noise residuals which were in-control with respect to EWMA control limits and one-step prediction error limits (3SE). The expected series was modelled with a multiplicative seasonal autoregressive model. Conclusions The data generating process of monthly raw mortality series at the ICU level displayed autocorrelation, seasonality and volatility. False-positive signalling of the raw mortality series was evident with respect to RA-EWMA control limits. A time series approach using residual control charts resolved these issues. PMID:23705957

  14. Determining the refractive index of particles using glare-point imaging technique

    NASA Astrophysics Data System (ADS)

    Meng, Rui; Ge, Baozhen; Lu, Qieni; Yu, Xiaoxue

    2018-04-01

    A method of measuring the refractive index of a particle is presented from a glare-point image. The space of a doublet image of a particle can be determined with high accuracy by using auto-correlation and Gaussian interpolation, and then the refractive index is obtained from glare-point separation, and a factor that may influence the accuracy of glare-point separation is explored. Experiments are carried out for three different kinds of particles, including polystyrene latex particles, glass beads, and water droplets, whose measuring accuracy is improved by the data fitting method. The research results show that the method presented in this paper is feasible and beneficial to applications such as spray and atmospheric composition measurements.

  15. Fluctuation correlation models for receptor immobilization

    NASA Astrophysics Data System (ADS)

    Fourcade, B.

    2017-12-01

    Nanoscale dynamics with cycles of receptor diffusion and immobilization by cell-external-or-internal factors is a key process in living cell adhesion phenomena at the origin of a plethora of signal transduction pathways. Motivated by modern correlation microscopy approaches, the receptor correlation functions in physical models based on diffusion-influenced reaction is studied. Using analytical and stochastic modeling, this paper focuses on the hybrid regime where diffusion and reaction are not truly separable. The time receptor autocorrelation functions are shown to be indexed by different time scales and their asymptotic expansions are given. Stochastic simulations show that this analysis can be extended to situations with a small number of molecules. It is also demonstrated that this analysis applies when receptor immobilization is coupled to environmental noise.

  16. Why didn't Box-Jenkins win (again)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pack, D.J.; Downing, D.J.

    This paper focuses on the forecasting performance of the Box-Jenkins methodology applied to the 111 time series of the Makridakis competition. It considers the influence of the following factors: (1) time series length, (2) time-series information (autocorrelation) content, (3) time-series outliers or structural changes, (4) averaging results over time series, and (5) forecast time origin choice. It is found that the 111 time series contain substantial numbers of very short series, series with obvious structural change, and series whose histories are relatively uninformative. If these series are typical of those that one must face in practice, the real message ofmore » the competition is that univariate time series extrapolations will frequently fail regardless of the methodology employed to produce them.« less

  17. Time-scale effects on the gain-loss asymmetry in stock indices

    NASA Astrophysics Data System (ADS)

    Sándor, Bulcsú; Simonsen, Ingve; Nagy, Bálint Zsolt; Néda, Zoltán

    2016-08-01

    The gain-loss asymmetry, observed in the inverse statistics of stock indices is present for logarithmic return levels that are over 2 % , and it is the result of the non-Pearson-type autocorrelations in the index. These non-Pearson-type correlations can be viewed also as functionally dependent daily volatilities, extending for a finite time interval. A generalized time-window shuffling method is used to show the existence of such autocorrelations. Their characteristic time scale proves to be smaller (less than 25 trading days) than what was previously believed. It is also found that this characteristic time scale has decreased with the appearance of program trading in the stock market transactions. Connections with the leverage effect are also established.

  18. Velocity autocorrelation function in supercooled liquids: Long-time tails and anomalous shear-wave propagation.

    PubMed

    Peng, H L; Schober, H R; Voigtmann, Th

    2016-12-01

    Molecular dynamic simulations are performed to reveal the long-time behavior of the velocity autocorrelation function (VAF) by utilizing the finite-size effect in a Lennard-Jones binary mixture. Whereas in normal liquids the classical positive t^{-3/2} long-time tail is observed, we find in supercooled liquids a negative tail. It is strongly influenced by the transfer of the transverse current wave across the period boundary. The t^{-5/2} decay of the negative long-time tail is confirmed in the spectrum of VAF. Modeling the long-time transverse current within a generalized Maxwell model, we reproduce the negative long-time tail of the VAF, but with a slower algebraic t^{-2} decay.

  19. Molecular dynamics test of the Brownian description of Na(+) motion in water

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.

    1985-01-01

    The present paper provides the results of molecular dynamics calculations on a Na(+) ion in aqueous solution. Attention is given to the sodium-oxygen and sodium-hydrogen radial distribution functions, the velocity autocorrelation function for the Na(+) ion, the autocorrelation function of the force on the stationary ion, and the accuracy of Brownian motion assumptions which are basic to hydrodynamic models of ion dyanmics in solution. It is pointed out that the presented calculations provide accurate data for testing theories of ion dynamics in solution. The conducted tests show that it is feasible to calculate Brownian friction constants for ions in aqueous solutions. It is found that for Na(+) under the considered conditions the Brownian mobility is in error by only 60 percent.

  20. A liver cirrhosis classification on B-mode ultrasound images by the use of higher order local autocorrelation features

    NASA Astrophysics Data System (ADS)

    Sasaki, Kenya; Mitani, Yoshihiro; Fujita, Yusuke; Hamamoto, Yoshihiko; Sakaida, Isao

    2017-02-01

    In this paper, in order to classify liver cirrhosis on regions of interest (ROIs) images from B-mode ultrasound images, we have proposed to use the higher order local autocorrelation (HLAC) features. In a previous study, we tried to classify liver cirrhosis by using a Gabor filter based approach. However, the classification performance of the Gabor feature was poor from our preliminary experimental results. In order accurately to classify liver cirrhosis, we examined to use the HLAC features for liver cirrhosis classification. The experimental results show the effectiveness of HLAC features compared with the Gabor feature. Furthermore, by using a binary image made by an adaptive thresholding method, the classification performance of HLAC features has improved.

  1. Forty-photon-per-pulse spectral phase retrieval by shaper-assisted modified interferometric field autocorrelation.

    PubMed

    Hsu, Chen-Shao; Chiang, Hsin-Chien; Chuang, Hsiu-Po; Huang, Chen-Bin; Yang, Shang-Da

    2011-07-15

    We retrieve the spectral phase of 400 fs pulses at 1560 nm with 5.2 aJ coupled pulse energy (40 photons) by the modified interferometric field autocorrelation method, using a pulse shaper and a 5 cm long periodically poled lithium niobate waveguide. The carrier-envelope phase control of the shaper can reduce the fringe density of the interferometric trace and permits longer lock-in time constants, achieving a sensitivity of 2.7×10(-9) mW(2) (40 times better than the previous record for self-referenced nonlinear pulse measurement). The high stability of the pulse shaper allows for accurate and reproducible measurements of complicated spectral phases. © 2011 Optical Society of America

  2. Climate reddening increases the chance of critical transitions

    NASA Astrophysics Data System (ADS)

    van der Bolt, Bregje; van Nes, Egbert H.; Bathiany, Sebastian; Vollebregt, Marlies E.; Scheffer, Marten

    2018-06-01

    Climate change research often focuses on trends in the mean and variance. However, analyses of palaeoclimatic and contemporary dynamics reveal that climate memory — as measured for instance by temporal autocorrelation — may also change substantially over time. Here, we show that elevated temporal autocorrelation in climatic variables should be expected to increase the chance of critical transitions in climate-sensitive systems with tipping points. We demonstrate that this prediction is consistent with evidence from forests, coral reefs, poverty traps, violent conflict and ice sheet instability. In each example, the duration of anomalous dry or warm events elevates chances of invoking a critical transition. Understanding the effects of climate variability thus requires research not only on variance, but also on climate memory.

  3. The integration of laser communication and ranging

    NASA Astrophysics Data System (ADS)

    Xu, Mengmeng; Sun, Jianfeng; Zhou, Yu; Zhang, Bo; Zhang, Guo; Li, Guangyuan; He, Hongyu; Lao, Chenzhe

    2017-08-01

    The method to realize the integration of laser communication and ranging is proposed in this paper. In the transmitter of two places, the ranging codes with uniqueness, good autocorrelation and cross-correlation properties are embed in the communication data and the encoded with the communication data to realize serial communication. And then the encoded data are modulated and send to each other, which can realize high speed two one-way laser communication. At the receiver, we can get the received ranging code after the demodulation, decoding and clock recovery. The received ranging codes and the local ranging codes do the autocorrelation to get a roughly range, while the phase difference between the local clock and the recovery clock to achieve the precision of the distance.

  4. Geographical distribution patterns of iodine in drinking-water and its associations with geological factors in Shandong Province, China.

    PubMed

    Gao, Jie; Zhang, Zhijie; Hu, Yi; Bian, Jianchao; Jiang, Wen; Wang, Xiaoming; Sun, Liqian; Jiang, Qingwu

    2014-05-19

    County-based spatial distribution characteristics and the related geological factors for iodine in drinking-water were studied in Shandong Province (China). Spatial autocorrelation analysis and spatial scan statistic were applied to analyze the spatial characteristics. Generalized linear models (GLMs) and geographically weighted regression (GWR) studies were conducted to explore the relationship between water iodine level and its related geological factors. The spatial distribution of iodine in drinking-water was significantly heterogeneous in Shandong Province (Moran's I = 0.52, Z = 7.4, p < 0.001). Two clusters for high iodine in drinking-water were identified in the south-western and north-western parts of Shandong Province by the purely spatial scan statistic approach. Both GLMs and GWR indicated a significantly global association between iodine in drinking-water and geological factors. Furthermore, GWR showed obviously spatial variability across the study region. Soil type and distance to Yellow River were statistically significant at most areas of Shandong Province, confirming the hypothesis that the Yellow River causes iodine deposits in Shandong Province. Our results suggested that the more effective regional monitoring plan and water improvement strategies should be strengthened targeting at the cluster areas based on the characteristics of geological factors and the spatial variability of local relationships between iodine in drinking-water and geological factors.

  5. New developments on the homogenization of Canadian daily temperature data

    NASA Astrophysics Data System (ADS)

    Vincent, Lucie A.; Wang, Xiaolan L.

    2010-05-01

    Long-term and homogenized surface air temperature datasets had been prepared for the analysis of climate trends in Canada (Vincent and Gullett 1999). Non-climatic steps due to instruments relocation/changes and changes in observing procedures were identified in the annual mean of the daily maximum and minimum temperatures using a technique based on regression models (Vincent 1998). Monthly adjustments were derived from the regression models and daily adjustments were obtained from an interpolation procedure using the monthly adjustments (Vincent et al. 2002). Recently, new statistical tests have been developed to improve the power of detecting changepoints in climatological data time series. The penalized maximal t (PMT) test (Wang et al. 2007) and the penalized maximal F (PMF) test (Wang 2008b) were developed to take into account the position of each changepoint in order to minimize the effect of unequal and small sample size. A software package RHtestsV3 (Wang and Feng 2009) has also been developed to implement these tests to homogenize climate data series. A recursive procedure was developed to estimate the annual cycle, linear trend, and lag-1 autocorrelation of the base series in tandem, so that the effect of lag-1 autocorrelation is accounted for in the tests. A Quantile Matching (QM) algorithm (Wang 2009) was also developed for adjusting Gaussian daily data so that the empirical distributions of all segments of the detrended series match each other. The RHtestsV3 package was used to prepare a second generation of homogenized temperatures in Canada. Both the PMT test and the PMF test were applied to detect shifts in monthly mean temperature series. Reference series was used in conducting a PMT test. Whenever possible, the main causes of the shifts were retrieved through historical evidence such as the station inspection reports. Finally, the QM algorithm was used to adjust the daily temperature series for the artificial shifts identified from the respective monthly mean series. These procedures were applied to homogenize daily maximum and minimum temperatures recorded at 336 stations across Canada. During the presentation, the procedures will be summarized and their application will be illustrated throughout the provision of selected examples. References Vincent, L.A., X. Zhang, B.R. Bonsal and W.D. Hogg, 2002: Homogenization of daily temperatures over Canada. J. Climate, 15, 1322-1334. Vincent, L.A., and D.W. Gullett, 1999: Canadian historical and homogeneous temperature datasets for climate change analyses. Int. J. Climatol., 19, 1375-1388. Vincent, L.A., 1998: A technique for the identification of inhomogeneities in Canadian temperature series. J. Climate, 11, 1094-1104. Wang, X. L., 2009: A quantile matching adjustment algorithm for Gaussian data series. Climate Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada. 5 pp. [Available online at http://cccma.seos.uvic.ca/ETCCDMI/software.shtml]. Wang X. L. and Y. Feng, 2009: RHtestsV3 User Manual. Climate Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada. 26 pp. [Available online at http://cccma.seos.uvic.ca/ETCCDMI/software.shtml]. Wang, X. L., 2008a: Accounting for autocorrelation in detecting mean-shifts in climate data series using the penalized maximal t or F test. J. Appl. Meteor. Climatol., 47, 2423-2444. Wang, X. L., 2008b: Penalized maximal F-test for detecting undocumented mean-shifts without trend-change. J. Atmos. Oceanic Tech., 25 (No. 3), 368-384. DOI:10.1175/2007/JTECHA982.1. Wang, X. L., Q. H. Wen, and Y. Wu, 2007: Penalized maximal t test for detecting undocumented mean change in climate data series. J. Appl. Meteor. Climatol., 46 (No. 6), 916-931. DOI:10.1175/JAM2504.1

  6. Non-Markovian properties and multiscale hidden Markovian network buried in single molecule time series

    NASA Astrophysics Data System (ADS)

    Sultana, Tahmina; Takagi, Hiroaki; Morimatsu, Miki; Teramoto, Hiroshi; Li, Chun-Biu; Sako, Yasushi; Komatsuzaki, Tamiki

    2013-12-01

    We present a novel scheme to extract a multiscale state space network (SSN) from single-molecule time series. The multiscale SSN is a type of hidden Markov model that takes into account both multiple states buried in the measurement and memory effects in the process of the observable whenever they exist. Most biological systems function in a nonstationary manner across multiple timescales. Combined with a recently established nonlinear time series analysis based on information theory, a simple scheme is proposed to deal with the properties of multiscale and nonstationarity for a discrete time series. We derived an explicit analytical expression of the autocorrelation function in terms of the SSN. To demonstrate the potential of our scheme, we investigated single-molecule time series of dissociation and association kinetics between epidermal growth factor receptor (EGFR) on the plasma membrane and its adaptor protein Ash/Grb2 (Grb2) in an in vitro reconstituted system. We found that our formula successfully reproduces their autocorrelation function for a wide range of timescales (up to 3 s), and the underlying SSNs change their topographical structure as a function of the timescale; while the corresponding SSN is simple at the short timescale (0.033-0.1 s), the SSN at the longer timescales (0.1 s to ˜3 s) becomes rather complex in order to capture multiscale nonstationary kinetics emerging at longer timescales. It is also found that visiting the unbound form of the EGFR-Grb2 system approximately resets all information of history or memory of the process.

  7. Breakdown of Phylogenetic Signal: A Survey of Microsatellite Densities in 454 Shotgun Sequences from 154 Non Model Eukaryote Species

    PubMed Central

    Meglécz, Emese; Nève, Gabriel; Biffin, Ed; Gardner, Michael G.

    2012-01-01

    Microsatellites are ubiquitous in Eukaryotic genomes. A more complete understanding of their origin and spread can be gained from a comparison of their distribution within a phylogenetic context. Although information for model species is accumulating rapidly, it is insufficient due to a lack of species depth, thus intragroup variation is necessarily ignored. As such, apparent differences between groups may be overinflated and generalizations cannot be inferred until an analysis of the variation that exists within groups has been conducted. In this study, we examined microsatellite coverage and motif patterns from 454 shotgun sequences of 154 Eukaryote species from eight distantly related phyla (Cnidaria, Arthropoda, Onychophora, Bryozoa, Mollusca, Echinodermata, Chordata and Streptophyta) to test if a consistent phylogenetic pattern emerges from the microsatellite composition of these species. It is clear from our results that data from model species provide incomplete information regarding the existing microsatellite variability within the Eukaryotes. A very strong heterogeneity of microsatellite composition was found within most phyla, classes and even orders. Autocorrelation analyses indicated that while microsatellite contents of species within clades more recent than 200 Mya tend to be similar, the autocorrelation breaks down and becomes negative or non-significant with increasing divergence time. Therefore, the age of the taxon seems to be a primary factor in degrading the phylogenetic pattern present among related groups. The most recent classes or orders of Chordates still retain the pattern of their common ancestor. However, within older groups, such as classes of Arthropods, the phylogenetic pattern has been scrambled by the long independent evolution of the lineages. PMID:22815847

  8. Exact distinction of excitatory and inhibitory neurons in neural networks: a study with GFP-GAD67 neurons optically and electrophysiologically recognized on multielectrode arrays

    PubMed Central

    Becchetti, Andrea; Gullo, Francesca; Bruno, Giuseppe; Dossi, Elena; Lecchi, Marzia; Wanke, Enzo

    2012-01-01

    Distinguishing excitatory from inhibitory neurons with multielectrode array (MEA) recordings is a serious experimental challenge. The current methods, developed in vitro, mostly rely on spike waveform analysis. These however often display poor resolution and may produce errors caused by the variability of spike amplitudes and neuron shapes. Recent recordings in human brain suggest that the spike waveform features correlate with time-domain statistics such as spiking rate, autocorrelation, and coefficient of variation. However, no precise criteria are available to exactly assign identified units to specific neuronal types, either in vivo or in vitro. To solve this problem, we combined MEA recording with fluorescence imaging of neocortical cultures from mice expressing green fluorescent protein (GFP) in GABAergic cells. In this way, we could sort out “authentic excitatory neurons” (AENs) and “authentic inhibitory neurons” (AINs). We thus characterized 1275 units (from 405 electrodes, n = 10 experiments), based on autocorrelation, burst length, spike number (SN), spiking rate, squared coefficient of variation, and Fano factor (FF) (the ratio between spike-count variance and mean). These metrics differed by about one order of magnitude between AINs and AENs. In particular, the FF turned out to provide a firing code which exactly (no overlap) recognizes excitatory and inhibitory units. The difference in FF between all of the identified AEN and AIN groups was highly significant (p < 10−8, ANOVA post-hoc Tukey test). Our results indicate a statistical metric-based approach to distinguish excitatory from inhibitory neurons independently from the spike width. PMID:22973197

  9. Time series regression model for infectious disease and weather.

    PubMed

    Imai, Chisato; Armstrong, Ben; Chalabi, Zaid; Mangtani, Punam; Hashizume, Masahiro

    2015-10-01

    Time series regression has been developed and long used to evaluate the short-term associations of air pollution and weather with mortality or morbidity of non-infectious diseases. The application of the regression approaches from this tradition to infectious diseases, however, is less well explored and raises some new issues. We discuss and present potential solutions for five issues often arising in such analyses: changes in immune population, strong autocorrelations, a wide range of plausible lag structures and association patterns, seasonality adjustments, and large overdispersion. The potential approaches are illustrated with datasets of cholera cases and rainfall from Bangladesh and influenza and temperature in Tokyo. Though this article focuses on the application of the traditional time series regression to infectious diseases and weather factors, we also briefly introduce alternative approaches, including mathematical modeling, wavelet analysis, and autoregressive integrated moving average (ARIMA) models. Modifications proposed to standard time series regression practice include using sums of past cases as proxies for the immune population, and using the logarithm of lagged disease counts to control autocorrelation due to true contagion, both of which are motivated from "susceptible-infectious-recovered" (SIR) models. The complexity of lag structures and association patterns can often be informed by biological mechanisms and explored by using distributed lag non-linear models. For overdispersed models, alternative distribution models such as quasi-Poisson and negative binomial should be considered. Time series regression can be used to investigate dependence of infectious diseases on weather, but may need modifying to allow for features specific to this context. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Estimating temporal trend in the presence of spatial complexity: A Bayesian hierarchical model for a wetland plant population undergoing restoration

    USGS Publications Warehouse

    Rodhouse, T.J.; Irvine, K.M.; Vierling, K.T.; Vierling, L.A.

    2011-01-01

    Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed Bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas]) population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones") with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity-a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.

  11. Identification of the driving factors' influences on regional energy-related carbon emissions in China based on geographical detector method.

    PubMed

    Zhang, Xinlin; Zhao, Yuan

    2018-04-01

    To investigate the influences of different factors on spatial heterogeneity of regional carbon emissions, we firstly studied the spatial-temporal dynamics of regional energy-related carbon emissions using global Moran's I and Getis-Ord Gi and applied geographical detector model to explain the spatial heterogeneity of regional carbon emissions. Some conclusions were drawn. Regional carbon emissions showed significant global and local spatial autocorrelation. The carbon emissions were greater in eastern and northern regions than in western and southern regions. Fixed assets investment and economic output had been the main contributing factors over the study period, and economic output had been decreasing its influence. Industrial structure's influence showed a decrease trend and became smaller in 2015. The results of the interaction detections in 2015 can be divided into two types: enhance and nonlinear, and enhance and bivariate. The interactive influences between technological level and fixed assets investment, economic output and technological level, population size and technological level, and economic output and economic development were greater than others. Some policy recommendations were proposed.

  12. Species-richness patterns of the living collections of the world's botanic gardens: a matter of socio-economics?

    PubMed

    Golding, Janice; Güsewell, Sabine; Kreft, Holger; Kuzevanov, Victor Y; Lehvävirta, Susanna; Parmentier, Ingrid; Pautasso, Marco

    2010-05-01

    The botanic gardens of the world are now unmatched ex situ collections of plant biodiversity. They mirror two biogeographical patterns (positive diversity-area and diversity-age relationships) but differ from nature with a positive latitudinal gradient in their richness. Whether these relationships can be explained by socio-economic factors is unknown. Species and taxa richness of a comprehensive sample of botanic gardens were analysed as a function of key ecological and socio-economic factors using (a) multivariate models controlling for spatial autocorrelation and (b) structural equation modelling. The number of plant species in botanic gardens increases with town human population size and country Gross Domestic Product (GDP) per person. The country flora richness is not related to the species richness of botanic gardens. Botanic gardens in more populous towns tend to have a larger area and can thus host richer living collections. Botanic gardens in richer countries have more species, and this explains the positive latitudinal gradient in botanic gardens' species richness. Socio-economic factors contribute to shaping patterns in the species richness of the living collections of the world's botanic gardens.

  13. Autocorrelation measurement of femtosecond laser pulses based on two-photon absorption in GaP photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, E. Z.; Watson, T. F.; Festy, F., E-mail: frederic.festy@kcl.ac.uk

    2014-08-11

    Semiconductor materials which exhibit two-photon absorption characteristic within a spectral region of interest can be useful in building an ultra-compact interferometric autocorrelator. In this paper, we report on the evidence of a nonlinear absorption process in GaP photodiodes which was exploited to measure the temporal profile of femtosecond Ti:sapphire laser pulses with a tunable peak wavelength above 680 nm. The two-photon mediated conductivity measurements were performed at an average laser power of less than a few tenths of milliwatts. Its suitability as a single detector in a broadband autocorrelator setup was assessed by investigating the nonlinear spectral sensitivity bandwidth of amore » GaP photodiode. The highly favourable nonlinear response was found to cover the entire tuning range of our Ti:sapphire laser and can potentially be extended to wavelengths below 680 nm. We also demonstrated the flexibility of GaP in determining the optimum compensation value of the group delay dispersion required to restore the positively chirped pulses inherent in our experimental optical system to the shortest pulse width possible. With the rise in the popularity of nonlinear microscopy, the broad two-photon response of GaP and the simplicity of this technique can provide an alternative way of measuring the excitation laser pulse duration at the focal point of any microscopy systems.« less

  14. Single-molecule fluorescence detection: autocorrelation criterion and experimental realization with phycoerythrin.

    PubMed Central

    Peck, K; Stryer, L; Glazer, A N; Mathies, R A

    1989-01-01

    A theory for single-molecule fluorescence detection is developed and then used to analyze data from subpicomolar solutions of B-phycoerythrin (PE). The distribution of detected counts is the convolution of a Poissonian continuous background with bursts arising from the passage of individual fluorophores through the focused laser beam. The autocorrelation function reveals single-molecule events and provides a criterion for optimizing experimental parameters. The transit time of fluorescent molecules through the 120-fl imaged volume was 800 microseconds. The optimal laser power (32 mW at 514.5 nm) gave an incident intensity of 1.8 x 10(23) photons.cm-2.s-1, corresponding to a mean time of 1.1 ns between absorptions. The mean incremental count rate was 1.5 per 100 microseconds for PE monomers and 3.0 for PE dimers above a background count rate of 1.0. The distribution of counts and the autocorrelation function for 200 fM monomer and 100 fM dimer demonstrate that single-molecule detection was achieved. At this concentration, the mean occupancy was 0.014 monomer molecules in the probed volume. A hard-wired version of this detection system was used to measure the concentration of PE down to 1 fM. This single-molecule counter is 3 orders of magnitude more sensitive than conventional fluorescence detection systems. PMID:2726766

  15. NMR spin-rotation relaxation and diffusion of methane

    NASA Astrophysics Data System (ADS)

    Singer, P. M.; Asthagiri, D.; Chapman, W. G.; Hirasaki, G. J.

    2018-05-01

    The translational diffusion-coefficient and the spin-rotation contribution to the 1H NMR relaxation rate for methane (CH4) are investigated using MD (molecular dynamics) simulations, over a wide range of densities and temperatures, spanning the liquid, supercritical, and gas phases. The simulated diffusion-coefficients agree well with measurements, without any adjustable parameters in the interpretation of the simulations. A minimization technique is developed to compute the angular velocity for non-rigid spherical molecules, which is used to simulate the autocorrelation function for spin-rotation interactions. With increasing diffusivity, the autocorrelation function shows increasing deviations from the single-exponential decay predicted by the Langevin theory for rigid spheres, and the deviations are quantified using inverse Laplace transforms. The 1H spin-rotation relaxation rate derived from the autocorrelation function using the "kinetic model" agrees well with measurements in the supercritical/gas phase, while the relaxation rate derived using the "diffusion model" agrees well with measurements in the liquid phase. 1H spin-rotation relaxation is shown to dominate over the MD-simulated 1H-1H dipole-dipole relaxation at high diffusivity, while the opposite is found at low diffusivity. At high diffusivity, the simulated spin-rotation correlation time agrees with the kinetic collision time for gases, which is used to derive a new expression for 1H spin-rotation relaxation, without any adjustable parameters.

  16. Dynamic Assessment on the Landscape Patterns and Spatio-temporal Change in the mainstream of Tarim River

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Xue, Lianqing; Yang, Changbing; Chen, Xinfang; Zhang, Luochen; Wei, Guanghui

    2018-01-01

    The Tarim River (TR), as the longest inland river at an arid area in China, is a typical regions of vegetation variation research and plays a crucial role in the sustainable development of regional ecological environment. In this paper, the newest dataset of MODND1M NDVI, at a resolution of 500m, were applied to calculate vegetation index in growing season during the period 2000-2015. Using a vegetation coverage index, a trend line analysis, and the local spatial autocorrelation analysis, this paper investigated the landscape patterns and spatio-temporal variation of vegetation coverage at regional and pixel scales over mainstream of the Tarim River, Xinjiang. The results showed that (1) The bare land area on both sides of Tarim River appeared to have a fluctuated downward trend and there were two obvious valley values in 2005 and 2012. (2) Spatially, the vegetation coverage improved areas is mostly distributed in upstream and the degraded areas is mainly distributed in the left bank of midstream and the end of Tarim River during 2000-2005. (3) The local spatial auto-correlation analysis revealed that vegetation coverage was spatially positive autocorrelated and spatial concentrated. The high-high self-related areas are mainly distributed in upstream, where vegetation cover are relatively good, and the low-low self-related areas are mostly with lower vegetation cover in the lower reaches of Tarim River.

  17. Quantitative approaches in climate change ecology

    PubMed Central

    Brown, Christopher J; Schoeman, David S; Sydeman, William J; Brander, Keith; Buckley, Lauren B; Burrows, Michael; Duarte, Carlos M; Moore, Pippa J; Pandolfi, John M; Poloczanska, Elvira; Venables, William; Richardson, Anthony J

    2011-01-01

    Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer-reviewed articles that examined relationships between climate change and marine ecological variables. Of the articles with time series data (n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified several common weaknesses in statistical approaches, including marginalizing other important non-climate drivers of change, ignoring temporal and spatial autocorrelation, averaging across spatial patterns and not reporting key metrics. We provide a list of issues that need to be addressed to make inferences more defensible, including the consideration of (i) data limitations and the comparability of data sets; (ii) alternative mechanisms for change; (iii) appropriate response variables; (iv) a suitable model for the process under study; (v) temporal autocorrelation; (vi) spatial autocorrelation and patterns; and (vii) the reporting of rates of change. While the focus of our review was marine studies, these suggestions are equally applicable to terrestrial studies. Consideration of these suggestions will help advance global knowledge of climate impacts and understanding of the processes driving ecological change.

  18. Scaling analysis of stock markets

    NASA Astrophysics Data System (ADS)

    Bu, Luping; Shang, Pengjian

    2014-06-01

    In this paper, we apply the detrended fluctuation analysis (DFA), local scaling detrended fluctuation analysis (LSDFA), and detrended cross-correlation analysis (DCCA) to investigate correlations of several stock markets. DFA method is for the detection of long-range correlations used in time series. LSDFA method is to show more local properties by using local scale exponents. DCCA method is a developed method to quantify the cross-correlation of two non-stationary time series. We report the results of auto-correlation and cross-correlation behaviors in three western countries and three Chinese stock markets in periods 2004-2006 (before the global financial crisis), 2007-2009 (during the global financial crisis), and 2010-2012 (after the global financial crisis) by using DFA, LSDFA, and DCCA method. The findings are that correlations of stocks are influenced by the economic systems of different countries and the financial crisis. The results indicate that there are stronger auto-correlations in Chinese stocks than western stocks in any period and stronger auto-correlations after the global financial crisis for every stock except Shen Cheng; The LSDFA shows more comprehensive and detailed features than traditional DFA method and the integration of China and the world in economy after the global financial crisis; When it turns to cross-correlations, it shows different properties for six stock markets, while for three Chinese stocks, it reaches the weakest cross-correlations during the global financial crisis.

  19. Sample size calculation for stepped wedge and other longitudinal cluster randomised trials.

    PubMed

    Hooper, Richard; Teerenstra, Steven; de Hoop, Esther; Eldridge, Sandra

    2016-11-20

    The sample size required for a cluster randomised trial is inflated compared with an individually randomised trial because outcomes of participants from the same cluster are correlated. Sample size calculations for longitudinal cluster randomised trials (including stepped wedge trials) need to take account of at least two levels of clustering: the clusters themselves and times within clusters. We derive formulae for sample size for repeated cross-section and closed cohort cluster randomised trials with normally distributed outcome measures, under a multilevel model allowing for variation between clusters and between times within clusters. Our formulae agree with those previously described for special cases such as crossover and analysis of covariance designs, although simulation suggests that the formulae could underestimate required sample size when the number of clusters is small. Whether using a formula or simulation, a sample size calculation requires estimates of nuisance parameters, which in our model include the intracluster correlation, cluster autocorrelation, and individual autocorrelation. A cluster autocorrelation less than 1 reflects a situation where individuals sampled from the same cluster at different times have less correlated outcomes than individuals sampled from the same cluster at the same time. Nuisance parameters could be estimated from time series obtained in similarly clustered settings with the same outcome measure, using analysis of variance to estimate variance components. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Patterns and scaling properties of surface soil moisture in an agricultural landscape: An ecohydrological modeling study

    NASA Astrophysics Data System (ADS)

    Korres, W.; Reichenau, T. G.; Schneider, K.

    2013-08-01

    Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale patterns that are induced by soil properties are superimposed by the small scale land use pattern and the resulting small scale variability of evapotranspiration. However, this influence decreases at larger spatial scales. Most precipitation events cause temporarily higher surface soil moisture autocorrelation lengths at all spatial scales for a short time even beyond the autocorrelation lengths induced by soil properties. The relation of daily spatial variance to the spatial scale of the analysis fits a power law scaling function, with negative values of the scaling exponent, indicating a decrease in spatial variability with increasing spatial resolution. High evapotranspiration rates cause an increase in the small scale soil moisture variability, thus leading to large negative values of the scaling exponent. Utilizing a multiple regression analysis, we found that 53% of the variance of the scaling exponent can be explained by a combination of an independent LAI parameter and the antecedent precipitation.

  1. Conjunction of factors triggering waves of seasonal influenza

    PubMed Central

    Chattopadhyay, Ishanu; Kiciman, Emre; Elliott, Joshua W; Shaman, Jeffrey L

    2018-01-01

    Using several longitudinal datasets describing putative factors affecting influenza incidence and clinical data on the disease and health status of over 150 million human subjects observed over a decade, we investigated the source and the mechanistic triggers of influenza epidemics. We conclude that the initiation of a pan-continental influenza wave emerges from the simultaneous realization of a complex set of conditions. The strongest predictor groups are as follows, ranked by importance: (1) the host population’s socio- and ethno-demographic properties; (2) weather variables pertaining to specific humidity, temperature, and solar radiation; (3) the virus’ antigenic drift over time; (4) the host population’€™s land-based travel habits, and; (5) recent spatio-temporal dynamics, as reflected in the influenza wave auto-correlation. The models we infer are demonstrably predictive (area under the Receiver Operating Characteristic curve 80%) when tested with out-of-sample data, opening the door to the potential formulation of new population-level intervention and mitigation policies. PMID:29485041

  2. Conjunction of factors triggering waves of seasonal influenza.

    PubMed

    Chattopadhyay, Ishanu; Kiciman, Emre; Elliott, Joshua W; Shaman, Jeffrey L; Rzhetsky, Andrey

    2018-02-27

    Using several longitudinal datasets describing putative factors affecting influenza incidence and clinical data on the disease and health status of over 150 million human subjects observed over a decade, we investigated the source and the mechanistic triggers of influenza epidemics. We conclude that the initiation of a pan-continental influenza wave emerges from the simultaneous realization of a complex set of conditions. The strongest predictor groups are as follows, ranked by importance: (1) the host population's socio- and ethno-demographic properties; (2) weather variables pertaining to specific humidity, temperature, and solar radiation; (3) the virus' antigenic drift over time; (4) the host population'€™s land-based travel habits, and; (5) recent spatio-temporal dynamics, as reflected in the influenza wave auto-correlation. The models we infer are demonstrably predictive (area under the Receiver Operating Characteristic curve 80%) when tested with out-of-sample data, opening the door to the potential formulation of new population-level intervention and mitigation policies. © 2018, Chattopadhyay et al.

  3. Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis.

    PubMed

    Cheng, Yezeng; Larin, Kirill V

    2006-12-20

    Fingerprint recognition is one of the most widely used methods of biometrics. This method relies on the surface topography of a finger and, thus, is potentially vulnerable for spoofing by artificial dummies with embedded fingerprints. In this study, we applied the optical coherence tomography (OCT) technique to distinguish artificial materials commonly used for spoofing fingerprint scanning systems from the real skin. Several artificial fingerprint dummies made from household cement and liquid silicone rubber were prepared and tested using a commercial fingerprint reader and an OCT system. While the artificial fingerprints easily spoofed the commercial fingerprint reader, OCT images revealed the presence of them at all times. We also demonstrated that an autocorrelation analysis of the OCT images could be potentially used in automatic recognition systems.

  4. Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Yezeng; Larin, Kirill V.

    2006-12-01

    Fingerprint recognition is one of the most widely used methods of biometrics. This method relies on the surface topography of a finger and, thus, is potentially vulnerable for spoofing by artificial dummies with embedded fingerprints. In this study, we applied the optical coherence tomography (OCT) technique to distinguish artificial materials commonly used for spoofing fingerprint scanning systems from the real skin. Several artificial fingerprint dummies made from household cement and liquid silicone rubber were prepared and tested using a commercial fingerprint reader and an OCT system. While the artificial fingerprints easily spoofed the commercial fingerprint reader, OCT images revealed the presence of them at all times. We also demonstrated that an autocorrelation analysis of the OCT images could be potentially used in automatic recognition systems.

  5. Propagation of mechanical waves through a stochastic medium with spherical symmetry

    NASA Astrophysics Data System (ADS)

    Avendaño, Carlos G.; Reyes, J. Adrián

    2018-01-01

    We theoretically analyze the propagation of outgoing mechanical waves through an infinite isotropic elastic medium possessing spherical symmetry whose Lamé coefficients and density are spatial random functions characterized by well-defined statistical parameters. We derive the differential equation that governs the average displacement for a system whose properties depend on the radial coordinate. We show that such an equation is an extended version of the well-known Bessel differential equation whose perturbative additional terms contain coefficients that depend directly on the squared noise intensities and the autocorrelation lengths in an exponential decay fashion. We numerically solve the second order differential equation for several values of noise intensities and autocorrelation lengths and compare the corresponding displacement profiles with that of the exact analytic solution for the case of absent inhomogeneities.

  6. Elasticity mapping of tissue mimicking phantoms by remote palpation with a focused ultrasound beam and intensity autocorrelation measurements

    NASA Astrophysics Data System (ADS)

    Usha Devi, C.; Bharat Chandran, R. S.; Vasu, R. M.; Sood, A. K.

    2007-05-01

    We use a focused ultrasound beam to load a region of interest (ROI) in a tissue-mimicking phantom and read out the vibration amplitude of phantom particles from the modulation depth in the intensity autocorrelation of a coherent light beam that intercepted the ROI. The modulation depth, which is also affected by the local light absorption coefficient, which is employed in ultrasound assisted optical tomography, to read out absorption coefficient is greatly influenced by the vibration amplitude, depends to a great extend on local elasticity. We scan a plane in an elastography phantom with an inhomogeneous inclusion, in elasticity with the focused ultrasound and from the measured modulation depth variation create a qualitative map of the elasticity variation in the interrogated plane.

  7. Time correlation functions of simple liquids: A new insight on the underlying dynamical processes

    NASA Astrophysics Data System (ADS)

    Garberoglio, Giovanni; Vallauri, Renzo; Bafile, Ubaldo

    2018-05-01

    Extensive molecular dynamics simulations of liquid sodium have been carried out to evaluate correlation functions of several dynamical quantities. We report the results of a novel analysis of the longitudinal and transverse correlation functions obtained by evaluating directly their self- and distinct contributions at different wavevectors k. It is easily recognized that the self-contribution remains close to its k → 0 limit, which turns out to be exactly the autocorrelation function of the single particle velocity. The wavevector dependence of the longitudinal and transverse spectra and their self- and distinct parts is also presented. By making use of the decomposition of the velocity autocorrelation spectrum in terms of longitudinal and transverse parts, our analysis is able to recognize the effect of different dynamical processes in different frequency ranges.

  8. PlanetPack: A radial-velocity time-series analysis tool facilitating exoplanets detection, characterization, and dynamical simulations

    NASA Astrophysics Data System (ADS)

    Baluev, Roman V.

    2013-08-01

    We present PlanetPack, a new software tool that we developed to facilitate and standardize the advanced analysis of radial velocity (RV) data for the goal of exoplanets detection, characterization, and basic dynamical N-body simulations. PlanetPack is a command-line interpreter, that can run either in an interactive mode or in a batch mode of automatic script interpretation. Its major abilities include: (i) advanced RV curve fitting with the proper maximum-likelihood treatment of unknown RV jitter; (ii) user-friendly multi-Keplerian as well as Newtonian N-body RV fits; (iii) use of more efficient maximum-likelihood periodograms that involve the full multi-planet fitting (sometimes called as “residual” or “recursive” periodograms); (iv) easily calculatable parametric 2D likelihood function level contours, reflecting the asymptotic confidence regions; (v) fitting under some useful functional constraints is user-friendly; (vi) basic tasks of short- and long-term planetary dynamical simulation using a fast Everhart-type integrator based on Gauss-Legendre spacings; (vii) fitting the data with red noise (auto-correlated errors); (viii) various analytical and numerical methods for the tasks of determining the statistical significance. It is planned that further functionality may be added to PlanetPack in the future. During the development of this software, a lot of effort was made to improve the calculational speed, especially for CPU-demanding tasks. PlanetPack was written in pure C++ (standard of 1998/2003), and is expected to be compilable and useable on a wide range of platforms.

  9. Human Scleral Structural Stiffness Increases More Rapidly With Age in Donors of African Descent Compared to Donors of European Descent

    PubMed Central

    Fazio, Massimo A.; Grytz, Rafael; Morris, Jeffrey S.; Bruno, Luigi; Girkin, Christopher A.; Downs, J. Crawford

    2014-01-01

    Purpose. We tested the hypothesis that the variation of peripapillary scleral structural stiffness with age is different in donors of European (ED) and African (AD) descent. Methods. Posterior scleral shells from normal eyes from donors of European (n = 20 pairs; previously reported) and African (n = 9 pairs) descent aged 0 and 90 years old were inflation tested within 48 hours post mortem. Scleral shells were pressurized from 5 to 45 mm Hg and the full-field, 3-dimensional (3D) deformation of the outer surface was recorded at submicrometric accuracy using speckle interferometry (ESPI). Mean maximum principal (tensile) strain of the peripapillary and midperipheral regions surrounding the optic nerve head (ONH) were fit using a functional mixed effects model that accounts for intradonor variability, same-race correlation, and spatial autocorrelation to estimate the effect of race on the age-related changes in mechanical scleral strain. Results. Mechanical tensile strain significantly decreased with age in the peripapillary sclera in the African and European descent groups (P < 0.001), but the age-related stiffening was significantly greater in the African descent group (P < 0.05). Maximum principal strain in the peripapillary sclera was significantly higher than in the midperipheral sclera for both ethnic groups. Conclusions. The sclera surrounding the ONH stiffens more rapidly with age in the African descent group compared to the European group. Stiffening of the peripapillary sclera with age may be related to the higher prevalence of glaucoma in the elderly and persons of African descent. PMID:25237162

  10. Human scleral structural stiffness increases more rapidly with age in donors of African descent compared to donors of European descent.

    PubMed

    Fazio, Massimo A; Grytz, Rafael; Morris, Jeffrey S; Bruno, Luigi; Girkin, Christopher A; Downs, J Crawford

    2014-09-18

    We tested the hypothesis that the variation of peripapillary scleral structural stiffness with age is different in donors of European (ED) and African (AD) descent. Posterior scleral shells from normal eyes from donors of European (n = 20 pairs; previously reported) and African (n = 9 pairs) descent aged 0 and 90 years old were inflation tested within 48 hours post mortem. Scleral shells were pressurized from 5 to 45 mm Hg and the full-field, 3-dimensional (3D) deformation of the outer surface was recorded at submicrometric accuracy using speckle interferometry (ESPI). Mean maximum principal (tensile) strain of the peripapillary and midperipheral regions surrounding the optic nerve head (ONH) were fit using a functional mixed effects model that accounts for intradonor variability, same-race correlation, and spatial autocorrelation to estimate the effect of race on the age-related changes in mechanical scleral strain. Mechanical tensile strain significantly decreased with age in the peripapillary sclera in the African and European descent groups (P < 0.001), but the age-related stiffening was significantly greater in the African descent group (P < 0.05). Maximum principal strain in the peripapillary sclera was significantly higher than in the midperipheral sclera for both ethnic groups. The sclera surrounding the ONH stiffens more rapidly with age in the African descent group compared to the European group. Stiffening of the peripapillary sclera with age may be related to the higher prevalence of glaucoma in the elderly and persons of African descent. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  11. Spatial-Temporal Analysis of Air Pollution, Climate Change, and Total Mortality in 120 Cities of China, 2012-2013.

    PubMed

    Liu, Longjian; Yang, Xuan; Liu, Hui; Wang, Mingquan; Welles, Seth; Márquez, Shannon; Frank, Arthur; Haas, Charles N

    2016-01-01

    China has had a rapid increase in its economy over the past three decades. However, the economic boom came at a certain cost of depleting air quality. In the study, we aimed to examine the burden of air pollution and its association with climatic factors and health outcomes using data from Chinese national and city-level air quality and public health surveillance systems. City-level daily air pollution index (API, a sum weighted index of SO2, NO2, PM10, CO, and Ozone) in 120 cities in 2012 and 2013, and its association with climate factors were analyzed using multiple linear regression analysis, spatial autocorrelation analysis, and panel fixed models. City-level ecological association between annual average API and total mortality were examined using univariate and partial correlation analysis. Sensitivity analysis was conducted by taking the consideration of time-lag effect between exposures and outcomes. The results show that among the 120 cities, annual average API significantly increased from 2012 to 2013 (65.05 vs. 75.99, p < 0.0001). The highest average API was in winter, and the lowest in summer. A significantly spatial clustering of elevated API was observed, with the highest API in northwest China in 2012 and with the highest in east China in 2013. In 2012, 5 (4%) of the 120 cities had ≥60 days with API >100 (defined as "slightly polluted"), however, it increased to 21 cities (18%) that experienced API >100 for ≥60 days in 2013. Furthermore, 16 cities (13%) in 2012 and 35 (29%) in 2013 experienced a maximum API >300 (defined as "severely polluted"). API was negatively and significantly correlated with heat index, precipitation, and sunshine hours, but positively with air pressure. Cities with higher API concentrations had significantly higher total mortality rates than those with lower API. About a 4-7% of the variation in total mortality could be explained by the difference in API across the nation. In conclusion, the study highlights an increased trend of air pollution from 2012 to 2013 in China. The magnitude of air pollution varied by seasons and regions and correlated with climatic factors and total mortality across the country.

  12. Spatial–Temporal Analysis of Air Pollution, Climate Change, and Total Mortality in 120 Cities of China, 2012–2013

    PubMed Central

    Liu, Longjian; Yang, Xuan; Liu, Hui; Wang, Mingquan; Welles, Seth; Márquez, Shannon; Frank, Arthur; Haas, Charles N.

    2016-01-01

    China has had a rapid increase in its economy over the past three decades. However, the economic boom came at a certain cost of depleting air quality. In the study, we aimed to examine the burden of air pollution and its association with climatic factors and health outcomes using data from Chinese national and city-level air quality and public health surveillance systems. City-level daily air pollution index (API, a sum weighted index of SO2, NO2, PM10, CO, and Ozone) in 120 cities in 2012 and 2013, and its association with climate factors were analyzed using multiple linear regression analysis, spatial autocorrelation analysis, and panel fixed models. City-level ecological association between annual average API and total mortality were examined using univariate and partial correlation analysis. Sensitivity analysis was conducted by taking the consideration of time-lag effect between exposures and outcomes. The results show that among the 120 cities, annual average API significantly increased from 2012 to 2013 (65.05 vs. 75.99, p < 0.0001). The highest average API was in winter, and the lowest in summer. A significantly spatial clustering of elevated API was observed, with the highest API in northwest China in 2012 and with the highest in east China in 2013. In 2012, 5 (4%) of the 120 cities had ≥60 days with API >100 (defined as “slightly polluted”), however, it increased to 21 cities (18%) that experienced API >100 for ≥60 days in 2013. Furthermore, 16 cities (13%) in 2012 and 35 (29%) in 2013 experienced a maximum API >300 (defined as “severely polluted”). API was negatively and significantly correlated with heat index, precipitation, and sunshine hours, but positively with air pressure. Cities with higher API concentrations had significantly higher total mortality rates than those with lower API. About a 4–7% of the variation in total mortality could be explained by the difference in API across the nation. In conclusion, the study highlights an increased trend of air pollution from 2012 to 2013 in China. The magnitude of air pollution varied by seasons and regions and correlated with climatic factors and total mortality across the country. PMID:27486572

  13. 46 CFR 42.15-25 - Hatchways closed by portable covers and secured weathertight by tarpaulins and battening devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... maximum stress thus calculated and the factor 4.25 shall not exceed the minimum ultimate strength of the... foot on hatchways in position 2 and the product of the maximum stress thus calculated and the factor 5... product of the maximum stress thus calculated and the factor 5 shall not exceed the minimum ultimate...

  14. 46 CFR 42.15-25 - Hatchways closed by portable covers and secured weathertight by tarpaulins and battening devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... maximum stress thus calculated and the factor 4.25 shall not exceed the minimum ultimate strength of the... foot on hatchways in position 2 and the product of the maximum stress thus calculated and the factor 5... product of the maximum stress thus calculated and the factor 5 shall not exceed the minimum ultimate...

  15. 46 CFR 42.15-25 - Hatchways closed by portable covers and secured weathertight by tarpaulins and battening devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... maximum stress thus calculated and the factor 4.25 shall not exceed the minimum ultimate strength of the... foot on hatchways in position 2 and the product of the maximum stress thus calculated and the factor 5... product of the maximum stress thus calculated and the factor 5 shall not exceed the minimum ultimate...

  16. 46 CFR 42.15-25 - Hatchways closed by portable covers and secured weathertight by tarpaulins and battening devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... maximum stress thus calculated and the factor 4.25 shall not exceed the minimum ultimate strength of the... foot on hatchways in position 2 and the product of the maximum stress thus calculated and the factor 5... product of the maximum stress thus calculated and the factor 5 shall not exceed the minimum ultimate...

  17. 46 CFR 42.15-25 - Hatchways closed by portable covers and secured weathertight by tarpaulins and battening devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... maximum stress thus calculated and the factor 4.25 shall not exceed the minimum ultimate strength of the... foot on hatchways in position 2 and the product of the maximum stress thus calculated and the factor 5... product of the maximum stress thus calculated and the factor 5 shall not exceed the minimum ultimate...

  18. CADDIS Volume 4. Data Analysis: Basic Principles & Issues

    EPA Pesticide Factsheets

    Use of inferential statistics in causal analysis, introduction to data independence and autocorrelation, methods to identifying and control for confounding variables, references for the Basic Principles section of Data Analysis.

  19. Preliminary results for model identification in characterizing 2-D topographic road profiles

    NASA Astrophysics Data System (ADS)

    Kern, Joshua V.; Ferris, John B.

    2006-05-01

    Load data representing severe customer usage is needed throughout a chassis development program; the majority of these chassis loads originate with the excitation from the road. These chassis loads are increasingly derived from vehicle simulations. Simulating a vehicle traversing long roads is simply impractical, however, and a greatly reduced set of characteristic roads must be found. In order to characterize a road, certain modeling assumptions must be made. Several models have been proposed making various assumptions about the properties that road profiles possess. The literature in this field is reviewed before focusing on two modeling assumptions of particular interest: the stationarity of the signal (homogeneity of the road) and the corresponding interval over which previous data points are correlated to the current data point. In this work, 2-D topographic road profiles are considered to be signals that are realizations of a stochastic process. The objective of this work is to investigate the stationarity assumption and the interval of influence for several carefully controlled sections of highway pavement in the United States. Two statistical techniques are used in analyzing these data: the autocorrelation and the partial autocorrelation. It is shown that the road profile signals in their original form are not stationary and have an extremely long interval of influence on the order of 25m. By differencing the data, however, it is often possible to generate stationary residuals and a very short interval of influence on the order of 250mm. By examining the autocorrelation and the partial autocorrelation, various versions of ARIMA models appear to be appropriate for further modeling. Implications to modeling the signals as Markov Chains are also discussed. In this way, roads can be characterized by the model architecture and the particular parameterization of the model. Any synthetic road realized from a particular model represents all profiles in this set. Realizations of any length can be generated, allowing efficient simulation and timely information about the chassis loads that can be used for design decisions. This work provides insights for future development in the modeling and characterization of 2-D topographic road profiles.

  20. A New Supercapacitor and Li-ion Battery Hybrid System for Electric Vehicle in ADVISOR

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Shuhai, Quan; Changjun, Xie

    2017-02-01

    The supercapacitor (SC) and Li-ion battery(BT) hybrid energy storage system(HESS) electric vehicle(EV) is gaining universal attention. The topology is of importance for the SC/BT HESS. A new SC/BT topology HESS with a rule-based energy management strategy for EV was proposed. The BT pack is connected directly to the DC link via a controlled switch. The SC pack is connected to the DC link via a controlled switch. A uni-directional DC/DC converter is connected between the SC pack and the BT pack. The braking regeneration energy is all harvested by the SC pack. The output power of BT pack is limited. The different SC/BT configurations with varied BT maximum Ah capacity factor and SC maximum capacity factor are simulated in ADVISOR. Simulation results show that BT maximum Ah capacity factor has little impact on vehicle acceleration performance and maximum speed. SC maximum capacity factor has significant impact on vehicle acceleration performance and maximum speed. The fuel economy isn’t affected.

Top