Sample records for maximum burial depth

  1. Burial history of Upper Cretaceous and Tertiary rocks interpreted from vitrinite reflectance, northern Green River basin, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickinson, W.W.; Law, B.E.

    1985-05-01

    The burial history of Upper Cretaceous and Tertiary rocks in the northern Green River basin is difficult to reconstruct for three reasons: (1) most of these rocks do not crop out, (2) there are few stratigraphic markers in the subsurface, and (3) regional uplift beginning during the Pliocene caused erosion that removed most upper Tertiary rocks. To understand better the burial and thermal history of the basin, published vitrinite reflectance (R/sub o/) data from three wells were compared to TTI (time-temperature index) maturation units calculated from Lopatin reconstructions. For each well, burial reconstructions were made as follows. Maximum depth ofmore » burial was first estimated by stratigraphic and structural evidence and by extrapolation to a paleosurface intercept of R/sub o/ = 0.2%. This burial was completed by early Oligocene (35 Ma), after which there was no net deposition. The present geothermal gradient in each well as used because there is no geologic evidence for elevated paleotemperature gradients. Using these reconstructions, calculated TTI units agreed with measured R/sub o/ values when minor adjustments were made to the estimated burial depths. Reconstructed maximum burials were deeper than present by 2500-3000 ft (762-914 m) in the Pacific Creek area, by 4000-4500 ft (1219-1372 m) in the Pinedale area, and by 0-1000 ft (0-305 m) in the Merna area. However, at Pinedale geologic evidence can only account for about 3000 ft (914 m) of additional burial. This discrepancy is explained by isoreflectance lines, which parallel the Pinedale anticline and indicate that approximately 2000 ft (610 m) of structural relief occurred after maximum burial. In other parts of the basin, isoreflectance lines also reveal significant structural deformation after maximum burial during early Oligocene to early Pliocene time.« less

  2. Influence of Environmental Factors on the Germination of Urena lobata L. and Its Response to Herbicides

    PubMed Central

    Awan, Tahir Hussain; Chauhan, Bhagirath Singh; Cruz, Pompe C. Sta.

    2014-01-01

    Urena lobata is becoming a noxious and invasive weed in rangelands, pastures, and undisturbed areas in the Philippines. This study determined the effects of seed scarification, light, salt and water stress, amount of rice residue, and seed burial depth on seed germination and emergence of U. lobata; and evaluated the weed's response to post-emergence herbicides. Germination was stimulated by both mechanical and chemical seed scarifications. The combination of the two scarification methods provided maximum (99%) seed germination. Germination was slightly stimulated when seeds were placed in light (65%) compared with when seeds were kept in the dark (46%). Sodium chloride concentrations ranging from 0 to 200 mM and osmotic potential ranging from 0 to −1.6 MPa affected the germination of U. lobata seeds significantly. The osmotic potential required for 50% inhibition of the maximum germination was −0.1 MPa; however, some seeds germinated at −0.8 MPa, but none germinated at −1.6 MPa. Seedling emergence and biomass increased with increase in rice residue amount up to 4 t ha−1, but declined beyond this amount. Soil surface placement of weed seeds resulted in the highest seedling emergence (84%), which declined with increase in burial depth. The burial depth required for 50% inhibition of maximum emergence was 2 cm; emergence was greatly reduced (93%) at burial depth of 4 cm or more. Weed seedling biomass also decreased with increase in burial depth. Bispyribac-sodium, a commonly used herbicide in rice, sprayed at the 4-leaf stage of the weed, provided 100% control, which did not differ much with 2,4-D (98%), glyphosate (97%), and thiobencarb + 2,4-D (98%). These herbicides reduced shoot and root biomass by 99–100%. PMID:24658143

  3. Germination and emergence of annual species and burial depth: Implications for restoration ecology

    NASA Astrophysics Data System (ADS)

    Limón, Ángeles; Peco, Begoña

    2016-02-01

    Due to the high content of viable seeds, topsoil is usually spread on ground left bare during railway and motorway construction to facilitate the regeneration of vegetation cover. However, during handling of the topsoil, seeds are often buried deeply and they cannot germinate or the seedlings cannot emerge from depth. This study experimentally explores the predictive value of seed mass for seed germination, mortality and seedling emergence at different burial depths for 13 common annual species in semiarid Mediterranean environments. We separate the effect of burial depth on germination and emergence by means of two experiments. In the germination experiment, five replicates of 20 seeds for each species were buried at depths ranging from 0 to 4 cm under greenhouse conditions. Germinated and empty or rotten seeds were counted after 8 weeks. In the emergence experiment, five replicates of four newly-germinated seeds per species were buried at the same depths under controlled conditions and emergence was recorded after 3 weeks. The effect of burial depth on percentage of germination and seedling emergence was dependent on seed size. Although all species showed a decrease in germination with burial depth, this decrease was greater for small-than large-seeded species. Percentage of emergence was positively related to seed mass but negatively related to burial depth. Seed mortality was higher for small-than large-seeded species, but there was no general effect of burial depth on this variable. Thus, the current practice of spreading 30 cm deep layers of topsoil in post-construction restoration projects is unadvisable. In this restoration scenario, thinner layers of topsoil should be used to achieve the maximum potential of the topsoil for germination and seedling establishment.

  4. Modeling an exhumed basin: A method for estimating eroded overburden

    USGS Publications Warehouse

    Poelchau, H.S.

    2001-01-01

    The Alberta Deep Basin in western Canada has undergone a large amount of erosion following deep burial in the Eocene. Basin modeling and simulation of burial and temperature history require estimates of maximum overburden for each gridpoint in the basin model. Erosion can be estimated using shale compaction trends. For instance, the widely used Magara method attempts to establish a sonic log gradient for shales and uses the extrapolation to a theoretical uncompacted shale value as a first indication of overcompaction and estimation of the amount of erosion. Because such gradients are difficult to establish in many wells, an extension of this method was devised to help map erosion over a large area. Sonic A; values of one suitable shale formation are calibrated with maximum depth of burial estimates from sonic log extrapolation for several wells. This resulting regression equation then can be used to estimate and map maximum depth of burial or amount of erosion for all wells in which this formation has been logged. The example from the Alberta Deep Basin shows that the magnitude of erosion calculated by this method is conservative and comparable to independent estimates using vitrinite reflectance gradient methods. ?? 2001 International Association for Mathematical Geology.

  5. Estimates of chemical compaction and maximum burial depth from bedding parallel stylolites

    NASA Astrophysics Data System (ADS)

    Gasparrini, Marta; Beaudoin, Nicolas; Lacombe, Olivier; David, Marie-Eleonore; Youssef, Souhail; Koehn, Daniel

    2017-04-01

    Chemical compaction is a diagenetic process affecting sedimentary series during burial that develops rough dissolution surfaces named Bedding Parallel Stylolites (BPS). BPS are related to the dissolution of important rock volumes and can lead to porosity reduction around them due to post-dissolution cementation. Our understanding of the effect of chemical compaction on rock volume and porosity evolution during basin burial is however too tight yet to be fully taken into account in basin models and thermal or fluid-flow simulations. This contribution presents a novel and multidisciplinary approach to quantify chemical compaction and to estimate maximum paleodepth of burial, applied to the Dogger carbonate reservoirs from the Paris Basin sub-surface. This succession experienced a relatively simple burial history (nearly continuous burial from Upper Jurassic to Upper Cretaceous, followed by a main uplift phase), and mainly underwent normal overburden (inducing development of BPS), escaping major tectonic stress episodes. We considered one core from the depocentre and one from the eastern margin of the basin in the same stratigraphic interval (Bathonian Sup. - Callovian Inf.; restricted lagoonal setting), and analysed the macro- and micro-facies to distinguish five main depositional environments. Type and abundance of BPS were continuously recorded along the logs and treated statistically to obtain preliminary rules relying the occurrence of the BPS as a function of the contrasting facies and burial histories. The treatment of high resolution 2D images allowed the identification and separation of the BPS to evaluate total stylolitization density and insoluble thickness as an indirect measure of the dissolved volume, with respect to the morphology of the BPS considered. Based on the morphology of the BPS roughness, we used roughness signal analysis method to reconstruct the vertical paleo-stress (paleo-depth) recorded by the BPS during chemical compaction. The comparison between amount of compaction and dissolved volume as a function of the macro- and micro-facies, as well as estimates of maximum paleodepth of burial, deepen our knowledge of the factors controlling BPS development, the total thickness of carbonate dissolved and the occurrence of induced cementation in sedimentary basins.

  6. Prediction and observation of munitions burial in energetic storms

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Sheremet, Alexandru; Calantoni, Joseph

    2017-04-01

    The fate of munitions or unexploded ordnance (UXO) resting on a submarine sediment bed is a critical safety concern. Munitions may be transported in uncontrolled ways to create potentially dangerous situations at places like beaches or ports. Alternatively, they may remain in place or completely disappear for significant but unknown periods, after becoming buried in the sediment bed. Clearly, burial of munitions drastically complicates the detection and removal of potential threats. Here, we present field data of wave height and (surrogate) munitions burial depths near the 8-m isobath at the U.S. Army Corps of Engineers, Field Research Facility, Duck, North Carolina, observed between January and March 2015. The experiment captured a remarkable sequence of storms that included at least 10 events, of which 6 were characterized by wave fields of significant heights exceeding 2 m and with peak periods of approximately 10 s. During the strongest storm, waves of 14 s period and heights exceeding 2 m were recorded for more than 3 days; significant wave height reached 5 m at the peak of activity. At the end of the experiment, divers measured munition burial depths of up to 60 cm below the seabed level. However, the local bathymetry showed less than 5 cm variation between the before and after-storm states, suggesting the local net sediment accumulation / loss was negligible. The lack of bathymetric variability excludes the possibility of burial by a migrating bed form or by sediment deposition, and strongly indicates that the munitions sank into the bed. The depth of burial also suggest an extreme state of sand agitation during the storm. For predicting munitions burial depths, we explore existing analytical solutions for the dynamic interaction between waves and sediment. Measured time series of wave pressure near the sediment bed were converted into wave-induced changes in pore pressures and the effective stress states of the sediment. Different sediment failure criteria based on minimum normal and maximum shear stresses are then applied to evaluate the appropriateness of individual failure criteria to predict observed burial depths. Results are subjected to a sensitivity analysis with respect to uncertain sediment parameters and summarized by representing cumulative failure times as a function of depth.

  7. Predictions and Observations of Munitions Burial Under Intense Storm Waves at Duck, NC

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Klammer, H.; Sheremet, A.

    2017-12-01

    The fate of munitions or unexploded ordnance (UXO) resting on a submarine sediment bed is a critical safety concern. Munitions may remain in place or completely disappear for significant but unknown periods, after becoming buried in the sediment bed. Clearly, burial of munitions drastically complicates the detection and removal of potential threats. Here, we present field data of wave height and surrogate munitions burial depths near the 8-m isobath at the U.S. Army Corps of Engineers, Field Research Facility, Duck, North Carolina, observed between January and March 2015. The experiment captured a remarkable sequence of storms that included at least 10 events, of which 6 were characterized by wave fields of significant heights exceeding 2 m and with peak periods of approximately 10 s. During the strongest storm, waves of 14 s period and heights exceeding 2 m were recorded for more than 3 days; significant wave height reached 5 m at the peak of activity. At the end of the experiment, divers measured munition burial depths of up to 60 cm below the seabed level. However, the local bathymetry showed less than 5 cm variation between the before and after-storm states, suggesting the local net sediment accumulation / loss was negligible. The lack of bathymetric variability strongly suggests that the munitions sank into the bed, which would suggest an extreme state of sand agitation during the storm. We explore existing analytical solutions for the dynamic interaction between waves and sediment to predict munitions burial depths. Measured time series of wave pressure near the sediment bed were converted into wave-induced changes in pore pressures and the effective stress states of the sediment. Different sediment failure criteria based on minimum normal and maximum shear stresses were then applied to evaluate the appropriateness of individual failure criteria to predict observed burial depths. Results are subjected to a sensitivity analysis with respect to uncertain sediment parameters and summarized by representing cumulative failure times as a function of depth.

  8. Constraints on the thermal history of Taylorsville Basin, Virginia, U.S.A., from fluid-inclusion and fission-track analyses: Implications for subsurface geomicrobiology experiments

    USGS Publications Warehouse

    Tseng, H.-Y.; Onstott, T.C.; Burruss, R.C.; Miller, D.S.

    1996-01-01

    Microbial populations have been found at the depth of 2621-2804 m in a borehole near the center of Triassic Taylorsville Basin, Virginia. To constrain possible scenarios for long-term survival in or introduction of these microbial populations to the deep subsurface, we attempted to refine models of thermal and burial history of the basin by analyzing aqueous and gaseous fluid inclusions in calcite/quartz veins or cements in cuttings from the same borehole. These results are complemented by fission-track data from the adjacent boreholes. Homogenization temperatures of secondary aqueous fluid inclusions range from 120?? to 210??C between 2027- and 3069-m depth, with highest temperatures in the deepest samples. The salinities of these aqueous inclusions range from 0 to ??? 4.3 eq wt% NaCl. Four samples from the depth between 2413 and 2931 m contain both two-phase aqueous and one-phase methane-rich inclusions in healed microcracks. The relative CH4 and CO2 contents of these gaseous inclusions was estimated by microthermometry and laser Raman spectroscopy. If both types of inclusions in sample 2931 m were trapped simultaneously, the density of the methane-rich inclusions calculated from the Peng - Robinson equation of state implies an entrapment pressure of 360 ?? 20 bar at the homogenization temperature (162.5 ?? 12.5??C) of the aqueous inclusions. This pressure falls between the hydrostatic and lithostatic pressures at the present depth 2931 m of burial. If we assume that the pressure regime was hydrostatic at the time of trapping, then the inclusions were trapped at 3.6 km in a thermal gradient of ??? 40??C/km. The high temperatures recorded by the secondary aqueous inclusions are consistent with the pervasive resetting of zircon and apatite fission-track dates. In order to fit the fission-track length distributions of the apatite data, however, a cooling rate of 1-2??C/Ma following the thermal maximum is required. To match the integrated dates, the thermal maximum would have occurred at ??? 200 Ma. The timing of the maximum temperature is consistent with rapid burial of the Taylorsville Basin to twice its present-day depth and thermal re-equilibration with a 40??C/km geothermal gradient, followed by slow exhumation. The results may imply that the microorganisms did not survive in situ, but were transported from the cooler portions of the basin sometime after maximum burial and heating.

  9. A paleolatitude approach to assessing surface temperature history for use in burial heating models

    USGS Publications Warehouse

    Barker, Charles E.

    2000-01-01

    Calculations using heat flow theory as well as case histories show that over geologic time scales (106 years), changes in mean annual surface temperature (Ts) on the order of 10°C penetrate kilometers deep into the crust. Thus, burial heating models of sedimentary basins, which typically span kilometers in depth and persist over geological time frames, should consider Ts history to increase their accuracy. In any case, Ts history becomes important when it changes enough to be detected by a thermal maturation index like vitrinite reflectance, a parameter widely used to constrain burial heating models. Assessment of the general temperature conditions leading to petroleum generation indicates that changes in Ts as small as 6°C can be detected by vitrinite reflectance measurements. This low temperature threshold indicates that oil and gas windows can be significantly influenced by Ts history. A review of paleoclimatic factors suggests the significant and geologically resolvable factors affecting Ts history are paleolatitude, long-term changes between cool and warm geological periods (climate mode), the degree to which a basin is removed from the sea (geographic isolation), and elevation or depth relative to sea level. Case studies using geologically realistic data ranges or different methods of estimating Ts in a burial heating model indicate a significant impact of Ts when: (1) continental drift, subduction, tectonism and erosion significantly change paleolatitude, paleoaltitude, or paleogeography; (2) strata are at, or near, maximum burial, and changes in Ts directly influence maximum burial temperature; and (3), when a significant change in Ts occurs near the opening or closing of the oil or gas windows causing petroleum generation to begin or cease. Case studies show that during the burial heating and petroleum generation phase of basin development changes in climate mode alone can influence Ts by about 15°C. At present, Ts changes from the poles to the equator by about 50°C. Thus, in extreme cases, continental drift alone can seemingly produce Ts changes on the order of 50°C over a time frame of 107 years.

  10. Carbonate clumped-isotope constraints on the burial and exhumation history of the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Ryb, U.; Lloyd, M. K.; Eiler, J. M.

    2016-12-01

    Reconstruction of the thermal history of rocks is key to study the geodynamic evolution of sedimentary basins. Carbonate clumped-isotope measurements of minerals formed or re-equilibrated at elevated temperatures can constrain thermal histories of rocks. Experimental constraints on solid state isotopic reordering in carbonates let us translate clumped-isotope measurements into quantitative statements about the thermal history, and thus burial and exhumation. We use this approach to constrain peak burial temperatures of Paleozoic rocks across the Colorado Plateau, sampled carbonate rocks from the southwestern Plateau margin and from borehole cores in the Plateau interior. We sub-sampled specific fabrics (fossils, cements, etc.), determined their calcite and dolomite proportions using XRD, and analyzed clumped-isotope compositions (reported as apparent temperatures using Stolper and Eiler's (2015) calibration) for pure calcite or dolomite samples (>97 wt.%). At the Plateau margin, calcite and dolomite apparent temperatures are 49-79°C and 67-97°C, respectively. The maximum apparent temperature constrains the minimum peak burial temperature. The distribution of calcite apparent temperatures independently constrains the maximum burial temperature as follows: If the "coldest" sample had an initial apparent temperature of 20°C, then its observed value can be explained by isotopic reordering to a peak temperature of 105-120°C. We therefore hypothesize peak temperature at the base of the Paleozoic was 97-120°C. At the Plateau interior, apparent temperatures of Mississippian calcite samples are depth-dependent: Samples cored from <2km depth have apparent temperatures of 54-68°C; similar samples from 3km depth have apparent temperatures of 105-165°C and a smaller variability between sub-samples, interpreted to result from isotopic reordering at >150°C. Assuming a surface temperature of 20°C and a thermal gradient of 25°C km-1, we calculate total overburden (above the Mississippian) and exhumation of 2.7-3.7 km and 1.8-2.8 km, respectively, at the Plateau margin; and total overburden and exhumation of 5.8-6.6 km, and 3-3.8 km, respectively, at the Plateau interior. Our findings are consistent with peak burial estimates based on thermochronometry and other proxies.

  11. Stabilization of kerogen thermal maturation: Evidence from geothermometry and burial history reconstruction, Niobrara Limestone, Berthoud oil field, western Denver Basin, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, C.E.; Crysdale, B.L.

    1990-05-01

    The burial history of this fractured Niobrara Limestone reservoir and source rock offers a setting for studying the stabilization of thermal maturity because soon after peak temperature of approximately 100{degree}C was reached, exhumation lowered temperature to about 60-70{degree}C. Vitrinite reflectance (Rm = 0.6-0.7%) and published clay mineralogy data from the Niobrara Limestone indicate that peak paleotemperature was approximately 100{degree}C. Fluid inclusion data also indicate oil migration occurred at 100{degree}C. Burial history reconstruction indicates 100{degree}C was reached in the Niobrara Limestone only during minimum burial, which occurred at 70 Ma and 8000 ft depth. However, erosion beginning at 70 Ma andmore » continuing until 50 Ma removed over 3,000 ft of rock. This depth of erosion agrees with an Rm of 0.4% measured in surface samples of the Pierre Shale. The exhumation of the reservoir decreased temperature by about 30{degree}C to near the corrected bottom-hole temperature of 50-70{degree}C. Lopatin time-temperature index (TTI) analysis suggests the Niobrara Limestone as a source rock matured to the oil generation stage (TTI = 10) about 25 Ma, significantly later than maximum burial, and after exhumation caused cooling. The Lopatin TTI method in this case seems to overestimate the influence of heating time. If time is an important factor, thermal maturity should continue to increase after peak burial and temperature so that vitrinite reflectance will not be comparable to peak paleotemperatures estimated from geothermometers set at near-peak temperature and those estimated from burial history reconstruction. The agreement between geothermometry and the burial history reconstruction in Berthoud State 4 suggests that the influence of heating time must be small. The elapsed time available at near peak temperatures was sufficient to allow stabilization of thermal maturation in this case.« less

  12. Habitat requirements and burrowing depths of rodents in relation to shallow waste burial sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gano, K.A.; States, J.B.

    1982-05-01

    The purpose of this paper is to provide a review of the literature and summarize information on factors affecting habitat selection and maximum recorded burrowing depths for representative small mammals that we consider most likely to inhibit waste burial sites in arid and semi-arid regions of the West. The information is intended for waste management designers who need to know what to expect from small mammals that may be present at a particular site. Waste repositories oculd be designed to exclude the deep burrowing rodents of a region by creating an unattractive habitat over the waste. Summaries are given formore » habitat requirements of each group along with generalized modifications that could be employed to deter habitation. Representatives from the major groups considered to be deep burrowers are discussed. Further, detailed information about a particular species can be obtained from the references cited.« less

  13. Thermodynamic Simulation of Carbonate Cements-Water-Carbon Dioxide Equilibrium in Sandstone for Prediction of Precipitation/Dissolution of Carbonate Cements

    PubMed Central

    Zhong, Xinyan; Shang, Ruishu; Huang, Lihong

    2016-01-01

    Carbonate cements, such as calcite, dolomite, ferrocalcite and ankerite, play important roles in the formation of pores in sandstones: precipitation of carbonate cements modifies pores and inhibits compaction, while dissolution creates secondary pores. This work proposed a precipitation-dissolution model for carbonate cements-CO2-H2O system by means of ion equilibrium concentration ([M2+], M = Ca, Mg, Fe or Mn) with different factors, such as temperature, depth, pH, PCO2, variable rock composition and overpressure. Precipitation-dissolution reaction routes were also analyzed by minimization of the total Gibbs free energy (ΔG). Δ[M2+], the variation of [Ca2+], [Fe2+], [Mg2+] or [Mn2+] for every 100 m of burial depths, is used to predict precipitation or dissolution. The calculation results indicate that the increasing temperature results in decrease of equilibrium constant of reactions, while the increasing pressure results in a relatively smaller increase of equilibrium constant; As a result, with increasing burial depth, which brings about increase of both temperature and pressure, carbonate cements dissolve firstly and produces the maximal dissolved amounts, and then precipitation happens with further increasing depth; For example, calcite is dissolving from 0.0 km to 3.0 km with a maximal value of [Ca2+] at depth of 0.8 km, and then precipitates with depth deeper than 3.0 km. Meanwhile, with an increasing CO2 mole fraction in the gaseous phase from 0.1% to 10.0% in carbonate systems, the aqueous concentration of metal ions increases, e.g., dissolved amount of CaFe0.7Mg0.3(CO3)2 increases and reaches maximum of 1.78 mmol·L-1 and 8.26 mmol·L-1 at burial depth of 0.7 km with CO2 mole fraction of 0.1% and 10.0%, respectively. For the influence of overpressure in the calcite system, with overpressure ranging from 36 MPa to 83 MPa, pH reaches a minimum of 6.8 at overpressure of 51 MPa; meanwhile, Δ[Ca2+] increases slightly from -2.24 mmol·L-1 to -2.17 mmol·L-1 and remains negative, indicating it is also a precipitation process at burial depth of 3.9 km where overpressure generated. The method used in this study can be applied in assessing burial precipitation-dissolution processes and predicting possible pores in reservoirs with carbonate cement-water-carbon dioxide. PMID:27907043

  14. Thermodynamic Simulation of Carbonate Cements-Water-Carbon Dioxide Equilibrium in Sandstone for Prediction of Precipitation/Dissolution of Carbonate Cements.

    PubMed

    Duan, Yiping; Feng, Mingshi; Zhong, Xinyan; Shang, Ruishu; Huang, Lihong

    2016-01-01

    Carbonate cements, such as calcite, dolomite, ferrocalcite and ankerite, play important roles in the formation of pores in sandstones: precipitation of carbonate cements modifies pores and inhibits compaction, while dissolution creates secondary pores. This work proposed a precipitation-dissolution model for carbonate cements-CO2-H2O system by means of ion equilibrium concentration ([M2+], M = Ca, Mg, Fe or Mn) with different factors, such as temperature, depth, pH, [Formula: see text], variable rock composition and overpressure. Precipitation-dissolution reaction routes were also analyzed by minimization of the total Gibbs free energy (ΔG). Δ[M2+], the variation of [Ca2+], [Fe2+], [Mg2+] or [Mn2+] for every 100 m of burial depths, is used to predict precipitation or dissolution. The calculation results indicate that the increasing temperature results in decrease of equilibrium constant of reactions, while the increasing pressure results in a relatively smaller increase of equilibrium constant; As a result, with increasing burial depth, which brings about increase of both temperature and pressure, carbonate cements dissolve firstly and produces the maximal dissolved amounts, and then precipitation happens with further increasing depth; For example, calcite is dissolving from 0.0 km to 3.0 km with a maximal value of [Ca2+] at depth of 0.8 km, and then precipitates with depth deeper than 3.0 km. Meanwhile, with an increasing CO2 mole fraction in the gaseous phase from 0.1% to 10.0% in carbonate systems, the aqueous concentration of metal ions increases, e.g., dissolved amount of CaFe0.7Mg0.3(CO3)2 increases and reaches maximum of 1.78 mmol·L-1 and 8.26 mmol·L-1 at burial depth of 0.7 km with CO2 mole fraction of 0.1% and 10.0%, respectively. For the influence of overpressure in the calcite system, with overpressure ranging from 36 MPa to 83 MPa, pH reaches a minimum of 6.8 at overpressure of 51 MPa; meanwhile, Δ[Ca2+] increases slightly from -2.24 mmol·L-1 to -2.17 mmol·L-1 and remains negative, indicating it is also a precipitation process at burial depth of 3.9 km where overpressure generated. The method used in this study can be applied in assessing burial precipitation-dissolution processes and predicting possible pores in reservoirs with carbonate cement-water-carbon dioxide.

  15. Effects of sand burial on the survival and growth of two shrubs dominant in different habitats of northern China.

    PubMed

    Qu, Hao; Zhao, Ha-Lin; Zhao, Xue-Yong; Zuo, Xiao-An; Wang, Shao-Kun; Chen, Min

    2017-04-01

    Plants that grow in dune ecosystems always suffer from sand burial. Shrubs play implications on the healthy functioning of dune ecosystems due to control blowing sand. However, the survival and growth responses of shrubs to sand burial remain poorly understood. The survival rate and seedling height of two shrubs (Artemisia halodendron and Lespedeza davurica) along with the soil properties under different burial depths were examined in order to reveal the causing ecophysiological attributes of sand burial on shrubs in the desertified region. It was found that A. halodendron can survive a burial depth of 6 cm greater than its seedling height, which is a dominant shrub in mobile dunes with intense burial, whereas a burial depth equivalent to three fourths of its seedling height is detrimental to L. davurica, which is dominant in fixed dunes with less burial. The reasons for the shrub death under sand burial were associated with the physical barrier to vertical growth and the reduction in photosynthetic area. In conclusion, A. halodendron can facilitate the stabilization of mobile dunes because of their high tolerance to the frequent and intensive sand burial, while L. davurica can be beneficial for the recovery process because of their higher survival rates under shallow burial following restoration of mobile dunes.

  16. Estimating the Amount of Eroded Section in a Partially Exhumed Basin from Geophysical Well Logs: An Example from the North Slope

    USGS Publications Warehouse

    Burns, W. Matthew; Hayba, Daniel O.; Rowan, Elisabeth L.; Houseknecht, David W.

    2007-01-01

    The reconstruction of burial and thermal histories of partially exhumed basins requires an estimation of the amount of erosion that has occurred since the time of maximum burial. We have developed a method for estimating eroded thickness by using porosity-depth trends derived from borehole sonic logs of wells in the Colville Basin of northern Alaska. Porosity-depth functions defined from sonic-porosity logs in wells drilled in minimally eroded parts of the basin provide a baseline for comparison with the porosity-depth trends observed in other wells across the basin. Calculated porosities, based on porosity-depth functions, were fitted to the observed data in each well by varying the amount of section assumed to have been eroded from the top of the sedimentary column. The result is an estimate of denudation at the wellsite since the time of maximum sediment accumulation. Alternative methods of estimating exhumation include fission-track analysis and projection of trendlines through vitrinite-reflectance profiles. In the Colville Basin, the methodology described here provides results generally similar to those from fission-track analysis and vitrinite-reflectance profiles, but with greatly improved spatial resolution relative to the published fission-track data and with improved reliability relative to the vitrinite-reflectance data. In addition, the exhumation estimates derived from sonic-porosity logs are independent of the thermal evolution of the basin, allowing these estimates to be used as independent variables in thermal-history modeling.

  17. Ensemble Learning Method for Hidden Markov Models

    DTIC Science & Technology

    2014-12-01

    Ensemble HMM landmine detector Mine signatures vary according to the mine type, mine size , and burial depth. Similarly, clutter signatures vary with soil ...approaches for the di erent K groups depending on their size and homogeneity. In particular, we investigate the maximum likelihood (ML), the minimum...propose using and optimizing various training approaches for the different K groups depending on their size and homogeneity. In particular, we

  18. Sediment Burial Intolerance of Marine Macroinvertebrates.

    PubMed

    Hendrick, Vicki J; Hutchison, Zoë L; Last, Kim S

    2016-01-01

    The marine environment contains suspended particulate matter which originates from natural and anthropogenic sources. Settlement of this material can leave benthic organisms susceptible to smothering, especially if burial is sudden i.e. following storms or activities such as dredging. Their survival will depend on their tolerance to, and their ability to escape from burial. Here we present data from a multi-factorial experiment measuring burial responses incorporating duration, sediment fraction and depth. Six macroinvertebrates commonly found in sediment rich environments were selected for their commercial and/or conservation importance. Assessments revealed that the brittle star (Ophiura ophiura), the queen scallop (Aequipecten opercularis) and the sea squirt (Ciona intestinalis) were all highly intolerant to burial whilst the green urchin (Psammichinus miliaris) and the anemone (Sagartiogeton laceratus), showed intermediate and low intolerance respectively, to burial. The least intolerant, with very high survival was the Ross worm (Sabellaria spinulosa). With the exception of C. intestinalis, increasing duration and depth of burial with finer sediment fractions resulted in increased mortality for all species assessed. For C. intestinalis depth of burial and sediment fraction were found to be inconsequential since there was complete mortality of all specimens buried for more than one day. When burial emergence was assessed O. ophiura emerged most frequently, followed by P. miliaris. The former emerged most frequently from the medium and fine sediments whereas P. miliaris emerged more frequently from coarse sediment. Both A. opercularis and S. laceratus showed similar emergence responses over time, with A. opercularis emerging more frequently under coarse sediments. The frequency of emergence of S. laceratus increased with progressively finer sediment and C. intestinalis did not emerge from burial irrespective of sediment fraction or depth. Finally, and perhaps unsurprisingly, the greatest ability to emerge from burial in all other species was from shallow (2 cm) burial. Although survival was consistently highly dependent on duration and depth of burial as expected, emergence behaviour was not as easily predictable thereby confounding predictions. We conclude that responses to burial are highly species specific and therefore tolerance generalisations are likely to be oversimplifications. These data may be used to inform environmental impact models that allow forecasting of the cumulative impacts of seabed disturbance and may provide mitigation measures for the sustainable use of the seabed.

  19. Influence of Anchoring on Burial Depth of Submarine Pipelines

    PubMed Central

    Zhuang, Yuan; Li, Yang; Su, Wei

    2016-01-01

    Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed. PMID:27166952

  20. Contrasting diagenetic histories of concretions vs. host rocks, Lion Mountain Member, Riley formation (upper Cambrian), Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, E.F.

    1988-02-01

    White, elliptical, calcite-cemented concretion nuclei up to 1 m long contrast markedly in color, composition, and diagenetic history from more glauconite-rich concretion rinds and from dark-green glaucarenite host rocks. Concretion nuclei are loosely packed deposits of trilobite carapaces and minor quartz and glauconite that have intergranular volumes of 58%. The nuclei are shell-lag deposits that were cemented by calcite at the sea floor or after burial of a few meters. Concretion rinds, composed of subequal amounts of quartz and compactionally deformed glauconite, have an intergranular volume of only 32% and minor quartz overgrowths that preceded pore-occluding calcite cement. The rindsmore » underwent burial for several million years to tens of millions of years to depths of several hundred meters before they were cemented. The host rock is predominately glauconite with very minor quartz and calcite cement. Strontium isotopic ratios of host-rock calcite cement are variable (0.7084 to 0.7093), but the lowest value suggests precipitation during the Middle Ordovician. In the absence of significant amounts of carbonate cement, the host rock underwent complete dissolution of trilobite carapaces and maximum compaction with total loss of porosity through squashing of glauconite grains. Maximum burial during this stage was completed by the end of Ordovician time.« less

  1. Effects of sediment burial disturbance on macro and microelement dynamics in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary, China.

    PubMed

    Sun, Zhigao; Mou, Xiaojie

    2016-03-01

    From April 2008 to November 2009, a field decomposition experiment was conducted to investigate the effects of sediment burial on macro (C, N) and microelement (Pb, Cr, Cu, Zn, Ni, and Mn) variations in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary. Three one-off sediment burial treatments [no sediment burial (0 mm year(-1), S0), current sediment burial (100 mm year(-1), S10), and strong sediment burial (200 mm year(-1), S20)] were laid in different decomposition sites. Results showed that sediment burials showed significant influence on the decomposition rate of P. australis, in the order of S10 (0.001990 day(-1)) ≈ S20 (0.001710 day(-1)) > S0 (0.000768 day(-1)) (p < 0.05). The macro and microelement in decomposing litters of the three burial depths exhibited different temporal variations except for Cu, Zn, and Ni. No significant differences in C, N, Pb, Cr, Zn, and Mn concentrations were observed among the three burial treatments except for Cu and Ni (p > 0.05). With increasing burial depth, N, Cr, Cu, Ni, and Mn concentrations generally increased, while C, Pb, and Zn concentrations varied insignificantly. Sediment burial was favorable for C and N release from P. australis, and, with increasing burial depth, the C release from litter significantly increased, and the N in litter shifted from accumulation to release. With a few exceptions, Pb, Cr, Zn, and Mn stocks in P. australis in the three treatments evidenced the export of metals from litter to environment, and, with increasing burial depth, the export amounts increased greatly. Stocks of Cu and Ni in P. australis in the S10 and S20 treatments were generally positive, evidencing incorporation of the two metals in most sampling times. Except for Ni, the variations of C, N, Pb, Cr, Cu, Zn, and Mn stocks in P. australis in the S10 and S20 treatments were approximated, indicating that the strong burial episodes (S20) occurred in P. australis marsh in the future would have little influence on the stocks of these elements. With increasing burial depths, the P. australis was particularly efficient in binding Cu and Ni and releasing C, N, Pb, Cr, Zn, and Mn, implying that the potential eco-toxic risk of Pb, Cr, Zn, and Mn exposure might be very serious. This study emphasized the effects of different burials on nutrient and metal cycling and mass balance in the P. australis marsh of the Yellow River estuary.

  2. In-situ stress distribution and coalbed methane reservoir permeability in the Linxing area, eastern Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Ju, Wei; Shen, Jian; Qin, Yong; Meng, Shangzhi; Li, Chao; Li, Guozhang; Yang, Guang

    2017-11-01

    Understanding the distribution of in-situ stresses is extremely important in a wide range of fields such as oil and gas exploration and development, CO2 sequestration, borehole stability, and stress-related geohazards assessment. In the present study, the in-situ stress distribution in the Linxing area of eastern Ordos Basin, China, was analyzed based on well tested parameters. The maximum horizontal principal stress (S Hmax), minimum horizontal principal stress (S hmin), and vertical stress (S v ) were calculated, and they were linearly correlated with burial depth. In general, two types of in-situ stress fields were determined in the Linxing area: (i) the in-situ stress state followed the relation S v >S Hmax>S hmin in shallow layers with burial depths of less than about 940 m, indicating a normal faulting stress regime; (ii) the S Hmax magnitude increased conspicuously and was greater than the S v magnitude in deep layers with depths more than about 940 m, and the in-situ stress state followed the relation S Hmax>S v >S hmin, demonstrating a strike-slip faulting stress regime. The horizontal differential stress (S Hmax-S hmin) increased with burial depth, indicating that wellbore instability may be a potentially significant problem when drilling deep vertical wells. The lateral stress coefficient ranged from 0.73 to 1.08 with an average of 0.93 in the Linxing area. The coalbed methane (CBM) reservoir permeability was also analyzed. No obvious exponential relationship was found between coal permeability and effective in-situ stress magnitude. Coal permeability was relatively high under a larger effective in-situ stress magnitude. Multiple factors, including fracture development, contribute to the variation of CBM reservoir permeability in the Linxing area of eastern Ordos Basin.

  3. Effects of sand burial on dew deposition on moss soil crust in a revegetated area of the Tennger Desert, Northern China

    NASA Astrophysics Data System (ADS)

    Jia, Rong-liang; Li, Xin-rong; Liu, Li-chao; Pan, Yan-xia; Gao, Yan-hong; Wei, Yong-ping

    2014-11-01

    Sand burial and dew deposition are two fundamental phenomena profoundly influencing biological soil crusts in desert areas. However, little information is available regarding the effects of sand burial on dew deposition on biological soil crusts in desert ecosystems. In this study, we evaluated the effects of sand burial at depths of 0 (control), 0.5, 1, 2 and 4 mm on dew formation and evaporation of three dominant moss crusts in a revegetated area of the Tengger Desert (Northern China) in 2010. The results revealed that sand burial significantly decreased the amount of dew deposited on the three moss crust types by acting as a semi-insulator retarding the dew formation and evaporation rates. The changes in surface temperature cannot fully explain the variations of the formation and evaporation rates of dew by moss crusts buried by sand. The extension of dew retention time was reflected by the higher dew ratios (the ratio of dew amount at a certain time to the maximum value in a daily course) in the daytime, and may to some extent have acted as compensatory mechanisms that diminished the negative effects of the reduction of dew amount induced by sand burial of moss crusts. The resistances to reduction of dewfall caused by sand burial among the three moss crusts were also compared and it was found that Bryum argenteum crust showed the highest tolerance, followed by crusts dominated by Didymodon vinealis and Syntrichia caninervis. This sequence corresponds well with the successional order of the three moss crusts in the revegetated area, thereby suggesting that resistance to reduction of dewfall may act as one mechanism by which sand burial drives the succession of moss crusts in desert ecosystems. This side effect of dew reduction induced by sand burial on biological soil crusts should be considered in future ecosystem construction and management of desert area.

  4. Geologic controls on thermal maturity patterns in Pennsylvanian coal-bearing rocks in the Appalachian basin

    USGS Publications Warehouse

    Ruppert, L.F.; Hower, J.C.; Ryder, R.T.; Levine, J.R.; Trippi, M.H.; Grady, W.C.

    2010-01-01

    Thermal maturation patterns of Pennsylvanian strata in the Appalachian basin were determined by compiling and contouring published and unpublished vitrinite reflectance (VR) measurements. VR isograd values range from 0.6% in eastern Ohio and eastern Kentucky (western side of the East Kentucky coal field) to greater than 5.5% in eastern Pennsylvania (Southern Anthracite field, Schuylkill County), corresponding to ASTM coal rank classes of high volatile C bituminous to meta-anthracite. VR isograds show that thermal maturity of Pennsylvanian coals generally increases from west to east across the basin. The isograds patterns, which are indicative of maximum temperatures during burial, can be explained by variations in paleodepth of burial, paleogeothermal gradient, or a combination of both. However, there are at least four areas of unusually high-rank coal in the Appalachian basin that depart from the regional trends and are difficult to explain by depth of burial alone: 1) a west-northwestward salient centered in southwestern Pennsylvania; 2) an elliptically-shaped, northeast-trending area centered in southern West Virginia and western Virginia; 3) the eastern part of Black Warrior coal field, Alabama; and 4) the Pennsylvania Anthracite region, in eastern Pennsylvania. High-rank excursions in southwest Pennsylvania, the Black Warrior coal field, and the Pennsylvania Anthracite region are interpreted here to represent areas of higher paleo-heat flow related to syntectonic movement of hot fluids towards the foreland, associated with Alleghanian deformation. In addition to higher heat flow from fluids, the Pennsylvania Anthracite region also experienced greater depth of burial. The high-rank excursion in southwest Virginia was probably primarily controlled by overburden thickness, but may also have been influenced by higher geothermal gradients.

  5. Clumped isotope thermometry in deeply buried sedimentary carbonates: The effects of C-O bond reordering and recrystallization

    NASA Astrophysics Data System (ADS)

    Passey, B. H.; Shenton, B.; Grossman, E. L.; Henkes, G. A.; Laya, J. C.; Perez-Huerta, A.

    2014-12-01

    Constraining the thermal histories of sedimentary basins is fundamental to a range of geologic applications including tectonics, petroleum system analysis, and the genesis of ore deposits. Carbonate rocks can serve as archives of basin thermal histories through solid-state reordering of their 13C-18O, or 'clumped isotope', bonds at elevated burial temperatures. Here we present one of the first applied studies of carbonate clumped isotope reordering to explore the diagenetic and thermal histories of exhumed brachiopods, crinoids, cements, and host rock in the Permian Palmarito Formation, Venezuela and the Carboniferous Bird Spring Formation, Nevada, USA. Carbonate components in the Palmarito Formation, buried to ~4 km depth, yield statistically indistinguishable clumped isotope temperatures (T(Δ47)) ranging from 86 to 122 °C. Clumped isotope temperatures of components in the more deeply buried Bird Spring Formation (>5 km), range from ~100 to 165 °C and differ by component type, with brachiopods and pore-filling cements yielding the highest T(Δ47) (mean = 153 and 141 °C, respectively) and crinoids and host rock yielding significantly cooler T(Δ47) (mean = 103 and 114 °C). New high-resolution thermal histories are coupled with kinetic models to predict the extent of solid-state C-O bond reordering during burial and exhumation for both sites. Application of these models suggests that brachiopods in the Palmarito Formation experienced partial bond reordering without complete equilibration of clumped isotopes at maximum burial temperature. In contrast, clumped isotope bonds of brachiopods from the Bird Spring Formation appear to have completely equilibrated at maximum burial temperature, and now reflect blocking temperatures 'locked-in' during cooling. The 40-50 °C cooler clumped isotope temperatures measured in Bird Spring Formation crinoids and host rock can be explained by both recrystallization and cementation during shallow burial and a greater inherent resistance to solid-state reordering than brachiopods.

  6. Palmer amaranth seed mortality in response to burial depth and time

    USDA-ARS?s Scientific Manuscript database

    Glyphosate resistant Palmer amaranth infests millions of arable acres in the SE US. One proposed method of reducing population numbers is to bury surface seeds deeply, below their optimal emergence zone. The objective of this study was to determine how burial longevity and depth impact Palmer amaran...

  7. Sandstone and shale compaction curves derived from sonic and gamma ray logs in offshore wells, North Slope, Alaska; parameters for basin modeling

    USGS Publications Warehouse

    Rowan, Elisabeth L.; Hayba, Daniel O.; Nelson, Philip H.; Burns, W. Matthew; Houseknecht, David W.

    2003-01-01

    Representative compaction curves for the principle lithologies are essential input for reliable models of basin history. Compaction curves influence estimates of maximum burial and erosion. Different compaction curves may produce significantly different thermal histories. Default compaction curves provided by basin modeling packages may or may not be a good proxy for the compaction properties in a given area. Compaction curves in the published literature span a wide range, even within one lithology, e.g., sandstone (see Panel 3). An abundance of geophysical well data for the North Slope, from both government and private sources, provides us with an unusually good opportunity to develop compaction curves for the Cretaceous-Tertiary Brookian sandstones, siltstones, and shales. We examined the sonic and gamma ray logs from 19 offshore wells (see map), where significant erosion is least likely to have occurred. Our data are primarily from the Cretaceous-Tertiary Brookian sequence and are less complete for older sequences. For each well, the fraction of shale (Vsh) at a given depth was estimated from the gamma ray log, and porosity was computed from sonic travel time. By compositing porosities for the near-pure sand (Vsh99%)from many individual wells we obtained data over sufficient depth intervals to define sandstone and shale 'master' compaction curves. A siltstone curve was defined using the sonic-derived porosities for Vsh values of 50%. These compaction curves generally match most of the sonic porosities with an error of 5% or less. Onshore, the curves are used to estimate the depth of maximum burial at the end of Brookian sedimentation. The depth of sonic-derived porosity profiles is adjusted to give the best match with the 'master' compaction curves. The amount of the depth adjustment is the erosion estimate. Using our compaction curves, erosion estimates on the North Slope range from zero in much of the offshore, to as much as 1500 ft along the coast, and to more than 10,000 ft in the foothills (Panel 3). Compaction curves provide an alternative to vitrinite reflectance for estimating erosion. Vitrinite reflectance data are often very sparse in contrast to well log data and are subject to inconsistencies when measurements are made by different labs. The phenomenon of 'recycling' can also make the reflectance values of dispersed vitrinite problematic for quantifying erosion. Recycling is suspected in dispersed vitrinite in North Slope rocks, particularly in the younger, Cretaceous-Tertiary section. The compaction curves defined here are being integrated into our burial history and thermal models to determine the timing of source rock maturation. An example on Panel 3 shows the results of calculating the maturity of the Shublik Fm. at the Tulaga well using two different sets of shale and siltstone compaction curves. Finally, accurate compaction curves improve a model's ability to realistically simulate the pressure regime during burial, including overpressures.

  8. Comparative burial and thermal history of lower Upper Cretaceous strata, Powder River basin, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuccio, V.F.

    1989-03-01

    Burial histories were reconstructed for three localities in the Powder River basin (PRB), Wyoming. Thermal maturity of lower Upper Cretaceous source rocks was determined by vitrinite reflectance (R/sub m/) and time-temperature index (TTI) modeling, producing independent estimates for timing of the oil window (0.55-1.35% R/sub m/). In the northwestern PRB, lower Upper Cretaceous rocks were buried to about 12,500 ft and achieved a thermal maturity of 0.50% to 0.56% at maximum burial, 10 Ma, based on measured R/sub m/. TTI modeling suggests a slightly higher thermal maturity, with an R/sub m/ equivalent of approximately 0.75%, placing the source rocks atmore » the beginning of the oil window 30 Ma. In the southwestern PRB, lower Upper Cretaceous rocks have been buried to about 15,000 ft and achieved thermal maturities between 0.66% and 0.75% about 10 Ma based on measured R/sub m/; therefore, petroleum generation may have begun slightly earlier. TTI modeling estimates an R/sub m/ equivalent of 1.10%, placing the beginning of the oil window at 45 Ma. In the northeastern PRB, lower Upper Cretaceous rocks have been buried only to approximately 5500 ft. Measured R/sub m/ and TTI modeling indicate a thermal maturity for lower Upper Cretaceous rocks between 0.45% and 0.50% R/sub m/, too low for petroleum generation. The higher R/sub m/ values determined by the TTI models may be due to overestimation of maximum burial depth and/or paleogeothermal gradients. The two independent maturity indicators do, however, constrain fairly narrowly the onset of petroleum generation.« less

  9. Variation in the effects of burial in different peatland successional stages on seed survival of four wetland species

    NASA Astrophysics Data System (ADS)

    Egawa, Chika

    2017-01-01

    The availability of viable seeds in soil helps to determine the success of ecological restoration in disturbed habitats. Although seed survival in soil generally increases with an increase in burial depth, whether the effects of burial on seed survival are comparable across different sites is unclear. In this study, I tested the hypothesis that the positive effects of burial on seed survival decrease as vegetation develops through succession. Four wetland species, Drosera rotundifolia, Lobelia sessilifolia, Rhynchospora alba and Moliniopsis japonica, were used for the study. The four species differ in their light requirement for germination; i.e., D. rotundifolia, L. sessilifolia and R. alba germinate best in light, whereas M. japonica germinates equally well in light and darkness. The seeds of these species were buried for two years at three depths (litter, 0 and 4 cm) in three successional stages with different amounts of vegetation and litter in a post-mined peatland. The photosynthetically active radiation (PAR) and temperature at each of litter layer, 0 cm and 4 cm depths were measured for each successional stage. The between-depth differences in PAR and temperature fluctuations decreased as succession progressed. For the three light-demanding species, burial promoted seed survival more in the initial successional stage than in the later successional stages, whereas for M. japonica, burial promoted seed survival equally in all successional stages. This study revealed significant variation in the effects of burial on seed survival, particularly for light-sensitive seeds, and that the soil surface layers in vegetated sites can contain persistent seeds, which could be used as a seed source in restoration.

  10. Difference of brightness temperatures between 19.35 GHz and 37.0 GHz in CHANG'E-1 MRM: implications for the burial of shallow bedrock at lunar low latitude

    NASA Astrophysics Data System (ADS)

    Yu, Wen; Li, Xiongyao; Wei, Guangfei; Wang, Shijie

    2016-03-01

    Indications of buried lunar bedrock may help us to understand the tectonic evolution of the Moon and provide some clues for formation of lunar regolith. So far, the information on distribution and burial depth of lunar bedrock is far from sufficient. Due to good penetration ability, microwave radiation can be a potential tool to ameliorate this problem. Here, a novel method to estimate the burial depth of lunar bedrock is presented using microwave data from Chang'E-1 (CE-1) lunar satellite. The method is based on the spatial variation of differences in brightness temperatures between 19.35 GHz and 37.0 GHz (ΔTB). Large differences are found in some regions, such as the southwest edge of Oceanus Procellarum, the area between Mare Tranquillitatis and Mare Nectaris, and the highland east of Mare Smythii. Interestingly, a large change of elevation is found in the corresponding region, which might imply a shallow burial depth of lunar bedrock. To verify this deduction, a theoretical model is derived to calculate the ΔTB. Results show that ΔTB varies from 12.7 K to 15 K when the burial depth of bedrock changes from 1 m to 0.5 m in the equatorial region. Based on the available data at low lunar latitude (30°N-30°S), it is thus inferred that the southwest edge of Oceanus Procellarum, the area between Mare Tranquillitatis and Mare Nectaris, the highland located east of Mare Smythii, the edge of Pasteur and Chaplygin are the areas with shallow bedrock, the burial depth is estimated between 0.5 m and 1 m.

  11. Diagenetic mineralization in Pennsylvanian coals from Indiana, USA: 13C/12C and 18O/16O implications for cleat origin and coalbed methane generation

    USGS Publications Warehouse

    Solano-Acosta, W.; Schimmelmann, A.; Mastalerz, Maria; Arango, I.

    2008-01-01

    Cleats and fractures in southwestern Indiana coal seams are often filled with authigenic kaolinite and/or calcite. Carbon- and oxygen-stable isotope ratios of kaolinite, calcite, and coalbed CO2 were evaluated in combination with measured values and published estimates of ??18O of coalbed paleowaters that had been present at the time of mineralization. ??18Omineral and ??18Owater values jointly constrain the paleotemperature of mineralization. The isotopic evidence and the thermal and tectonic history of this part of the Illinois Basin led to the conclusion that maximum burial and heat-sterilization of coal seams approximately 272??Ma ago was followed by advective heat redistribution and concurrent precipitation of kaolinite in cleats at a burial depth of < 1600??m at ??? 78 ?? 5????C. Post-Paleozoic uplift, the development of a second generation of cleats, and subsequent precipitation of calcite occurred at shallower burial depth between ??? 500 to ??? 1300??m at a lower temperature of 43 ?? 6????C. The available paleowater in coalbeds was likely ocean water and/or tropical meteoric water with a ??18Owater ??? - 1.25??? versus VSMOW. Inoculation of coalbeds with methanogenic CO2-reducing microbes occurred at an even later time, because modern microbially influenced 13C-enriched coalbed CO2 (i.e., the isotopically fractionated residue of microbial CO2 reduction) is out of isotopic equilibrium with 13C-depleted calcite in cleats. ?? 2007 Elsevier B.V. All rights reserved.

  12. Experimental sand burial affects seedling survivorship, morphological traits, and biomass allocation of Ulmus pumila var. sabulosa in the Horqin Sandy Land, China

    NASA Astrophysics Data System (ADS)

    Tang, Jiao; Busso, Carlos Alberto; Jiang, Deming; Musa, Ala; Wu, Dafu; Wang, Yongcui; Miao, Chunping

    2016-07-01

    As a native tree species, Ulmus pumila var. sabulosa (sandy elm) is widely distributed in the Horqin Sandy Land, China. However, seedlings of this species have to withstand various depths of sand burial after emergence because of increasing soil degradation, which is mainly caused by overgrazing, climate change, and wind erosion. An experiment was conducted to evaluate the changes in its survivorship, morphological traits, and biomass allocation when seedlings were buried at different burial depths: unburied controls and seedlings buried vertically up to 33, 67, 100, or 133 % of their initial mean seedling height. The results showed that partial sand burial treatments (i.e., less than 67 % burial) did not reduce seedling survivorship, which still reached 100 %. However, seedling mortality increased when sand burial was equal to or greater than 100 %. In comparison with the control treatment, seedling height and stem diameter increased at least by 6 and 14 % with partial burial, respectively. In the meantime, seedling taproot length, total biomass, and relative mass growth rates were at least enhanced by 10, 15.6, and 27.6 %, respectively, with the partial sand burial treatment. Furthermore, sand burial decreased total leaf area and changed biomass allocation in seedlings, partitioning more biomass to aboveground organs (e.g., leaves) and less to belowground parts (roots). Complete sand burial after seedling emergence inhibited its re-emergence and growth, even leading to death. Our findings indicated that seedlings of sandy elm showed some resistance to partial sand burial and were adapted to sandy environments from an evolutionary perspective. The negative effect of excessive sand burial after seedling emergence might help in understanding failures in recruitments of sparse elm in the study region.

  13. Radiological effluents released from US continental tests, 1961 through 1992. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoengold, C.R.; DeMarre, M.E.; Kirkwood, E.M.

    1996-08-01

    This report documents all continental tests from September 15, 1961, through September 23, 1992, from which radioactive effluents were released. The report includes both updated information previously published in the publicly available May, 1990 report, DOE/NV-317, ``Radiological Effluents Released from Announced US Continental Tests 1961 through 1988``, and effluent release information on formerly unannounced tests. General information provided for each test includes the date, time, location, type of test, sponsoring laboratory and/or agency or other sponsor, depth of burial, purpose, yield or yield range, extent of release (onsite only or offsite), and category of release (detonation-time versus post-test operations). Wheremore » a test with simultaneous detonations is listed, location, depth of burial and yield information are given for each detonation if applicable, as well as the specific source of the release. A summary of each release incident by type of release is included. For a detonation-time release, the effluent curies are expressed at R+12 hours. For a controlled releases from tunnel-tests, the effluent curies are expressed at both time of release and at R+12 hours. All other types are listed at the time of the release. In addition, a qualitative statement of the isotopes in the effluent is included for detonation-time and controlled releases and a quantitative listing is included for all other types. Offsite release information includes the cloud direction, the maximum activity detected in the air offsite, the maximum gamma exposure rate detected offsite, the maximum iodine level detected offsite, and the maximum distance radiation was detected offsite. A release summary incudes whatever other pertinent information is available for each release incident. This document includes effluent release information for 433 tests, some of which have simultaneous detonations. However, only 52 of these are designated as having offsite releases.« less

  14. Rethinking Controls on the Long-Term Cenozoic Carbonate Compensation Depth: Case Studies across Late Paleocene - Early Eocene Warming and Late Eocene - Early Oligocene Cooling

    NASA Astrophysics Data System (ADS)

    Greene, S. E.; Ridgwell, A. J.; Schmidt, D. N.; Kirtland Turner, S.; Paelike, H.; Thomas, E.

    2014-12-01

    The carbonate compensation depth (CCD) is the depth below which negligible calcium carbonate is preserved in marine sediments. The long-term position of the CCD is often considered to be a powerful constraint on palaeoclimate and atmospheric CO2 concentration due to the requirement that carbonate burial balance riverine weathering over long timescales. The requirement that weathering and burial be in balance is clear, but it is less certain that burial compensates for changes in weathering via shoaling or deepening of the CCD. Because most carbonate burial occurs well above the CCD , changes in weathering fluxes may be primarily accommodated by increasing or decreasing carbonate burial at shallower depths, i.e., at or near the lysocline, the depth range over which carbonate dissolution markedly increases. Indeed, recent earth system modelling studies have suggested that the position of the CCD is relatively insensitive to changes in atmospheric pCO2. Additionally, studies have questioned the nature and strength of the relationship between the CCD, carbonate saturation state in the water column, and lysocline. To test the relationship between palaeoclimate and the location of the CCD, we reconstructed the global, long-term CCD behaviour across major Cenozoic climate transitions: the late Paleocene - early Eocene long-term warming trend (study interval ~58 to 49 Ma) and the late Eocene - early Oligocene cooling and glaciation (study interval ~38 to 27 Ma). We use Earth system modelling (GENIE) to explore the links between atmospheric pCO2 and the CCD, isolating and teasing apart the roles of total dissolved inorganic carbon, temperature, circulation, and productivity in determining the CCD.

  15. [Effects of sand burial on fluxes of greenhouse gases from the soil covered by biocrust in an arid desert region.

    PubMed

    Teng, Jia Ling; Jia, Rong Liang; Hu, Yi Gang; Xu, Bing Xin; Chen, Meng Chen; Zhao, Yun

    2016-03-01

    Based on the measurements of the fluxes of CO 2 , CH 4 and N 2 O from the soil covered by two types of biocrusts dominated separately by moss and algae-lichen, followed by 0 (control), 1 (shallow) and 10 (deep) mm depths of sand burial treatments, we studied the effects of sand burial on greenhouse gases fluxes and their relationships with soil temperature and moisture at Shapotou, southeastern edge of the Tengger Desert. The results showed that sand burial had significantly positive effects on CO 2 emission fluxes and CH 4 uptake fluxes of the soil covered by the two types of biocrusts, but imposed differential effects on N 2 O fluxes depending on the type of biocrust and the depth of burial. Deep burial (10 mm) dramatically increased the N 2 O uptake fluxes of the soil co-vered by the two types of biocrusts, while shallow burial (1 mm) decreased the N 2 O uptake flux of the soil co-vered by moss crust only and had no significant effects on N 2 O uptake flux of the soil covered by algae-lichen crust. In addition, CO 2 fluxes of the two biocrusts were closely related to the soil temperature and soil moisture, thereby increasing with the raised soil surface temperature and soil moisture caused by sand burial. However, the relationships of burial-induced changes of soil temperature and moisture with the changes in the other two greenhouse gases fluxes were not evident, indicating that the variations of soil temperature and moisture caused by sand burial were not the key factors affecting the fluxes of CH 4 and N 2 O of the soil covered by the two types of biocrusts.

  16. 78 FR 76574 - Burial Benefits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ...The Department of Veterans Affairs (VA) proposes to clarify, reorganize, and rewrite in plain language its regulations that govern entitlement to monetary burial benefits, which include burial allowances for service-connected and non-service-connected deaths, a plot or interment allowance, and reimbursement of transportation expenses. The amendments would also establish rules to support VA's automated payment of burial allowances to surviving spouses, conversion to flat-rate burial and plot or interment allowances that are equal to the maximum benefit authorized by law, and priority of payment to non- spouse survivors.

  17. Mineral, chemical and textural relationships in rhythmic-bedded, hydrocarbon-productive chalk of the Niobrara Formation, Denver Basin, Colorado ( USA).

    USGS Publications Warehouse

    Pollastro, R.M.; Martinez, C.J.

    1985-01-01

    The types of hydrocarbons produced from these chalks are determined by the level of thermal maturity associated with present-day burial or paleoburial conditions. Detailed analyses of deeply-buried chalk from core of the Smoky Hill Chalk Member of the Niobrara Formation in the Champlin Petroleum 2 Boxelder Farms well combined with core data from other Niobrara wells have helped identify many depositional and diagenetic relationships. Porosity of the chalk is proportional to maximum burial depth and inversely proportional to the amount of non-carbonate material (acid- insoluble residue content) in the chalk. Total organic carbon content in the chalk is proportional to the amount of acid-insoluble residue and relative abundance of pyrite in the acid-insoluble fraction. Quartz is inversely proportional to the amount of insoluble material, and the amount of clay tends to increase as insolubles increase, suggesting that detritus in these chalks is greatly influenced by reworked, altered, volcanic products rather than siliceous clastics.-from Authors

  18. Diagenetic palaeotemperatures from aqueous fluid inclusions: re- equilibration of inclusions in carbonate cements by burial heating.

    USGS Publications Warehouse

    Burruss, R.C.

    1987-01-01

    Calculations based on the observed behaviour of inclusions in fluorite under external confining P allows prediction of the T and depths of burial necessary to initiate re-equilibration of aqueous inclusions in the common size range 40-4 mu m. Heating of 20-60oC over the initial trapping T may cause errors of 10-20oC in the homogenization T. This suggests that re-equilibration may cause aqueous inclusions in carbonates to yield a poor record of their low-T history, but a useful record of the maximum T experienced by the host rock. Previous work suggests that inclusions containing petroleum fluids will be less susceptible to re-equilibration.This and the following six abstracts represent papers presented at a joint meeting of the Applied Mineralogy Group of the Mineralogical Society and the Petroleum Group of the Geological Society held in Newcastle upon Tyne in April 1986.-R.A.H.

  19. In situ measurement of geoacoustic sediment properties: An example from the ONR Mine Burial Program, Martha's Vineyard Coastal Observatory

    NASA Astrophysics Data System (ADS)

    Kraft, Barbara J.; Mayer, Larry A.; Simpkin, Peter G.; Goff, John A.

    2003-04-01

    In support of the Office of Naval Research's Mine Burial Program (MBP), in situ acoustic and resistivity measurements were obtained using ISSAP, a device developed and built by the Center for Coastal and Ocean Mapping. One of the field areas selected for the MBP experiments is the WHOI coastal observatory based off Martha's Vineyard. This area is an active natural laboratory that will provide an ideal environment for testing and observing mine migration and burial patterns due to temporal seabed processes. Seawater and surficial sediment measurements of compressional wave sound speed, attenuation, and resistivity were obtained at 87 stations. The ISSAP instrument used four transducer probes arranged in a square pattern giving acoustic path lengths of 30 and 20 cm with a maximum insertion depth of 15 cm. Transducers operated at a frequency of 65 kHz. The received acoustic signal was sampled at a frequency of 5 MHz. A measurement cycle was completed by transmitting 10 pulses on each of the five paths and repeating three times for a total 150 measurements. Resistivity measurements were obtained from two probes mounted on ISSAP following completion of the acoustic measurements. [Research supported by ONR Grant Nos. N00014-00-1-0821 and N00014-02-1-0138.

  20. Rock magnetic and geochemical analyses of surface sediment characteristics in deep ocean environments: A case study across the Ryukyu Trench

    NASA Astrophysics Data System (ADS)

    Kawamura, N.; Kawamura, K.; Ishikawa, N.

    2008-03-01

    Magnetic minerals in marine sediments are often dissolved or formed with burial depth, thereby masking the primary natural remanent magnetization and paleoclimate signals. In order to clarify the present sedimentary environment and the progressive changes with burial depth in the magnetic properties, we studied seven cores collected from the Ryukyu Trench, southwest Japan. Magnetic properties, organic geochemistry, and interstitial water chemistry of seven cores are described. Bottom water conditions at the landward slope, trench floor, and seaward slope are relatively suboxic, anoxic, and oxic, respectively. The grain size of the sediments become gradually finer with the distance from Okinawa Island and finer with increasing water depth. The magnetic carriers in the sediments are predominantly magnetite and maghemized magnetite, with minor amounts of hematite. In the topmost sediments from the landward slope, magnetic minerals are diluted by terrigenous materials and microfossils. The downcore variations in magnetic properties and geochemical data provided evidence for the dissolution of fine-grained magnetite with burial depth under an anoxic condition.

  1. Multibeam observations of mine burial near Clearwater, FL, including comparisons to predictions of wave-induced burial

    USGS Publications Warehouse

    Wolfson, M.L.; Naar, D.F.; Howd, P.A.; Locker, S.D.; Donahue, B.T.; Friedrichs, Carl T.; Trembanis, A.C.; Richardson, M.D.; Wever, T.F.

    2007-01-01

    A Kongsberg Simrad EM 3000 multibeam sonar (Kongsberg Simrad, Kongsberg, Norway) was used to conduct a set of six repeat high-resolution bathymetric surveys west of Indian Rocks Beach (IRB), just to the south of Clearwater, FL, between January and March 2003, to observe in situ scour and burial of instrumented inert mines and mine-like cylinders. Three closely located study sites were chosen: two fine-sand sites, a shallow one located in ??? 13 m of water depth and a deep site located in ???14 m of water depth; and a coarse-sand site in ???13 m. Results from these surveys indicate that mines deployed in fine sand are nearly buried within two months of deployment (i.e., they sunk 74.5% or more below the ambient seafloor depth). Mines deployed in coarse sand showed a lesser amount of scour, burying until they present roughly the same hydrodynamic roughness as the surrounding rippled bedforms. These data were also used to test the validity of the Virginia Institute of Marine Science (VIMS, Gloucester Point, VA) 2-D burial model. The model worked well in areas of fine sand, sufficiently predicting burial over the course of the experiment. In the area of coarse sand, the model greatly overpredicted the amount of burial. This is believed to be due to the presence of rippled bedforms around the mines, which affect local bottom morphodynamics and are not accounted for in the model, an issue currently being addressed by the modelers. This paper focuses specifically on two instrumented mines: an acoustic mine located in fine sand and an optical instrumented mine located in coarse sand. ?? 2007 IEEE.

  2. The value of trophic interactions for ecosystem function: dung beetle communities influence seed burial and seedling recruitment in tropical forests

    PubMed Central

    Bardgett, Richard D.; Louzada, Julio; Barlow, Jos

    2016-01-01

    Anthropogenic activities are causing species extinctions, raising concerns about the consequences of changing biological communities for ecosystem functioning. To address this, we investigated how dung beetle communities influence seed burial and seedling recruitment in the Brazilian Amazon. First, we conducted a burial and retrieval experiment using seed mimics. We found that dung beetle biomass had a stronger positive effect on the burial of large than small beads, suggesting that anthropogenic reductions in large-bodied beetles will have the greatest effect on the secondary dispersal of large-seeded plant species. Second, we established mesocosm experiments in which dung beetle communities buried Myrciaria dubia seeds to examine plant emergence and survival. Contrary to expectations, we found that beetle diversity and biomass negatively influenced seedling emergence, but positively affected the survival of seedlings that emerged. Finally, we conducted germination trials to establish the optimum burial depth of experimental seeds, revealing a negative relationship between burial depth and seedling emergence success. Our results provide novel evidence that seed burial by dung beetles may be detrimental for the emergence of some seed species. However, we also detected positive impacts of beetle activity on seedling recruitment, which are probably because of their influence on soil properties. Overall, this study provides new evidence that anthropogenic impacts on dung beetle communities could influence the structure of tropical forests; in particular, their capacity to regenerate and continue to provide valuable functions and services. PMID:27928036

  3. The value of trophic interactions for ecosystem function: dung beetle communities influence seed burial and seedling recruitment in tropical forests.

    PubMed

    Griffiths, Hannah M; Bardgett, Richard D; Louzada, Julio; Barlow, Jos

    2016-12-14

    Anthropogenic activities are causing species extinctions, raising concerns about the consequences of changing biological communities for ecosystem functioning. To address this, we investigated how dung beetle communities influence seed burial and seedling recruitment in the Brazilian Amazon. First, we conducted a burial and retrieval experiment using seed mimics. We found that dung beetle biomass had a stronger positive effect on the burial of large than small beads, suggesting that anthropogenic reductions in large-bodied beetles will have the greatest effect on the secondary dispersal of large-seeded plant species. Second, we established mesocosm experiments in which dung beetle communities buried Myrciaria dubia seeds to examine plant emergence and survival. Contrary to expectations, we found that beetle diversity and biomass negatively influenced seedling emergence, but positively affected the survival of seedlings that emerged. Finally, we conducted germination trials to establish the optimum burial depth of experimental seeds, revealing a negative relationship between burial depth and seedling emergence success. Our results provide novel evidence that seed burial by dung beetles may be detrimental for the emergence of some seed species. However, we also detected positive impacts of beetle activity on seedling recruitment, which are probably because of their influence on soil properties. Overall, this study provides new evidence that anthropogenic impacts on dung beetle communities could influence the structure of tropical forests; in particular, their capacity to regenerate and continue to provide valuable functions and services. © 2016 The Author(s).

  4. The transition from an Archean granite-greenstone terrain into a charnockite terrain in southern India

    NASA Technical Reports Server (NTRS)

    Condie, K. C.; Allen, P.

    1983-01-01

    In southern India, it is possible to study the transition from an Archean granite-greenstone terrain (the Karnataka province) into high grade charnockites. The transition occurs over an outcrop width of 20-35 km and appears to represent burial depths ranging from 15 to 20 km. Field and geochemical studies indicate that the charnockites developed at the expense of tonalites, granites, and greenstones. South of the transition zone, geobarometer studies indicate burial depths of 7-9 kb.

  5. Yield and Depth of Burial Hydrodynamic Calculations in Granodiorite: Implications for the North Korean Test Site

    DTIC Science & Technology

    2011-09-01

    the existence of a test site body wave magnitude (mb) bias between U. S. and the former Soviet Union test sites in Nevada and Semipalatinsk . The use...YIELD AND DEPTH OF BURIAL HYDRODYNAMIC CALCULATIONS IN GRANODIORITE:IMPLICATIONS FOR THE NORTH KOREAN TEST SITE Esteban Rougier, Christopher R...Korean test site and the May 2009 test . When compared to the Denny and Johnson (1991) and to the Heard and Ackerman (1967) cavity radius scaling models

  6. Hydrocarbon source-rock evaluation - Solor Church Formation (middle Proterozoic, Keweenawan Supergroup), southeastern Minnesota

    USGS Publications Warehouse

    Hatch, J.R.; Morey, G.B.

    1984-01-01

    In the type section (Lonsdale 65-1 core, Rice County, Minnesota) the Solor Church Formation (Middle Proterozoic, Keweenawan Supergroup) consists primarily of reddish-brown mudstone and siltstone and pale reddish-brown sandstone. The sandstone and siltstone are texturally and mineralogically immature. Hydrocarbon source-rock evaluation of bluish-gray, greenish-gray and medium-dark-gray to grayish-black beds, which primarily occur in the lower 104 m (340 ft) of this core, shows: (1) the rocks have low organic carbon contents (<0.5 percent for 22 of 25 samples); (2) the organic matter is thermally very mature (Tmax = 494°C, sample 19) and is probably near the transition between the wet gas phase of catagenesis and metagenesis (dry gas zone); and (3) the rocks have minimal potential for producing additional hydrocarbons (genetic potential <0.30 mgHC/gm rock). Although no direct evidence exists from which to determine maximum depths of burial, the observed thermal maturity of the organic matter requires significantly greater depths of burial and(or) higher geothermal gradients. It is likely, at least on the St. Croix horst, that thermal alteration of the organic matter in the Solor Church took place relatively early, and that any hydrocarbons generated during this early thermal alteration were probably lost prior to deposition of the overlying Fond du Lac Formation (Middle Proterozoic, Keweenawan Supergroup).

  7. Hydrocarbon source rock evaluation: Solor Church Formation. (Middle Proterozoic, Keweenawan Supergroup) southeastern Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatch, J.R.; Morey, G.B.

    In the type section (Lonsdale 65-1 core, Rice County, Minnesota) the Solar Church Formation (Middle Proterozoic, Keweenawan Supergroup) consists primarily of reddish-brown mudstone and siltstone and pale reddish-brown sandstone. The sandstone and siltstone are texturally and mineralogically immature. Hydrocarbon source-rock evaluation of bluish-gray, greenish-gray and medium-dark-gray to grayish-black beds, which primarily occur in the lower 104 m (340 ft) of this core, shows: (1) the rocks have low organic carbon contents (<0.5% for 22 of 25 samples); (2) the organic matter is thermally very mature (T/sub max/ = 494/sup 0/C, sample 19) and is probably near the transition between themore » wet gas phase of catagenesis and metagenesis (dry gas zone); and (3) the rocks have minimal potential for producing additional hydrocarbons (genetic potential <0.30 mgHC/gm rock). Although no direct evidence exists from which to determine maximum depths of burial, the observed thermal maturity of the organic matter requires significantly greater depths of burial and(or) higher geothermal gradients. It is likely, at least on the St. Croix horst, that thermal alteration of the organic matter in the Solor Church took place relatively early, and that any hydrocarbons generated during this early thermal alteration were probably lost prior to deposition of the overlying Fond du Lac Formation (Middle Proterozoic, Keweenawan Supergroup). 5 figs., 2 tabs.« less

  8. WINTER FLOUNDER PSUEDOPLEURONECTES AMERICANUS HATCHING SUCCESS AS A FUNCTION OF BURIAL DEPTH IN THE LABORATORY

    EPA Science Inventory

    Previous experiments have shown that viable hatch of winter flounder eggs is reduced when the eggs are buried by as little as one half of one egg diameter (approximately 0.5 mm of sediment). This sensitivity to burial has resulted in seasonal banning of dredging in several north...

  9. Relationship between plant traits and resistance to burial by marly sediment

    NASA Astrophysics Data System (ADS)

    Burylo, M.; Rey, F.; Dutoit, T.

    2009-04-01

    In marly lands of the French Southern Alps, harsh soil erosion results in sediment movements during intensive rainfall events. Plants can be submitted to sediment burial in their early stages of development and their protective function may be reduced. In a context of land restoration, it is important to know species resistance to environmental disturbances and to be able to predict it, in particular from plant traits (height, biomass, sugar and starch accumulation). However, few studies about woody species tolerance to burial by sediment have been carried out. Seedlings of five woody species were buried in marly sediment at three different depths in pot experiment during eight weeks: no burial (control), partial burial (50% stem height) and complete burial (100% stem height). Height through time, biomass and survival rates were measured to assess species resistance to burial. Results show that among the five species, only one (Acer campestre) survived complete burial. All plants survived partial burial, but there were significant differences in height and biomass between buried plants and control, and significant differences between species responses. Three different responses to disturbance were identified: negative (Hippophae rhamnoides, Ononis fruticosa), neutral (Robinia pseudo acacia, Pinus nigra) and positive (Acer campestre). Results finally suggest that species resistance to burial by marly sediment is related to sugar accumulation in plant stems.

  10. Controlled preparation of wet granular media reveals limits to lizard burial ability

    NASA Astrophysics Data System (ADS)

    Sharpe, Sarah S.; Kuckuk, Robyn; Goldman, Daniel I.

    2015-07-01

    Many animals move within ground composed of granular media (GM); the resistive properties of such substrates can depend on water content and compaction, but little is known about how such parameters affect locomotion or the physics of drag and penetration. Using apparatus to control compaction of GM, our recent studies of movement in dry GM have revealed locomotion strategies of specialized dry-sand-swimming reptiles. However, these animals represent a small fraction of the diversity and presumed burial strategies of fossorial reptilian fauna. Here we develop a system to create states of wet GM of varying moisture content and compaction in quantities sufficient to study the burial and subsurface locomotion of the Ocellated skink (C. ocellatus), a generalist lizard. X-ray imaging revealed that in wet and dry GM the lizard slowly buried (≈ 30 s) propagating a wave from head to tail, while moving in a start-stop motion. During forward movement, the head oscillated, and the forelimb on the convex side of the body propelled the animal. Although body kinematics and ‘slip’ were similar in both substrates, the burial depth was smaller in wet GM. Penetration and drag force experiments on smooth cylinders revealed that wet GM was ≈ 4× more resistive than dry GM. In total, our measurements indicate that while the rheology of the dry and wet GM differ substantially, the lizard's burial motor pattern is conserved across substrates, while its burial depth is largely constrained by environmental resistance.

  11. High-temperature quartz cement and the role of stylolites in a deep gas reservoir, Spiro Sandstone, Arkoma Basin, USA

    USGS Publications Warehouse

    Worden, Richard H.; Morad, Sadoon; Spötl, C.; Houseknecht, D.W.; Riciputi, L.R.

    2000-01-01

    The Spiro Sandstone, a natural gas play in the central Arkoma Basin and the frontal Ouachita Mountains preserves excellent porosity in chloritic channel-fill sandstones despite thermal maturity levels corresponding to incipient metamorphism. Some wells, however, show variable proportions of a late-stage, non-syntaxial quartz cement, which post-dated thermal cracking of liquid hydrocarbons to pyrobitumen plus methane. Temperatures well in excess of 150°C and possibly exceeding 200°C are also suggested by (i) fluid inclusions in associated minerals; (ii) the fact that quartz post-dated high-temperature chlorite polytype IIb; (iii) vitrinite reflectance values of the Spiro that range laterally from 1.9 to ≥ 4%; and (iii) the occurrence of late dickite in these rocks. Oxygen isotope values of quartz cement range from 17.5 to 22.4‰ VSMOW (total range of individual in situ ion microprobe measurements) which are similar to those of quartz cement formed along high-amplitude stylolites (18.4–24.9‰). We favour a model whereby quartz precipitation was controlled primarily by the availability of silica via deep-burial stylolitization within the Spiro Sandstone. Burial-history modelling showed that the basin went from a geopressured to a normally pressured regime within about 10–15 Myr after it reached maximum burial depth. While geopressure and the presence of chlorite coats stabilized the grain framework and inhibited nucleation of secondary quartz, respectively, stylolites formed during the subsequent high-temperature, normal-pressured regime and gave rise to high-temperature quartz precipitation. Authigenic quartz growing along stylolites underscores their role as a significant deep-burial silica source in this sandstone.

  12. The search for a source rock for the giant Tar Sand triangle accumulation, southeastern Utah

    USGS Publications Warehouse

    Huntoon, J.E.; Hansley, P.L.; Naeser, N.D.

    1999-01-01

    A large proportion (about 36%) of the world's oil resource is contained in accumulations of heavy oil or tar. In these large deposits of degraded oil, the oil in place represents only a fraction of what was present at the time of accumulation. In many of these deposits, the source of the oil is unknown, and the oil is thought to have migrated over long distances to the reservoirs. The Tar Sand triangle in southeastern Utah contains the largest tar sand accumulation in the United States, with 6.3 billion bbl of heavy oil estimated to be in place. The deposit is thought to have originally contained 13-16 billion bbl prior to the biodegradation, water washing, and erosion that have taken place since the middle - late Tertiary. The source of the oil is unknown. The tar is primarily contained within the Lower Permian White Rim Sandstone, but extends into permeable parts of overlying and underlying beds. Oil is interpreted to have migrated into the White Rim sometime during the Tertiary when the formation was at a depth of approximately 3500 m. This conclusion is based on integration of fluid inclusion analysis, time-temperature reconstruction, and apatite fission-track modeling for the White Rim Sandstone. Homogenization temperatures cluster around 85-90??C for primary fluid inclusions in authigenic, nonferroan dolomite in the White Rim. The fluid inclusions are associated with fluorescent oil-bearing inclusions, indicating that dolomite precipitation was coeval with oil migration. Burial reconstruction suggests that the White Rim Sandstone reached its maximum burial depth from 60 to 24 Ma, and that maximum burial was followed by unroofing from 24 to 0 Ma. Time-temperature modeling indicates that the formation experienced temperatures of 85-90??C from about 35 to 40 Ma during maximum burial. Maximum formation temperatures of about 105-110??C were reached at about 24 Ma, just prior to unroofing. Thermal modeling is used to examine the history of potential source rocks for the White Rim oil. The most attractive potential sources for White Rim oil include beds within one or more of the following formations: the Proterozoic Chuar Group, which is present in the subsurface southwest of the Tar Sand triangle; the Mississippian Delle Phosphatic Member of the Deseret Limestone and equivalent formations, the Permian Kaibab Limestone, the Sinbad Limestone Member of the Triassic Moenkopi Formation, and the Jurassic Arapien Shale, Twin Creek Limestone, and Carmel Formation, which are present west of the Tar Sand triangle; the Pennsylvanian Paradox Formation in the Paradox basin east of the Tar Sand triangle; and the Permian Park City Formation northwest of the Tar Sand triangle. Each formation has a high total organic carbon content and is distributed over a wide enough geographic area to have provided a huge volume of oil. Source beds in all of the formations reached thermal maturity at times prior to or during the time that migration into the White Rim is interpreted to have occurred. Based on all available data, the most likely source for the Tar Sand triangle appears to be the Mississippian Delle Phosphatic Member of the Deseret Limestone. Secondary migration out of the Delle is interpreted to have occurred during the Cretaceous, during Sevier thrusting. Subsequent tertiary migration into the Tar Sand triangle reservoir is interpreted to have occurred later, during middle Tertiary Laramide deformation.

  13. Seed germination of cirsium arvense and Lepidium latifolium: Implications for management of montane wetlands

    USGS Publications Warehouse

    Laubhan, M.K.; Shaffer, T.L.

    2006-01-01

    Cirsium arvense and Lepidium latifolium are species that can aggressively invade wetland margins and potentially reduce biodiversity and alter ecosystem function. Although expansion of these species primarily occurs via rhizomatous growth, seeds are thought to be important in initial establishment. We conducted this study to investigate differences in seed germination of C. arvense and L. latifolium in montane wetlands of Colorado and Wyoming, USA. We used germination chambers to simulate environmental conditions (photoperiod, day/night temperature) during three periods of the growing season at each site and evaluated seed germination in relation to three soil moisture levels and two soil depths. A combination of shallow (<1 cm) seed burial and wet conditions resulted in the greatest germination probability of C. arvense (x = 63.0%), 95% CI = 41.2-80.5%), whereas deep (2-3 cm) seed burial and saturated moisture conditions resulted in almost no germination (x?? = 0.3%, 95% CI = 0.1-1.3%). The maximum germination probability of 44.0% (CI = 28.1-61.4%) for L. latifolium also occurred in the shallow burial and wet treatment; however, only effects of seed burial were significant (P < 0.05). The estimated mean germination probability of deeply buried seeds was <1.0% (CI = 0.3-1.4%) compared to 32% (CI = 19.7-47.9%) for shallowly buried seeds. Our results suggest that each species has the ability to germinate at similar rates throughout the growing season and across a large portion of the moisture gradient. This suggests that management actions, including water-level manipulations, at any time during the growing season may stimulate germination. Although burial of seed to depths of 2-3 cm reduced the germination potential of both species, the use of mechanical implements may be problematic in established stands because new plants of both species easily sprout from root buds. Further, disturbance resulting from such actions diminishes the density and vigor of other plants already present, which may ultimately decrease the competitive resistance of the disturbed environment to invasion by outside species. Detection of new invasions is a critical component of any integrated weed management program. Our results indicate that the incidence of C. arvense and L. latifolium germination is most likely in areas with seeds that are within 1 cm of the soil surface and soil moisture is 75-100% of field capacity for extended periods. ?? 2006, The Society of Wetland Scientists.

  14. Multibeam Observations of Mine Burial Near Clearwater, FL, Including Comparisons to Predictions of Wave-Induced Burial

    DTIC Science & Technology

    2007-01-01

    IEEE JOURNAL OF OCEANIC ENGINEERING. VOL. 32. NO. 1. JANUARY 2007 103 Multibeam Observations of Mine Burial Near Clearwater, FL, Including...DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited 20090522023 13. SUPPLEMENTARY NOTES IEEE Journal of Oceanic ...Z39.18 104 IEEE JOURNAL OF OCEANIC ENGINEERING. VOL. 32, NO. 1. JANUARY 2007 depth (m) 28°00’ N 27°58’ N 83°04’ W 83°02’ W 83°00’ W Fig. 1. Location

  15. Observing Migration and Burial of Unexploded Ordnance in the Nearshore Environment with Instrumented Surrogates

    NASA Astrophysics Data System (ADS)

    Bruder, B. L.; Cristaudo, D.; Puleo, J. A.

    2016-12-01

    Prior to 1972, it was legal and common practice to unload unexploded ordnance (UXO) into the ocean. Only 60-100 miles off the US coast alone there are 72 dumping sites where it is estimated 31 million pounds of UXO lie. As recently as 2015, UXO have been found not only in the nearshore environment, but on populated beaches. Thus, understanding the migration and burial of these objects is not only of oceanographic interest, but a matter of public safety. The presented project evaluates the efficacy of instrumented UXO surrogates for observing munition migration and burial. Instrumented surrogates were exposed to near prototype scale wave conditions over a mobile bed at the Littoral Warfare Environment at Aberdeen Test Center, MD. Surrogates were deployed in the swash zone, inner and outer surf zones. Dependent on munition size, surrogates housed multiple suites of self-logging sensors. Sensor suites included different combinations of inertial motion units, ultra-wideband tracking tags, pressure transducers, shock recorders, and photocells. Preliminary results show sensor suites can resolve various types of surrogate movement. Pressure transducers accurately record ambient wave conditions as well as changes in mean depth due to surrogate migration. Inertial motion units resolve munition accelerations for rolling and translational motion. Inertial motion unit data is used to estimate trajectory as well when coupled with mean depth and bathymetric data. Photocells, which measure ambient light, resolve munition burial as well as serve as proxies for surrounding environmental conditions such as suspended sediment and water depth. The presented project will continue to utilize and couple surrogate sensor data to resolve munition movement and burial under different conditions. Knowledge of munition migration helps focus UXO detection and recovery, conserving US military and coastal resources.

  16. Diagenetic evidence for an epigenetic origin of the Courtbrown Zn-Pb deposit, Ireland

    NASA Astrophysics Data System (ADS)

    Reed, Christopher P.; Wallace, Malcolm W.

    2001-08-01

    Mineralisation at the Courtbrown deposit in south-western Ireland is concentrated in the basal section of the Chadian Waulsortian Limestone, immediately above the Courceyan Ballysteen Limestone. Two episodes of sulphide deposition have been identified: an early stage of minor pyrite precipitation, and a later base-metal-rich mineralisation event. Sphalerite, galena and pyrite of the later mineralisation event occur predominantly as replacement phases along stylolites, dissolution seams, and within the micritic matrix of the host limestone. These sulphide minerals also occur as cements within late stage fractures. The following diagenetic phases are present in the Waulsortian and Ballysteen Limestones in the Courtbrown area (from oldest to youngest): non-luminescent synsedimentary calcite cements, non-luminescent equant calcite cements, bright luminescent calcite cement, dull luminescent calcite cement, planar dolomite cement and replacement dolomite (regional dolomite), saddle dolomite cement, and fibrous dull luminescent calcite cement filling pressure-shadows around the sulphide minerals. Homogenisation temperatures for primary fluid inclusions within dull luminescent calcite cements (precipitated penecontemporaneously with base-metal mineralisation) range from 160 to 200 °C, with a mode at 170-180 °C. These values are unlikely to be representative of mineralisation temperatures as the fluid inclusions may have been significantly affected by heating and/or deformation during late burial (maximum paleotemperatures from Ro and CAI data around 310 °C). The observed paragenetic sequence indicates that mineralisation is completely epigenetic. As the earliest mineralisation is hosted by macro-stylolites, the sequence must have obtained a minimum burial depth of around 800 m prior to the onset of mineralisation. A burial depth of 800 m would correspond to an approximate early Chadian age for the Courtbrown area. Pressure-shadows around sphalerite further indicate that mineralisation preceded the major phase of Variscan deformation. Therefore, the base-metal mineralisation at Courtbrown is epigenetic, and the age of mineralisation is in the range of 350 to 307 Ma.

  17. Munition Burial by Local Scour and Sandwaves: large-scale laboratory experiments

    NASA Astrophysics Data System (ADS)

    Garcia, M. H.

    2017-12-01

    Our effort has been the direct observation and monitoring of the burial process of munitions induced by the combined action of waves, currents and pure oscillatory flows. The experimental conditions have made it possible to observe the burial process due to both local scour around model munitions as well as the passage of sandwaves. One experimental facility is the Large Oscillating Water Sediment Tunnel (LOWST) constructed with DURIP support. LOWST can reproduce field-like conditions near the sea bed. The second facility is a multipurpose wave-current flume which is 4 feet (1.20 m) deep, 6 feet (1.8 m) wide, and 161 feet (49.2 m) long. More than two hundred experiments were carried out in the wave-current flume. The main task completed within this effort has been the characterization of the burial process induced by local scour as well in the presence of dynamic sandwaves with superimposed ripples. It is found that the burial of a finite-length model munition (cylinder) is determined by local scour around the cylinder and by a more global process associated with the formation and evolution of sandwaves having superimposed ripples on them. Depending on the ratio of the amplitude of these features and the body's diameter (D), a model munition can progressively get partially or totally buried as such bedforms migrate. Analysis of the experimental data indicates that existing semi-empirical formulae for prediction of equilibrium-burial-depth, geometry of the scour hole around a cylinder, and time-scales developed for pipelines are not suitable for the case of a cylinder of finite length. Relative burial depth (Bd / D) is found to be mainly a function of two parameters. One is the Keulegan-Carpenter number, KC, and the Shields parameter, θ. Munition burial under either waves or combined flow, is influenced by two different processes. One is related to the local scour around the object, which takes place within the first few hundred minutes of flow action (i.e. short time scale). 2nd process is related to the development of sandwaves which in turn may partially or totally cover a given mine as they migrate (i.e. long time scales), leading to global burial. A third process occurring at a much shorter time scale is related to fluidization. Existing formulations for munition burial do not account for long sandwaves as well as bed fluidization.

  18. Geophysical Survey of an Abandoned Cemetery in Prairie View, Texas: Unmarked Burials from Slave Era Discovered on College Campus

    NASA Astrophysics Data System (ADS)

    Henning, A. T.; Sawyer, D. S.; Wallace, D.; Kahera, A.

    2009-12-01

    Wyatt Chapel Cemetery is an abandoned cemetery located in Prairie View, Texas. Oral histories from local residents suggest that the cemetery originated as a slave burial ground in the mid-nineteenth century. The local community is interested in examining the cemetery in order to document the history of the area. Over the past three years, we have acquired total station, global positioning system (GPS) and ground-penetrating radar (GPR) data at the cemetery. We utilized a GSSI cart-mounted 400 MHz radar system to image the subsurface. The soil at the field site is ideally suited for radar work and the subsurface image quality is excellent. The dielectric constant was determined to be 17 based upon the depth to a known target. Records were 80 ns in length, which corresponds to a depth of about 105 inches (8.75 feet). Data were processed to time zero and stacked. The stratigraphy consists of 3-6 feet of sand overlying a hard clay, and the boundary produces a very bright reflector. This stratigraphy is interpreted as fluvial Pleistocene sands overlying Tertiary clay. Samples were taken at multiple depths down to this boundary and radiocarbon dates are pending. Numerous anomalies were identified that are consistent with unmarked burials. Two of these anomalies were excavated and confirmed as burials. In the main clearing of the cemetery site, the sand-clay boundary deepens abruptly from 3 feet to approximately 5 feet. This anomaly was initially considered a possible man-made excavation, perhaps a mass burial site. While the stratigraphy does contain abrupt terminations, most depth changes occur gradually, suggesting formation by natural processes. Aerial photographs from 1930 indicate three adjacent creek paths west of the site, originally thought to be abandoned meanders. However, GPS data indicate the outer meander is the active creek bed, suggesting that the other paths were created during isolated flood events. Severe flood events could have caused significant erosion of the sand layer in this area.

  19. Geodynamic models for the post-orogenic exhumation of the lower crust

    NASA Astrophysics Data System (ADS)

    Bodur, O. F.; Gogus, O.; Karabulut, H.; Pysklywec, R. N.; Okay, A. I.

    2015-12-01

    Recent geodynamic modeling studies suggest that the exhumation of the high pressure and the very/ultra high-pressure crustal rocks may occur due to the slab detachment (break-off), slab roll-back (retreat) and the buoyancy-flow controlled subduction channel. We use convective removal (Rayleigh-Taylor, 'dripping' instability) mechanism to quantitatively investigate the burial and the exhumation pattern of the lower/middle crustal rocks from ocean subduction to post-collisional geodynamic configuration. In order to address the model evolution and track crustal particles for deciphering P-T-t variation, we conduct a series of thermo-mechanical numerical experiments with arbitrary Eularian-Lagrangian finite element code (SOPALE). We show how additional model parameters (e.g moho temperature, upper-middle crustal activation energy, density contrast between the lithosphere and the underlying mantle) can effectively influence the burial and exhumation depths, rate and the styles (e.g clockwise or counterclockwise). First series of experiments are designed to investigate the exhumation of crustal rocks at 32 km depth for only post-collisional tectonic setting -where pre-existing ocean subduction has not been implemented-. Model predictions show that a max. 8 km lower crustal burial occurs concurrent with the lower crustal convergence as a response to the mantle lithosphere dripping instability. The subsequent exhumation of these rocks up to -25 km- is predicted at an exhumation rate of 1.24 cm/year controlled by the removal of the underlying mantle lithosphere instability with crustal extension. At the second series of experiments, we tracked the burial and exhumation history of crustal particles at 22 and 31 km depths while pre-existing ocean subduction has been included before the continental collision. Model results show that burial depths down to 62 km occurs and nearly the 32 km of exhumation is predicted again by the removal of the mantle lithosphere after the dripping instability but the crustal rocks are buried deeper because of the downward forcing of the sinking ocean plate. We suggest that the first set of model results are comparable to the peak pressure calculations from the high pressure rocks of the Afyon Zone in western Turkey with a significant offset (175°C) in temperature values.

  20. Phosphorus burial in sediments of the sulfidic deep Black Sea: Key roles for adsorption by calcium carbonate and apatite authigenesis

    NASA Astrophysics Data System (ADS)

    Kraal, Peter; Dijkstra, Nikki; Behrends, Thilo; Slomp, Caroline P.

    2017-05-01

    Sedimentary burial of the essential nutrient phosphorus (P) under anoxic and sulfidic conditions is incompletely understood. Here, we use chemical and micro-scale spectroscopic methods to characterize sedimentary P burial along a water column redox transect (six stations, 78-2107 m water depth) in the Black Sea from the shelf with its oxygenated waters to the anoxic and sulfidic deep basin. Organic P is an important P pool under all redox regimes, accounting for up to 60% of P burial. We find a general down-core increase in the relative importance of organic P, especially on the shelf where P bound to iron (Fe) and manganese (Mn) (oxyhydr)oxides is abundant in the uppermost sediment but rapidly declines in concentration with sediment depth. Our chemical and spectroscopic data indicate that the carbonate-rich sediments (Unit I, ∼3000 years, ∼0-30 cm depth) of the sulfidic deep Black Sea contain three major P pools: calcium phosphate (apatite), organic P and P that is strongly associated with CaCO3 and possibly clay surfaces. Apatite concentrations increase from 5% to 25% of total P in the uppermost centimeters of the deep basin sediments, highlighting the importance of apatite formation for long-term P burial. Iron(II)-associated P (ludlamite) was detected with X-ray absorption spectroscopy but was shown to be a minor P pool (∼5%), indicating that lateral Fe-P transport from the shelf ("shuttling") likely occurs but does not impact the P burial budget of the deep Black Sea. The CaCO3-P pool was relatively constant throughout the Unit I sediment interval and accounted for up to 55% of total P. Our results highlight that carbonate-bound P can be an important sink for P in CaCO3-rich sediments of anoxic, sulfidic basins and should also be considered as a potential P sink (and P source in case of CaCO3 dissolution) when reconstructing past ocean P dynamics from geological records.

  1. Regional fluid flow as a factor in the thermal history of the Illinois basin: Constraints from fluid inclusions and the maturity of Pennsylvanian coals

    USGS Publications Warehouse

    Rowan, E.L.; Goldhaber, M.B.; Hatch, J.R.

    2002-01-01

    Vitrinite reflectance measurements on Pennsylvanian coals in the Illinois basin indicate significantly higher thermal maturity than can be explained by present-day burial depths. An interval of additional sedimentary section, now removed by erosion, has been suggested to account for the discrepancy. Although burial could indeed account for the observed maturity levels of organic matter, fluid-inclusion temperatures provide a stringent additional constraint. In this article, we combine measurements of coal maturity with fluid-inclusion temperatures from three sites to constrain the basin's thermal and burial history: the Fluorspar district at the Illinois basin's southern margin, the Upper Mississippi Valley zinc district at the basin's northern margin, and a north-central location. Two-dimensional numerical modeling of a north-south cross section through the basin tests scenarios both with and without regional fluid flow. Vitrinite reflectance values can be matched assuming burial by 1.8-2.8 km of southward-thickening additional, post-Pennsylvanian sedimentary section. In the central and northern Illinois basin, however, these burial depths and temperatures are not sufficient to account for the fluid-inclusion data. To account for both parameters with burial alone does not appear feasible. In contrast, our best hypothesis assumes a wedge of post-Pennsylvanian sediment-thickening southward to about 1.2 km and a brief period of magmatism in the Fluorspar district. Significant advective heat redistribution by northward regional fluid flow accounts for fluid-inclusion temperatures and coal maturities throughout the basin. The modeling results demonstrate the potential contribution of advective heat transport to the thermal history of the Illinois basin.

  2. The combined effects of sediment accretion (burial) and nutrient enrichment on the growth and propagation of Phalaris arundinacea

    PubMed Central

    Chen, Xinsheng; Liao, Yulin; Xie, Yonghong; Wu, Chao; Li, Feng; Deng, Zhengmiao; Li, Xu

    2017-01-01

    Sediment accretion (burial) and nutrient enrichment occur concurrently in lacustrine wetlands, but the role of these two aspects of sedimentation on macrophyte performance has rarely been examined. Here, we investigated the concurrent effects of sediment accretion and nutrient enrichment on the growth and propagation of Phalaris arundinacea L. using a factorial sediment burial by nutrient addition experimental design. Regardless of burial depth, nutrient addition increased biomass accumulation, shoot mass ratio, the number of rhizomes, and the length of ramets and rhizomes. While burial had little effect on plant growth and propagation, it had an interactive effect with nutrient addition on belowground growth and ramet production. These results indicate that P. arundinacea is tolerant to burial, which allows it to grow in habitats with high sedimentation rates. However, the enhanced growth and propagation of P. arundinacea following sedimentation were primarily related to nutrient enrichment. This suggests that nutrient enrichment of sediments, which occurs in many lacustrine wetlands, increases the risk of invasion by P. arundinacea. PMID:28054590

  3. Searching for the IRA "disappeared": ground-penetrating radar investigation of a churchyard burial site, Northern Ireland.

    PubMed

    Ruffell, Alastair

    2005-11-01

    A search for the body of a victim of terrorist abduction and murder was made in a graveyard on the periphery of a major conurbation in Northern Ireland. The area is politically sensitive and the case of high profile. This required non-invasive, completely non-destructive and rapid assessment of the scene. A MALA RAMAC ground-penetrating radar system was used to achieve these objectives. Unprocessed and processed 400 MHz data show the presence of a collapse feature above and around a known 1970s burial with no similar collapse above the suspect location. In the saturated, clay-rich sediments of the site, 200 MHz data offered no advantage over 400 MHz data. Unprocessed 100 MHz data shows a series of multiples in the known burial with no similar features in the suspect location. Processed 100 MHz lines defined the shape of the collapse around the known burial to 2 m depth, together with the geometry of the platform (1 m depth) the gravedigger used in the 1970s to construct the site. In addition, processed 100 MHz data showed both the dielectric contrast in and internal reflection geometry of the soil imported above the known grave. Thus the sequence, geometry, difference in infill and infill direction of the grave was reconstructed 30 years after burial. The suspect site showed no evidence of shallow or deep inhumation. Subsequently, the missing person's body was found some distance from this site, vindicating the results and interpretation from ground-penetrating radar. The acquisition, processing, collapse feature and sequence stratigraphic interpretation of the known burial and empty (suspect) burial site may be useful proxies for other, similar investigations. GPR was used to evaluate this site within 3 h of the survey commencing, using unprocessed data. An additional day of processing established that the suspect body did not reside here, which was counter to police and community intelligence.

  4. GPR study of a prehistoric archaeological site near Point Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Herman, R. B.; Jensen, A. M.

    2012-12-01

    A ground penetrating radar (GPR) study was performed on the prehistoric Thule cemetery site near Point Barrow, Alaska. The goals of this study were (a) to test this technology in this type of polar environment, and (b) to search for burials and other archaeological features in a location in imminent danger from ocean erosion. The Nuvuk site is currently eroding at an average rate measured at over 6 m/year. Prior archaeological work at the site had recovered over 80 burials with nearly 100 individuals represented, all of which were less than 1 m below surface, and detectable with small test pits. In addition, the first coastal Ipiutak occupation known north of Point Hope had been recently discovered, at a depth of nearly 2m below surface, in the erosion face. The occupation appeared to have been terminated by a large storm which overwashed the site, leaving a strandline immediately superimposed on the living surface. After that, approximately 1.5 m of sterile gravels had been deposited before the surface on which the Thule people were living formed. Both occupations are of considerable scientific interest. The matrix at the site consists of unconsolidated beach gravels, which necessitates opening large surface areas or use of shoring to test even small units to the depths of the Ipiutak deposit (approximately 8m x 8m at the surface to test 1m x 1m at 2m depth). Such excavations promote erosion, and are very costly in terms of time and labor, so a means to detect features buried at depths greater than those exposed by shovel test pits was desirable. GPR seemed a likely candidate, but it had not been used in such conditions before, and thus it was necessary to test it thoroughly prior to relying on GPR to eliminate areas from physical testing. The GPR imaged the subsurface to a depth of 3 meters at a frequency of 500MHz. Meter-deep test pits were placed at 2-meter intervals in the survey area in a grid pattern since the efficacy of the technology had yet to be shown. The results of the test pits and the GPR were in agreement. It was anticipated that there might be few or no remaining burials in this location since the number of burials had been declining with distance from the center of the larger site. Thus it was surprising when the GPR detected an anomaly that turned out to be the deepest burial in the whole site. In fact, it was so deeply buried that the standard shovel test pitting method might not have detected it. It proved to be a very well-preserved individual, with fairly intact garments. In addition to the burial site, the GPR was used to image a number of "strandlines" as well as other deep (>1m) features in this area. These correspond in depth and orientation to two partial Ipiutak features which have been exposed and recorded in the erosion face in two separate field seasons. It was not possible to test to that depth, but subsequent coastal erosion has exposed additional strandline debris at the depth and location predicted by the GPR data. Two- and three-dimensional images of these features will be presented, along with a detailed technical description of the GPR methods used in this environment.

  5. Chemical diagenesis, porosity reduction, and rock strength, IODP Site U1480: Influences on great earthquakes at shallow depths

    NASA Astrophysics Data System (ADS)

    Song, Insun; Milliken, Kitty; Dugan, Brandon; Bourlange, Sylvain; Colson, Tobias; Frederik, Marina; Jeppson, Tamara; Kuranaga, Mebae; Nair, Nisha; Henstock, Timothy

    2017-04-01

    International Ocean Discovery Program (IODP) Expedition 362 drilled two sites, U1480 and U1481, on the Indian oceanic plate ˜250 km west of the Sunda subduction zone to a maximum depth of 1500 meters below seafloor (mbsf). One of the primary objectives was to understand the mechanism of great earthquakes such as the 2004 Sumatra earthquake (Mw 9.0) which showed unexpectedly shallow megathrust slip by establishing the initial and evolving properties of the North Sumatran incoming sedimentary section. Core sampling and logging from the complete sedimentary section at U1480 indicates a distinct change in sedimentation rate from a slowly deposited pelagic system to a rapidly deposited submarine fan system at late Miocene. Following burial, sediments of the Nicobar Fan underwent compaction leading to porosity reduction from 66±9% near seafloor to ˜30% at the base of the sampled Nicobar Fan section (˜1250 mbsf), representing a normal consolidation behavior. Rock strength gradually increases with depth as the sediments are mechanically compacted. Below the fan (1250-1415 mbsf), the pelagic sediments are composed of tuffaceous, calcareous, and siliceous sediments/rocks and their porosity is dependent upon lithology more than upon depth. Tuffaceous materials exhibit high porosity ranging from ˜30-60%, even higher than that of overlying layers. However, porosity of most calcareous samples is lower than 20% at the same depth. The large variation in porosity depends on the degree of cementation, which in turn is controlled by grain assemblage composition and environmental conditions such as slow sedimentation rates and locally high temperatures related to igneous activity as documented by local igneous intrusives and extrusives. The minor cementation in tuffaceous sandy sediments has retained high porosity, but strengthened their skeleton so as to bear the overburden. The low porosity in calcareous rocks is considered to come from extensive cementation rather than mechanical compaction. The rock strengthening by mechanical compaction is dependent on effective stress, and does not facilitate storage of a large amount of elastic energy at shallow depth. However, chemical diagenesis (cementation) can lead to high strength that does not necessarily arise directly from burial. This chemical diagenesis potentially influences sediment strengthening that localizes great earthquakes at shallow depths.

  6. A 37,000-year environmental magnetic record of aeolian dust deposition from Burial Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Dorfman, J. M.; Stoner, J. S.; Finkenbinder, M. S.; Abbott, M. B.; Xuan, C.; St-Onge, G.

    2015-11-01

    Environmental magnetism and radiocarbon dating of Burial Lake sediments constrain the timing and magnitude of regional aeolian deposition for the Noatak region of western Arctic Alaska for the last ∼37,000 years. Burial Lake (68.43°N, 159.17°W, 21.5 m water depth) is optimally located to monitor regional dust deposition because it is perched above local drainage and isolated from glacial processes. Cores collected in the summer of 2010 were studied through the application of magnetizations and progressive alternating field (AF) demagnetization of u-channel samples, with additional data provided by computed tomography (CT) derived density, hysteresis measurements, isothermal remanent magnetization (IRM) acquisition experiments, organic carbon content, biogenic silica, physical grain size, radiocarbon dating of wood, seeds, and plant macrofossils, point source magnetic susceptibility, and X-ray fluorescence (XRF). With similar magnetic properties to regional Alaskan loess deposits, low coercivity, highly magnetic material deposited during the late-Pleistocene contrasts with a high coercivity, weakly magnetic component found throughout the record, consistent with locally-derived detritus. The relative proportion of low coercivity to high coercivity magnetic material, defined by the S-Ratios, is used to reconstruct the regional input of dust to the basin over time. A four-fold decrease in the low coercivity component through the deglacial transition is interpreted to reflect diminished dust input to the region. Comparisons with potential sources of dust show that the timing of deposition in Burial Lake is largely consistent with general aridity, lack of vegetative cover, and increased windiness, rather than glacial advances or retreats. The influence from subaerial exposure of continental shelves cannot be ruled out as a significant far-field source of dust to interior Alaska during the Last Glacial Maximum (LGM), but is unlikely to have been the sole source, or to have contributed to increased dust in both the early and late Holocene.

  7. Buried Alive: The Behavioural Response of the Mussels, Modiolus modiolus and Mytilus edulis to Sudden Burial by Sediment

    PubMed Central

    Hutchison, Zoë L.; Hendrick, Vicki J.; Burrows, Michael T.; Wilson, Ben; Last, Kim S.

    2016-01-01

    Sedimentation in the sea occurs through natural processes, such as wave and tidal action, which can be exacerbated during storms and floods. Changes in terrestrial land use, marine aggregate extraction, dredging, drilling and mining are known to result in substantial sediment deposition. Research suggests that deposition will also occur due to the modern development of marine renewable energy. The response to individual burial under three depths of sediment, three sediment fractions and five burial durations was investigated in two mussel species, Modiolus modiolus and Mytilus edulis in specialist mesocosms. Both mussel species showed substantial mortality, which increased with duration of burial and burial by finer sediment fractions. M. modiolus was better able to survive short periods of burial than M. edulis, but at longer durations mortality was more pronounced. No mortality was observed in M. modiolus in burial durations of eight days or less but by 16 days of burial, over 50% cumulative mortality occurred. Under variable temperature regimes, M. edulis mortality increased from 20% at 8°C to over 60% at 14.5 and 20°C. Only M. edulis was able to emerge from burial, facilitated by increased byssus production, laid mostly on vertical surfaces but also on sediment particles. Emergence was higher from coarse sediment and shallow burials. Byssus production in M. edulis was not related to the condition index of the mussels. Results suggest that even marginal burial would result in mortality and be more pronounced in warm summer periods. Our results suggest that in the event of burial, adult M. modiolus would not be able to emerge from burial unless local hydrodynamics assist, whereas a small proportion of M. edulis may regain contact with the sediment water interface. The physiological stress resulting in mortality, contribution of local hydrodynamics to survival and other ecological pressures such as mussels existing in aggregations, are discussed. PMID:26982582

  8. Burial duration, depth and air pocket explain avalanche survival patterns in Austria and Switzerland.

    PubMed

    Procter, Emily; Strapazzon, Giacomo; Dal Cappello, Tomas; Zweifel, Benjamin; Würtele, Andreas; Renner, Andreas; Falk, Markus; Brugger, Hermann

    2016-08-01

    To calculate the first Austrian avalanche survival curve and update a Swiss survival curve to explore survival patterns in the Alps. Avalanche accidents occurring between 2005/06 and 2012/13 in Austria and Switzerland were collected. Completely buried victims (i.e. burial of the head and chest) in open terrain with known outcome (survived or not survived) were included in the analysis. Extrication and survival curves were calculated using the Turnbull algorithm, as in previous studies. 633 of the 796 completely buried victims were included (Austria n=333, Switzerland n=300). Overall survival was 56% (Austria 59%; Switzerland 52%; p=0.065). Time to extrication was shorter in Austria for victims buried ≤60min (p<0.001). The survival curves were similar and showed a rapid initial drop in survival probability and a second drop to 25-28% survival probability after burial duration of ca. 35min, where an inflection point exists and the curve levels off. In a logistic regression analysis, both duration of burial and burial depth had an independent effect on survival. Victims with an air pocket were more likely to survive, especially if buried >15min. The survival curves resembled those previously published and support the idea that underlying survival patterns are reproducible. The results are in accordance with current recommendations for management of avalanche victims and serve as a reminder that expedient companion rescue within a few minutes is critical for survival. An air pocket was shown to be a positive prognostic factor for survival. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Hydrology of the solid waste burial ground as related to potential migration of radionuclides, Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Barraclough, Jack T.; Robertson, J.B.; Janzer, V.J.; Saindon, L.G.

    1976-01-01

    A study was made (1970-1974) to evaluate the geohydrologic and geochemical controls on subsurface migration of radionuclides from pits and trenches in the Idaho National Engineering Laboratory (INEL) solid waste burial ground and to determine the existence and extent of radionuclide migration from the burial ground. A total of about 1,700 sediment, rock, and water samples were collected from 10 observation wells drilled in and near the burial ground of Idaho National Engineering Laboratory, formerly the National Reactor Testing Station (NRTS). Within the burial ground area, the subsurface rocks are composed principally of basalt. Wind- and water-deposited sediments occur at the surface and in beds between the thicker basalt zones. Two principal sediment beds occur at about 110 feet and 240 feet below the land surface. The average thickness of the surficial sedimentary layer is about 15 feet while that of the two principal subsurface layers is 13 and 14 feet, respectively. The water table in the aquifer beneath the burial ground is at a depth of about 580 feet. Fission, activation, and transuranic elements were detected in some of the samples from the 110- and 240-foot sedimentary layers. (Woodard-USGS)

  10. Tritium and radioactive carbon (14C) analyses of gas collected from unsaturated sediments next to a low-level radioactive-waste burial site south of Beatty, Nevada, April 1994 and July 1995

    USGS Publications Warehouse

    Prudic, David E.; Striegl, Robert G.

    1995-01-01

    Tritium activities in water vapor and radioactive carbon (14C) activities in carbon dioxide were determined in gas samples pumped from small-diameter air ports installed in a test hole within the unsaturated sediments next to a commercial burial site for low-level radioactive waste south of Beatty, Nevada. In April 1994, gas samples were collected from test hole UZB-2, which was drilled about 350 feet south of the southwest corner of the fence enclosing the burial site. The test hole is part of a study to determine the depth to which atmospheric air circulates through the unsaturated sediments at the desert site. Laboratory results completed in May 1995 show activities of tritium and 14C were greater than expected, with measured tritium in the water vapor as high as 762 tritium units at a depth of 79 feet and measured 14C in carbon dioxide as high as 1,700 percent modern carbon at a depth of 18 feet.In July 1995, the uppermost five air ports in test hole UZB-2 were resampled. In addition, water vapor was collected for tritium analyses at a distant test hole, and water vapor for tritium analyses and carbon dioxide for 14C analyses were collected from three depths at the research shaft about 200 feet north of test hole UZB-2, and at two shallow probes (depth of 5.5 feet) next to the fence enclosing the burial site. Analyses of samples collected in the upper 112 feet from test hole UZB-2 in July 1995 show the same distribution of tritium and 14C as analyses of samples collected in April 1994, except that activities were somewhat greater in July. The greatest activities of tritium and 14C were measured from a shallow probe next to the fence with activities of 29,400 tritium units and 517,000 percent modern carbon, respectively.

  11. Timing of compaction and quartz cementation from integrated petrographic and burial-history analyses, Lower Cretaceous Fall River Formation, Wyoming and South Dakota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutton, S.P.

    1997-01-01

    Integrated petrographic and burial-history studies of Fall River sandstones from outcrop and the subsurface provide insight into the timing of compaction and quartz cementation, the two main porosity-reducing processes in quartzose sandstones. Petrographic study of 95 thin sections of Fall River fluvial valley-fill sandstones from outcrop, Donkey Creek field at 2 km burial depth, and Buck Draw field at 3.8 km indicates that reservoir quality differs significantly in these three areas. Fall River sandstones at the surface contain an average of 31% intergranular volume (IGV) and 2% quartz cement. In both Donkey Creek and Buck Draw fields, the sandstones averagemore » 22% IGV, but quartz-cement volume averages 8% in the shallower field and 12% in the deeper. Geometric mean permeability at the surface is 4,700 md, compared with 42 md at 2 km and 2 md at 3.8 km. Burial history of the Fall River sandstone differs greatly in the three areas. The outcropping sandstones were buried to 2 km and had reached 80 C by the end of the Cretaceous. They were then uplifted and have remained at near-surface temperatures since the Paleocene; the calculated time-temperature index (TTI) of these sandstones is 1. Fall River sandstones at Donkey Creek were also buried to 2 km and had reached 80 C by the end of the Cretaceous but remained at that depth during the Tertiary; TTI is 14. In Buck Draw field, Fall River sandstones were buried to 2.5 km during the Cretaceous and then continued to subside during the Tertiary, reaching depths of 4 km and temperatures of 140 C; TTI is 512.« less

  12. Mineralogy of Nicobar Fan turbidites (IODP Leg 362): Himalayan provenance and diagenetic control.

    NASA Astrophysics Data System (ADS)

    Limonta, M.; Garzanti, E.; Ando, S.; Carter, A.; Milliken, K. L.; Pickering, K. T.

    2017-12-01

    In this study we use quantitative petrographic and heavy-mineral data on silt-sized and sand-sized sediments from the Nicobar Fan turbiditic depositional system to unravel their provenance and discriminate between pre-depositional and post-depositional processes controlling sediment mineralogy. Eighteen samples from the two drill sites U1480 e U1481, collected down to a depth of 1400 m during International Ocean Discovery Expedition 362, were selected for analysis. A complete section of the sedimentary section overlying oceanic basaltic basement was recovered at the U1480 drill site, whereas the U1481 drill site, located 35 km to the southeast, focused on the deeper interval of the sedimentary section overlying oceanic basement. Here we illustrate the compositional trends observed throughout the recovered succession, and compare heavy-mineral suites characterizing sediments drilled at the two U1480 and U1481 sites to check for potential differences in sediment provenance over a relatively short distance in trench settings. Diagenetic control with increasing burial depth was also specifically investigated. In Pleistocene sediments at depths of a few tens of meters only, rich heavy-mineral assemblages include mainly hornblende, epidote, and garnet, associated with apatite, clinopyroxene, tourmaline, sillimanite, kyanite, zircon, titanite, and rare staurolite and rutile, testifying to long-distance provenance from the Himalayan range via the Ganga-Brahmaputra fluvio-deltaic-turbiditic system. Heavy-mineral concentration shows a progressive decrease with burial depth, pointing to selective diagenetic dissolution of less durable detrital minerals. Clinopyroxene becomes rare below 400 m depth and was not recorded below 500 m depth, where amphibole decreases notably in relative abundance. More durable heavy minerals, including zircon, tourmaline, apatite, garnet and epidote, consequently tend to be relatively enriched with increasing age and burial depth. Petrographic and heavy-mineral data, combined with biostratigraphic, paleomagnetic, and geochemical evidence, allow us to unravel the sedimentary history of the Nicobar Fan as related to Himalayan uplift, erosion, and monsoon development during the last 10 Ma.

  13. Climate change decouples oceanic primary and export productivity and organic carbon burial

    PubMed Central

    Lopes, Cristina; Kucera, Michal; Mix, Alan C.

    2015-01-01

    Understanding responses of oceanic primary productivity, carbon export, and burial to climate change is essential for model-based projection of biological feedbacks in a high-CO2 world. Here we compare estimates of productivity based on the composition of fossil diatom floras with organic carbon burial off Oregon in the Northeast Pacific across a large climatic transition at the last glacial termination. Although estimated primary productivity was highest during the Last Glacial Maximum, carbon burial was lowest, reflecting reduced preservation linked to low sedimentation rates. A diatom size index further points to a glacial decrease (and deglacial increase) in the fraction of fixed carbon that was exported, inferred to reflect expansion, and contraction, of subpolar ecosystems that today favor smaller plankton. Thus, in contrast to models that link remineralization of carbon to temperature, in the Northeast Pacific, we find dominant ecosystem and sea floor control such that intervals of warming climate had more efficient carbon export and higher carbon burial despite falling primary productivity. PMID:25453073

  14. Impact of Cultivation and Subsequent Burial on Cydia pomonella (Lepidoptera: Tortricidae) and Conotrachelus nenuphar (Coleoptera: Curculionidae).

    PubMed

    Baughman, William B; Nelson, Peter N; Grieshop, Matthew J

    2015-06-01

    We assessed the efficacy of cultivation as a potential management strategy for codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), and plum curculio, Conotrachelus nenuphar Herbst (Coleoptera: Curculionidae) in apple orchards. Cocooned codling moth pupae and thinning apples infested with plum curculio larvae were cultivated over in the field. Emergence, percent burial, damage to buried fruit, and depth of burial was recorded. In the laboratory, both insects were buried at variable depths in sand and potting soil and emergence was measured. A greater proportion of plum curculio larvae buried in infested fruit under laboratory conditions survived to adulthood compared with unburied infested fruit, down to 15 cm. No codling moth adults emerged from under 1 cm or more of sand. Buried codling moth larvae experienced drastically reduced survival to adulthood compared with unburied larvae. These results indicate that strip cultivation may negatively impact codling moth diapausing larvae and pupae on the ground, but not likely to negatively impact plum curculio in infested dropped apples. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America.

  15. Sediment burial stimulates the growth and propagule production of Spartina alterniflora Loisel.

    NASA Astrophysics Data System (ADS)

    Deng, Zifa; An, Shuqing; Zhao, Congjiao; Chen, Lin; Zhou, Changfang; Zhi, Yingbiao; Li, Hongli

    2008-03-01

    Spartina alterniflora Loisel., an extensively invasive species on the Chinese coast, is a focus of increasing management concern due to its high expansion rate in estuaries and tidal zone, and the significant damage it causes to native ecosystems. In order to understand the processes and mechanisms of invasion of S. alterniflora in China, the impact of three sediment types (sand, sand-loam mixture and loam) and five buried patterns (unburied, 50% burial of initial plant height, 75% burial of initial plant height, complete burial and repeated burial) on the growth of seedlings or ramets was investigated. Results showed that each of the three factors (sediment types, burial pattern and plant materials) and interactions between/among them, significantly affected height and clonal growth, and biomass accumulation and allocation. Plant height, total biomass and number of new vegetative propagules significantly increased with progressive burial treatments. However, the complete burial treatment resulted in the death of all plant materials, and the maximum values of three parameters were found in the 50% burial or repeated burial treatments. Plant responses were determined by the instantaneous thickness of sediment of each time burial rather than by the total quantity of repeated burial. The growth of S. alterniflora was not shown to be dependent on specific types of sediment in sedimentation environment. In contrast to the unburied control, the proportion of primary tillers produced directly from initial individuals and the ratio between the aboveground and belowground biomass were greater under burial treatments. Seedlings produced more new vegetative propagules than vegetative offspring in all experimental treatments, and the former were apt to produce ramets from rhizomes rather than primary tillers. It is concluded that under various sedimentation environments, the clonal spread efficiency of seedlings was higher than that of vegetative offspring, and there is a positive feedback relationship between sedimentation and the growth of S. alterniflora. Thus, moderate sedimentation may stimulate the invasion of exotic species, S. alterniflora in coastal China.

  16. Assessment of regeneration potential in the clonal macrophyte Miscanthus sacchariflorus (Poaceae) after burial disturbance based on bud bank size and sprouting capacity.

    PubMed

    Chen, Xinsheng; Cao, Chenshu; Deng, Zhengmiao; Xie, Yonghong; Li, Feng; Hou, Zhiyong; Li, Xu

    2015-01-01

    The demography of the bud bank and its sprouting capacity are important for understanding the population dynamics of clonal plants and their potential responses to disturbances. To this end, we investigated the size and composition of the bud bank of Miscanthus sacchariflorus (Maxim.) Hack. immediately after flooding (November), in winter (January), in spring (March), and before flooding (May) in the wetlands of Dongting Lake. We then examined the sprouting capacity of axillary buds after sediment burial at 0, 5, 10, 15, and 20 cm. Total bud density of M. sacchariflorus ranged from 2524 buds m(-2) in November to 4293 buds m(-2) in March. Rhizome segments with inactive axillary buds, which represented the majority of the bud population (88.7% in November, 93.3% in May), did not sprout during the 140 days of the experiment (n = 250). The sprouting ratio was the highest for active axillary buds buried at 0 cm (64%) and decreased when buried at 10-20 cm (34%-40%). Due to the large number of active axillary buds in the bud bank (211-277 buds m(-2) from November to the following March), M. sacchariflorus could completely replace its aboveground shoot population, except in May (142 buds m(-2)). Increasing burial depth delayed bud emergence and reduced the growth period of shoots; however, burial depth did not affect the resulting plant height and only reduced the accumulated biomass at 20 cm. Therefore, the belowground bud bank and its strong sprouting capacity are important factors in the maintenance of local populations and colonization of new habitats for M. sacchariflorus after burial disturbances. The present methodology, which combined measurements of bud bank demography and sprouting capacity, may reflect the regeneration potential of clonal plants after burial disturbances.

  17. Preliminary results of sequential monitoring of simulated clandestine graves in Colombia, South America, using ground penetrating radar and botany.

    PubMed

    Molina, Carlos Martin; Pringle, Jamie K; Saumett, Miguel; Hernández, Orlando

    2015-03-01

    In most Latin American countries there are significant numbers of missing people and forced disappearances, 68,000 alone currently in Colombia. Successful detection of shallow buried human remains by forensic search teams is difficult in varying terrain and climates. This research has created three simulated clandestine burial styles at two different depths commonly encountered in Latin America to gain knowledge of optimum forensic geophysics detection techniques. Repeated monitoring of the graves post-burial was undertaken by ground penetrating radar. Radar survey 2D profile results show reasonable detection of ½ clothed pig cadavers up to 19 weeks of burial, with decreasing confidence after this time. Simulated burials using skeletonized human remains were not able to be imaged after 19 weeks of burial, with beheaded and burnt human remains not being able to be detected throughout the survey period. Horizontal radar time slices showed good early results up to 19 weeks of burial as more area was covered and bi-directional surveys were collected, but these decreased in amplitude over time. Deeper burials were all harder to image than shallower ones. Analysis of excavated soil found soil moisture content almost double compared to those reported from temperate climate studies. Vegetation variations over the simulated graves were also noted which would provide promising indicators for grave detection. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Do manganese nodules grow or dissolve after burial? Results from the Central Indian Ocean Basin

    NASA Astrophysics Data System (ADS)

    Pattan, J. N.; Parthiban, G.

    2007-07-01

    Fifty buried manganese nodules at different depth intervals were recovered in 12 sediment cores from the Central Indian Ocean Basin (CIOB). A maximum of 15 buried nodules were encountered in one sediment core (AAS-22/GC-07) and the deepest nodule was recovered at 5.50 m below seafloor in core AAS-04/GC-5A. Approximately 80% of the buried nodules are small in size (˜2 cm diameter) in contrast to the Atlantic Ocean and Peru Basin (Pacific Ocean) where the majority of the buried nodules are large, ˜8 cm and >6 cm, respectively. Buried nodule size decreases with core depth and this distribution appears to be similar to the phenomenon of "Brazil Nut Effect". Buried nodules exhibit both smooth and rough surface textures and are ellipsoidal, elongated, rounded, sub rounded, irregular and polynucleated. Buried nodules from siliceous ooze are enriched in Mn, Cu, Ni, Zn, Mo, Ga, V and Rb whereas those from red clay are enriched in Fe, Co, Ti, U, Th, Y, Cr, Nb and Rare Earth Elements (REE). Buried nodules from siliceous ooze suggest their formation under hydrogenetic, early digenetic and diagenetic processes whereas those from red clay are of hydrogenetic origin. REE are enriched more than 1.5 times in buried nodules from red clay compared to siliceous ooze. However, the mode of incorporation of REE into buried nodules from both sedimentary environments is by a single authigenic phase consisting of Fe-Ti-P. Shale-normalized REE patterns and Ce anomalies suggest that nodules from siliceous ooze formed under more oxidizing conditions than those from red clay. Nodules buried at depths between 1.5 and 2.5 m are diagenetic (Mn/Fe ratio 10-15), formed in highly oxic environments (large positive Ce anomalies) and record aeolian dust (high Eu anomalies). Chemical composition, surface texture and morphology of buried nodules are similar to those of surface nodules from the same basin. Furthermore, buried nodule compositions do not exhibit any distinct patterns within the core depth, suggesting that buried nodules neither grow nor dissolve after their burial in the sediment column.

  19. Mine burial in the seabed of high-turbidity area—Findings of a first experiment

    NASA Astrophysics Data System (ADS)

    Baeye, Matthias; Fettweis, Michael; Legrand, Sebastien; Dupont, Yves; Van Lancker, Vera

    2012-07-01

    The seabed of the North Sea is covered with ammunition dating back from World Wars I and II. With increasing human interference (e.g. fisheries, aggregate extraction, harbor related activities), it forms a threat to the safety at sea. In this study, test mines were deployed on a sandy seabed for 3 months to investigate mine burial processes as a function of hydrodynamic and meteorological conditions. The mine experiment was conducted in a shallow (9 m), macrotidal environment characterized by highly turbid waters (yearly and depth-averaged suspended particulate matter concentration of 100 mg l-1). Results showed some variability of the overall mine burial, which corresponded with scouring processes induced by a (sub-) tidal forcing mechanism. The main burial events however were linked to storm-related scouring processes, and subsequent mine roll into the resulting pit. Two storms affecting the mines during the 3-month experiment resulted in enduring increases in burial volume to 60% and 80%, respectively. More cyclic and ephemeral burial and exposure events appear to be linked to the local hydrodynamic regime. During slack tides, suspended sediment settles on the seabed, increasing the burial volume. In between slack tides, sediment is resuspended, decreasing the burial volume. The temporal pattern of this never reported burial mechanism, as measured optically, mimics the cyclicity of the suspended sediment concentration as recorded by ultrasonic signals at a nearby benthic observatory. Given the similarity in response signals at the two sites, we hypothesize that the formation of high-concentrated mud suspensions (HCMS) is a mechanism causing short-term burial and exposure of mines. This short-term burial and exposure increase the chance that mines are 'missed' during tracking surveys. Test mines contribute to our understanding of the settling and erosion of HCMS, and thus shed a light on generic sedimentary processes.

  20. Human cremation in Mexico 3,000 years ago.

    PubMed

    Duncan, William N; Balkansky, Andrew K; Crawford, Kimberly; Lapham, Heather A; Meissner, Nathan J

    2008-04-08

    Mixtec nobles are depicted in codices and other proto-historic documentation taking part in funerary rites involving cremation. The time depth for this practice was unknown, but excavations at the early village site of Tayata, in the southern state of Oaxaca, Mexico, recovered undisturbed cremation burials in contexts dating from the eleventh century B.C. These are the earliest examples of a burial practice that in later times was reserved for Mixtec kings and Aztec emperors. This article describes the burial contexts and human remains, linking Formative period archaeology with ethnohistorical descriptions of Mixtec mortuary practices. The use of cremation to mark elevated social status among the Mixtec was established by 3,000 years ago, when hereditary differences in rank were first emerging across Mesoamerica.

  1. Human cremation in Mexico 3,000 years ago

    PubMed Central

    Duncan, William N.; Balkansky, Andrew K.; Crawford, Kimberly; Lapham, Heather A.; Meissner, Nathan J.

    2008-01-01

    Mixtec nobles are depicted in codices and other proto-historic documentation taking part in funerary rites involving cremation. The time depth for this practice was unknown, but excavations at the early village site of Tayata, in the southern state of Oaxaca, Mexico, recovered undisturbed cremation burials in contexts dating from the eleventh century B.C. These are the earliest examples of a burial practice that in later times was reserved for Mixtec kings and Aztec emperors. This article describes the burial contexts and human remains, linking Formative period archaeology with ethnohistorical descriptions of Mixtec mortuary practices. The use of cremation to mark elevated social status among the Mixtec was established by 3,000 years ago, when hereditary differences in rank were first emerging across Mesoamerica. PMID:18391213

  2. Sediment focusing in the central equatorial Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Marcantonio, Franco; Anderson, Robert F.; Higgins, Sean; Stute, Martin; Schlosser, Peter; Kubik, Peter

    2001-06-01

    At four sites in the central equatorial Pacific Ocean the flux of extraterrestrial ³He, determined using the excess 230Th profiling method, is 8 × 10-13 cm³ STP cm-2 ka-1. This supply rate is constant to within 30%. At these same sites, however, the burial rate of ³He, determined using chronostratigraphic accumulation rates, varies by more than a factor of 3. The lowest burial rates, which occur north of the equator at 1°N, 139°W are lower than the global average rate of supply of extraterrestrial ³He by 20% and indicate that sediment winnowing may have occurred. The highest burial rates, which are recorded at the equator and at 2°S, are higher than the rate of supply of extraterrestrial ³He by 100%, and these provide evidence for sediment focusing. By analyzing several proxies measured in core PC72 sediments spanning the past 450 kyr we demonstrate that periods of maximum burial rates of 230Th, ³He, 10Be, Ti, and barite, with a maximum peak-to-trough amplitude of a factor of 6, take place systematically during glacial time. However, the ratio of any one proxy to another is constant to within 30% over the entire length of the records. Given that each proxy represents a different source (234U decay in seawater, interplanetary dust, upper atmosphere, continental dust, or upper ocean), our preferred interpretation for the covariation is that the climate-related changes in burial rates are driven by changes in sediment focusing.

  3. Constraining the Texture and Composition of Pore-Filling Cements at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Siebach, K. L.; Grotzinger, J. P.; McLennan, S. M.; Hurowitz, J. A.; Ming, D. W.; Vaniman, D. T.; Rampe, E. B.; Blaney, D. L.; Kah, L. C.

    2015-01-01

    The Mars Science Laboratory (MSL) rover Curiosity has encountered a wide variety of sedimentary rocks deposited in fluvio-lacuestrine sequences at the base of Gale Crater. The presence of sedimentary rocks requires that initial sediments underwent diagenesis and were lithified. Lithification involves sediment compaction, cementation, and re-crystallization (or authigenic) processes. Analysis of the texture and composition of the cement can reveal the environmental conditions when the cements were deposited, enabling better understanding of early environments present within Gale Crater. The first step in lithification is sediment compaction. The Gale crater sediments do not show evidence for extensive compaction prior to cementation; the Sheepbed mudstone in Yellowknife Bay (YKB) has preserved void spaces ("hollow nodules"), indicating that sediments were cemented around the hollow prior to compaction, and conglomerates show imbrication, indicating minimal grain reorganization prior to lithification. Furthermore, assuming the maximum burial depth of these sediments is equivalent to the depth of Gale Crater, the sediments were never under more than 1 kb of pressure, and assuming a 15 C/km thermal gradient in the late Noachian, the maximum temperature of diagenesis would have been approximately 75 C. This is comparable to shallow burial diagenetic conditions on Earth. The cementation and recrystallization components of lithification are closely intertwined. Cementation describes the precipitation of minerals between grains from pore fluids, and recrystallization (or authigenesis) is when the original sedimentary mineral grains are altered into secondary minerals. The presence of authigenic smectites and magnetite in the YKB formation suggests that some recrystallization has taken place. The relatively high percentage of XRD-amorphous material (25-40%) detected by CheMin suggests that this recrystallization may be limited in scope, and therefore may not contribute significantly to the cementing material. However, relatively persistent amorphous components could exist in the Martian environment (e.g. amorphous MgSO4), so recrystallization, including loss of crystallinity, cannot yet be excluded as a method of cementation. In order to describe the rock cementation, both the rock textures and their composition must be considered. Here, we attempt to summarize the current understanding of the textural and compositional aspects of the cement across the rocks analyzed by Curiosity to this point.

  4. Chemical zoning and homogenization of olivines in ordinary chondrites and implications for thermal histories of chondrules

    NASA Technical Reports Server (NTRS)

    Miyamoto, Masamichi; Mckay, David S.; Mckay, Gordon A.; Duke, Michael B.

    1986-01-01

    The extent and degree of homogenization of chemical zoning of olivines in type 3 ordinary chondrites is studied in order to obtain some constraints on cooling histories of chondrites. Based on Mg-Fe and CaO zoning, olivines in type 3 chondrites are classified into four types. A single chondrule usually contains olivines with the same type of zoning. Microporphyritic olivines show all four zoning types. Barred olivines usually show almost homogenized chemical zoning. The cooling rates or burial depths needed to homogenize the chemical zoning are calculated by solving the diffusion equation, using the zoning profiles as an initial condition. Mg-Fe zoning of olivine may be altered during initial cooling, whereas CaO zoning is hardly changed. Barred olivines may be homogenized during initial cooling because their size is relatively small. To simulated microporphyritic olivine chondrules, cooling from just below the liquidus at moderately high rates is preferable to cooling from above the liquidus at low rates. For postaccumulation metamorphism of type 3 chondrites to keep Mg-Fe zoning unaltered, the maximum metamorphic temperature must be less than about 400 C if cooling rates based on Fe-Ni data are assumed. Calculated cooling rates for both Fa and CaO homogenization are consistent with those by Fe-Ni data for type 4 chondrites. A hot ejecta blanket several tens of meters thick on the surface of a parent body is sufficient to homogenize Mg-Fe zoning if the temperature of the blanket is 600-700 C. Burial depths for petrologic types of ordinary chondrites in a parent body heated by Al-26 are broadly consistent with those previously proposed.

  5. Evolution of Mudstone Porosity, Permeability, and Microstructure in the Presence of Microorganisms During Vertical Compression

    NASA Astrophysics Data System (ADS)

    Mills, T.; Reece, J. S.

    2016-12-01

    Here we investigate the influence of microbial activity on the mechanical and transport properties of mudstones during early diagenesis. Despite the proven presence of microbial communities in marine sediments to depths of >500 meters below sea floor (mbsf), little is known about the interactions between microorganisms and sediments, especially during the early stages of burial and compression. To characterize and quantify the impact of microbial activity on mudstone properties, we compare natural mudstone samples treated with iron reducing bacteria Shewanella Oneidensis MR-1 and those without bacteria. Two bulk mudstones are experimentally prepared using sediments from Integrated Ocean Drilling Program Sites U1319 and U1324 in the Gulf of Mexico. The sediments originated from 4-13 mbsf in the Brazos-Trinity Basin and from three depth intervals (3-14 mbsf, 23-32 mbsf, and 493-502 mbsf) in the Ursa Basin. The sediments are dried and ground to clay- and silt-sized particles and homogenized into two natural mudstone powders. These powders are then used to make reproducible mudstone samples through a process called resedimentation, which replicates natural deposition and burial. Changes in microstructure, porosity, compressibility, and permeability are measured while the biotic (with bacteria) and abiotic (without bacteria) mudstones are being uniaxially compressed over several weeks to a maximum stress of 100 kPa. We anticipate that biofilm growth in pore spaces will decrease porosity, compressibility, and permeability, and the resultant microstructural changes created by microorganisms will be evident in high-resolution scanning electron microscope (SEM) images. Recognition of the micro-scale processes that take place during the early stages of mudstone diagenesis, especially those mediated by microbial activity, and their long-term effects on mudstone properties can lead to better identification and more effective production of unconventional hydrocarbon reservoirs.

  6. Burial, thermal, and petroleum generation history of the Upper Cretaceous Steele Member of the Cody Shale (Shannon Sandstone Bed Horizon), Powder River Basin, Wyoming (Chapter A). Bulletin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuccio, V.F.

    The purposes of the study are to (1) present burial histories representative of the northwestern and southwestern parts of the Powder River Basin (south of lat 45 N.), (2) show the maximum level of thermal maturity for the Steele Member and its Shannon Sandstone Bed, and (3) show the source-rock potential and timing of petroleum generation for the Steele. It is hoped that data presented in the study will also lead to a better understanding of the burial and temperature history of the Shannon Sandstone Bed, an understanding crucial for diagenetic studies, fluid-flow modeling, and reservoir-rock characterization.

  7. A new restoration of the NFP20-East cross section and possible tectonic overpressure in the Penninic Adula Nappe (Central Alps)

    NASA Astrophysics Data System (ADS)

    Pleuger, J.; Podladchikov, Y.

    2012-04-01

    The Adula Nappe in the eastern Central Alps is one of the four units in the Alps from which ultrahigh-pressure rocks have been reported. Several very different models for its tectonic history have been published but none of these models is fully satisfactory. In the models of Schmid et al. (1996) and Engi et al. (2001), the main mechanism of exhumation is assumed to be extrusion. The extrusion models require top-to-the-hinterland, i.e. top-to-the-south faulting in the hanging wall of the exhuming nappe for which there is no evidence. Froitzheim et al. (2003) proposed a scenario with two different subduction zones, an internal one in which the South Penninic and Briançonnais domains were subducted, and an external one in which the North Penninc domain and the European margin, including the Adula nappe, were subducted. In this model, the exhumation of the Adula nappe results from the subduction of the overlying sub-Briançonnais and sub-South-Penninic mantle in the internal subduction zone. The Adula nappe would then have been exhumed from below into a top-to-the-north shear zone also affecting the overriding Briançonnais units. The main shortcoming of this model is that otherwise there is little evidence for two Alpine subduction zones. All the models cited above are based on the conversion of peak pressures obtained from geobarometry to depth by assuming lithostatic pressures. This results in a much greater burial depth of the Adula Nappe with respect to the surrounding units which poses major problems when trying to reconcile maximum burial depths of the Penninic nappes with their structural record. We performed a new restoration of the NFP20-East cross section (Schmid et al. 1996) without applying a lithostatic pressure-to-depth conversion but a purely geometrical restoration of deformation events in the Penninic nappe stack. The major constraints on these reconstructions are given by strain estimates for the major deformation phases in the units overlying the Adula Nappe (Mayerat Demarne 1994) and zircon fission track ages (Flisch 1986) indicating that the Austroalpine units have not been more than 10 km below surface after the Palaeocene. The maximum pressures of eclogites from the Adula nappe reported in the literature are about 1.8 times as high as the lithostatic pressures derived from our cross section restoration. Given that tectonic overpressure in an orogen may be as high as lithostatic pressure (Petrini and Podladchikov 2000), the results of our cross section restoration suggest that the exceptionally high pressures recorded by the Adula Nappe may not be due to exceptionally deep burial but, at least partly, to tectonic overpressure. Engi, M., Berger, A. & Roselle, G.T. 2001: Geology 29, 1143-1146. Flisch, M. 1986: Bull. Ver. Schweiz. Pet.-Geol.-Ing. 53, 23- 49. Froitzheim, N., Pleuger, J., Roller, S. & Nagel, T. 2003: Geology 31, 925-928. Mayerat Demarne, A.M. 1994: Beitr. Geol. Karte Schweiz, 165. Petrini, K. & Podladchikov, Yu. 2000: J. metamorphic Geol.18, 67-77. Schmid, S.M., Pfiffner, O.A., Froitzheim, N., Schönborn, G. & Kissling, E. 1996: Tectonics 15, 1036-1064.

  8. Paleo-Productivity across the Paleocene-Eocene Thermal Maximum, Walvis Ridge Transect (ODP Sites 1262, 1263, and 1266)

    NASA Astrophysics Data System (ADS)

    Chun, C. O.; Delaney, M. L.; Zachos, J. C.

    2005-12-01

    Walvis Ridge transect (Ocean Drilling Program (ODP) Leg 208) provides the first high-resolution depth-transect of deep-sea sediments recovered from the south Atlantic across the P/E boundary. A geographically restricted depth transect (~ 2.2 km, water depths between 2500 and 4770 m) allows us to constrain the surface waters by assuming marine productivity conditions in the overlying water column are similar across all sites. The sediment record will reveal variations for processes that are water-depth dependent. We use the geochemical tracers; biogenic barium, phosphorus, calcium carbonate, and the redox sensitive trace elements manganese and uranium, to reconstruct nutrient burial, paleoproductivity, and bottom water redox chemistry across the Paleocene-Eocene Thermal Maximum (PETM). We calculate our concentrations on a calcium carbonate-free basis to account for dilution by non-carbonate sediments. Trace metal enrichment factors (EFs) are calculated relative to bulk crustal averages. We chose three sites from the depth transect: the shallowest (Site 1263, 2717 m water depth), an intermediate site (Site 1266, 3798 m water depth), and the deepest site (Site 1262, 4755 m water depth). We sampled each site at a sample resolution of ~ 1-2 kyr for 5 m.y. centered at 55 Ma. Uranium EFs at the shallow site exhibits values ~ 5 pre-event and drop to values near crustal averages during and after the carbon isotope excursion (CIE). No dramatic changes in U EFs across the P/E boundary are recorded at the deep and intermediate sites. Mn EFs range between 2.9 -8.6 prior to the event across all three sites, suggesting an oxygenated depositional environment. At the boundary, Mn EFs drop to crustal averages at all sites, then gradually return to pre-event values, indicating more reducing environments during the CIE, a possible explanation for the benthic extinction event (BEE) observed across this transect. Ba excess and reactive phosphorus exhibit decreased concentrations during the CIE with gradual return to pre-event values at the shallowest and deepest sites. We will compare the paleo-productivity and redox chemistry response at the Walvis Ridge sites across the PETM.

  9. The utility of ground-penetrating radar and its time-dependence in the discovery of clandestine burials.

    PubMed

    Salsarola, Dominic; Poppa, Pasquale; Amadasi, Alberto; Mazzarelli, Debora; Gibelli, Daniele; Zanotti, Emma; Porta, Davide; Cattaneo, Cristina

    2015-08-01

    In the field of forensic investigation burial is a relatively common method of hiding a corpse. The location of clandestine graves is, however, a particularly difficult task in which multiple forensic disciplines such as anthropology, botany or archaeology can provide valuable assistance. The use of GPR (ground-penetrating radar) has recently been introduced as a method in the detection of these graves, but what is the true potential of this tool in an operative search scenario? In this study a total of 11 pig carcasses were buried in two wooded areas, each presenting a similar soil composition. The animals were subsequently exhumed at regular intervals, ranging from 2 to 111 weeks, using systematic GPR analysis of the burial sites and archaeological recovery of the subjects that were then autopsied. GPR proved to be useful in recognizing anomalies at the chosen depths of burial and appeared to be dependent on the state of decay of the samples, producing only slight anomalous readings in the presence of skeletal remains: at 92 weeks from burial the difference in signal was weak and at 111 weeks GPR survey offered no helpful information as to burial location. The experiment, in this particular context, determined the technique as being successful in the presence of recent burials, highlighting the need for a multidisciplinary approach in the operative search for buried human remains. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. CARNELIAN containment data report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbs, T

    The CARNELIAN event was detonated in hole U4af of the Nevada Test Site as indicated in figure 1 .l. The CARNELIAN device had a depth-of-burial (DOB) of 208 m in the alluvium of Area 4 , about 70 m above the Paleozoic formation and 330 m above the standing water level, as shown in the geologic cross-sections of figure 1.2 (l) Figure 1 3 displays the local surface area showing nearby events Stemming of the 2 44 m diameter emplacement hole followed the plan shown in figure 1 4. A log of the stemming operations was maintained by Holmes &more » Narver (2) Detonation time was about 07 00 PDT on July 28,1977, and collapse progressed to the surface at about 19 minutes after the detonation resulting in a crater having a "cookie-cutter" geometry (steep walls with a relatively flat bottom) with a mean radius of 32 2 m and a maximum depth of 10 5 m No radiation arrivals were detected above ground and the CARNELIAN containment was considered successful« less

  11. Selective placement disposal of drilling fluids in west Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarland, M.L.

    1988-01-01

    Burial of spent drilling fluids used in petroleum and natural gas exploration was evaluated as an alternative disposal technique for reducing surface soil contamination in western Texas. Simulated reserve pits were constructed to provide burial depths of 30, 90, and 150 cm below the surface, with orderly replacement of stockpiled subsoil and topsoil. Movement of soluble salts and heavy metals from drilling fluids into the overlying soil was monitored over a 20-month period. The effects of depth of drilling fluid burial on establishment, yields, and chemical composition of transplanted fourwing saltbush (Atriplex canescens (Pursh) Nutt.) and buffalograss (Buchloe dactyloides (Nutt.)more » Engelm.) were determined for two growing seasons. Sodium, Ca{sup +2}, and Cl{sup {minus}} were the dominant mobile ions, while migration of Mg{sup +2}, K{sup +}, and SO{sub 4}{sup {minus}2} was observed to a lesser degree. Exchangeable sodium percentages in the 15-cm zone immediately above drilling fluid ranged from 1.9 to 19.0 after 20 months. Total concentrations of Ba, Cr, Cu, Ni, and Zn were greater in drilling fluids than in native soil, but there was no evidence of migration of these metals into overlying soil.« less

  12. Effects of sand burial and wind disturbances on moss soil crusts in a revegetated area of the Tennger Desert, Northern China

    NASA Astrophysics Data System (ADS)

    Jia, R. L.; Li, X. R.; Liu, L. C.; Gao, Y. H.

    2012-04-01

    Sand burial and wind are two predominant natural disturbances in the desert ecosystems worldwide. However, the effects of sand burial and wind disturbances on moss soil crusts are still largely unexplored. In this study, two sets of experiments were conducted separately to evaluated the effects of sand burial (sand depth of 0, 1, 2, 3 and 4 mm) and wind blowing (wind speed of 0.2, 3, 6 and 9ms-1) on ecophysiological variables of two moss soil crusts collected from a revegetated area of the Tengger Desert, Northern China. Firstly, the results from the sand burial experiment revealed that respiration rate was significantly decreased and that moss shoot elongation was significantly increased after burial. In addition, Bryum argenteum crust showed the fastest speed of emergence and highest tolerance index, followed by Didymodon vinealis crust. This sequence was consistent with the successional order of the two moss crusts that happened in our study area, indicating that differential sand burial tolerance explains their succession sequence. Secondly, the results from the wind experiment showed that CO2 exchange, PSII photochemical efficiency, photosynthetic pigments, shoot upgrowth, productivity and regeneration potential of the two moss soil crust mentioned above were all substantially depressed. Furthermore, D. vinealis crust exhibited stronger wind resistance than B. argenteum crust from all aspects mentioned above. And this is comparison was identical with their contrasting microhabitats with B. argenteum crust being excluded from higher wind speed microsites in the windward slopes, suggesting that the differential wind resistance of moss soil crusts explains their microdistribution pattern. In conclusion, the ecogeomorphological processes of moss soil crusts in desert ecosystems can be largely determined by natural disturbances caused by sand burial and wind blowing in desert ecosystems.

  13. Geophysical monitoring of simulated graves with resistivity, magnetic susceptibility, conductivity and GPR in Colombia, South America.

    PubMed

    Molina, Carlos Martin; Pringle, Jamie K; Saumett, Miguel; Evans, Gethin T

    2016-04-01

    In most Latin American countries there are significant numbers of both missing people and forced disappearances, ∼71,000 Colombia alone. Successful detection of buried human remains by forensic search teams can be difficult in varying terrain and climates. Three clandestine burials were simulated at two different depths commonly encountered in Latin America. In order to gain critical knowledge of optimum geophysical detection techniques, burials were monitored using: ground penetrating radar, magnetic susceptibility, bulk ground conductivity and electrical resistivity up to twenty-two months post-burial. Radar survey results showed good detection of modern 1/2 clothed pig cadavers throughout the survey period on 2D profiles, with the 250MHz antennae judged optimal. Both skeletonised and decapitated and burnt human remains were poorly imaged on 2D profiles with loss in signal continuity observed throughout the survey period. Horizontal radar time slices showed good anomalies observed over targets, but these decreased in amplitude over the post-burial time. These were judged due to detecting disturbed grave soil rather than just the buried targets. Magnetic susceptibility and electrical resistivity were successful at target detection in contrast to bulk ground conductivity surveys which were unsuccessful. Deeper burials were all harder to image than shallower ones. Forensic geophysical surveys should be undertaken at suspected burial sites. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Factors influencing wood mobilization in Minnesota streams

    USGS Publications Warehouse

    Merten, Eric; Finlay, Jacques; Johnson, Lucinda; Newman, Raymond; Stefan, Heinz; Vondracek, Bruce C.

    2010-01-01

    Natural pieces of wood provide a variety of ecosystem functions in streams including habitat, organic matter retention, increased hyporheic exchange and transient storage, and enhanced hydraulic and geomorphic heterogeneity. Wood mobilization is a critical process in determining the residence time of wood. We documented the characteristics and locations of 865 natural wood pieces (>0.05 m in diameter for a portion >1 m in length) in nine streams along the north shore of Lake Superior in Minnesota. We determined the locations of the pieces again after an overbank stormflow event to determine the factors that influenced mobilization of stationary wood pieces in natural streams. Seven of 11 potential predictor variables were identified with multiple logistic regression as significant to mobilization: burial, effective depth, ratio of piece length to effective stream width (length ratio), bracing, rootwad presence, downstream force ratio, and draft ratio. The final model (P< 0.001, r2 = 0.39) indicated that wood mobilization under natural conditions is a complex function of both mechanical factors (burial, length ratio, bracing, rootwad presence, draft ratio) and hydraulic factors (effective depth, downstream force ratio). If stable pieces are a goal for stream management then features such as partial burial, low effective depth, high length relative to channel width, bracing against other objects (e.g., stream banks, trees, rocks, or larger wood pieces), and rootwads are desirable. Using the model equation from this study, stewards of natural resources can better manage in-stream wood for the benefit of stream ecosystems.

  15. Investigation of sterols as potential biomarkers for the detection of pig (S. s. domesticus) decomposition fluid in soils.

    PubMed

    von der Lühe, Barbara; Dawson, Lorna A; Mayes, Robert W; Forbes, Shari L; Fiedler, Sabine

    2013-07-10

    This study was carried out to evaluate the potential of using cholesterol and coprostanol, as indicators for the detection of decomposition fluid of buried pigs (S. s. domesticus) in soils. In May 2007, four pig carcasses (∼35kg) were buried in shallow graves (∼40 cm depth) at the University of Ontario Institute of Technology in Canada. Two pigs were exhumed after three months (Pig 1, Pig 2) and six months (Pig 3, Pig 4) post burial. Soil samples were collected beneath the pig carcasses (∼40cm depth) and from grave walls (∼15-20 cm depth) as well as from a parallel control site. Coprostanol and cholesterol were extracted from soils, purified with solid phase extraction (SPE) and analysed with gas chromatography/mass spectrometry (GC/MS). A significant increase in cholesterol concentrations (p<0.05) and amounts of coprostanol were detected in soil located beneath the pig carcasses after three months of burial. It is assumed that during the putrefaction and liquefaction stages of decomposition pig fluid which contains cholesterol and coprostanol is released into the underlying soil. Therefore, cholesterol and coprostanol could be used as potential biomarkers to detect the presence of decomposition fluid three months after burial under comparable soil and environmental conditions. Further research is suggested for additional soil sampling before and after three months to investigate the abundance of these and other sterols. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Natural gas production and anomalous geothermal gradients of the deep Tuscaloosa Formation

    USGS Publications Warehouse

    Burke, Lauri

    2011-01-01

    For the largest producing natural gas fields in the onshore Gulf of Mexico Basin, the relation between temperature versus depth was investigated. Prolific natural gas reservoirs with the highest temperatures were found in the Upper Cretaceous downdip Tuscaloosa trend in Louisiana. Temperature and production trends from the deepest field, Judge Digby field, in Pointe Coupe Parish, Louisiana, were investigated to characterize the environment of natural gas in the downdip Tuscaloosa trend. The average production depth in the Judge Digby field is approximately 22,000 ft. Temperatures as high as 400 degrees F are typically found at depth in Judge Digby field and are anomalously low when compared to temperature trends extrapolated to similar depths regionally. At 22,000 ft, the minimum and maximum temperatures for all reservoirs in Gulf Coast producing gas fields are 330 and 550 degrees F, respectively; the average temperature is 430 degrees F. The relatively depressed geothermal gradients in the Judge Digby field may be due to high rates of sediment preservation, which may have delayed the thermal equilibration of the sediment package with respect to the surrounding rock. Analyzing burial history and thermal maturation indicates that the deep Tuscaloosa trend in the Judge Digby field is currently in the gas generation window. Using temperature trends as an exploration tool may have important implications for undiscovered hydrocarbons at greater depths in currently producing reservoirs, and for settings that are geologically analogous to the Judge Digby fiel

  17. Recharge of the early atmosphere of Mars by impact-induced release of CO2

    NASA Technical Reports Server (NTRS)

    Carr, Michael H.

    1989-01-01

    The question as to whether high impact rates early in the history of Mars could have aided in maintaining a relatively thick CO2 atmosphere is discussed. Such impacts could have released CO2 into the atmosphere by burial, by shock-induced release during impact events, and by the addition of carbon to Mars from the impacting bolides. On the assumption that cratering rates on Mars were comparable to those of the moon's Nectarial period, burial rates are a result of 'impact gardening' at the end of heavy bombardment are estimated to have ranged from 20 to 45 m/million years; at these rates, 0.1-0.2 bar of CO2 would have been released every 10 million years as a result of burial to depths at which carbonate dissociation temperatures are encountered.

  18. UAV-imaging to model growth response of marram grass to sand burial: Implications for coastal dune development

    NASA Astrophysics Data System (ADS)

    Nolet, Corjan; van Puijenbroek, Marinka; Suomalainen, Juha; Limpens, Juul; Riksen, Michel

    2018-04-01

    Vegetated coastal dunes have the capacity to keep up with sea-level rise by accumulating and stabilizing wind-blown sand. In Europe, this is attributed to marram grass (Ammophila arenaria), a coastal grass species that combines two unique advantages for dune-building: (1) a very high tolerance to burial by wind-blown sand, and (2) more vigorous growth due to positive feedback to sand burial. However, while these vegetation characteristics have been demonstrated, observational data has not been used to model a function to describe the growth response of Ammophila to sand burial. Studies that model coastal dune development by incorporating positive feedback, as a result, may be hampered by growth functions that are unvalidated against field data. Therefore, this study aims to parameterize an empirical relationship to model the growth response of Ammophila to burial by wind-blown sand. A coastal foredune along a nourished beach in the Netherlands was monitored from April 2015 to April 2016. High-resolution geospatial data was acquired using an Unmanned Aerial Vehicle (UAV). Growth response of Ammophila, expressed by changes in Normalized Difference Vegetation Index (Δ NDVI) and vegetation cover (Δ Cover), is related to a sand burial gradient by fitting a Gaussian function using nonlinear quantile regression. The regression curves indicate an optimal burial rate for Ammophila of 0.31 m of sand per growing season, and suggest (by extrapolation of the data) a maximum burial tolerance for Ammophila between 0.78 (for Δ Cover) and 0.96 m (for Δ NDVI) of sand per growing season. These findings are advantageous to coastal management: maximizing the potential of Ammophila to develop dunes maximizes the potential of coastal dunes to provide coastal safety.

  19. Shear-enhanced compaction bands formed at shallow burial conditions; implications for fluid flow (Provence, France)

    NASA Astrophysics Data System (ADS)

    Ballas, Gregory; Soliva, Roger; Sizun, Jean-Pierre; Fossen, Haakon; Benedicto, Antonio; Skurtveit, Elin

    2013-02-01

    Field observations of highly porous and permeable sandstone in the Orange area (S-E Basin, France) show that networks of shear-enhanced compaction bands can form in a contractional regime at burial depths of about 400 m ± 100 m. These bands show equal compaction and shear displacements, are organized in conjugate and densely distributed networks, and are restricted to the coarse-grained (mean grain diameter of 0.6 ± 0.1 mm) and less porous (porosity of 26 ± 2%) sand layers. The bands are crush microbreccia with limited grain comminution and high grain microfracture density. They show reductions of permeability (mD) ranging from 0 to little more than 1 order of magnitude. They show no control on the alteration products related to meteoric water flow, which suggests that these shear-enhanced compaction bands have no or only negligible influence on subsurface fluid flow. Their selective occurrence and small (20%) reduction in transmissibility in densely populated layers prevented them from compartmentalizing the sandstone reservoirs. A comparison with compaction-band populations in the Navajo and Aztec sandtsones (western U.S.) emphasizes the role of burial depth and the presence of chemical compaction processes for the sealing potential of deformation bands.

  20. Porosity and permeability evolution of vesicular basalt reservoirs with increasing depth: constraints from the Big Island of Hawai'i

    NASA Astrophysics Data System (ADS)

    Millett, John; Haskins, Eric; Thomas, Donald; Jerram, Dougal; Planke, Sverre; Healy, Dave; Kück, Jochem; Rossetti, Lucas; Farrell, Natalie; Pierdominici, Simona

    2017-04-01

    Volcanic reservoirs are becoming increasingly important in the targeting of petroleum, geothermal and water resources globally. However, key areas of uncertainty in relation to volcanic reservoir properties during burial in different settings remain. In this contribution, we present results from borehole logging and sampling operations within two fully cored c. 1.5 km deep boreholes, PTA2 and KMA1, from the Humúula saddle region on the Big Island of Hawai'i. The boreholes were drilled as part of the Humu'ula Groundwater Research Project (HGRP) between 2013-2016 and provide unique insights into the evolution of pore structure with increasing burial in a basaltic dominated lava sequence. The boreholes encounter mixed sequences of 'a'ā, pāhoehoe and transitional lava flows along with subsidiary intrusions and sediments from the shield to post-shield phases of Mauna Kea. Borehole wireline data including sonic, spectral gamma and Televiewer imagery were collected along with density, porosity, permeability and ultrasonic velocity laboratory measurements from core samples. A range of intra-facies were sampled for analysis from various depths within the two boreholes. By comparison with core data, the potential for high resolution Televiewer imaging to reveal spectacular intra-facies features including individual vesicles, vesicle segregations, 'a'ā rubble zones, intrusive contacts, and intricate pāhoehoe lava flow lobe morphologies is demonstrated. High quality core data enables the calibration of Televiewer facies enabling improved interpretation of volcanic reservoir features in the more common exploration scenario where core is absent. Laboratory results record the ability of natural vesicular basalt samples to host very high porosity (>50%) and permeability (>10 darcies) within lava flow top facies which we demonstrate are associated with vesicle coalescence and not micro-fractures. These properties may be maintained to depths of c. 1.5 km in regions of limited alteration and secondary mineralization and, therefore, additional to fractures, may comprise important fluid pathways at depth. Alteration and porosity occlusion by secondary minerals is highly vertically compartmentalized and does not increase systematically with depth, implying a strong but heterogeneous lateral component in the migration and effects of hydrothermal fluids in these systems. The distribution and timing of dyke feeder zones coupled with the scale and spatial distribution of lava flows making up the lava pile form first order influences on the preservation potential of volcanic reservoir properties during burial. Our results demonstrate the complex relationship between the primary hydrogeology of lava flow fields and the resulting effects of hydrothermal fluid circulation on reservoir property evolution with burial.

  1. Intercorrelation of P and Pn Recordings for the North Korean Nuclear Tests

    NASA Astrophysics Data System (ADS)

    Lay, T.; Voytan, D.; Ohman, J.

    2017-12-01

    The relative waveform analysis procedure called Intercorrelation is applied to Pn and P waveforms at regional and teleseismic distances, respectively, for the 5 underground nuclear tests at the North Korean nuclear test site. Intercorrelation is a waveform equalization procedure that parameterizes the effective source function for a given explosion, including the reduced velocity potential convolved with a simplified Green's function that accounts for the free surface reflections (pPn and pP), and possibly additional arrivals such as spall. The source function for one event is convolved with the signal at a given station for a second event, and the recording at the same station for the first event is convolved with the source function for the second event. This procedure eliminates the need to predict the complex receiver function effects at the station, which are typically not well-known for short-period response. The parameters of the source function representation are yield and burial depth, and an explosion source model is required. Here we use the Mueller-Murphy representation of the explosion reduced velocity potential, which explicitly depends on yield and burial depth. We then search over yield and burial depth ranges for both events, constrained by a priori information about reasonable ranges of parameters, to optimize the simultaneous match of multiple station signals for the two events. This procedure, applied to the apparently overburied North Korean nuclear tests (no indications of spall complexity), assuming simple free surface interactions (elastic reflection from a flat surface), provides excellent waveform equalization for all combinations of 5 nuclear tests.

  2. Predicting seabed burial of cylinders by wave-induced scour: Application to the sandy inner shelf off Florida and Massachusetts

    USGS Publications Warehouse

    Trembanis, A.C.; Friedrichs, Carl T.; Richardson, M.D.; Traykovski, P.; Howd, P.A.; Elmore, P.A.; Wever, T.F.

    2007-01-01

    A simple parameterized model for wave-induced burial of mine-like cylinders as a function of grain-size, time-varying, wave orbital velocity and mine diameter was implemented and assessed against results from inert instrumented mines placed off the Indian Rocks Beach (IRB, FL), and off the Martha's Vineyard Coastal Observatory (MVCO, Edgartown, MA). The steady flow scour parameters provided by Whitehouse (1998) for self-settling cylinders worked well for predicting burial by depth below the ambient seabed for O (0.5 m) diameter mines in fine sand at both sites. By including or excluding scour pit infilling, a range of percent burial by surface area was predicted that was also consistent with observations. Rapid scour pit infilling was often seen at MVCO but never at IRB, suggesting that the environmental presence of fine sediment plays a key role in promoting infilling. Overprediction of mine scour in coarse sand was corrected by assuming a mine within a field of large ripples buries only until it generates no more turbulence than that produced by surrounding bedforms. The feasibility of using a regional wave model to predict mine burial in both hindcast and real-time forecast mode was tested using the National Oceanic and Atmospheric Administration (NOAA, Washington, DC) WaveWatch 3 (WW3) model. Hindcast waves were adequate for useful operational forcing of mine burial predictions, but five-day wave forecasts introduced large errors. This investigation was part of a larger effort to develop simple yet reliable predictions of mine burial suitable for addressing the operational needs of the U.S. Navy. ?? 2007 IEEE.

  3. Sediment mobility in fish bearing streams: the influence of floods and spawning salmon

    NASA Astrophysics Data System (ADS)

    Hassan, M. A.; Gottesfeld, A. S.; Tunnicliffe, J. F.

    2002-12-01

    Magnetically tagged particles were used to investigate the effects of sockeye salmon (Oncorhynchus nerka) on the mobility of substrate in gravel bed streams in the Stuart-Takla region of north-central British Columbia. The study reaches in Forfar and O'Ne-ell Creeks have gradients of from 0.005 to 0.019 and have a forced pool-riffle morphology. The dominant annual sediment-transporting event in the channels is the snow-melt flood events in late May or June, with lesser work usually accomplished during summer and fall storm floods. In August every year, the channel beds material is reworked by the Early Stuart salmon spawning event, as the fish excavated the streambed to deposit and bury their eggs. At each of the 5 reaches within the 2 study creeks, 250 tracers (8.5mm - 180mm) were placed in a line on the bed before and after transport events. Results were highly variable, subject to the magnitude of floods, and the returning population of salmon. Overall, the depositional pattern from nival flood events usually demonstrated a high degree of clast mobilization, long travel distances (up to 150m) and mean depths of burial up to 18cm. Storm flood events showed somewhat lower rates of mobilization, distances of travel and depths of burial. Although the fish did not move the tracers very far, their effect on the bed was generally quite pervasive: up to 100% of the clasts were mobilized, and the depth of burial was considerable (mean burial depths up to 14cm). Repeat topographic surveys of the streambed before and after transport events revealed considerable disruption of the bed surface. The geomorphic effect of fish was enhanced in the lower reaches where the hydraulic transporting capacity is somewhat less (lower stream power), the sediment calibre is finer, and fish spawning density is higher. The amount of sediment mobilized by salmonids is often on the same order of magnitude as flood events. The significant vertical mixing of sediments by the fish has important implications for the mobility of sediment in the stream. Since any armouring layer formed during high flows throughout the year are subject to the bioturbation of salmonids, the transport threshold in the creeks remains relatively low. Salmonids thus play an integral role in the annual sediment budget of the lower reaches of these creeks.

  4. Hydro and morphodynamic simulations for probabilistic estimates of munitions mobility

    NASA Astrophysics Data System (ADS)

    Palmsten, M.; Penko, A.

    2017-12-01

    Probabilistic estimates of waves, currents, and sediment transport at underwater munitions remediation sites are necessary to constrain probabilistic predictions of munitions exposure, burial, and migration. To address this need, we produced ensemble simulations of hydrodynamic flow and morphologic change with Delft3D, a coupled system of wave, circulation, and sediment transport models. We have set up the Delft3D model simulations at the Army Corps of Engineers Field Research Facility (FRF) in Duck, NC, USA. The FRF is the prototype site for the near-field munitions mobility model, which integrates far-field and near-field field munitions mobility simulations. An extensive array of in-situ and remotely sensed oceanographic, bathymetric, and meteorological data are available at the FRF, as well as existing observations of munitions mobility for model testing. Here, we present results of ensemble Delft3D hydro- and morphodynamic simulations at Duck. A nested Delft3D simulation runs an outer grid that extends 12-km in the along-shore and 3.7-km in the cross-shore with 50-m resolution and a maximum depth of approximately 17-m. The inner nested grid extends 3.2-km in the along-shore and 1.2-km in the cross-shore with 5-m resolution and a maximum depth of approximately 11-m. The inner nested grid initial model bathymetry is defined as the most recent survey or remotely sensed estimate of water depth. Delft3D-WAVE and FLOW is driven with spectral wave measurements from a Waverider buoy in 17-m depth located on the offshore boundary of the outer grid. The spectral wave output and the water levels from the outer grid are used to define the boundary conditions for the inner nested high-resolution grid, in which the coupled Delft3D WAVE-FLOW-MORPHOLOGY model is run. The ensemble results are compared to the wave, current, and bathymetry observations collected at the FRF.

  5. Oblique collision and accretion of the Netherlands Leeward Antilles island arc: A structural analysis of the Caribbean-South American plate boundary zone

    NASA Astrophysics Data System (ADS)

    Beardsley, Amanda Gail

    2007-12-01

    The Netherlands Leeward Antilles volcanic island arc is an ideal natural laboratory to study the evolution of the Caribbean-South American plate boundary. The Leeward Antilles islands (Aruba, Curacao, and Bonaire) are located offshore western Venezuela, within the obliquely convergent diffuse plate boundary zone. Outcrop analysis, microthermometry, and 2D marine seismic reflection data provide evidence of three generations of regional deformation since the Late Cretaceous. Outcrop analysis of structural features, including faults, joints, and veins, characterizes the kinematic history of the islands. Fluid inclusion analysis of quartz and calcite veins coupled with apatite fission-track dating provides the island exhumation history. Finally, marine reflection seismic data processing and interpretation of newly acquired data elucidates offshore structures to integrate with our onshore results. The oldest regional deformation, resulting in both ductile (D1) and brittle (F 1) structures, is attributed to displacement partitioning along the arcuate Caribbean plate boundary. Associated crustal thinning initiated island exhumation, at a rate of 0.18 km/my, from a maximum burial depth of 6 km in the Late Cretaceous (˜89 Ma). Coeval with D1/F1 deformation and exhumation, stretching of the island arc resulted in extensive basin rifting that separated the island blocks. At ˜55 Ma, a change in the relative motion of the Caribbean plate altered plate boundary dynamics. Displacement along the right-lateral Caribbean transform fault and Oca - San Sebastian - El Pilar strike-slip fault system created a wrench tectonic regime within the diffuse plate boundary zone. A second generation of brittle structures (F2) developed while the islands were at a maximum burial depth of 2 km during the Paleocene/Eocene. Since ˜45 Ma, continued motion along the strike-slip fault systems and oblique plate convergence resulted in the youngest generation of structural features (F3). Regional tectonics control the ongoing steady-state exhumation of the islands at a rate of 0.04 km/my. Most recently, the northeast escape of the Maracaibo block also drives deformation within the diffuse plate boundary zone. Overall, the Caribbean-South American plate boundary geometry has evolved with diachronous deformation, from west to east, accompanied by 135° of clockwise block rotation during collision and accretion of the Leeward Antilles since the Late Cretaceous.

  6. Design and evaluation of a bioreactor with application to forensic burial environments.

    PubMed

    Dunphy, Melissa A; Weisensee, Katherine E; Mikhailova, Elena A; Harman, Melinda K

    2015-12-01

    Existing forensic taphonomic methods lack specificity in estimating the postmortem interval (PMI) in the period following active decomposition. New methods, such as the use of citrate concentration in bone, are currently being considered; however, determining the applicability of these methods in differing environmental contexts is challenging. This research aims to design a forensic bioreactor that can account for environmental factors known to impact decomposition, specifically temperature, moisture, physical damage from animals, burial depth, soil pH, and organic matter content. These forensically relevant environmental variables were characterized in a soil science context. The resulting metrics were soil temperature regime, soil moisture regime, slope, texture, soil horizon, cation exchange capacity, soil pH, and organic matter content. Bioreactor chambers were constructed using sterilized thin-walled polystyrene boxes housed in calibrated temperature units. Gravesoil was represented using mineral soil (Ultisols), and organic soil proxy for Histosols, horticulture mix. Gravesoil depth was determined using mineral soil horizons A and Bt2 to simulate surface scatter and shallow grave burial respectively. A total of fourteen different environmental conditions were created and controlled successfully over a 90-day experiment. These results demonstrate successful implementation and control of forensic bioreactor simulating precise environments in a single research location, rather than site-specific testing occurring in different geographic regions. Bone sections were grossly assessed for weathering characteristics, which revealed notable differences related to exposure to different temperature regimes and soil types. Over the short 90-day duration of this experiment, changes in weathering characteristics were more evident across the different temperature regimes rather than the soil types. Using this methodology, bioreactor systems can be created to replicate many different clandestine burial contexts, which will allow for the more rapid understanding of environmental effects on skeletal remains. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. The role of dung beetles as a secondary seed disperser after dispersal by frugivore mammals in a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Koike, Shinsuke; Morimoto, Hideto; Kozakai, Chinatsu; Arimoto, Isao; Soga, Masashi; Yamazaki, Koji; Koganezawa, Masaaki

    2012-05-01

    We studied the effects of dung beetles on the fates of endozoochorous seeds of five species (Prunus jamasakura, Prunus verecunda, Prunus grayana, Swida controversa, and Vitis coignetiae) in a temperate deciduous forest in Japan during 2004-2006. In field experiments using dung of the Asiatic black bear (Ursus thibetanus), we investigated the depths that dung beetles (Onthophagus atripennis, Onthophagus lenzii, and Phelotrupes auratus) buried seeds (4.8-6.8 mm diameter) and plastic markers (2 or 5 mm diameter), the levels of predation on buried and unburied seeds, and germination rates of seeds buried to different depths. All three species buried the 2-mm markers, but only P. auratus buried the seeds and 5-mm markers. There were seasonal differences in mean seed burial rates (range, 27-51%) and depths (range, 1-27 mm). Significantly more seeds were buried in June, July, and September than in August or October, and the mean burial depth was significantly deeper in June and July. Most seeds and markers were buried to a 3-6 cm depth. Germination of seeds that were positioned at depths of 1-4 cm was significantly greater than that of seeds left on the surface or buried at greater depths. Buried seeds were less likely to disappear than seeds at the surface, which may reflect differential predation. These results suggested that dung beetles, especially P. auratus, acted as a secondary seed disperser that affected the survival and distribution of seeds dispersed by a frugivore.

  8. Fluxes and burial of particulate organic carbon along the Adriatic mud-wedge (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Tesi, T.; Langone, L.; Giani, M.; Ravaioli, M.; Miserocchi, S.

    2012-04-01

    Clinoform-shaped deposits are ubiquitous sedimentological bodies of modern continental margins, including both carbonate and silicoclastic platforms. They formed after the attainment of the modern sea level high-stand (mid-late Holocene) when river outlets and shoreline migrated landward. As clinoform-shape deposits are essential building blocks of the infill of sedimentary basins, they are sites of intense organic carbon (OC) deposition and account for a significant fraction of OC burial in the ocean during interglacial periods. In this study, we focused on sigmoid clinoforms that are generally associated with low-energy environments. In particular, we characterized the modern accumulation and burial of OC along the late-Holocene sigmoid in the Western Adriatic Sea (Mediterranean Sea). This sedimentary body consists of a mud wedge recognizable on seismic profiles as a progradational unit lying on top the maximum flooding surface that marks the time of maximum landward shift of the shoreline attained around 5.5 kyr cal BP. In the last two decades, several projects have investigated sediment dynamics and organic geochemistry along the Adriatic mud wedge (e.g., PRISMA, EURODELTA, EuroSTRATAFORM, PASTA, CIPE, VECTOR). All these studies increased our understanding of strata formation and organic matter cycling in this epicontinental margin. The overarching goal of this study was to combine the results gained during these projects with newly acquired data to assess fluxes to seabed and burial efficiency of organic carbon along the uppermost strata of the Adriatic mud-wedge. Our study benefited of an extensive number of radionuclide-based (Pb-210, and Cs-137) sediment accumulation rates and numerous biogeochemical data of surface sediments and sediment cores (organic carbon, total nitrogen, radiocarbon measurements, carbon stable isotopes, and biomarkers). In addition, because the accumulation of river-borne sediment may or may not be linked to a specific source, another important goal of this study was to characterize the spatial distribution of OC deposition/burial along the Adriatic mud wedge.

  9. Dynamics of erosion in a compressional mountain range revealed by 10Be paleoerosion rates

    NASA Astrophysics Data System (ADS)

    Val, P.; Hoke, G. D.; Fosdick, J. C.; Wittmann, H.

    2015-12-01

    The temporal evolution of erosion over million-year timescales is key to understanding the evolution of mountain ranges and adjacent fold-and-thrust belts. While models of orogenic wedge evolution predict an instantaneous response of erosion to pulses of rock uplift, stream-power based landscape evolution models predict catchment-wide erosion maxima that lag behind a rock uplift pulse. Here, we explore the relationships between rock uplift, erosion, and sediment deposition in the Argentine Precordillera fold-and-thrust belt at 30°S where extensive previous work documents deformation, climate and sediment accumulation histories. Sandstone samples spanning 8.8 to 1.8 Ma were collected from the previously dated wedge-top (Iglesia) and foredeep basins (Bermejo) for quartz purification and 10Be extraction. 10Be concentrations due to burial and exhumation were estimated and subtracted from the measured concentrations and yielded the inherited 10Be concentrations, which were then corrected for sample magnetostratigraphic age. The inherited concentrations were then used to calculate paleoerosion rates. We modeled various pre-burial and post-burial exposure scenarios in order to assess potential sources of uncertainty in the recovered paleoerosion rates. The modeling results reveal that pre-burial and post-burial exposure periods only marginally affect our results. By combining the 10Be-derived paleoerosion rates and geomorphic observations with detrital zircon provenance, we document the isolation of the wedge-top basin, which was later reconnected by an upstream migrating pulse of erosion in a process that was directly controlled by thrust activity and base level. The data further indicate that the attainment of maximum upland erosion rates lags maximum rates of deformation and subsidence over million-year timescales. The magnitudes and causes of the erosional delays shed new light on the catchment erosional response to tectonic deformation and rock uplift in orogenic wedges.

  10. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    PubMed Central

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-01-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable. PMID:26676058

  11. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks.

    PubMed

    Jordan, Amy B; Stauffer, Philip H; Knight, Earl E; Rougier, Esteban; Anderson, Dale N

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  12. Origins of saline fluids at convergent margins

    NASA Astrophysics Data System (ADS)

    Martin, Jonathan B.; Kastner, Miriam; Egeberg, Per Kr.

    The compositions of pore and venting fluids at convergent margins differ from seawater values, reflecting mixing and diagenesis. Most significantly, the concentration of Cl-, assumed to be a conservative ion, differs from its seawater value. Chloride concentrations could be elevated by four processes, although two, the formation of gas hydrate and ion filtration by clay membranes, are insignificant in forming saline fluids at convergent margins. During the formation of gas hydrate, the resulting Cl--rich fluids, estimated to contain an average excess of ˜140 mM Cl- over seawater value, probably would be flushed from the sediment when the pore fluids vent to seawater. Ion filtration by clay membranes requires compaction pressures typical of >2 km burial depths. Even at these depths, the efficiency of ion filtration will be negligible because (1) fluids will flow through fractures, thereby bypassing clay membranes, (2) concentrations of clay minerals are diluted by other phases, and (3) during burial, smectite converts to illite, which has little capacity for ion filtration. A third process, mixing with subaerially evaporated seawater, elevates Cl- concentrations to 1043 mM in forearc basins along the Peru margin. Evaporation of seawater, however, will be important only in limited geographic regions that are characterized by enclosed basins, arid climates, and permeable sediments. At the New Hebrides and Izu-Bonin margins, Cl- concentrations are elevated to a maximum of 1241 mM. The process responsible for this increase is the alteration of volcanic ash to hydrous clay and zeolite minerals. Mass balance calculations, based on the decrease in δ18O values to -9.5‰ (SMOW), suggest that the Cl- concentrations could increase solely from the formation of smectite in a closed system. The diagenesis of volcanic ash also alters the concentrations of most dissolved species in addition to Cl-. Depending on the volume of this altered fluid, it could influence seawater chemistry when vented from the sediment.

  13. Reservoir properties of submarine- fan facies: Great Valley sequence, California.

    USGS Publications Warehouse

    McLean, H.

    1981-01-01

    Submarine-fan sandstones of the Great Valley sequence west of the Sacramento Valley, California, have low porosities and permeabilities. However, petrography and scanning electron microscope studies indicate that most sands in almost all submarine-fan environments are originally porous and permeable. Thin turbidite sandstones deposited in areas dominated by shale in the outer-fan and basin-plain are cemented mainly by calcite; shale dewatering is inferred to contribute to rapid cementation early in the burial process. Sands deposited in inner- and middle-fan channels with only thin shale beds have small percentrages of intergranular cement. The original porosity is reduced mechanically at shallow depths and by pressure solution at deeperlevels. Permeability decreases with increasing age of the rocks, as a result of increasing burial depths. Computer-run stepwise regression analyses show that the porosity is inversely related to the percentage of calcite cement. The results reported here indicate original porosity and permeability can be high in deep-water submarine fans and that fan environments dominated by sand (with high sand/shale ratios) are more likely to retain higher porosity and permeability to greater depths than sand interbedded with thick shale sequences.-from Author

  14. Selected meteorological and micrometeorological data for an arid site near Beatty, Nye County, Nevada, calendar year 1992

    USGS Publications Warehouse

    Wood, James L.

    1996-01-01

    il-heat-flux data were collected at a study site adjacent to a low-level radioactive-waste burial facility near Beatty, Nevada, for calendar year 1992. Data were collected in support of ongoing studies to estimate the potential for downward movement of radionuclides into the unsaturated sediments beneath waste-burial trenches at the arid facility. Data collected for the whole year include air temperature, relative humidity, vapor pressure, incident solar radiation, windspeed, wind direction, barometric pressure, and precipitation. Net radiation, soil temperature, and soil-heat flux data also were collected for part of the year. The data are summarized in tables and graphs.Instrumentation used at the site is discussed. The discussion includes the type, reported accuracy, and the mounting height of each sensor.During 1992, the hourly and 20-minute mean air temperatures ranged from -8.6 degrees Celsius, in January, to 42.3 degrees Celsius, in July. Hourly and 20-minute mean relative humidity ranged from 2 percent to 100 percent. Hourly and 20-minute mean vapor pressures ranged from 0.07 to 2.47 kilopascals. Daily maximum incident solar radiation values ranged from 115 to 1,021 watts per square meter. Daily maximum net radiation values ranged from 195 to 632 watts per square meter. Daily mean windspeed ranged from 0.6 to 8.1 meters per second. Wind direction was primarily from the northwest in fall, winter, and spring and was from the southeast, southwest, or northwest during the summer. Barometric pressures ranged from 100.16 kilopascals to 103.38 kilopascals. Total precipitation for 1992 was 165.3 millimeters, with more than 50 percent in February and March. Daily mean soil temperatures at a depth from 2 to 6 centimeters ranged from 10.7 to 39.1 degrees Celsius between June and October. Daily mean soil-heat flux at a dep*h of 8 centimeters ranged from -13.4 to 12.2 watts per square meter during the same period.

  15. Geohistory and thermal maturation in the Cherokee Basin (Mid-Continent, U.S.A.): results from modeling

    USGS Publications Warehouse

    Forster, A.; Merriam, D.F.; Hoth, P.

    1998-01-01

    The Cherokee basin in southeastern Kansas contains a stratigraphic section consisting mostly of Permian-Pennsylvanian alternating clastics and thin carbonates overlying carbonates of Mississippian and Cambrian-Ordovician age on a Precambrian crytalline basement. Based on a conceptual model of events of deposition, nondeposition, and erosion, a burial history model for (1) noncompaction, and a series of models for (2) compaction are computed for a borehole location in the south-central part of the basin. The models are copled with the calculation of nonsteady-state geothermal conditions. Maximum temperatures during basin evolution of about 70??C at the base of the organic-rich Pennsylvanian are predicted by our models, assuming pure heat conduction and a heat flow from the basement of 60 m W/m2. The maturation of organic matter as indicated by three different vitrinite reflectance (Ro) models is on the order og 0.3-0.5% Ro for Pennsylvanian rocks and 0.6% Ro for the Devonian-Mississippian Cattanooga Shale. Vitrinite reflectance was measured on subsurface smaples from three wells. The measured values correlate in the upper part of the sequence with modeled data, but diverge slightly in the Lower Pennsylvanian and Cattanooga Shale. The differences in maturation may be a result of differing local geological conditions within the basin. The relatively high Ro-depth gradients observed in one borehole may be explained by conditions in the Teeter oil field, which is a typical plains-type anticline that has been affected by fluid flow through vertical faults. Higher Ro values correlate positively with the grade of sulfidfe mineralization in the sediment, which may be a hint of fluid impact. The high Ro values relative to the shallow depth of the Mississippian and the Chattanooga Shale in the Brown well are on the order of Ro values modeled for the same stratigraphic units at present-day greater depths and may reflect uplift of the Ozark dome, located further east, affecting the eastern side of the Cherokee Basin.Based on a concept model of deposition, nondeposition and erosion, a burial history model for noncompaction, and a series of models for compaction are developed for a borehole location in a south-central part of the Cherokee basin in southeastern Kansas. Coupled with the calculation of nonsteady state-state geothermal conditions, the models predict maximum temperatures during evolution of about 70 ??C at the base of the organic-rich Pennsylvanian. A difference in organic matter maturation in the Pennsylvanian and the Chattanooga shale exhibited by vitrinite reflectance models indicate probably differing local geological conditions within the basin.

  16. On the origin of mixed-layered clay minerals from the San Andreas Fault at 2.5-3 km vertical depth (SAFOD drillhole at Parkfield, California)

    NASA Astrophysics Data System (ADS)

    Schleicher, A. M.; Warr, L. N.; van der Pluijm, B. A.

    2009-02-01

    A detailed mineralogical study is presented of the matrix of mudrocks sampled from spot coring at three key locations along the San Andreas Fault Observatory at depth (SAFOD) drill hole. The characteristics of authigenic illite-smectite (I-S) and chlorite-smectite (C-S) mixed-layer mineral clays indicate a deep diagenetic origin. A randomly ordered I-S mineral with ca. 20-25% smectite layers is one of the dominant authigenic clay species across the San Andreas Fault zone (sampled at 3,066 and 3,436 m measured depths/MD), whereas an authigenic illite with ca. 2-5% smectite layers is the dominant phase beneath the fault (sampled at 3,992 m MD). The most smectite-rich mixed-layered assemblage with the highest water content occurs in the actively deforming creep zone at ca. 3,300-3,353 m (true vertical depth of ca. 2.7 km), with I-S (70:30) and C-S (50:50). The matrix of all mudrock samples show extensive quartz and feldspar (both plagioclase and K-feldspar) dissolution associated with the crystallization of pore-filling clay minerals. However, the effect of rock deformation in the matrix appears only minor, with weak flattening fabrics defined largely by kinked and fractured mica grains. Adopting available kinetic models for the crystallization of I-S in burial sedimentary environments and the current borehole depths and thermal structure, the conditions and timing of I-S growth can be evaluated. Assuming a typical K+ concentration of 100-200 ppm for sedimentary brines, a present-day geothermal gradient of 35°C/km and a borehole temperature of ca. 112°C for the sampled depths, most of the I-S minerals can be predicted to have formed over the last 4-11 Ma and are probably still in equilibrium with circulating fluids. The exception to this simple burial pattern is the occurrence of the mixed layered phases with higher smectite content than predicted by the burial model. These minerals, which characterize the actively creeping section of the fault and local thin film clay coating on polished brittle slip surfaces, can be explained by the influence of either cooler fluids circulating along this segment of the fault or the flow of K+-depleted brines.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan Qi; Saunders, Samuel E.; Bartelt-Hunt, Shannon L., E-mail: sbartelt2@unl.edu

    Highlights: Black-Right-Pointing-Pointer This study evaluates methane and carbon dioxide production after land burial of cattle carcasses. Black-Right-Pointing-Pointer Disposal of animal mortalities is often overlooked in evaluating the environmental impacts of animal production. Black-Right-Pointing-Pointer we quantify annual emissions from cattle carcass disposal in the United States as 1.6 Tg CO{sub 2} equivalents. - Abstract: Approximately 2.2 million cattle carcasses require disposal annually in the United States. Land burial is a convenient disposal method that has been widely used in animal production for disposal of both daily mortalities as well as during catastrophic mortality events. To date, greenhouse gas production after mortalitymore » burial has not been quantified, and this study represents the first attempt to quantify greenhouse gas emissions from land burial of animal carcasses. In this study, anaerobic decomposition of both homogenized and unhomogenized cattle carcass material was investigated using bench-scale reactors. Maximum yields of methane and carbon dioxide were 0.33 and 0.09 m{sup 3}/kg dry material, respectively, a higher methane yield than that previously reported for municipal solid waste. Variability in methane production rates were observed over time and between reactors. Based on our laboratory data, annual methane emissions from burial of cattle mortalities in the United States could total 1.6 Tg CO{sub 2} equivalents. Although this represents less than 1% of total emissions produced by the agricultural sector in 2009, greenhouse gas emissions from animal carcass burial may be significant if disposal of swine and poultry carcasses is also considered.« less

  18. Large-Scale Laboratory Experiments of Initiation of Motion and Burial of Objects under Currents and Waves

    NASA Astrophysics Data System (ADS)

    Landry, B. J.; Wu, H.; Wenzel, S. P.; Gates, S. J.; Fytanidis, D. K.; Garcia, M. H.

    2017-12-01

    Unexploded ordnances (UXOs) can be found at the bottom of coastal areas as the residue of military wartime activities, training or accidents. These underwater objects are hazards for humans and the coastal environment increasing the need for addressing the knowledge gaps regarding the initiation of motion, fate and transport of UXOs under currents and wave conditions. Extensive experimental analysis was conducted for the initiation of motion of UXOs under various rigid bed roughness conditions (smooth PVC, pitted steel, marbles, gravels and bed of spherical particles) for both unidirectional and oscillatory flows. Particle image velocimetry measurements were conducted under both flow conditions to resolve the flow structure estimate the critical flow conditions for initiation of motion of UXOs. Analysis of the experimental observations shows that the geometrical characteristics of the UXOs, their properties (i.e. volume, mass) and their orientation with respect to the mean flow play an important role on the reorientation and mobility of the examined objects. A novel unified initiation of motion diagram is proposed using an effective/unified hydrodynamic roughness and a new length scale which includes the effect of the projected area and the bed-UXO contact area. Both unidirectional and oscillatory critical flow conditions collapsed into a single dimensionless diagram highlighting the importance and practical applicability of the proposed work. In addition to the rigid bed experiments, the burial dynamics of proud UXOs on a mobile sand bed were also examined. The complex flow-bedform-UXOs interactions were evaluated which highlighted the effect of munition density on burial rate and final burial depth. Burial dynamics and mechanisms for motion were examined for various UXOs types, and results show that, for the case of the low density UXOs under energetic conditions, lateral transport coexists with burial. Prior to burial, UXO re-orientation was also observed depending on the geometric characteristics of the objects.

  19. Geologic and geophysical investigations of the Zuni-Bandera volcanic field, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ander, M.E.; Heiken, G.; Eichelberger, J.

    1981-05-01

    A positive, northeast-trending gravity anomaly, 90 km long and 30 km wide, extends southwest from the Zuni uplift, New Mexico. The Zuni-Bandera volcanic field, an alignment of 74 basaltic vents, is parallel to the eastern edge of the anomaly. Lavas display a bimodal distribution of tholeiitic and alkalic compositions, and were erupted over a period from 4 Myr to present. A residual gravity profile taken perpendicular to the major axis of the anomaly was analyzed using linear programming and ideal body theory to obtain bounds on the density contrast, depth, and minimum thickness of the gravity body. Two-dimensionality was assumed.more » The limiting case where the anomalous body reaches the surface gives 0.1 g/cm/sup 3/ as the greatest lower bound on the maximum density contrast. If 0.4 g/cm/sup 3/ is taken as the geologically reasonable upper limit on the maximum density contrast, the least upper bound on the depth of burial is 3.5 km and minimum thickness is 2 km. A shallow mafic intrusion, emplaced sometime before Laramide deformation, is proposed to account for the positive gravity anomaly. Analysis of a magnetotelluric survey suggests that the intrusion is not due to recent basaltic magma associated with the Zuni-Bandera volcanic field. This large basement structure has controlled the development of the volcanic field; vent orientations have changed somewhat through time, but the trend of the volcanic chain followed the edge of the basement structure. It has also exhibited some control on deformation of the sedimentary section.« less

  20. Evidence of adipocere in a burial pit from the foot and mouth epidemic of 1967 using gas chromatography-mass spectrometry.

    PubMed

    Vane, Christopher H; Trick, Julian K

    2005-11-10

    Gas-chromatography-mass spectrometry was used to characterise the fatty acids from soils and associated tissues excavated from a 1967 Foot and Mouth burial pit. Subcutaneous fats were mainly comprised of 55-75% palmitic acid, 17-22% stearic acid and 3-16% oleic acid as well as 5-7% myristic acid. The distribution of fatty acids confirmed that the tissues were decayed to adipocere. The loss of oleic acid to <3% in two of the decayed fats suggested advanced stages of adipocere. However, adipocere formation was limited in a third tissue sample recovered from greater depth. Inductively coupled plasma atomic emission spectrometry of the pore waters revealed a decrease in Ca concentration and concurrent increase in Na concentrations this suggested that insoluble calcium salt had formed through displacement of sodium. The use of fatty acid profiles from soils and soil interstitial pore waters provide complementary evidence of adipocere formation in foot and mouth burial pits.

  1. Installation of water and gas-sampling wells in low-level radioactive-waste burial trenches, West Valley, New York

    USGS Publications Warehouse

    Prudic, David E.

    1978-01-01

    A low-level radioactive-waste burial site, West Valley, N.Y., operated from 1963 to 1975, contains 12 refuse-filled trenches about 20 feet deep in till. Twenty-eight wells, 1.25 inch in diameter, were driven to selected depths in 11 of the 12 trenches to obtain gas and water samples for chemical and radiochemical analysis, water-level measurements for evaluation of trench-cover permeability. Gas from unsaturated refuse above the trench water level was detected in nearly all wells. Rapid water-level response in most wells to pumping of water from trench sumps 20 to 275 feet distant showed the refuse to be highly permeable. Described in detail are the methods and equipment used to (1) install the wells, (2) collect gas and water samples, and (3) monitor radiation and methane concentrations while driving wells into trenches. A record of each well driven into the burial trenches is included. (Woodard-USGS)

  2. Integrating aeromagnetic and Landsat™ 8 data into subsurface structural mapping of Precambrian basement complex

    NASA Astrophysics Data System (ADS)

    Kayode, John Stephen; Nawawi, M. N. M.; Abdullah, Khiruddin B.; Khalil, Amin E.

    2017-01-01

    The integration of Aeromagnetic data and remotely sensed imagery with the intents of mapping the subsurface geological structures in part of the South-western basement complex of Nigeria was developed using the PCI Geomatica Software. 2013. The data obtained from the Nigerian Geological Survey Agency; was corrected using Regional Residual Separation of the Total Magnetic field anomalies enhanced, and International Geomagnetic Reference Field removed. The principal objective of this study is, therefore, to introduce a rapid and efficient method of subsurface structural depth estimate and structural index evaluation through the incorporation of the Euler Deconvolution technique into PCI Geomatica 2013 to prospect for subsurface geological structures. The shape and depth of burial helped to define these structures from the regional aeromagnetic map. The method enabled various structural indices to be automatically delineated for an index of between 0.5 SI and 3.0 SI at a maximum depth of 1.1 km that clearly showed the best depths estimate for all the structural indices. The results delineate two major magnetic belts in the area; the first belt shows an elongated ridge-like structure trending mostly along the NorthNortheast-SouthSouthwest and the other anomalies trends primarily in the Northeast, Northwest, Northeast-Southwest parts of the study area that could be attributed to basement complex granitic intrusions from the tectonic history of the area. The majority of the second structures showed various linear structures different from the first structure. Basically, a significant offset was delineated at the core segment of the study area, suggesting a major subsurface geological feature that controls mineralisation in this area.

  3. Antagonistic effects of drought and sand burial enable the survival of the biocrust moss Bryum argenteum in an arid sandy desert

    NASA Astrophysics Data System (ADS)

    Jia, Rongliang; Zhao, Yun; Gao, Yanhong; Hui, Rong; Yang, Haotian; Wang, Zenru; Li, Yixuan

    2018-02-01

    Biocrust moss is an essential soil surface bio-cover. It can represent the latest succession stage among the diverse range of surface-dwelling cryptogams (e.g., cyanobacteria, green algae, and lichen, which are also referred to as biocrusts), and it can make a major contribution to soil stability and fertility in many arid sandy desert ecosystems. The soil surface represents a very large ecological niche that is poikilohydric in nature. Biocrust moss is therefore highly susceptible to drought and sand burial, which are two ubiquitous stressors in arid sandy deserts. However, little information is available regarding the mechanism by which biocrust moss can survive and flourish in these habitats when stressed simultaneously by the two stressors. The combined effects of drought and sand burial were evaluated in a field experiment using the predominant biocrust moss, Bryum argenteum Hedw., in the Tengger Desert, China. Drought was simulated by applying distilled water in three artificial rainfall regimes at 8-day intervals in spring and autumn: 4 and 6 mm (average rainfall, control), 2 and 3 mm (double drought), and 1 and 1.5 mm (4-fold drought), respectively. The effect of sand burial was determined by applying six treatments, i.e., sand depths of 0 (control), 0.5, 1, 2, 4, and 10 mm. The four parameters of chlorophyll a content, PSII photochemical efficiency, regeneration potential, and shoot upgrowth were evaluated in the moss. It was found that the combined effects of drought and sand burial did not exacerbate the single negative effects of the four parameters tested. Drought significantly ameliorated the negative effects of deep-sand burial on the retention of chlorophyll a content, PSII photochemical efficiency, and the regeneration potential of B. argenteum. Sand burial diminished and even reversed the negative effects of drought on the maintenance of chlorophyll a content, PSII photochemical efficiency, and regeneration potential. Although drought and sand burial imposed an additive negative effect on shoot upgrowth, which suggested a trade-off between growth ability and stress tolerance, their mutually antagonistic effect on the physiological vigor of B. argenteum provided an opportunity for the biocrust moss to overcome the two co-occurring stressors. In addition to providing a strong stress tolerance, drought and sand burial may provide an important mechanism for the biodiversity maintenance of biocrust mosses in arid sandy ecosystems.

  4. Geology and hydrology of radioactive solid-waste burial grounds at the Hanford Reservation, Washington

    USGS Publications Warehouse

    LaSala, Albert Mario; Doty, Gene C.

    1976-01-01

    The geology and hydrology of radioactive solid waste burial grounds at the Hanford Reservation were investigated, using existing data, by the U.S. Geological Survey as part of the waste management plan of the Richland Operations Office of the Energy Research and Development Administration. The purpose of the investigation was to assist the operations office in characterizing the burial sites as to present environmental safety and as to their suitability for long-term storage (several thousand to tens of thousands of years) of radioactive sol id wastes. The burial ground sites fall into two classifications: (1) those on the low stream terraces adjacent to the Columbia River, mainly in the 100 Areas and 300 Area, and (2) those lying on the high terraces south of Gable Mountain in the 200 Areas. Evaluation of the suitability of the burial grounds for long-term storage was made almost entirely on hydrologic, geologic, and topographic criteria. Of greatest concern was the possibility that radionuclides might be leached from the buried wastes by infiltrating water and carried downward to the water table. The climate is semi-arid and the average annual precipitation is 6.4 inches at the Hanford Meteorological Station. However, the precipitation is seasonally distributed with about 50 percent occurring during the months of November, December, January, and February when evapotranspiration is negligible and conditions for infiltration are most favorable. None of the burial grounds are instrumented with monitoring devices that could be used to determine if radionuclides derived from them are reaching the water table. Burial grounds on the low stream terraces are mainly underlain by permeable materials and the water table lies at relatively shallow depths. Radionuclides conceivably could be leached from these burial grounds by percolating soil water, and radionuclides might reach the Columbia River in a relatively short time. These sites could also be inundated by erosion during a catastrophic flood. For these reasons, they are judged to be unsuited for long-term storage. Local conditions at several of these burial grounds are particularly unfavorable from the standpoint of safety. Depressions and swales at some burial grounds, such as numbers 4 and 5 in the 300 Area in which runoff can collect, enhance the possibility of water infiltrating through the buried wastes and transporting radionuclides to the water table. Also, during a high stage of the Columbia River, the water table conceivably could rise into burial grounds l and 2 of the 100 F Area. Most of the burial grounds on the low terraces contain either (1) reactor components and related equipment bearing activation products, principally cobalt-60, or (2) less hazardous radioactive materials such as uranium. The inventory of activation products in these burial grounds will decay to a safe level in a relatively short period of time (about 100 years), according to estimates made by C. D. Corbit, Douglas United Nuclear, Inc., 1969. The inventory of radionuclides is not considered by the ERDA staff to be complete, however. At these burial grounds containing activation products or less hazardous materials, investigations should be made of the radioactivity in soil and ground water beneath selected representative sites to verify that radionuclides are not migrating from the burial grounds. If migration is detected, field investigations should be made to determine the source or sources of the radionuclides and the desirability of removing the source wastes. Other burial grounds on the low terraces contain plutonium and fission products, which require long-term storage. Both the 300 WYE and the 300 North burial grounds are reported to contain plutonium in large quantities. Burial ground no. l in the 300 Area reportedly also contains plutonium. The inventory records of any other burial grounds on the low terraces suspected of containing plutonium should be reviewed to determine if pl

  5. Micromorphology of two prehistoric ritual burials from Yemen, and considerations on methodological aspects of sampling the burial matrix - work in progress

    NASA Astrophysics Data System (ADS)

    Usai, Maria-Raimonda; Brothwell, Don; Buckley, Stephen; Ai-Thour, Kalid; Canti, Matthew

    2010-05-01

    Introduction In the central area of Yemen, two burial sites placed high in the crevices of vertical cliff face of Cretaceous sandstone (Tawilah Group) provided evidence of human remains and yielded burial soils. Radiocarbon dating indicated c.2500-2900 years BP for the burials. In other local comparable sites the deep horizontal crevices yielded Bronze Age human remains, in exceptional state of preservation Questions: What was the nature of the burial matrix? Are other human influences superimposed on the soils derived from it? Is it simply decomposed crevice rock, scraped together at the time of burial, or the result of a more complex burial practice? Such questions are also relevant to a variety of other burials of different periods and world regions. Methods Seven matrix samples from Cliff Burials (A) Talan (Layers 4,10,12,14,18,20 and 22, from top to bottom) and (B) Shiban Kawkaban (Layer 1 and 9) were analysed with micromorphology, supplemented by SEM microprobe, X-ray diffraction, gas chromatography/mass spectrometry. Results Cliff Burial Site Talan. The presence of cholesterol was confirmed in the lower sample. The second layer contained darker earth with fibrous plant material. A hard calcareous upper capping contrasted with the other levels of matrix, and it displayed a highly birefingent material with a significant component of uric acid. The other levels had variable organic content and plant inclusions, and possibly pollen. In Layer 10, aromatic acids indicative of balsam and sugar markers suggested plant gum. Cholesterol was the major sterol in Layers 10 and 22, but whilst in Layer 10 its oxidation products were present and cholestanol was abundant as normally in soils, it was only a minor component of Layer 22 where, rather, a significant amount of coprostanol indicated faecal input, and cholesterol oxidation products were absent. Cliff Burial Site Shiban Kawkaban. Although no stratification was visible to the naked eye, variation was observed at a micromorphological level. Layer 1 included mineral, bone, plant and soil-like fragments, with leaf and woody tissue, including vascular parts and seeds. Layer 9 included plant tissue, hair, seeds and some fly puparia. Comments Layering of the burial matrix in the Yemeni burials was unexpected and the burial matrix in one case was very clearly not the result of natural soil forming processes within the rock crevice. In Burial Site A the hard upper capping contained uric acid-rich deposits embedding organic tissue. This sample could possibly represent an intentional ‘plaster layer' including plant, hair and seed fragments. The abundant cholesterol confirms an animal/human origin within the matrix of Layers 10 and 22, and the stanol and bile acid distributions unequivocally confirm a human origin, despite the lack of any physical human remains. Microprobe analysis indicated that the hard cup of Burial 1 contained K, Si, Al, Cu, Mg, S, Fe and Na with amounts fluctuating relatively to depth. No special significance can be placed on the differences. This study calls attention to a neglected aspect of burial archaeology: grave infillings can no longer be assumed to be simply the return of material removed for the burial, but may be influenced by other factors. Through micromorphology, decomposed wood, shroud or other textiles or skins and hair can be detected and, if local rituals influenced the way materials were returned into the grave, then this also deserves investigation. A new ERC-funded project (Title: "Interred with their bones", acronym: "InterArChive") tackles these issues (please see separate poster). Acknowledgments We thank Allan Hall, Brendan Keely, Trevor Dransfield, Andrea Vacca and Cagliari University

  6. Explosive Cratering Performance Tests

    DTIC Science & Technology

    1981-07-02

    0.25 cm) rain bucket Sling psychrometer ± 1%, ± 10 C 3 TOP 4-2-830 2 July 1981 ITEM REQUIR•4ENT Instrumentation Range/Minimum Accuracy Wind indicator...burial depths. History of prior excavation or disturbance among the various crater sites within the test area should be comparatively equal. However

  7. Effects of ditch-buried straw return on water percolation, nitrogen leaching and crop yields in a rice-wheat rotation system.

    PubMed

    Yang, Haishui; Xu, Mingmin; Koide, Roger T; Liu, Qian; Dai, Yajun; Liu, Ling; Bian, Xinmin

    2016-03-15

    Crop residue management and nitrogen loss are two important environmental problems in the rice-wheat rotation system in China. This study investigated the effects of burial of straw on water percolation, nitrogen loss by leaching, crop growth and yield. Greenhouse mesocosm experiments were conducted over the course of three simulated cropping seasons in a rice1-wheat-rice2 rotation. Greater amounts of straw resulted in more water percolation, irrespective of crop season. Burial at 20 and 35 cm significantly reduced, but burial at 50 cm increased nitrogen leaching. Straw at 500 kg ha(-1) reduced, but at 1000 kg ha(-1) and at 1500 kg ha(-1) straw increased nitrogen leaching in three consecutive crop rotations. In addition, straw at 500 kg ha(-1) buried at 35 cm significantly increased yield and its components for both crops. This study suggests that N losses via leaching from the rice-wheat rotation may be reduced by the burial of the appropriate amount of straw at the appropriate depth. Greater amounts of buried straw, however, may promote nitrogen leaching and negatively affect crop growth and yields. Complementary field experiments must be performed to make specific agronomic recommendations. © 2015 Society of Chemical Industry.

  8. Burial of Undersea Pipes and Cables State-of-the Art Assessment,

    DTIC Science & Technology

    1976-01-01

    rippable rocks." The biggest rippers can penetrate to a depth of over 6 ft, but working to this kind of depth in a single...34-’ " ....... ......................... •". . "-.’...........".-’-.. ... .--. ’’""’"..- % . . . ... ,.. types of rippers and tractors classify various rock types as " rippable ," "marginal," or "non- rippable " depending on seismic...highest velocity for consistently rippable conditions, and in some types of rock the same limit would occur at less

  9. Late Quaternary paleoclimate of western Alaska inferred from fossil chironomids and its relation to vegetation histories

    USGS Publications Warehouse

    Kurek, Joshua; Cwynar, Les C.; Ager, Thomas A.; Abbott, Mark B.; Edwards, Mary E.

    2009-01-01

    Fossil Chironomidae assemblages (with a few Chaoboridae and Ceratopogonidae) from Zagoskin and Burial Lakes in western Alaska provide quantitative reconstructions of mean July air temperatures for periods of the late-middle Wisconsin (~39,000-34,000 cal yr B.P.) to the present. Inferred temperatures are compared with previously analyzed pollen data from each site summarized here by indirect ordination. Paleotemperature trends reveal substantial differences in the timing of climatic warming following the late Wisconsin at each site, although chronological uncertainty exists. Zagoskin Lake shows early warming beginning at about 21,000 cal yr B.P., whereas warming at Burial Lake begins ~4000 years later. Summer climates during the last glacial maximum (LGM) were on average ~3.5C° below the modern temperatures at each site. Major shifts in vegetation occurred from ~19,000 to 10,000 cal yr B.P. at Zagoskin Lake and from ~17,000 to 10,000 cal yr B.P. at Burial Lake. Vegetation shifts followed climatic warming, when temperatures neared modern values. Both sites provide evidence of an early postglacial thermal maximum at ~12,300 cal yr B.P. These chironomid records, combined with other insect-based climatic reconstructions from Beringia, indicate that during the LGM: (1) greater continentality likely influenced regions adjacent to the Bering Land Bridge and (2) summer climates were, at times, not dominated by severe cold.

  10. Comparison of Reduced Displacement Potentials from Spe Free Field Measurements: SPE-4PRIME Versus Previous Events

    NASA Astrophysics Data System (ADS)

    Patton, H. J.; Rougier, E.

    2015-12-01

    Since 2010, the U. S. Department of Energy has funded a series of chemical tests at the National Nuclear Security Site (NNSS) in Climax Stock granite as part of the Source Physics Experiment (SPE) with the aim of gaining a better understanding of the generation and propagation of seismic energy from underground explosions in hard rock media. To date, four tests have been conducted in the same borehole with yields of 100, 1000, 900 and 100 kg at different depths of burials. The nominal scaled depths of burial are 938, 363, 376 and 1556 m/kt1/3 compared to standard containment practices of ~120 m/kt1/3. A quite dense array of free field accelerometers were installed around the borehole, both on and off shot depth. Acceleration data were corrected for shock-generated baseline-shifts, and free field ground velocity waveforms were obtained. This work concentrates on the qualitative analysis of the reduced displacement potentials and the explosion source spectra for the last shot of the series (SPE-4Prime) and the comparison of the obtained results against the previous events. Finally, the results obtained from the experimental data are compared to the Mueller-Murphy empirical explosion model both using the Heard and Ackerman and Denny and Johnson cavity radius scaling laws.

  11. Monitoring and localization of buried plastic natural gas pipes using passive RF tags

    NASA Astrophysics Data System (ADS)

    Mondal, Saikat; Kumar, Deepak; Ghazali, Mohd. Ifwat; Chahal, Prem; Udpa, Lalita; Deng, Yiming

    2018-04-01

    A passive harmonic radio frequency (RF) tag on the pipe with added sensing capabilities is proposed in this paper. Radio frequency identification (RFID) based tagging has already emerged as a potential solution for chemical sensing, location detection, animal tagging, etc. Harmonic transponders are already quite popular compared to conventional RFIDs due to their improved signal to noise ratio (SNR). However, the operating frequency, transmitted power and tag efficiency become critical issues for underground RFIDs. In this paper, a comprehensive on-tag sensing, power budget and frequency analyses is performed for buried harmonic tag design. Accurate tracking of infrastructure burial depth is proposed to reduce the probability of failure of underground pipelines. Burial depth is estimated using phase information of received signals at different frequencies calculated using genetic algorithm (GA) based optimization for post processing. Suitable frequency range is determined for a variety of soil with different moisture content for small tag-antenna size. Different types of harmonic tags such as 1) Schottky diode, 2) Non-linear Transmission Line (NLTL) were compared for underground applications. In this study, the power, frequency and tag design have been optimized to achieve small antenna size, minimum signal loss and simple reader circuit for underground detection at up to 5 feet depth in different soil medium and moisture contents.

  12. Radionuclide gas transport through nuclear explosion-generated fracture networks

    DOE PAGES

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; ...

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less

  13. Radionuclide gas transport through nuclear explosion-generated fracture networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less

  14. Local and profile soil water content monitoring: A comparison of methods in terms of apparent and actual spatial variation

    USDA-ARS?s Scientific Manuscript database

    Although many soil water sensors are now available, questions about their accuracy, precision, and representativeness still abound. This study examined down-hole (access tube profiling type) and insertion or burial (local) type sensors for their ability to assess soil profile water content (depth of...

  15. Elastohydrodynamic lubrication in point contact on the surfaces of particle-reinforced composite

    NASA Astrophysics Data System (ADS)

    Chen, Keying; Zeng, Liangcai; Wu, Zhenpeng; Zheng, Feilong

    2018-04-01

    Appreciable friction and serious wear are common challenges in the operation of advanced manufacturing equipment, and friction pairs may be susceptible to damage even with oil lubrication when point contact exists. In this study, a type of particle-reinforced composite material is introduced for one of the components of a heavy-load contact pair, and the performance improvement of elastohydrodynamic lubrication (EHL) is analyzed considering the rheological properties of non-Newtonian fluids. The Ree-Eyring EHL model is used considering the surface of the particle-reinforced composite, in which the film thickness includes the particle-induced elastic deformation. The problem of inclusions with different eigenstrains is solved by using Galerkin vectors. The influences of particle properties, size, burial depth, and interparticle distance on point-contact EHL are investigated. Furthermore, using several cases, the structural parameters of the particles in the composites are optimized, and an appropriate parameter range is obtained with the goal of reducing friction. Finally, the results for the EHL traction coefficient demonstrate that appropriate particle properties, size, burial depth, and interparticle distance can effectively reduce the traction coefficient in heavy-load contact.

  16. Monte Carlo simulations within avalanche rescue

    NASA Astrophysics Data System (ADS)

    Reiweger, Ingrid; Genswein, Manuel; Schweizer, Jürg

    2016-04-01

    Refining concepts for avalanche rescue involves calculating suitable settings for rescue strategies such as an adequate probing depth for probe line searches or an optimal time for performing resuscitation for a recovered avalanche victim in case of additional burials. In the latter case, treatment decisions have to be made in the context of triage. However, given the low number of incidents it is rarely possible to derive quantitative criteria based on historical statistics in the context of evidence-based medicine. For these rare, but complex rescue scenarios, most of the associated concepts, theories, and processes involve a number of unknown "random" parameters which have to be estimated in order to calculate anything quantitatively. An obvious approach for incorporating a number of random variables and their distributions into a calculation is to perform a Monte Carlo (MC) simulation. We here present Monte Carlo simulations for calculating the most suitable probing depth for probe line searches depending on search area and an optimal resuscitation time in case of multiple avalanche burials. The MC approach reveals, e.g., new optimized values for the duration of resuscitation that differ from previous, mainly case-based assumptions.

  17. Green’s functions for a volume source in an elastic half-space

    PubMed Central

    Zabolotskaya, Evgenia A.; Ilinskii, Yurii A.; Hay, Todd A.; Hamilton, Mark F.

    2012-01-01

    Green’s functions are derived for elastic waves generated by a volume source in a homogeneous isotropic half-space. The context is sources at shallow burial depths, for which surface (Rayleigh) and bulk waves, both longitudinal and transverse, can be generated with comparable magnitudes. Two approaches are followed. First, the Green’s function is expanded with respect to eigenmodes that correspond to Rayleigh waves. While bulk waves are thus ignored, this approximation is valid on the surface far from the source, where the Rayleigh wave modes dominate. The second approach employs an angular spectrum that accounts for the bulk waves and yields a solution that may be separated into two terms. One is associated with bulk waves, the other with Rayleigh waves. The latter is proved to be identical to the Green’s function obtained following the first approach. The Green’s function obtained via angular spectrum decomposition is analyzed numerically in the time domain for different burial depths and distances to the receiver, and for parameters relevant to seismo-acoustic detection of land mines and other buried objects. PMID:22423682

  18. Dendrogeochronologic and Anatomic Analysis of Excavated Plains Cottonwoods Determine Overbank Sedimentation Rates and Historical Channel Positions Along the Interior of a Migrating Meander Bend, Powder River, Montana

    NASA Astrophysics Data System (ADS)

    Metzger, T. L.; Pizzuto, J. E.; Schook, D. M.; Hasse, T. R.; Affinito, R. A.

    2017-12-01

    Dendrochronological dating of buried trees precisely determines the germination year and identifies the stratigraphic context of germination for the trees. This recently developed application of dendrochronology provides accurate time-averaged sedimentation rates of overbank deposition along floodplains and can be used to identify burial events. Previous studies have demonstrated that tamarisk (Tamarix ramosissima) and sandbar willow (Salix exigua) develop anatomical changes within the tree rings (increased vessel size and decreased ring widths) on burial, but observations of plains cottonwood (Populus deltoides ssp. monilifera) are lacking. In September 2016 and June 2017, five buried plains cottonwoods were excavated along a single transect of the interior of a meander bend of the Powder River, Montana. Sediment samples were obtained near each tree for 210Pb and 137Cs dating, which will allow for comparison between dendrochronological and isotopic dating methods. The plains cottonwood samples collected exhibit anatomical changes associated with burial events that are observed in other species. All trees germinated at the boundary between thinly bedded fine sand and mud and coarse sand underlain by sand and gravel, indicating plains cottonwoods germinate on top of point bars prior to overbank deposition. The precise germination age and depth provide elevations and minimum age constraints for the point bar deposits and maximum ages for the overlying sediment, helping constrain past channel positions and overbank deposition rates. Germination years of the excavated trees, estimated from cores taken 1.5 m above ground level, range from 2014 to 1862. Accurate establishment years determined by cross-dating the buried section of the tree can add an additional 10 years to the cored age. The sedimentation rate and accumulation thickness varied with tree age. The germination year, total sediment accumulation, and average sedimentation rate at the five sampled trees is: 2011, 35 cm, 7.0 cm/year; 1973, 77 cm, 1.8 cm/year; 1962, 140 cm, 2.6 cm/year; 1960, 123 cm, 2.2 cm/year; and 1862, 112 cm, 0.7 cm/year. These sedimentation rates indicate that the cumulative sedimentation decreases as a power law with increasing tree age.

  19. Effect of environmental factors on the germination and emergence of Salvia verbenaca L. cultivars (verbenaca and vernalis): An invasive species in semi-arid and arid rangeland regions

    PubMed Central

    Javaid, Muhammad Mansoor; Ali, Hafiz Haider; Weller, Sandra

    2018-01-01

    Salvia verbenaca (wild sage) is a commonly cultivated herbal medicine plant, which is native to the Mediterranean climate regions of Europe, Africa, Asia and the Middle East. However, it has become an invasive species in semi-arid and arid regions of southern Australia. Two varieties are present in this region, var. verbenaca and var. vernalis, each of which can be distinguished by differences in morphology and flowering period. Following trials to determine the optimum temperate regime for germination and response to light and dark, seeds of both varieties were tested for their response to variations in pH, moisture stress, salinity, and burial depth. The temperature and light trial was carried out using three different temperature regimes; 30/20°C, 25/15°C and 20/12°C, and two light regimes; 12 hours light/12 hours dark and 24 hours dark, with var. vernalis responding to relatively higher temperatures than var. verbenaca. The germination rate of neither species was significantly inhibited by complete darkness when compared to rates under periodic light exposure. Both varieties germinated at near optimum rates strongly to very strongly in all pH buffer solutions, from pH 5 to pH 10, but they responded most strongly at neutral pH. Var. vernalis showed slightly more tolerance to reduced moisture availability, moderate to strong salinity, and burial depth, compared to var. verbenaca. However, even a fairly shallow burial depth of 2 cm completely inhibited germination of both varieties. Thus, in circumstances where both varieties are present in a soil seedbank, var. vernalis could be expected to establish in more challenging conditions, where moisture is limited and salinity is ‘moderate to high’, implying that it is a more serious threat for invasive weed in conditions where crop plants are already challenged. PMID:29566039

  20. Long-term recovery of PCB-contaminated surface sediments at the Sangamo-westonl Twelvemile Creek/lake Hartwell Superfund Site.

    PubMed

    Brenner, Richard C; Magar, Victor S; Ickes, Jennifer A; Foote, Eric A; Abbott, James E; Bingler, Linda S; Crecelius, Eric A

    2004-04-15

    Natural recovery of contaminated sediments relies on burial of contaminated sediments with increasingly clean sediments over time (i.e., natural capping). Natural capping reduces the risk of resuspension of contaminated surface sediments, and it reduces the potential for contaminant transport into the food chain by limiting bioturbation of contaminated surface or near-surface sediments. This study evaluated the natural recovery of surface sediments contaminated with polychlorinated biphenyls (PCBs) at the Sangamo-Weston/Twelvemile Creek/Lake Hartwell Superfund Site (Lake Hartwell), Pickens County, SC. The primary focus was on sediment recovery resulting from natural capping processes. Total PCB (t-PCB), lead-210 (210Pb), and cesium-137 (137Cs) sediment core profiles were used to establish vertical t-PCB concentration profiles, age date sediments, and determine surface sedimentation and surface sediment recovery rates in 18 cores collected along 10 transects. Four upgradient transects in the headwaters of Lake Hartwell were impacted by historical sediment releases from three upgradient sediment impoundments. These transects were characterized by silt/ clay and sand layering. The highest PCB concentrations were associated with silt/clay layers (1.8-3.5% total organic carbon (TOC)), while sand layers (0.05-0.32% TOC) contained much lower PCB concentrations. The historical sediment releases resulted in substantial burial of PCB-contaminated sediment in the vicinity of these four cores; each core contained less than 1 mg/kg t-PCBs in the surface sand layers. Cores collected from six downgradient Lake Hartwell transects consisted primarily of silt and clay (0.91-5.1% TOC) and were less noticeably impacted by the release of sand from the impoundments. Vertical t-PCB concentration profiles in these cores began with relatively low PCB concentrations at the sediment-water interface and increased in concentration with depth until maximum PCB concentrations were measured at approximately 30-60 cm below the sediment-water interface, ca. 1960-1980. Maximum t-PCB concentrations were followed by progressively decreasing concentrations with depth until the t-PCB concentrations approached the detection limit, where sediments were likely deposited before the onset of PCB use at the Sangamo-Weston plant. The sediments containing the maximum PCB concentrations are associated with the period of maximum PCB release into the watershed. Sedimentation rates averaged 2.1 +/- 1.5 g/(cm2 yr) for 12 of 18 cores collected. The 1994 Record of Decision cleanup requirement is 1.0 mg/kg; two more goals (0.4 and 0.05 mg/kg t-PCBs) also were identified. Average surface sedimentation requirements to meet the three goals were 1.4 +/- 3.7, 11 +/- 4.2, and 33 +/- 11 cm, respectively. Using the age dating results, the average recovery dates to meet these goals were 2000.6 +/- 2.7, 2007.4 +/- 3.5, and 2022.7 +/- 11 yr, respectively. (The 95% prediction limits for these values also are provided.) Despite the reduction in surface sediment PCB concentrations, PCB concentrations measured in largemouth bass and hybrid bass filets continue to exceed the 2.0 mg/kg FDA fish tolerance level.

  1. Posthole Broadband Sensor Emplacement vs. Surface Vaults: Observations of Comparative Noise Performance and Trade-offs

    NASA Astrophysics Data System (ADS)

    Sweet, J. R.; Beaudoin, B. C.; Barstow, N.; Pfeifer, M.; Anderson, K. R.; Frassetto, A.

    2015-12-01

    Advances in seismometer design have diversified the range of instruments available for use in temporary field installations. IRIS programs, primarily PASSCAL and the Transportable Array (TA), have helped steer development of these new instruments to meet these evolving needs. PASSCAL operates a small pool of posthole broadband sensors, purpose built for direct burial. Near surface posthole installations are a new, cost effective, and logistically simple technique for broadband emplacement that is an alternative to the vault installations used in portable broadband seismic experiments for nearly 30 years. Direct burial installation is limited to the time and effort required to dig the borehole and emplace the sensor, thus reducing both material costs and time to install. Also, in Alaska, extreme environments and difficult logistics make standard TA tank vaults inappropriate for most sites. TA has developed improved deployment strategies for these environments. There, holes for posthole sensors are hammer- drilled or augered to several meters depth in soil, permafrost, or bedrock and then cased. These emplacement costs are generally less than standard TA vaults. We compare various installation techniques for test cases as well as general deployments of PASSCAL and TA stations. Automated noise performance analyses have been part of the TA throughout its operation, but until recently vault performance for portable installations supported by the PASSCAL program was sparse. In this study, we select a suite of co-located direct burial and surface vault installations and compare their noise performance using probability density functions. Our initial analyses suggest that direct burial sensors have lower noise levels than vault installations on both horizontal and vertical channels across a range of periods spanning <1 s to 100 s. However, most of these initial experiments for PASSCAL were with sensors not purpose built for direct burial and it became obvious that a sensor designed for direct burial was necessary. For the TA, direct emplacement of purpose-built sensors has routinely improved noise levels, particularly beyond about 20 s, by tens of dB. These results suggest that moving towards an instrument pool composed primarily of purpose-built direct burial sensors could yield higher-quality data at lower cost.

  2. Fine Sediment Residency in Streambeds in Southeastern Australia.

    NASA Astrophysics Data System (ADS)

    Croke, J. C.; Thompson, C. J.; Rhodes, E.

    2007-12-01

    A detailed understanding of channel forming and maintenance processes in streams requires some measurement and/or prediction of bed load transport and sediment mobility. Traditional field based measurements of such processes are often problematic due to the high discharge characteristics of upland streams. In part to compensate for such difficulties, empirical flow competence equations have also been developed to predict armour or bedform stabilising grain mobility. These equations have been applied to individual reaches to predict the entrainment of a threshold grain size and the vertical extent of flushing. In cobble- and boulder-bed channels the threshold grain size relates to the size of the bedform stabilising grains (eg. D84, D90). This then allows some prediction of when transport of the matrix material occurs. The application of Optically Stimulated Luminescence (OSL) dating is considered here as an alternative and innovative way to determine fine sediment residency times in stream beds. Age estimates derived from the technique are used to assist in calibrating sediment entrainment models to specific channel types and hydrological regimes. The results from a one-dimensional HEC-RAS model indicate that recurrence interval floods exceeding bankfull up to 13 years are competent to mobilise the maximum overlying surface grain sizes at the sites. OSL minimum age model results of well bleached quartz in the fine matrix particles are in general agreement with selected competence equation predictions. The apparent long (100-1400y) burial age of most of the mineral quartz suggests that competent flows are not able to flush all subsurface fine-bed material. Maximum bed load exchange (flushing) depth was limited to twice the depth of the overlying D90 grain size. Application of OSL in this study provides important insight into the nature of matrix material storage and flushing in mountain streams.

  3. The Use of Resistivity Methods in Terrestrial Forensic Searches

    NASA Astrophysics Data System (ADS)

    Wolf, R. C.; Raisuddin, I.; Bank, C.

    2013-12-01

    The increasing use of near-surface geophysical methods in forensic searches has demonstrated the need for further studies to identify the ideal physical, environmental and temporal settings for each geophysical method. Previous studies using resistivity methods have shown promising results, but additional work is required to more accurately interpret and analyze survey findings. The Ontario Provincial Police's UCRT (Urban Search and Rescue; Chemical, Biolgical, Radiological, Nuclear and Explosives; Response Team) is collaborating with the University of Toronto and two additional universities in a multi-year study investigating the applications of near-surface geophysical methods to terrestrial forensic searches. In the summer of 2012, on a test site near Bolton, Ontario, the OPP buried weapons, drums and pigs (naked, tarped, and clothed) to simulate clandestine graves and caches. Our study aims to conduct repeat surveys using an IRIS Syscal Junior with 48 electrode switching system resistivity-meter. These surveys will monitor changes in resistivity reflecting decomposition of the object since burial, and identify the strengths and weaknesses of resistivity when used in a rural, clandestine burial setting. Our initial findings indicate the usefulness of this method, as prominent resistivity changes have been observed. We anticipate our results will help to assist law enforcement agencies in determining the type of resistivity results to expect based on time since burial, depth of burial and state of dress of the body.

  4. Putting it all together: Exhumation histories from a formal combination of heat flow and a suite of thermochronometers

    USGS Publications Warehouse

    d'Alessio, M. A.; Williams, C.F.

    2007-01-01

    A suite of new techniques in thermochronometry allow analysis of the thermal history of a sample over a broad range of temperature sensitivities. New analysis tools must be developed that fully and formally integrate these techniques, allowing a single geologic interpretation of the rate and timing of exhumation and burial events consistent with all data. We integrate a thermal model of burial and exhumation, (U-Th)/He age modeling, and fission track age and length modeling. We then use a genetic algorithm to efficiently explore possible time-exhumation histories of a vertical sample profile (such as a borehole), simultaneously solving for exhumation and burial rates as well as changes in background heat flow. We formally combine all data in a rigorous statistical fashion. By parameterizing the model in terms of exhumation rather than time-temperature paths (as traditionally done in fission track modeling), we can ensure that exhumation histories result in a sedimentary basin whose thickness is consistent with the observed basin, a physically based constraint that eliminates otherwise acceptable thermal histories. We apply the technique to heat flow and thermochronometry data from the 2.1 -km-deep San Andreas Fault Observatory at Depth pilot hole near the San Andreas fault, California. We find that the site experienced <1 km of exhumation or burial since the onset of San Andreas fault activity ???30 Ma.

  5. DBAC: A simple prediction method for protein binding hot spots based on burial levels and deeply buried atomic contacts

    PubMed Central

    2011-01-01

    Background A protein binding hot spot is a cluster of residues in the interface that are energetically important for the binding of the protein with its interaction partner. Identifying protein binding hot spots can give useful information to protein engineering and drug design, and can also deepen our understanding of protein-protein interaction. These residues are usually buried inside the interface with very low solvent accessible surface area (SASA). Thus SASA is widely used as an outstanding feature in hot spot prediction by many computational methods. However, SASA is not capable of distinguishing slightly buried residues, of which most are non hot spots, and deeply buried ones that are usually inside a hot spot. Results We propose a new descriptor called “burial level” for characterizing residues, atoms and atomic contacts. Specifically, burial level captures the depth the residues are buried. We identify different kinds of deeply buried atomic contacts (DBAC) at different burial levels that are directly broken in alanine substitution. We use their numbers as input for SVM to classify between hot spot or non hot spot residues. We achieve F measure of 0.6237 under the leave-one-out cross-validation on a data set containing 258 mutations. This performance is better than other computational methods. Conclusions Our results show that hot spot residues tend to be deeply buried in the interface, not just having a low SASA value. This indicates that a high burial level is not only a necessary but also a more sufficient condition than a low SASA for a residue to be a hot spot residue. We find that those deeply buried atoms become increasingly more important when their burial levels rise up. This work also confirms the contribution of deeply buried interfacial atomic contacts to the energy of protein binding hot spot. PMID:21689480

  6. Late Quaternary paleoclimate of western Alaska inferred from fossil chironomids and its relation to vegetation histories

    NASA Astrophysics Data System (ADS)

    Kurek, Joshua; Cwynar, Les C.; Ager, Thomas A.; Abbott, Mark B.; Edwards, Mary E.

    2009-05-01

    Fossil Chironomidae assemblages (with a few Chaoboridae and Ceratopogonidae) from Zagoskin and Burial Lakes in western Alaska provide quantitative reconstructions of mean July air temperatures for periods of the late-middle Wisconsin (˜39,000-34,000 cal yr B.P.) to the present. Inferred temperatures are compared with previously analyzed pollen data from each site summarized here by indirect ordination. Paleotemperature trends reveal substantial differences in the timing of climatic warming following the late Wisconsin at each site, although chronological uncertainty exists. Zagoskin Lake shows early warming beginning at about 21,000 cal yr B.P., whereas warming at Burial Lake begins ˜4000 years later. Summer climates during the last glacial maximum (LGM) were on average ˜3.5 °C below the modern temperatures at each site. Major shifts in vegetation occurred from ˜19,000 to 10,000 cal yr B.P. at Zagoskin Lake and from ˜17,000 to 10,000 cal yr B.P. at Burial Lake. Vegetation shifts followed climatic warming, when temperatures neared modern values. Both sites provide evidence of an early postglacial thermal maximum at ˜12,300 cal yr B.P. These chironomid records, combined with other insect-based climatic reconstructions from Beringia, indicate that during the LGM: (1) greater continentality likely influenced regions adjacent to the Bering Land Bridge and (2) summer climates were, at times, not dominated by severe cold.

  7. Tomicus piniperda (Coleoptera: Scolytidae) Emergence in Relation to Burial Depth of Brood Logs

    Treesearch

    Robert A. Haack; Toby R. Petrice; Therese M. Poland

    2000-01-01

    The pine shoot beetle, Tomicus piniperda (L.), is an exotic pest of pines, Pinus spp., that was first found in the United States in 1992. A federal quarantine currently regulates movement of pine Christmas trees and pine nursery stock from infested to uninfested counties. The current national Pine Shoot Beetle Compliance Management...

  8. Preliminary Assessment of Potential Impacts to Dungeness Crabs from Disposal of Dredged Materials from the Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, Walter H.; Miller, Martin C.; Williams, Greg D.

    2006-02-01

    Dredging of the Columbia River navigation channel has raised concerns about dredging-related impacts on Dungeness crabs (Cancer magister). The overall objectives of this effort are to synthesize what is known about disposal effects on Dungeness crabs (Phase 1) and to offer approaches to quantify the effects, including approaches to gain a population-level perspective on any effects found in subsequent studies (Phase 2). This report documents Phase 1, which included (1) development of a conceptual model to integrate knowledge about crab biology and the physical processes occurring during disposal, (2) application of physics-based numerical modeling of the disposal event to understandmore » the physical forces and processes to which a crab might be exposed during disposal, (3) conduct of a vulnerability analysis to identify the potential mechanisms by which crabs may be injured, and (4) recommendations of topics and approaches for future studies to assess the potential population-level effects of disposal on Dungeness crabs. The conceptual model first recognizes that disposal of dredged materials is a physically dynamic process with three aspects: (1) convective descent and bottom encounter, (2) dynamic collapse and spreading, and (3) mounding. Numerical modeling was used to assess the magnitude of the potentially relevant forces and extent of mounding in single disposal events. The modeling outcomes show that predicted impact pressure, shear stress, and mound depth are greatly reduced by discharge in deep water, and somewhat reduced at longer discharge duration. The analysis of numerical modeling results and vulnerabilities indicate that the vulnerability of crabs to compression forces under any of the disposal scenarios is low. For the deep-water disposal scenarios, the maximum forces and mounding do not appear to be sufficiently high enough to warrant concern for surge currents or burial at the depths involved (over 230 ft). For the shallow-water (45 to 65 ft), short-duration disposal scenarios, the shear force and surge currents estimated from the modeling and observed previously in the field at Palos Verdes, California appear to be sufficiently high to mobilize and transport the bottom sediment and at least juvenile crab. Behavioral response to surge currents probably occurs and may reduce the occurrence and extent of movement and any associated impacts. There evidence that burial by dredged materials can effect crab survival, but confounding factors in previous experiments preclude conclusions about thresholds and extent of effects. We recommend that future studies focus on burial effects during shallow water, short duration disposal events and take into account the potential for behavioral responses to mitigate any effects.« less

  9. Elastic and viscoelastic model of the stress history of sedimentary rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    A model has been developed to calculate the elastic and viscoelastic stresses which develop in rocks at depth due to burial, uplift and diagenesis. This model includes the effect of the overburden load, tectonic or geometric strains, thermal strains, varying material properties, pore pressure variations, and viscoeleastic relaxation. Calculations for some simple examples are given to show the contributions of the individual stress components due to gravity, tectonics, thermal effects and pore pressure. A complete stress history for Mesaverde rocks in the Piceance basin is calculated based on available burial history, thermal history and expected pore pressure, material property andmore » tectonic strain variations through time. These calculations show the importance of including material property changes and viscoelastic effects. 15 refs., 48 figs.« less

  10. Chapter 5: Geologic Assessment of Undiscovered Petroleum Resources in the Waltman Shale Total Petroleum System,Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    Roberts, Steve B.; Roberts, Laura N.R.; Cook, Troy

    2007-01-01

    The Waltman Shale Total Petroleum System encompasses about 3,400 square miles in the Wind River Basin Province, Wyoming, and includes accumulations of oil and associated gas that were generated and expelled from oil-prone, lacustrine shale source rocks in the Waltman Shale Member of the Paleocene Fort Union Formation. Much of the petroleum migrated and accumulated in marginal lacustrine (deltaic) and fluvial sandstone reservoirs in the Shotgun Member of the Fort Union, which overlies and intertongues with the Waltman Shale Member. Additional petroleum accumulations derived from Waltman source rocks are present in fluvial deposits in the Eocene Wind River Formation overlying the Shotgun Member, and also might be present within fan-delta deposits included in the Waltman Shale Member, and in fluvial sandstone reservoirs in the uppermost part of the lower member of the Fort Union Formation immediately underlying the Waltman. To date, cumulative production from 53 wells producing Waltman-sourced petroleum exceeds 2.8 million barrels of oil and 5.8 billion cubic feet of gas. Productive horizons range from about 1,770 feet to 5,800 feet in depth, and average about 3,400 to 3,500 feet in depth. Formations in the Waltman Shale Total Petroleum System (Fort Union and Wind River Formations) reflect synorogenic deposition closely related to Laramide structural development of the Wind River Basin. In much of the basin, the Fort Union Formation is divided into three members (ascending order): the lower unnamed member, the Waltman Shale Member, and the Shotgun Member. These members record the transition from deposition in dominantly fluvial, floodplain, and mire environments in the early Paleocene (lower member) to a depositional setting characterized by substantial lacustrine development (Waltman Shale Member) and contemporaneous fluvial, and marginal lacustrine (deltaic) deposition (Shotgun Member) during the middle and late Paleocene. Waltman Shale Member source rocks have total organic carbon values ranging from 0.93 to 6.21 weight percent, averaging about 2.71 weight percent. The hydrocarbon generative potential of the source rocks typically exceeds 2.5 milligrams of hydrocarbon per gram of rock and numerous samples had generative potentials exceeding 6.0 milligrams of hydrocarbon per gram of rock. Waltman source rocks are oil prone, and contain a mix of Type-II and Type-III kerogen, indicating organic input from a mix of algal and terrestrial plant matter, or a mix of algal and reworked or recycled material. Thermal maturity at the base of the Waltman Shale Member ranges from a vitrinite reflectance value of less than 0.60 percent along the south basin margin to projected values exceeding 1.10 percent in the deep basin west of Madden anticline. Burial history reconstructions for three wells in the northern part of the Wind River Basin indicate that the Waltman Shale Member was well within the oil window (Ro equal to or greater than 0.65 percent) by the time of maximum burial about 15 million years ago; maximum burial depths exceeded 10,000 feet. Onset of oil generation calculated for the base of the Waltman Shale member took place from about 49 million years ago to about 20 million years ago. Peak oil generation occurred from about 31 million years ago to 26 million years ago in the deep basin west of Madden anticline. Two assessment units were defined in the Waltman Shale Total Petroleum System: the Upper Fort Union Sandstones Conventional Oil and Gas Assessment Unit (50350301) and the Waltman Fractured Shale Continuous Oil Assessment Unit (50350361). The conventional assessment unit primarily relates to the potential for undiscovered petroleum accumulations that are derived from source rocks in the Waltman Shale Member and trapped within sandstone reservoirs in the Shotgun Member (Fort Union Formation) and in the lower part of the overlying Wind River Formation. The potential for Waltman-sourced oil accumulations in fan-delta depos

  11. Sources and turnover of organic carbon and methane in fjord and shelf sediments off northern Norway

    NASA Astrophysics Data System (ADS)

    Sauer, Simone; Hong, Wei-Li; Knies, Jochen; Lepland, Aivo; Forwick, Matthias; Klug, Martin; Eichinger, Florian; Baranwal, Soma; Crémière, Antoine; Chand, Shyam; Schubert, Carsten J.

    2016-10-01

    To better understand the present and past carbon cycling and transformation processes in methane-influenced fjord and shelf areas of northern Norway, we compared two sediment cores from the Hola trough and from Ullsfjorden. We investigated (1) the organic matter composition and sedimentological characteristics to study the sources of organic carbon (Corg) and the factors influencing Corg burial, (2) pore water geochemistry to determine the contribution of organoclastic sulfate reduction and methanogenesis to total organic carbon turnover, and (3) the carbon isotopic signature of hydrocarbons to identify the carbon transformation processes and gas sources. High sedimentation and Corg accumulation rates in Ullsfjorden support the notion that fjords are important Corg sinks. The depth of the sulfate-methane-transition (SMT) in the fjord is controlled by the supply of predominantly marine organic matter to the sediment. Organoclastic sulfate reduction accounts for 60% of the total depth-integrated sulfate reduction in the fjord. In spite of the presence of ethane, propane, and butane, we suggest a purely microbial origin of light hydrocarbons in the sediments based on their low δ13C values. In the Hola trough, sedimentation and Corg accumulation rates changed during the deglacial-to-post-glacial transition from approximately 80 cm ka-1 to erosion at present. Thus, Corg burial in this part of the shelf is presently absent. Low organic matter content in the sediment and low rates of organoclastic sulfate reduction (only 3% of total depth-integrated sulfate reduction) entail that the shallow depth of the SMT is controlled mostly by ascending thermogenic methane from deeper sources.

  12. The genome of a Late Pleistocene human from a Clovis burial site in western Montana.

    PubMed

    Rasmussen, Morten; Anzick, Sarah L; Waters, Michael R; Skoglund, Pontus; DeGiorgio, Michael; Stafford, Thomas W; Rasmussen, Simon; Moltke, Ida; Albrechtsen, Anders; Doyle, Shane M; Poznik, G David; Gudmundsdottir, Valborg; Yadav, Rachita; Malaspinas, Anna-Sapfo; White, Samuel Stockton; Allentoft, Morten E; Cornejo, Omar E; Tambets, Kristiina; Eriksson, Anders; Heintzman, Peter D; Karmin, Monika; Korneliussen, Thorfinn Sand; Meltzer, David J; Pierre, Tracey L; Stenderup, Jesper; Saag, Lauri; Warmuth, Vera M; Lopes, Margarida C; Malhi, Ripan S; Brunak, Søren; Sicheritz-Ponten, Thomas; Barnes, Ian; Collins, Matthew; Orlando, Ludovic; Balloux, Francois; Manica, Andrea; Gupta, Ramneek; Metspalu, Mait; Bustamante, Carlos D; Jakobsson, Mattias; Nielsen, Rasmus; Willerslev, Eske

    2014-02-13

    Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 (14)C years before present (bp) (13,000 to 12,600 calendar years bp). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology. However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans. An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum. Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 ± 35 (14)C years bp (approximately 12,707-12,556 calendar years bp) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4× and show that the gene flow from the Siberian Upper Palaeolithic Mal'ta population into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years bp. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.

  13. The genome of a late Pleistocene human from a Clovis burial site in western Montana

    PubMed Central

    Rasmussen, Morten; Anzick, Sarah L.; Waters, Michael R.; Skoglund, Pontus; DeGiorgio, Michael; Stafford, Thomas W.; Rasmussen, Simon; Moltke, Ida; Albrechtsen, Anders; Doyle, Shane M; Poznik, G. David; Gudmundsdottir, Valborg; Yadav, Rachita; Malaspinas, Anna-Sapfo; White, Samuel Stockton; Allentoft, Morten E.; Cornejo, Omar E.; Tambets, Kristiina; Eriksson, Anders; Heintzman, Peter D.; Karmin, Monika; Korneliussen, Thorfinn Sand; Meltzer, David J.; Pierre, Tracey L.; Stenderup, Jesper; Saag, Lauri; Warmuth, Vera; Lopes, Margarida Cabrita; Malhi, Ripan S.; Brunak, Søren; Sicheritz-Ponten, Thomas; Barnes, Ian; Collins, Matthew; Orlando, Ludovic; Balloux, Francois; Manica, Andrea; Gupta, Ramneek; Metspalu, Mait; Bustamante, Carlos D.; Jakobsson, Mattias; Nielsen, Rasmus; Willerslev, Eske

    2016-01-01

    Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 14C years BP (13,000 to 12,600 calendar years BP)1,2. Nearly fifty years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology3. However, both the origins and genetic legacy of the people who manufactured Clovis tools remain debated. It is argued that these people ultimately derived from Asia and were directly related to contemporary Native Americans2. An alternative, Solutrean, hypothesis posits that the Clovis predecessors immigrated from Southwestern Europe during the Last Glacial Maximum (LGM)4. Here, we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705±35 14C years BP (CAMS-80538; c. 12,707–12,556 calendar years BP) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4× and show that the gene flow from the Siberian Upper Palaeolithic Mal′ta individual5 into Native American ancestors is also shared by the Anzick-1 individual and thus happened prior to 12,600 years BP. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that pre-dates the Anzick-1 individual. PMID:24522598

  14. Neogene basin infilling from cosmogenic nuclides (10Be and 21Ne) in Atacama, Chile

    NASA Astrophysics Data System (ADS)

    Sanchez, Caroline; Regard, Vincent; Carretier, Sébastien; Riquelme, Rodrigo; Blard, Pierre-Henri; Campos, Eduardo; Brichau, Stéphanie; Lupker, Marteen; Hérail, Gérard

    2017-04-01

    In the hyperarid Atacama Desert, northern Chile, Neogene sediments host copper rich layers (exotic supergene mineralization). Current mines are excavated into relatively thin (<200-300 m) Neogene basins whose infilling chronology is poorly constrained. We took advantage of one of these mining pits, and sampled for 10Be and 21Ne cosmogenic nuclide dosing. These cosmogenic nuclides help constraining the infilling chronology. Indeed, basin sediments were deposited with a cosmogenic nuclide content acquired on hillslopes. Then within the basin, cosmogenic nuclide concentrations evolved through the competing production (quickly decreasing with depth) and disintegration (not for 21Ne). Sampling depths are at ˜100 m and at ˜50 m below the desert surface. First, 21Ne gives lower boundaries for upstream erosion rates or local sedimentation rate. These bounds are between 2 and 10 m/Ma, which is quite important for the area. The ratio between the two cosmogenic nuclides indicate a maximum burial age of 12 Ma (minimal erosion rate of 15 m/Ma) and is surprisingly similar from bottom to top, indicating a probable rapid infilling. We finally processed a Monte-Carlo inversion. This inversion helps taking into account the post-deposition muonic production of cosmogenic nuclides. Inversion results is dependent on the muonic production scheme. Interestingly, the similarity in concentrations from bottom to top pleads for quite low production at depth. Our data finally indicates a quick infilling between 12.5 and 10 Ma BP accounting for ˜100 m of deposition (minimum sedimentation rate of 40 m/Ma).

  15. Germination Biology of Two Invasive Physalis Species and Implications for Their Management in Arid and Semi-arid Regions.

    PubMed

    Ozaslan, Cumali; Farooq, Shahid; Onen, Huseyin; Ozcan, Selcuk; Bukun, Bekir; Gunal, Hikmet

    2017-12-05

    Two Solanaceae invasive plant species (Physalis angulata L. and P. philadelphica Lam. var. immaculata Waterfall) infest several arable crops and natural habitats in Southeastern Anatolia region, Turkey. However, almost no information is available regarding germination biology of both species. We performed several experiments to infer the effects of environmental factors on seed germination and seedling emergence of different populations of both species collected from various locations with different elevations and habitat characteristics. Seed dormancy level of all populations was decreased with increasing age of the seeds. Seed dormancy of freshly harvested and aged seeds of all populations was effectively released by running tap water. Germination was slightly affected by photoperiods, which suggests that seeds are slightly photoblastic. All seeds germinated under wide range of temperature (15-40 °C), pH (4-10), osmotic potential (0 to -1.2 MPa) and salinity (0-400 mM sodium chloride) levels. The germination ability of both plant species under wide range of environmental conditions suggests further invasion potential towards non-infested areas in the country. Increasing seed burial depth significantly reduced the seedling emergence, and seeds buried below 4 cm of soil surface were unable to emerge. In arable lands, soil inversion to maximum depth of emergence (i.e., 6 cm) followed by conservational tillage could be utilized as a viable management option.

  16. A new genetic mechanism of natural gas accumulation.

    PubMed

    Yang, Chengyu; Ni, Zhiyong; Wang, Tieguan; Chen, Zhonghong; Hong, Haitao; Wen, Long; Luo, Bing; Wang, Wenzhi

    2018-05-29

    Natural gas of organic origin is primarily biogenic or thermogenic; however, the formation of natural gas is occasionally attributed to hydrothermal activity. The Precambrian dolomite reservoir of the Anyue gas field is divided into three stages. Dolomite-quartz veins were precipitated after two earlier stages of dolomite deposition. Fluid inclusions in the dolomite and quartz are divided into pure methane (P-type), methane-bearing (M-type), aqueous (W-type), and solid bitumen-bearing (S-type) inclusions. The W-type inclusions within the quartz and buried dolomite homogenized between 107 °C and 223 °C. Furthermore, the trapping temperatures and pressures of the fluid (249 °C to 319 °C and 1619 bar to 2300 bar, respectively) are obtained from the intersections of the isochores of the P-type and the coeval W-type inclusions in the quartz. However, the burial history of the reservoir indicates that the maximum burial temperature did not exceed 230 °C. Thus, the generation of the natural gas was not caused solely by the burial of the dolomite reservoir. The results are also supported by the presence of paragenetic pyrobitumen and MVT lead-zinc ore. A coupled system of occasional invasion by hydrothermal fluids and burial of the reservoir may represent a new genetic model for natural gas accumulation in this gas field.

  17. Joint Bayesian inference for near-surface explosion yield

    NASA Astrophysics Data System (ADS)

    Bulaevskaya, V.; Ford, S. R.; Ramirez, A. L.; Rodgers, A. J.

    2016-12-01

    A near-surface explosion generates seismo-acoustic motion that is related to its yield. However, the recorded motion is affected by near-source effects such as depth-of-burial, and propagation-path effects such as variable geology. We incorporate these effects in a forward model relating yield to seismo-acoustic motion, and use Bayesian inference to estimate yield given recordings of the seismo-acoustic wavefield. The Bayesian approach to this inverse problem allows us to obtain the probability distribution of plausible yield values and thus quantify the uncertainty in the yield estimate. Moreover, the sensitivity of the acoustic signal falls as a function of the depth-of-burial, while the opposite relationship holds for the seismic signal. Therefore, using both the acoustic and seismic wavefield data allows us to avoid the trade-offs associated with using only one of these signals alone. In addition, our inference framework allows for correlated features of the same data type (seismic or acoustic) to be incorporated in the estimation of yield in order to make use of as much information from the same waveform as possible. We demonstrate our approach with a historical dataset and a contemporary field experiment.

  18. Characterization and microbial analysis of first recorded observation of Conicera similis Haliday (Diptera: Phoridae) in forensic decomposition study in Romania.

    PubMed

    Iancu, Lavinia; Junkins, Emily N; Purcarea, Cristina

    2018-05-03

    The identification of necrophagous insect diversity and dynamics has forensic significance for postmortem interval estimation specific to burial. Few studies regarding the necrophagous entomofauna from buried remains have been performed to date. In contrast to the exposed carcasses, the accessibility of soil to insects is limited due to burial depth and is dependent on soil type. This study highlights the colonization behavior of Conicera similis (Haliday 1833) (Diptera: Phoridae) during carcass decomposition, a previously unobserved taxon in Romania. Adult and larvae specimens were collected from rat (Rattus norvegicus) carcasses buried at 40 cm depth in an urban park environment in June 2016 during active decomposition and their presence and activity period was correlated with the environmental parameters variation. Bacterial diversity from C. similis female adult and larvae specimens was determined via 16S rRNA gene Illumina sequencing to further characterize these commonly encountered and forensically important necrophagous insects. This report signals the easternmost geographical location in Europe (Bucharest, Romania) of C. similis to date. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  19. Sediment dynamics and the burial and exhumation of bedrock reefs along an emergent coastline as elucidated by repetitive sonar surveys: Northern Monterey Bay, CA

    USGS Publications Warehouse

    Storlazzi, C.D.; Fregoso, T.A.; Golden, N.E.; Finlayson, D.P.

    2011-01-01

    Two high-resolution bathymetric and acoustic backscatter sonar surveys were conducted along the energetic emergent inner shelf of northern Monterey Bay, CA, USA, in the fall of 2005 and the spring of 2006 to determine the impact of winter storm waves, beach erosion, and river floods on biologically-important siliclastic bedrock reef habitats. The surveys extended from water depths of 4 m to 22 m and covered an area of 3.14 km2, 45.8% of which was bedrock, gravel, and coarse-grained sand and 54.2% was fine-grained sand. Our analyses of the bathymetric and acoustic backscatter data demonstrates that during the 6 months between surveys, 11.4% of the study area was buried by fine-grained sand while erosion resulted in the exposure of bedrock or coarse-grained sand over 26.5% of the study area. The probability of burial decreased with increasing water depth and rugosity; the probability of exhumation increased with increasing wave-induced near-bed shear stress, seabed slope and rugosity. Much of the detected change was at the boundary between bedrock and unconsolidated sediment due to sedimentation and erosion burying or exhuming bedrock, respectively. In a number of cases, however, the change in seabed character was apparently due to changes in sediment grain size when scour exposed what appeared to be an underlying coarser-grained lag or the burial of coarser-grained sand and gravel by fine-grained sand. These findings suggest that, in some places, (a) burial and exhumation of nearshore bedrock reefs along rocky, energetic inner shelves occurs over seasonal timescales and appears related to intrinsic factors such as seabed morphology and extrinsic factors such as wave forces, and (b) single acoustic surveys typically employed for geologic characterization and/or habitat mapping may not adequately characterize the geomorphologic and sedimentologic nature of these types of environments that typify most of the Pacific Ocean and up to 50% of the world's coastlines.

  20. Earliest floral grave lining from 13,700-11,700-y-old Natufian burials at Raqefet Cave, Mt. Carmel, Israel.

    PubMed

    Nadel, Dani; Danin, Avinoam; Power, Robert C; Rosen, Arlene M; Bocquentin, Fanny; Tsatskin, Alexander; Rosenberg, Danny; Yeshurun, Reuven; Weissbrod, Lior; Rebollo, Noemi R; Barzilai, Omry; Boaretto, Elisabetta

    2013-07-16

    Flowering plants possess mechanisms that stimulate positive emotional and social responses in humans. It is difficult to establish when people started to use flowers in public and ceremonial events because of the scarcity of relevant evidence in the archaeological record. We report on uniquely preserved 13,700-11,700-y-old grave linings made of flowers, suggesting that such use began much earlier than previously thought. The only potentially older instance is the questionable use of flowers in the Shanidar IV Neanderthal grave. The earliest cemeteries (ca. 15,000-11,500 y ago) in the Levant are known from Natufian sites in northern Israel, where dozens of burials reflect a wide range of inhumation practices. The newly discovered flower linings were found in four Natufian graves at the burial site of Raqefet Cave, Mt. Carmel, Israel. Large identified plant impressions in the graves include stems of sage and other Lamiaceae (Labiatae; mint family) or Scrophulariaceae (figwort family) species; accompanied by a plethora of phytoliths, they provide the earliest direct evidence now known for such preparation and decoration of graves. Some of the plant species attest to spring burials with a strong emphasis on colorful and aromatic flowers. Cave floor chiseling to accommodate the desired grave location and depth is also evident at the site. Thus, grave preparation was a sophisticated planned process, embedded with social and spiritual meanings reflecting a complex preagricultural society undergoing profound changes at the end of the Pleistocene.

  1. The magnitude and phasing of variations in climate and ocean carbonate chemistry during Eocene Thermal Maximum 2: Insights into C cycle feedbacks

    NASA Astrophysics Data System (ADS)

    Harper, D. T.; Zeebe, R. E.; Hoenisch, B.; Zachos, J. C.

    2016-12-01

    The early Eocene features several large abrupt global warming events ("hyperthermals") that were characterized by negative δ13C excursions suggesting isotopically `light' carbon release to the atmosphere. The most prominent events, the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM2), present an opportunity to study the operation of carbon cycle processes, and in particular negative feedbacks in the carbon cycle, such as silicate and carbonate weathering. Here we study sea surface temperature (SST) and ocean carbonate chemistry changes across ETM2, by measuring Mg/Ca, B/Ca, and δ13C in planktic foraminifera at two IODP sites (1209 in the Pacific and 1265 in the S. Atlantic). We observe a 2-3°C increase in SST in the Pacific and a 2°C increase in the Atlantic. The observed decrease in planktic B/Ca at both sites is consistent with increased atmospheric pCO2, and when scaled to the 0.3 pH unit decrease estimated for the PETM by Penman et al., 2014, the estimated pH decrease during the ETM2 is 0.15. However, reconstructions of the δ13C recovery during the ETM2 show that it is more rapid than models have been able to successfully simulate. We compare these new proxy data to LOSCAR model output, to assess whether the rapid δ13C recovery was a result of: 1) changes in the type and δ13C of weathered carbonates or δ13C of buried organic carbon during the recovery, 2) a one-time event of isotopically `light' carbon burial during the recovery phase, or 3) enhanced burial of `light' carbon due to background orbital eccentricity forcing during the recovery. Our preliminary results suggest that the phasing of the drop in the B/Ca relative to δ13C during recovery is due to the burial of organic carbon.

  2. A Smoking Gun for Methane Hydrate Release During the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Frieling, J.; Peterse, F.; Lunt, D. J.; Bohaty, S. M.; S Sinninghe Damsté, J.; Reichart, G. J.; Sluijs, A.

    2016-12-01

    The Paleocene-Eocene Thermal Maximum (PETM; 56 Ma) was a period of rapid 4-5ºC global warming and a global negative carbon isotope excursion (CIE) of 3-4.5‰, signaling the input of at least 1500 Gt of δ13C-depleted carbon into the ocean-atmosphere system. Methane from submarine hydrates has long been proposed as a carbon source, but direct and indirect evidence is lacking. We generated a new high-resolution TEX86 and δ13C record from Ocean Drilling Program Site 959 in the eastern tropical Atlantic and find that initial warming preceded the PETM CIE by 10 kyr. Moreover, time-shifted cross-correlations on these new and published temperature-δ13C data imply that substantial (2-3 °C) warming lead 13C-depleted carbon injection by an average of 2-3 kyr globally. Finally, a data compilation shows that global burial fluxes of biogenic Ba approximately doubled across all depths of the ocean studied, which on PETM time scales can only be explained by significant Ba addition to the oceans. Submarine hydrates are Ba-rich and require warming to dissociate. The simplest explanation for the temperature lead and Ba addition to the ocean is that methane hydrate dissociated as a response to initial warming and acted as a positive carbon cycle feedback during the PETM.

  3. Hydrogeologic factors in the selection of shallow land burial sites for the disposal of low-level radioactive waste

    USGS Publications Warehouse

    Fischer, John N.

    1986-01-01

    In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.

  4. Cosmogenic Nuclides 10Be-21Ne Burial Dating of Middle Miocene Sedimentary Formation of the Hongliu Valley in Southern Ningxia Basin: A Case of Isotopic Geochronology Study for the Cenozoic Sedimentary Strata

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Zhang, H.; Wang, W.; Wu, Y.; Pang, J.; Zheng, D.; Li, D.

    2015-12-01

    Chronology studies for the Cenozoic sedimentary strata based on the magnetostratigraphy cannot afford the unique chronological sequences in the absence of absolute ages from biostratigraphy or volcanic ash chronology. In situ-produced cosmogenic nuclides provide a powerful tool for the sediment dating based on the time-dependent concentration ratio of two nuclides, which are produced in the same mineral but with different half-lives. Thereinto, 10Be-26Al is the most widely used nuclide pairs, of which the available dating range spans the Plio-Pleistocene. But the coupling of 10Be with the stable nuclide 21Ne would significantly improve the burial dating range up to the middle Miocene, which is promising in revolutionizing the chronology study for the Late Cenozoic terrestrial sedimentary sequences. We have applied 10Be-21Ne pair for dating the middle Miocene sediments of the Hongliu Valley in southern Ningxia basin. Two major features of the sediments are involved in our study: (1) sediments originated from the steady erosion of the source area, and (2) the burial depth of our sample after deposition is time dependent due to the gradual accumulation of sediments into basin. The post-burial nuclide production is estimated to be less than 3%, including the contribution by muon interactions, of the total nuclide concentrations measured in our sample. Our 10Be-21Ne analysis demonstrates the age of the burial sample is 12.4(+0.6/-0.4) Ma, and the erosion rate at the source area is 0.26±0.01 cm ka-1. The sample's burial age is consistent with the age constraint set by the Hongliugou Formation (16.7-5.4 Ma) which we collected the sample in. Vertebrate fossils of Platybelodon tongxinensis with an age between 12 and 15 Ma exhumated along with our sample further verifies the reliability of our dating results for the middle Miocene sediments.This study has shown the improved age range of cosmogenic-nuclide burial dating method by incorporating the stable nuclide 21Ne, and has established the feasibility of 10Be-21Ne pair in chronology studies for the Cenozoic sedimentary strata.

  5. Mechanical and chemical compaction in fine-grained shallow-water limestones.

    USGS Publications Warehouse

    Shinn, E.A.; Robbin, D.M.

    1983-01-01

    Significant mechanical compaction resulted from pressures simulating less than 305 m of burial. Increasing loads to an equivalent of more than 3400 m did not significantly increase compaction or reduce sediment core length. Chemical compaction (pressure dissolution) was detected only in sediment cores compacted to pressures greater than 3400 m of burial. These short-term experiments suggest that chemical compaction would begin at much shallower depths given geologic time. Compaction experiments that caused chemical compaction lend support to the well-established hypothesis; that cement required to produce a low-porosity/low-permeability fine-grained limestone is derived internally. Dissolution, ion diffusion, and reprecipitation are considered the most likely processes for creating significant thicknesses of dense limestone in the geologic record. Continuation of chemical compaction after significant porosity reduction necessitates expulsion of connate fluids, possibly including hydrocarbons. -from Authors

  6. Rg excitation by underground explosions: insights from source modelling the 1997 Kazakhstan depth-of-burial experiment

    NASA Astrophysics Data System (ADS)

    Patton, Howard J.; Bonner, Jessie L.; Gupta, Indra N.

    2005-12-01

    Near-field seismograms of chemical explosions detonated as part of the 1997 depth-of-burial (DOB) experiment at the former Semipalatinsk nuclear test site provide an excellent opportunity to study the excitation of Rg waves for source effects. Rg waves were identified with particle-motion analysis and isolated from other arrivals using group velocity filtering. Amplitude and phase spectra of Rg waves were corrected for path effects based on observed attenuation in the near-field and path-specific phase velocity models. The path-corrected spectra were inputs to a grid-search method for finding source parameters of an axisymmetric source consisting of a monopole plus a compensated linear vector dipole (CLVD) or a horizontal tensile crack. The suite of observations, including ground-zero accelerograms and geophysical data from borehole logs, are best satisfied by models involving a CLVD with static (zero-frequency) seismic moment Mo. The CLVD source is related to tensile failure occurring at depths above the shotpoint. A static Mo distinguishes this source from classical models of spall, which are usually characterized by horizontal cracks that dynamically open and close with no permanent displacement (i.e. no static Mo). The CLVD source in this study appears to be more closely related to a driven block motion model envisaged by Masse. Rg source amplitudes are consistent with mb(Lg) measurements at station MAK, as would be expected if near-field Rg-to-S scattering plays a role in generating S waves observed at regional distances.

  7. Carbon burial and storage in tropical salt marshes under the influence of sea level rise.

    PubMed

    Ruiz-Fernández, A C; Carnero-Bravo, V; Sanchez-Cabeza, J A; Pérez-Bernal, L H; Amaya-Monterrosa, O A; Bojórquez-Sánchez, S; López-Mendoza, P G; Cardoso-Mohedano, J G; Dunbar, R B; Mucciarone, D A; Marmolejo-Rodríguez, A J

    2018-07-15

    Coastal vegetated habitats can be important sinks of organic carbon (C org ) and mitigate global warming by sequestering significant quantities of atmospheric CO 2 and storing sedimentary C org for long periods, although their C org burial and storage capacity may be affected by on-going sea level rise and human intervention. Geochemical data from published 210 Pb-dated sediment cores, collected from low-energy microtidal coastal wetlands in El Salvador (Jiquilisco Bay) and in Mexico (Salada Lagoon; Estero de Urias Lagoon; Sian Ka'an Biosphere Reserve) were revisited to assess temporal changes (within the last 100years) of C org concentrations, storage and burial rates in tropical salt marshes under the influence of sea level rise and contrasting anthropization degree. Grain size distribution was used to identify hydrodynamic changes, and δ 13 C to distinguish terrigenous sediments from those accumulated under the influence of marine transgression. Although the accretion rate ranges in all sediment records were comparable, C org concentrations (0.2-30%), stocks (30-465Mgha -1 , by extrapolation to 1m depth), and burial rates (3-378gm -2 year -1 ) varied widely within and among the study areas. However, in most sites sea level rise decreased C org concentrations and stocks in sediments, but increased C org burial rates. Lower C org concentrations were attributed to the input of reworked marine particles, which contribute with a lower amount of C org than terrigenous sediments; whereas higher C org burial rates were driven by higher mass accumulation rates, influenced by increased flooding and human interventions in the surroundings. C org accumulation and long-term preservation in tropical salt marshes can be as high as in mangrove or temperate salt marsh areas and, besides the reduction of C org stocks by ongoing sea level rise, the disturbance of the long-term buried C org inventories might cause high CO 2 releases, for which they must be protected as a part of climate change mitigation efforts. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. UXO Burial Prediction Fidelity

    DTIC Science & Technology

    2017-07-01

    been developed to predict the initial penetration depth of underwater mines . SERDP would like to know if and how these existing mine models could be...designed for near-cylindrical mines —for munitions, however, projectile-specific drag, lift, and moment coefficients are needed for estimating...as inputs.  Other models have been built to estimate these initial conditions for mines dropped into water.  Can these mine models be useful for

  9. Timing of porosity destruction related to pressure-solution in limestones

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Koehn, Daniel; Aharonov, Einat; Boyce, Adrian; Billi, Andrea; Hamilton, Andrea

    2017-04-01

    Among effects that affect sedimentary rocks during diagenesis, pressure-solution has a very strong impact on the physical properties of rocks such as porosity and permeability. Intergranular pressure-solution results in rough or wavy surfaces called stylolites, which are very common in sedimentary basins, especially in limestone. According to the opening of the system, dissolved material can precipitate locally, leading to the destruction of the porosity around the stylolite. That can namely occur during the development of sedimentary stylolites, when no fracture of fault can allow dissolved material to flow away before precipitating again. This contribution aims at unravelling the depth at which the material dissolved during compaction precipitated in the open porosity, adding new data to discuss when pressure-solution starts to be an efficient mechanism of deformation in limestone during strata burial in sedimentary basins. We report the results of the study of cements that fill the fractures developed at the tips of stylolites in a sample of dolostone from the Jurassic Calcare Massiccio formation, coming from the Umbria-Marche area (Italy). The fractures developed from stylolite-induced stress, and the filling cements' oxygen and carbon isotopic values range between 10.6‰ to -6.1‰ PDB and -8.2‰ to -0.6‰ PDB, respectively. Considering a closed system, we use fractionation equations to convert δ18O values into temperature, which shows that the material put in solution during pressure-solution precipitated at a temperature ranging from 18°C to 39°C. Temperature range and geothermal gradient estimates suggest that the mechanism of pressure-solution actually was primarily active at depth as low as 1 km. In the studied sample, up to 18% of the original volume has been dissolved on stylolites, and that volume loss would have occurred in the first 2 km of the burial history. This natural example feeds the growing body of evidence that stylolites can start developing at a very low depth level. Our results suggest that the porosity in sedimentary rocks can be destroyed very early during burial, both by dissolution and by precipitation, which make the pressure-solution mechanism's impact on fluid flow in basin likely to be underestimated.

  10. Ultrafast eclogite formation via melting-induced overpressure

    NASA Astrophysics Data System (ADS)

    Chu, Xu; Ague, Jay J.; Podladchikov, Yury Y.; Tian, Meng

    2017-12-01

    The conventional wisdom holds that metamorphic reactions take place at pressures near-lithostatic so that the thermodynamic pressure, reflected by the mineral assemblage, is directly correlated with depth. On the other hand, recent field-based observations and geodynamic simulations suggest that heterogeneous stress and significant pressure deviations above lithostatic (overpressure) can occur in Earth's crust. Here we show that eclogite, normally interpreted to form at great depths in subduction zones and Earth's mantle, may form at much shallower depths via local overpressure generated in crustal shear zones. The eclogites studied crop out as lenses hosted by felsic paragneiss in a sheared thrust slice and represent a local pressure and temperature anomaly in the Taconic orogenic belt, southern New England. Sharply-defined chemical zones in garnet, which record ∼5 kbar pressure rise and fall accompanied by a temperature increase of 150-200 °C, demonstrate extremely short timescales of diffusion. This requires anomalously fast compression (∼500 yrs) and decompression. We use coupled phase equilibria and garnet diffusion forward modeling to fit the observed garnet profiles and test the likely P- T- t paths using a Monte Carlo-type approach, accounting for off-center sectioning of garnet. The simulation shows that a ∼5 kbar pressure increase after the temperature peak is necessary to reproduce the garnet zoning. Remarkably, this post-peak-T compression (from 9 kbar to 14 kbar) lasted only ∼500 yrs. If the compression was due to burial along a lithostatic pressure gradient, the descent speed would exceed 30 m yr-1, defying any observed or modeled subduction rates. Local overpressure in response to partial melting in a confined volume (Vrijmoed et al., 2009) caused by transient shear heating can explain the ultra-fast compression without necessitating burial to great depth.

  11. Quantifying bioturbation and soil thickening over the late Quaternary

    NASA Astrophysics Data System (ADS)

    Wilkinson, M. T.; Pietsch, T.; Fox, J. F.

    2009-04-01

    We present geochemistry and biochemistry data to explore how bioturbation has operated in a residual sandstone-derived soil that thickened during the Holocene following aeolian deflation during the Last Glacial Maximum. Our site is located on a plateau cut into Triassic sandstones in humid Blue Mountains, SE Australia, where precipitation is ~1100 mm/a, and the mean annual maximum and minimum temperatures are 17°C and 5°C, respectively. Vegetation cover increase occurred ~13 ka, based on nearby palaeodune activity and pollen data from other highland sites. Our interpretation of terrestrial cosmogenic radionuclides (TCN) data suggests that ~30 cm of soil thickening has taken place since 13 ka, which includes 16 cm of bedrock lowering. Biofabrics preserve a short-term picture of biotically-displaced soil. In general, bioturbation decreases exponentially with increasing soil depth. The upper 21 cm of the profile is ~95% bioturbated; the middle 13 cm is 13 - 32% bioturbated; and the lowest 52 cm is 1 - 6% bioturbated. Tree roots penetrate weakness in the sandstone below this depth. Fallout radionuclides (7Be, 210Pb, and 137Cs) in the profile also suggest that vertical mixing in the upper 20 - 40 cm occurs over short—decadal—timescales. Optically stimulated luminescene (OSL) data records the time that quartz grains were last at the surface, and are used here to demonstrate vertical mixing of the profile over tens of thousands of years. OSL data indicates that some soil grains at all burial depths were once at the surface, consistent with modern process observations. Carbon and nitrogen isotopic values (delta 13C and delta 15N) of soil organic matter support the existence of soil organic matter turnover in the upper 30 cm of the soil column when regressed with log(SOC) and log(TN). Our carbon isotope data defy typical trends below ~30 cm for residual, undisturbed soils. We suggest this may reflect the absence of bioturbation during the LGM when the climate was cold and dry, and soil was deflated. Since ~13 ka, we believe the vegetation cover increased and bioturbation became affective, resulting in mixing of organic and mineral material, and concurrent soil thickening.

  12. Comparative biomass structure and estimated carbon flow in food webs in the deep Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Rowe, Gilbert T.; Wei, Chihlin; Nunnally, Clifton; Haedrich, Richard; Montagna, Paul; Baguley, Jeffrey G.; Bernhard, Joan M.; Wicksten, Mary; Ammons, Archie; Briones, Elva Escobar; Soliman, Yousra; Deming, Jody W.

    2008-12-01

    A budget of the standing stocks and cycling of organic carbon associated with the sea floor has been generated for seven sites across a 3-km depth gradient in the NE Gulf of Mexico, based on a series of reports by co-authors on specific biotic groups or processes. The standing stocks measured at each site were bacteria, Foraminifera, metazoan meiofauna, macrofauna, invertebrate megafauna, and demersal fishes. Sediment community oxygen consumption (SCOC) by the sediment-dwelling organisms was measured at each site using a remotely deployed benthic lander, profiles of oxygen concentration in the sediment pore water of recovered cores and ship-board core incubations. The long-term incorporation and burial of organic carbon into the sediments has been estimated using profiles of a combination of stable and radiocarbon isotopes. The total stock estimates, carbon burial, and the SCOC allowed estimates of living and detrital carbon residence time within the sediments, illustrating that the total biota turns over on time scales of months on the upper continental slope but this is extended to years on the abyssal plain at 3.6 km depth. The detrital carbon turnover is many times longer, however, over the same depths. A composite carbon budget illustrates that total carbon biomass and associated fluxes declined precipitously with increasing depth. Imbalances in the carbon budgets suggest that organic detritus is exported from the upper continental slope to greater depths offshore. The respiration of each individual "size" or functional group within the community has been estimated from allometric models, supplemented by direct measurements in the laboratory. The respiration and standing stocks were incorporated into budgets of carbon flow through and between the different size groups in hypothetical food webs. The decline in stocks and respiration with depth were more abrupt in the larger forms (fishes and megafauna), resulting in an increase in the relative predominance of smaller sizes (bacteria and meiofauna) at depth. Rates and stocks in the deep northern GoM appeared to be comparable to other continental margins where similar comparisons have been made.

  13. Uses of vitrinite reflectance in determining thermal history in sedimentary basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castano, J.R.

    1985-02-01

    Vitrinite reflectance (VR), adapted from coal petrology, came into routine use in the petroleum industry in the late 1960s. Initially, the principal goal was to help establish the VR limits for oil and gas generation. Subsequently, VR has become accepted as the most useful measure of burial history and paleotemperature, largely because VR affords the most practical means of measuring the progression of organic metamorphism. VR is used to correlate other measures of thermal history such as chemical maturity parameters, Rock-Eval t/sub max/, and burial-history reconstruction. VR can aid in identifying unconformities, geopressured sections, and thermally altered zones. Combined withmore » good temperature data, the determination of VR equivalents from temperature and burial time are used to evaluate the relationship of depth to log VR obtained directly. The time and temperature required for maturation in Tertiary basins stresses the interplay of both factors in the maturation process. Reflectance has been employed in deciphering the burial history and tectonic evolution of many areas, including structurally complex regions as the Alps and the Wyoming Overthrust Belt. Interpretational problems that arise include: (1) VR can be altered by the absorption of hydrogen-rich materials, oxidation, and natural coking; (2) the presence of reworked and caved organic matter produces multiple reflectance populations; and (3) vitrinite is sometimes difficult to distinguish from solid hydrocarbons and some inerts if the particle size is small. Most of these problems are resolved at the microscope. Interpretation is improved significantly by analyzing a series of samples rather than an isolated sample.« less

  14. Increased terrestrial to ocean sediment and carbon fluxes in the northern Chesapeake Bay associated with twentieth century land alteration

    USGS Publications Warehouse

    Saenger, C.; Cronin, T. M.; Willard, D.; Halka, J.; Kerhin, R.

    2008-01-01

    We calculated Chesapeake Bay (CB) sediment and carbon fluxes before and after major anthropogenic land clearance using robust monitoring, modeling and sedimentary data. Four distinct fluxes in the estuarine system were considered including (1) the flux of eroded material from the watershed to streams, (2) the flux of suspended sediment at river fall lines, (3) the burial flux in tributary sediments, and (4) the burial flux in main CB sediments. The sedimentary maximum in Ambrosia (ragweed) pollen marked peak land clearance (~1900 a.d.). Rivers feeding CB had a total organic carbon (TOC)/total suspended solids of 0.24??0.12, and we used this observation to calculate TOC fluxes from sediment fluxes. Sediment and carbon fluxes increased by 138-269% across all four regions after land clearance. Our results demonstrate that sediment delivery to CB is subject to significant lags and that excess post-land clearance sediment loads have not reached the ocean. Post-land clearance increases in erosional flux from watersheds, and burial in estuaries are important processes that must be considered to calculate accurate global sediment and carbon budgets. ?? 2008 Coastal and Estuarine Research Federation.

  15. Normal faulting and mass movement during ridge subduction inferred from porosity transition and zeolitization in the Costa Rica subduction zone

    NASA Astrophysics Data System (ADS)

    Hamahashi, Mari; Screaton, Elizabeth; Tanikawa, Wataru; Hashimoto, Yoshitaka; Martin, Kylara; Saito, Saneatsu; Kimura, Gaku

    2017-07-01

    Subduction of the buoyant Cocos Ridge offshore the Osa Peninsula, Costa Rica substantially affects the upper plate structure through a variety of processes, including outer forearc uplift, erosion, and focused fluid flow. To investigate the nature of a major seismic reflector (MSR) developed between slope sediments (late Pliocene-late Pleistocene silty clay) and underlying higher velocity upper plate materials (late Pliocene-early Pleistocene clayey siltstone), we infer possible mechanisms of sediment removal by examining the consolidation state, microstructure, and zeolite assemblages of sediments recovered from Integrated Ocean Drilling Program Expedition 344 Site U1380. Formation of Ca-type zeolites, laumontite and heulandite, inferred to form in the presence of Ca-rich fluids, has caused porosity reduction. We adjust measured porosity values for these pore-filling zeolites and evaluated the new porosity profile to estimate how much material was removed at the MSR. Based on the composite porosity-depth curve, we infer the past burial depth of the sediments directly below the MSR. The corrected and uncorrected porosity-depth curves yield values of 800 ± 70 m and 900 ± 70 m, respectively. We argue that deposition and removal of this entire estimated thickness in 0.49 Ma would require unrealistically large sedimentation rates and suggest that normal faulting at the MSR must contribute. The porosity offset could be explained with maximum 250 ± 70 m of normal fault throw, or 350 ± 70 m if the porosity were not corrected. The porosity correction significantly reduces the amount of sediment removal needed for the combination of mass movement and normal faulting that characterize the slope in this margin.

  16. Development of a design methodology for pipelines in ice scoured seabeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, J.I.; Paulin, M.J.; Lach, P.R.

    1994-12-31

    Large areas of the continental shelf of northern oceans are frequently scoured or gouged by moving bodies of ice such as icebergs and sea ice keels associated with pressure ridges. This phenomenon presents a formidable challenge when the route of a submarine pipeline is intersected by the scouring ice. It is generally acknowledged that if a pipeline, laid on the seabed, were hit by an iceberg or a pressure ridge keel, the forces imposed on the pipeline would be much greater than it could practically withstand. The pipeline must therefore be buried to avoid direct contact with ice, but itmore » is very important to determine with some assurance the minimum depth required for safety for both economical and environmental reasons. The safe burial depth of a pipeline, however, cannot be determined directly from the relatively straight forward measurement of maximum scour depth. The major design consideration is the determination of the potential sub-scour deformation of the ice scoured soil. Forces transmitted through the soil and soil displacement around the pipeline could load the pipeline to failure if not taken into account in the design. If the designer can predict the forces transmitted through the soil, the pipeline can be designed to withstand these external forces using conventional design practice. In this paper, the authors outline a design methodology that is based on phenomenological studies of ice scoured terrain, both modern and relict, laboratory tests, centrifuge modeling, and numerical analysis. The implications of these studies, which could assist in the safe and economical design of pipelines in ice scoured terrain, will also be discussed.« less

  17. Seed germination ecology of Echinochloa glabrescens and its implication for management in rice (Oryza sativa L.).

    PubMed

    Opeña, Jhoana L; Chauhan, Bhagirath S; Baltazar, Aurora M

    2014-01-01

    Echinochloa glabrescens is a C4 grass weed that is very competitive with rice when left uncontrolled. The competitive ability of weeds is intensified in direct-seeded rice production systems. A better understanding is needed of factors affecting weed seed germination, which can be used as a component of integrated weed management in direct-seeded rice. This study was conducted to determine the effects of temperature, light, salt and osmotic stress, burial depth, crop residue, time and depth of flooding, and herbicide application on the emergence, survival, and growth of two populations [Nueva Ecija (NE) and Los Baños (IR)] of E. glabrescens. Seeds from both populations germinated at all temperatures. The NE population had a higher germination rate (88%) from light stimulation than did the IR population (34%). The salt concentration and osmotic potential required to inhibit 50% of germination were 313 mM and -0.24 MPa, respectively, for the NE population and 254 mM and -0.33 MPa, respectively, for the IR population. Emergence in the NE population was totally inhibited at 4-cm burial depth in the soil, whereas that of the IR population was inhibited at 8 cm. Compared with zero residue, the addition of 5 t ha(-1) of rice residue reduced emergence in the NE and IR populations by 38% and 9%, respectively. Early flooding (within 2 days after sowing) at 2-cm depth reduced shoot growth by 50% compared with non-flooded conditions. Pretilachlor applied at 0.075 kg ai ha(-1) followed by shallow flooding (2-cm depth) reduced seedling emergence by 94-96% compared with the nontreated flooded treatment. Application of postemergence herbicides at 4-leaf stage provided 85-100% control in both populations. Results suggest that integration of different strategies may enable sustainable management of this weed and of weeds with similar germination responses.

  18. Seed Germination Ecology of Echinochloa glabrescens and Its Implication for Management in Rice (Oryza sativa L.)

    PubMed Central

    Opeña, Jhoana L.; Chauhan, Bhagirath S.; Baltazar, Aurora M.

    2014-01-01

    Echinochloa glabrescens is a C4 grass weed that is very competitive with rice when left uncontrolled. The competitive ability of weeds is intensified in direct-seeded rice production systems. A better understanding is needed of factors affecting weed seed germination, which can be used as a component of integrated weed management in direct-seeded rice. This study was conducted to determine the effects of temperature, light, salt and osmotic stress, burial depth, crop residue, time and depth of flooding, and herbicide application on the emergence, survival, and growth of two populations [Nueva Ecija (NE) and Los Baños (IR)] of E. glabrescens. Seeds from both populations germinated at all temperatures. The NE population had a higher germination rate (88%) from light stimulation than did the IR population (34%). The salt concentration and osmotic potential required to inhibit 50% of germination were 313 mM and −0.24 MPa, respectively, for the NE population and 254 mM and −0.33 MPa, respectively, for the IR population. Emergence in the NE population was totally inhibited at 4-cm burial depth in the soil, whereas that of the IR population was inhibited at 8 cm. Compared with zero residue, the addition of 5 t ha−1 of rice residue reduced emergence in the NE and IR populations by 38% and 9%, respectively. Early flooding (within 2 days after sowing) at 2-cm depth reduced shoot growth by 50% compared with non-flooded conditions. Pretilachlor applied at 0.075 kg ai ha−1 followed by shallow flooding (2-cm depth) reduced seedling emergence by 94−96% compared with the nontreated flooded treatment. Application of postemergence herbicides at 4-leaf stage provided 85−100% control in both populations. Results suggest that integration of different strategies may enable sustainable management of this weed and of weeds with similar germination responses. PMID:24642568

  19. Hydrologic Drivers of Soil Organic Carbon Erosion and Burial: Insights from a Spatially-explicit Model of a Degraded Landscape at the Calhoun Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Dialynas, Y. G.; Bras, R. L.; Richter, D. D., Jr.

    2017-12-01

    Soil erosion and burial of organic material may constitute a substantial sink of atmospheric CO2. Attempts to quantify impacts of soil erosion on the soil-atmosphere C exchange are limited by difficulties in accounting for the fate of eroded soil organic carbon (SOC), a key factor in estimating of the net effect of erosion on the C cycle. Processes that transport SOC are still inadequately represented in terrestrial carbon (C) cycle models. This study investigates hydrologic controls on SOC redistribution across the landscape focusing on dynamic feedbacks between watershed hydrology, soil erosional processes, and SOC burial. We use tRIBS-ECO (Triangulated Irregular Network-based Real-time Integrated Basin Simulator-Erosion and Carbon Oxidation), a spatially-explicit model of SOC dynamics coupled with a physically-based hydro-geomorphic model. tRIBS-ECO systematically accounts for the fate of eroded SOC across the watershed: Rainsplash erosion and sheet erosion redistribute SOC from upland sites to depositional environments, altering depth-dependent soil biogeochemical properties in diverse soil profiles. Eroded organic material is transferred with sediment and can be partially oxidized upon transport, or preserved from decomposition by burial. The model was applied in the Calhoun Critical Zone Observatory (CZO), a site that is recovering from some of the most serious agricultural erosion in North America. Soil biogeochemical characteristics at multiple soil horizons were used to initialize the model and test performance. Remotely sensed soil moisture data (NASA SMAP) were used for model calibration. Results show significant rates of hydrologically-induced burial of SOC at the Calhoun CZO. We find that organic material at upland eroding soil profiles is largely mobilized by rainsplash erosion. Sheet erosion mainly drives C transport in lower elevation clayey soils. While SOC erosion and deposition rates declined with recent reforestation at the study site, the erosional potential of the degraded landscape remains significant.

  20. Observation of Burial and Migration of Instrumented Surrogate Munitions Deployed in the Swash Zone

    NASA Astrophysics Data System (ADS)

    Cristaudo, D.; Puleo, J. A.; Bruder, B. L.

    2017-12-01

    Munitions (also known as unexploded ordnance; UXO) in the nearshore environment due to past military activities, may be found on the beach, constituting a risk for beach users. Munitions may be transported from offshore to shallower water and/or migrate along the coast. In addition, munitions may bury in place or be exhumed due to hydrodynamic forcing. Observations on munitions mobility have generally been collected offshore, while observations in the swash zone are scarce. The swash zone is the region of the beach alternately covered by wave runup where hydrodynamic processes may be intense. Studies of munitions mobility require the use of realistic surrogates to quantify mobility/burial and hydrodynamic forcing conditions. Four surrogates (BLU-61 Cluster Bomb, 81 mm Mortar, M151-70 Hydra Rocket and M107 155 mm High Explosive Howitzer) were developed and tested during large-scale laboratory and field studies. Surrogates house sensors that measure different components of motion. Errors between real munitions and surrogate parameters (mass, center of gravity and axial moment of inertia) are all within an absolute error of 20%. Internal munitions sensors consist of inertial motion units (for acceleration and angular velocity in and around the three directions and orientation), pressure transducers (for water depth above surrogate), shock recorders (for high frequency acceleration to detect wave impact on the surrogate), and an in-house designed array of optical sensors (for burial/exposure and rolling). An in situ array of sensors to measure hydrodynamics, bed morphology and sediment concentrations, was deployed in the swash zone, aligned with the surrogate deployment. Data collected during the studies will be shown highlighting surrogate sensor capabilities. Sensors response will be compared with GPS measurements and imagery from cameras overlooking the study sites of surrogate position as a function of time. Examples of burial/exposure and migration of surrogates will be discussed. Relationships between burial/migration and incoming forcing conditions, bed slope and munitions characteristics (such as specific density, length/diameter) will all be shown.

  1. Earthquake-induced subsidence and burial of late holocene archaeological sites, northern Oregon coast

    USGS Publications Warehouse

    Minor, R.; Grant, W.C.

    1996-01-01

    Fire hearths associated with prehistoric Native American occupation lie within the youngest buried lowland soil of the estuaries along the Salmon and Nehalem rivers on the northern Oregon coast. This buried soil is the result of sudden subsidence induced by a great earthquake about 300 years ago along the Cascadia subduction zone, which extends offshore along the North Pacific Coast from Vancouver Island to northern California. The earthquake 300 years ago was the latest in a series of subsidence events along the Cascadia subduction zone over the last several thousand years. Over the long term, subsidence and burial of prehistoric settlements as a result of Cascadia subduction zone earthquakes have almost certainly been an important factor contributing to the limited time depth of the archaeological record along this section of the North Pacific Coast. Copyright ?? by the Society for American Archaeology.

  2. The influence of preburial insect access on the decomposition rate.

    PubMed

    Bachmann, Jutta; Simmons, Tal

    2010-07-01

    This study compared total body score (TBS) in buried remains (35 cm depth) with and without insect access prior to burial. Sixty rabbit carcasses were exhumed at 50 accumulated degree day (ADD) intervals. Weight loss, TBS, intra-abdominal decomposition, carcass/soil interface temperature, and below-carcass soil pH were recorded and analyzed. Results showed significant differences (p < 0.001) in decomposition rates between carcasses with and without insect access prior to burial. An approximately 30% enhanced decomposition rate with insects was observed. TBS was the most valid tool in postmortem interval (PMI) estimation. All other variables showed only weak relationships to decomposition stages, adding little value to PMI estimation. Although progress in estimating the PMI for surface remains has been made, no previous studies have accomplished this for buried remains. This study builds a framework to which further comparable studies can contribute, to produce predictive models for PMI estimation in buried human remains.

  3. On the nature and rate of resurfacing of Venus

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond E.; Grimm, Robert E.; Phillips, Roger J.; Schaber, Gerald G.; Shoemaker, Eugene M.

    1990-01-01

    Crrater production and obliteration are modeled for the plains of Venus, using (1) the observed distribution of Venus-crossing asteroids and comets; (2) viscous relaxation of crater topography; and (3) erosion and burial by atmospheric, volcanic, and tectonic processes. Crater lifetimes are assumed to be proportional to crater depths for both classes of obliterative processes although the individual criteria vary. An average crater retention age between 0.4 to 2.0 Gyr is estimated for plains, under the assumption that craters are produced and not removed. The range is driven by uncertainty in identifying degraded impact as opposed to volcanic craters. On the other hand, crater retention ages greater than about 1.6 Gyr are unlikely if viscous relaxation operates without loading of crater floor by burial. The preferred model has plains subject to crater production and obliteration processes that vary over both space and time.

  4. Heat flow and thermal history of the Anadarko basin, Oklahoma

    USGS Publications Warehouse

    Carter, L.S.; Kelley, S.A.; Blackwell, D.D.; Naeser, N.D.

    1998-01-01

    New heat-flow values for seven sites in the Anadarko basin, Oklahoma, were determined using high-precision temperature logs and thermal conductivity measurements from nearly 300 core plugs. Three of the sites are on the northern shelf, three sites are in the deep basin, and one site is in the frontal fault zone of the northern Wichita Mountains. The heat flow decreased from 55 to 64 mW/m2 in the north, and from 39 to 54 mW/m2 in the south, due to a decrease in heat generation in the underlying basement rock toward the south. Lateral lithologic changes in the basin, combined with the change in heat flow across the basin, resulted in an unusual pattern of thermal maturity. The vitrinite reflectance values of the Upper Devonian-Lower Mississippian Woodford formation are highest 30-40 km north-northwest of the deepest part of the basin. The offset in highest reflectance values is due to the contrast in thermal conductivity between the Pennsylvanian "granite wash" section adjacent to the Wichita uplift and the Pennsylvanian shale section to the north. The geothermal gradient in the low-conductivity shale section is elevated relative to the geothermal gradient in the high-conductivity "granite wash" section, thus displacing the highest temperatures to the north of the deepest part of the basin. Apatite fission-track, vitrinite reflectance, and heat-flow data were used to constrain regional aspects of the burial history of the Anadarko basin. By combining these data sets, we infer that at least 1.5 km of denudation has occurred at two sites in the deep Anadarko basin since the early to middle Cenozoic (40 ?? 10 m.y.). The timing of the onset of denudation in the southern Anadarko basin coincides with the period of late Eocene erosion observed in the southern Rocky Mountains and in the northern Great Plains. Burial history models for two wells from the deep Anadarko basin predict that shales of the Woodford formation passed through the hydrocarbon maturity window by the end of the Permian section in the deep basin moved into the hydrocarbon maturity window during Mesozoic burial of the region. Presently, the depth interval of the main zone of oil maturation (% Ro = 0.7-0.9) is approximately 2800-3800 m in the eastern deep basin basin and 2200-3000 m in the western deep basin. The greater depth to the top of the oil maturity zone and larger depth range of the zone in the eastern part of the deep basin are due to the lower heat flow associated with more mafic basement toward the east. The burial history model for the northern shelf indicates that the Woodford formation has been in the early oil maturity zone since the Early Permian.

  5. The Influence of Organic Material and Temperature on the Burial Tolerance of the Blue Mussel, Mytilus edulis: Considerations for the Management of Marine Aggregate Dredging

    PubMed Central

    Cottrell, Richard S.; Black, Kenny D.; Hutchison, Zoë L.; Last, Kim S.

    2016-01-01

    Rationale and Experimental Approach Aggregate dredging is a growing source of anthropogenic disturbance in coastal UK waters and has the potential to impact marine systems through the smothering of benthic fauna with organically loaded screening discards. This study investigates the tolerance of the blue mussel, Mytilus edulis to such episodic smothering events using a multi-factorial design, including organic matter concentration, temperature, sediment fraction size and duration of burial as important predictor variables. Results and Discussion Mussel mortality was significantly higher in organically loaded burials when compared to control sediments after just 2 days. Particularly, M. edulis specimens under burial in fine sediment with high (1%) concentrations of organic matter experienced a significantly higher mortality rate (p<0.01) than those under coarse control aggregates. Additionally, mussels exposed to the summer maximum temperature treatment (20°C) exhibited significantly increased mortality (p<0.01) compared to those in the ambient treatment group (15°C). Total Oxygen Uptake rates of experimental aggregates were greatest (112.7 mmol m-2 day-1) with 1% organic loadings in coarse sediment at 20°C. Elevated oxygen flux rates in porous coarse sediments are likely to be a function of increased vertical migration of anaerobically liberated sulphides to the sediment-water interface. However, survival of M. edulis under bacterial mats of Beggiatoa spp. indicates the species’ resilience to sulphides and so we propose that the presence of reactive organic matter within the burial medium may facilitate bacterial growth and increase mortality through pathogenic infection. This may be exacerbated under the stable interstitial conditions in fine sediment and increased bacterial metabolism under high temperatures. Furthermore, increased temperature may impose metabolic demands upon the mussel that cannot be met during burial-induced anaerobiosis. Summary Lack of consideration for the role of organic matter and temperature during sedimentation events may lead to an overestimation of the tolerance of benthic species to smothering from dredged material. PMID:26809153

  6. Biological intrusion of low-level-waste trench covers

    NASA Astrophysics Data System (ADS)

    Hakonson, T. E.; Gladney, E. S.

    The long-term integrity of low-level waste shallow land burialsites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. The need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatment is demonstrated. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and sil overburden depth.

  7. In Situ Measurement of Sediment Properties and Relationship to Backscatter: An Example From the ONR Mine Burial Program, Martha's Vineyard Coastal Observatory

    NASA Astrophysics Data System (ADS)

    Kraft, B. J.; Mayer, L. A.; Simpkin, P.; Goff, J. A.; Schwab, B.; Jenkins, C.

    2002-12-01

    In support of the Office of Naval Research­Ýs Mine Burial Program (MBP), in situ acoustic and resistivity measurements were obtained using ISSAP (In situ Sound Speed and Attenuation Probe), a device developed and built by the Center for Coastal and Ocean Mapping. One of the field areas selected for the MBP experiments is the WHOI coastal observatory based off Martha's Vineyard. This area is an active natural laboratory that will provide an ideal environment for testing and observing mine migration and burial patterns due to temporal seabed processes. Seawater and surficial sediment measurements of compressional wave sound speed, attenuation, and resistivity were obtained at 87 station locations. ISSAP used four transducer probes that were arranged in a square pattern giving approximate acoustic path lengths of 30 cm and 20 cm and a maximum insertion depth of 15 cm. The transducers operated at a frequency of 65 kHz. Five acoustic paths were used; two long paths and three short paths. A ~15.4 ŸYs pulse was generated at a repetition rate of 30 Hz. The received signal was combined with the transmitter gate pulse to generate a composite signal that was sampled at a frequency of 5 MHz with a National Instruments PCI-6110E data acquisition board. Two resistivity probes were mounted on the ISSAP platform and positioned in locations selected to limit interference with the acoustic signals. Also mounted on the platform were a color video camera and light, and a Jasco Research UWINSTRU, which measured platform pitch and roll angles, heading, depth, and temperature. At each of the 87 stations, the ISSAP probe was lowered into seawater to a location ~6m above the seafloor. A measurement cycle was completed by transmitting 10 pulses on each of the five paths and repeating three times for a total of 150 measurements. Resistivity measurements were obtained from both probes following completion of the acoustic measurements. The ISSAP platform was then lowered into the seafloor where two acoustic and resistivity measurement cycles were completed in the sediment. Probe insertion was aided by the video signal which provided imagery of the seafloor. The instrument was removed from the sediment and a second seawater measurement cycle completed. Typically, a sequence of measurements (300 acoustic and 40 resistivity measurements in seawater and similarly in sediment) was completed in ~ 4 minutes. Recorded waveforms were processed for sound speed using two methods, cross-correlation and envelope detection. Sediment attenuation was estimated using the filter-correlation method of Courtney and Mayer. In conjunction with the MBP experiments, several surveys (sidescan, interferometric bathymetry, and multibeam) have been completed. The ability to predict quantitative acoustical and physical properties of sediments from remotely measured backscatter data will be examined.

  8. Chlorine isotope constraints on fluid-rock interactions during subduction and exhumation of the Zermatt-Saas ophiolite

    NASA Astrophysics Data System (ADS)

    Selverstone, J.; Sharp, Z. D.

    2013-10-01

    Chlorine isotope compositions of high-pressure (˜2.3 GPa) serpentinite, rodingite, and hydrothermally altered oceanic crust (AOC) differ significantly from high- and ultrahigh-pressure (> 3.2 GPa) metasedimentary rocks in the Aosta region, Italy. Texturally early serpentinites, rodingites, and AOC have bulk δ37Cl values indistinguishable from those of modern seafloor analogues (δ37Cl = -1.0 to +1.0‰). In contrast, serpentinites and AOC samples that recrystallized during exhumation have low δ37Cl values (-2.7 to -0.5‰); 37Cl depletion correlates with progressive changes in bulk chemistry. HP/UHP metasediments have low δ37Cl values (median = -2.5‰) that differ statistically from modern marine sediments (median = -0.6‰). Cl in metasedimentary rocks is concentrated in texturally early minerals, indicating modification of seafloor compositions early in the subduction history. The data constrain fluid sources during both subduction and exhumation-related phases of fluid-rock interaction: (1) marine sediments at the top of the downgoing plate likely interacted with isotopically light pore fluids from the accretionary wedge in the early stages of subduction. (2) No pervasive interaction with externally derived fluid occurred during subsequent subduction to the maximum depths of burial. (3) Localized mixing between serpentinites and fluids released by previously isotopically modified metasediments occurred during exhumation in the subduction channel. Most samples, however, preserved protolith signatures during subduction to near-arc depths.

  9. Burial increases seed longevity of two Artemisia tridentata (Asteraceae) subspecies

    USGS Publications Warehouse

    Wijayratne, Upekala C.; Pyke, David A.

    2012-01-01

    Premise of the study: Seed longevity and persistence in soil seed banks may be especially important for population persistence in ecosystems where opportunities for seedling establishment and disturbance are unpredictable. The fire regime, an important driver of population dynamics in sagebrush steppe ecosystems, has been altered by exotic annual grass invasion. Soil seed banks may play an active role in postfire recovery of the foundation shrub Artemisia tridentata, yet conditions under which seeds persist are largely unknown. Methods: We investigated seed longevity of two Artemisia tridentata subspecies in situ by retrieving seed bags that were placed at varying depths over a 2 yr period. We also sampled naturally dispersed seeds in litter and soil immediately after seed dispersal and before flowering in subsequent seasons to estimate seed persistence. Key results: After 24 mo, seeds buried at least 3 cm below the soil surface retained 30–40% viability whereas viability of seeds on the surface and under litter declined to 0 and Artemisia tridentata has the potential to form a short-term soil seed bank that persists longer than has been commonly assumed, and that burial is necessary for seed longevity. Use of seeding techniques that promote burial of some seeds to aid in formation of a soil seed bank may increase restoration potential.

  10. Cap rock efficiency of geothermal systems in fold-and-thrust belts: Evidence from paleo-thermal and structural analyses in Rosario de La Frontera geothermal area (NW Argentina)

    NASA Astrophysics Data System (ADS)

    Maffucci, R.; Corrado, S.; Aldega, L.; Bigi, S.; Chiodi, A.; Di Paolo, L.; Giordano, G.; Invernizzi, C.

    2016-12-01

    Cap rock characterization of geothermal systems is often neglected despite fracturing may reduce its efficiency and favours fluid migration. We investigated the siliciclastic cap rock of Rosario de La Frontera geothermal system (NW Argentina) in order to assess its quality as a function of fracture patterns and related thermal alteration. Paleothermal investigations (XRD on fine-grained fraction of sediments, organic matter optical analysis and fluid inclusions on veins) and 1D thermal modelling allowed us to distinguish the thermal fingerprint associated to sedimentary burial from that related to fluid migration. The geothermal system is hosted in a Neogene N-S anticline dissected by high angle NNW- and ENE-striking faults. Its cap rock can be grouped into two quality categories: rocks acting as good insulators, deformed by NNW-SSE and E-W shear fractures, NNE-SSW gypsum- and N-S-striking calcite-filled veins that developed during the initial stage of anticline growth. Maximum paleo-temperatures (< 60 °C) were experienced during deposition to folding phases. rocks acting as bad insulators, deformed by NNW-SSE fault planes and NNW- and WNW-striking sets of fractures associated to late transpressive kinematics. Maximum paleo-temperatures higher than about 115 °C are linked to fluid migration from the reservoir to surface (with a reservoir top at maximum depths of 2.5 km) along fault damage zones. This multi-method approach turned out to be particularly useful to trace the main pathways of hot fluids and can be applied in blind geothermal systems where either subsurface data are scarce or surface thermal anomalies are lacking.

  11. The effects of burial diagenesis on multiscale porosity in the St. Peter Sandstone: An imaging, small-angle, and ultra-small-angle neutron scattering analysis

    DOE PAGES

    Anovitz, Lawrence M.; Freiburg, Jared T.; Wasbrough, Matthew; ...

    2017-11-06

    To examine the effects of burial diagenesis on heirarchical pore structures in sandstone and compare those with the effects of overgrowth formation, we obtained samples of St. Peter Sandstone from drill cores obtained in the Illinois and Michigan Basins. The multiscale pore structure of rocks in sedimentary reservoirs and the mineralogy associated with those pores are critical factors for estimating reservoir properties, including fluid mass in place, permeability, and capillary pressures, as well as geochemical interactions between the rock and the fluid. The combination of small- and ultra-small-angle neutron scattering with backscattered electron or X ray-computed tomographic imaging, or both,more » provided a means by which pore structures were quantified at scales ranging from aproximately 1 nm to 1 cm—seven orders of magnitude. Larger scale (>10 µm) porosity showed the expected logarithmic decrease in porosity with depth, although there was significant variation in each sample group. However, small- and ultra-small-angle neutron scattering data showed that the proportion of small-scale porosity increased with depth. Porosity distributions were not continuous, but consisted of a series of log normal-like distributions at several distinct scales within these rocks. Fractal dimensions at larger scales decreased (surfaces smoothed) with increasing depth, and those at smaller scales increased (surfaces roughened) and pores become more isolated (higher lacunarity). Furthermore, data suggest that changes in pore-size distributions are controlled by both physical (compaction) and chemical effects (precipitation, cementation, dissolution).« less

  12. The effects of burial diagenesis on multiscale porosity in the St. Peter Sandstone: An imaging, small-angle, and ultra-small-angle neutron scattering analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anovitz, Lawrence M.; Freiburg, Jared T.; Wasbrough, Matthew

    To examine the effects of burial diagenesis on heirarchical pore structures in sandstone and compare those with the effects of overgrowth formation, we obtained samples of St. Peter Sandstone from drill cores obtained in the Illinois and Michigan Basins. The multiscale pore structure of rocks in sedimentary reservoirs and the mineralogy associated with those pores are critical factors for estimating reservoir properties, including fluid mass in place, permeability, and capillary pressures, as well as geochemical interactions between the rock and the fluid. The combination of small- and ultra-small-angle neutron scattering with backscattered electron or X ray-computed tomographic imaging, or both,more » provided a means by which pore structures were quantified at scales ranging from aproximately 1 nm to 1 cm—seven orders of magnitude. Larger scale (>10 µm) porosity showed the expected logarithmic decrease in porosity with depth, although there was significant variation in each sample group. However, small- and ultra-small-angle neutron scattering data showed that the proportion of small-scale porosity increased with depth. Porosity distributions were not continuous, but consisted of a series of log normal-like distributions at several distinct scales within these rocks. Fractal dimensions at larger scales decreased (surfaces smoothed) with increasing depth, and those at smaller scales increased (surfaces roughened) and pores become more isolated (higher lacunarity). Furthermore, data suggest that changes in pore-size distributions are controlled by both physical (compaction) and chemical effects (precipitation, cementation, dissolution).« less

  13. Petrophysical Properties of Cody, Mowry, Shell Creek, and Thermopolis Shales, Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Nelson, P. H.

    2013-12-01

    The petrophysical properties of four shale formations are documented from well-log responses in 23 wells in the Bighorn Basin in Wyoming. Depths of the examined shales range from 4,771 to 20,594 ft. The four formations are the Thermopolis Shale (T), the Shell Creek Shale (SC), the Mowry Shale (M), and the lower part of the Cody Shale (C), all of Cretaceous age. These four shales lie within a 4,000-ft, moderately overpressured, gas-rich vertical interval in which the sonic velocity of most rocks is less than that of an interpolated trendline representing a normal increase of velocity with depth. Sonic velocity, resistivity, neutron, caliper, and gamma-ray values were determined from well logs at discrete intervals in each of the four shales in 23 wells. Sonic velocity in all four shales increases with depth to a present-day depth of about 10,000 ft; below this depth, sonic velocity remains relatively unchanged. Velocity (V), resistivity (R), neutron porosity (N), and hole diameter (D) in the four shales vary such that: VM > VC > VSC > VT, RM > RC > RSC > RT, NT > NSC ≈ NC > NM, and DT > DC ≈ DSC > DM. These orderings can be partially understood on the basis of rock compositions. The Mowry Shale is highly siliceous and by inference comparatively low in clay content, resulting in high sonic velocity, high resistivity, low neutron porosity, and minimal borehole enlargement. The Thermopolis Shale, by contrast, is a black fissile shale with very little silt--its high clay content causes low velocity, low resistivity, high neutron response, and results in the greatest borehole enlargement. The properties of the Shell Creek and lower Cody Shales are intermediate to the Mowry and Thermopolis Shales. The sonic velocities of all four shales are less than that of an interpolated trendline that is tied to velocities in shales above and below the interval of moderate overpressure. The reduction in velocity varies among the four shales, such that the amount of offset (O) from the trendline is OT > OSC > OC > OM, that is, the velocity in the Mowry Shale is reduced the least and the velocity in the Thermopolis Shale is reduced the most. Velocity reductions are attributed to increases in pore pressure during burial, caused by the generation and retention of gas, with lithology playing a key role in the amount of reduction. Sonic velocity in the four shale units remains low to the present day, after uplift and erosion of as much as 6,500 ft in the deeper part of the basin and consequent possible reduction from maximum pore pressures reached when strata were more deeply buried. A model combining burial history, the decrease of effective stress with increasing pore pressure, and Bower's model for the dependence of sonic velocity on effective stress is proposed to explain the persistence of low velocity in shale units. Interruptions to compaction gradients associated with gas occurrences and overpressure are observed in correlative strata in other basins in Wyoming, so the general results for shales in the Bighorn Basin established in this paper should be applicable elsewhere.

  14. Limits on the Abundance and Burial Depth of Lunar Polar Ice

    NASA Technical Reports Server (NTRS)

    Elphic, Richard C.; Paige, David A.; Siegler, Matthew A.; Vasavada, Ashwin R.; Teodoro, Luis A.; Eke, Vincent R.

    2012-01-01

    The Diviner imaging radiometer experiment aboard the Lunar Reconnaissance Orbiter has revealed that surface temperatures in parts of the lunar polar regions are among the lowest in the solar system. Moreover, modeling of these Diviner data using realistic thermal conductivity profiles for lunar regolith and topography-based illumination has been done, with surprising results. Large expanses of circum-polar terrain appear to have near-subsurface temperatures well below 110K, despite receiving episodic low-angle solar illumination [Paige et al., 2010]. These subsurface cold traps could provide areally extensive reservoirs of volatiles. Here we examine the limits to abundance and burial depth of putative volatiles, based on the signature they would create for orbital thermal and epithermal neutrons. Epithermals alone are not sufficient to break the abundance-depth ambiguity, while thermal neutrons provide an independent constraint on the problem. The subsurface cold traps are so large that even modest abundances, well below that inferred from LCROSS observations, would produce readily detectable signatures in the Lunar Prospector neutron spectrometer data [Colaprete et al., 2010]. Specifically, we forward-model the thermal and epithermal neutron leakage flux that would be observed for various ice concentrations, given the depth at which ice stability begins. The LCROSS results point to a water-equivalent hydrogen abundance (WEH) in excess of 10 wt%, when all hydrogenous species are added together (except for H2, detected by LAMP on LRO [Gladstone et al., 2010]). When such an ice abundance is placed in a layer below the stability depth of Paige et al., the epithermal and thermal neutron leakage fluxes are vastly reduced and very much at odds with orbital observations. So clearly an environment that is conducive to cold trapping is necessary but not sufficient for the presence of volatiles such as water. We present the limits on the abundances that are indeed consistent with orbital data. At the LCROSS impact site itself, the data are consistent with very high ice abundances at 50-100 cm depth. However, radar results rule out these high abundances.

  15. A carbon accumulation maximum during the Medieval Climate Anomaly in the world’s biggest bog, Siberia

    NASA Astrophysics Data System (ADS)

    Beilman, D.; MacDonald, G. M.

    2009-12-01

    The West Siberia Lowland is the most carbon-rich northern wetland region, holding an important portion of total northern peatland carbon (70 Gt of 270-450 Gt C) mainly in the southern lowland (44 Gt) in very large peatlands. The largest of these, the Great Vasyugan Bog complex, spans 63,252 km2 and alone holds ~11 Gt C. Our previous work has shown that recent-past growth of WSL peat C pool has been greatest in southern WSL in large peatlands close to the southern limit of peatland distribution. In this study, we investigate a Great Vasyugan site to investigate peat carbon sensitivity in two ways: 1) assess past changes in vegetation, species-specific 13C geochemistry, and rate of carbon accumulation relative to recent-past climate variation, and 2) assess the relative lability of this deep peat C through laboratory incubations. Carbon accumulation over the last 2000 years, a period of relatively consistent vegetation and litter inputs but variable local hydrology, reached a maximum between 1150 and 1350 AD during Medieval Climate Anomaly conditions. A carbon accumulation minimum occurred between about 1350 and 1550 AD. Regardless of depth, age, or rate of carbon burial, deep peat from between 30 and 230 cm below the surface showed a similar rate of potential aerobic respiration that changed little over 42 days of incubation. Taken together, these data suggest that in some peatlanlds warmer and hydrologically-variable conditions can promote long-term belowground carbon storage.

  16. Present heat flow and paleo-geothermal regime in the Canadian Arctic margin: analysis of industrial thermal data and coalification gradients

    NASA Astrophysics Data System (ADS)

    Majorowicz, Jacek A.; Embry, Ashton F.

    1998-06-01

    Calculations of the present geothermal gradient and terrestrial heat flow were made on 156 deep wells of the Canadian Arctic Archipelago. Corrected bottom hole temperature (BHT) data and drill stem test (DST) temperatures were used to determine the thermal gradients for sites for which the quality of data was sufficient. Thermal gradients evaluated for depths below the base of permafrost for the onshore wells and below sea bottom for the offshore wells were combined with the estimates of effective thermal conductivity to approximate heat flow for these sites. The present geothermal gradient is in the 15-50 mK/m range (mean = 31 ± 7 mK/m). Present heat flow is mainly in the 35-90 mW/m 2 range (mean = 53 ± 12 mW/m 2). Maps of the present geothermal gradient and present heat flow have been constructed for the basin. The analysis of vitrinite reflectance profiles and the calculation of logarithmic coalification gradients for 101 boreholes in the Sverdrup Basin showed large variations related in many cases to regional variations of present terrestrial heat flow. Paleo-geothermal gradients estimated from these data are mostly in the range of 15-50 mK/m (mean = 28 ± 9 mK/m) and paleo-heat flow is in the 40-90 mW/m 2 range (mean = 57 ± 18 mW/m 2) related to the time of maximum burial in the Early Tertiary. Mean values of the present heat flow and paleo-heat flow for the Sverdrup Basin are almost identical considering the uncertainties of the methods used (53 ± 12 versus 57 ± 18 mW/m 2, respectively). Present geothermal gradients and paleo-geothermal gradients are also close when means are compared (31 ± 7 versus 28 ± 9 mK/m respectively). A zone of high present heat flow and a paleo-heat flow zone coincide in places with the northeastern-southwestern incipient rift landward of the Arctic margin first described by Balkwill and Fox (1982). Correlation between present heat flow and paleo-heat flow for the time of maximum burial in the earliest Tertiary suggests that the high heat flow zone has prevailed since that time.

  17. Dolomite: occurrence, evolution and economically important associations

    NASA Astrophysics Data System (ADS)

    Warren, John

    2000-11-01

    Dolomite is not a simple mineral; it can form as a primary precipitate, a diagenetic replacement, or as a hydrothermal/metamorphic phase, all that it requires is permeability, a mechanism that facilitates fluid flow, and a sufficient supply of magnesium. Dolomite can form in lakes, on or beneath the shallow seafloor, in zones of brine reflux, and in early to late burial settings. It may form from seawater, from continental waters, from the mixing of basinal brines, the mixing of hypersaline brine with seawater, or the mixing of seawater with meteoric water, or via the cooling of basinal brines. Bacterial metabolism may aid the process of precipitation in settings where sulfate-reducing species flourish and microbial action may control primary precipitation in some hypersaline anoxic lake settings. Dolomite is a metastable mineral, early formed crystals can be replaced by later more stable phases with such replacements repeated a number of times during burial and metamorphism. Each new phase is formed by the partial or complete dissolution of an earlier dolomite. This continual re-equilibration during burial detracts from the ability of trace elements to indicate depositional conditions and resets the oxygen isotope signature of the dolomite at progressively higher temperatures. Because subsurface dolomite evolves via dissolution and reprecipitation, a bed of dolomite can retain or create porosity and permeability to much greater burial depths and into higher temperature realms than a limestone counterpart. Dolomitization also creates new crystals, with new rhomb growth following the dissolution of less stable precursors. Repetition of this process, without complete pore cementation, can generate intercrystalline porosity a number of times in the rock's burial history. Intercrystalline porosity is a highly interconnected style of porosity that gives dolomite reservoirs their good fluid storage capacity and efficient drainage. The fact that many dolomite reservoirs formed via brine reflux means that they sit beneath an evaporite seal in both platform and basinwide evaporite settings. The same association of evaporites (sulfate source) and entrained hydrocarbons means that burial conditions are also suitable for thermochemical sulfate reduction and the precipitation of base metals. This tends to occur at higher temperatures (>60°C-80°C) and so the resulting dolomites tend to be ferroan and consist of saddle-shaped crystals.

  18. Evidence of elevated pressure and temperature during burial of the Salem Limestone in south-central Indiana, USA, and its implications for surprisingly deep burial

    NASA Astrophysics Data System (ADS)

    Ambers, Clifford P.

    2001-09-01

    A minor, normal fault related to compaction of the grainstone shoal facies of the Salem Limestone in south-central Indiana provides an unusual opportunity to test the pressure and temperature of both faulting and associated stylolitization. Syn-deformational sphalerite occurs in voids along the fault where it intersects an organic-rich shale parting in the sand flat facies overlying the grainstone. The sphalerite contains fluid inclusions that can be used for microthermobaric measurements. Most fluid inclusions in the sphalerite are demonstrably cogenetic with the host sphalerite and of the two-phase aqueous type common in Indiana, although many contain petroleum and others contain gas. Crushing tests in kerosene indicate that the aqueous inclusions contain dissolved methane in varying amounts as high as 1000 ppm. Microthermometry shows that late sphalerite growth, late fault movement, and late stylolitization all occurred as conditions approached 108°C and 292 bars. This pressure is in accord with a normal, basinal, geothermal gradient of 32.5°C/km that would produce the observed temperature under hydrostatic conditions at a burial depth of 2.7 km using an average fluid density of 1.1 g/cm 3. These results serve as a reminder that fluid inclusions in diagenetic minerals hold important temperature and pressure information regarding burial diagenesis of Paleozoic rocks across the North American midcontinent. Detailed study of dissolved gases in fluids trapped in disseminated sphalerite that is common across the midcontinent could help resolve the enigma of sedimentary rocks with high thermal maturity exposed at the surface across the region.

  19. CH4 and CO2 production relative to carbon burial in wetlands undergoing sediment loss and accretion in coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Ghaisas, N. A.; Maiti, K.; Rivera-Monroy, V. H.

    2016-02-01

    The coastal Louisiana region encompasses the largest deltaic system at the mouth of the Mississippi River, in the Gulf of Mexico, and includes the largest wetlands area in the United States. Given the critical functional role of coastal wetlands in carbon (C) storage and sequestration it is essential to assess the potential role of wetlands and adjacent tidal channels as sources (via CH4 and CO2 production) and sinks of carbon (via burial) along hydrological gradients. Such information is necessary to construct and constrain landscape-level C budgets. We investigate C burial and CO2 and CH4 emissions in two distinct sediment deposition environments undergoing land loss (Barataria Bay) and land formation (Wax Delta) in coastal Louisiana. Sediment cores (depth, 20 cm) were sampled at both sites along tidal channels, ridges and low elevation marshes during spring (March 10oC), early summer (May 20oC) and late summer (August 30oC) to evaluate seasonal and spatial scale variability in CH4 and CO2 production. CH4 production ranged from 0.003 to 20.8 moles/m2/day and differences were correlated to location, ambient temperature, dissolved O2 concentration in the overlying water and core sediment redox conditions. Seasonal CH4 fluxes into overlying water were significantly higher in the spring compared to the summer season. The CO2 fluxes ranged from 0.42 to 214 moles/m2/day and also showed higher fluxes at colder temperature ( 10 o C). These net fluxes will provide valuable information to evaluate the ratio of greenhouse gas production to carbon burial at two contrasting estuarine environments undergoing both loss and net gain of wetland area in coastal Louisiana.

  20. Seedling emergence response of rare arable plants to soil tillage varies by species.

    PubMed

    Torra, Joel; Recasens, Jordi; Royo-Esnal, Aritz

    2018-01-01

    Very little information is available on emergence of rare arable plants (RAP) in relation to soil disturbance and seed burial conditions in Europe. This information is essential to design conservation and soil management strategies to prevent the decline of these species in agroecosystems. The objective of this research was to investigate the effect of soil cultivation with burial time on the emergence and seed persistence of RAP. Seeds of 30 RAP species were collected from Spanish arable fields and subjected to two tillage treatments: (a) no soil disturbance, and (b) autumnal soil disturbance down to 10 cm depth every year. The treatments simulated no-till and tilled (disking), respectively. In plots under no-till, RAP seeds were sown at 1-cm depth. In the tilled plots, seeds were sown homogeneously mixed in the top 1-10 cm of soil. The trial was established every two consecutive seasons, and each trial was maintained for two years. Annual cumulative plant emergence was calculated each year; whereas the first trial was monitored for a third year to estimate seed longevity using a persistence index. The response in emergence of the 30 RAP to annual tillage varied among species. With burial time (number of years), higher emergence was observed for seeds sown in tilled soil. This was true across all species, and with strong season effects. The persistence index was correlated with seed weight, species with bigger seeds had low persistence indices while no pattern was observed for small seeded species. Most RAP species, particularly those with high persistence, showed induction of secondary dormancy processes, highlighting the importance of tillage to promote RAP emergence, and hence, seed bank replenishment. Therefore, as time passes the absence of soil tillage may represent a driver of RAP seed bank decline for those species with secondary dormancy processes. In conclusion, it is important to design soil management strategies, such as regular tillage to promote emergence, on a species basis to preserve RAP in Europe.

  1. Exhumation and stress history in the sedimentary cover during Laramide thick-skinned tectonics assessed by stylolite roughness analysis.

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Lacombe, Olivier; David, Marie-Eléonore; Koehn, Daniel; Coltier, Robin

    2017-04-01

    Basement-involvement in shortening in forelands has a strong impact on the overlying sedimentary cover. The basement influences namely the geometry of folds and structures, the stress evolution and the nature and pathways for fluid migrations. However, these influences are poorly documented in context where the basement/cover interface is shallow (<6 km). This contribution presents the reconstruction of paleostress and vertical burial history of the Palaeozoic sedimentary strata affected by the Sevier-Laramide deformation at the front of the Rocky Mountains, in the Bighorn Basin (Wyoming, USA). Stylolite populations have been considered as part of an extensive microstructure investigation including also fractures, striated microfaults and calcite twins in key major structures such as the Sheep Mountain Anticline, the Rattlesnake Mountain Anticline, and the Bighorn Mountains Arch. Stylolite recognized in the field are clearly related to successive stages of deformation of the sedimentary cover, including fold development. We further apply a newly developed roughness analysis of pressure-solution stylolites which grant access (1) to the magnitude of the vertical principal stress, hence the maximum burial depth of the strata based on sedimentary stylolites, (2) to the principal stress orientations and regimes based on tectonic stylolites and (3) ultimately to the complete stress tensor when sedimentary and tectonic stylolites can be considered coeval. This approach was then coupled to mechanical properties of main competent formations exposed in the basin. Results of stylolite paleopiezometry, compared and combined to existing paleostress estimates from calcite twins and to exhumation reconstruction from low-temperature thermochronology, unravel the potential of the method to refine the structural history at the structure- and basin-scale. On top of the advances this case study adds to the methodology, the quantified reconstruction of stress-exhumation evolution in such a broken-foreland context offers a unique opportunity to discuss how thick-skinned tectonics impacts stress distribution in the sedimentary cover.

  2. TOP 04-1-010 Effectiveness Testing of Mechanical Clearing Systems - Roller Systems Operating in a Straight Path

    DTIC Science & Technology

    2017-12-04

    36 APPENDIX A. TEST LANE DESIGN AND CONFUGURATION ............. A-1 B. EXAMPLE CHECKLISTS AND DATA SHEETS ............. B-1 C. ROLLER...categories and configurations, burial depths, etc.) allow for direct comparison of systems, from legacy systems (fielded) to new designs not having...effectiveness assessment of the SUT, but may indicate shortfall or design deficiency of the SUT in the integration to a specific PM, or a safety flag

  3. Differential lead retention in zircons: implications for nuclear waste containment.

    PubMed

    Gentry, R V; Sworski, T J; McKown, H S; Smith, D H; Eby, R E; Christie, W H

    1982-04-16

    An innovative ultrasensitive technique was used for lead isotopic analysis of individual zircons extracted from granite core samples at depths of 960, 2170, 2900, 3930, and 4310 meters. The results show that lead, a relatively mobile element compared to the nuclear waste-related actinides uranium and thorium, has been highly retained at elevated temperatures (105 degrees to 313 degrees C) under conditions relevant to the burial of synthetic rock waste containers in deep granite holes.

  4. Black shale - Its deposition and diagenesis.

    USGS Publications Warehouse

    Tourtelot, H.A.

    1979-01-01

    Black shale is a dark-colored mudrock containing organic matter that may have generated hydrocarbons in the subsurface or that may yield hydrocarbons by pyrolysis. Many black shale units are enriched in metals severalfold above expected amounts in ordinary shale. Some black shale units have served as host rocks for syngenetic metal deposits.Black shales have formed throughout the Earth's history and in all parts of the world. This suggests that geologic processes and not geologic settings are the controlling factors in the accumulation of black shale. Geologic processes are those of deposition by which the raw materials of black shale are accumulated and those of diagenesis in response to increasing depth of burial.Depositional processes involve a range of relationships among such factors as organic productivity, clastic sedimentation rate, and the intensity of oxidation by which organic matter is destroyed. If enough organic material is present to exhaust the oxygen in the environment, black shale results.Diagenetic processes involve chemical reactions controlled by the nature of the components and by the pressure and temperature regimens that continuing burial imposes. For a thickness of a few meters beneath the surface, sulfate is reduced and sulfide minerals may be deposited. Fermentation reactions in the next several hundred meters result in biogenic methane, followed successively at greater depths by decarboxylation reactions and thermal maturation that form additional hydrocarbons. Suites of newly formed minerals are characteristic for each of the zones of diagenesis.

  5. Sediment underthrusting within a continental magmatic arc: Coast Mountains batholith, British Columbia

    NASA Astrophysics Data System (ADS)

    Pearson, David M.; MacLeod, Douglas R.; Ducea, Mihai N.; Gehrels, George E.; Jonathan Patchett, P.

    2017-10-01

    Though continental magmatic arcs are factories for new continental crust, a significant proportion of continental arc magmas are recycled from supracrustal material. To evaluate the relative contributions of retroarc underthrusting and trench side partial sediment subduction for introducing supracrustal rocks to the middle and lower crust of continental magmatic arcs, we present results from the deeply exposed country rocks of the Coast Mountains batholith of western British Columbia. Prior work demonstrates that these rocks underwent widespread partial melting that contributed to the Coast Mountains batholith. We utilize U-Pb zircon geochronology, Sm-Nd thermochronology, and field-based studies to document the protoliths and early burial history of amphibolite and granulite-facies metasedimentary rocks in the Central Gneiss Complex. U-Pb detrital zircon data from the structurally highest sample localities yielded 190 Ma unimodal age peaks and suggest that retroarc rocks of the Stikine terrane constitute a substantial portion of the Central Gneiss Complex. These supracrustal rocks underwent thrust-related burial and metamorphism at >25 km depths prior to 80 Ma. These rocks may also be underlain at the deepest exposed structural levels by Upper Cretaceous metasedimentary rocks, which may have been emplaced as a result of trench side underplating or intraarc burial. These results further our understanding of the mechanisms of material transport within the continental lithosphere along Cordilleran subduction margins.

  6. Modeling the effects of diagenesis on carbonate clumped-isotope values in deep- and shallow-water settings

    NASA Astrophysics Data System (ADS)

    Stolper, Daniel A.; Eiler, John M.; Higgins, John A.

    2018-04-01

    The measurement of multiply isotopically substituted ('clumped isotope') carbonate groups provides a way to reconstruct past mineral formation temperatures. However, dissolution-reprecipitation (i.e., recrystallization) reactions, which commonly occur during sedimentary burial, can alter a sample's clumped-isotope composition such that it partially or wholly reflects deeper burial temperatures. Here we derive a quantitative model of diagenesis to explore how diagenesis alters carbonate clumped-isotope values. We apply the model to a new dataset from deep-sea sediments taken from Ocean Drilling Project site 807 in the equatorial Pacific. This dataset is used to ground truth the model. We demonstrate that the use of the model with accompanying carbonate clumped-isotope and carbonate δ18O values provides new constraints on both the diagenetic history of deep-sea settings as well as past equatorial sea-surface temperatures. Specifically, the combination of the diagenetic model and data support previous work that indicates equatorial sea-surface temperatures were warmer in the Paleogene as compared to today. We then explore whether the model is applicable to shallow-water settings commonly preserved in the rock record. Using a previously published dataset from the Bahamas, we demonstrate that the model captures the main trends of the data as a function of burial depth and thus appears applicable to a range of depositional settings.

  7. The Impact of Mass Movement and Fluid Flow during Ridge Subduction inferred from Physical Properties and Zeolite Assemblage in the Upper Plate Slope of the Costa Rica Subduction Zone

    NASA Astrophysics Data System (ADS)

    Hamahashi, M.; Screaton, E.; Tanikawa, W.; Hashimoto, Y.; Martin, K. M.; Saito, S.; Kimura, G.

    2015-12-01

    The Costa Rica subduction zone offshore Osa Peninsula is known as an erosive margin with active seismicity and the subduction of the Cocos Ridge. One of the major unknowns in this margin is the nature of the unconformity at the base of the slope sediments in the upper plate and the high velocity materials below. To investigate the geologic processes across the unconformity, we examined the consolidation state and mineral assemblages of the sediments at the mid-slope Site 1380 drilled during IODP Expedition 344 by conducting microstructural observation, particle size analysis, X-ray fluorescence/diffraction analysis and resistivity measurement. The general compaction trend is controlled primarily by grain-size sorting and the physical property transition is likely caused by massive sediment removal under normal fault regime, thickness of which range between ~600-850 m determined from the composite porosity-depth curve. Across the unconformity between the late Pliocene~late Pleistocene silty clay (Unit 1) and late Pliocene~early Pleistocene clayey siltstone (Unit 2), the mineral/element components of the sediments is marked by the transitions in zeolite compositions; Unit 1 consists of laumontite and heulandite, whereas below the unconformity, Unit 2 sediments contain analcime, laumontite, and heulandite, but laumontite become less abundant at lower depth. The experienced temperature of the sediments in Unit 2 is estimated to have reached between ~86 and 122℃ as inferred from analcime burial diagenesis. This may correspond with the greater depth range prior to mass movement and normal faulting. The initial analcime burial diagenetic zone was likely cut off by the sediment removal across the unconformity, and later overprinted by high temperature fluid along the boundary forming laumontite and heulandite in the vicinity. These results illustrate that ridge subduction has substantial potential to cause mass movement, an extensional stress regime, and fluid flow from depth.

  8. Organic petrology of the Aptian-age section in the downdip Mississippi Interior Salt Basin, Mississippi, USA: Observations and preliminary implications for thermal maturation history

    USGS Publications Warehouse

    Valentine, Brett J.; Hackley, Paul C.; Enomoto, Catherine B.; Bove, Alana M.; Dulong, Frank T.; Lohr, Celeste D.; Scott, Krystina R.

    2014-01-01

    This study identifies a thermal maturity anomaly within the downdip Mississippi Interior Salt Basin (MISB) of southern Mississippi, USA, through examination of bitumen reflectance data from Aptian-age strata (Sligo Formation, Pine Island Shale, James Limestone, and Rodessa Formation). U.S. Geological Survey (USGS) reconnaissance investigations conducted in 2011–2012 examined Aptian-age thermal maturity trends across the onshore northern Gulf of Mexico region and indicated that the section in the downdip MISB is approaching the wet gas/condensate window (Ro~1.2%). A focused study in 2012–2013 used 6 whole core, one sidewall core, and 49 high-graded cutting samples (depth range of 13,000–16,500 ft [3962.4–5029.2 m] below surface) collected from 15 downdip MISB wells for mineralogy, fluid inclusion, organic geochemistry, and organic petrographic analysis. Based on native solid bitumen reflectance (Ro generally > 0.8%; interpreted to be post-oil indigenous bitumens matured in situ), Ro values increase regionally across the MISB from the southeast to the northwest. Thermal maturity in the eastern half of the basin (Ro range 1.0 to 1.25%) appears to be related to present-day burial depth and shows a gradual increase with respect to depth. To the west, thermal maturity continues to increase even as the Aptian section shallows structurally on the Adams County High (Ro range 1.4 to > 1.8%). After evaluating the possible thermal agents responsible for increasing maturity at shallower depths (i.e., igneous activity, proximity to salt, variations in regional heat flux, and uplift), we tentatively propose that either greater paleoheat flow or deeper burial coupled with uplift in the western part of the MISB could be responsible for the thermal maturity anomaly. Further research and additional data are needed to determine the cause(s) of the thermal anomaly.

  9. Microbial activities at the benthic boundary layer in the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Bianchi, A.; Tholosan, O.; Garcin, J.; Polychronaki, T.; Tselepides, A.; Buscail, R.; Duineveld, G.

    2003-05-01

    During the Aegean Sea component of the EU MTP-MATER project, benthic samples were acquired along a depth gradient from two continental margins in the Aegean Sea. Sampling was undertaken during spring and summer 1997 and the microbial metabolic activities measured (Vmax for aminopeptidase activity, 14C-glutamate respiration and assimilation) displayed seasonal variability even in deep-sea conditions. The metabolic rates encountered in the North Aegean (average depth 566±234 m), were approximately five-fold higher than in the deeper (1336±140 m) Southern part of the Aegean. The aminopeptidase rates, however, were the exception with higher values recorded in the more oligotrophic sediments of the Southern stations (1383±152 vs. 766±297 nmol MCA cm-2 h-1). A discrepancy in bacterial metabolism also appeared in the near bottom waters. In the Southern stations, 80% of the glutamate uptake was used for energy yielding processes and only 20% devoted to biomass production, while in the North Aegean, most of the used glutamate was incorporated into bacterial cells. During the early burial stages, bacterial mineralization rates estimated from 14C-glutamate respiration decreased drastically compared to the rates of biopolymer hydrolysis estimated by aminopeptidase assays. Thus, at the 2-cm depth layer, these rates were only 32 and up to 77% of the corresponding average values, respectively, in the superficial layer. Such a discrepancy between the evolution of these two metabolic activities is possibly due to the rapid removal of readily utilizable monomers in the surface deposits. The correlation between bacterial respiration and total organic carbon, or total organic nitrogen, is higher in the surficial sediment (0-2 and 2-4 cm) than in the underlying layer. Conversely, it is only at 4-cm depth layer that the hydrolysis rates appear correlated with organic carbon and nitrogen concentrations. This pattern confirms the drastic degradation of organic matter during the early burial stages.

  10. A review of hydrologic and geologic conditions related to the radioactive solid-waste burial grounds at Oak Ridge National Laboratory, Tennessee

    USGS Publications Warehouse

    Webster, D.A.

    1976-01-01

    Solid waste contaminated by radioactive matter has been buried in the vicinity of Oak Ridge National Laboratory since 1944. By 1973, an estimated six million cubic feet of such material had been placed in six burial grounds in two valleys. The practice initially was thought of as a safe method for permanently removing these potentially hazardous substances from man's surroundings, but is now que.3tionable at this site because of known leaching of contaminants from the waste, transport in ground water, and release to the terrestrial and fluvial environments. This review attempts to bring together in a single document information from numerous published and unpublished sources regarding the past criteria used for selecting the Oak Ridge burial-ground sites, the historical development and conditions of these facilities as of 1974, the geologic framework of the Laboratory area and the movement of water and water-borne contaminants in that area, the effects of sorption and ion exchange upon radionuclide transport, and a description and evaluation of the existing monitoring system. It is intended to assist Atomic Energy Commission (now Energy Research and Development Administration) officials in the formulation of managerial decisions concerning the burial grounds and present monitoring methods. Sites for the first three burial grounds appear to have been chosen during and shortly after World War II on the basis of such factors as safety, security, and distance from sources of waste origin. By 1950, geologic criteria had been introduced, and in the latter part of that decade, geohydrologic criteria were considered. While no current criteria have been defined, it becomes evident from the historical record that the successful containment of radionuclides below land surface for long periods of time is dependent upon a complex interrelationship between many geologic, hydrologic, and geochemical controls, and any definition of criteria must include consideration of these factors. For the most part, the burial grounds have been developed by a simple cut and fill procedure similar to the operation of a municipal landfill. Low permeability of the residuum, high rainfall, shallow depth to ground water, the excavation of trenches below the water table, and other practices, have contributed to a condition of waste leaching in probably all of the burial grounds. Despite these conditions, only very small concentrations of radionuclides have been found in wells or otherwise attributed to the initial three, small sites in Bethel Valley. This fact, however, may be due in part to the scant extent of site monitoring of those burial grounds for transport of radionuclides in ground water, and to the discharge of liquid radioactive waste to the drainage in concentrations that probably would have masked the presence of contaminants derived from these burial grounds. In comparison to the Bethel Valley sites, larger amounts of radioactive contaminants have been found in wells, seeps, trench overflow, and the drainages that drain Burial Grounds 4 and 5 in Melton Valley. The movement of radionuclides from the trenches to the drainages show that the latter sites are not suitable for the retention of all contaminants under existing conditions, and invalidates the operational concept of long-term or permanent retention of all radionuclides in the geologic environment. The transport of many radioactive ions leached from the waste has been retarded by the very high sorptive and ion exchange capacity of the residuum with which the radionuclides have had contact. Not all radionuclides, though, will be retained in the subsurface by adsorption, absorption, or ion exchange. Among those radioactive contaminants that may be problematical with respect to trench burial at Oak Ridge are tritium and other negatively-charged nuclides, positively-charged radionuclides included in some of the complexed molecules, radioactive ions that have chemical properties si

  11. Adventitious root production and plastic resource allocation to biomass determine burial tolerance in woody plants from central Canadian coastal dunes.

    PubMed

    Dech, Jeffery P; Maun, M Anwar

    2006-11-01

    Burial is a recurrent stress imposed upon plants of coastal dunes. Woody plants are buried on open coastal dunes and in forested areas behind active blowouts; however, little is known about the burial responses and adaptive traits of these species. The objectives of this study were: (a) to determine the growth and morphological responses to burial in sand of seven woody plant species native to central Canadian coastal dunes; and (b) to identify traits that determine burial tolerance in these species. Field experiments were conducted to determine the responses of each species to burial. Saplings were exposed to burial treatments of 0, 10, 25, 50 and 75 % of their height. Burial responses were evaluated based on regressions of total biomass, height, adventitious root production and percentage allocation to shoot, root and adventitious root biomass on percentage burial. Pinus strobus and Picea glauca lacked burial tolerance. In response to the burial gradient, these species showed a strong linear decline in total biomass, minimal adventitious root production that peaked at moderate levels (25-50 % burial) and no change in allocation to shoots vs. roots. The tolerant species Juniperus virginiana, Thuja occidentalis and Picea mariana showed a quadratic response to burial, with little change in biomass up to 50 % burial, but a large decline at 75 %. These species produced abundant adventitious roots up to 50 % burial, but did not alter allocation patterns over the range of burial levels. Populus balsamifera and Salix cordata were stimulated by burial. These species showed linear increases in biomass with increasing burial, produced copious adventitious roots across the gradient and showed a clear shift in allocation to vertical shoot growth and adventitious root production at the expense of the original roots under high burial conditions. Adventitious root production and plastic resource allocation to biomass are adaptive traits of coastal dune woody plants in central Canada, and provide a basis for assessing burial tolerance in woody plants on coastal dunes throughout the world.

  12. The effect of soil texture on the degradation of textiles associated with buried bodies.

    PubMed

    Lowe, A C; Beresford, D V; Carter, D O; Gaspari, F; O'Brien, R C; Stuart, B H; Forbes, S L

    2013-09-10

    There are many factors which affect the rate of decomposition in a grave site including; the depth of burial, climatic conditions, physical conditions of the soil (e.g. texture, pH, moisture), and method of burial (e.g. clothing, wrappings). Clothing is often studied as a factor that can slow the rate of soft tissue decomposition. In contrast, the effect of soft tissue decomposition on the rate of textile degradation is usually reported as anecdotal evidence rather than being studied under controlled conditions. The majority of studies in this area have focused on the degradation of textiles buried directly in soil. The purpose of this study was to investigate the effect of soil texture on the degradation and/or preservation of textile materials associated with buried bodies. The study involved the burial of clothed domestic pig carcasses and control clothing in contrasting soil textures (silty clay loam, fine sand and fine sandy loam) at three field sites in southern Ontario, Canada. Graves were exhumed after 2, 12 and 14 months burial to observe the degree of degradation for both natural and synthetic textiles. Recovered textile samples were chemically analyzed using infrared (IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) to investigate the lipid decomposition by-products retained in the textiles. The findings of this study demonstrate that natural textile in contact with a buried decomposing body will be preserved for longer periods of time when compared to the same textile buried directly in soil and not in contact with a body. The soil texture did not visually impact the degree of degradation or preservation. Furthermore, the natural-synthetic textile blend was resistant to degradation, regardless of soil texture, contact with the body or time since deposition. Chemical analysis of the textiles using GC-MS correctly identified a lipid degradation profile consistent with the degree of soft tissue decomposition. Such information may be important for estimating time since deposition in instances where only grave goods and associated materials are recovered from a burial site. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Distribution of ancient carbon in buried soils in an eroding loess landscape

    NASA Astrophysics Data System (ADS)

    Szymanski, L. M.; Mason, J. A.; De Graaff, M. A.; Berhe, A. A.; Marin-Spiotta, E.

    2017-12-01

    Understanding the processes that contribute to the accumulation and loss of carbon in soils and the implications for land management is vital for mitigating climate change. Buried soils or paleosols that represent former surface horizons can store more organic carbon than mineral horizons at equivalent depths due to burial restricting microbial decomposition. The presence of buried soils defies modeled expectations of exponential declines in carbon concentrations with depth, especially in locations where successive depositional events lead to multiple buried soil layers. Buried soils are found in a diversity of depositional environments across latitudes and without accounting for their presence can lead to underestimates of regional carbon reservoirs. Here we present data on the spatial distribution of carbon in a paleosol loess sequence in Nebraska, focusing on one prominent paleosol, the Brady soil. The Brady soil has been identified throughout the Central Great Plains and began developing at the end of the Pleistocene and was subsequently buried by loess in the early Holocene (Mason et al. 2003). Preliminary analyses of the Brady soil at its deepest, 6-m below the surface, reveal large differences in the composition and degree of decomposition of organic matter from the modern soil. We sampled along burial and erosional transects to characterize spatial variability in the depth of Brady soil from the modern landscape surface and to determine how these differences may alter the amount and composition of organic carbon. A more accurate determination of the spatial extent and heterogeneity of buried soil carbon will improve regional estimates of carbon reservoirs. This assessment of its variability across the landscape will inform future planned work on the vulnerability of ancient carbon to disturbance.

  14. Predicting Lg Coda Using Synthetic Seismograms and Media With Stochastic Heterogeneity

    NASA Astrophysics Data System (ADS)

    Tibuleac, I. M.; Stroujkova, A.; Bonner, J. L.; Mayeda, K.

    2005-12-01

    Recent examinations of the characteristics of coda-derived Sn and Lg spectra for yield estimation have shown that the spectral peak of Nevada Test Site (NTS) explosion spectra is depth-of-burial dependent, and that this peak is shifted to higher frequencies for Lop Nor explosions at the same depths. To confidently use coda-based yield formulas, we need to understand and predict coda spectral shape variations with depth, source media, velocity structure, topography, and geological heterogeneity. We present results of a coda modeling study to predict Lg coda. During the initial stages of this research, we have acquired and parameterized a deterministic 6 deg. x 6 deg. velocity and attenuation model centered on the Nevada Test Site. Near-source data are used to constrain density and attenuation profiles for the upper five km. The upper crust velocity profiles are quilted into a background velocity profile at depths greater than five km. The model is parameterized for use in a modified version of the Generalized Fourier Method in two dimensions (GFM2D). We modify this model to include stochastic heterogeneities of varying correlation lengths within the crust. Correlation length, Hurst number and fractional velocity perturbation of the heterogeneities are used to construct different realizations of the random media. We use nuclear explosion and earthquake cluster waveform analysis, as well as well log and geological information to constrain the stochastic parameters for a path between the NTS and the seismic stations near Mina, Nevada. Using multiple runs, we quantify the effects of variations in the stochastic parameters, of heterogeneity location in the crust and attenuation on coda amplitude and spectral characteristics. We calibrate these parameters by matching synthetic earthquake Lg coda envelopes to coda envelopes of local earthquakes with well-defined moments and mechanisms. We generate explosion synthetics for these calibrated deterministic and stochastic models. Secondary effects, including a compensated linear vector dipole source, are superposed on the synthetics in order to adequately characterize the Lg generation. We use this technique to characterize the effects of depth of burial on the coda spectral shapes.

  15. Environmental analysis burial of offsite low-level waste at SRP

    NASA Astrophysics Data System (ADS)

    Poe, W. L.; Moyer, R. A.

    1980-12-01

    The environmental effects of receipt and burial of low level naval waste are assessed. This low level waste was sent to the NRC-licensed burial ground operated by Chem-Nuclear Systems, Inc., at Barnwell, South Carolina. The DOE announced that DOE-generated low level waste would no longer be buried at commercial waste burial sites. The SRP was selected to receive the Naval waste described in this analysis. Receipt and burial of these wastes will have a negligible effect on SRP's environment and increase only sightly the environmental effects of the SRP operations discussed in the EIS on SRP waste management operations. The environmental effects of burial of this waste at Chem-Nuclear Burial Ground or at the SRP Burial Ground are described in this environmental analysis to permit assessment of incremental effects caused by the decision to bury this Naval waste in the SRP Burial Ground rather than in the Barnwell Burial Ground. The radiological effects from burial of this waste in either the SRP or Chem-Nuclear Burial Ground are very small when compared to those from natural background radiation or to the annual population dose commitment from operation of SRP. The environmental effects of burial at SRP to dose commitments normally received by the population surrounding SRP are compared.

  16. Griffin 2.0 - Development and Evaluation of an Occupant Protection Platform with Active-Blast Mitigation and Crew Floor Isolation

    DTIC Science & Technology

    2016-11-15

    and they include 1) threat size, 2) threat burial depth, 3) soil composition, 4) vehicle standoff, 5) hull geometry, and 6) vehicle mass. However...crucial in engaging as much of the mass as possible. Another feature of the Griffin architecture is the continuous monocoque hull design that...underbody threats up to 200% MRAP Objective (Pratt & Miller Engineering, 2015). Next a low-deformation hull needs to be utilized that will

  17. Estimating Yield and Depth of Burial from Rg (POSTPRINT) Annual Report 2

    DTIC Science & Technology

    2012-03-20

    sec) and are representative of more competent bedrock ( limestone ). Similarly, the Q is lower (2 to 15) to the west of the fault than to the east (15...faster (0.8 to 2 km/sec) and are representative of more competent bedrock ( limestone ). Similarly, the Q is lower (2 to 15) to the west of the fault...similar geologies as detonation. The only exception is the 100-lb C4 shot at GRABS (134 lb TNT equivalent) which propagated in limestone and granite

  18. Inter-layered clay stacks in Jurassic shales

    NASA Technical Reports Server (NTRS)

    Pye, K.; Krinsley, D. H.

    1983-01-01

    Scanning electron microscopy in the backscattered electron mode is used together with energy-dispersive X-ray microanalysis to show that Lower Jurassic shales from the North Sea Basin contain large numbers of clay mineral stacks up to 150 microns in size. Polished shale sections are examined to determine the size, shape orientation, textural relationships, and internal compositional variations of the clays. Preliminary evidence that the clay stacks are authigenic, and may have formed at shallow burial depths during early diagenesis, is presented.

  19. Unravelling the depositional origins and diagenetic alteration of carbonate breccias

    NASA Astrophysics Data System (ADS)

    Madden, Robert H. C.; Wilson, Moyra E. J.; Mihaljević, Morana; Pandolfi, John M.; Welsh, Kevin

    2017-07-01

    Carbonate breccias dissociated from their platform top counterparts are little studied despite their potential to reveal the nature of past shallow-water carbonate systems and the sequential alteration of such systems. A petrographic and stable isotopic study allowed evaluation of the sedimentological and diagenetic variability of the Cenozoic Batu Gading Limestone breccia of Borneo. Sixteen lithofacies representing six facies groups have been identified mainly from the breccia clasts on the basis of shared textural and compositional features. Clasts of the breccia are representative of shallow carbonate platform top and associated flank to basinal deposits. Dominant inputs are from rocky (karstic) shorelines or localised seagrass environments, coral patch reef and larger foraminiferal-rich deposits. Early, pre-brecciation alteration (including micritisation, rare dissolution of bioclasts, minor syntaxial overgrowth cementation, pervasive neomorphism and calcitisation of bioclasts and matrix) was mainly associated with marine fluids in a near surface to shallow burial environment. The final stages of pre-brecciation diagenesis include mechanical compaction and cementation of open porosity in a shallow to moderate depth burial environment. Post-brecciation diagenesis took place at increasingly moderate to deep burial depths under the influence of dominantly marine burial fluids. Extensive compaction, circum-clast dissolution seams and stylolites have resulted in a tightly fitted breccia fabric, with some development of fractures and calcite cements. A degree of facies-specific controls are evident for the pre-brecciation diagenesis. Pervasive mineralogical stabilisation and cementation have, however, led to a broad similarity of diagenetic features in the breccia clasts thereby effectively preserving depositional features of near-original platform top and margin environments. There is little intra-clast alteration overprint associated with subsequent clast reworking and post-brecciation diagenesis. The diagenetic-, and to an extent depositional- and clast-characteristics of the Batu Gading deposits are diagnostic of breccia origins. The predominance of: early and pervasive stabilisation of calcitic components, pervasive compaction resulting in a fitted texture, and paucity of meteoric dissolution or cementation effects are collectively all indicators of slope deposition and lithification. These features are comparable with other regional and global examples of submarine slope breccias, and in particular those also from syntectonic settings (Wannier, 2009). The results of this study, along with regional analogues, suggest the potential for reworked carbonate debris in slope settings to be a viable way of investigating carbonate platform variability and their subsequent alteration in the absence of preserved platform top or margin deposits.

  20. Tritium and 14C concentrations in unsaturated-zone gases at test hole UZB-2, Amargosa Desert Research Site, 1994-98: A section in U.S. Geological Survey Toxic Substances Hydrology Program: Proceedings of the technical meeting, Charleston, South Carolina, March 8-12, 1999: Volume 3 (Part C) (WRI 99-4018C)>

    USGS Publications Warehouse

    Prudic, David E.; Striegl, Robert G.; Healy, Richard W.; Michel, Robert L.; Haas, Herbert; Morganwalp, David W.; Buxton, Herbert T.

    1999-01-01

    Tritium concentrations have been determined yearly since April 1994 from water-vapor samples collected at test hole UZB-2. The hole was drilled about 100 m (meters) south of the southwest corner of a commercial burial site for low-level radioactive wastes in September 1993. UZB-2 is equipped with ten 2.5-cm (centimeters) diameter air ports permanently installed in the unsaturated zone between the depths of 5.5 and 108.8 m below land surface. Depth to ground water is about 110 m. Additional sampling ports were driven by hand to depths of 0.5, 1.0 and 1.5 m in May 1997. Initial samples of water vapor collected in April 1994 showed elevated tritium concentrations of more than 100 TU (tritium units) from all 10 air ports, with a maximum concentration of 762±10 TU from an air port at a depth of 24.1 m. Subsequent tritium concentrations increased in all air ports, although tritium concentrations at depths of less than 34.1 m have remained relatively constant since July 1995. The largest observed increase in tritium has been at a depth of 47.9 m. There, tritium concentration has increased from 198±5 TU in April 1994 to 2,570±30 TU in June 1998. Large increases also have been measured in samples collected from air ports at depths of 106.4 and 108.8 m, just above the water table.During September and October 1998, carbon dioxide samples were collected from all ten air ports in UZB-2 and at a depth of 1.5 m, and analyzed for radioactive carbon-14 (14C). 14C concentrations are highest in air ports at depths less than 6 m where they exceed 2,000 pmc (percent modern carbon). Concentrations decrease rapidly in air ports at depth and are about 20 pmc below 94.2 m. However, at 47.9 meters, the 14C concentration is 205±1 pmc, which is 2 to 4 times higher than concentrations in air ports immediately above and below. This depth corresponds to the largest tritium increase in UZB-2. Concentrations of both tritium and 14C are greater than what could be expected from atmospheric fallout. The distribution of tritium and 14C likely represent a complex pattern of lateral and vertical transport through the unsaturated zone from buried wastes to UZB-2.

  1. The impact of sediment burial and erosion on seagrasses: A review

    NASA Astrophysics Data System (ADS)

    Cabaço, Susana; Santos, Rui; Duarte, Carlos M.

    2008-09-01

    The available information from experimental and descriptive studies on the effects of sediment burial and erosion on seagrasses was compiled to synthesize the information regarding the species-specific impacts and to relate them to plant characteristics. Burial thresholds (i.e. the burial levels causing 50% and 100% shoot mortality) and mortality-burial curves were estimated for the 15 seagrass species where the effects of experimental burial have been tested. All the species investigated reached 50% shoot mortality at burial levels ranging from 2 cm ( Halophila ovalis) to 19.5 cm ( Posidonia australis). P. australis was the most tolerant seagrass species to burial, while Thalassia testudinum was the most tolerant species to erosion. The relationships among plant size, growth, biomass and density with burial thresholds were examined. There were significant relationships between the burial thresholds and the shoot mass, the rhizome diameter, the aboveground biomass, the horizontal rhizome elongation and the leaf length of seagrass species. The leaf size and the rhizome diameter are the best predictors of the capacity of seagrasses to withstand burial. The burial thresholds estimated for seagrass species were in many cases in agreement with the burial impacts described by field observations (bioturbation), while in some cases was related to the species long-term colonization capacity (dune migration). Most human-induced impacts result in important changes of the sedimentary environment, with permanent negative effects on seagrass meadows (regression and complete destruction), whereas natural events, whether extreme (hurricane) or regular (dune migration), allow the recovery and/or adaptation of seagrasses to the burial/erosion sediment dynamics. The extent of the effects of burial and erosion on seagrasses is species-specific and strongly size-dependent.

  2. The maximum economic depth of groundwater abstraction for irrigation

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Van Beek, L. P.; de Graaf, I. E. M.; Gleeson, T. P.

    2017-12-01

    Over recent decades, groundwater has become increasingly important for agriculture. Irrigation accounts for 40% of the global food production and its importance is expected to grow further in the near future. Already, about 70% of the globally abstracted water is used for irrigation, and nearly half of that is pumped groundwater. In many irrigated areas where groundwater is the primary source of irrigation water, groundwater abstraction is larger than recharge and we see massive groundwater head decline in these areas. An important question then is: to what maximum depth can groundwater be pumped for it to be still economically recoverable? The objective of this study is therefore to create a global map of the maximum depth of economically recoverable groundwater when used for irrigation. The maximum economic depth is the maximum depth at which revenues are still larger than pumping costs or the maximum depth at which initial investments become too large compared to yearly revenues. To this end we set up a simple economic model where costs of well drilling and the energy costs of pumping, which are a function of well depth and static head depth respectively, are compared with the revenues obtained for the irrigated crops. Parameters for the cost sub-model are obtained from several US-based studies and applied to other countries based on GDP/capita as an index of labour costs. The revenue sub-model is based on gross irrigation water demand calculated with a global hydrological and water resources model, areal coverage of crop types from MIRCA2000 and FAO-based statistics on crop yield and market price. We applied our method to irrigated areas in the world overlying productive aquifers. Estimated maximum economic depths range between 50 and 500 m. Most important factors explaining the maximum economic depth are the dominant crop type in the area and whether or not initial investments in well infrastructure are limiting. In subsequent research, our estimates of maximum economic depth will be combined with estimates of groundwater depth and storage coefficients to estimate economically attainable groundwater volumes worldwide.

  3. Organic carbon burial in global lakes and reservoirs

    USGS Publications Warehouse

    Mendonça, Raquel; Müller, Roger A.; Clow, David W.; Verpoorter, Charles; Raymond, Peter; Tranvik, Lars; Sobek, Sebastian

    2017-01-01

    Burial in sediments removes organic carbon (OC) from the short-term biosphere-atmosphere carbon (C) cycle, and therefore prevents greenhouse gas production in natural systems. Although OC burial in lakes and reservoirs is faster than in the ocean, the magnitude of inland water OC burial is not well constrained. Here we generate the first global-scale and regionally resolved estimate of modern OC burial in lakes and reservoirs, deriving from a comprehensive compilation of literature data. We coupled statistical models to inland water area inventories to estimate a yearly OC burial of 0.15 (range, 0.06–0.25) Pg C, of which ~40% is stored in reservoirs. Relatively higher OC burial rates are predicted for warm and dry regions. While we report lower burial than previously estimated, lake and reservoir OC burial corresponded to ~20% of their C emissions, making them an important C sink that is likely to increase with eutrophication and river damming.

  4. Large increases in carbon burial in northern lakes during the Anthropocene

    NASA Astrophysics Data System (ADS)

    Heathcote, Adam J.; Anderson, N. John; Prairie, Yves T.; Engstrom, Daniel R.; Del Giorgio, Paul A.

    2015-11-01

    Northern forests are important ecosystems for carbon (C) cycling and lakes within them process and bury large amounts of organic-C. Current burial estimates are poorly constrained and may discount other shifts in organic-C burial driven by global change. Here we analyse a suite of northern lakes to determine trends in organic-C burial throughout the Anthropocene. We found burial rates increased significantly over the last century and are up to five times greater than previous estimates. Despite a correlation with temperature, warming alone did not explain the increase in burial, suggesting the importance of other drivers including atmospherically deposited reactive nitrogen. Upscaling mean lake burial rates for each time period to global northern forests yields up to 4.5 Pg C accumulated in the last 100 years--20% of the total burial over the Holocene. Our results indicate that lakes will become increasingly important for C burial under future global change scenarios.

  5. Burial Duration and Frequency Influences Resilience of Differing Propagule Types in a Subtidal Seagrass, Posidonia australis

    PubMed Central

    2016-01-01

    Sedimentation that leads to periodic, and often prolonged, burial events is becoming more common on the world’s coastlines as human populations expand and create urbanised marine environments. Different seagrass species react differently to sediment burial but many species in the southern hemisphere are yet to be examined. How seagrasses react to burial has restoration implications. There is a need to critically assess seagrass transplant propagule responses to periodic (pulse) and prolonged (press) burial events before selecting the most appropriate species, transplant propagule, and transplant site. In my study, mesocosm experiments, coupled with field measurements were used to assess how sexual (seedlings) and vegetative (sprigs) propagules of Posidonia australis responded to pulse and press burial events. Seedlings were highly susceptible to burial (both pulse and press), with no survival at the end of the experimental period. In contrast, rhizome growth in vegetative propagules was stimulated by pulse burial, although press burial events resulted in mortality. The implication for Posidonia australis restoration efforts in areas where burial is periodic, was that vegetative propagules are optimal transplant units, in comparison to seedlings. Press burial however, renders a transplant site sub-optimal for both seedling and sprig transplants. PMID:27526020

  6. Geophysical reconnaissance of Lemmon Valley, Washoe County, Nevada

    USGS Publications Warehouse

    Schaefer, Donald H.; Maurer, Douglas K.

    1981-01-01

    Rapid growth in the Lemmon Valley area, Nevada, during recent years has put increasing importance on knowledge of stored ground water for the valley. Data that would fill voids left by previous studies are depth to bedrock and depth to good-quality water beneath the two playas in the valley. Depths to bedrock calculated from a gravity survey in Lemmon Valley indicate that the western part of Lemmon Valley is considerably deeper than the eastern part. Maximum depth in the western part is about 2 ,600 feet below land surface. This depression approximately underlies the Silver Lake playa. A smaller, shallower depression with a maximum depth of about 1,500 feet below land surface exists about 2.5 miles north of the playa. The eastern area is considerably shallower. The maximum calculated depth to bedrock is about 1,000 feet below land surface, but the depth throughout most the eastern area is only about 400 feet below land surface. An electrical resistivity survey in Lemmon Valley consisting of 10 Schlumberger soundings was conducted around the playas. The maximum depth of poor-quality water (characterized by a resistivity less than 20 ohm-meters) differed considerably from place to place. Maximum depths of poor-quality water beneath the playa east of Stead varied from about 120 feet to almost 570 feet below land surface. At the Silver Lake playa, the maximum depths varied from about 40 feet in the west to 490 feet in the east. (USGS)

  7. Part 1: Aspects of lithospheric evolution on Venus. Part 2: Thermal and collisional histories of chondrite parent bodies. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Grimm, Robert E.

    1988-01-01

    The geological evolution of distinctly different kinds of solar system objects is addressed. Venus has been observed over the past decade by orbital radars on both American and Soviet spacecraft. These surface measurements provide clues to the structure and evolution of the lithosphere. The parent bodies of chondritic meteorites, thought to resemble asteroids, represent the other end of the size spectrum of terrestrial objects. Their early thermal and collisional histories may be constrained by the chemical and textural record preserved in meteorite samples. Impact craters on Venus have been observed by the Soviet Venera 15/16 spacecraft. A formalism is presented by which the size-frequency distribution of impact craters may be used to estimate upper bounds on the mean global rates of volcanic resurfacing and lithospheric recycling on that planet over the past several hundred million years. The impact crater density reported from Venera observations, if valid for the entire Venus surface, indicates a mean volcanic flux no greater than 2 cu km/y, corresponding to a maximum average rate of resurfacing of about 4 km/b.y. For the lowest estimated mean crater retention age of the surface of Venus imaged by Venera 15/16, the rate of lithospheric recycling on Venus does not exceed 1.5 sq km/y. Ordinary chondrite meteorites show textural and chemical patterns indicative of varying intensities of thermal metamorphism. The conventional onion-shell model, which envisions highly metamorphosed material in the core and less intensely heated rocks near the surface, predicts an inverse relation between peak temperature and cooking rate, but none has been observed. A metamorphosed-planetesimal model is devised to explain this discrepancy, whereby heating occurs in planetesimals a few kilometers in radius which then accrete to form 100-km-radius parent bodies. Cooling rates are then randomly controlled by burial depth. Thermal and collisional constraints are examined, and the model is found to be applicable only to highly insulating Al-26-rich planetesimals that remain closely aggregated upon accretion. An alternative model is presented, in which onion-shell parent bodies are collisionally fragmented during metamorphism and then gravitationally reassembled. If reassembly times are short, then cooling rates would be determined by burial depth in the reaccreted parent body. This model, unlike previous ones, can explain both coherent and incoherent cooling of Breccia clasts by collisions during or after metamorphism, respectively.

  8. 38 CFR 3.1610 - Burial in national cemeteries; burial of unclaimed bodies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cemeteries; burial of unclaimed bodies. 3.1610 Section 3.1610 Pensions, Bonuses, and Veterans' Relief... unclaimed bodies. The statutory burial allowance and permissible transportation charges as provided in §§ 3... from the officers having jurisdiction over burials in national cemeteries; or (b) Where the body of a...

  9. 20 CFR 416.1231 - Burial spaces and certain funds set aside for burial expenses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Burial spaces and certain funds set aside for burial expenses. 416.1231 Section 416.1231 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY INCOME FOR THE AGED, BLIND, AND DISABLED Resources and Exclusions § 416.1231 Burial...

  10. 38 CFR 3.1610 - Burial in national cemeteries; burial of unclaimed bodies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cemeteries; burial of unclaimed bodies. 3.1610 Section 3.1610 Pensions, Bonuses, and Veterans' Relief... unclaimed bodies. The statutory burial allowance and permissible transportation charges as provided in §§ 3... from the officers having jurisdiction over burials in national cemeteries; or (b) Where the body of a...

  11. Bryophyte spore germinability is inhibited by peatland substrates

    NASA Astrophysics Data System (ADS)

    Bu, Zhao-Jun; Li, Zhi; Liu, Li-Jie; Sundberg, Sebastian; Feng, Ya-Min; Yang, Yun-He; Liu, Shuang; Song, Xue; Zhang, Xing-Lin

    2017-01-01

    Bryophyte substrates and species may affect spore germination through allelopathy. Polytrichum strictum is currently expanding in peatlands in north-eastern China - is this an effect of its superior spore germinability or do its gametophytes have a stronger allelopathic effect than do Sphagnum? We conducted a spore burial experiment to test the effect of species identity, substrate and water table depth (WTD) on spore germinability and bryophyte allelopathic effect with P. strictum and two Sphagnum species (S. palustre and S. magellanicum). After 5 months of burial during a growing season, the spores were tested for germinability. Allelopathic effect of bryophyte substrates was assessed by the difference between spore germinability after being stored inside or outside the substrates. After burial, more than 90% of the spores lost their germinability across all three species due to ageing and allelopathy. Spore germinability differed among species, where the spores in S. palustre had a higher germination frequency than those in P. strictum. The three bryophytes maintained a higher germinability in Sphagnum than in Polytrichum hummocks, probably due to a stronger allelopathic effect of P. strictum. Water table drawdown by 10 cm increased germinability by more than 60% across the three species. The study indicates that P. strictum does not possess an advantage regarding spore germination but rather its gametophytes have a stronger allelopathic effect. Due to the weaker inhibitive effect of Sphagnum gametophytes, P. strictum may have a potential establishment superiority over Sphagnum in peatlands, in addition to a better drought tolerance, which may explain its current expansion.

  12. Decoupling pipeline influences in soil resistivity measurements with finite element techniques

    NASA Astrophysics Data System (ADS)

    Deo, R. N.; Azoor, R. M.; Zhang, C.; Kodikara, J. K.

    2018-03-01

    Periodic inspection of pipeline conditions is an important asset management strategy conducted by water and sewer utilities for efficient and economical operations of their assets in field. The Level 1 pipeline condition assessment involving resistivity profiling along the pipeline right-of-way is a common technique for delineating pipe sections that might be installed in highly corrosive soil environment. However, the technique can suffer from significant perturbations arising from the buried pipe itself, resulting in errors in native soil characterisation. To address this problem, a finite element model was developed to investigate the degree to which pipes of different a) diameters, b) burial depths, and c) surface conditions (bare or coated) can influence in-situ soil resistivity measurements using Wenner methods. It was found that the greatest errors can arise when conducting measurements over a bare pipe with the array aligned parallel to the pipe. Depending upon the pipe surface conditions, in-situ resistivity measurements can either be underestimated or overestimated from true soil resistivities. Following results based on simulations and decoupling equations, a guiding framework for removing pipe influences in soil resistivity measurements were developed that can be easily used to perform corrections on measurements. The equations require simple a-prior information on the pipe diameter, burial depth, surface condition, and the array length and orientation used. Findings from this study have immediate application and is envisaged to be useful for critical civil infrastructure monitoring and assessment.

  13. Inside the "African cattle complex": animal burials in the holocene central Sahara.

    PubMed

    di Lernia, Savino; Tafuri, Mary Anne; Gallinaro, Marina; Alhaique, Francesca; Balasse, Marie; Cavorsi, Lucia; Fullagar, Paul D; Mercuri, Anna Maria; Monaco, Andrea; Perego, Alessandro; Zerboni, Andrea

    2013-01-01

    Cattle pastoralism is an important trait of African cultures. Ethnographic studies describe the central role played by domestic cattle within many societies, highlighting its social and ideological value well beyond its mere function as 'walking larder'. Historical depth of this African legacy has been repeatedly assessed in an archaeological perspective, mostly emphasizing a continental vision. Nevertheless, in-depth site-specific studies, with a few exceptions, are lacking. Despite the long tradition of a multi-disciplinary approach to the analysis of pastoral systems in Africa, rarely do early and middle Holocene archaeological contexts feature in the same area the combination of settlement, ceremonial and rock art features so as to be multi-dimensionally explored: the Messak plateau in the Libyan central Sahara represents an outstanding exception. Known for its rich Pleistocene occupation and abundant Holocene rock art, the region, through our research, has also shown to preserve the material evidence of a complex ritual dated to the Middle Pastoral (6080-5120 BP or 5200-3800 BC). This was centred on the frequent deposition in stone monuments of disarticulated animal remains, mostly cattle. Animal burials are known also from other African contexts, but regional extent of the phenomenon, state of preservation of monuments, and associated rock art make the Messak case unique. GIS analysis, excavation data, radiocarbon dating, zooarchaeological and isotopic (Sr, C, O) analyses of animal remains, and botanical information are used to explore this highly formalized ritual and the lifeways of a pastoral community in the Holocene Sahara.

  14. Seed germination, seedling traits, and seed bank of the tree Moringa peregrina (Moringaceae) in a hyper-arid environment.

    PubMed

    Gomaa, Nasr H; Picó, F Xavier

    2011-06-01

    Water-limited hot environments are good examples of hyper-aridity. Trees are scarce in these environments but some manage to survive, such as the tree Moringa peregrina. Understanding how trees maintain viable populations in extremely arid environments may provide insight into the adaptive mechanisms by which trees cope with extremely arid weather conditions. This understanding is relevant to the current increasing aridity in several regions of the world. Seed germination experiments were conducted to assess variation in seed mass, seed germination, and seedling traits of Moringa peregrina plants and the correlations among these traits. A seed burial experiment was also designed to study the fate of M. peregrina seeds buried at two depths in the soil for two time periods. On average, seeds germinated in three days and seedling shoots grew 0.7 cm per day over three weeks. Larger seeds decreased germination time and increased seedling growth rates relative to smaller seeds. Seeds remained quiescent in the soil and germination was very high at both depths and burial times. The after-ripening time of Moringa peregrina seeds is short and seeds germinate quickly after imbibition. Plants of M. peregrina may increase in hyper-arid environments from seeds with larger mass, shorter germination times, and faster seedling growth rates. The results also illustrate the adjustment in allocation to seed biomass and correlations among seed and seedling traits that allows M. peregrina to be successful in coping with aridity in its environment.

  15. Late Holocene Coral Growth Records from the Southeast Florida Continental Reef Tract, USA

    NASA Astrophysics Data System (ADS)

    Modys, A.; Oleinik, A. E.; Manzello, D.; Enochs, I.; Kolodziej, G.; Carroll, R. J.

    2017-12-01

    The southeast Florida continental reef tract provides a unique opportunity to examine the past and present response of marginal coral reefs to environmental and climatic change. Here we compare growth records of radiometrically dated late Holocene (3.1 to 1.9 ka) and modern corals using cores extracted from the common reef-building coral species Pseudodiploria strigosa. In 2015 and 2016, a total of 4 modern and 5 subfossil cores were collected from two shallow-water sites (3.0 and 4.5 m depths) on the nearshore ridge complex (NRC) offshore northern Broward County, Florida. Using 3-D computerized tomography, skeletal extension rates were estimated from the thickness of high- and low-density growth bands and combined with density measurements to yield calcification rates. Our results indicate that mean linear extension, density, and calcification were significantly lower in the late Holocene corals (0.52±0.01 cm yr-1; 1.05±0.02 g cm-3; 0.55±0.01 g cm-2 yr-1) compared to today (0.64±0.02 cm yr-1; 1.20±0.02 g cm-3; 0.78±0.04 g cm-2 yr-1), despite shallower local water depths in the late Holocene. Based on the radiometric ages and presence of distinct burial notches on the subfossil corals, we suggest that late Holocene P. strigosa growth at this site was potentially suppressed by reduced sea surface temperatures (SSTs) and/or increased burial compared to present conditions.

  16. Origin, transport and burial of organic matter in the Whittard Canyon, North East Atlantic

    NASA Astrophysics Data System (ADS)

    Kershaw, C. E.

    2016-02-01

    Submarine canyons, large and complex topographic features commonly found at all continental margins, are usually considered efficient conduits of material to the deep sea that can also harbour varied and well developed ecosystems. Recent work from canyons of the Portuguese margin have revealed a highly heterogeneous environment home to diverse habitats, highlighting the significance of submarine canyons and the need for a more comprehensive understanding of the processes within them. Submarine environments are influenced by the variability of the oceanographic and biogeochemical regimes and the interaction with complex topography. The purpose of this research is to examine the provenance, transportation, burial potential and ecological function of sedimentary organic matter at targeted sites of the Whittard submarine canyon (Celtic Sea, North East Atlantic), one of the largest ( 100 km across, down to 4500 m depth) most complex topographic features in the North Western European Margin, and home to an array of diverse benthic ecosystems. Sediment cores down to 50 cm were collected during three surveys in 2013, 2014 and 2015 at various depths across different channels and sedimentological and biogeochemical analyses have begun. Preliminary results have provided a glimpse of the distinct energy regime of the different canyon channels and differing carbon concentrations, emphasizing the complexity of the system. The project aims to elucidate the significance of the Whittard system in marine biogeochemical cycling and deep-sea ecosystem functioning, through further mineralogical and chemical characterization.

  17. Exhumation rates of high pressure metamorphic rocks in subduction channels: The effect of Rheology

    NASA Astrophysics Data System (ADS)

    Gerya, T. V.; Stöckhert, B.

    2002-04-01

    Exhumation of high-pressure metamorphic rocks can take place with typical plate velocities of cm/year. This is consistent with a model of forced flow in a subduction channel. The (micro)structural record of exhumed metamorphic rocks indicates that stresses are generally too low to drive deformation of the bulk material by dislocation creep, according to a power-law rheology. Instead deformation appears to be localized in low-strength shear zones, and is dominated by dissolution precipitation creep or fluid assisted granular flow, implying a Newtonian rheology. 1D modeling shows that the effective rheology of the material in the subduction channel has a significant influence on the rate of exhumation. When the subduction flux either equals or exceeds the return flux, the maximum exhumation rate for Newtonian behavior of the material is at least twice as high (~1/3 of the subduction burial rate) compared to that for power-law creep (~1/6 of the subduction burial rate).

  18. Neuromuscular responses during aquatic resistance exercise with different devices and depths.

    PubMed

    Colado, Juan C; Borreani, Sebastien; Pinto, Stephanie Santana; Tella, Victor; Martin, Fernando; Flandez, Jorge; Kruel, Luiz F

    2013-12-01

    Little research has been reported regarding the effects of using different devices and immersion depths during the performance of resistance exercises in a water environment. The purpose of this study was to compare muscular activation of upper extremity and core muscles during shoulder extensions performed at maximum velocity with different devices and at different depths. Volunteers (N = 24) young fit male university students performed 3 repetitions of shoulder extensions at maximum velocity using 4 different devices and at 2 different depths. The maximum amplitude of the electromyographic root mean square of the latissimus dorsi (LD), rectus abdominis, and erector lumbar spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction. No significant (p > 0.05) differences were found in the neuromuscular responses between the different devices used during the performance of shoulder extension at xiphoid process depth. Regarding the comparisons of muscle activity between the 2 depths analyzed in this study, only the LD showed a significantly (p ≤ 0.05) higher activity at the xiphoid process depth compared with that at the clavicle depth. Therefore, if maximum muscle activation of the extremities is required, the xiphoid depth is a better choice than clavicle depth, and the kind of device is not relevant. Regarding core muscles, neither the kind of device nor the immersion depth modifies muscle activation.

  19. Broadband seismic noise attenuation versus depth at the Albuquerque Seismological Laboratory

    USGS Publications Warehouse

    Hutt, Charles R.; Ringler, Adam; Gee, Lind

    2017-01-01

    Seismic noise induced by atmospheric processes such as wind and pressure changes can be a major contributor to the background noise observed in many seismograph stations, especially those installed at or near the surface. Cultural noise such as vehicle traffic or nearby buildings with air handling equipment also contributes to seismic background noise. Such noise sources fundamentally limit our ability to resolve earthquake‐generated signals. Many previous seismic noise versus depth studies focused separately on either high‐frequency (>1  Hz">>1  Hz) or low‐frequency (<0.05  Hz"><0.05  Hz) bands. In this study, we use modern high‐quality broadband (BB) and very broadband (VBB) seismometers installed at depths ranging from 1.5 to 188 m at the Albuquerque Seismological Laboratory to evaluate noise attenuation as a function of depth over a broad range of frequencies (0.002–50 Hz). Many modern seismometer deployments use BB or VBB seismometers installed at various depths, depending on the application. These depths range from one‐half meter or less in aftershock study deployments, to one or two meters in the Incorporated Research Institutions for Seismology Transportable Array (TA), to a few meters (shallow surface vaults) up to 100 m or more (boreholes) in the permanent observatories of the Global Seismographic Network (GSN). It is important for managers and planners of these and similar arrays and networks of seismograph stations to understand the attenuation of surface‐generated noise versus depth so that they can achieve desired performance goals within their budgets as well as their frequency band of focus. The results of this study will assist in decisions regarding BB and VBB seismometer installation depths. In general, we find that greater installation depths are better and seismometer emplacement in hard rock is better than in soil. Attenuation for any given depth varies with frequency. More specifically, we find that the dependence of depth will be application dependent based on the frequency band and sensitive axes of interest. For quick deployments (like aftershock studies), 1 m may be deep enough to produce good data, especially when the focus is on vertical data where temperature stability fundamentally limits the low‐frequency noise levels and little low‐frequency data will be used. For temporary (medium‐term) deployments (e.g., TA) where low cost can be very important, 2–3 m should be sufficient, but such shallow installations will limit the ability to resolve low‐frequency signals, especially on horizontal components. Of course, one should try for maximum burial depth within the budget when there is interest in using the data for low‐frequency applications. For long‐term deployments like the permanent observatories of the GSN and similar networks, 100–200 m depth in hard rock is desirable to achieve lowest noise, although 30–60 m may be acceptable.

  20. Effects of sediment burial on tropical ruderal seagrasses are moderated by clonal integration

    NASA Astrophysics Data System (ADS)

    Ooi, Jillian Lean Sim; Kendrick, Gary A.; Van Niel, Kimberly P.

    2011-12-01

    Seagrasses are clonal plants that grow submerged in dynamic sedimentary environments where burial is a common occurrence. Clonal organisms may respond to burial in very different ways depending on how strongly integrated they are through horizontal rhizomes, but the effect of clonal integration under conditions of stress such as burial is poorly studied for seagrasses. We test the effect of burial on tropical seagrasses that occur in multispecific meadows by subjecting plants in mixed stands to burial of 0, 2, 4, 8 and 16 cm for 27 days. Treatments were divided into those where rhizomes were severed and those where rhizomes were left intact. We hypothesize that species withstand burial better if clonal integration is maintained (intact rhizomes). Results showed that all species tolerated burial of up to 4 cm without adverse effects but significant reductions in shoot density and biomass become evident at 8 cm of burial. Furthermore, Cymodocea serrulata and Syringodium isoetifolium were strong integrators, i.e. they provide support for buried shoots, whereas Halophila ovalis and Halodule uninervis were weak integrators that did not show evidence of subsidizing buried shoots. Vertical elongation was observed for C. serrulata and H. uninervis as a response to burial only when rhizomes were severed, leading us to speculate on whether species rely on vertical elongation as an escape strategy only in the absence of resource translocation. Our distinction between the responses of treatments with intact rhizomes from those with severed rhizomes may be extended to an interpretation of burial scale (intact rhizomes=broad spatial-scale burial; severed rhizomes=fine spatial-scale burial). We concluded that broad spatial-scale burial exceeding 4 cm leads to rapid loss or reduction of all species. However, fine spatial-scale burial exceeding 4 cm, such as those caused by shrimp mounds (bioturbation), is expected to favor C. serrulata and S. isoetifolium, while H. ovalis and H. uninervis are disadvantaged. Clonal integration is an important trait in moderating the response of seagrasses to sediment burial and in this way, helps them to cope in high-stress habitats.

  1. Fluvial reservoir architecture in the Malay Basin: Opportunities and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elias, M.R.; Dharmarajan, K.

    1994-07-01

    Miocene fluvial sandstones are significant hydrocarbon-bearing reservoirs in the Malay Basin. These include high energy, braided stream deposits of group K, associated with late development of extensional half grabens and relatively lower energy, meandering, and anastomosing channel deposits of group I formed during the subsequent basin sag phase. Group K reservoirs are typically massive, commonly tens of meters thick, and cover an extensive part of the Malay Basin. These reservoirs have good porosity and permeability at shallow burial depths. However, reservoir quality deteriorates rapidly with increasing depth. Lateral and vertical reservoir continuity is generally good within a field, commonly formingmore » a single system. Good water drive enhances recovery. Seismic modeling to determine fluid type and the extent of interfluvial shales is possible due to reservoir homogeneity.« less

  2. 38 CFR - § 3.1705 Burial allowance based on non-service-connected death.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false § 3.1705 Burial allowance based on non-service-connected death. Section Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUDICATION Burial Benefits Burial Benefits: Allowances & Expenses Paid by Va A08se3. § 3.1705 Burial allowance based on...

  3. Cleanup Verification Package for the 618-2 Burial Ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. S. Thompson

    2006-12-28

    This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities.

  4. The making of urban ‘healtheries’: the transformation of cemeteries and burial grounds in late-Victorian East London☆

    PubMed Central

    Brown, Tim

    2013-01-01

    This paper focuses on the conversion of disused burial grounds and cemeteries into gardens and playgrounds in East London from around the 1880s through to the end of the century. In addition to providing further empirical depth, especially relating to the work of philanthropic organisations such as the Metropolitan Public Gardens Association, the article brings into the foreground debates regarding the importance of such spaces to the promotion of the physical and moral health of the urban poor. Of particular note here is the recognition that ideas about the virtuous properties of open, green space were central to the success of attempts at social amelioration. In addition to identifying the importance of such ideas to the discourse of urban sanitary reformers, the paper considers the significance of less virtuous spaces to it; notably here, the street. Building on Driver's work on ‘moral environmentalism’ and Osborne and Rose's on ‘ethicohygienic space,’ this paper goes on to explore the significance of habit to the establishing of what Brabazon called ‘healtheries’ in late-Victorian East London. PMID:24882920

  5. Sampling results, DNAPL monitoring well GW-726, Oak Ridge Y-12 plant, Oak Ridge, Tennessee. Quarterly report, April 1, 1994--September 30, 1994.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-31

    In January 1990, dense, non aqueous phase liquids (DNAPLs) were discovered at a depth of approximately 274 foot below ground surface along the southern border of the Y-12 Plant Burial Grounds. Immediately after the discovery, an investigation was conducted to assess the occurrence of DNAPL at the site and to make recommendations for further action. This report summarizes purging and sampling activities for one of these multiport wells, GW-726, and presents analytical results for GW-726.

  6. Evaluation for relationship among source parameters of underground nuclear tests in Northern Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kim, G.; Che, I. Y.

    2017-12-01

    We evaluated relationship among source parameters of underground nuclear tests in northern Korean Peninsula using regional seismic data. Dense global and regional seismic networks are incorporated to measure locations and origin times precisely. Location analyses show that distance among the locations is tiny on a regional scale. The tiny location-differences validate a linear model assumption. We estimated source spectral ratios by excluding path effects based spectral ratios of the observed seismograms. We estimated empirical relationship among depth of burials and yields based on theoretical source models.

  7. [Effect of shifting sand burial on evaporation reduction and salt restraint under saline water irrigation in extremely arid region].

    PubMed

    Zhang, Jian-Guo; Zhao, Ying; Xu, Xin-Wen; Lei, Jia-Qiang; Li, Sheng-Yu; Wang, Yong-Dong

    2014-05-01

    The Taklimakan Desert Highway Shelterbelt is drip-irrigated with high saline groundwater (2.58-29.70 g x L(-1)), and shifting sand burial and water-salt stress are most common and serious problems in this region. So it is of great importance to study the effect of shifting sand burial on soil moisture evaporation, salt accumulation and their distribution for water saving, salinity restraint, and suitable utilization of local land and water resources. In this study, Micro-Lysimeters (MLS) were used to investigate dynamics of soil moisture and salt under different thicknesses of sand burial (1, 2, 3, 4, and 5 cm), and field control experiments of drip-irrigation were also carried out to investigate soil moisture and salt distribution under different thicknesses of shifting sand burial (5, 10, 15, 20, 25, 30, 35, and 40 cm). The soil daily and cumulative evaporation decreased with the increase of sand burial thickness in MLS, cumulative evaporation decreased by 2.5%-13.7% compared with control. And evaporative inhibiting efficiency increased with sand burial thickness, evaporative inhibiting efficiency of 1-5 cm sand burial was 16.7%-79.0%. Final soil moisture content beneath the interface of sand burial increased with sand burial thickness, and it increased by 2.5%-13.7% than control. The topsoil EC of shifting sand in MLS decreased by 1.19-6.00 mS x cm(-1) with the increasing sand burial thickness, whereas soil salt content beneath the interface in MLS increased and amplitude of the topsoil salt content was higher than that of the subsoil. Under drip-irrigation with saline groundwater, average soil moisture beneath the interface of shifting sand burial increased by 0.4% -2.0% compare with control, and the highest value of EC was 7.77 mS x cm(-1) when the sand burial thickness was 10 cm. The trend of salt accumulation content at shifting sand surface increased firstly, and then decreased with the increasing sand burial thickness. Soil salt contents beneath the interface of shifting sand burial were much lower than that of shifting sand surface. 35 cm was the critical sand burial thickness for water-saving and salt restraint. In summary, sand burial had obvious inhibition effects on soil evaporation and salt accumulation, so maybe it could be used to save water and reduce salt accumulation in arid shifting desert areas.

  8. Subduction zone seismicity and the thermo-mechanical evolution of downgoing lithosphere

    NASA Astrophysics Data System (ADS)

    Wortel, M. J. R.; Vlaar, N. J.

    1988-09-01

    In this paper we discuss characteristic features of subduction zone seismicity at depths between about 100 km and 700 km, with emphasis on the role of temperature and rheology in controlling the deformation of, and the seismic energy release in downgoing lithosphere. This is done in two steps. After a brief review of earlier developments, we first show that the depth distribution of hypocentres at depths between 100 km and 700 km in subducted lithosphere can be explained by a model in which seismic activity is confined to those parts of the slab which have temperatures below a depth-dependent critical value T cr. Second, the variation of seismic energy release (frequency of events, magnitude) with depth is addressed by inferring a rheological evolution from the slab's thermal evolution and by combining this with models for the system of forces acting on the subducting lithosphere. It is found that considerable stress concentration occurs in a reheating slab in the depth range of 400 to 650 700 km: the slab weakens, but the stress level strongly increases. On the basis of this stress concentration a model is formulated for earthquake generation within subducting slabs. The model predicts a maximum depth of seismic activity in the depth range of 635 to 760 km and, for deep earthquake zones, a relative maximum in seismic energy release near the maximum depth of earthquakes. From our modelling it follows that, whereas such a maximum is indeed likely to develop in deep earthquake zones, zones with a maximum depth around 300 km (such as the Aleutians) are expected to exhibit a smooth decay in seismic energy release with depth. This is in excellent agreement with observational data. In conclusion, the incoroporation of both depth-dependent forces and depth-dependent rheology provides new insight into the generation of intermediate and deep earthquakes and into the variation of seismic activity with depth. Our results imply that no barrier to slab penetration at a depth of 650 700 km is required to explain the maximum depth of seismic activity and the pattern of seismic energy release in deep earthquake zones.

  9. Observed and Predicted Pier Scour in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Lombard, Pamela J.

    2002-01-01

    Pier-scour and related data were collected and analyzed for nine high river flows at eight bridges across Maine from 1997 through 2001. Six bridges had multiple piers. Fifteen of 23 piers where data were measured during a high flow had observed maximum scour depths ranging from 0.5 feet (ft) to 12.0 ft. No pier scour was observed at the remaining eight piers. The maximum predicted pier-scour depths associated with the 23 piers were computed using the equations in the Federal Highway Administration's Hydraulic Engineering Circular number 18 (HEC-18), with data collected for this study. The predicted HEC-18 maximum pier-scour depths were compared to the observed maximum pier-scour depths. The HEC-18 pier-scour equations are intended to be envelope equations, ideally never underpredicting scour depths and not appreciably overpredicting them. The HEC-18 pier-scour equations performed well for rivers in Maine. Twenty-two out of 23 pier-scour depths were overpredicted by 0.7 ft to 18.3 ft. One pier-scour depth was underpredicted by 4.5 ft. For one pier at each of two bridges, large amounts of debris lodged on the piers after high-flow measurements were made at those sites. The scour associated with the debris increased the maximum pier-scour depths by about 5 ft in each case.

  10. Evaluation of Elevated Tritium Levels in Groundwater Downgradient from the 618-11 Burial Ground Phase I Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresel, P.E.; Smith, R.M.; Williams, B.A.

    2000-05-01

    This report describes the results of the preliminary investigation of elevated tritium in groundwater discovered near the 618-11 burial ground, located in the eastern part of the Hanford Site. Tritium in one well downgradient of the burial ground was detected at levels up to 8,140,000 pCi/L. The 618-11 burial ground received a variety of radioactive waste from the 300 Area between 1962 and 1967. The burial ground covers 3.5 hectare (8.6 acre) and contains trenches, large diameter caissons, and vertical pipe storage units. The burial ground was stabilized with a native sediment covering. The Energy Northwest reactor complex was constructedmore » immediately east of the burial ground.« less

  11. Using tsunami deposits to determine the maximum depth of benthic burrowing

    PubMed Central

    Shirai, Kotaro; Murakami-Sugihara, Naoko

    2017-01-01

    The maximum depth of sediment biomixing is directly related to the vertical extent of post-depositional environmental alteration in the sediment; consequently, it is important to determine the maximum burrowing depth. This study examined the maximum depth of bioturbation in a natural marine environment in Funakoshi Bay, northeastern Japan, using observations of bioturbation structures developed in an event layer (tsunami deposits of the 2011 Tohoku-Oki earthquake) and measurements of the radioactive cesium concentrations in this layer. The observations revealed that the depth of bioturbation (i.e., the thickness of the biomixing layer) ranged between 11 and 22 cm, and varied among the sampling sites. In contrast, the radioactive cesium concentrations showed that the processing of radioactive cesium in coastal environments may include other pathways in addition to bioturbation. The data also revealed the nature of the bioturbation by the heart urchin Echinocardium cordatum (Echinoidea: Loveniidae), which is one of the important ecosystem engineers in seafloor environments. The maximum burrowing depth of E. cordatum in Funakoshi Bay was 22 cm from the seafloor surface. PMID:28854254

  12. Using tsunami deposits to determine the maximum depth of benthic burrowing.

    PubMed

    Seike, Koji; Shirai, Kotaro; Murakami-Sugihara, Naoko

    2017-01-01

    The maximum depth of sediment biomixing is directly related to the vertical extent of post-depositional environmental alteration in the sediment; consequently, it is important to determine the maximum burrowing depth. This study examined the maximum depth of bioturbation in a natural marine environment in Funakoshi Bay, northeastern Japan, using observations of bioturbation structures developed in an event layer (tsunami deposits of the 2011 Tohoku-Oki earthquake) and measurements of the radioactive cesium concentrations in this layer. The observations revealed that the depth of bioturbation (i.e., the thickness of the biomixing layer) ranged between 11 and 22 cm, and varied among the sampling sites. In contrast, the radioactive cesium concentrations showed that the processing of radioactive cesium in coastal environments may include other pathways in addition to bioturbation. The data also revealed the nature of the bioturbation by the heart urchin Echinocardium cordatum (Echinoidea: Loveniidae), which is one of the important ecosystem engineers in seafloor environments. The maximum burrowing depth of E. cordatum in Funakoshi Bay was 22 cm from the seafloor surface.

  13. Coking-coal deposits of the western United States

    USGS Publications Warehouse

    Berryhill, Louise R.; Averitt, Paul

    1951-01-01

    Geohydrologic systems in the Anadarko basin in the central United States are controlled by topography, climate, geologic structures, and aquifer hydraulic properties, all of which are the result of past geologic and hydrologic processes, including tectonics and diagenesis. From Late Cambrian through Middle Ordovician time, a generally transgressive but cyclic sea covered the area. The first deposits were permeable sand, followed by calcareous mud. During periods of sea transgression, burial diagenesis decreased porosity and permeability. During Pennsylvanian time, rapid sedimentation accompanied rapid subsidence in the Anadarko basin. A geopressure zone probably resulted when sediments with little permeability trapped depositional water in Lower Pennsylvanian sands. Burial diagenesis included compaction and thermal alteration of deeply buried organic material, which released carbon dioxide, water, and hydrocarbons. By Middle Pennsylvanian time, the sea had submerged most of the central United States, including the Ozarks, as tectonic activity reached its maximum. During Late Pennsylvanian and Early Permian time, the Ouachita uplift had been formed and was higher than the Ozarks. Uplift was accompanied by a regional upward tilt toward the Ouachita-Ozarks area; the sea receded westward, depositing large quantities of calcareous mud and clay, and precipitating evaporitic material in the restricted-circulation environment. By the end of Permian time, > 20,000 ft of Pennsylvanian and Permian sediments had been deposited in the Anadarko basin. These thick sediments caused rapid and extreme burial diagensis, including alteration of organic material During Permian time in the Ozarks area, development of the Ozark Plateau aquifer system commenced in the permeable Cambrian-Mississippian rocks near the St. Francois Mountains as the Pennsylvanian confining material was removed. Since Permian time, uplift diagenesis has been more active than burial diagenesis in the Anadarko basin. Synopsis of paleohydrologic interpretation indicates that Cambrian-Mississippian rocks in the Anadarko basin should be relatively impermeable, except for local secondary permeability, because rocks in the basin have undergone little uplift diagenesis. (Lantz-PTT)

  14. Carbonate and silicate cementation of siliciclastic sediments of the New Jersey shelf (IODP Expedition 313): relation with organic matter diagenesis and submarine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Pierre, Catherine; Blanc-Valleron, Marie-Madeleine; Boudouma, Omar; Lofi, Johanna

    2017-12-01

    The New Jersey continental shelf extends 150 km off the shoreline. During IODP Expedition 313, siliciclastic deposits of late Eocene to late Pleistocene age were drilled down to 631, 669 and 755 m below seafloor at sites 27A, 28A and 29A respectively in very shallow waters (33.5 to 36 m depth). Pore water salinities display multilayered brackish-salty-brine units 10 to 170 m thick, where low-salinity water is preferentially stored in fine-grained sediments. The sharp boundaries of these buried aquifers are often marked by cemented layers a few centimetres thick. The mineralogy and scanning electron microscope observations of these layers show two phases of cementation by authigenic minerals: (1) the early carbonate cement is frequently associated with pyrite, and (2) the late silicate cement infills the residual porosity. The isotopic compositions of the carbonate cements vary widely: -2.4 < δ18O ‰ VPDB < +2.8; -15.1 < δ13C ‰ VPDB < +15.6. The δ18O values indicate that the carbonate cements precipitated with pore waters comprising variable mixtures of seawater and 18O-depleted fresh water originating from submarine groundwater discharge. The δ13C values of the carbonate cements are related to organic matter diagenesis, providing 13C-depleted dissolved inorganic carbon during bacterial sulphate reduction and anaerobic oxidation of methane, and 13C-rich dissolved inorganic carbon during methanogenesis. The diagenetic cementation processes included chemical weathering of reactive silicate minerals by the CO2-rich pore waters issued from organic matter diagenesis that released bicarbonate, cations and dissolved silica, which were further precipitated as carbonate and silicate cements. The estimated range of temperature (18±4 °C) during carbonate precipitation is consistent with carbonate cementation at moderate burial depths; however, silicate cementation occurred later during diagenesis at deeper burial depths.

  15. Redox Conditions and Related Color Change in Eastern Equatorial Pacific Sediments: IODP Site U1334

    NASA Astrophysics Data System (ADS)

    Kordesch, W. E.; Gussone, N. C.; Hathorne, E. C.; Kimoto, K.; Delaney, M. L.

    2011-12-01

    This study was prompted by a 65 m thick brown-green color change in deep-sea sediments of IODP Site U1334 (0-38 Ma, 4799 m water depth) that corresponds to its equatorial crossing (caused by the Northward movement of the pacific plate). Green sediment is a visual indicator of reducing conditions in sediment due to enhanced organic matter deposition and burial. Here we use geochemical redox indicators to characterize the effect of equatorial upwelling on bottom water. The modern redox signal is captured in porewater profiles (nitrate, manganese, iron, sulfate) while trace metal Enrichment Factors (EF) in bulk sediment (manganese, uranium, molybdenum, rhenium) normalized to the detrital component (titanium) record redox state at burial. To measure export productivity we also measure biogenic barium. Porewater profiles reveal suboxic diagenesis; profiles follow the expected sequence of nitrate, manganese oxide, and iron oxide reduction with increasing depth. Constant sulfate (~28 μM) implies anoxia has not occurred. Bulk sediment Mn EF are enriched (EF > 1) throughout the record (Mn EF = 15-200) while U and Mo enrichment corresponds to green color and equatorial proximity (U EF = 4-19; Mo EF = 0-7). Constant Mn enrichment implies continuous oxygenation. Uranium and Mo enrichment near the equator represents suboxic conditions also seen in the porewater. Low Re concentrations (below detection) provide additional evidence against anoxia. A comparison of Mn EF from total digestions to samples treated with an additional reductive cleaning step distinguishes between Mn-oxides and Mn-carbonates, indicating oxygenated and reducing conditions respectively. Mn-carbonate occurrence agrees with U and Mo EF; conditions were more reducing near the equator. Bio-Ba shows significant variability over this interval (22-99 mmol g-1). Our geochemical results indicate that bottom waters became suboxic at the equator as a result of equatorial upwelling-influenced increases in organic matter sedimentation. Comparison of results to Site U1335 (0-26 Ma, 4327 m water depth) will test the relative importance of equatorial proximity.

  16. Zonation and assessment of frozen-ground conditions along the China-Russia Crude Oil Pipeline route from Mo’he to Daqing, Northeastern China

    NASA Astrophysics Data System (ADS)

    Jin, H.; Hao, J.; Chang, X.

    2009-12-01

    The proposed China-Russia Crude Oil Pipeline (CRCOP), 813 mm in diameter, is designed to transport 603,000 barrels of Siberian crude oil per day using conventional burial across 1,030 km of frozen-ground. About 500 boreholes, with depths of 5 to 20 m, were drilled and cored for analyses, and the frozen-ground conditions were evaluated. After detailed surveys and analyses of the permafrost conditions along the pipeline route, a conventional burial construction mode at a nominal depth of 1.5 m was adopted. This paper discusses the principles and criteria for the zonation and assessment of the frozen-ground environments and conditions of engineering geology for the design, construction, operation of the pipeline system based on an extensive and in-depth summary and analysis of the survey and exploration data. Full consideration of the characteristics of pipelining crude oil at ambient temperatures in the permafrost regions and the interactive processes between the pipeline and foundation soils were taken into account. Two zones of frozen-ground environment and conditions of engineering geology, i. e. seasonally-frozen-ground and permafrost, were defined on the basis of the regional distribution and differentiations in frozen-ground environments and conditions. Then, four subzones of the permafrost zone were classified according to the areal extent, taking into consideration the temperatures and thicknesses of permafrost, as well as changes in vegetation coverage. In the four subzones, 151 sections of engineering geology were categorized according to the ice/moisture contents of the permafrost, as well as the classes of frost-heaving and thaw-settlement potentials. These 151 sections are comprehensively summarized into four types for engineering construction and operation: good, fair, poor, and very poor, for overall conditions of engineering geology. The zonation, assessment principles and criteria have been applied in the design of the pipeline. They have also been used as the scientific bases for the construction, environmental management, operation and maintenance/contingency plans

  17. The potential of sedimentary foraminiferal rare earth element patterns to trace water masses in the past

    NASA Astrophysics Data System (ADS)

    Osborne, Anne H.; Hathorne, Ed C.; Schijf, Johan; Plancherel, Yves; Böning, Philipp; Frank, Martin

    2017-04-01

    Dissolved rare earth element (REE) concentration data from intermediate and deep seawater form an array characterized by higher middle-REE enrichments (MREE/MREE*) in the North Atlantic and a progressive increase in heavy-to-light REE ratios (HREE/LREE) as water masses age. The REEs in foraminifera are fractionated toward higher MREE/MREE* and lower HREE/LREE relative to seawater. Calculations based on a scavenging model show that the REE patterns in uncleaned core-top foraminifera resemble those adsorbed onto calcite, particulate organic material, and hydrous ferric oxides but the full extent of the REE fractionation measured in foraminifera was not reproduced by the model. However, differences in the HREE/LREE and MREE/MREE* ratios and the cerium anomaly between ocean basins are preserved and are in agreement with the seawater REE distribution. Under oxic conditions, the HREE/LREE and MREE/MREE* compositions of uncleaned foraminifera at the sediment/seawater boundary are preserved during burial but the cerium anomaly is sensitive to burial depth. In suboxic sedimentary environments, all uncleaned foraminiferal REE concentrations are elevated relative to core-top values indicating addition of REEs from pore waters. The HREE/LREE ratio is highest when sedimentation rates were greatest and when high Fe/Ca ratios in the uncleaned foraminifera indicate that Fe was mobile. In sediments that have not experienced suboxic conditions during burial, uncleaned foraminifera preserve the seawater signal taken up at the sediment/seawater interface and are therefore suggested to be a suitable archive of changes in the REE signal of past bottom waters.

  18. The evolution of the Piedemonte Llanero petroleum system, Cordillera Oriental, Colombia (2) Reservoir petrography & petroleum geochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piggott, N.; Vear, A.; Warren, E.A.

    1996-08-01

    Detailed quantification of cements and rock texture, fluid inclusion microthermometry, thermal maturity data, oil-source rock correlations and structural restorations have been integrated to reveal the porosity and hydrocarbon charge evolution of reservoirs in the Piedemonte Llanero thrustbelt of Colombia. Active exploration of deeply buried structures in different thrust sheets of the Piedemonte Llanero has encountered quartz arenites of widely varying average porosities (4-15%). Porosity has been reduced by mechanical compaction and quartz cementation during burial, and by pressure solution during structural deformation. The relative importance and timing of these processes varies between thrust sheets controlling the observed porosity variation. Thermalmore » maturity data indicate that all thrust sheets have been deeply buried and uplifted in several stages of compression. Detailed structural restorations indicate significant differences in the burial histories of individual thrust sheets. Oil-source rock correlations suggest two major hydrocarbon components in the thrustbelt: a Late Cretaceous oil-prone source and a Tertiary oil- and gas-prone source. Initial generation charged early structures leading to partial inhibition of quartz cementation. For most structures quartz cementation predated major hydrocarbon migration. Average quartz cementation temperature is uniform within a structure, but varies between thrust sheets. These variations appear to reflect differences in burial depths during quartz cementation rather than variations in timing. Integration of all data reveals a complex but predictable evolution of porosity and hydrocarbon charge in both space and time which is being applied to current exploration in the Piedemonte Llanero and is relevant to thrustbelt exploration elsewhere.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saller, A.H.; Schlanger, S.O.

    Two wells drilled along the margin of Enewetak Atoll penetrated approximately 1000 m of upper Eocene, Oligocene, and lower Miocene carbonates. Strontium isotope stratigraphy indicates relatively continuous deposition of carbonate from 40 Ma to 20 Ma. Depositional environments show a gradual basinward progradation of facies with slope carbonates passing upward into fore-reef, reef, back-reef, and lagoonal carbonates. Slope strata contain wackestones and packstones with submarine-cemented lithoclasts, coral, coralline algae fragments, benthic rotaline forams, planktonic forams, and echinoderm fragments. Fore-reef strata are dominantly packstones and boundstones containing large pieces of coral, abundant benthic forams, coralline algae fragments, stromatoporoids( ), and minormore » planktonic forams. Reef and near-reef sediments include coralgal boundstones and grainstones with abundant benthic forams. Halimeda and miliolid forams are common in lagoonward parts of the back reef. Sponge borings, geopetal structures, and fractures are common in reef and fore-reef strata. Lagoonal strata are wackestones and packstones with common mollusks, coral, coralline algae, and benthic forams (rotaline and miliolid). Diagenesis has extensively altered strata near the atoll margin. Aragonite dissolution and calcite cements (radiaxial and cloudy prismatic) are abundant in fore-reef, reef, and some back-reef strata. Petrographic and geochemical data indicate aragonite dissolution and calcite cementation in seawater at burial depths of 100 to 300 m. Dolomite occurs in slope and deeply buried reefal carbonates. Most dolomitization occurred at burial depths of more than 1000 m in cool marine waters circulating through the atoll. lagoonal strata are not significantly altered by marine diagenesis and still contain abundant primary aragonite and magnesium calcite.« less

  20. Inside the “African Cattle Complex”: Animal Burials in the Holocene Central Sahara

    PubMed Central

    di Lernia, Savino; Tafuri, Mary Anne; Gallinaro, Marina; Alhaique, Francesca; Balasse, Marie; Cavorsi, Lucia; Fullagar, Paul D.; Mercuri, Anna Maria; Monaco, Andrea; Perego, Alessandro; Zerboni, Andrea

    2013-01-01

    Cattle pastoralism is an important trait of African cultures. Ethnographic studies describe the central role played by domestic cattle within many societies, highlighting its social and ideological value well beyond its mere function as ‘walking larder’. Historical depth of this African legacy has been repeatedly assessed in an archaeological perspective, mostly emphasizing a continental vision. Nevertheless, in-depth site-specific studies, with a few exceptions, are lacking. Despite the long tradition of a multi-disciplinary approach to the analysis of pastoral systems in Africa, rarely do early and middle Holocene archaeological contexts feature in the same area the combination of settlement, ceremonial and rock art features so as to be multi-dimensionally explored: the Messak plateau in the Libyan central Sahara represents an outstanding exception. Known for its rich Pleistocene occupation and abundant Holocene rock art, the region, through our research, has also shown to preserve the material evidence of a complex ritual dated to the Middle Pastoral (6080–5120 BP or 5200–3800 BC). This was centred on the frequent deposition in stone monuments of disarticulated animal remains, mostly cattle. Animal burials are known also from other African contexts, but regional extent of the phenomenon, state of preservation of monuments, and associated rock art make the Messak case unique. GIS analysis, excavation data, radiocarbon dating, zooarchaeological and isotopic (Sr, C, O) analyses of animal remains, and botanical information are used to explore this highly formalized ritual and the lifeways of a pastoral community in the Holocene Sahara. PMID:23437260

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldham, D.W.

    Commercial quantities of gas have been produced from shallow sandstone reservoirs of the Tongue River Member of the Fort Union Formation (Paleocene) in the Wyoming portion of the Powder River Basin. The two largest accumulations discovered to date, Oedekoven and Chan pools, were drilled on prospects which invoked differential compaction as a mechanism for gas entrapment and prospect delineation. Coal-sourced bacterial gas may have accumulated in localized structural highs early in the burial history of lenticular sand bodies and associated sediments. Structural relief is due to the compaction contrast between sand and stratigraphically equivalent fine-grained sediments. A shallow gas playmore » targeting sandstones as potential reservoirs was initiated in the Recluse area in response as sources for bacterial gas, and the presence of lenticular sandstones that may have promoted the development of compaction structures early in the burial process, to which early-formed bacterial gas migrated. Prospects were ranked based on a number of geologic elements related to compaction-induced trap development. Drilling of the Oedekoven prospect, which possessed all prospect elements, led to the discovery and development of the Oedekoven Fort Union gas pool, which has produced nearly 2 BCF of gas from a depth of 340 ft. Production figures from the Oedekoven and Chan pools demonstrate the commercial gas potential of Fort Union sandstone reservoirs in the Powder River Basin. The shallow depths of the reservoirs, coupled with low drilling and completion costs, an abundance of subsurface control with which to delineate prospects, and an existing network of gas-gathering systems, make them attractive primary targets in shallow exploration efforts as well as secondary objectives in deeper drilling programs.« less

  2. Compaction of basin sediments as a function of time-temperature history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmoker, J.W.; Gautier, D.L.

    1989-03-01

    Processes that affect burial diagenesis are dependent on time-temperature history (thermal maturity). Therefore, the porosity loss of sedimentary rocks during burial may often be better treated as a function of time-temperature history than of depth. Loss of porosity in the subsurface for sandstones, carbonates, and shales can be represented by a power function /phi/ = A(M)/sup B/, where /phi/ is porosity, A and B are constants for a given sedimentary rock population of homogeneous properties, and M is a measure of thermal maturity such as vitrinite reflectance (R/sub 0/) or Lopatin's time-temperature index (TTI). Regression lines of carbonate porosity andmore » of sandstone porosity upon thermal maturity form an envelope whose axis is approximated by /phi/ = 7.5(R/sub 0/)/sup /minus/1.18/ or, equivalently, by /phi/ = 30(TTI)/sup /minus/0.33/. These equations are preliminary generic relations of use for the regional modeling of both carbonate and sandstone compaction in sedimentary basins. The dependence of porosity upon time-temperature history incorporates the hypothesis that porosity-reducing processes operate continuously in sedimentary basins and, consequently, that compaction of basin sediments continues as long as porosity exists. Calculations indicate that subsidence due to loss of porosity through time (with depth held constant) can produce a second-stage passively formed basin in which many hundreds of meters of sediments can accumulate and which conforms with the structure of the original underlying basin. Such sediment accumulation results from the thermal maturation of thick sequences of sedimentary rocks rather than from global sea level change or tectonic subsidence.« less

  3. Experimental assessment of critical anthropogenic sediment burial in eelgrass Zostera marina.

    PubMed

    Munkes, Britta; Schubert, Philipp R; Karez, Rolf; Reusch, Thorsten B H

    2015-11-15

    Seagrass meadows, one of the world's most important and productive coastal habitats, are threatened by a range of anthropogenic actions. Burial of seagrass plants due to coastal activities is one important anthropogenic pressure leading to the decline of local populations. In our study, we assessed the response of eelgrass Zostera marina to sediment burial from physiological, morphological, and population parameters. In a full factorial field experiment, burial level (5-20cm) and burial duration (4-16weeks) were manipulated. Negative effects were visible even at the lowest burial level (5cm) and shortest duration (4weeks), with increasing effects over time and burial level. Buried seagrasses showed higher shoot mortality, delayed growth and flowering and lower carbohydrate storage. The observed effects will likely have an impact on next year's survival of buried plants. Our results have implications for the management of this important coastal plant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A geophysical and biochemical investigation of buried remains in contrasting soil textures in southern Ontario

    NASA Astrophysics Data System (ADS)

    Lowe, Amanda C.

    Ground penetrating radar (GPR) is a non-invasive, geophysical tool used for the detection of clandestine graves. GPR operates by detecting density differences in soil by the transmission of high frequency electromagnetic (EM) waves from an antenna. A 500 Megahertz (MHz) frequency antenna is typically used for forensic investigations, as it provides a suitable compromise between depth of penetration and sub-surface resolution. Domestic pig (Sus scrofa) carcasses were clothed in 100% cotton t-shirts and 50% cotton/50% polyester briefs, and buried at a consistent depth at three field sites of contrasting soil texture (silty clay loam, fine sand and fine sandy loam) in southern Ontario. GPR was used to detect and monitor the graves for a period of 14 months post burial. Analysis of collected data revealed that GPR had applicability in the detection of clandestine graves containing remains in silty clay loam and fine sandy loam soils, but was not suitable for detection in fine sandy soil. Specifically, within a fine sandy loam soil, there is the potential to estimate the post burial interval (PBI), as hyperbolic grave response was well defined at the beginning of the 14 month burial duration, but became less distinctive near the completion of the study. Following the detection of a clandestine grave containing a carcass, collection of gravesoil, tissue and textile samples is important for the estimation of the stage of decomposition and the post burial interval (PBI) of the remains. Throughout the decomposition process of a carcass, adipose tissue is subjected to hydrolytic enzymes that convert triglycerides to their corresponding unsaturated, saturated and salts of fatty acids. The composition of fatty acids in the decomposed tissue will vary with the post mortem period, but it is unknown what affect the soil texture has on lipid degradation. As decomposition proceeds, fatty acids can leach from the tissues into the surrounding burial environment. Fatty acid analysis of gravesoil, tissue and textile samples, exhumed at two, eleven and fourteen month post burial intervals, was conducted using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). Infrared (IR) spectroscopy analysis of the samples provided a qualitative profile of lipid degradation. Analysis of gravesoil samples did not reveal IR spectroscopy bands attributable to fatty acid degradation or adipocere formation. IR spectroscopy analysis of tissue samples is applicable for the estimation of carcass decomposition in all of the soil textures tested. Results of textile IR spectroscopy analysis revealed limited potential to estimate the stage of carcass decomposition in silty clay loam soil. GC-MS was used to quantify the peak area ratio (area/int std area) (PAR) of myristic (C14:0), palmitic (C16:0), palmitoleic (C16:1), stearic (C18:0) and oleic (C18:1) acids. GC-MS results revealed that analysis of both tissue and textile samples can be useful in the estimation of the stage of decomposition and the PBI of carcasses in all three of the soil textures tested. The results of this research may have applicability within forensic investigations involving decomposing bodies by aiding in the location of clandestine graves in silty clay loam and fine sandy loam soil through the use of GPR. Infrared spectroscopy and GC-MS analysis of the fatty acid composition of tissue and textile samples may also be incorporated into investigational protocols to aid in the estimation of the stage of decomposition and the PBI of a body. Key Words: forensic science, ground penetrating radar, soil texture, buried remains, fatty acids, gas chromatography-mass spectrometry (GC-MS), infrared spectroscopy

  5. 77 FR 35114 - Agency Information Collection (NCA PreNeed Burial Planning) Activity Under OMB Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ...Need Burial Planning) Activity Under OMB Review AGENCY: National Cemetery Administration, Department of... PreNeed Burial Planning, VA Form 40-10007. OMB Control Number: 2900--New. Type of Review: New... members, and their eligible family members with planning for burial in a VA national cemetery. This...

  6. The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen

    NASA Technical Reports Server (NTRS)

    Betts, J. N.; Holland, H. D.

    1991-01-01

    Data for the burial efficiency of organic carbon with marine sediments have been compiled for 69 locations. The burial efficiency as here defined is the ratio of the quantity of organic carbon which is ultimately buried to that which reaches the sediment-water interface. As noted previously, the sedimentation rate exerts a dominant influence on the burial efficiency. The logarithm of the burial efficiency is linearly related to the logarithm of the sedimentation rate at low sedimentation rates. At high sedimentation rates the burial efficiency can exceed 50% and becomes nearly independent of the sedimentation rate. The residual of the burial efficiency after the effect of the sedimentation rate has been subtracted is a weak function of the O2 concentration in bottom waters. The scatter is sufficiently large, so that the effect of the O2 concentration in bottom waters on the burial efficiency of organic matter could be either negligible or a minor but significant part of the mechanism that controls the level of O2 in the atmosphere.

  7. Urban Stream Burial Increases Watershed-Scale Nitrate Export.

    PubMed

    Beaulieu, Jake J; Golden, Heather E; Knightes, Christopher D; Mayer, Paul M; Kaushal, Sujay S; Pennino, Michael J; Arango, Clay P; Balz, David A; Elonen, Colleen M; Fritz, Ken M; Hill, Brian H

    2015-01-01

    Nitrogen (N) uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams) can increase watershed-scale N retention.

  8. Urban Stream Burial Increases Watershed-Scale Nitrate Export

    PubMed Central

    Beaulieu, Jake J.; Golden, Heather E.; Knightes, Christopher D.; Mayer, Paul M.; Kaushal, Sujay S.; Pennino, Michael J.; Arango, Clay P.; Balz, David A.; Elonen, Colleen M.; Fritz, Ken M.; Hill, Brian H.

    2015-01-01

    Nitrogen (N) uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams) can increase watershed-scale N retention. PMID:26186731

  9. Investigation and simulation on fate and transport of leachate from a livestock mortality burial site

    NASA Astrophysics Data System (ADS)

    Lim, J.-W.; Lee, S.; Kaown, D.; Lee, K.-K.

    2012-04-01

    Leachate released from livestock mortality burial during decomposition of carcasses can be a threat to groundwater quality. Monitoring study of groundwater quality in the vicinity of livestock burial reported that a caution is needed to prevent contamination of both groundwater and soil, especially in case of mortality burial (Glanville, 2000; Ritter and Chirnside, 1995). The average concentration of ammonium-N and chloride is reported to be 12,600 mg/l and 2,600 mg/l respectively, which is 2-4 times higher than leachate from earthen manure storages and landfills (Pratt, 2009). To assess the potential threat of burial leachate to groundwater quality, simulation of leachate transport is performed based on a hydrogeologic model of an actual mortality burial site. At the burial site of this study located at a hill slope, two mortality pits have been constructed along the slope to bury swine during the outbreak of nationwide foot and mouth disease(FMD) in 2011. Though the pits were partially lined with impermeable material, potential threat of leachate leakage is still in concern. Electrical resistivity survey has been performed several times at the burial site and abnormal resistivity zones have been detected which are supposed as leachate leakage from the burial. Subsurface model including unsaturated zone is built since the leakage is supposed to occur mainly in lateral of the burial pits which is in unsaturated zone. When examining leachate transport, main focus is given to a nitrogenous compound and colloidal character of FMD virus. Nitrifying of denitrifying characters of nitrogenous compound and transport of colloidal particles are affected mainly by soil water content in unsaturated zone. Thus, the fate and transport of burial leachate affected by seasonal variation in recharge pattern is investigated.

  10. Identification and Tracing Groundwater Contamination by Livestock Burial Sites

    NASA Astrophysics Data System (ADS)

    Ko, K.; Ha, K.; Park, S.; Kim, Y.; Lee, K.

    2011-12-01

    Foot-and-mouth disease (FMD) or hoof-and-mouth disease is a severe plague for animal farming that affects cloven-hoofed animals such as cattle, pigs, sheep, and goats. Since it is highly infectious and can be easily proliferated by infected animals, contaminated equipments, vehicles, clothing, people, and predators. It is widely known that the virus responsible for FMD is a picornavirus, the prototypic member of the genus Aphthovirus. A serious outbreak of foot-and-mouth disease, leading to the stamping out of 3.53 millions of pigs and cattle and the construction of 4,538 burial sites until 15th March, 2011. The build-up of carcass burial should inevitably produce leachate by the decomposition of buried livestock affecting the surround environment such as air, soil, groundwater, and surface water. The most important issues which are currently raised by scientists are groundwater contamination by leachate from the livestock burial sites. This study examined the current status of FMD outbreak occurred in 2010-2011 and the issues of groundwater contamination by leachate from livestock burial sites. The hydrogeochemical, geophysical, and hydrogeological studies were executed to identify and trace groundwater contamination by leachate from livestock burial sites. Generally livestock mortality leachate contains high concentrations of NH3-N, HCO3-, Cl-, SO42-, K+, Na+, P along with relative lesser amounts of iron, calcium, and magnesium. The groundwater chemical data around four burial sites showed high NH3-N, HCO3-, and K+ suggesting the leachate leakage from burial sites. This is also proved by resistivity monitoring survey and tracer tests. The simulation results of leachate dispersion showed the persistent detrimental impacts for groundwater environment for a long time (~50 years). It is need to remove the leachate of burial sites to prevent the dispersion of leachate from livestock burial to groundwater and to monitor the groundwater quality. The most important forthcoming issues for livestock burial are the treatment of leachate, protection of groundwater contamination by leachate, prevention of land slide, and prevention of rainfall percolation into burial site. It is also needed to develop the remediation, prospecting, and management technologies of groundwater contamination by carcass burial.

  11. Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball Earth

    PubMed Central

    Sansjofre, Pierre; Cartigny, Pierre; Trindade, Ricardo I. F.; Nogueira, Afonso C. R.; Agrinier, Pierre; Ader, Magali

    2016-01-01

    The terminal Neoproterozoic Era (850–542 Ma) is characterized by the most pronounced positive sulfur isotope (34S/32S) excursions in Earth's history, with strong variability and maximum values averaging δ34S∼+38‰. These excursions have been mostly interpreted in the framework of steady-state models, in which ocean sulfate concentrations do not fluctuate (that is, sulfate input equals sulfate output). Such models imply a large pyrite burial increase together with a dramatic fluctuation in the isotope composition of marine sulfate inputs, and/or a change in microbial sulfur metabolisms. Here, using multiple sulfur isotopes (33S/32S, 34S/32S and 36S/32S ratios) of carbonate-associated sulfate, we demonstrate that the steady-state assumption does not hold in the aftermath of the Marinoan Snowball Earth glaciation. The data attest instead to the most impressive event of oceanic sulfate drawdown in Earth's history, driven by an increased pyrite burial, which may have contributed to the Neoproterozoic oxygenation of the oceans and atmosphere. PMID:27447895

  12. Isochron burial dating of Danube terraces in the course of an interlaboratory comparison on sample preparation in Vienna and Budapest

    NASA Astrophysics Data System (ADS)

    Neuhuber, Stephanie; Ruszkiczay-Rüdiger, Zsófia; Decker, Kurt; Braucher, Regis; Fiebig, Markus; Braun, Mihály; Häuselmann, Philipp; Aster Team

    2016-04-01

    The Neogene development of the Vienna Basin's tectonic history is well-documented in seismic sections and hydrocarbon wells. The late Neogene to Quaternary history is less well preserved due to a gap in the sediment record starting from the Late Pannonian due to a large-scale uplift during a phase of basin inversion [1]. Quaternary sediments in the Vienna Basin form prominent Pleistocene terraces north and south of the Danube's recent floodplain. The Danube's course currently shifts to the south where it erodes into its own gravel terraces that were presumably accumulated during the Pliocene and Early to Middle Pleistocene. North of the Danube, a wide alluvial plain has developed with one prominent Middle Quaternary terrace level 17-25 m above the river (Gänserndorf and Schlosshof Terraces). The most recent tectonic events related to the sinistral movement of the Vienna Basin transform fault system are recorded north of the Danube by faulted terrace segments that were identified by paleoseismological trenching in combination with OSL [2]. In contrast, terraces south of the Danube form a staircase with altitudes ranging between 25 and 130 m above todays water level. The terraces in the south have also been strongly dissected by faults [3], each fault block preserved a slightly different succession of terraces. The fault-related vertical displacements south of the Danube have not yet been quantified. To better understand the Quaternary terrace sequence and its displacement in the southern zone, we use the cosmogenic nuclide pair of 26Al and 10Be for isochron burial dating of a Danube terrace at Haslau an der Donau (~40 m above river level). This terrace is locally the lowest of a staircase of a total of 6 different levels. Based on published geomorphological works, the expected age is Middle Pleistocene. The isochron burial dating method is therefore well-suited to date this sedimentary setting due to the presence of large individual clasts that share the same post-depositional history, but have different pre-exposure and transport histories [4]. The sandy gravel of the Haslau terrace was sampled in an active gravel pit. At this location, two major sedimentary units are separated by an erosional hiatus of unknown duration. The upper sequence was sampled at 5.5 m depth and the lower one was sampled at 11.8 m depth. From both depths six quartzite or quartz-bearing cobbles were taken together with a bulk sample from the matrix for isochron burial duration determination. Five samples were split after crushing and sieving and were processed at both the Cosmogenic Nuclide Sample Preparation Laboratory at Vienna and at Budapest (http://www.geochem.hu/kozmogen/Lab_en.html), in order to assess and compare the sample processing preocedures of these recently operating sample preparation laboratories. AMS measurements were performed at the French national facility ASTER (CEREGE (Aix-en-Provence, France). Thanks to OTKA PD83610, NKM-96/2014, NKM-31/2015; OMAA 90öu17; LP2012-27/2012. INSU/CNRS, the ANR through the program "EQUIPEX Investissement d'Avenir", IRD and CEA. [1] Decker et al., 2005. QSR 24, 307-322 [2] Hintersberger et al, 2013, EGU2013-12755 [3] Salcher et al. 2012. Tectonics, 31, TC3004, doi:10.1029/2011TC002979 [4] Balco and Rovey, 2008. AJS 908, 1083-1114 [5] Fuchs and Grill, 1984, Geologische Gebietskarte der Republik Österreich 1:200 000 Wien und Umgebung

  13. 40 CFR 229.1 - Burial at sea.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Burial at sea. 229.1 Section 229.1... Burial at sea. (a) All persons subject to title I of the Act are hereby granted a general permit to... location for the purpose of burial at sea and to bury such remains at sea subject to the -following...

  14. 40 CFR 229.1 - Burial at sea.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Burial at sea. 229.1 Section 229.1... Burial at sea. (a) All persons subject to title I of the Act are hereby granted a general permit to... location for the purpose of burial at sea and to bury such remains at sea subject to the -following...

  15. 40 CFR 229.1 - Burial at sea.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Burial at sea. 229.1 Section 229.1... Burial at sea. (a) All persons subject to title I of the Act are hereby granted a general permit to... location for the purpose of burial at sea and to bury such remains at sea subject to the -following...

  16. 40 CFR 229.1 - Burial at sea.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Burial at sea. 229.1 Section 229.1... Burial at sea. (a) All persons subject to title I of the Act are hereby granted a general permit to... location for the purpose of burial at sea and to bury such remains at sea subject to the -following...

  17. 40 CFR 229.1 - Burial at sea.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Burial at sea. 229.1 Section 229.1... Burial at sea. (a) All persons subject to title I of the Act are hereby granted a general permit to... location for the purpose of burial at sea and to bury such remains at sea subject to the -following...

  18. Cleanup Verification Package for the 118-F-1 Burial Ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. J. Farris and H. M. Sulloway

    2008-01-10

    This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.

  19. Crustal evolution at mantle depths constrained from Pamir xenoliths

    NASA Astrophysics Data System (ADS)

    Kooijman, E.; Hacker, B. R.; Smit, M. A.; Kylander-Clark, A. R.; Ratschbacher, L.

    2012-12-01

    Lower crustal xenoliths erupted in the Pamir at ~11 Ma provide an exclusive opportunity to study the evolution of crust at mantle depths during a continent-continent collision. To investigate, and constrain the timing of, the petrologic processes that occurred during burial to the peak conditions (2.5-2.8 GPa, 1000-1100 °C; [1]), we performed chemical- and isotope analyses of accessory minerals in 10 xenoliths, ranging from eclogites to grt-ky-qtz granulites. In situ laser ablation split-stream ICPMS yielded 1) U-Pb ages, Ti concentrations and REE in zircon, 2) U/Th-Pb ages and REE in monazite, and 3) U-Pb ages and trace elements in rutile. In addition, garnet, and biotite and K-feldspar were dated using Lu-Hf and 40Ar/39Ar geochronology, respectively. Zircon and monazite U-(Th-)Pb ages are 101.9±1.8, 53.7±1.0, 39.1±0.8, 21.7±0.4, 18.2±0.5, 16.9±0.8, 15.1±0.3 (2σ) and 12.5-11.1 Ma; most samples showed several or all of these populations. The 53.7 Ma and older ages are xenocrystic or detrital. For younger ages, zircon and monazite in individual samples recorded different ages-although zircon in one rock and monazite in another can be the same age. The 39.1 Ma zircon and monazite mostly occur as inclusions in minerals of the garnet-bearing assemblage that represents the early, low-P stages of burial. Garnet Lu-Hf ages of 37.8±0.3 Ma support garnet growth at this time. Spinifex-like textures containing 21.7-11.1 Ma zircon and monazite record short-lived partial melting events during burial. Aligned kyanite near these patches indicates associated deformation. Zircons yielding ≤12.5 Ma exhibit increased Eu/Eu* and markedly decreased HREE concentrations, interpreted to record feldspar breakdown and omphacite growth during increasing pressure. Rutile U-Pb cooling ages are 10.8±0.3 Ma in all samples. This agrees with the weighted mean 40Ar/39Ar age of eight biotite, K-feldspar and whole rock separates of 11.00+0.16/-0.09 Ma. Rutile in eclogites provides Zr/Hf and Nb/Ta trends that indicate clinopyroxene fractionation. This is consistent with the occurrence of rutile in omphacite-rich parts of the rocks and supports their HP petrogenesis. In the felsic granulites rutile is associated with the amphibolite-facies garnet-bearing assemblage and its Nb/Ta and Zr/Hf primarily reflect fractionation by rutile. Zirconium-in-rutile temperatures are 800-835 °C for the felsic granulites and 860-895 °C for the eclogites. Titanium-in-zircon temperatures increase from ~735 °C (0.7-1.0 GPa) at 39.1 Ma to ~900 °C (>2.5 GPa) at 11.5 Ma; a further, abrupt increase toward 1000 °C at 11.1 Ma marks melting at the onset of eruption. The analytical uncertainty on the Miocene ages is small compared to the 28-Myr burial record, enabling precise dating of individual reaction and deformation events. These events are at least an order of magnitude shorter than the duration of burial, and evidently occurred in pulses recorded by the (re)crystallization of zircon or monazite. Reference: [1] Hacker et al. (2005) J Petrol 46 (8): 1661-1687.

  20. Time since death and decomposition of the human body: variables and observations in case and experimental field studies.

    PubMed

    Mann, R W; Bass, W M; Meadows, L

    1990-01-01

    Much of the difficulty in determining the time since death stems from the lack of systematic observation and research on the decomposition rate of the human body. Continuing studies conducted at the University of Tennessee, Knoxville, provide useful information on the impact of carrion insect activity, ambient temperature, rainfall, clothing, burial and depth, carnivores, bodily trauma, body weight, and the surface with which the body is in contact. This paper reports findings and observations accumulated during eight years of research and case studies that may clarify some of the questions concerning bodily decay.

  1. Strain indicators and magnetic fabric in intraplate fault zones: Case study of Daroca thrust, Iberian Chain, Spain

    NASA Astrophysics Data System (ADS)

    Casas-Sainz, A. M.; Gil-Imaz, A.; Simón, J. L.; Izquierdo-Llavall, E.; Aldega, L.; Román-Berdiel, T.; Osácar, M. C.; Pueyo-Anchuela, Ó.; Ansón, M.; García-Lasanta, C.; Corrado, S.; Invernizzi, C.; Caricchi, C.

    2018-04-01

    Anisotropy of magnetic susceptibility (AMS) has been applied to the study of shallow fault zones, although interpretation of the results requires establishing clear relationships between petrofabric and magnetic features, magnetic behaviour of fault rocks, and an extensive knowledge of P-T conditions. In this work, we demonstrate that magnetic methods can be applied to the study of heterogeneous fault zones, provided that a series of requisites are met. A major fault zone within the Iberian plate (Daroca thrust), showing transpressional movements during Cenozoic time was chosen for this purpose, because of the exceptional outcrops of fault gouge and microbreccia and its relevance within the context of the northeastern Iberian Plate. Magnetic fabrics were analysed and the results were compared with foliation and S-C structures measured within the fault zone. Clay mineral assemblages suggest maximum burial depths shallower than 2 km (<60-70 °C) for fault rocks in the footwall of the Daroca thrust. The orientation of the AMS axes is consistent with mesostructural strain indicators: kmin parallels the mean pole to S, or it is intermediate between S and C poles; kmax is oriented at a high angle (nearly orthogonal in overall) to the transport direction, which can be explained from both deformational and mineralogical controls. Both magnetic fabrics and kinematic indicators are consistent with a reverse movement for most of the fault zone.

  2. Fate of permafrost-released organic matter in the Laptev Sea: What is its lateral transport time along the transect from the Lena delta area to the deep sea of the Arctic interior?

    NASA Astrophysics Data System (ADS)

    Bröder, L.; Tesi, T.; Bruchert, V.; Dudarev, O.; Semiletov, I. P.; Gustafsson, O.

    2015-12-01

    Ongoing global warming may cause an increasing supply of permafrost-derived organic carbon through both river discharge and coastal erosion to the Arctic shelves where it can be either degraded to CO2 and outgassed, buried in sediments or transported to the deep sea. Here we assess the balance between burial and lateral transport on the fate of terrestrial organic carbon (TerrOC) by exploring how it changes in concentration, composition and degradation status during both cross-shelf transport and burial. We analyzed a suite of terrestrial biomarkers as well as source-diagnostic bulk carbon isotopes (δ13C, Δ14C) in sediments from the wide Siberian Arctic Shelf and found contrasting trends for the operationally-defined carbon pools. TerrOC concentrations and degradation status vary noticeably more during cross-shelf transport than after burial. The concentrations of lignin phenols, cutin acids and high-molecular weight (HMW) wax lipids (tracers of vascular plants) do not display clear changes over time during sediment accumulation, while they significantly decrease along the transect. Molecular-based degradation proxies for TerrOC (e.g., CPI of HMW lipids, the HMW acids/alkanes ratio and the acid/aldehyde ratio of lignin phenols) do not suggest extensive down-core mineralization, but there appears to be a trend to more degraded TerrOC with increasing distance from the coast. We infer that the degree of degradation of permafrost-derived TerrOC is a function of the time spent under oxic conditions (oxygen exposure time, OET). Specifically, one possible explanation for these patterns could be protracted OETs during cross-shelf transport compared to rather short in situ OETs after burial. To test this hypothesis we estimate lateral transport times using compound-specific radiocarbon analysis for terrestrial OC biomarkers (HMW fatty acids) and compare these with in situ OETs calculated from measured oxygen penetration depths and 210Pb-derived sedimentation rates.

  3. Mid-depth temperature maximum in an estuarine lake

    NASA Astrophysics Data System (ADS)

    Stepanenko, V. M.; Repina, I. A.; Artamonov, A. Yu; Gorin, S. L.; Lykossov, V. N.; Kulyamin, D. V.

    2018-03-01

    The mid-depth temperature maximum (TeM) was measured in an estuarine Bol’shoi Vilyui Lake (Kamchatka peninsula, Russia) in summer 2015. We applied 1D k-ɛ model LAKE to the case, and found it successfully simulating the phenomenon. We argue that the main prerequisite for mid-depth TeM development is a salinity increase below the freshwater mixed layer, sharp enough in order to increase the temperature with depth not to cause convective mixing and double diffusion there. Given that this condition is satisfied, the TeM magnitude is controlled by physical factors which we identified as: radiation absorption below the mixed layer, mixed-layer temperature dynamics, vertical heat conduction and water-sediments heat exchange. In addition to these, we formulate the mechanism of temperature maximum ‘pumping’, resulting from the phase shift between diurnal cycles of mixed-layer depth and temperature maximum magnitude. Based on the LAKE model results we quantify the contribution of the above listed mechanisms and find their individual significance highly sensitive to water turbidity. Relying on physical mechanisms identified we define environmental conditions favouring the summertime TeM development in salinity-stratified lakes as: small-mixed layer depth (roughly, ~< 2 m), transparent water, daytime maximum of wind and cloudless weather. We exemplify the effect of mixed-layer depth on TeM by a set of selected lakes.

  4. Burial thermal histories, vitrinite reflectance, and laumontite isograd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCulloh, T.H.; Fan, J.J.

    1985-02-01

    The optical reflectance of vitrinite has become the standard basis for quantitative judgments of integrated temperature-time (burial) histories. Inferences about the crystallization temperature of the calcium zeolite laumontite also have been used repeatedly for such purposes. In a few cases, these 2 approaches have been combined or their results compared. As generally employed, neither approach has quantitative validity. Factors other than temperature and time play roles in the way that burial history affects vitrinite reflectance (R/sub o/). In particular, the organic geochemical environment exerts a strong and variable local-to-regional influence on the rate of increase of R/sub o/ versus temperature.more » Hydrocarbon-rich environments retard the rate of R/sub o/ increase; hydrocarbon-deficient environments accelerate it. Local (interbed) R/sub o/ divergencies up to 0.5% result, and regional (interbasin) divergencies are equal or possibly greater. Much of the scatter in compilation plots of R/sub o/ versus TTI may result from such divergencies. Laumontite, where it can crystallize at all, precipitates according to specific stringent requirements of fluid pressure and temperature. The crystallization temperature at the laumontite isograd ranges from 32/sup 0/C (1 atm) to 193/sup 0/C (P/sub f/ = 1325 atm). The crystallization rate is geologically instantaneous, completely unlike the time-dependent organic reactions responsible for the progressive aromatization of coal macerals during kerogen maturation, providing an instantaneous pressure-sensitive maximum-recording thermometer. Paleotemperatures to constrain interpretations of R/sub o/ data may be one of the greatest values to be gained from studies of diagenetic laumontite.« less

  5. Effect of wildfire and fireline construction on the annual depth of thaw in a black spruce permafrost forest in interior Alaska: a 36-year record of recovery

    Treesearch

    Leslie A. Viereck; Nancy R. Werdin-Pfisterer; Phyllis C. Adams; Kenji Yoshikawa

    2008-01-01

    Maximum thaw depths were measured annually in an unburned stand, a heavily burned stand, and a fireline in and adjacent to the 1971 Wickersham fire. Maximum thaw in the unburned black spruce stand ranged from 36 to 52 cm. In the burned stand, thaw increased each year to a maximum depth of 302 cm in 1995. In 1996, the entire layer of seasonal frost remained, creating a...

  6. Diagenesis and evolution of microporosity of Middle-Upper Devonian Kee Scarp reefs, Norman Wells, Northwest Territories, Canada: Petrographic and chemical evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Aasm, I.S.; Azmy, K.K.

    The Middle-Upper Devonian Kee Scarp reef complexes of Norman Wells, Northwest Territories, Canada, are oil-producing, stromatoporoid-dominated carbonates. Episodic increases in the rate of sea level rise produced multiple cycles of reef growth that exhibit backstepping characteristics. These carbonates, composed of invariably altered limestones, have original interskeletal, intraskeletal, and intergranular porosity, mostly occluded by nonferroan, dull luminescent cements. Secondary porosity, represented by micropores of various types, developed during diagenesis by aggrading neomorphism and dissolution. The micropores represent the main reservoir porosity in the Kee Scarp limestone. Petrographic, chemical, and isotopic studies of Kee Scarp reef components reveal a complex diagenetic historymore » involving marine fluids modified by increasing water/rock interaction and burial. Neomorphic stabilization of skeletal components caused further depletion in {gamma}{sup 18}O but very little change in {gamma}{sup 13}C, an argument for modification of the original marine fluids with increasing burial. Variations in magnitude of water/rock interaction with depth, facies changes, and porosity modifications probably exerted some control on fractionation and distribution of stable isotopes and trace elements in reef components.« less

  7. Dating of Pliocene Colorado River sediments: implications for cosmogenic burial dating and the evolution of the lower Colorado River

    USGS Publications Warehouse

    Matmon, Ari; Stock, Greg M.; Granger, Darryl E.; Howard, Keith A.

    2011-01-01

    We applied cosmogenic 26Al/10Be burial dating to sedimentary deposits of the ancestral Colorado River. We compared cosmogenic burial ages of sediments to the age of an independently well-dated overlying basalt flow at one site, and also applied cosmogenic burial dating to sediments with less precise independent age constraints. All dated gravels yielded old ages that suggest several episodes of sediment burial over the past ∼5.3 m.y. Comparison of burial ages to the overlying 4.4 Ma basalt yielded good agreement and suggests that under the most favorable conditions, cosmogenic burial dating can extend back 4–5 m.y. In contrast, results from other sites with more broadly independent age constraints highlight the complexities inherent in burial dating; these complexities arise from unknown and complicated burial histories, insufficient shielding, postburial production of cosmogenic isotopes by muons, and unknown initial 26Al/10Be ratios. Nevertheless, and in spite of the large range of burial ages and large uncertainties, we identify samples that provide reasonable burial age constraints on the depositional history of sediment along the lower ancestral Colorado River. These samples suggest possible sediment deposition and burial at ca. 5.3, 4.7, and 3.6 Ma. Our calculated basinwide erosion rate for sediment transported by the modern Colorado River (∼187 mm k.y.−1) is higher than the modern erosion rates inferred from the historic sediment load (80–100 mm k.y.−1). In contrast, basinwide paleo-erosion rates calculated from Pliocene sediments are all under 40 mm k.y.−1 The comparatively lower denudation rates calculated for the Pliocene sediment samples are surprising given that the sampled time intervals include significant Pliocene aggradation and may include much incision of the Grand Canyon and its tributaries. This conflict may arise from extensive storage of sediment along the route of the Colorado River, slower paleobedrock erosion, or the inclusion of sediments that were derived preferentially from higher elevations in the watershed.

  8. Dating of Pliocene Colorado River sediments: Implications for cosmogenic burial dating and the evolution of the lower Colorado River

    USGS Publications Warehouse

    Howard, Keith A.; Matmon, Ari; Stock, Greg M.; Granger, Darryl E.

    2017-01-01

    We applied cosmogenic 26Al/10Be burial dating to sedimentary deposits of the ancestral Colorado River. We compared cosmogenic burial ages of sediments to the age of an independently well-dated overlying basalt flow at one site, and also applied cosmogenic burial dating to sediments with less precise independent age constraints. All dated gravels yielded old ages that suggest several episodes of sediment burial over the past ∼5.3 m.y. Comparison of burial ages to the overlying 4.4 Ma basalt yielded good agreement and suggests that under the most favorable conditions, cosmogenic burial dating can extend back 4–5 m.y. In contrast, results from other sites with more broadly independent age constraints highlight the complexities inherent in burial dating; these complexities arise from unknown and complicated burial histories, insufficient shielding, postburial production of cosmogenic isotopes by muons, and unknown initial 26Al/10Be ratios. Nevertheless, and in spite of the large range of burial ages and large uncertainties, we identify samples that provide reasonable burial age constraints on the depositional history of sediment along the lower ancestral Colorado River. These samples suggest possible sediment deposition and burial at ca. 5.3, 4.7, and 3.6 Ma.Our calculated basinwide erosion rate for sediment transported by the modern Colorado River (∼187 mm k.y.−1) is higher than the modern erosion rates inferred from the historic sediment load (80–100 mm k.y.−1). In contrast, basinwide paleo-erosion rates calculated from Pliocene sediments are all under 40 mm k.y.−1 The comparatively lower denudation rates calculated for the Pliocene sediment samples are surprising given that the sampled time intervals include significant Pliocene aggradation and may include much incision of the Grand Canyon and its tributaries. This conflict may arise from extensive storage of sediment along the route of the Colorado River, slower paleobedrock erosion, or the inclusion of sediments that were derived preferentially from higher elevations in the watershed.

  9. Organic carbon accumulation in modern sediments of the Angola basin influenced by the Congo deep-sea fan

    NASA Astrophysics Data System (ADS)

    Baudin, François; Martinez, Philippe; Dennielou, Bernard; Charlier, Karine; Marsset, Tania; Droz, Laurence; Rabouille, Christophe

    2017-08-01

    Geochemical data (total organic carbon-TOC content, δ13Corg, C:N, Rock-Eval analyses) were obtained on 150 core tops from the Angola basin, with a special focus on the Congo deep-sea fan. Combined with the previously published data, the resulting dataset (322 stations) shows a good spatial and bathymetric representativeness. TOC content and δ13Corg maps of the Angola basin were generated using this enhanced dataset. The main difference in our map with previously published ones is the high terrestrial organic matter content observed downslope along the active turbidite channel of the Congo deep-sea fan till the distal lobe complex near 5000 m of water-depth. Interpretation of downslope trends in TOC content and organic matter composition indicates that lateral particle transport by turbidity currents is the primary mechanism controlling supply and burial of organic matter in the bathypelagic depths.

  10. Selected meteorological data for an arid climate over bare soil near Beatty, Nye County, Nevada, November 1977 through May 1980

    USGS Publications Warehouse

    Brown, Robin G.; Nichols, William D.

    1990-01-01

    Meteorological data were collected over bare soil at a site for low-level radioactive-waste burial near Beatty, Nevada, from November 1977 to May 1980. The data include precipitation, windspeed, wind direction, incident solar radiation, reflected solar radiation, net radiation, dry- and wet-bulb air temperatures at three heights, soil temperature at five depths, and soil-heat flux at three depths. Mean relative humidity was computed for each day of the collection period for which data are available.A discussion is presented of the study site and the instrumentation and procedures used for collecting and processing the data. Selected data from November 1977 to May 1980 are presented in tabular form. Diurnal fluctuations of selected meteorological variables for representative summer and winter periods are graphically presented. The effects on selected variables of a partial solar eclipse are also discussed

  11. Hydrocarbon Source Rocks in the Deep River and Dan River Triassic Basins, North Carolina

    USGS Publications Warehouse

    Reid, Jeffrey C.; Milici, Robert C.

    2008-01-01

    This report presents an interpretation of the hydrocarbon source rock potential of the Triassic sedimentary rocks of the Deep River and Dan River basins, North Carolina, based on previously unpublished organic geochemistry data. The organic geochemical data, 87 samples from 28 drill holes, are from the Sanford sub-basin (Cumnock Formation) of the Deep River basin, and from the Dan River basin (Cow Branch Formation). The available organic geochemical data are biased, however, because many of the samples collected for analyses by industry were from drill holes that contained intrusive diabase dikes, sills, and sheets of early Mesozoic age. These intrusive rocks heated and metamorphosed the surrounding sediments and organic matter in the black shale and coal bed source rocks and, thus, masked the source rock potential that they would have had in an unaltered state. In places, heat from the intrusives generated over-mature vitrinite reflectance (%Ro) profiles and metamorphosed the coals to semi-anthracite, anthracite, and coke. The maximum burial depth of these coal beds is unknown, and depth of burial may also have contributed to elevated thermal maturation profiles. The organic geochemistry data show that potential source rocks exist in the Sanford sub-basin and Dan River basin and that the sediments are gas prone rather than oil prone, although both types of hydrocarbons were generated. Total organic carbon (TOC) data for 56 of the samples are greater than the conservative 1.4% TOC threshold necessary for hydrocarbon expulsion. Both the Cow Branch Formation (Dan River basin) and the Cumnock Formation (Deep River basin, Sanford sub-basin) contain potential source rocks for oil, but they are more likely to have yielded natural gas. The organic material in these formations was derived primarily from terrestrial Type III woody (coaly) material and secondarily from lacustrine Type I (algal) material. Both the thermal alteration index (TAI) and vitrinite reflectance data (%Ro) indicate levels of thermal maturity suitable for generation of hydrocarbons. The genetic potential of the source rocks in these Triassic basins is moderate to high and many source rock sections have at least some potential for hydrocarbon generation. Some data for the Cumnock Formation indicate a considerably higher source rock potential than the basin average, with S1 + S2 data in the mid-20 mg HC/g sample range, and some hydrocarbons have been generated. This implies that the genetic potential for all of these strata may have been higher prior to the igneous activity. However, the intergranular porosity and permeability of the Triassic strata are low, which makes fractured reservoirs more attractive as drilling targets. In some places, gravity and magnetic surveys that are used to locate buried intrusive rock may identify local thermal sources that have facilitated gas generation. Alternatively, awareness of the distribution of large intrusive igneous bodies at depth may direct exploration into other areas, where thermal maturation is less than the limits of hydrocarbon destruction. Areas prospective for natural gas also contain large surficial clay resources and any gas discovered could be used as fuel for local industries that produce clay products (principally brick), as well as fuel for other local industries.

  12. Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer

    USGS Publications Warehouse

    Barker, C.E.; Goldstein, R.H.

    1990-01-01

    The hypothesis that aqueous fluid inclusions in calcite can be used to establish maximum temperature (Tpeak) is tested. Fluid inclusion Th, mean random vitrinite reflectance (Rm), and present-day Tpeak from 46 diverse geologic systems that have been at Tpeak from 104 to 106 yr have been compiled. Present Tpeak ranged from 65 to 345??C, Th modes and means ranged from 59 to 350??C, and Rm data ranged from 0.4% to 4.6%, spanning the temperature and thermal maturity range associated with burial diagenesis, hydrothermal alteration, and low-grade metamorphism. Plots of Th and Tpeak data for systems thought to be currently at maximum temperature demonstrate close agreement between Th and present Tpeak in sedimentary basins. The relation suggests that Th of aqueous fluid inclusions in calcite may be a useful measure of maximum temperature. This study also compared Th to mean random vitrinite reflectance (Rm). Th correlates well with Rm and results in a curve similar to Rm vs. Tpeak calibrations determined by other workers. Strong correlation between Tpeak and Rm in these systems suggests that maximum temperature is the major control on thermal maturation. -after Authors

  13. Thallium-isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial

    NASA Astrophysics Data System (ADS)

    Owens, Jeremy D.; Nielsen, Sune G.; Horner, Tristan J.; Ostrander, Chadlin M.; Peterson, Larry C.

    2017-09-01

    Thallium (Tl) isotopes are a new and potentially powerful paleoredox proxy that may track bottom water oxygen conditions based on the global burial flux of manganese oxides. Thallium has a residence time of ∼20 thousand years, which is longer than the ocean mixing time, and it has been inferred that modern oxic seawater is conservative with respect to both concentration and isotopes. Marine sources of Tl have nearly identical isotopic values. Therefore, the Tl sinks, adsorption onto manganese oxides and low temperature oceanic crust alteration (the dominant seawater output), are the primary controls of the seawater isotopic composition. For relatively short-term, ∼million years, redox events it is reasonable to assume that the dominant mechanism that alters the Tl isotopic composition of seawater is associated with manganese oxide burial because large variability in low temperature ocean crust alteration is controlled by long-term, multi-million years, average ocean crust production rates. This study presents new Tl isotope data for an open ocean transect in the South Atlantic, and depth transects for two euxinic basins (anoxic and free sulfide in the water column), the Cariaco Basin and Black Sea. The Tl isotopic signature of open ocean seawater in the South Atlantic was found to be homogeneous with ε205Tl = -6.0 ± 0.3 (±2 SD, n = 41) while oxic waters from Cariaco and the Black Sea are -5.6 and -2.2, respectively. Combined with existing data from the Pacific and Arctic Oceans, our Atlantic data establish the conservatism of Tl isotopes in the global ocean. In contrast, partially- and predominantly-restricted basins reveal Tl isotope differences that vary between open-ocean (-6) and continental material (-2) ε205Tl, scaling with the degree of restriction. Regardless of the differences between basins, Tl is quantitatively removed from their euxinic waters below the chemocline. The burial of Tl in euxinic sediments is estimated to be an order of magnitude less than each of the modern ocean outputs and imparts no isotopic fractionation. Thallium removal into pyrite appears to be associated with a small negative fractionation between -1 and -3 ε205Tl, which renders Tl-depleted waters below the chemocline enriched in isotopically-heavy Tl. Due to the quantitative removal of Tl from euxinic seawater, Tl isotope analyses of the authigenic fraction of underlying euxinic sediments from both the Black Sea and Cariaco Basin capture the Tl isotope value of the oxic portion of their respective water column with no net isotope fractionation. Since the Tl isotope composition of seawater is largely dictated by the relative fraction of Mn-oxide burial versus oceanic crust alteration, we contend that the Tl isotope composition of authigenic Tl in black shales, deposited under euxinic conditions but well-connected to the open ocean, can be utilized to reconstruct the Tl isotope composition of seawater, and thus to reconstruct the global history of Mn-oxide burial.

  14. Constraints for estimating the future burial depth of host rocks for geological waste disposal: a case study from the Boom Clay, Campine area, Northern Belgium

    NASA Astrophysics Data System (ADS)

    Beerten, K.; De Craen, M.; Brassinnes, S.

    2012-04-01

    An important requirement for geological formations hosting a repository for radioactive waste is sufficient depth to ensure isolation of the waste for a very long time period, up to 1 Ma and beyond. Over such long timescales, the repository depth and the thickness of the overburden may vary significantly due to various geodynamic processes. In Belgium, the Boom Clay in the Campine area (NE-Belgium) is considered as reference host formation for the geological disposal of radioactive waste. First results are presented that illustrate the possible impact of future climate change (based on several scenarios studied in the BIOCLIM project (BIOCLIM, 2001)) and tectonic movements in the Campine area on the thickness of the sediment mass overlying the Boom Clay. At present, the subcrop area of Boom Clay in the Campine area is relatively flat (between ~ 0 m a.s.l. near the river Scheldt estuary in the west and ~ 60 m a.s.l. on the Campine Plateau in the east) and is occupied by several sub-basins that belong to the rivers Meuse and Scheldt. Future development of the area will heavily depend on the behaviour of these rivers and tributaries throughout the considered timeframe, in response to climatic changes and tectonic movements. The area is characterised by a long burial history, with some minor isolated uplift and erosional events during the last 30 Ma. In a global warming scenario during a long interglacial (> 50 ka AP), and/or in the case of subsidence, (relative) sea-level may rise such that various parts of the Boom Clay area will be occupied by the marine realm. This is likely to be a minimal erosion scenario because the baseline for landscape evolution will rise in the upstream parts while estuarine and marine deposition may increase the thickness of the overburden in the downstream parts. In the case of a continuation of Pleistocene glacial cycles, i.e. the alternation between warm interglacials and cold glacials, the area will be exposed to erosion and denudation as occurred before. From a detailed analysis of the geological record described in the literature it is determined that during a future glaciation with significant sea-level fall, the river Scheldt basin will become a tributary of the major river system occupying the North Sea valley. This situation already existed ~ 400 ka BP ago, and was probably responsible for the formation of the Flemish Valley. Today, this valley system is completely filled with sediment, but may be reactivated during next glaciations. Together with extreme uplift rates taken from the Maastricht area, south of the Boom Clay subcrop zone, the total amount of erosion may add up to 100-150 m after 1 Ma, which is regarded as a conservative value. We conclude that constraints for future burial depths and erosion rates in the Campine area should consider the combined effect of both climate change and internal geodynamics (uplift/subsidence). Such effects can easily be deduced from geological archives in the region, that take into account specific and local circumstances.

  15. Origin of dolomite in Miocene Monterey Shale and related formations in the Temblor Range, California

    USGS Publications Warehouse

    Friedman, I.; Murata, K.J.

    1979-01-01

    Dolomites in thick sections of Miocene Monterey Shale and related formations in the Temblor Range of California acquired their isotopic compositions as they formed at shallow depth in the original sediment rich in organic matter, and retained the composition against the vicissitudes of burial diagenesis. The oxygen isotopes of dolomites of successive beds record changes in temperature of bottom water while the carbon isotopes of the same samples indicate changes in the kind of microbial activity (sulfate reduction vs carbohydrate fermentation) that prevailed at shallow depths in the sediment. In an auxiliary study, two samples of dolomite from sediments of Cariaco Basin off Venezuela (DSDP site 147) were found to have ??5C13 of -14.1 and -9.8 per ml PDB, although they occur in a heavy-carbon zone containing bicarbonate as heavy as +8.4 per ml. These dolomites probably originated at shallow depth in the light-carbon zone of microbial sulfate reducers and were buried under later sediments down into the heavy-carbon zone of microbial fermenters of carbohydrates without losing their original light-carbon composition. ?? 1979.

  16. Cleanup Verification Package for the 618-8 Burial Ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. J. Appel

    2006-08-10

    This cleanup verification package documents completion of remedial action for the 618-8 Burial Ground, also referred to as the Solid Waste Burial Ground No. 8, 318-8, and the Early Solid Waste Burial Ground. During its period of operation, the 618-8 site is speculated to have been used to bury uranium-contaminated waste derived from fuel manufacturing, and construction debris from the remodeling of the 313 Building.

  17. Constraints on Pore Pressure in Subduction Zones From Geotechnical Tests and Physical Properties Data

    NASA Astrophysics Data System (ADS)

    Saffer, D. M.; McKiernan, A. W.

    2005-12-01

    At subduction zones, as incoming sediments are either offscraped or underthrust at the trench, elevated pore pressures result from the combination of rapid loading and low permeability. Pore pressure within underthrust sediment is especially important for the mechanical strength of the plate boundary fault system, because the main décollement localizes immediately above this sediment, and at many subduction zones steps downward into it. Because the underthrust sediment undergoes progressive uniaxial (vertical) strain, quantitative estimates of in situ pore pressure can be obtained by several methods, including: (1) maximum past burial stress ( Pv'}) from laboratory consolidation tests on core samples, and (2) observed compaction trends in boreholes. These methods allow a detailed view of pore pressure and its variability down-section, providing insight into dewatering processes and the evolution of shear strength relevant to early development of the décollement. Geotechnical tests also provide independent measurement of the coefficient of consolidation ( Cv), compressibility ( mv), and permeability (k) of sediment samples, which can be used to parameterize forward models of pressure generation. Here, I discuss pore pressure estimates derived from (1) consolidation tests on core samples, and (2) observed porosity profiles, along transects where ODP drilling has sampled sediment at the Nankai, N. Barbados, and Costa Rican subduction zones. At all three margins, the two independent methods yield consistent results, and indicate development of significant overpressures that increase systematically with distance from the trench. The values are in good agreement with direct measurements in 2 instrumented boreholes at Barbados, maximum and minimum bounds from the known loading rate, and results of 2-D numerical models of fluid flow. Inferred pressures document nearly undrained conditions at the base of the section (excess pressures equal to the load emplaced by subduction burial), and partially drained conditions at the top (excess pressures of ~40% of the undrained response at Costa Rica, ~50-60% at Nankai, and ~90-100% at Barbados). The spatial pattern of excess pore pressure is most consistent with upward drainage to a highly permeable décollement, to distances of at least 5-10 km landward of the trench. When directly measured values of mv and k from laboratory geotechnical experiments are incorporated into simple 1-D models of vertical dewatering, simulated pore pressures are consistent with those inferred from consolidation tests and porosity data. Model results suggest that severe underconsolidation should persist for tens of km from the trench; notably, simulated underconsolidation is diminished by 20-30 km landward of the trench at Nankai, broadly coincident with the locations of both diminished seismic reflection amplitude observed at the décollement and the updip extent of coseismic slip. The consistent results achieved at these three margins indicate that: (1) geotechnical tests can provide viable estimates of in situ pore pressure, at least at shallow depths, and (2) laboratory-derived values of permeability and sediment compressibility may be representative of in situ properties, despite collection at small spatial scale and over short times. However, significant uncertainty exists in projecting models to greater depth using geotechnical parameters from shallow samples; more detailed laboratory investigations are clearly needed to better understand the roles of temperature, rate, and diagenetic effects.

  18. Fluid inclusions and biomarkers in the Upper Mississippi Valley zinc-lead district; implications for the fluid-flow and thermal history of the Illinois Basin

    USGS Publications Warehouse

    Rowan, E. Lanier; Goldhaber, Martin B.

    1996-01-01

    The Upper Mississippi Valley zinc-lead district is hosted by Ordovician carbonate rocks at the northern margin of the Illinois Basin. Fluid inclusion temperature measurements on Early Permian sphalerite ore from the district are predominantly between 90?C and I50?C. These temperatures are greater than can be explained by their reconstructed burial depth, which was a maximum of approximately 1 km at the time of mineralization. In contrast to the temperatures of mineral formation derived from fluid inclusions, biomarker maturities in the Upper Mississippi Valley district give an estimate of total thermal exposure integrated over time. Temperatures from fluid inclusions trapped during ore genesis with biomarker maturities were combined to construct an estimate of the district's overall thermal history and, by inference, the late Paleozoic thermal and hydrologic history of the Illinois Basin. Circulation of groundwater through regional aquifers, given sufficient flow rates, can redistribute heat from deep in a sedimentary basin to its shallower margins. Evidence for regional-scale circulation of fluids is provided by paleomagnetic studies, regionally correlated zoned dolomite, fluid inclusions, and thermal maturity of organic matter. Evidence for igneous acti vity contemporaneous with mineralization in the vicinity of the Upper Mississippi Valley district is absent. Regional fluid and heat circulation is the most likely explanation for the elevated fluid inclusion temperatures (relative to maximum estimated burial depth) in the Upper Mississippi Valley district. One plausible driving mechanism and flow path for the ore-forming fluids is groundwater recharge in the late Paleozoic Appalachian-Ouachita mountain belt and northward flow through the Reelfoot rift and the proto- Illinois Basin to the Upper Mississippi Valley district. Warm fluid flowing laterally through Cambrian and Ordovician aquifers would then move vertically upward through the fractures that control sphalerite mineralization in the Upper Mississippi Valley district. Biomarker reactant-product measurements on rock extracts from the Upper Mississippi Valley district define a relatively low level ofthermal maturity for the district, 0.353 for sterane and 0.577 for hopane. Recently published kinetic constants permit a time-temperature relationship to be determined from these biomarker maturities. Numerical calculations were made to simulate fluid heat flow through the fracture-controlled ore zones of the Thompson-Temperly mine and heat transfer to the adjacent rocks where biomarker samples were collected. Calculations that combine the fluid inclusion temperatures and the biomarker constraints on thermal maturity indicate that the time interval during which mineralizing fluids circulated through the Upper Mississippi Valley district is on the order of 200,000 years. Fluid inclusion measurements and thermal maturities from biomarkers in the district reflect the duration of peak temperatures resulting from regional fluid circulation. On the basis of thermal considerations, the timing of fluorite mineralization in southern Illinois, and the northward-decreasing pattern of fluorine enrichment in sediments, we hypothesize that the principal flow direction was northward through the Cambrian and Ordovician aquifers of the Illinois Basin. A basin-scale flow system would result in mass transport (hydrocarbon migration, transport of metals in solution) and energy (heat) transport, which would in turn drive chemical reactions (for example, maturation of organic matter, mineralization, diagenetic reactions) within the Illinois Basin and at its margins.

  19. Defining the upper age limit of luminescence dating: A case study using long lacustrine records from Chew Bahir, Ethiopia

    NASA Astrophysics Data System (ADS)

    Chapot, Melissa S.; Roberts, Helen M.; Lamb, Henry F.; Schäbitz, Frank; Asrat, Asfawossen; Trauth, Martin H.

    2017-04-01

    Optically stimulated luminescence (OSL) dating is a family of numerical chronometric techniques applied to quartz or feldspar mineral grains to assess the time since these grains were last exposed to sunlight (i.e. deposited), based on the amount of energy they absorbed from ambient radiation during burial. The maximum limit of any OSL dating technique is not defined by a fixed upper age limit, but instead by the maximum radiation dose the sample can accurately record before the OSL signal saturates. The challenge is to assess this upper limit of accurate age determination without necessitating comparison to independent age control. Laboratory saturation of OSL signals can be observed using a dose response curve (DRC) plotting OSL signal intensity against absorbed laboratory radiation dose. When a DRC is fitted with a single saturating exponential, one of the equation's parameters can be used to define a pragmatic upper limit beyond which uncertainties become large and asymmetric (Wintle and Murray, 2006). However, many sub-samples demonstrate DRCs that are best defined by double saturating exponential equations, which cannot be used to define this upper limit. To investigate the reliability of luminescence ages approaching saturation, Chapot et al. (2012) developed the Natural DRC concept, which uses expected ages derived from independent age control, combined with sample-specific measurements of ambient radioactivity, to calculate expected doses of absorbed radiation during burial. Natural OSL signal intensity is then plotted against these expected doses and compared to laboratory-generated DRCs. Using this approach, discrepancies between natural and laboratory DRCs have been observed for the same mineral material as natural OSL signal intensities saturate at absorbed radiation doses lower than the pragmatic upper limit defined by laboratory DRCs, leading to increasing age underestimation with depth without a metric for questioning the age reliability. The present study explores a means of defining the upper limit for reliable luminescence ages for sedimentary records without an established chronologic framework, using a long ( 280m; Cohen et al., 2016) lacustrine record from Chew Bahir, Ethiopia, drilled as part of the Hominin Sites and Paleolakes Drilling Project (HSPDP) of the International Continental Scientific Drilling Programme (ICDP) and CRC806 "Our way to Europe". Natural saturation of OSL signals is explored by plotting natural signal intensity against depth, creating a pseudo-Natural DRC that can be compared to laboratory DRCs. Unlike the homogenous deposits of the Chinese Loess Plateau where the Natural DRC concept was developed, the 280m composite core from Chew Bahir shows significant variation in lithology enabling investigation of the effects of sample to sample variability on Natural DRC construction, and facilitating comparison between signals from fine-quartz, fine-polymineral, and coarse-potassium feldspar grains. This work demonstrates how the concepts of Natural DRCs can be used to define the upper dating limit of sample suites without independent age control, providing valuable information for long sedimentary sequences such as the lacustrine deposits from Chew Bahir. Chapot M.S., et al. (2012), Radiation Measurements 47: 1045-1052. Cohen A, et al. (2016), Scientific Drilling 21: 1-16. Wintle, A.G., Murray, A.S. (2006) Radiation Measurements 41: 369-391.

  20. An analysis of the breakdown of paper products (toilet paper, tissues and tampons) in natural environments, Tasmania, Australia.

    PubMed

    Bridle, Kerry L; Kirkpatrick, J B

    2005-01-01

    An examination of the relative breakdown rates of unused toilet paper, facial tissues and tampons was undertaken in nine different environments typical of Tasmanian natural areas. Bags of the paper products (toilet paper, facial tissues, tampons) were buried for periods of 6, 12 and 24 months at depths of 5 and 15 cm. A nutrient solution simulating human body wastes was added to half of the samples, to test the hypothesis that the addition of nutrients would enhance the breakdown of paper products buried in the soil. Mean annual rainfall was the most important measured variable determining mean breakdown in the nutrient addition treatment between sites, with high rainfall sites (mean annual rainfall of greater than 650 mm) recording less decayed products than the drier sites (mean annual rainfall of 500-650 mm). Temperature and soil organic content were important influences on the breakdown of the unfertilised products. Toilet paper and tissues decayed more readily than tampons. Nutrient addition enhanced decay for all products across all sites. Depth of burial was not important in determining the degree to which products decayed. In alpine environments, burial under rocks at the surface did not increase the speed of decay of any product. The Western Alpine site, typical of alpine sites in the Tasmanian Wilderness World Heritage Area, showed very little decay over the two-year period, even for nutrient enhanced products. Management prescriptions should be amended to dissuade people from depositing human toilet waste in the extreme (montane to alpine) environments in western Tasmania. Tampons should continue to be carried out as currently prescribed.

  1. Cusiana trend exploration, Llanos foothills, Colombia - The opening of a new hydrocarbon province

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayward, A.B.; Addison, F.T.; O`Leary, J.

    1996-08-01

    The discovery of the Cusiana field in 1992 followed 30 years of exploration in the Llanos fold and thrust belt of Colombia. Early exploration activity focused on large surface anticlines that were all fresh water flushed - a consequence of along strike exposure of the reservoir rocks. The potential for deeper, subthrust, trapping geometries was recognized in the early 1970s however, exploration at the time was hindered by very poor quality seismic data and significant drilling difficulties. The 1980s exploration effort was characterized by continued poor quality seismic data and drilling difficulties combined with a geological perception that there wasmore » no effective reservoir and the majority of the structures post dated the major period of hydrocarbon generation and migration. The Cusiana discovery with a gross hydrocarbon column in excess of 1500{prime} reservoired within the Mirador (Eocene), Barco (Palaeocene) and Guadalupe (Upper Cretaceous) Formations in a large thrust anticline demonstrated the presence of a working hydrocarbon system. Subsequent exploration of the trend to the north has resulted in the discovery of four further giant oil and gas fields, Cupiagua (500 MMBBLs, 1-2 tcf) and the Florena/Pauto/Volcanera complex with estimated reserves of 1 billion barrels and 10 tcf. Key to this success has been the seismic imaging of the trapping geometries resulting from a significant improvement in the quality of the seismic data - a consequence of improvements in both acquisition and processing technology, combined with a recognition that pure quartz arenites retain reservoir quality at significant depths of burial-and that despite original depths of burial of greater than 18,000 ft, reservoir quality was not a major risk for further exploration success.« less

  2. Paleosols can promote root growth of the recent vegetation - a case study from the sandy soil-sediment sequence Rakt, the Netherlands

    NASA Astrophysics Data System (ADS)

    Gocke, M. I.; Kessler, F.; van Mourik, J. M.; Jansen, B.; Wiesenberg, G. L. B.

    2015-12-01

    Soil studies commonly comprise the uppermost meter for tracing e.g. soil development. However, the maximum rooting depth of various plants significantly exceeds this depth. We hypothesized that deeper parts of the soil, soil parent material and especially paleosols provide beneficial conditions in terms of e.g. nutrient contents, thus supporting their utilization and exploitation by deep roots. We aimed to decipher the different phases of soil formation in Dutch drift- and coversands. The study site is located at Bedafse Bergen (SE Netherlands) in a 200 year old oak stand. A recent Podzol developed on driftsand covering a Plaggic Anthrosol that established in a relict Podzol on Late Glacial eolian coversand. Root-free soil and sediment samples, collected in 10-15 cm depth increments, were subjected to a multi-proxy physical and geochemical approach. The Plaggic Anthrosol revealed low bulk density and high phosphorous and organic carbon contents, whereas the relict Podzol was characterized by high iron and aluminum contents. Frequencies of fine (≤ 2 mm) and medium roots (2-5 mm) were determined on horizontal levels and the profile wall for a detailed pseudo-three-dimensional insight. On horizontal levels, living roots maximized in the uppermost part of the relict Podzol with ca. 4450 and 220 m-2, significantly exceeding topsoil root abundances. Roots of oak trees thus benefited from the favorable growth conditions in the nutrient-rich Plaggic Anthrosol, whereas increased compactness and high aluminum contents of the relict Podzol caused a strong decrease of roots. The approach demonstrated the benefit of comprehensive root investigation to support and explain pedogenic investigations of soil profiles, as fine roots can be significantly underestimated when quantified at the profile wall. The possible rooting of soil parent material and paleosols long after their burial confirmed recent studies on the potential influence of rooting to overprint sediment-(paleo)soil sequences of various ages, sedimentary and climatic settings. Potential consequences of deep rooting for terrestrial deep carbon stocks, located to a relevant part in paleosols, remain largely unknown and require further investigation.

  3. Paleosols can promote root growth of recent vegetation - a case study from the sandy soil-sediment sequence Rakt, the Netherlands

    NASA Astrophysics Data System (ADS)

    Gocke, Martina I.; Kessler, Fabian; van Mourik, Jan M.; Jansen, Boris; Wiesenberg, Guido L. B.

    2016-10-01

    Soil studies commonly comprise the uppermost meter for tracing, e.g., soil development. However, the maximum rooting depth of various plants significantly exceeds this depth. We hypothesized that deeper parts of the soil, soil parent material and especially paleosols provide beneficial conditions in terms of, e.g., nutrient contents, thus supporting their utilization and exploitation by deep roots. We aimed to decipher the different phases of soil formation in Dutch drift sands and cover sands. The study site is located at Bedafse Bergen (southeastern Netherlands) in a 200-year-old oak stand. A recent Podzol developed on drift sand covering a Plaggic Anthrosol that was piled up on a relict Podzol on Late Glacial eolian cover sand. Root-free soil and sediment samples, collected in 10-15 cm depth increments, were subjected to a multi-proxy physical and geochemical approach. The Plaggic Anthrosol revealed low bulk density and high phosphorous and organic carbon contents, whereas the relict Podzol was characterized by high iron and aluminum contents. Frequencies of fine (diameter ≤ 2 mm) and medium roots (2-5 mm) were determined on horizontal levels and the profile wall for a detailed pseudo-three-dimensional insight. On horizontal levels, living roots were most abundant in the uppermost part of the relict Podzol with ca. 4450 and 220 m-2, significantly exceeding topsoil root abundances. Roots of oak trees thus benefited from the favorable growth conditions in the nutrient-rich Plaggic Anthrosol, whereas increased compactness and high aluminum contents of the relict Podzol caused a strong decrease of roots. The approach demonstrated the benefit of comprehensive root investigation to support interpretation of soil profiles, as fine roots can be significantly underestimated when quantified at the profile wall. The possible rooting of soil parent material and paleosols long after their burial confirmed recent studies on the potential influence of rooting to overprint sediment-(paleo)soil sequences of various ages, sedimentary and climatic settings. Potential consequences of deep rooting for terrestrial deep carbon stocks, located to a relevant part in paleosols, remain largely unknown and require further investigation.

  4. Mine Burial Assessment State-of the Art in Prediction and Modeling Workshop and Initiation of Technical Program

    DTIC Science & Technology

    2000-09-30

    Burial Assessment State-of-the Art Science , Technology, and Modeling. A Review of Coastal Research, Modeling, and Naval Operational Needs in Shallow Water...the ONR Mine Burial Prediction Program are summarized below. 1) Completed comprehensive technical reports: a. Mine Burial Assessment, State-of-the Art ... Science , Technology, and Modeling. A review of Coastal Research, Modeling, and Naval Operational Needs in Shallow Water Environments with

  5. Evidence supporting an intentional Neandertal burial at La Chapelle-aux-Saints.

    PubMed

    Rendu, William; Beauval, Cédric; Crevecoeur, Isabelle; Bayle, Priscilla; Balzeau, Antoine; Bismuth, Thierry; Bourguignon, Laurence; Delfour, Géraldine; Faivre, Jean-Philippe; Lacrampe-Cuyaubère, François; Tavormina, Carlotta; Todisco, Dominique; Turq, Alain; Maureille, Bruno

    2014-01-07

    The bouffia Bonneval at La Chapelle-aux-Saints is well known for the discovery of the first secure Neandertal burial in the early 20th century. However, the intentionality of the burial remains an issue of some debate. Here, we present the results of a 12-y fieldwork project, along with a taphonomic analysis of the human remains, designed to assess the funerary context of the La Chapelle-aux-Saints Neandertal. We have established the anthropogenic nature of the burial pit and underlined the taphonomic evidence of a rapid burial of the body. These multiple lines of evidence support the hypothesis of an intentional burial. Finally, the discovery of skeletal elements belonging to the original La Chapelle aux Saints 1 individual, two additional young individuals, and a second adult in the bouffia Bonneval highlights a more complex site-formation history than previously proposed.

  6. Post-Glacial Climate Forcing of Surface Processes in the Ganges-Brahmaputra Basin and Implications for the Global Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Hein, C. J.; Galy, V.; France-Lanord, C.; Galy, A.; Kudrass, H. R.; Peucker-Ehrenbrink, B.

    2016-12-01

    Silicate weathering coupled with carbonate precipitation and organic carbon (OC) burial in marine sediments are the primary mechanisms sequestering atmospheric CO2 over a range of timescales. The efficiency of both processes has long been mechanistically linked to climate: increased atmospheric CO2 sequestration under warm/wet conditions acts as a negative feedback, thereby contributing to global climate regulation. Over glacial-interglacial timescales, climate has been proposed to control the export rate of terrestrial silicate weathering products and terrestrial OC to river-dominated margins, as well as the rates of chemical weathering (i.e., the efficiency of carbon sequestration). Focused on the Ganges-Brahmaputra drainage basin, this study quantifies the relative role of climate change in the efficiency of silicate weathering and OC burial following the last glacial maximum. Stable hydrogen (δD) and carbon (δ13C) isotopic compositions of terrestrial plant wax compounds preserved in the Bengal Fan channel-levee system capture variations in the strength of the Indian summer monsoon and vegetation dynamics. Specifically, a 40‰ shift in δD and a 4‰ shift in both bulk OC and plant wax δ13C values between the late glacial and mid-Holocene, followed by a return to more intermediate values during the late Holocene, correlate well with regional post-glacial paleoclimate records. Sediment provenance proxies (Sr, Nd isotopic compositions) reveal that these changes coincided with a focusing of erosion on the southern flank of the Himalayan range during periods of greater monsoon strength and enhanced sediment discharge. However, OC loading, and thus carbon burial efficiency, in the Bengal Fan remained constant through time, demonstrating the primacy of physical erosion and climate-driven sediment export in marine OC sequestration. In contrast, a gradual increase in K/Si* and Ca/Si, and decrease in H2O+/Si*, throughout the study period may demonstrate the decoupling of climate and silicate weathering during the late Holocene, if those ratios are valid proxies for catchment-scale chemical weathering intensity. Together, these results reveal the dominant feedback between climate and sediment-export / OC-burial within the Ganges-Brahmaputra / Bengal Fan system following deglaciation.

  7. Sulfur isotope change across the Early Mississippian K-O (Kinderhookian-Osagean) δ13C excursion

    NASA Astrophysics Data System (ADS)

    Maharjan, Dev; Jiang, Ganqing; Peng, Yongbo; Nicholl, Michael J.

    2018-07-01

    Paired carbonate associate sulfate (CAS) sulfur isotopes (δ34SCAS), pyrite sulfur isotopes (δ34SPY) and CAS oxygen isotopes (δ18OCAS) across the Early Mississippian K-O δ13C excursion are documented from two sections of a west-dipping carbonate ramp in the southern Great Basin, western U.S.A. A 4-6‰ positive δ34SCAS anomaly, accompanied by negative shifts in δ34SPY and δ18OCAS, is found within the K-O δ13C excursion. In the section with a broader δ13C excursion, Δ34S (Δ34 S =δ34SCAS-δ34SPY) increases from 15‰ to 45‰ and δ13Ccarb drops from 7‰ to 4‰ at the same stratigraphic interval. If this δ34SCAS anomaly represents a global phenomenon, the large magnitude (4-6‰) and short duration (shorter than that of δ13C) suggest an unusual pyrite burial event that expanded from sediments to the ocean water column. In this scenario, the areal and volumetric expansion of sulfate reduction and pyrite burial was likely triggered by abundantly available organic matter near the peak of the K-O δ13C excursion, during which organic carbon production and burial may have reached a maximum, thus substantially expanding the oxygen minimum zone (OMZ). Numerical simulations suggest that pyrite burial rates 2.5-5 times higher than that of the modern ocean followed by sulfide oxidation are required to produce the observed δ34SCAS anomaly in a sulfate-rich ([SO4] ≥28 mM) Early Mississippian ocean. Alternatively, the sulfur and CAS oxygen isotope anomalies may record local sulfur cycling in a foreland basin where changes in weathering input and bottom-water redox conditions in response to sea-level fall and cooling resulted in isotope changes. In both scenarios (either local or global), the integrated carbon, sulfur, and CAS-oxygen isotope data suggest a much more dynamic sulfur cycle across the K-O δ13C excursion than has been previously suggested.

  8. 32 CFR 553.17 - Persons ineligible for burial in an Army national cemetery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... burial in an Army national cemetery. (a) A father, mother, brother, sister, and in-law is not eligible... for burial in Arlington National Cemetery unless the Service-connected family member has been or will...

  9. No support for Heincke's law in hagfish (Myxinidae): lack of an association between body size and the depth of species occurrence.

    PubMed

    Schumacher, E L; Owens, B D; Uyeno, T A; Clark, A J; Reece, J S

    2017-08-01

    This study tests for interspecific evidence of Heincke's law among hagfishes and advances the field of research on body size and depth of occurrence in fishes by including a phylogenetic correction and by examining depth in four ways: maximum depth, minimum depth, mean depth of recorded specimens and the average of maximum and minimum depths of occurrence. Results yield no evidence for Heincke's law in hagfishes, no phylogenetic signal for the depth at which species occur, but moderate to weak phylogenetic signal for body size, suggesting that phylogeny may play a role in determining body size in this group. © 2017 The Fisheries Society of the British Isles.

  10. Determination of the maximum-depth to potential field sources by a maximum structural index method

    NASA Astrophysics Data System (ADS)

    Fedi, M.; Florio, G.

    2013-01-01

    A simple and fast determination of the limiting depth to the sources may represent a significant help to the data interpretation. To this end we explore the possibility of determining those source parameters shared by all the classes of models fitting the data. One approach is to determine the maximum depth-to-source compatible with the measured data, by using for example the well-known Bott-Smith rules. These rules involve only the knowledge of the field and its horizontal gradient maxima, and are independent from the density contrast. Thanks to the direct relationship between structural index and depth to sources we work out a simple and fast strategy to obtain the maximum depth by using the semi-automated methods, such as Euler deconvolution or depth-from-extreme-points method (DEXP). The proposed method consists in estimating the maximum depth as the one obtained for the highest allowable value of the structural index (Nmax). Nmax may be easily determined, since it depends only on the dimensionality of the problem (2D/3D) and on the nature of the analyzed field (e.g., gravity field or magnetic field). We tested our approach on synthetic models against the results obtained by the classical Bott-Smith formulas and the results are in fact very similar, confirming the validity of this method. However, while Bott-Smith formulas are restricted to the gravity field only, our method is applicable also to the magnetic field and to any derivative of the gravity and magnetic field. Our method yields a useful criterion to assess the source model based on the (∂f/∂x)max/fmax ratio. The usefulness of the method in real cases is demonstrated for a salt wall in the Mississippi basin, where the estimation of the maximum depth agrees with the seismic information.

  11. Depth of the biologically active zone in upland habitats at the Hanford Site, Washington: Implications for remediation and ecological risk management.

    PubMed

    Sample, Bradley E; Lowe, John; Seeley, Paul; Markin, Melanie; McCarthy, Chris; Hansen, Jim; Aly, Alaa H

    2015-01-01

    Soil invertebrates, mammals, and plants penetrate and exploit the surface soil layer (i.e., the biologically active zone) to varying depths. As the US Department of Energy remediates radioactive and hazardous wastes in soil at the Hanford Site, a site-specific definition of the biologically active zone is needed to identify the depth to which remedial actions should be taken to protect the environment and avoid excessive cleanup expenditures. This definition may then be considered in developing a point of compliance for remediation in accordance with existing regulations. Under the State of Washington Model Toxic Control Act (MTCA), the standard point of compliance for soil cleanup levels with unrestricted land use is 457 cm (15 ft) below ground surface. When institutional controls are required to control excavations to protect people, MTCA allows a conditional point of compliance to protect biological resources based on the depth of the biologically active zone. This study was undertaken to identify and bound the biologically active zone based on ecological resources present at the Hanford Site. Primary data were identified describing the depths to which ants, mammals, and plants may exploit the surface soil column at the Hanford Site and other comparable locations. The maximum depth observed for harvester ants (Pogonomyrmex spp.) was 270 cm (8.9 ft), with only trivial excavation below 244 cm (8 ft). Badgers (Taxidea taxus) are the deepest burrowing mammal at the Hanford Site, with maximum burrow depths of 230 cm (7.6 ft); all other mammals did not burrow below 122 cm (4 ft). Shrubs are the deepest rooting plants with rooting depths to 300 cm (9.8 ft) for antelope bitterbrush (Purshia tridentata). The 2 most abundant shrub species did not have roots deeper than 250 cm (8.2 ft). The deepest rooted forb had a maximum root depth of 240 cm (7.9 ft). All other forbs and grasses had rooting depths of 200 cm (6.6 ft) or less. These data indicate that the biologically active soil zone in the Hanford Central Plateau does not exceed 300 cm (9.8 ft), the maximum rooting depth for the deepest rooting plant. The maximum depth at which most other plant and animal species occur is substantially shallower. Spatial distribution and density of burrows and roots over depths were also evaluated. Although maximum excavation by harvester ants is 270 cm (8.9 ft), trivial volume of soil is excavated below 150 cm (∼5 ft). Maximum rooting depths for all grasses, forbs, and the most abundant and deepest rooting shrubs are 300 cm (9.8 ft) or less. Most root biomass (>50-80%) is concentrated in the top 100 cm (3.3 ft), whereas at the maximum depth (9.8 ft), only trace root biomass is present. Available data suggest a limited likelihood for significant transport of contaminants to the surface by plants at or below 244 cm (8 ft), and suggest that virtually all plants or animal species occurring on the Central Plateau have a negligible likelihood for transporting soil contaminants to the surface from depths at or below 305 cm (10 ft). © 2014 SETAC.

  12. Evaluation method of leachate leaking from carcass burial site

    NASA Astrophysics Data System (ADS)

    Park, S.; Kim, H.; Lee, M.; Lee, K.; Kim, S.; Kim, M.; Kim, H.; Kim, T.; Han, J.

    2012-12-01

    More than 150,000 cattle carcasses and 3,140,000 pig carcasses were buried all over the nation in Korea because of 2010 outbreak of foot and mouth disease (FMD). Various disposal Techniques such as incineration, composting, rendering, and burial have been developed and applied to effectively dispose an animal carcass. Since a large number of carcasses should be disposed for a short-term period to prevent the spread of FMD virus, most of the carcasses were disposed by mass burial technique. However, a long-term management and monitoring of leachate discharges are required because mass burial can cause soil and groundwater contamination. In this study, we used key parameters related to major components of leachate such as NH4-N, NO3-N, Cl-, E.coli and electrical conductivity as potential leachate contamination indicator to determine leachate leakage from the site. We monitored 300 monitoring wells in both burial site and the monitoring well 5m away from burial sites to identify leachate leaking from burial site. Average concentration of NH3-N in 300 monitoring wells, both burial site and the well 5m away from burial sites, were 2,593 mg/L and 733 mg/L, respectively. 24% out of 300 monitoring wells showed higher than 10 mg/L NH4-N, 100 mg/L Cl- and than 800 μS/cm electrical conductivity. From this study, we set up 4 steps guidelines to evaluate leachate leakage like; step 1 : High potential step of leachate leakage, step 2 : Middle potential step of leachate leakage, step 3 : Low potential step of leachate leakage, step 4 : No leachate leakage. On the basis of this result, we moved 34 leachate leaking burial sites to other places safely and it is necessary to monitor continuously the monitoring wells for environmental protection and human health.

  13. Subsurface damage distribution in the lapping process.

    PubMed

    Wang, Zhuo; Wu, Yulie; Dai, Yifan; Li, Shengyi

    2008-04-01

    To systematically investigate the influence of lapping parameters on subsurface damage (SSD) depth and characterize the damage feature comprehensively, maximum depth and distribution of SSD generated in the optical lapping process were measured with the magnetorheological finishing wedge technique. Then, an interaction of adjacent indentations was applied to interpret the generation of maximum depth of SSD. Eventually, the lapping procedure based on the influence of lapping parameters on the material removal rate and SSD depth was proposed to improve the lapping efficiency.

  14. Maximum Neutral Buoyancy Depth of Juvenile Chinook Salmon: Implications for Survival during Hydroturbine Passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pflugrath, Brett D.; Brown, Richard S.; Carlson, Thomas J.

    This study investigated the maximum depth at which juvenile Chinook salmon Oncorhynchus tshawytscha can acclimate by attaining neutral buoyancy. Depth of neutral buoyancy is dependent upon the volume of gas within the swim bladder, which greatly influences the occurrence of injuries to fish passing through hydroturbines. We used two methods to obtain maximum swim bladder volumes that were transformed into depth estimations - the increased excess mass test (IEMT) and the swim bladder rupture test (SBRT). In the IEMT, weights were surgically added to the fishes exterior, requiring the fish to increase swim bladder volume in order to remain neutrallymore » buoyant. SBRT entailed removing and artificially increasing swim bladder volume through decompression. From these tests, we estimate the maximum acclimation depth for juvenile Chinook salmon is a median of 6.7m (range = 4.6-11.6 m). These findings have important implications to survival estimates, studies using tags, hydropower operations, and survival of juvenile salmon that pass through large Kaplan turbines typical of those found within the Columbia and Snake River hydropower system.« less

  15. Constraining the thermal history of the North American Midcontinent Rift System using carbonate clumped isotopes and organic thermal maturity indices

    USGS Publications Warehouse

    Gallagher, Timothy M.; Sheldon, Nathan D.; Mauk, Jeffrey L.; Petersen, Sierra V.; Gueneli, Nur; Brocks, Jochen J.

    2017-01-01

    The Midcontinent Rift System (MRS) is a Late Mesoproterozoic (∼1.1 Ga) sequence of volcanic and sedimentary rocks exposed in the Lake Superior Region of North America. The MRS continues to be the focus of much research due to its economic mineral deposits as well as its archive of Precambrian life and tectonic processes. In order to constrain the post-depositional thermal history of the MRS, samples were analyzed for carbonate clumped isotope composition and organic thermal maturity. Clumped isotope values from sedimentary/early-diagenetic samples were partially reset during burial to temperatures between 68 and 75 °C. Solid-state reordering models indicate that maximum burial temperatures of 125–155 °C would reset the clumped isotope values to the observed temperature range prior to the onset of regional cooling and uplift. Clumped isotope results from late-stage veins in the White Pine Mine encompass a greater temperature range (49–116 °C), indicative of spatially variable hydrothermal activity and vein emplacement after burial temperatures fell below 100 °C during regional cooling and uplift. Clumped isotope and organic thermal maturity data do not indicate significant spatial differences in thermal history along the MRS. Observed variability in bulk organic matter composition and biomarker indices are therefore more likely a result of shifts in primary productivity or early-degradation processes. These results demonstrate that the MRS experienced a spatially consistent, relatively mild thermal history (125–155 °C) and is therefore a valuable archive for understanding the Late Mesoproterozoic environment.

  16. A distinct section of the Early Bronze Age society? Stable isotope investigations of burials in settlement pits and multiple inhumations of the Únětice culture in central Germany.

    PubMed

    Knipper, Corina; Fragata, Matthias; Nicklisch, Nicole; Siebert, Angelina; Szécsényi-Nagy, Anna; Hubensack, Vera; Metzner-Nebelsick, Carola; Meller, Harald; Alt, Kurt W

    2016-03-01

    Inhumations in so-called settlement pits and multiple interments are subordinate burial practices of the Early Bronze Age Únětice culture in central Germany (2200-1700/1650 BC). The majority of the Únětice population was entombed as single inhumations in rectangular grave pits with a normative position of the body. The goal of the study was to test archaeological hypotheses that the deviant burials may represent socially distinct or nonlocal individuals. The study comprised up to two teeth and one bone each of 74 human individuals from eight sites and faunal comparative samples. The inhumations included regular, deviant burials in so-called settlement or storage pits, and multiple burials. We investigated radiogenic strontium isotope compositions of tooth enamel ((87) Sr/(86) Sr) and light stable isotope ratios of carbon and nitrogen of bone collagen (δ(13) C, δ(15) N) aiming at the disclosure of residential changes and dietary patterns. Site-specific strontium isotope data ranges mirror different geological properties including calcareous bedrock, loess, and glacial till. Independent from burial types, they disclose low portions of nonlocal individuals of up to some 20% at the individual sites. The light stable isotope ratios of burials in settlement pits and rectangular graves overlap widely and indicate highly similar dietary habits. The analytical results let to conclude that inhumations in settlement pits and multiple burials were two of the manifold burial practices of the Early Bronze Age. The selection criteria of the individuals for the different forms of inhumation remained undisclosed. © 2015 Wiley Periodicals, Inc.

  17. Mode of occurrence and environmental mobility of oil-field radioactive material at US Geological Survey research site B, Osage-Skiatook Project, northeastern Oklahoma

    USGS Publications Warehouse

    Zielinski, R.A.; Budahn, J.R.

    2007-01-01

    Two samples of produced-water collected from a storage tank at US Geological Survey research site B, near Skiatook Lake in northeastern Oklahoma, have activity concentrations of dissolved 226Ra and 228Ra that are about 1500 disintegrations/min/L (dpm/L). Produced-water also contains minor amounts of small (5-50 ??m) suspended grains of Ra-bearing BaSO4 (barite). Precipitation of radioactive barite scale in the storage tank is probably hindered by low concentrations of dissolved SO4 (2.5 mg/L) in the produced-water. Sediments in a storage pit used to temporarily collect releases of produced-water have marginally elevated concentrations of "excess" Ra (several dpm/g), that are 15-65% above natural background values. Tank and pit waters are chemically oversaturated with barite, and some small (2-20 ??m) barite grains observed in the pit sediments could be transferred from the tank or formed in place. Measurements of the concentrations of Ba and excess Ra isotopes in the pit sediments show variations with depth that are consistent with relatively uniform deposition and progressive burial of an insoluble Ra-bearing host (barite?). The short-lived 228Ra isotope (half-life = 5.76 a) shows greater reductions with depth than 226Ra (half-life = 1600 a), that are likely explained by radioactive decay. The 228Ra/226Ra activity ratio of excess Ra in uppermost pit sediments (1.13-1.17) is close to the ratio measured in the samples of produced-water (0.97, 1.14). Declines in Ra activity ratio (excess) with sediment depth can be used to estimate an average rate of burial of 4 cm/a for the Ra-bearing contaminant. Local shallow ground waters contaminated with NaCl from produced-water have low dissolved Ra (<20 dpm/L) and also are oversaturated with barite. Barite is a highly insoluble Ra host that probably limits the environmental mobility of Ra at site B.

  18. Fossilization of Coniform (Phormidium) Stromatolites In Siliceous Thermal Springs, Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Farmer, Jack; Bebout, Brad; Jahnke, Linda; Chang, Sherwood (Technical Monitor)

    1997-01-01

    We have studied fossilization processes in well-developed cyanobacterial mats present in mid-terrace ponds of silica-precipitating thermal springs of Yellowstone National Park. These mats occur over temperatures of approx.35-60 C and are dominated by species of Phormidium. Within Bonded systems two end member environments have been distinguished based temperature, depth, and the stability of spring inflows, each differing substantially in the style of stromatolite morphogenesis and fossilization. Type 1 systems include shallow, ephemeral ponds where water flow and temperature fluctuates widely on a seasonal basis; mats typically secrete rapidly up to the air-water interface, forming exposed islands. Silicification occurs primarily by the wicking of water onto the surface of exposed mats, leading to the evaporative concentration of silica near the surface. pH microelectronic measurements in partially-exposed columns show strong gradients in pH with values exceeding 10.5 in the upper am of silicifying mats, decreasing to <9.0 a few mm below the surface. High oxygen concentrations lead to the rapid oxidation of most organic materials. In Type I systems, the tops of coniform and columnar stromatolites become silicified first, followed by the bases. This typically leads to extensive fragmentation during the initial stages of burial. Case 2 systems include deeper ponds where the water flow, temperature and depth are seasonally more stable, and where mats develop larger-scale tufts and columns. Alkalinity in permanently submerged mats increases into tuft interiors from approx.9.0 near the surface to >10.0 at depth. Moderate silicification is apparent throughout mat frameworks, although there is frequently a densely silicified core near the base. In Type 2 systems, preservation of the coniform and columnar architecture of stromatoilites is much more robust. Sub-fossil examples suggest minimal fragmentation prior to burial. Comparative rapid analysis of the phone zones of submerged and exposed (silicifying) mats demonstrated the recovery of comparable levels of esterified fatty acids in both types of mats. Membrane lipids apparently remain intact during the early stages of silicification, although their fate during early diagenesis is still being evaluated.

  19. Transport and thermodynamics constrain belowground carbon turnover in a northern peatland

    NASA Astrophysics Data System (ADS)

    Beer, Julia; Blodau, Christian

    2007-06-01

    Rates of anaerobic respiration are of central importance for the long-term burial of carbon (C) in peatlands, which are a relevant sink in the global C cycle. To identify constraints on anaerobic peat decomposition, we determined detailed concentration depth profiles of decomposition end-products, i.e. methane (CH 4) and dissolved inorganic carbon (DIC), along with concentrations of relevant decomposition intermediates at an ombrotrophic Canadian peat bog. The magnitude of in situ net production rates of DIC and CH 4 was estimated by inverse pore-water modeling. Vertical transport in the peat was slow and dominated by diffusion leading to the buildup of DIC and CH 4 with depth (5500 μmol L -1 DIC, 500 μmol L -1 CH 4). Highest DIC and CH 4 production rates occurred close to the water table (decomposition constant kd ˜ 10 -3-10 -4 a -1) or in some distinct zones at depth ( kd ˜ 10 -4 a -1). Deeper into the peat, decomposition proceeded very slowly at about kd = 10 -7 a -1. This pattern could be related to thermodynamic and transport constraints. The accumulation of metabolic end-products diminished in situ energy yields of acetoclastic methanogenesis to the threshold for microbially mediated processes (-20 to -25 kJ mol -1 CH 4). The methanogenic precursor acetate also accumulated (150 μmol L -1). In line with these findings, CH 4 was formed by hydrogenotrophic methanogenesis at Gibbs free energies of -35 to -40 kJ mol -1 CH 4. This was indicated by an isotopic fractionation α-CH of 1.069-1.079. Fermentative degradation of acetate, propionate and butyrate attained Gibbs free energies close to 0 kJ mol -1 substrate. Although methanogenesis was apparently limited by some other factor in some peat layers, transport and thermodynamic constraints likely impeded respiratory processes in the deeper peat. Constraints on the removal of DIC and CH 4 may thus slow decomposition and contribute to the sustained burial of C in northern peatlands.

  20. Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment.

    PubMed

    Wurzbacher, Christian; Fuchs, Andrea; Attermeyer, Katrin; Frindte, Katharina; Grossart, Hans-Peter; Hupfer, Michael; Casper, Peter; Monaghan, Michael T

    2017-04-08

    Lake sediments harbor diverse microbial communities that cycle carbon and nutrients while being constantly colonized and potentially buried by organic matter sinking from the water column. The interaction of activity and burial remained largely unexplored in aquatic sediments. We aimed to relate taxonomic composition to sediment biogeochemical parameters, test whether community turnover with depth resulted from taxonomic replacement or from richness effects, and to provide a basic model for the vertical community structure in sediments. We analyzed four replicate sediment cores taken from 30-m depth in oligo-mesotrophic Lake Stechlin in northern Germany. Each 30-cm core spanned ca. 170 years of sediment accumulation according to 137 Cs dating and was sectioned into layers 1-4 cm thick. We examined a full suite of biogeochemical parameters and used DNA metabarcoding to examine community composition of microbial Archaea, Bacteria, and Eukaryota. Community β-diversity indicated nearly complete turnover within the uppermost 30 cm. We observed a pronounced shift from Eukaryota- and Bacteria-dominated upper layers (<5 cm) to Bacteria-dominated intermediate layers (5-14 cm) and to deep layers (>14 cm) dominated by enigmatic Archaea that typically occur in deep-sea sediments. Taxonomic replacement was the prevalent mechanism in structuring the community composition and was linked to parameters indicative of microbial activity (e.g., CO 2 and CH 4 concentration, bacterial protein production). Richness loss played a lesser role but was linked to conservative parameters (e.g., C, N, P) indicative of past conditions. By including all three domains, we were able to directly link the exponential decay of eukaryotes with the active sediment microbial community. The dominance of Archaea in deeper layers confirms earlier findings from marine systems and establishes freshwater sediments as a potential low-energy environment, similar to deep sea sediments. We propose a general model of sediment structure and function based on microbial characteristics and burial processes. An upper "replacement horizon" is dominated by rapid taxonomic turnover with depth, high microbial activity, and biotic interactions. A lower "depauperate horizon" is characterized by low taxonomic richness, more stable "low-energy" conditions, and a dominance of enigmatic Archaea.

  1. Cretaceous–Cenozoic burial and exhumation history of the Chukchi shelf, offshore Arctic Alaska

    USGS Publications Warehouse

    Craddock, William H.; Houseknecht, David W.

    2016-01-01

    Apatite fission track (AFT) and vitrinite reflectance data from five exploration wells and three seafloor cores illuminate the thermal history of the underexplored United States Chukchi shelf. On the northeastern shelf, Triassic strata in the Chevron 1 Diamond well record apatite annealing followed by cooling, possibly during the Triassic to Middle Jurassic, which is a thermal history likely related to Canada Basin rifting. Jurassic strata exhumed in the hanging wall of the frontal Herald Arch thrust fault record a history of probable Late Jurassic to Early Cretaceous structural burial in the Chukotka fold and thrust belt, followed by rapid exhumation to near-surface temperatures at 104 ± 30 Ma. This history of contractional tectonism is in good agreement with inherited fission track ages in low-thermal-maturity, Cretaceous–Cenozoic strata in the Chukchi foreland, providing complementary evidence for the timing of exhumation and suggesting a source-to-sink relationship. In the central Chukchi foreland, inverse modeling of reset AFT samples from the Shell 1 Klondike and Shell 1 Crackerjack wells reveals several tens of degrees of cooling from maximum paleo-temperatures, with maximum heating permissible at any time from about 100 to 50 Ma, and cooling persisting to as recent as 30 Ma. Similar histories are compatible with partially reset AFT samples from other Chukchi wells (Shell 1 Popcorn, Shell 1 Burger, and Chevron 1 Diamond) and are probable in light of regional geologic evidence. Given geologic context provided by regional seismic reflection data, we interpret these inverse models to reveal a Late Cretaceous episode of cyclical burial and erosion across the central Chukchi shelf, possibly partially overprinted by Cenozoic cooling related to decreasing surface temperatures. Regionally, we interpret this kinematic history to be reflective of moderate, transpressional deformation of the Chukchi shelf during the final phases of contractional tectonism in the Chukotkan orogen (lasting until ∼70 Ma), followed by renewed subsidence of the Chukchi shelf in the latest Cretaceous and Cenozoic. This history maintained modest thermal maturities at the base of the Brookian sequence across the Chukchi shelf, because large sediment volumes bypassed to adjacent depocenters. Therefore, the Chukchi shelf appears to be an area with the potential for widespread preservation of petroleum systems in the oil window.

  2. Biosecurity procedures for the environmental management of carcasses burial sites in Korea.

    PubMed

    Kim, Geon-Ha; Pramanik, Sudipta

    2016-12-01

    Avian influenza and foot-and-mouth disease are two main contagious pathogenic viral disease which are responsible for the massive burials of livestock in Korea since burial is the primary measure to control these outbreaks. Biosecurity is a set of preventive measures designed to prevent the risk of spreading of these infectious diseases. The main objective of this paper is to discuss about the requirements of biosecurity and develop protocol outlines for environmental management of burial sites in Korea. Current practice prescribes to minimize the potential for on-farm pollution and the spread of the infectious diseases. Specific biosecurity procedures such as proper assessment of leachate quality, safe handling and disposal of leachate, adequate leachate pollution monitoring, necessary seasonal management of burial site, and appropriate sterilization process must be carried out to prevent the indirect transmission of pathogens from the burial sites. Policy makers should acquire robust knowledge of biosecurity for establishing more effective future legislation for carcasses disposal in Korea.

  3. URBAN STREAM BURIAL INCREASES WATERSHED-SCALE NITRATE EXPORT

    EPA Science Inventory

    Nitrogen (N) uptake in streams is an important ecosystem service that may be affected by the widespread burial of streams in stormwater pipes in urban watersheds. We predicted that stream burial reduces the capacity of streams to remove nitrate (NO3-) from the water column by in...

  4. Combining cosmogenic radionuclides and amino acid racemization to date late Pliocene glacial deposits exposed on Baffin Island, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Refsnider, K. A.; Miller, G. H.

    2009-12-01

    Sequences of glacial deposits spanning the Quaternary are valuable archives recording the effects of glaciation on landscapes through time, but determining the age of such deposits has long challenged geologists. The recent advances in cosmogenic radionuclide (CRN) measurement has made it possible to date some of these deposits, but dating buried glacial sediments in most settings remains problematic. Here we explore a new approach to date the oldest glacial deposits in the Plio-Pleistocene Clyde Foreland Formation of Baffin Island. This formation, approximately 40 m thick, includes interlayered shell-bearing marine, glaciomarine, and glacial sediments deposited along the northern margin of the Laurentide Ice Sheet and earlier continental ice sheets. Previous work on foraminifera assemblages suggests that the deposits span the last ≥2 Ma. By combining CRN measurements (10Be and 26Al) from the glacial units and measurements of the D-alloisoleucine:L-isoleucine ratios (A/I) in valves of the mollusk Hiatella arctica in the marine units overlying a particular glacial deposit, we can calculate the age of the glacial deposit. Because the post-burial temperature history for the mollusks preserved in the Clyde Foreland Formation is poorly constrained, A/I ratios alone cannot be used to determine absolute ages. Instead, we use A/I ratios to identify sediment packages of discrete ages and define a step-wise burial history function for glacial units. A/I ratios of all packages (<0.3 for the total hydrolysate fraction) fall within the A/I interval characterized by linear racemization kinetics, so the age of each package in the burial history function can simply be defined as a fractional age with respect to the total burial age for the glacial deposit of interest. The long duration of burial (26Al/10Be as low as 1.6±0.6 at 2σ) and low initial CRN inventories require that post-burial muogenic production is accounted for using the burial history function. We apply a numerical model to calculate the duration of burial from the measured CRN concentrations for a given inherited CRN inventory. But because this initial inventory is unknown, a single CRN sample/burial history combination will not provide a unique age solution. Instead, measurements from multiple localities where a particular glacial deposit has differing burial histories (i.e., the thickness of overlying units or ages of overlying units differ) are required to statistically determine the total burial age that most closely matches the observed CRN inventories and burial histories.

  5. Pressure as a limit to bloater (Coregonus hoyi) vertical migration

    USGS Publications Warehouse

    TeWinkel, Leslie M.; Fleischer, Guy W.

    1998-01-01

    Observations of bloater vertical migration showed a limit to the vertical depth changes that bloater experience. In this paper, we conducted an analysis of maximum differences in pressure encountered by bloater during vertical migration. Throughout the bottom depths studied, bloater experienced maximum reductions in swim bladder volume equal to approximately 50-60% of the volume in midwater. The analysis indicated that the limit in vertical depth change may be related to a maximum level of positive or negative buoyancy for which bloater can compensate using alternative mechanisms such as hydrodynamic lift. Bloater may be limited in the extent of migration by either their depth of neutral buoyancy or the distance above the depth of neutral buoyancy at which they can still maintain their position in the water column. Although a migration limit for the bloater population was evident, individual distances of migration varied at each site. These variations in migration distances may indicate differences in depths of neutral buoyancy within the population. However, in spite of these variations, the strong correlation between shallowest depths of migration and swim bladder volume reduction across depths provides evidence that hydrostatic pressure limits the extent of daily vertical movement in bloater.

  6. Comparison of observed and predicted abutment scour at selected bridges in Maine.

    DOT National Transportation Integrated Search

    2008-01-01

    Maximum abutment-scour depths predicted with five different methods were compared to : maximum abutment-scour depths observed at 100 abutments at 50 bridge sites in Maine with a : median bridge age of 66 years. Prediction methods included the Froehli...

  7. Organic metamorphism in the California petroleum basins; Chapter A, Rock-Eval and vitrinite reflectance

    USGS Publications Warehouse

    Price, Leigh C.; Pawlewicz, Mark J.; Daws, Ted A.

    1999-01-01

    The results of ROCK-EVAL and vitrinite reflectance analyses of a large sample base from more than 70 wells located in three oil-rich California petroleum basins are reported. The cores from these wells have a wide range of present-day burial temperatures (40 ? to 220 ? C). The rocks in these basins were deposited under highly variable conditions, sometimes resulting in substantially different organic matter (OM) types in rocks tens of meters vertically apart from each other in one well. The kinetic response of these different OM types to equivalent wellknown burial histories is a pivotal point of this study. In the Los Angeles and Ventura Basins, rock organic-richness significantly increased with depth, as did kerogen hydrogen content, and the percentage of fine-grained versus coarsegrained rocks. The shales in these basins are perceived as containing primarily hydrogen-rich amorphous OM. In actuality, the shallowest 2,000 to 3,000 m of rocks in the basins, and at least the upper 6,000 m of rocks in parts of the Los Angeles Basin central syncline, are dominated by type III/IV OM. In the Los Angeles Basin, mainstage hydrocarbon (HC) generation commences in the type III/IV OM at present-day burial temperatures of 85 ? to 110 ? C, most likely around 100 ? C, and is largely complete by 220 ? C. In the Southern San Joaquin Valley Basin, mainstage HC generation commences in type III/IV OM at 150 ? C and is also largely complete by 220 ? C. In the Ventura Basin, mainstage HC generation commences above 140 ? C in type III/IV OM. The apparent lower temperatures for commencement of HC generation in the Los Angeles Basin are attributed to the fact that parts of the basin were cooled from maximal burial temperatures by increased meteoric water flows during the last glaciations. All aspects of organic metamorphism, including mainstage HC generation, are strongly suppressed in rocks with hydrogenrich OM in these basins. For example, ROCK-EVAL data suggest that mainstage HC generation has not commenced in rocks with hydrogen-rich OM at present-day temperatures of 198?C. This observation is attributed to much stronger bonds in hydrogen- rich OM compared to types III and IV OM and, therefore, significantly higher burial temperatures are required to break these bonds. This difference in OM kinetics has profound ramifications for petroleum-geochemical exploration models. Organic-matter characteristics inherited from original depositional conditions were overlaid on, and at times confused interpretation of, characteristics from organic metamorphism in all study areas. In all the basins examined in this study, immature fine-grained rocks occasionally had high to very high carbon-normalized concentrations of pre-generation indigenous bitumen. This unusual characteristic may be due to unique depositional conditions in these basins.

  8. Low-level radioactive-waste burial at the Palos Forest Preserve, Illinois; geology and hydrology of the glacial drift, as related to the migration of tritium

    USGS Publications Warehouse

    Olimpio, Julio C.

    1984-01-01

    A low-level radioactive-waste burial site is located in Palos Forest Preserve, about 22 kilometers southwest of Chicago, Illinois. Between 1943 and 1949 the site, named Plot M, was filled with radioactive waste from the first Argonne National Laboratory and from the University of Chicago Metallurgical Laboratory. Since 1973, tritium concentration levels up to 14 nanocuries per liter have been measured in water samples collected from a well 360 meters from the burial site. The U.S. Geological Survey is studying the geologic, hydrologic, and geochemical properties of the glacial drift and underlying bedrock at the Plot M site to determine the factors that control the movement of radionuclides. Test wells were drilled into the drift to collect water and core samples for laboratory analysis, to gather geologic and hydrologic data, and to conduct geophysical surveys. Plot M is located in drift that ranges in thickness from 25 to 45 meters. The drift is a stratified sequence of clay- and silt-rich sediments that contain thin, interstratified sand layers. The silt content of the drift increases with depth. The permeability of the drift, as indicated by field and laboratory hydraulic conductivity tests, ranges from 1.0 x 10 -6 to 1.0 ? 10 -8 centimeters per second. A tritium plume, the contaminated zone in the drift in which tritium concentration levels exceed 10 nanocuries per liter of water, extends horizontally northward from Plot M at least 50 meters and vertically downward to bedrock. The center of the plume, where tritium concentration levels are as high as 50,000 nanocuries per liter, is approximately 15 meters beneath the burial site. The size, shape, and 'bull's-eye' concentration pattern indicate that the plume is a single slug and that the site no longer releases tritium into the drift. The leading edge, or front, of the plume (the 10 nanocuries per liter boundary) left the burial site in either the late 1940's or the early 1950's and intersected the underlying bedrock surface before 1973. The calculated movement rate of the front is 6.3 x 10 -6 centimeters per second. Several key factors that control both the concentration level and the extent of migration of tritium in the drift at Plot M are 1. The limited amount of tritiated waste buried at Plot M. 2. The long period of time that has elapsed since the waste was buried (30-35 years) relative to the radioactive half-life of tritium (12.3 years). 3. The great thickness and low permeability of the glacial drift at the site.

  9. Burial affects the biogeochemistry of headwater streams in a midwestern US metropolitan area

    EPA Science Inventory

    Nitrogen (N) retention in stream networks is an important ecosystem service that may be affected by the widespread burial of headwater streams in urban basins. Urban stream burial has only recently been recognized by ecologists and little research has addressed the extent to whi...

  10. Burial affects the biogeochemistry of headwater streams in a midwestern US metropolitan area - slides

    EPA Science Inventory

    Nitrogen (N) retention in stream networks is an important ecosystem service that may be affected by the widespread burial of headwater streams in urban basins. Urban stream burial has only recently been recognized by ecologists as a regional environmental impact and little resea...

  11. Effects of urban stream burial on nitrogen uptake and ecosystem metabolism: implications for watershed nitrogen and carbon fluxes

    EPA Science Inventory

    Urbanization has resulted in extensive burial and channelization of headwater streams, yet little is known about impacts on stream ecosystem functions critical for reducing downstream nitrogen pollution. To characterize the biogeochemical impact of stream burial, we measured NO3...

  12. 38 CFR 3.1602 - Special conditions governing payments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., funeral, plot, interment and transportation expenses, the burial and plot or interment allowance will be... transportation services or furnished the burial plot will have priority over claims of persons whose personal... burial allowance or plot or interment allowance will be made where it would escheat. [26 FR 1621, Feb. 24...

  13. 20 CFR 416.1231 - Burial spaces and certain funds set aside for burial expenses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... children and step-children; an individual's brothers, sisters, parents, adoptive parents, and the spouses... are set aside for the burial arrangements of the eligible child's ineligible parent or parent's spouse... separation; i.e., a circumstance beyond an individual's control which makes conversion/separation impossible...

  14. Effects of Urban Stream Burial on Organic Matter Dynamics and Reach Scale Nitrate Retention

    EPA Science Inventory

    Nitrogen (N) retention in streams is an important ecosystem service that may be affected by the widespread burial of streams in stormwater pipes in urban watersheds. We predicted that stream burial suppresses the capacity of streams to retain nitrate (NO3-) by eliminating primar...

  15. Constraining Quaternary ice covers and erosion rates using cosmogenic 26Al/10Be nuclide concentrations

    NASA Astrophysics Data System (ADS)

    Knudsen, Mads Faurschou; Egholm, David Lundbek

    2018-02-01

    Paired cosmogenic nuclides are often used to constrain the exposure/burial history of landforms repeatedly covered by ice during the Quaternary, including tors, high-elevation surfaces, and steep alpine summits in the circum-Arctic regions. The approach generally exploits the different production rates and half-lives of 10Be and 26Al to infer past exposure/burial histories. However, the two-stage minimum-limiting exposure and burial model regularly used to interpret the nuclides ignores the effect of variable erosion rates, which potentially may bias the interpretation. In this study, we use a Monte Carlo model approach to investigate systematically how the exposure/burial and erosion history, including variable erosion and the timing of erosion events, influence concentrations of 10Be and 26Al. The results show that low 26Al/10Be ratios are not uniquely associated with prolonged burial under ice, but may as well reflect ice covers that were limited to the coldest part of the late Pleistocene combined with recent exhumation of the sample, e.g. due to glacial plucking during the last glacial period. As an example, we simulate published 26Al/10Be data from Svalbard and show that it is possible that the steep alpine summits experienced ice-free conditions during large parts of the late Pleistocene and varying amounts of glacial erosion. This scenario, which contrasts with the original interpretation of more-or-less continuous burial under non-erosive ice over the last ∼1 Myr, thus challenge the conventional interpretation of such data. On the other hand, high 26Al/10Be ratios do not necessarily reflect limited burial under ice, which is the common interpretation of high ratios. In fact, high 26Al/10Be ratios may also reflect extensive burial under ice, combined with a change from burial under erosive ice, which brought the sample close to the surface, to burial under non-erosive ice at some point during the mid-Pleistocene. Importantly, by allowing for variable erosion rates, the model results may reconcile spatially varying 26Al/10Be data from bedrock surfaces preserved over multiple glacial cycles, suggesting that samples from the same high-elevation surface or neighbouring alpine summits may have experienced similar long-term burial under ice, but varying amounts of glacial erosion.

  16. Simulations of the origin of fluid pressure, fracture gen­ eration, and the movement of fluids in the Uinta Basin, Utah

    USGS Publications Warehouse

    Bredehoeft, J.D.; Wesley, J.B.; Fouch, T.D.

    1994-01-01

    The Altamont oil field in the deep Uinta basin is known to have reservoir fluid pressures that approach lithostatic. One explanation for this high pore-fluid pressure is the generation of oil from kerogen in the Green River oil shale at depth. A three-dimensional simulation of flow in the basin was done to test this hypothesis.In the flow simulation, oil generation is included as a fluid source. The kinetics of oil generation from oil shale is a function of temperature. The temperature is controlled by (1) the depth of sediment burial and (2) the geothermal gradient.Using this conceptual model, the pressure buildup results from the trade-off between the rate of oil generation and the flow away from the source volume. The pressure increase depends primarily on (1) the rate of the oil-generation reaction and (2) the permeability of the reservoir rocks. A sensitivity analysis was performed in which both of these parameters were systematically varied. The reservoir permeability must be lower than most of the observed data for the pressure to build up to near lithostatic.The results of the simulations indicated that once oil generation was initiated, the pore pressure built up rapidly to near lithostatic. We simulated hydrofractures in that part of the system in which the pressures approach lithostatic by increasing both the horizontal and the vertical permeability by an order of magnitude. Because the simulated hydrofractures were produced by the high pore pressure, they were restricted to the Altamont field. A new flow system was established in the vicinity of the reservoir; the maximum pore pressure was limited by the least principal stress. Fluids moved vertically up and down and laterally outward away from the source of oil generation. The analysis indicated that, assuming that one is willing to accept the low values of permeability, oil generati n can account for the observed high pressures at Altamont field.

  17. Structure, burial history, and petroleum potential of frontal thrust belt and adjacent foreland, southwest Montana.

    USGS Publications Warehouse

    Perry, W.J.; Wardlaw, B.R.; Bostick, N.H.; Maughan, E.K.

    1983-01-01

    The frontal thrust belt in the Lima area of SW Montana consists of blind (nonsurfacing) thrusts of the Lima thrust system beneath the Lima anticline and the Tendoy thrust sheet to the W. The Tendoy sheet involves Mississippian through Cretaceous rocks of the SW-plunging nose of the Mesozoic Blacktail-Snowcrest uplift that are thrust higher (NE) onto the uplift. The front of the Tendoy sheet W of Lima locally has been warped by later compressive deformation which also involved synorogenic conglomerates of the structurally underlying Beaverhead Formation. To the N, recent extension faulting locally has dropped the front of the Tendoy sheet beneath Quaternary gravels. Rocks of the exposed Tendoy sheet have never been deeply buried, based on vitrinite relectance of = or <0.6%, conodont CAI (color alteration index) values that are uniformly 1, and on supporting organic geochemical data from Paleozoic rocks from the Tendoy thrust sheet. Directly above and W of the Tendoy sheet lie formerly more deeply buried rocks of the Medicine Lodge thrust system. Their greater burial depth is indicated by higher conodont CAI values. W-dipping post-Paleocene extension faults truncate much of the rear part of the Tendoy sheet and also separate the Medicine Lodge sheet from thrust sheets of the Beaverhead Range still farther W. -from Authors

  18. Late Cretaceous Localized Crustal Thickening as a Primary Control on the 3-D Architecture and Exhumation Histories of Cordilleran Metamorphic Core Complexes

    NASA Astrophysics Data System (ADS)

    Gans, P. B.; Wong, M.

    2014-12-01

    The juxtaposition of mylonitic mid-crustal rocks and faulted supracrustal rocks in metamorphic core complexes (MMCs) is usually portrayed in 2 dimensions and attributed to a single event of large-scale slip ± isostatic doming along a low-angle "detachment fault"/ shear zone. This paradigm does not explain dramatic along strike (3-D) variations in slip magnitude, footwall architecture, and burial / exhumation histories of most MMCs. A fundamental question posed by MMCs is how did their earlier thickening and exhumation histories influence the geometric evolution and 3-D slip distribution on the subsequent detachment faults? New geologic mapping and 40Ar/39Ar thermochronology from the Snake Range-Kern Mts-Deep Creek Mts (SKDC) complex in eastern Nevada offer important insights into this question. Crustal shortening and thickening by large-scale non-cylindrical recumbent folds and associated thrust faults during the late Cretaceous (90-80 Ma) resulted in deep burial (650°C, 20-25 km) of the central part of the footwall, but metamorphic grade decreases dramatically to the N and S in concert with decreasing amplitude on the shortening structures. Subsequent Paleogene extensional exhumation by normal faulting and ESE-directed mylonitic shearing is greatest in areas of maximum earlier thickening and brought highest grade rocks back to depths of~10-12 km. After ≥15 Ma of quiescence, rapid E-directed slip initiated along the brittle Miocene Snake Range detachment at 20 Ma and reactivated the Eocene shear zone. The ≥200°C gradient across the footwall at this time implies that the Miocene slip surface originated as a moderately E-dipping normal fault. This Miocene slip surface can be tracked for more than 100 km along strike, but the greatest amount of Miocene slip also coincides with parts of the footwall that were most deeply buried in the Cretaceous. These relations indicate that not only is the SKDC MMC a composite feature, but that the crustal welt created by early thickening played a fundamental role in controlling the slip distribution on subsequent extensional structures and is still evident in the high modern surface elevations of the portions of the footwall what were most deeply buried.

  19. Palaeozoic gas charging in the Ahnet-Timimoun basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cawley, S.J.; Wilson, N.P.; Primmer, T.

    1995-08-01

    The Ahnet-Timimoun Basin, Southern Algeria, contains significant gas reserves expelled from originally oil prone Silurian and Frasnian shales. The gas is reservoired in Devonian and Carboniferous clastics in inversion anticlines formed, primarily, during the Hercynian orogeny. Integration of organic and inorganic geochemical techniques, such as AFTA, ZFTA, fluid inclusion analysis, vitrinite and chitinizoan reflectance, is entirely consistent with gas generation 300 +/- 30MY, immediately prior to or synchronous with the Hercynian orogeny. Data from gas fields has shown the remobilisation of gas during post Hercynian tectonics. A {open_quotes}two-event{close_quotes} heating/cooling history is proposed: (1) Maximum burial and palaeotemperature at ca. 300more » +/- 30MY prior to or synchronous with Hercynian uplift and cooling. (2) Cooling from a secondary peak (lower than maximum) palaeotemperature at ca. 30-60My following Creataceous burial. Calibrated thermal modelling indicates that Palaeozoic source rocks were heated above 200{degrees}C in the Late Carboniferous. Such high temperatures are consistent with the widespread occurrence of pyrophyllite in Silurian shales. Two end-member thermal models can account for the observed maturities. The first is a constant high Pre-Hercynian heat flow which rapidly decreases during Hercynian uplift to remain at Present day values of 50-75mW/m{sup 2}. Gas expulsion in this case commences much earlier than trap formation. The second is {open_quotes}normal{close_quotes} heat flow of ca. 50mW/m{sup 2} until ca. 310My with a rapid increase at ca. 290My followed by an equally rapid drop to constant present day values - in this model, petroleum generation and expulsion is late in relation to structuring.« less

  20. Reconstruction of secular variation in seawater sulfate concentrations

    NASA Astrophysics Data System (ADS)

    Algeo, T. J.; Luo, G. M.; Song, H. Y.; Lyons, T. W.; Canfield, D. E.

    2015-04-01

    Long-term secular variation in seawater sulfate concentrations ([SO42-]SW) is of interest owing to its relationship to the oxygenation history of Earth's surface environment. In this study, we develop two complementary approaches for quantification of sulfate concentrations in ancient seawater and test their application to late Neoproterozoic (635 Ma) to Recent marine units. The "rate method" is based on two measurable parameters of paleomarine systems: (1) the S-isotope fractionation associated with microbial sulfate reduction (MSR), as proxied by Δ34SCAS-PY, and (2) the maximum rate of change in seawater sulfate, as proxied by &partial; δ 34SCAS/∂ t(max). The "MSR-trend method" is based on the empirical relationship of Δ34SCAS-PY to aqueous sulfate concentrations in 81 modern depositional systems. For a given paleomarine system, the rate method yields an estimate of maximum possible [SO42-]SW (although results are dependent on assumptions regarding the pyrite burial flux, FPY), and the MSR-trend method yields an estimate of mean [SO42-]SW. An analysis of seawater sulfate concentrations since 635 Ma suggests that [SO42-]SW was low during the late Neoproterozoic (<5 mM), rose sharply across the Ediacaran-Cambrian boundary (~5-10 mM), and rose again during the Permian (~10-30 mM) to levels that have varied only slightly since 250 Ma. However, Phanerozoic seawater sulfate concentrations may have been drawn down to much lower levels (~1-4 mM) during short (<~2 Myr) intervals of the Cambrian, Early Triassic, Early Jurassic, and Cretaceous as a consequence of widespread ocean anoxia, intense MSR, and pyrite burial. The procedures developed in this study offer potential for future high-resolution quantitative analyses of paleo-seawater sulfate concentrations.

  1. A Possible Late Paleocene-Early Eocene Ocean Acidification Event Recoded in the Adriatic Carbonate Platform

    NASA Astrophysics Data System (ADS)

    Weiss, A.; Martindale, R. C.; Kosir, A.; Oefinger, J.

    2017-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) event ( 56.3 Ma) was a period of massive carbon release into the Earth system, resulting in significant shifts in ocean chemistry. It has been proposed that ocean acidification - a decrease in the pH and carbonate saturation state of the water as a result of dissolved carbon dioxide in sea water - occurred in both the shallow and deep marine realms. Ocean acidification would have had a devastating impact on the benthic ecosystem, and has been proposed as the cause of decreased carbonate deposition in marine sections and coral reef collapse during the late Paleocene. To date, however, the only physical evidence of Paleocene-Eocene ocean acidification has been shown for offshore sites (i.e., a shallow carbonate compensation depth), but isotope analysis (i.e. B, I/Ca) suggests that acidification occurred in the shallow shelves as well. Several sites in the Kras region of Slovenia, has been found to contain apparent erosion surfaces coeval with the Paleocene-Eocene Boundary. We have investigated these potentially acidified horizons using petrography, stable carbon isotopes, cathodoluminescence, and elemental mapping. These datasets will inform whether the horizons formed by seafloor dissolution in an acidified ocean, or are due to subaerial exposure, or burial diagenesis (i.e. stylotization). Physical erosion and diagenesis can easily be ruled out based on field relationships and petrography, but the other potential causes must be analyzed more critically.

  2. Thermal maturation and petroleum source rocks in Forest City and Salina basins, mid-continent, U. S. A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, K.D.; Watney, W.L.; Hatch, J.R.

    1986-05-01

    Shales in the Middle Ordovician Simpson Group are probably the source rocks for a geochemically distinct group of lower pristane and low phytane oils produced along the axis of the Forest City basin, a shallow cratonic Paleozoic basin. These oils, termed Ordovician-type oils, occur in some fields in the southern portion of the adjacent Salina basin. Maturation modeling by time-temperature index (TTI) calculations indicate that maturation of both basins was minimal during the early Paleozoic. The rate of maturation significantly increased during the Pennsylvanian because of rapid regional subsidence in response to the downwarping of the nearby Anadarko basin. Whenmore » estimated thicknesses of eroded Pennsylvanian, Permian, and Cretaceous strata are considered, both basins remain relatively shallow, with maximum basement burial probably not exceeding 2 km. According to maturation modeling and regional structure mapping, the axes of both basins should contain Simpson rocks in the early stages of oil generation. The probability of finding commercial accumulations of Ordovician-type oil along the northwest-southeast trending axis of the Salina basin will decrease in a northwestward direction because of (1) westward thinning of the Simpson Group, and (2) lesser maturation due to lower geothermal gradients and shallower paleoburial depths. The optimum localities for finding fields of Ordovician-type oil in the southern Salina basin will be in down-plunge closures on anticlines that have drainage areas near the basin axis.« less

  3. Ground-water flow near two radioactive-waste-disposal areas at the Western New York Nuclear Service Center, Cattaraugus County, New York; results of flow simulation

    USGS Publications Warehouse

    Bergeron, M.P.; Bugliosi, E.F.

    1988-01-01

    Two adjacent burial areas were excavated in a clay-rich till at a radioactive waste disposal site near West Valley in Cattaraugus County, N.Y.: (1) which contains mainly low-level radioactive wastes generated onsite by a nuclear fuel reprocessing plant, has been in operation since 1966; and (2) which contains commercial low-level radioactive wastes, was operated during 1963-75. Groundwater below the upper 3 meters of till generally moves downward through a 20- to 30-meter thick sequence of tills underlain by lacustrine and kame-delta deposits of fine sand and silt. Groundwater in the weathered, upper 3 meters of till can move laterally for several meters before either moving downward into the kame-delta deposits or discharging to the land surface. A two-dimensional finite-element model that simulates two vertical sections was used to evaluate hydrologic factors that control groundwater flow in the till. Conditions observed during March 1983 were reproduced accurately in steady-state simulations that used four isotropic units of differing hydraulic conductivity to represent two fractured and weathered till units near land surfaces, an intermediate group of isolated till zones that contain significant amounts of fine sand and silt, and a sequence of till units at depths that have been consolidated by overburden pressure. Recharge rates used in the best-fit simulation ranged from 1.4 cm/yr along smooth, sloping or compacted surfaces to 3.8 cm/yr near swampy areas. Values of hydraulic conductivity and infiltration used in the calibrated best-fit model were nearly identical to values used in a previous model analysis of the nearby commercial-waste burial area. Results of the model simulations of a burial pit assumed to be filled with water indicate that water near the bottom of the burial pit would migrate laterally in the shallow, weathered till for 5 to 6 meters before moving downward into the unweathered till, and water near the top of the pit would move laterally less than 20 meters before moving downward into the unweathered till. These results indicate that subsurface migration of radionuclides in groundwater to points of discharge to land surface is unlikely as long as the water level does not rise into the reworked cover material. (Author 's abstract)

  4. 32 CFR 553.16 - Persons eligible for burial in Soldiers' Home National Cemetery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Persons eligible for burial in Soldiers' Home National Cemetery. 553.16 Section 553.16 National Defense Department of Defense (Continued) DEPARTMENT OF... eligible for burial in Soldiers' Home National Cemetery. The Board of Commissioners of the US Soldiers' and...

  5. The burial of headwater streams in drainage pipes reduces in-stream nitrate retention: results from two US metropolitan areas

    EPA Science Inventory

    Urbanization causes stream degradation in various ways, but perhaps the most extreme example is the burial of streams in underground storm drains to facilitate above ground development or to promote the rapid conveyance of stormwater. Stream burial is extensive in urban basins (...

  6. Underwater Munitions Expert System to Predict Mobility and Burial

    DTIC Science & Technology

    2017-11-14

    exposure and aggregation for underwater munitions. 15. SUBJECT TERMS Underwater Munitions, Mobility, Burial, Application Programmer Interface...Munitions Expert System: Demonstration and Evaluation Report Acronyms API – Application Programmer Interface APL – Applied Physics...comparisons and traditional metrics such as the coefficient of correlation. The summary statistic for the comparisons of burial results

  7. 77 FR 64361 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level... for low-level waste. DATES: Submit comments by November 15, 2012. Comments received after this date...

  8. Effects of urban stream burial on organic matter dynamics and reach scale nitrate retention - final

    EPA Science Inventory

    Nitrogen (N) retention in streams is an important ecosystem service that may be affected by the widespread burial of streams in stormwater pipes in urban watersheds. We predicted that stream burial suppresses the capacity of streams to retain nitrate (NO3 −) by eliminating primar...

  9. 77 FR 58591 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0362] Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... Commission) has issued for public comment a document entitled: NUREG-1307 Revision 15, ``Report on Waste...

  10. Examining the diagenetic alteration of human bone material from a range of archaeological burial sites using nuclear microscopy

    NASA Astrophysics Data System (ADS)

    Elliott, T. A.; Grime, G. W.

    1993-05-01

    The inorganic analysis of archaeological bone material can potentially provide a wealth of information about the chronology, diet and palaeoenvironment of past populations: for example, strontium and uranium levels are used in palaeodietary and dating studies, respectively. However, the extent to which the chemical composition of bone is subject to diagenetic change during burial is open to controversy due, in part, to differences in analytical technique, bone types and burial conditions. To investigate this problem, archaeological human bone material from a number of different geological environments including Pompeii and a 12th century British ecclesiastical site, together with material from two seawater burials (The "Mary Rose" and a 6th century Mediterranean wreck) have been studied using the nuclear microprobe facility at the University of Oxford. Results using microbeam PIXE show that bone is subject to contamination from a wide range of trace elements depending on the burial conditions. Elemental maps are presented to demonstrate the distribution of trace element accumulation under different burial conditions, and the significance of this work to future trace element studies is discussed.

  11. Calculating maximum frost depths at Mn/ROAD : winters 1993-94, 1994-95 and 1995-96

    DOT National Transportation Integrated Search

    1997-03-01

    This effort involved calculating maximum frost penetration depths for each of the 40 test cells at Mn/ROAD, the Minnesota Department of Transportation's pavement testing facility, for the 1993-94, 1994-95, and 1995-96 winters. The report compares res...

  12. Maximum rooting depth of vegetation types at the global scale.

    PubMed

    Canadell, J; Jackson, R B; Ehleringer, J B; Mooney, H A; Sala, O E; Schulze, E-D

    1996-12-01

    The depth at which plants are able to grow roots has important implications for the whole ecosystem hydrological balance, as well as for carbon and nutrient cycling. Here we summarize what we know about the maximum rooting depth of species belonging to the major terrestrial biomes. We found 290 observations of maximum rooting depth in the literature which covered 253 woody and herbaceous species. Maximum rooting depth ranged from 0.3 m for some tundra species to 68 m for Boscia albitrunca in the central Kalahari; 194 species had roots at least 2 m deep, 50 species had roots at a depth of 5 m or more, and 22 species had roots as deep as 10 m or more. The average for the globe was 4.6±0.5 m. Maximum rooting depth by biome was 2.0±0.3 m for boreal forest. 2.1±0.2 m for cropland, 9.5±2.4 m for desert, 5.2±0.8 m for sclerophyllous shrubland and forest, 3.9±0.4 m for temperate coniferous forest, 2.9±0.2 m for temperate deciduous forest, 2.6±0.2 m for temperate grassland, 3.7±0.5 m for tropical deciduous forest, 7.3±2.8 m for tropical evergreen forest, 15.0±5.4 m for tropical grassland/savanna, and 0.5±0.1 m for tundra. Grouping all the species across biomes (except croplands) by three basic functional groups: trees, shrubs, and herbaceous plants, the maximum rooting depth was 7.0±1.2 m for trees, 5.1±0.8 m for shrubs, and 2.6±0.1 m for herbaceous plants. These data show that deep root habits are quite common in woody and herbaceous species across most of the terrestrial biomes, far deeper than the traditional view has held up to now. This finding has important implications for a better understanding of ecosystem function and its application in developing ecosystem models.

  13. Dynamic Response and Residual Helmet Liner Crush Using Cadaver Heads and Standard Headforms.

    PubMed

    Bonin, S J; Luck, J F; Bass, C R; Gardiner, J C; Onar-Thomas, A; Asfour, S S; Siegmund, G P

    2017-03-01

    Biomechanical headforms are used for helmet certification testing and reconstructing helmeted head impacts; however, their biofidelity and direct applicability to human head and helmet responses remain unclear. Dynamic responses of cadaver heads and three headforms and residual foam liner deformations were compared during motorcycle helmet impacts. Instrumented, helmeted heads/headforms were dropped onto the forehead region against an instrumented flat anvil at 75, 150, and 195 J. Helmets were CT scanned to quantify maximum liner crush depth and crush volume. General linear models were used to quantify the effect of head type and impact energy on linear acceleration, head injury criterion (HIC), force, maximum liner crush depth, and liner crush volume and regression models were used to quantify the relationship between acceleration and both maximum crush depth and crush volume. The cadaver heads generated larger peak accelerations than all three headforms, larger HICs than the International Organization for Standardization (ISO), larger forces than the Hybrid III and ISO, larger maximum crush depth than the ISO, and larger crush volumes than the DOT. These significant differences between the cadaver heads and headforms need to be accounted for when attempting to estimate an impact exposure using a helmet's residual crush depth or volume.

  14. Sensor emplacement testing at Poker Flat, Alaska

    NASA Astrophysics Data System (ADS)

    Reusch, A.; Beaudoin, B. C.; Anderson, K. E.; Azevedo, S.; Carothers, L.; Love, M.; Miller, P. E.; Parker, T.; Pfeifer, M.; Slad, G.; Thomas, D.; Aderhold, K.

    2013-12-01

    PASSCAL provides equipment and support for temporary seismic projects. Speed and efficiency of deployments are essential. A revised emplacement technique of putting broadband sensors directly into soil (aka direct burial) is being tested. The first phase (fall 2011 to spring 2013) comparing data quality and sensor stability between the direct burial and the traditional 1 m deep temporary PASSCAL-style vault in a wet and noisy site near San Antonio, NM is complete. Results suggest there is little or no difference in sensor performance in the relatively high-noise environment of this initial test. The second phase was started in November 2012 with the goal of making the same comparison, but at Poker Flat, Alaska, in a low-noise, high-signal, cold and wet environment, alongside a Transportable Array (TA) deployment to be used as a performance control. This location is in an accessible and secure area with very low site noise. In addition to benefiting future worldwide PASSCAL deployments, the Poker Flat experiment serves a secondary purpose of testing modifications necessary to successfully deploy and recover broadband stations in a cold environment with the limited logistics anticipated for remote Flexible Array (FA) and PASSCAL Program deployments in Alaska. Developing emplacement techniques that maintain high data quality and data return while minimizing logistics is critical to enable principle investigators to effectively and efficiently co-locate within the future TA Alaska footprint. Three Nanometrics sensors were installed in November 2012 in power-augered holes 76 cm in depth: a Trillium Compact Posthole (PH) and two Trillium 120PH units (one standard PH and one enhanced PHQ). The installations took less than 8 hours in -30°C conditions with 4 hours of usable daylight. The Compact PH and the 120PHQ are delivering data in realtime, while the 120PH is testing standalone power and data collection systems. Preliminary results compare favorably to each other as well as the nearby Trillium 240 in a traditional TA surface vault and a 120PH in a 5 m machine-drilled borehole. This summer, two Trillium 120PA sensors were installed at a depth of 54 cm in traditional PASSCAL-style vaults, adjacent to the Trillium Compact PH, Trillium 120PH and 120PHQ emplacements. Analysis of the data collected from these five sensors will include the use of probability density functions of power spectral density to examine temporal trends in noise, signal-to-noise ratios for local, regional, and teleseismic earthquakes, and coherence of both noise and earthquake signal recordings to compare the data quality of direct burial versus temporary PASSCAL-style vaults sensor emplacements.

  15. Multileaf collimator tongue-and-groove effect on depth and off-axis doses: A comparison of treatment planning data with measurements and Monte Carlo calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hee Jung; Department of Biomedical Engineering, Seoul National University, Seoul; Department of Radiation Oncology, Soonchunhyang University Hospital, Seoul

    2015-01-01

    To investigate how accurately treatment planning systems (TPSs) account for the tongue-and-groove (TG) effect, Monte Carlo (MC) simulations and radiochromic film (RCF) measurements were performed for comparison with TPS results. Two commercial TPSs computed the TG effect for Varian Millennium 120 multileaf collimator (MLC). The TG effect on off-axis dose profile at 3 depths of solid water was estimated as the maximum depth and the full width at half maximum (FWHM) of the dose dip at an interleaf position. When compared with the off-axis dose of open field, the maximum depth of the dose dip for MC and RCF rangedmore » from 10.1% to 20.6%; the maximum depth of the dose dip gradually decreased by up to 8.7% with increasing depths of 1.5 to 10 cm and also by up to 4.1% with increasing off-axis distances of 0 to 13 cm. However, TPS results showed at most a 2.7% decrease for the same depth range and a negligible variation for the same off-axis distances. The FWHM of the dose dip was approximately 0.19 cm for MC and 0.17 cm for RCF, but 0.30 cm for Eclipse TPS and 0.45 cm for Pinnacle TPS. Accordingly, the integrated value of TG dose dip for TPS was larger than that for MC and RCF and almost invariant along the depths and off-axis distances. We concluded that the TG dependence on depth and off-axis doses shown in the MC and RCF results could not be appropriately modeled by the TPS versions in this study.« less

  16. Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park

    USGS Publications Warehouse

    Smoak, Joseph M.; Breithaupt, Joshua L.; Smith, Thomas J.; Sanders, Christian J.

    2013-01-01

    The goal of this investigation was to examine how sediment accretion and organic carbon (OC) burial rates in mangrove forests respond to climate change. Specifically, will the accretion rates keep pace with sea-level rise, and what is the source and fate of OC in the system? Mass accumulation, accretion and OC burial rates were determined via 210Pb dating (i.e. 100 year time scale) on sediment cores collected from two mangrove forest sites within Everglades National Park, Florida (USA). Enhanced mass accumulation, accretion and OC burial rates were found in an upper layer that corresponded to a well-documented storm surge deposit. Accretion rates were 5.9 and 6.5 mm yr−1 within the storm deposit compared to overall rates of 2.5 and 3.6 mm yr−1. These rates were found to be matching or exceeding average sea-level rise reported for Key West, Florida. Organic carbon burial rates were 260 and 393 g m−2 yr−1 within the storm deposit compared to 151 and 168 g m−2 yr−1 overall burial rates. The overall rates are similar to global estimates for OC burial in marine wetlands. With tropical storms being a frequent occurrence in this region the resulting storm surge deposits are an important mechanism for maintaining both overall accretion and OC burial rates. Enhanced OC burial rates within the storm deposit could be due to an increase in productivity created from higher concentrations of phosphorus within storm-delivered sediments and/or from the deposition of allochthonous OC. Climate change-amplified storms and sea-level rise could damage mangrove forests, exposing previously buried OC to oxidation and contribute to increasing atmospheric CO2 concentrations. However, the processes described here provide a mechanism whereby oxidation of OC would be limited and the overall OC reservoir maintained within the mangrove forest sediments.

  17. Geomorphic and hydrologic study of peak-flow management on the Cedar River, Washington

    USGS Publications Warehouse

    Magirl, Christopher S.; Gendaszek, Andrew S.; Czuba, Christiana R.; Konrad, Christopher P.; Marineau, Mathieu D.

    2012-01-01

    Assessing the linkages between high-flow events, geomorphic response, and effects on stream ecology is critical to river management. High flows on the gravel-bedded Cedar River in Washington are important to the geomorphic function of the river; however, high flows can deleteriously affect salmon embryos incubating in streambed gravels. A geomorphic analysis of the Cedar River showed evidence of historical changes in river form over time and quantified the effects of anthropogenic alterations to the river corridor. Field measurements with accelerometer scour monitors buried in the streambed provided insight into the depth and timing of streambed scour during high-flow events. Combined with a two-dimensional hydrodynamic model, the recorded accelerometer disturbances allowed the prediction of streambed disturbance at the burial depth of Chinook and sockeye salmon egg pockets for different peak discharges. Insight gained from these analyses led to the development of suggested monitoring metrics for an ongoing geomorphic monitoring program on the Cedar River.

  18. Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1989-01-01

    A model of the carbonate-silicate geochemical cycle is presented that distinguishes carbonate masses produced by shallow-ocean and deep-ocean carbonate burial and shows that reasonable increases in deep-ocean burial could produce substantial warmings over a few hundred million years. The model includes exchanges between crust and mantle; transients from burial shifts are found to be sensitive to the fraction of nondegassed carbonates subducted into the mantle. Without the habitation of the open ocean by plankton such as foraminifera and coccolithophores, today's climate would be substantially colder.

  19. Rock Cutting Depth Model Based on Kinetic Energy of Abrasive Waterjet

    NASA Astrophysics Data System (ADS)

    Oh, Tae-Min; Cho, Gye-Chun

    2016-03-01

    Abrasive waterjets are widely used in the fields of civil and mechanical engineering for cutting a great variety of hard materials including rocks, metals, and other materials. Cutting depth is an important index to estimate operating time and cost, but it is very difficult to predict because there are a number of influential variables (e.g., energy, geometry, material, and nozzle system parameters). In this study, the cutting depth is correlated to the maximum kinetic energy expressed in terms of energy (i.e., water pressure, water flow rate, abrasive feed rate, and traverse speed), geometry (i.e., standoff distance), material (i.e., α and β), and nozzle system parameters (i.e., nozzle size, shape, and jet diffusion level). The maximum kinetic energy cutting depth model is verified with experimental test data that are obtained using one type of hard granite specimen for various parameters. The results show a unique curve for a specific rock type in a power function between cutting depth and maximum kinetic energy. The cutting depth model developed here can be very useful for estimating the process time when cutting rock using an abrasive waterjet.

  20. Hydrology of the Melton Valley radioactive-waste burial grounds at Oak Ridge National Laboratory, Tennessee

    USGS Publications Warehouse

    Webster, D.A.; Bradley, Michael W.

    1988-01-01

    Burial grounds 4, 5, and 6 of the Melton Valley Radioactive-waste Burial Grounds, Oak Ridge, TN, were used sequentially from 1951 to the present for the disposal of solid, low level radioactive waste by burial in shallow trenches and auger holes. Abundant rainfall, a generally thin unsaturated zone, geologic media of inherently low permeability, and the operational practices employed have contributed to partial saturation of the buried waste, leaching of radionuclides, and transport of dissolved matter from the burial areas. Two primary methods of movement of wastes from these sites are transport in groundwater, and the overflow of fluid in trenches and subsequent flow across land surface. Whiteoak Creek and its tributaries receive all overland flow from trench spillage, surface runoff from each site, and discharge of groundwater from the regolith of each site. Potentiometric data, locally, indicate that this drainage system also receives groundwater discharges from the bedrock of burial ground 5. By projection of the bedrock flow patterns characteristic of this site to other areas of Melton Valley, it is inferred that discharges from the bedrock underlying burial grounds 4 and 6 also is to the Whiteoak Creek drainage system. The differences in potentiometric heads and a comparatively thin saturated zone in bedrock do not favor the development of deep flow through bedrock from one river system to another. (USGS)

  1. Burial and thermal history of the central Appalachian basin, based on three 2-D models of Ohio, Pennsylvania, and West Virginia

    USGS Publications Warehouse

    Rowan, Elisabeth L.

    2006-01-01

    Introduction: Three regional-scale, cross sectional (2-D) burial and thermal history models are presented for the central Appalachian basin based on the detailed geologic cross sections of Ryder and others (2004), Crangle and others (2005), and Ryder, R.T., written communication. The models integrate the available thermal and geologic information to constrain the burial, uplift, and erosion history of the region. The models are restricted to the relatively undeformed part of the basin and extend from the Rome trough in West Virginia and Pennsylvania northwestward to the Findlay arch in Ohio. This study expands the scope of previous work by Rowan and others (2004) which presented a preliminary burial/thermal history model for a cross section (E-E') through West Virginia and Ohio. In the current study, the burial/thermal history model for E-E' is revised, and integrated with results of two additional cross sectional models (D-D' and C-C'). The burial/thermal history models provide calculated thermal maturity (Ro%) values for the entire stratigraphic sequence, including hydrocarbon source rocks, along each of the three cross sections. In contrast, the Ro and conodont CAI data available in the literature are sparse and limited to specific stratigraphic intervals. The burial/thermal history models also provide the regional temperature and pressure framework that is needed to model hydrocarbon migration.

  2. The maximum depth of shower with E sub 0 larger than 10(17) eV on average characteristics of EAS different components

    NASA Technical Reports Server (NTRS)

    Glushkov, A. V.; Efimov, N. N.; Makarov, I. T.; Pravdin, M. I.; Dedenko, L. G.

    1985-01-01

    The extensive air shower (EAS) development model independent method of the determination of a maximum depth of shower (X sub m) is considered. X sub m values obtained on various EAS parameters are in a good agreement.

  3. 75 FR 67454 - Allowance for Private Purchase of an Outer Burial Receptacle in Lieu of a Government-Furnished...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... DEPARTMENT OF VETERANS AFFAIRS Allowance for Private Purchase of an Outer Burial Receptacle in... Department of Veterans Affairs (VA) to provide a monetary allowance towards the private purchase of an outer..., Section 213, VA may provide a monetary allowance for the private purchase of an outer burial receptacle...

  4. 75 FR 1454 - Allowance for Private Purchase of an Outer Burial Receptacle in Lieu of a Government-Furnished...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... DEPARTMENT OF VETERANS AFFAIRS Allowance for Private Purchase of an Outer Burial Receptacle in... Department of Veterans Affairs (VA) to provide a monetary allowance towards the private purchase of an outer..., Section 213, VA may provide a monetary allowance for the private purchase of an outer burial receptacle...

  5. 78 FR 76712 - Allowance for Private Purchase of an Outer Burial Receptacle in Lieu of a Government-Furnished...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ... DEPARTMENT OF VETERANS AFFAIRS Allowance for Private Purchase of an Outer Burial Receptacle in... Department of Veterans Affairs (VA) to provide a monetary allowance towards the private purchase of an outer..., Section 213, VA may provide a monetary allowance for the private purchase of an outer burial receptacle...

  6. The burial of headwater streams in drainage pipes reduces in-stream nitrate retention: results from two US metropolitan areas

    EPA Science Inventory

    Nitrogen (N) retention in stream networks is an important ecosystem service that may be affected by the widespread burial of headwater streams in urban watersheds. Stream burial occurs when segments of a channel are encased in drainage pipe and buried beneath the land surface to...

  7. Distribution and origin of authigenic smectite clays in Cape Roberts Project Core 3, Victoria Land Basin, Antarctica

    USGS Publications Warehouse

    Priestas, A.W.; Wise, S.W.

    2007-01-01

    Of some 800 m of lower Oligocene marine sediments cored continuously from the seafloor in the Victoria Land Basin of Antarctica at Cape Roberts Site CRP-3, the lower 500 m exhibit authigenic smectite clay coats on shallow-water sandstone grains. A scanning electron microscope/EDS study of 46 fracture sections confirms that the distribution of the clay coats through the unit is not uniform or evenly distributed, but rather varies with depth, original porosity, and the kinds and abundance of source materials. Our results suggest that smectite emplacement resulted from in-situ, low-temperature burial diagenesis rather than hydrothermal or fault-focused thermobaric fluids.

  8. Information and redundancy in the burial folding code of globular proteins within a wide range of shapes and sizes.

    PubMed

    Ferreira, Diogo C; van der Linden, Marx G; de Oliveira, Leandro C; Onuchic, José N; de Araújo, Antônio F Pereira

    2016-04-01

    Recent ab initio folding simulations for a limited number of small proteins have corroborated a previous suggestion that atomic burial information obtainable from sequence could be sufficient for tertiary structure determination when combined to sequence-independent geometrical constraints. Here, we use simulations parameterized by native burials to investigate the required amount of information in a diverse set of globular proteins comprising different structural classes and a wide size range. Burial information is provided by a potential term pushing each atom towards one among a small number L of equiprobable concentric layers. An upper bound for the required information is provided by the minimal number of layers L(min) still compatible with correct folding behavior. We obtain L(min) between 3 and 5 for seven small to medium proteins with 50 ≤ Nr ≤ 110 residues while for a larger protein with Nr = 141 we find that L ≥ 6 is required to maintain native stability. We additionally estimate the usable redundancy for a given L ≥ L(min) from the burial entropy associated to the largest folding-compatible fraction of "superfluous" atoms, for which the burial term can be turned off or target layers can be chosen randomly. The estimated redundancy for small proteins with L = 4 is close to 0.8. Our results are consistent with the above-average quality of burial predictions used in previous simulations and indicate that the fraction of approachable proteins could increase significantly with even a mild, plausible, improvement on sequence-dependent burial prediction or on sequence-independent constraints that augment the detectable redundancy during simulations. © 2016 Wiley Periodicals, Inc.

  9. Alteration in Solid State Phosphorous With Depth in Sediments Along the Salinity Transition Zone of a Major Chesapeake Bay Tributary

    NASA Astrophysics Data System (ADS)

    Hartzell, J. L.; Jordan, T. E.

    2006-05-01

    Determining the fate of particulate phosphorus in estuaries is essential for addressing the widespread problem of estuarine eutrophication, and is key to understanding P cycling and developing accurate global P budgets. Prominent reservoirs of P in surficial sediments include particulate P associated with iron or organic C. However, the importance of these reservoirs changes with the decomposition of organic matter and the reduction of iron. Also, the importance of iron bound P may decrease with increasing salinity due to the formation of iron sulfides. To investigate estuarine P burial and its relationship to salinity, we collected sediment cores of one-meter depth along the salinity gradient of the Patuxent River estuary (Maryland, USA), a major tributary of Chesapeake Bay. The sediments were analyzed using a sequential sedimentary extraction procedure that quantifies five separate reservoirs of particulate P. Total phosphorus concentrations in freshwater sediments were significantly higher than those in more saline sediments at all depths. Conversely, porewater phosphate concentrations were significantly lower in freshwater sediments than in the more saline sediments. Total P in the saline sediment cores decreased with depth, correlating to a reduction in iron-bound P. However, we did not find a concurrent increase in authigenic apatite with depth. Our findings indicate that mechanisms controlling changes in P sorption to sediments change profoundly with salinity and may contribute to increased bioavailability of phosphates with increasing salinity.

  10. McDonaldization, Islamic teachings, and funerary practices in Kuwait.

    PubMed

    Iqbal, Zafar

    2011-01-01

    Drawing on George Ritzer's sociological concept of McDonaldization, this article explores the transformation of burial practices in Kuwait. It is argued that traditional, religious, and private ways of dealing with death have been modernized using the fast-food model of McDonald's. This article examines Islamic teachings on burial and how that model has been applied to the traditional Muslim funerary services, including cemetery management, grave excavation, funeral prayers, burial, and condolences, to make them more efficient vis-a-vis more profitable. Based on personal observations and random interviews, the study finds that the state bureaucracy in Kuwait has made burial rituals more efficient, standardized, calculable, and controlled. Furthermore, several associated irrationalities are also considered. Findings suggest that some individuals may not be happy with these changes but there is no popular resistance to McDonaldization of the burial practices, probably due to the authoritarian and welfare nature of the State of Kuwait.

  11. No place, new places: death and its rituals in urban Asia.

    PubMed

    Kong, Lily

    2012-01-01

    In many land-scarce Asian cities, planning agencies have sought to reduce space for the dead to release land for the living, encouraging conversion from burial to cremation over several decades. This has caused secular principles privileging efficient land use to conflict with symbolic values invested in burial spaces. Over time, not only has cremation become more accepted, even columbaria have become overcrowded, and new forms of burials (sea and woodland burials) have emerged. As burial methods change, so too do commemorative rituals, including new on-line and mobile phone rituals. This paper traces the ways in which physical spaces for the dead in several east Asian cities have diminished and changed over time, the growth of virtual space for them, the accompanying discourses that influence these dynamics and the new rituals that emerge concomitantly with the contraction of land space.

  12. Cosmogenic nuclide budgeting of floodplain sediment transfer

    NASA Astrophysics Data System (ADS)

    Wittmann, H.; von Blanckenburg, F.

    2009-08-01

    Cosmogenic nuclides produced in quartz may either decay or accumulate while sediment is moved through a river basin. A change in nuclide concentration resulting from storage in a floodplain is potentially important in large drainage basins in which sediment is prone to repeated burial and remobilization as a river migrates through its floodplain. We have modeled depth- and time-dependent cosmogenic nuclide concentration changes for 10Be, 26Al, and 14C during sediment storage and mixing in various active floodplain settings ranging from confined, shallow rivers with small floodplains to foreland-basin scale floodplains traversed by deep rivers. Floodplain storage time, estimated from channel migration rates, ranges from 0.4 kyr for the Beni River basin (Bolivia) to 7 kyr for the Amazon River basin, while floodplain storage depth, estimated from channel depth, ranges from 1 to 25 m. For all modeled active floodplain settings, the long-lived nuclides 10Be and 26Al show neither significant increase in nuclide concentration from irradiation nor decrease from decay. We predict a hypothetical response time after which changes in 10Be or 26Al concentrations become analytically resolvable. This interval ranges from 0.07 to 2 Myr and exceeds in all cases the typical residence time of sediment in a floodplain. Due to the much shorter half life of 14C, nuclide concentrations modeled for the in situ-produced variety of this nuclide are, however, sensitive to floodplain storage on residence times of < 20 kyr. The cosmogenic nuclide composition of old deposits in currently inactive floodplains that have been isolated for periods of millions of years from the river that once deposited them is predicted to either increase or decrease in 10Be and 26Al concentration, depending on the depositional depth. These conditions can be evaluated using the 26Al/ 10Be ratio that readily discloses the depth and duration of storage. We illustrate these models with examples from the Amazon basin. As predicted, modern bedload collected from an Amazon tributary, the Bolivian Beni River, shows no systematic change in nuclide concentration as sediment is moved through 500 km of floodplain by river meandering. In contrast, in the central Amazon floodplain currently untouched by the modern river system, low 26Al/ 10Be ratios account for minimum burial depths of 5 to 10 m for a duration of > 5 Myr. The important result of this analysis is that in all likely cases of active floodplains, cosmogenic 10Be and 26Al concentrations remain virtually unchanged over the interval sediment usually spends in the basin. Thus, spatially-averaged denudation rates of the sediment-producing area can be inferred throughout the entire basin, provided that nuclide production rates are scaled for the altitudes of the sediment-producing area only, because floodplain storage does not modify nuclide concentrations introduced from the sediment source area.

  13. Estimating maximum depth distribution of seagrass using underwater videography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, J.G.; Wyllie-Echeverria, S.

    1997-06-01

    The maximum depth distribution of eelgrass (Zostera marina) beds in Willapa Bay, Washington appears to be limited by light penetration which is likely related to water turbidity. Using underwater videographic techniques we estimated that the maximum depth penetration in the less turbid outer bay was -5.85 ft (MILW) and in the more turbid inner bay was only -1.59 ft (MLLW). Eelgrass beds had well defined deepwater edges and no eelgrass was observed in the deep channels of the bay. The results from this study suggest that aerial photographs taken during low tide periods are capable of recording the majority ofmore » eelgrass beds in Willapa Bay.« less

  14. Exploration and geology of the Karangahake and Rahu epithermal Au-Ag deposits, Hauraki Goldfield

    USGS Publications Warehouse

    Simpson, Mark P.; Stevens, Murray R; Mauk, Jeffrey L.; Harris, Matthew C; Stuart, Alistair G J

    2016-01-01

    Karangahake was the third largest gold producer in the Hauraki goldfield. In 2009, New Talisman Gold mines was granted a mining permit, and plans are underway to commence underground mine development of the Maria vein, which has a maiden Ore Reserve (consistent with the 2012 JORC Code) of 28 800 oz Au and 127 800 oz Ag. Exploration drilling at Rahu, located 2 km north of Karangahake has identified polymictic hydrothermal breccias and quartz veins that are strongly gold anomalous. Some quartz vein clasts within the breccia have up to 8.7 g/t Au, suggesting the presence of higher grade quartz vein(s) either below or directly adjacent to the breccias. A controlled source audio-frequency magnetotelluric (CSAMT) survey at Rahu revealed that strongly resistive zones extend below the Barbara and Eunice anomalies to at least 300 m depth and likely correspond to areas of increased silicification, breccias and/or veins. Future drilling will focus on these targets. Detailed geophysical, alteration and fluid inclusion studies have been undertaken at Karangahake, Rahu and Ascot (c 1 km NW of Rahu). Karangahake and Rahu both occur within a broad demagnetised zone, c 4.2 × 2.7 km, in which magnetite has been destroyed by strong hydrothermal alteration. At Karangahake, andesite and overlying minor rhyolite are replaced by adularia, chlorite, illite, pyrite, plus minor albite, epidote and calcite, which have formed from upwelling chloride waters that at depth were hotter than 280°C. At Rahu, localised adularia coupled with complex distributions of illite and interstratified illite-smectite, suggest cooler (c 180° to 240°C) and more focused fluid flow, as well as inferred cool groundwater influx. Fluid inclusion data suggest veins at Karangahake, Rahu and Ascot formed beneath palaeowater tables at 920 m, 440 m and 430 m relative to current sea level (asl), respectively. At Ascot, the presence of silica sinter at 135 m asl, which formed at the palaeosurface, is shallower compared to the fluid inclusion depth estimate and suggests that the palaeowater table here rose some 300 m during hydrothermal activity due to burial, resulting in overprinting. This overprint may also have occurred at Karangahake and Rahu, but the evidence is inconclusive; although burial during hydrothermal activity could explain the exceptional 700 m vertical range of mineralisation at Karangahake and raises the possibility of concealed mineralisation at depth elsewhere within the Karangahake alteration envelope.

  15. Indien Personhood III: Water Burial

    ERIC Educational Resources Information Center

    Miller, Jay

    2005-01-01

    Water burial is a way to return a body to its key primal element. It revives and transforms both the soul and the person. Sometimes water burial leads to a new life floating in a womb. Sometimes it disperses to provide a moist and nutrient-rich medium for a vast variety of other lives, making a contribution to the much larger whole. In this…

  16. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. J. Appel and J. M. Capron

    2007-07-25

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

  17. Tracking small mountainous river derived terrestrial organic carbon across the active margin marine environment

    NASA Astrophysics Data System (ADS)

    Childress, L. B.; Blair, N. E.; Orpin, A. R.

    2015-12-01

    Active margins are particularly efficient in the burial of organic carbon due to the close proximity of highland sources to marine sediment sinks and high sediment transport rates. Compared with passive margins, active margins are dominated by small mountainous river systems, and play a unique role in marine and global carbon cycles. Small mountainous rivers drain only approximately 20% of land, but deliver approximately 40% of the fluvial sediment to the global ocean. Unlike large passive margin systems where riverine organic carbon is efficiently incinerated on continental shelves, small mountainous river dominated systems are highly effective in the burial and preservation of organic carbon due to the rapid and episodic delivery of organic carbon sourced from vegetation, soil, and rock. To investigate the erosion, transport, and burial of organic carbon in active margin small mountainous river systems we use the Waipaoa River, New Zealand. The Waipaoa River, and adjacent marine depositional environment, is a system of interest due to a large sediment yield (6800 tons km-2 yr-1) and extensive characterization. Previous studies have considered the biogeochemistry of the watershed and tracked the transport of terrestrially derived sediment and organics to the continental shelf and slope by biogeochemical proxies including stable carbon isotopes, lignin phenols, n-alkanes, and n-fatty acids. In this work we expand the spatial extent of investigation to include deep sea sediments of the Hikurangi Trough. Located in approximately 3000 m water depth 120 km from the mouth of the Waipaoa River, the Hikurangi Trough is the southern extension of the Tonga-Kermadec-Hikurangi subduction system. Piston core sediments collected by the National Institute of Water and Atmospheric Research (NIWA, NZ) in the Hikurangi Trough indicate the presence of terrestrially derived material (lignin phenols), and suggest a continuum of deposition, resuspension, and transport across the margin. Based on tephra beds identified within the sediments, this material was likely transported by a series of turbidite events, delivered to the Hikurangi Trough through Poverty Canyon.

  18. Recharge of the early atmosphere of Mars by impact-induced release of CO2

    USGS Publications Warehouse

    Carr, Michael H.

    1989-01-01

    Channels on the Martian surface suggest that Mars had an early, relatively thick atmosphere. If the atmosphere was thick enough for water to be stable at the surface, CO2 in the atmosphere would have been fixed as carbonates on a relatively short time scale, previously estimated to be 1 bar every 107 years. This loss must have been offset by some replenishment mechanism to account for the numerous valley networks in the oldest surviving terrains. Impacts could have released CO2 into the atmosphere by burial, by shock-induced release during impact events, and by addition of carbon to Mars from the impacting bolides. Depending on the relationship between the transient cavity diameter and the diameter of the resulting crater, burial rates as a result of impact gardening at the end of heavy bombardment are estimated to range from 20 to 45 m/106 years, on the assumption that cratering rates in Mars were similar to those of the Nectarian Period on the Moon. At these rates 0.1-0.2 bar of CO2 could have been released every 107 years as a result of burial to depths where dissociation temperatures of carbonates were reached. Modeling of large impacts suggests that an additional 0.01 to 0.02 bar of CO2 could have been released every 107 years during the actual impacts. In the unlikely event that all the impacting material was composed of carbonaceous chondrites, a further 0.3 bar of CO2 could have been added to the atmosphere every 107 years by oxidation of meteoritic carbon. Even when supplemented by the volcanically induced release of CO2, these release rates are barely sufficient to sustain an early atmosphere if water were continuously present at the surface. The results suggest that water may have been only intermittently present on the surface early in the planet's history.

  19. The seed bank longevity index revisited: limited reliability evident from a burial experiment and database analyses.

    PubMed

    Saatkamp, Arne; Affre, Laurence; Dutoit, Thierry; Poschlod, Peter

    2009-09-01

    Seed survival in the soil contributes to population persistence and community diversity, creating a need for reliable measures of soil seed bank persistence. Several methods estimate soil seed bank persistence, most of which count seedlings emerging from soil samples. Seasonality, depth distribution and presence (or absence) in vegetation are then used to classify a species' soil seed bank into persistent or transient, often synthesized into a longevity index. This study aims to determine if counts of seedlings from soil samples yield reliable seed bank persistence estimates and if this is correlated to seed production. Seeds of 38 annual weeds taken from arable fields were buried in the field and their viability tested by germination and tetrazolium tests at 6 month intervals for 2.5 years. This direct measure of soil seed survival was compared with indirect estimates from the literature, which use seedling emergence from soil samples to determine seed bank persistence. Published databases were used to explore the generality of the influence of reproductive capacity on seed bank persistence estimates from seedling emergence data. There was no relationship between a species' soil seed survival in the burial experiment and its seed bank persistence estimate from published data using seedling emergence from soil samples. The analysis of complementary data from published databases revealed that while seed bank persistence estimates based on seedling emergence from soil samples are generally correlated with seed production, estimates of seed banks from burial experiments are not. The results can be explained in terms of the seed size-seed number trade-off, which suggests that the higher number of smaller seeds is compensated after germination. Soil seed bank persistence estimates correlated to seed production are therefore not useful for studies on population persistence or community diversity. Confusion of soil seed survival and seed production can be avoided by separate use of soil seed abundance and experimental soil seed survival.

  20. Comparison of Cottonwood Dendrochronology and Optically Stimulated Luminescence Geochronometers Along a High Plains Meandering River, Powder River, Montana, USA

    NASA Astrophysics Data System (ADS)

    Hasse, T. R.; Schook, D. M.

    2017-12-01

    Geochronometers at centennial scales can aid our understanding of process rates in fluvial geomorphology. Plains cottonwood trees (Populus deltoides ssp. Monilifera) in the high plains of the United States are known to germinate on freshly created deposits such as point bars adjacent to rivers. As the trees mature they may be partially buried (up to a few meters) by additional flood deposits. Cottonwood age gives a minimum age estimate of the stratigraphic surface where the tree germinated and a maximum age estimate for overlying sediments, providing quantitative data on rates of river migration and sediment accumulation. Optically Stimulated Luminescence (OSL) of sand grains can be used to estimate the time since the sand grains were last exposed to sunlight, also giving a minimum age estimate of sediment burial. Both methods have disadvantages: Browsing, partial burial, and other damage to young cottonwoods can increase the time required for the tree to reach a height where it can be sampled with a tree corer, making the germination point a few years to a few decades older than the measured tree age; fluvial OSL samples can have inherited age (when the OSL age is older than the burial age) if the sediment was not completely bleached prior to burial. We collected OSL samples at 8 eroding banks of the Powder River Montana, and tree cores at breast height (±1.2 m) from cottonwood trees growing on the floodplain adjacent to the OSL sample locations. Using the Minimum Age Model (MAM) we found that OSL ages appear to be 500 to 1,000 years older than the adjacent cottonwood trees which range in age (at breast height) from 60 to 185 years. Three explanations for this apparent anomaly in ages are explored. Samples for OSL could be below a stratigraphic unconformity relative to the cottonwood germination elevation. Shallow samples for OSL could be affected by anthropogenic mixing of sediments due to plowing and leveling of hay fields. The OSL samples could have significant inherited ages due to partial bleaching during sediment transport in this high plains river with high suspended sediment loads. The dendrochronology of the adjacent cottonwood trees then offers an independent measurement of the inherited age of the OSL samples.

  1. Maize and soybean root front velocity and maximum depth in the Iowa, USA

    USDA-ARS?s Scientific Manuscript database

    Quantitative measurements of root traits can improve our understanding of how crops respond to soil-weather conditions. However, such data are rare. Our objective was to quantify maximum root depth and root front velocity (RFV) for corn and soybean crops across a range of growing conditions in the M...

  2. Selected meteorological data for an arid site near Beatty, Nye County, Nevada, calendar year 1988

    USGS Publications Warehouse

    Wood, James L.; Hill, Kevin J.; Andraski, Brian J.

    1992-01-01

    Selected meteorological data were collected at a study site adjacent to a low-level radioactive-waste burial facility near Beatty/ Nevada, for calendar year 1988. Data were collected in support of ongoing studies to estimate the potential for downward movement of radionuclides into the unsaturated sediments beneath waste-burial trenches at the facility. The data include air temperature, relative humidity, vapor pressure, incident solar radiation, windspeed, wind direction, and precipitation. The data are summarized in tables and graphs.Instrumentation used at the site is discussed. The discussion includes the type, reported accuracy, and mounting height of each sensor.In 1988, the average hourly air temperatures ranged from -10.2 degrees Celsius, in December, to 45.3 degrees Celsius, in July. Hourly averaged relative humidity ranged from about 12 percent to over 80 percent. Hourly vapor pressures ranged from 0.09 to 2.22 kilopascals. Daily values for maximum incident solar radiation ranged from 63 to 1,064 watts per square meter. Daily mean windspeed ranged from 1.2 to 7.8 meters per second. Monthly wind-direction patterns are shown in a series of diagrams in which wind direction is summed over 10-degree arcs from hourly averaged data. Total precipitation for 1988 was 104.5 millimeters, with over 70 percent occurring from January through May.

  3. The impact of male burials on the construction of Corded Ware identity: Reconstructing networks of information in the 3rd millennium BC.

    PubMed

    Bourgeois, Quentin; Kroon, Erik

    2017-01-01

    The emergence of Corded Ware Groups throughout Europe in the 3rd millennium BC is one of the most defining events in European history. From the Wolga to the Rhine communities start to speak Indo-European languages and bury their dead in an extremely similar fashion. Recent ancient DNA-analyses identify a massive migration from the Eurasian steppe as the prime cause for this event. However, there is a fundamental difference between expressing a Corded Ware identity-the sharing of world views and ideas-and having a specific DNA-profile. Therefore, we argue that investigating the exchange of cultural information on burial rites between these communities serves as a crucial complement to the exchange of biological information. By adopting a practice perspective to 1161 Corded Ware burials throughout north-western Europe, combined with similarity indexes and network representations, we demonstrate a high degree of information sharing on the burial ritual between different regions. Moreover, we show that male burials are much more international in character than female burials and as such can be considered as the vector along which cultural information and Corded Ware identity was transmitted. This finding highlights an underlying complex societal organization of Corded Ware burial rites in which gender roles had a significant impact on the composition and transmission of cultural information. Our findings corroborate recent studies that suggest the Corded Ware was a male focused society.

  4. Patinas developed in environmental burial conditions: the Neolithic steles of Reguers de Seró (Lleida, Spain).

    PubMed

    Garcia-Valles, Maite; Aulinas, Meritxell; López-Melción, Joan B; Moya-Garra, Andreu

    2010-08-01

    Weathering patinas in rocks are the result of interaction processes between rock surfaces and atmosphere, biosphere and soil. Therefore, their textural and mineral composition is strongly related to environmental and bioactivity conditions. Whereas the development of weathering patinas in atmospheric conditions is well documented (e.g. typical Mediterranean patina), only very few studies focus on their formation in a burial environment. Our study of patinas developed on the tumular structure of Reguers de Seró deals with the knowledge of burial patinas from a textural and mineralogical point of view. The aims of this study include: (1) the characterisation of the rock used in this megalithic monument as well as inferences regarding the origin of the raw material; (2) the evaluation of the patinas developed on the surface of the carved steles; and (3) the discussion of the environmental conditions (atmospheric or burial) that favoured the development of the patinas. Whole rock and related patinas (powdered samples and small single pieces) were carefully sampled in five of the seven Neolithic steles discovered during a municipal excavation. Some whole rock samples from the surrounding outcrops were also collected in order to correlate them with the stone forming the megalith. Samples were analysed macroscopically, using a glass binocular, and microscopically, by means of a polarising light microscope and a scanning electron microscope (SEM-EDAX). The mineralogical composition was determined by X-ray diffraction, and a colorimetric analysis was also carried out in all the sampled patinas. The obtained results evidence a strong textural and mineralogical correlation between the whole rock of the megalith and the collected samples of the nearby outcrops; both are classified as calcarenite. A uniformly distributed beige-orange patina (35-100 microm thick) covering the surface of the steles modifies their aspect. A layer of calcite (micrite) with granular texture was detected in all the sampled patinas, being the main mineral compositions (approximately 60-90%). In contrast, a discontinuous external layer (25-50 microm thick) of botryoidally gypsum occurs on only a few patinas. SEM-EDAX analyses evidenced that Ca is related to several processes, including inorganic processes, as well as to minor bioactivity. The textural and mineralogical characteristics of the Reguers patinas differ from typical Mediterranean patina sequences, suggesting different environmental conditions for their formation. Several arguments supporting the formation of the Reguers patinas in a burial environment include: (1) patinas cover the entire surface of the steles, iconograhic motifs and fractures. The uniform colour, texture and composition of the patinas throughout the steles suggests their development after the construction of the megalithic tomb during a period in which the archaeological site was buried and sealed by the products of the Senill ravine; (2) the absence of heavy metals mainly contained in flying ashes and other depositions from atmospheric dust and pollutants in the micritic patina; (3) non-appearance of minerals directly formed by biological activity (i.e. oxalates and phosphates); (4) the absence of a well-defined textural sequence (typically of the Mediterranean area) already defined for patinas developed in an atmospheric environment; and (5) the discontinuous occurrence of an external gypsum layer (only present in a few samples) without the presence of the typical spherules related to atmospheric particulate matter. The petrographic characteristics of the Neolithic steles of Reguers de Seró show that the raw material came from a nearby outcrop. The formation of beige-orange patinas is related to a burial environment attending their textural and mineralogical features. The protective role played by these patinas indicates that no previous treatment of such steles would be necessary on an eventual exhibition in atmospheric conditions. Further in-depth studies, similar to those that already exist for patinas developed in atmospheric conditions, are recommended in order to better define the petrographic characteristics and mechanisms on the formation of patinas in burial environments.

  5. Frictional behaviour of exhumed subduction zone sediments from the Shimanto Belt, Japan, at in-situ P-T conditions and implications for megathrust seismogenesis

    NASA Astrophysics Data System (ADS)

    den Hartog, Sabine; Niemeijer, Andre; Saffer, Demian; Marone, Chris

    2014-05-01

    Seismogenesis on subduction zone megathrusts is generally thought to be limited to a region between the ~100-150°C isotherms, at ~5-15 km depth, and the ~350°C isotherm, typically at ~40 km depth. This zone is bounded at its up-dip and down-dip limits by aseismic zones. However, in recent years it has been discovered that very low frequency earthquakes (VLFE) and non-destructive Slow Slip Events (SSEs) or slow earthquakes nucleate in these presumed aseismic regions. Slip on megathrusts is likely to localize in the weak subducted sediments along the plate interface, which implies that the fault material is derived at least in part from these sediments. Therefore, understanding the depth distribution of seismicity and SSEs on megathrusts requires knowledge of the frictional behaviour of metapelites. We investigated such behaviour by performing shear experiments on natural megathrust fault gouges, derived from exhumed subduction zone sediments and faults exposed in the Shimanto Belt on Shikoku Island, Japan. These gouges correspond to peak paleo-temperatures of 105°C to 280°C, representing different stages in the diagenetic and metamorphic evolution of the subducted sediments, covering the shallow aseismic zone as well as the seismogenic zone. The composition of all gouges was dominated by illite/muscovite, with smaller amounts of quartz, feldspar and chlorite. We sheared these gouges at low displacement rates (0.1-100 micron/s) to address the nucleation of megathrust earthquakes and SSEs, using either a double-direct (biaxial) shear machine or a rotary shear machine. The double-direct shear experiments were performed at room temperature, 5% relative humidity and 50 MPa normal stress. The rotary shear experiments, in turn, were conducted at the sample-specific, approximate peak in-situ P-T conditions, i.e. the P-T conditions corresponding to the maximum burial depth of these samples. At room temperature, samples from different peak paleo-temperatures showed similar frictional behaviour, with near-neutral velocity dependence, i.e. stable or aseismic behaviour. When deformed at their approximate in-situ peak P-T conditions, on the other hand, the samples showed a progressive transition from strong velocity-strengthening (stable) behaviour at 105°C (notably at 10-100 micron/s), to velocity-weakening (unstable) behaviour at 280°C. The results at elevated P-T conditions match previous results on simulated illite-quartz analogue fault gouges and imply a broad transition in the slip stability of subduction megathrusts from stable (velocity-strengthening), to unstable (velocity-weakening) with increasing depth, in agreement with seismological observations.

  6. 133. ARAII SL1 burial ground. Shows gravel path from ARAII ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    133. ARA-II SL-1 burial ground. Shows gravel path from ARA-II compound to the burial ground, detail of security fence and entry gate, and sign "Danger radiation hazard." F. C. Torkelson Company 842-area-101-1. Date: October 1961. Ineel index code no. 059-0101-00-851-150723. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  7. Contact mechanics of reverse total shoulder arthroplasty during abduction: the effect of neck-shaft angle, humeral cup depth, and glenosphere diameter.

    PubMed

    Langohr, G Daniel G; Willing, Ryan; Medley, John B; Athwal, George S; Johnson, James A

    2016-04-01

    Implant design parameters can be changed during reverse shoulder arthroplasty (RSA) to improve range of motion and stability; however, little is known regarding their impact on articular contact mechanics. The purpose of this finite element study was to investigate RSA contact mechanics during abduction for different neck-shaft angles, glenosphere sizes, and polyethylene cup depths. Finite element RSA models with varying neck-shaft angles (155°, 145°, 135°), sizes (38 mm, 42 mm), and cup depths (deep, normal, shallow) were loaded with 400 N at physiological abduction angles. The contact area and maximum contact stress were computed. The contact patch and the location of maximum contact stress were typically located inferomedially in the polyethylene cup. On average for all abduction angles investigated, reducing the neck-shaft angle reduced the contact area by 29% for 155° to 145° and by 59% for 155° to 135° and increased maximum contact stress by 71% for 155° to 145° and by 286% for 155° to 135°. Increasing the glenosphere size increased the contact area by 12% but only decreased maximum contact stress by 2%. Decreasing the cup depth reduced the contact area by 40% and increased maximum contact stress by 81%, whereas increasing the depth produced the opposite effect (+52% and -36%, respectively). The location of the contact patch and maximum contact stress in this study matches the area of damage seen frequently on clinical retrievals. This finding suggests that damage to the inferior cup due to notching may be potentiated by contact stresses. Increasing the glenosphere diameter improved the joint contact area and did not affect maximum contact stress. However, although reducing the neck-shaft angle and cup depth can improve range of motion, our study shows that this also has some negative effects on RSA contact mechanics, particularly when combined. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  8. Evidence for iron-sulfate coupling in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Mills, Jennifer; Antler, Gilad; Turchyn, Alexandra

    2014-05-01

    Organic carbon burial in shallow marine sediments represents an important net sink in the global carbon cycle. Microbially mediated oxidation of organic matter in oxic, suboxic, and anoxic sediments however, prevents the ultimate burial of organic carbon and its removal from the surface of the planet. Although the subsurface transformations of organic carbon have been studied extensively, an enigmatic question remains: when organic matter is deposited, what determines whether it will be buried, reoxidized, or undergo methanogenesis? One hypothesis is that the sulfur cycle, due to the abundance of sulfate in many surface environments, dominates the subsurface oxidation or other fate of organic carbon. However, it has also been suggested that iron may in turn play a key role in determining the behavior of the sulfur cycle. To better understand the controls on these processes, we are using stable isotope and geochemical techniques to explore the microbially mediated oxidation of organic carbon in salt marsh sediments in North Norfolk, UK. In these sediments there is a high supply of organic carbon, iron, and sulfate (from diurnal tidal cycles). Thus these environments may provide insight into the nature of interactions between the carbon, iron, and sulfur cycles. A series of sampling missions was undertaken in the autumn and winter of 2013-2014. In subsurface fluid samples we observe very high ferrous iron concentrations (>1mM), indicative of extended regions of iron reduction (to over 30cm depth). Within these zones of iron reduction we would predict no sulfate reduction, and as expected δ34Ssulfate remains unchanged with depth. However, δ18Osulfate exhibits significant enrichments of up to 5 permil. This decoupling in the sulfur and oxygen isotopes of sulfate is suggestive of a sulfate recycling process in which sulfate is reduced to an intermediate sulfur species and subsequently reoxidized to sulfate. Taken together, these data suggest that microbial assemblages in these salt marsh sediments facilitate a cryptic cycling of sulfur, potentially mediated by iron species in the zone of iron reduction.

  9. Diagenetic history of the Surma Group sandstones (Miocene) in the Surma Basin, Bangladesh

    NASA Astrophysics Data System (ADS)

    Rahman, M. Julleh Jalalur; McCann, Tom

    2012-02-01

    This study examines the various diagenetic controls of the Miocene Surma Group sandstones encountered in petroleum exploration wells from the Surma Basin, which is situated in the northeastern part of the Bengal Basin, Bangladesh. The principal diagenetic minerals/cements in the Surma Group sandstones are Fe-carbonates (with Fe-calcite dominating), quartz overgrowths and authigenic clays (predominantly chlorite, illite-smectite and minor kaolin). The isotopic composition of the carbonate cement revealed a narrow range of δ 18O values (-10.3‰ to -12.4‰) and a wide range of δ 13C value (+1.4‰ to -23.1‰). The δ 13C VPDB and δ 18O VPDB values of the carbonate cements reveal that carbon was most likely derived from the thermal maturation of organic matter during burial, as well as from the dissolution of isolated carbonate clasts and precipitated from mixed marine-meteoric pore waters. The relationship between the intergranular volume (IGV) versus cement volume indicates that compaction played a more significant role than cementation in destroying the primary porosity. However, cementation also played a major role in drastically reducing porosity and permeability in sandstones with poikilotopic, pore-filling blocky cements formed in early to intermediate and deep burial areas. In addition to Fe-carbonate cements, various clay minerals including illite-smectite and chlorite occur as pore-filling and pore-lining authigenic phases. Significant secondary porosity has been generated at depths from 2500 m to 4728 m. The best reservoir rocks found at depths of 2500-3300 m are well sorted, relatively coarse grained; more loosely packed and better rounded sandstones having good porosities (20-30%) and high permeabilities (12-6000 mD). These good quality reservoir rocks are, however, not uniformly distributed and can be considered to be compartmentalized as a result of interbedding with sandstone layers of low to moderate porosities, low permeabilities owing to poor sorting and extensive compaction and cementation.

  10. Sunlight-induced carbon dioxide emissions from inland waters

    NASA Astrophysics Data System (ADS)

    Koehler, Birgit; Landelius, Tomas; Weyhenmeyer, Gesa A.; Machida, Nanako; Tranvik, Lars J.

    2014-07-01

    The emissions of carbon dioxide (CO2) from inland waters are substantial on a global scale. Yet the fundamental question remains open which proportion of these CO2 emissions is induced by sunlight via photochemical mineralization of dissolved organic carbon (DOC), rather than by microbial respiration during DOC decomposition. Also, it is unknown on larger spatial and temporal scales how photochemical mineralization compares to other C fluxes in the inland water C cycle. We combined field and laboratory data with atmospheric radiative transfer modeling to parameterize a photochemical rate model for each day of the year 2009, for 1086 lakes situated between latitudes from 55°N to 69°N in Sweden. The sunlight-induced production of dissolved inorganic carbon (DIC) averaged 3.8 ± 0.04 g C m-2 yr-1, which is a flux comparable in size to the organic carbon burial in the lake sediments. Countrywide, 151 ± 1 kt C yr-1 was produced by photochemical mineralization, corresponding to about 12% of total annual mean CO2 emissions from Swedish lakes. With a median depth of 3.2 m, the lakes were generally deep enough that incoming, photochemically active photons were absorbed in the water column. This resulted in a linear positive relationship between DIC photoproduction and the incoming photon flux, which corresponds to the absorbed photons. Therefore, the slope of the regression line represents the wavelength- and depth-integrated apparent quantum yield of DIC photoproduction. We used this relationship to obtain a first estimate of DIC photoproduction in lakes and reservoirs worldwide. Global DIC photoproduction amounted to 13 and 35 Mt C yr-1 under overcast and clear sky, respectively. Consequently, these directly sunlight-induced CO2 emissions contribute up to about one tenth to the global CO2 emissions from lakes and reservoirs, corroborating that microbial respiration contributes a substantially larger share than formerly thought, and generate annual C fluxes similar in magnitude to the C burial in natural lake sediments worldwide.

  11. Extended Survival of Several Microorganisms and Relevant Amino Acid Biomarkers under Simulated Martian Surface Conditions as a Function of Burial Depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Adam; Pratt, L.M.; Vishnivetskaya, Tatiana A

    2011-01-01

    Recent orbital and landed missions have provided substantial evidence for ancient liquid water on the martian surface as well as evidence of more recent sedimentary deposits formed by water and/or ice. These observations raise serious questions regarding an independent origin and evolution of life on Mars. Future missions seek to identify signs of extinct martian biota in the form of biomarkers or morphological characteristics, but the inherent danger of spacecraft-borne terrestrial life makes the possibility of forward contamination a serious threat not only to the life detection experiments, but also to any extant martian ecosystem. A variety of cold andmore » desiccation-tolerant organisms were exposed to 40 days of simulated martian surface conditions while embedded within several centimeters of regolith simulant in order to ascertain the plausibility of such organisms survival as a function of environmental parameters and burial depth. Relevant amino acid biomarkers associated with terrestrial life were also analyzed in order to understand the feasibility of detecting chemical evidence for previous biological activity. Results indicate that stresses due to desiccation and oxidation were the primary deterrent to organism survival, and that the effects of UV-associated damage, diurnal temperature variations, and reactive atmospheric species were minimal. Organisms with resistance to desiccation and radiation environments showed increased levels of survival after the experiment compared to organisms characterized as psychrotolerant. Amino acid analysis indicated the presence of an oxidation mechanism that migrated downward through the samples during the course of the experiment and likely represents the formation of various oxidizing species at mineral surfaces as water vapor diffused through the regolith. Current sterilization protocols may specifically select for organisms best adapted to survival at the martian surface, namely species that show tolerance to radical-induced oxidative damage and low water activity environments. Additionally, any hypothetical martian ecosystems may have evolved similar physiological traits that allow sporadic metabolism during periods of increased water activity.« less

  12. Organic carbon accumulation and reactivity in central Swedish lakes during the Holocene

    NASA Astrophysics Data System (ADS)

    Chmiel, H.; Kokic, J.; Niggemann, J.; Dittmar, T.; Sobek, S.

    2012-04-01

    Sedimentation and burial of particulate organic carbon (POC), received from terrestrial sources and from lake internal primary production, are responsible for the progressive accumulation and long-term storage of organic matter in lake basins. For lakes in the boreal zone of central Sweden it can be presumed, that the onset of POC accumulation occurred during the early Holocene (˜8000 BP.) after the retreat of the Scandinavian ice sheet. In this study we investigated carbon mass accumulation rates (CMARs), as well as sources and reactivity of deposited organic material, for seven lakes in central Sweden (60°N, 15°E), in order to obtain a detailed temporal resolution of carbon burial and preservation in boreal lakes. Sediment long-cores were sampled in March 2011 from the ice, and CMARs were calculated from water contents, dry bulk densities, carbon contents and radiocarbon (14C) ages of the depth profiles. To indicate the sources of the organic material and characterize its diagenetic state, we determined carbon-nitrogen ratios (C/N) as well as amounts and compositions of lignin phenols. The transitions from organic rich sediment layers to glacial till deposits were found to be in sediment depths of ˜3 m in each lake. POC contents were on average highest (25-34 wt. % C), in small lakes (≤ 0.07 km2) and lowest (10-18 wt. % C) in the larger lakes (≥ 165 km2). The CMARs over the Holocene showed significant variations and were on average lower in the early Holocene, compared to recent accumulation rates. C/N values and the composition of lignin phenols further provided indications of important changes in organic matter source and reactivity over the Holocene. In summary, our data suggest that boreal lake sediments were a significantly stronger sink for organic carbon during the last ~150 years than during earlier periods of the Holocene.

  13. Sulfate burial constraints on the Phanerozoic sulfur cycle.

    PubMed

    Halevy, Itay; Peters, Shanan E; Fischer, Woodward W

    2012-07-20

    The sulfur cycle influences the respiration of sedimentary organic matter, the oxidation state of the atmosphere and oceans, and the composition of seawater. However, the factors governing the major sulfur fluxes between seawater and sedimentary reservoirs remain incompletely understood. Using macrostratigraphic data, we quantified sulfate evaporite burial fluxes through Phanerozoic time. Approximately half of the modern riverine sulfate flux comes from weathering of recently deposited evaporites. Rates of sulfate burial are unsteady and linked to changes in the area of marine environments suitable for evaporite formation and preservation. By contrast, rates of pyrite burial and weathering are higher, less variable, and largely balanced, highlighting a greater role of the sulfur cycle in regulating atmospheric oxygen.

  14. Petrography, fluid inclusion and isotope studies in Ordovician carbonate reservoirs in the Shunnan area, Tarim basin, NW China: Implications for the nature and timing of silicification

    NASA Astrophysics Data System (ADS)

    Lu, Ziye; Chen, Honghan; Qing, Hairuo; Chi, Guoxiang; Chen, Qianglu; You, Donghua; Yin, Hang; Zhang, Siyang

    2017-08-01

    The Shunnan (SN) area, located in the center of the Tarim basin, NW China, is a gas field discovered in 2013, where the gas is hosted from deeply buried Ordovician carbonate reservoirs with burial depth > 6000 m and temperature > 190 °C. The most important reservoir rocks in the SN area are silicified limestones, which are characterized by multiple generations/types of authigenic quartz (Qz1-Qz2) and coarse calcite cement (CC1-CC3), in addition to other diagenetic phases. Qz1 is a replacement quartz postdating burial stylolites in both limestone and strongly silicified limestone, and Qz2 are equant and bladed quartz cements developed in fractures or vugs in strongly silicified limestone, also postdating burial stylolite. CC1 is a coarse calcite cement found in the vugs, which postdates medium crystalline dolomite and predates saddle dolomite. CC2 (including CC2a, CC2b and CC2c) is the calcite postdating Qz1 and burial stylolites. CC2a is found in fractures in limestone or slightly silicified limestone. CC2b, CC2c and CC3 are only identified in strongly silicified limestone. CC2b fills intercrystalline pores of Qz1, and CC2c fills fractures, predating Qz2. CC3 is precipitated in remaining space left by Qz2c in fractures or vugs. Sr isotopes were analyzed in CC2a and CC2c. CC2a has 87Sr/86Sr ratios of 0.70890-0.70917. CC2c is characterized with 87Sr/86Sr ratios of 0.70949-0.70972. Fluid inclusions were studied in all the quartz and coarse calcite cements. Fluid inclusions in CC2a are characterized by Th values of 118-131 °C and salinities of 22.9-25.2 wt% NaCl + CaCl2. Fluid inclusions from Qz2a, Qz2b, CC2b and CC2c have Th values of 143-166 °C and salinities of 14.7-23.7 wt% NaCl + CaCl2. Fluid inclusions in Qz2c are characterized by Th values of 125-132 °C and salinities of 24.8-26.8 wt% NaCl + CaCl2, and those in CC3 by Th values of 86-101 °C and salinities of 22.9-25.2 wt% NaCl + CaCl2. The Th drop, from Qz2a, Qz2b and CC2c to Qz2c and CC3, cannot be explained by normal burial diagenesis, suggesting a hydrothermal event associated with the main phase of silicification. The relatively low temperature recorded by CC3 implies that the hydrothermal event possibly took place in the Devonian rather than Permian as previously thought.

  15. The Mixing of Regolith on the Moon and Beyond; A Model Refreshed

    NASA Astrophysics Data System (ADS)

    Costello, E.; Ghent, R. R.; Lucey, P. G.

    2017-12-01

    Meteoritic impactors constantly mix the lunar regolith, affecting stratigraphy, the lifetime of rays and other anomalous surface features, and the burial, exposure, and break down of volatiles and rocks. In this work we revisit the pioneering regolith mixing model presented by Gault et al. (1974), with updated assumptions and input parameters. Our updates significantly widen the parameter space and allow us to explore mixing as it is driven by different impactors in different materials (e.g. radar-dark halos and melt ponds). The updated treatment of micrometeorites suggests a very high rate of processing at the immediate lunar surface, with implications for rock breakdown and regolith production on melt ponds. We find that the inclusion of secondary impacts has a very strong effect on the rate and magnitude of mixing at all depths and timescales. Our calculations are in good agreement with the timescale of reworking in the top 2-3 cm of regolith that was predicted by observations of LROC temporal pairs and by the depth profile of 26Al abundance in Apollo drill cores. Further, our calculations with secondaries included are consistent with the depth profile of in situ exposure age calculated from Is/FeO and cosmic track abundance in Apollo deep drill cores down to 50cm. The mixing we predict is also consistent with the erasure of density anomalies, or `cold spots', observed in the top decimeters of regolith by LRO Diviner, and the 1Gyr lifetime of 1-10m thick Copernican rays. This exploration of Moon's surface evolution has profound implications for our understanding of other planetary bodies. We take advantage of this computationally inexpensive analytic model and apply it to describe mixing on a variety of bodies across the solar system; including asteroids, Mercury, and Europa. We use the results of ongoing studies that describe porosity calculations and cratering laws in porous asteroid-like material to explore the reworking rate experienced by an asteroid. On Mercury, we apply this model to describe the rate at which reworking depletes water ice and calculate the maximum age of Mercury's polar ice deposits. We apply the model to Europa to understand the impact portion of its regolith evolution and provide insight into the sampling zone intended for a future Europa lander.

  16. Anatomy of an ancient subduction interface at 40 km depth: Insights from P-T-t-d data, and geodynamic implications (Dent Blanche, Western Alps)

    NASA Astrophysics Data System (ADS)

    Angiboust, Samuel; Glodny, Johannes; Oncken, Onno; Chopin, Christian

    2014-05-01

    An exhumed metamorphic suture zone over 40 km long is exposed in the Dent Blanche Region of the Western Alps belt, along the Swiss-Italian border. In this region, the metasediment-bearing ophiolitic remnants of the Liguro-Piemontese ocean (Tsaté complex) are overthrusted by a continental, km-sized complex (Dent Blanche Tectonic System: DBTS) of Austro-Alpine affinity. The DBTS represents a strongly deformed composite terrane with independent tectonic slices of continental and oceanic origin. In order to better understand the nature and the geodynamic meaning of the shear zone at the base of the DBTS (Dent Blanche Thrust, DBT) we re-evaluated the pressure-temperature-time-deformation (P-T-t-d) history of these two units using modern thermobarometric tools, Rb/Sr deformation ages and field relationships. Our results show that the Tsaté complex is formed by a stack of km-thick calcschists-bearing tectonic slices, having experienced variable maximum burial temperatures of between 360°C and 490°C at depths of ca. 25-40 km, between 41 Ma and 37 Ma. The Arolla gneissic mylonites constituting the base of the DBTS experienced a continuous record of protracted high-pressure (12-14 kbar), top-to-NW D1 deformation at 450-500°C between 43 and 55 Ma. Some of these primary, peak metamorphic fabrics have been sheared (top-to-SE D2) and backfolded during exhumation and collisional overprint (20 km depth, 35-40 Ma) leading to the regional greenschist facies retrogression particularly prominent within Tsaté metasediments. The final juxtaposition of the DBTS with the Tsaté complex occurred between 350 and 500°C during this later, exhumation-related D2 event. Although some exhumation-related deformation partially reworked D1 primary features, we emphasize that the DBT can be viewed as a remnant of the Alpine early Eocene blueschist-facies subduction interface region. The DBT therefore constitutes the deeper equivalent of some shallower portions of the Alpine subduction interface exposed 200 km eastwards in eastern Switzerland (e.g. Bachmann et al., 2009). Our results shed light on deep (25-45 km) subduction zone structures and dynamics and are therefore of major interest for geophysical studies imaging the plate interface region in active subduction zones.

  17. The Late Cambrian SPICE (δ13C) event and the Sauk II-Sauk III regression: new evidence from Laurentian basins in Utah, Iowa, and Newfoundland

    USGS Publications Warehouse

    Saltzman, Matthew R.; Cowan, Clinton A.; Runkel, Anthony C.; Runnegar, Bruce; Stewart, Michael C.; Palmer, Allison R.

    2004-01-01

    Carbon isotope data from Upper Cambrian sections in three Laurentian basins in northern Utah, central Iowa, and western Newfoundland record a large positive ??13C excursion (SPICE event) of up to + 5???. Peak ??13C ratios are well dated by trilobite collections to the middle of the Steptoean Stage (Dunderbergia Zone) and occur during maximum regression associated with formation of the Sauk II-Sauk III subsequence boundary on the North American craton. Maximum regression was marked by an influx of quartz sand into carbonate-platform settings in all three widely separated basins. In northern Utah, this quartz sand formed a thick sequence known as the Worm Creek Quartzite, which marks a conspicuous interruption of carbonate deposition during the Middle to Late Cambrian in the region. In western Newfoundland, the thickness of the quartz sand unit is much reduced but still marks a brief shutdown of the carbonate factory that is unique to the Cambrian shelf succession of the area. In the central Iowa area of the cratonic interior, an upward-shallowing carbonate succession culminates in cross-stratified trilobite grainstones at the peak of the SPICE in Dunderbergia Zone time, and the lowest point on the relative-sea-level curve is associated with the occurrence of coarse quartz sand derived from the encroaching shoreface. Although it is difficult to determine precisely the departure from baseline ??13C that marks the beginning of the SPICE excursion in the stratigraphic successions analyzed, our results are consistent with a rise and subsequent fall in ??13C tracking a major regressive-transgressive event recorded across northern Laurentia. The correlation of a major ??13C excursion with regression is similar to that described for the Late Ordovician, for which the pattern has been attributed to either increased carbonate relative to terrigenous weathering rates as ice sheets covered up organic-matter-containing silicates at high latitudes or high productivity and organic-carbon burial driven by oceanic overturn. The lack of known Steptoean-age ice sheets that could have affected the ratio of carbonate to silicate weathering rates suggests that organic-carbon burial was the likely cause of the SPICE event. We suggest that increased weathering and erosion rates during relative sea-level fall (Sauk II-III) increased the burial fraction of organic carbon in an expanded region of fine-grained siliciclastic deposits in shelf and upper slope environments during the Steptoean. ?? 2004, SEPM (Society for Sedimentary Geology).

  18. Legacy of Topography and Land Use on Erosion and Soil Organic Carbon Burial

    NASA Astrophysics Data System (ADS)

    Nater, E. A.; Dalzell, B. J.; Fissore, C.; Wu, A.; Yoo, K.; Ginakes, P.

    2012-12-01

    There is a growing body of evidence to suggest that soil erosion in agricultural landscapes can function as a net carbon (C) sink due to burial of carbon-rich topsoil at depositional sites. It has been argued, however, that soil organic carbon (SOC) degradation during erosion may represent an important source of C to the atmosphere and weaken the overall strength of the erosion-induced C sink. In this study we compare SOC in the top 1.5 m of soil in grassland and cropland landscapes and employ 137Cs (from atmospheric testing of thermonuclear bombs) as a proxy for soil movement over the past half-century. Using soil depth and terrain attributes calculated from LiDAR-derived digital elevation models, we are able to account for 82 and 83% of the variability observed in SOC and 137Cs content from grassland sites. For cropland sites, we are able to explain 78 and 50% of SOC and 137Cs variability, respectively. For cropland sites, slope steepness and curvature play a stronger predictive role than in grassland sites. Comparing SOC and 137Cs content between grassland and agricultural sites shows that there is not preferential SOC depletion in eroded soils. This suggests that, for the soils studied here, erosion functions to redistribute SOC around the landscape but does not accelerate SOC decomposition beyond what can be replaced by primary productivity.

  19. Characterization of Bacterial Community Dynamics during the Decomposition of Pig Carcasses in Simulated Soil Burial and Composting Systems.

    PubMed

    Ki, Bo-Min; Kim, Yu Mi; Jeon, Jun Min; Ryu, Hee Wook; Cho, Kyung-Suk

    2017-12-28

    Soil burial is the most widely used disposal method for infected pig carcasses, but composting has gained attention as an alternative disposal method because pig carcasses can be decomposed rapidly and safely by composting. To understand the pig carcass decomposition process in soil burial and by composting, pilot-scale test systems that simulated soil burial and composting were designed and constructed in the field. The envelope material samples were collected using special sampling devices without disturbance, and bacterial community dynamics were analyzed by high-throughput pyrosequencing for 340 days. Based on the odor gas intensity profiles, it was estimated that the active and advanced decay stages were reached earlier by composting than by soil burial. The dominant bacterial communities in the soil were aerobic and/or facultatively anaerobic gram-negative bacteria such as Pseudomonas, Gelidibacter, Mucilaginibacter , and Brevundimonas . However, the dominant bacteria in the composting system were anaerobic, thermophilic, endospore-forming, and/or halophilic gram-positive bacteria such as Pelotomaculum, Lentibacillus, Clostridium , and Caldicoprobacter . Different dominant bacteria played important roles in the decomposition of pig carcasses in the soil and compost. This study provides useful comparative date for the degradation of pig carcasses in the soil burial and composting systems.

  20. The characterization and risk assessment of the `Red Forest` radioactive waste burial site at Chernobyl Nuclear Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bungai, D.A.; Skalskij, A.S.; Dzhepo, S.P.

    The `Red Forest` radioactive waste burials created during emergency clean-up activities at Chernobyl Nuclear Power Plant represent a serious source of radioactive contamination of the local ground water system with 9OSr concentration in ground water exceeding the drinking water standard by 3-4 orders of magnitude. In this paper we present results of our hydrogeological and radiological `Red Forest` site characterization studies, which allow us to estimate 9OSr subsurface migration parameters. We use then these parameters to assess long terrain radionuclide transport to groundwater and surface water, and to analyze associated health risks. Our analyses indicate that 9OSr transport via groundmore » water pathway from `Red Forest` burials to the adjacent Pripyat River is relatively insignificant due to slow release of 9OSr from the waste burials (less than 1% of inventory per year) and due to long enough ground water residence time in the subsurface, which allows substantial decay of the radioactive contaminant. Tins result and our previous analyses indicate, that though conditions of radioactive waste storage in burials do not satisfy Ukrainian regulation on radiation protection, health risks caused by radionuclide migration to ground water from `Red Forest` burials do not justify application of expensive countermeasures.« less

  1. Engineering assessment of low-level liquid waste disposal caisson locations at the 618-11 Burial Grounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.J.; Fischer, D.D.; Crawford, R.C.

    1982-06-01

    Rockwell Hanford Operations is currently involved in an extensive effort to perform interim ground surface stabilization activities at retired low-level waste burial grounds located at the Hanford Site, Richland, Washington. The principal objective of these activities is to promote increased occupational and radiological safety at burial grounds. Interim stabilization activities include: (1) load testing (traversing burial ground surfaces with heavy equipment to promote incipient collapse of void spaces within the disposal structure and overburden), (2) barrier placement (placement of a {ge} 0.6 m soil barrier over existing overburden), and (3) revegetation (establishment of shallow rooted vegetation on the barrier tomore » mitigate deep rooted plant growth and to reduce erosion). Low-level waste disposal caissons were used in 300 Area Burial Grounds as internment structures for containerized liquid wastes. These caissons, by virtue of their contents, design and methods of closure, require long-term performance evaluation. As an initial activity to evaluate long-term performance, the accurate location of these structures is required. This topical report summarizes engineering activities used to locate caissons in the subsurface environment at the Burial Ground. Activities were conducted to locate caissons during surface stabilization activities. The surface locations were marked, photographed, and recorded on an as built engineering drawing. The recorded location of these caissons will augment long-term observations of confinement structure and engineered surface barrier performance. In addition, accurate caisson location will minimize occupational risk during monitoring and observation activities periodically conducted at the burial ground.« less

  2. Reduction of Bacterial Pathogenic Risk during Ex-situ Stabilization of Previously Buried Foot-and-Mouth Disease Carcasses in a Pilot-scale Bio-augmented Aerobic Composting

    NASA Astrophysics Data System (ADS)

    Kim, S.; Park, J.; Park, J. K.; Park, S.; Jeon, H.; Kwon, H.

    2017-12-01

    Foot and mouth disease outbreaks globally occur. Although livestock suspected to be infected or actually infected by animal infectious diseases is typically treated with various methods including burial, burning, incineration, rendering, and composting, burial into soil is currently the major treatment method in Korea. However, buried carcasses are often found to remain undecomposed or incompletely decomposed even after the legal burial period (3 years). To reuse the land used for the burial purposes, Korea government is considering a novel approach to conduct in-situ burial treatment and then to move remaining carcasses from the burial sites to other sites designated for further ex-situ stabilization treatment (burial-composting sequential treatment). In this work, the feasibility of the novel approach was evaluated at a pilot scale facility. For the ex-situ stabilization, we tested the validity of use of a bio-augmented aerobic composting with carcass-degrading microorganisms, with emphasis on examining if the novel aerobic composting has reducing effects on potential pathogenic bacteria. As results, the decreased chemical oxygen demand (COD, 160,000 mg/kg to 40,000 mg/kg) and inorganic nitrogen species (total nitrogen, 5,000 mg/kg to 2,000 mg/kg) indicated effective bio-stabilization of carcasses. During the stabilization, bacterial community structure and dynamics determined by bacterial 16S rRNA sequencing were significantly changed. The prediction of potential pathogenic bacteria showed that bacterial pathogenic risk was significantly reduced up to a normal soil level during the ex-situ stabilization. The conclusion was confirmed by the following functional analysis of dominant bacteria using PICRUST. The findings support the microbiological safety of the ex-site use of the novel burial-composting sequential treatment. Acknowledgement : This study is supported by Korea Ministry of Environmental as "The GAIA Project"

  3. The Impact of Physical Disturbance and Increased Sand Burial on Clonal Growth and Spatial Colonization of Sporobolus virginicus in a Coastal Dune System

    PubMed Central

    Balestri, Elena; Lardicci, Claudio

    2013-01-01

    Dune plants are subjected to disturbance and environmental stresses, but little is known about the possible combined effects of such factors on growth and spatial colonization. We investigated how clones of Sporobolus virginicus , a widespread dune species, responded to the independent and interactive effects of breakage of rhizomes, breakage position and burial regime. Horizontal rhizomes were severed at three different internode positions relative to the apex to span the range of damage by disturbance naturally observed or left intact, and apical portions exposed to two burial scenarios (ambient vs. increased frequency) for three months in the field. The performance of both parts of severed rhizomes, the apical portion and the remaining basal portion connected to clone containing four consecutive ramets, was compared with that of equivalent parts in intact rhizomes. Apical portions severed proximal to the third internode did not survive and their removal did not enhance branching on their respective basal portions. Severing the sixth or twelfth internode did not affect survival and rhizome extension of apical portions, but suppressed ramet production and reduced total biomass and specific shoot length. Their removal enhanced branching and ramet production on basal portions and changed the original rhizome growth trajectory. However, the gain in number of ramets in basal portions never compensated for the reduction in ramet number in apical portions. Recurrent burial increased biomass allocation to root tissues. Burial also stimulated rhizome extension only in intact rhizomes, indicating that disturbance interacts with, and counteracts, the positive burial effect. These results suggest that disturbance and recurrent burial in combination reduces the regeneration success and spread capacity of S . virginucus . Since global change leads to increasingly severe or frequent storms, the impact of disturbance and burial on clones could be greater in future and possibly prevent colonization of mobile dunes by the species. PMID:23977326

  4. Lake eutrophication and its implications for organic carbon sequestration in Europe.

    PubMed

    Anderson, N J; Bennion, H; Lotter, A F

    2014-09-01

    The eutrophication of lowland lakes in Europe by excess nitrogen (N) and phosphorus (P) is severe because of the long history of land-cover change and agricultural intensification. The ecological and socio-economic effects of eutrophication are well understood but its effect on organic carbon (OC) sequestration by lakes and its change overtime has not been determined. Here, we compile data from ~90 culturally impacted European lakes [~60% are eutrophic, Total P (TP) >30 μg P l(-1) ] and determine the extent to which OC burial rates have increased over the past 100-150 years. The average focussing corrected, OC accumulation rate (C ARFC ) for the period 1950-1990 was ~60 g C m(-2) yr(-1) , and for lakes with >100 μg TP l(-1) the average was ~100 g C m(-2) yr(-1) . The ratio of post-1950 to 1900-1950 C AR is low (~1.5) indicating that C accumulation rates have been high throughout the 20th century. Compared to background estimates of OC burial (~5-10 g C m(-2) yr(-1) ), contemporary rates have increased by at least four to fivefold. The statistical relationship between C ARFC and TP derived from this study (r(2) = 0.5) can be used to estimate OC burial at sites lacking estimates of sediment C-burial. The implications of eutrophication, diagenesis, lake morphometry and sediment focussing as controls of OC burial rates are considered. A conservative interpretation of the results of the this study suggests that lowland European meso- to eutrophic lakes with >30 μg TP l(-1) had OC burial rates in excess of 50 g C m(-2) yr(-1) over the past century, indicating that previous estimates of regional lake OC burial have seriously underestimated their contribution to European carbon sequestration. Enhanced OC burial by lakes is one positive side-effect of the otherwise negative impact of the anthropogenic disruption of nutrient cycles. © 2014 John Wiley & Sons Ltd.

  5. Spatial and temporal patterns of stream burial and its effect on habitat connectivity across headwater stream communities of the Potomac River Basin, USA

    NASA Astrophysics Data System (ADS)

    Weitzell, R.; Guinn, S. M.; Elmore, A. J.

    2012-12-01

    The process of directing streams into culverts, pipes, or concrete-lined ditches during urbanization, known as stream burial, alters the primary physical, chemical, and biological processes of streams. Knowledge of the cumulative impacts of reduced structure and ecological function within buried stream networks is crucial for informing management of stream ecosystems, in light of continued growth in urban areas, and the uncertain response of freshwater ecosystems to the stresses of global climate change. To address this need, we utilized recently improved stream maps for the Potomac River Basin (PRB) to describe the extent and severity of stream burial across the basin. Observations of stream burial made from high resolution aerial photographs (>1% of total basin area) and a decision tree using spatial statistics from impervious cover data were used to predict stream burial at 4 time-steps (1975, 1990, 2001, 2006). Of the roughly 95,500 kilometers (km) of stream in the PRB, approximately 4551 km (4.76%) were buried by urban development as of 2001. Analysis of county-level burial trends shows differential patterns in the timing and rates of headwater stream burial, which may be due to local development policies, topographical constraints, and/or time since development. Consistently higher rates of stream burial were observed for small streams, decreasing with stream order. Headwater streams (1st-2nd order) are disproportionately affected, with burial rates continuing to increase over time in relation to larger stream orders. Beyond simple habitat loss, headwater burial decreases connectivity among headwater populations and habitats, with potential to affect a wide range of important ecological processes. To quantify changes to regional headwater connectivity we applied a connectivity model based on electrical circuit theory. Circuit-theoretical models function by treating the landscape as a resistance surface, representing hypothesized relationships between landscape features and their differential "resistance" to movement by organisms. A landscape resistance layer was developed and fine-tuned in terms of the habitat use/needs of aquatic invertebrates with terrestrial adult stages, organisms of critical importance to riparian and aquatic ecosystem health. Initial results show significant increases in landscape resistance (isolation) among headwater systems, and corresponding decreases in current flow (movement of organisms) across the increasingly urbanized PRB landscape. Of particular interest, the circuit model highlighted the importance of stream confluences and zero-order (non-channel) headwater areas for movement of organisms between headwater systems that are otherwise highly disconnected, and for which the latter currently receives no legal protection from development.

  6. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generatingmore » facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together) buried in three rows in the northeast comer. In addition, five eight-foot diameter caissons are located at the west end of the center row of the drum storage units. Initially, wastes disposed to the caissons and drum storage units were from the 325 and 327 building hot cells. Later, a small amount of remote-handled (RH) waste from the 309 building Plutonium Recycle Test Reactor (PRTR) cells, and the newly built 324 building hot cells, was disposed at the site.« less

  7. On the determination of the depth of EAS development maximum using the lateral distribution of Cerenkov light at distances 150 m from EAS axis

    NASA Technical Reports Server (NTRS)

    Aliev, N.; Alimov, T.; Kakhkharov, M.; Makhmudov, B. M.; Rakhimova, N.; Tashpulatov, R.; Kalmykov, N. N.; Khristiansen, G. B.; Prosin, V. V.

    1985-01-01

    The Samarkand extensive air showers (EAS) array was used to measure the mean and individual lateral distribution functions (LDF) of EAS Cerenkov light. The analysis of the individual parameters b showed that the mean depth of EAS maximum and the variance of the depth distribution of maxima of EAS with energies of approx. 2x10 to the 15th power eV can properly be described in terms of Kaidalov-Martirosyan quark-gluon string model (QGSM).

  8. A regional view of urban sedimentary basins in Northern California based on oil industry compressional-wave velocity and density logs

    USGS Publications Warehouse

    Brocher, T.M.

    2005-01-01

    Compressional-wave (sonic) and density logs from 119 oil test wells provide knowledge of the physical properties and impedance contrasts within urban sedimentary basins in northern California, which is needed to better understand basin amplification. These wire-line logs provide estimates of sonic velocities and densities for primarily Upper Cretaceous to Pliocene clastic rocks between 0.1 - and 5.6-km depth to an average depth of 1.8 km. Regional differences in the sonic velocities and densities in these basins largely 1reflect variations in the lithology, depth of burial, porosity, and grain size of the strata, but not necessarily formation age. For example, Miocene basin filling strata west of the Calaveras Fault exhibit higher sonic velocities and densities than older but finer-grained and/or higher-porosity rocks of the Upper Cretaceous Great Valley Sequence. As another example, hard Eocene sandstones west of the San Andreas Fault have much higher impedances than Eocene strata, mainly higher-porosity sandstones and shales, located to the east of this fault, and approach those expected for Franciscan Complex basement rocks. Basement penetrations define large impedence contrasts at the sediment/basement contact along the margins of several basins, where Quaternary, Pliocene, and even Miocene deposits directly overlie Franciscan or Salinian basement rocks at depths as much as 1.7 km. In contrast, in the deepest, geographic centers of the basins, such logs exhibit only a modest impedance contrast at the sediment/basement contact at depths exceeding 2 km. Prominent (up to 1 km/sec) and thick (up to several hundred meters) velocity and density reversals in the logs refute the common assumption that velocities and densities increase monotonically with depth.

  9. Distribution of Ejecta in Analog Tephra Rings from Discrete Single and Multiple Subsurface Explosions

    NASA Astrophysics Data System (ADS)

    Graettinger, A. H.; Valentine, G. A.; Sonder, I.; Ross, P. S.; White, J. D. L.

    2015-12-01

    Buried-explosion experiments were used to investigate the spatial and volumetric distribution of extra-crater ejecta resulting from a range of explosion configurations with and without a crater present. Explosion configuration is defined in terms of scaled depth, the relationship between depth of burial and the cube root of explosion energy, where an optimal scaled depth explosion produces the largest crater diameter for a given energy. The multiple explosion experiments provide an analog for the formation of maar-diatreme ejecta deposits and the deposits of discrete explosions through existing conduits and hydrothermal systems. Experiments produced meter-sized craters with ejecta distributed between three major facies based on morphology and distance from the crater center. The proximal deposits form a constructional steep-sided ring that extends no more than two-times the crater radius away from center. The medial deposits form a low-angle continuous blanket that transitions with distance into the isolated clasts of the distal ejecta. Single explosion experiments produce a trend of increasing volume proportion of proximal ejecta as scaled depth increases (from 20-90% vol.). Multiple explosion experiments are dominated by proximal deposits (>90% vol.) for all but optimal scaled depth conditions (40-70% vol.). In addition to scaled depth, the presence of a crater influences jet shape and how the jet collapses, resulting in two end-member depositional mechanisms that produce distinctive facies. The experiments use one well-constrained explosion mechanism and, consequently, the variations in depositional facies and distribution are the result of conditions independent of that mechanism. Previous interpretations have invoked variations in fragmentation as the cause of this variability, but these experiments should help with a more complete reconstruction of the configuration and number of explosions that produce a tephra ring.

  10. Experimental investigation of the Peregrine Breather of gravity waves on finite water depth

    NASA Astrophysics Data System (ADS)

    Dong, G.; Liao, B.; Ma, Y.; Perlin, M.

    2018-06-01

    A series of laboratory experiments were performed to study the Peregrine Breather (PB) evolution in a wave flume of finite depth and deep water. Experimental cases were selected with water depths k0h (k0 is the wave number and h is the water depth) varying from 3.11 to 8.17 and initial steepness k0a0 (a0 is the background wave amplitude) in the range 0.06 to 0.12, and the corresponding initial Ursell number in the range 0.03 to 0.061. Experimental results indicate that the water depth plays an important role in the formation of the extreme waves in finite depth; the maximum wave amplification of the PB packets is also strongly dependent on the initial Ursell number. For experimental cases with the initial Ursell number larger than 0.05, the maximum crest amplification can exceed three. If the initial Ursell number is nearly 0.05, a shorter propagation distance is needed for maximum amplification of the height in deeper water. A time-frequency analysis using the wavelet transform reveals that the energy of the higher harmonics is almost in-phase with the carrier wave. The contribution of the higher harmonics to the extreme wave is significant for the cases with initial Ursell number larger than 0.05 in water depth k0h < 5.0. Additionally, the experimental results are compared with computations based on both the nonlinear Schrödinger (NLS) equation and the Dysthe equation, both with a dissipation term. It is found that both models with a dissipation term can predict the maximum amplitude amplification of the primary waves. However, the Dysthe equation also can predict the group horizontal asymmetry.

  11. Superfund record of decision (EPA region 10): Idaho National Engineering Lab, (USDOE) Operable Unit 26 (Stationary Low-Power Reactor-1 and Boiling Water Reactor Experiment-I Burial Grounds), Idaho Falls, ID, December 1, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-03-01

    This document presents the selected remedial action for the Stationary Low-Power Reactor-1 (SL-1) burial ground, the Boiling Water Reactor Experiment-I (BORAX-I) burial ground, and 10 no action sites in Waste Area Group 5. Actual or threatened releases of hazardous substances from the SL-1 and BORAX-I burial grounds, if not addressed by implementing the response action selected in this Record of Decision, may present a current or potential threat to public health, welfare, or the environment. The 10 no action sites do not present a threat to human health or the environment.

  12. Characteristics of seismic waves from Soviet peaceful nuclear explosions in salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adushkin, V.V.; Kaazik, P.B.; Kostyuchenko, V.N.

    1995-04-01

    The report is carried out by the Institute for Dynamics of the Geospheres, Russian Academy of Sciences under contract NB280344 with Lawrence Livermore National Laboratory, University of California. The work includes investigation of seismic waves generation and propagation from Soviet peaceful underground nuclear explosions in salt based on the data from temporary and permanent seismic stations. The explosions were conducted at the sites Azgir and Vega within the territory of the Caspian depression of the Russian platform. The data used were obtained in the following conditions of conduction: epicentral distance range from 0 to 60 degrees, yields from 1 tomore » 65 kt and depths of burial from 160 to 1500 m.« less

  13. Perspective of Life Search in Martian Econiches

    NASA Astrophysics Data System (ADS)

    Demidov, N. E.

    2017-05-01

    Mars may be divided on five ecological niches according to presence and state of water: permanent polar caps, dry regolith, subpermafrost aquifers, cryopegs and ice containing regolith. Basic limiting factors for the search of life in this econiches are: absence of water (dry regolith), depth of burial (cryopegs and subpermafrost aquifers), age (ice containing permafrost and polar caps). High priority targets for the search of life on Mars are represented by permanently frozen deposits of young polar volcanoes and ash layers in polar caps. During volcanic eruptions microorganisms from subpermafrost aquifers could propagate to the surface and survive in permafrost or ice for million years, as it is known to happen on Earth. Possibility of specific lithic habitats in dry layer must also be taken into account.

  14. Resonant Spectra of Malignant Breast Cancer Tumors Using the Three-Dimensional Electromagnetic Fast Multipole Model. Part 1

    NASA Technical Reports Server (NTRS)

    El-Shenawee, Magda

    2003-01-01

    An intensive numerical study for the resonance scattering of malignant breast cancer tumors is presented. The rigorous three-dimensional electromagnetic model, based on the equivalence theorem, is used to obtain the induced electric and magnetic currents on the breast and tumor surfaces. The results show that a non-spherical malignant tumor can be characterized based its spectra regardless of its orientation, the incident polarization, or the incident or scattered directions. The tumor's spectra depend solely on its physical characteristics (i.e., the shape and the electrical properties), however, their locations are not functions of its burial depth. This work provides a useful guidance to select the appropriate frequency range for the tumor's size.

  15. Fiber optic submarine cables cuts cost modeling and cable protection aspects

    NASA Astrophysics Data System (ADS)

    Al-Lawati, Ali

    2015-03-01

    This work presents a model to calculate costs associated with submarine fiber optic cable cuts. It accounts for both fixed and variable factors determining cost of fixing cables and restoring data transmission. It considers duration of a cut, capacity of fibers, number of fiber pairs and expected number of cuts during cable life time. Moreover, it provides templates for initial feasibility assessments by comparing cut costs to cost of different cable protection schemes. It offers a needed tool to assist in guiding decision makers in selecting type of cable, length and depth of cable burial in terms of increase in initial investment due to adapting such protection methods, and compare it to cost of cuts repair and alternative restoration paths for data.

  16. Seismicity of the Pahute Mesa area, Nevada Test Site: 8 October 1975 to 30 June 1976

    USGS Publications Warehouse

    Rogers, A.M.; Wuollet, Geraldine M.; Covington, P.A.

    1977-01-01

    A total of 1,075 earthquakes occurred in the Pahute Mesa area with 2.5≤ML≤4.9 during the period October 28, 1975, to June 28, 1976. The majority of these earthquakes are aftershocks of the nuclear events, Kasseri, Inlet, Muenster, Fontina, Cheshire, Estuary, Colby, and Pool (5.8≤ML≤6.3). Smaller nuclear events (ML≤5.5) on Rainier Mesa and Yucca Flat detonated in the same time period did not trigger aftershock sequences. The aftershock series were displaced laterally from ground zero and occurred deeper (at 4–6 km) than the nuclear even depth of burial (~1 km). The aftershocks appear to occur on vertical faults with approximately north-south strike.

  17. Altimetry data and the elastic stress tensor of subduction zones

    NASA Technical Reports Server (NTRS)

    Caputo, Michele

    1987-01-01

    The maximum shear stress (mss) field due to mass anomalies is estimated in the Apennines, the Kermadec-Tonga Trench, and the Rio Grande Rift areas and the results for each area are compared to observed seismicity. A maximum mss of 420 bar was calculated in the Kermadec-Tonga Trench region at a depth of 28 km. Two additional zones with more than 300 bar mss were also observed in the Kermadec-Tonga Trench study. Comparison of the calculated mss field with the observed seismicity in the Kermadec-Tonga showed two zones of well correlated activity. The Rio Grande Rift results showed a maximum mss of 700 bar occurring east of the rift and at a depth of 6 km. Recorded seismicity in the region was primarily constrained to a depth of approximately 5 km, correlating well to the results of the stress calculations. Two areas of high mss are found in the Apennine region: 120 bar at a depth of 55 km, and 149 bar at the surface. Seismic events observed in the Apennine area compare favorably with the mss field calculated, exhibiting two zones of activity. The case of loading by seamounts and icecaps are also simulated. Results for this study show that the mss reaches a maximum of about 1/3 that of the applied surface stress for both cases, and is located at a depth related to the diameter of the surface mass anomaly.

  18. Influence of contaminant burial depth on the bioaccumulation of PCBs and PBDEs by two benthic invertebrates (Monoporeia affinis and Marenzelleria spp.).

    PubMed

    Josefsson, Sarah; Leonardsson, Kjell; Gunnarsson, Jonas S; Wiberg, Karin

    2011-11-01

    The bioaccumulation of buried polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) added to specific depths in sediment (2.0-2.5, 5.0-5.5 and 10.0-10.5cm) was studied in two infaunal species with similar feeding habits (surface deposit-feeders) but different bioturbation modes. The deep-burrowing polychaetes Marenzelleria spp. (Mz) displayed up to 36 times higher tissue concentrations of buried (spiked) contaminants than the surface-dwelling biodiffusing amphipod Monoporeia affinis. The differences in bioaccumulation were most pronounced for less hydrophobic contaminants due to the bioirrigating activity of Mz. Contaminants buried at shallow depths displayed higher accumulation than more deeply buried contaminants. In contrast, the bioaccumulation of unspiked (native) contaminants with a uniform vertical distribution in the sediment was similar between the species. For Mz, the BSAFs increased with increased K(OW) for the uniformly distributed contaminants, but decreased for the buried contaminants, which indicates that the dominant uptake routes of the buried contaminants can differ from the uniformly distributed contaminants. The surface sediment concentration of buried contaminants increased in Mz treatments, showing that Mz bioturbation can remobilize historically buried contaminants to the biologically active surface layer and increase the exposure for surface-dwelling species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Warm ocean processes and carbon cycling in the Eocene.

    PubMed

    John, Eleanor H; Pearson, Paul N; Coxall, Helen K; Birch, Heather; Wade, Bridget S; Foster, Gavin L

    2013-10-28

    Sea surface and subsurface temperatures over large parts of the ocean during the Eocene epoch (55.5-33.7 Ma) exceeded modern values by several degrees, which must have affected a number of oceanic processes. Here, we focus on the effect of elevated water column temperatures on the efficiency of the biological pump, particularly in relation to carbon and nutrient cycling. We use stable isotope values from exceptionally well-preserved planktonic foraminiferal calcite from Tanzania and Mexico to reconstruct vertical carbon isotope gradients in the upper water column, exploiting the fact that individual species lived and calcified at different depths. The oxygen isotope ratios of different species' tests are used to estimate the temperature of calcification, which we converted to absolute depths using Eocene temperature profiles generated by general circulation models. This approach, along with potential pitfalls, is illustrated using data from modern core-top assemblages from the same area. Our results indicate that, during the Early and Middle Eocene, carbon isotope gradients were steeper (and larger) through the upper thermocline than in the modern ocean. This is consistent with a shallower average depth of organic matter remineralization and supports previously proposed hypotheses that invoke high metabolic rates in a warm Eocene ocean, leading to more efficient recycling of organic matter and reduced burial rates of organic carbon.

  20. How Big Was It? Getting at Yield

    NASA Astrophysics Data System (ADS)

    Pasyanos, M.; Walter, W. R.; Ford, S. R.

    2013-12-01

    One of the most coveted pieces of information in the wake of a nuclear test is the explosive yield. Determining the yield from remote observations, however, is not necessarily a trivial thing. For instance, recorded observations of seismic amplitudes, used to estimate the yield, are significantly modified by the intervening media, which varies widely, and needs to be properly accounted for. Even after correcting for propagation effects such as geometrical spreading, attenuation, and station site terms, getting from the resulting source term to a yield depends on the specifics of the explosion source model, including material properties, and depth. Some formulas are based on assumptions of the explosion having a standard depth-of-burial and observed amplitudes can vary if the actual test is either significantly overburied or underburied. We will consider the complications and challenges of making these determinations using a number of standard, more traditional methods and a more recent method that we have developed using regional waveform envelopes. We will do this comparison for recent declared nuclear tests from the DPRK. We will also compare the methods using older explosions at the Nevada Test Site with announced yields, material and depths, so that actual performance can be measured. In all cases, we also strive to quantify realistic uncertainties on the yield estimation.

  1. 3D Monitoring under the Keciova Mosque (Casbah-Algier, Algeria) with Ground Penetrating Radar Method

    NASA Astrophysics Data System (ADS)

    Kadioglu, Selma; Kagan Kadioglu, Yusuf; Deniz, Kiymet; Akin Akyol, Ali

    2014-05-01

    Keciova (Ketchaoua) Mosque, in Casbah-Algiers, the capital of Algeria, is a UNESCO World Heritage Site. Keciova Mosque was originally built in 1612 by the Ottoman Empire. A RAMAC CU II GPR system and a 250 MHz shielded antenna have been employed inside of the Mosque including the Cathedral and inside of the burial chambers under the Cathedral Site on parallel profiles spaced approximately 0.30 m apart to measure data. After applying standard two-dimensional (2D) and three dimensional (3D) imaging techniques, transparent 3D imaging techniques have been used to photograph the foundational infrastructures, buried remains and safety problems of the Mosque. The results showed that we obtained 3D GPR visualization until 12.0 m in depth. Firstly we imaged the base floor including corridors. Then we monitored buried remains under the first ground level between 5.0-7.0 m in depths. Finally we indicated 3D GPR photographs a spectacular protected buried old mosque structures under the second ground level between 9.0-12.0 m in depths. This project has been supported by Republic of Turkey Prime Ministry Turkish Cooperation and Coordination Agency (TIKA). This study is a contribution to the EU funded COST action TU1208, "Civil Engineering Applications of Ground penetrating Radar".

  2. Characterizing near-surface elemental layering on Mars using gamma-ray spectroscopy: A proof-of-principle experiment

    NASA Astrophysics Data System (ADS)

    Peplowski, Patrick N.; Wilson, Jack T.; Beck, Andrew W.; Burks, Morgan; Goldsten, John O.; Lawrence, David J.

    2018-01-01

    Gamma-ray spectroscopy investigations characterize the chemical composition of planetary surfaces by measuring element-characteristic gamma rays with energies of ∼100 keV to ∼9 MeV. Over this energy range, the mean free path of a gamma ray varies from about 1 to 25 cm, therefore gamma-ray measurements sample subsurface composition. Many elements emit gamma rays at multiple, often widely spaced energies, so gamma-ray measurements can in principle also be used to identify depth-dependent variations in subsurface composition. We report results from laboratory measurements and radiation transport modeling designed to demonstrate this capability. The laboratory measurements verified the presence of depth-dependent gamma-ray signatures, and were then used to benchmark radiation transport simulations that were used to model realistic Mars-like scenarios. The models indicate that compositionally distinct subsurface deposits, buried to depths of ∼80 cm (125 g/cm2), can be identified using gamma-ray measurements. Going beyond identification to characterization (burial depth, relative composition of the layers) of the deposits requires knowledge of the vertical and horizontal variability in the water content of the near-surface surface materials, the local Galactic Cosmic Ray environment (magnitude and energy distribution), the depth-dependent neutron flux, gamma-ray production cross sections, and knowledge of the composition and column density of the atmosphere. The results of our experiments and models provided a basis for examining the utility of using orbiter- and lander-based gamma-ray measurements to identify subsurface deposits on Mars.

  3. L-band InSAR Penetration Depth Experiment, North Slope Alaska

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald

    2017-04-01

    Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA's SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising form permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales.

  4. The structural stability of lunar lava tubes

    NASA Astrophysics Data System (ADS)

    Blair, David M.; Chappaz, Loic; Sood, Rohan; Milbury, Colleen; Bobet, Antonio; Melosh, H. Jay; Howell, Kathleen C.; Freed, Andrew M.

    2017-01-01

    Mounting evidence from the SELENE, LRO, and GRAIL spacecraft suggests the presence of vacant lava tubes under the surface of the Moon. GRAIL evidence, in particular, suggests that some may be more than a kilometer in width. Such large sublunarean structures would be of great benefit to future human exploration of the Moon, providing shelter from the harsh environment at the surface-but could empty lava tubes of this size be stable under lunar conditions? And what is the largest size at which they could remain structurally sound? We address these questions by creating elasto-plastic finite element models of lava tubes using the Abaqus modeling software and examining where there is local material failure in the tube's roof. We assess the strength of the rock body using the Geological Strength Index method with values appropriate to the Moon, assign it a basaltic density derived from a modern re-analysis of lunar samples, and assume a 3:1 width-to-height ratio for the lava tube. Our results show that the stability of a lava tube depends on its width, its roof thickness, and whether the rock comprising the structure begins in a lithostatic or Poisson stress state. With a roof 2 m thick, lava tubes a kilometer or more in width can remain stable, supporting inferences from GRAIL observations. The theoretical maximum size of a lunar lava tube depends on a variety of factors, but given sufficient burial depth (500 m) and an initial lithostatic stress state, our results show that lava tubes up to 5 km wide may be able to remain structurally stable.

  5. Origin and diagenesis of clay minerals in relation to sandstone paragenesis: An example in eolian dune reservoirs and associated rocks, Permian upper part of the Minnelusa Formation, Powder River basin, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollastro, R.M.; Schenk, C.J.

    Eolian dune sandstones are the principal reservoir rocks in the Permian upper part of the Minnelusa Formation, Powder River basin, Wyoming. These sandstones formed as shorelines retreated and dunes migrated across siliciclastic sabkhas. Sandstones are mainly quartzarenites; on average, clay minerals constitute about 5 wt.% the whole rock. Although present in minor amounts, clay minerals play an important role in the diagenetic evolution of these sandstones. Allogenic clay minerals are present in shaly rock fragments and laminae. Early infiltration of clays into porous sabkha sands commonly form characteristic menisei or bridges between framework grains or, when more extensive, form coatingsmore » or rims on grain surfaces. Authigenic clays include nearly pure smectite, mixed-layer illite/smectite (I/S), and late diagenetic illite and corrensite; these clay minerals are present as pore-lining cements. In addition to the deposition and neoformation of clay minerals throughout sandstone paragenesis, the conversion of smectite to illite occurred as temperatures increased with progressive burial. A temperature of 103C is calculated at a present depth of 3,200 m using a geothermal gradient of 30C/km and a mean annual surface temperature of 7C. After correction for uplift and erosion (250 m), the maximum calculated temperature for the conversion of all random I/S to ordered I/S is 100C. This calculated temperature is in excellent agreement with temperatures of 100-110C implied from I/S geothermometry.« less

  6. Breaking ground: Pedological, geological, and ecological implications of soil bioturbation

    NASA Astrophysics Data System (ADS)

    Wilkinson, Marshall T.; Richards, Paul J.; Humphreys, Geoff S.

    Soil and its biota are fundamental components of the "Critical Zone": Earth's living skin that most directly sustains life. Within that zone, geologically-rapid soil and saprolite displacement by biota, particularly invertebrate meso- and macrofauna, affects a large proportion of Earth's soils. This was first recognised by late-19th century observers, on both sides of the Atlantic Ocean, who regarded bioturbation as fundamental to soil formation. Throughout much of the 20th century, however, the agronomical focus of soil scientists and the dominant paradigm of landscape evolution relegated bioturbation. As a result, many aspects of bioturbation are still not widely appreciated. Only in the last few decades has a re-evaluation commenced, in a range of disciplines. Primary effects of bioturbation, which we quantify herein, include soil production from saprolite, the formation of surface mounds, soil burial, and downslope transport. Rates of bioturbation can be as rapid as sustained maximum rates of tectonic uplift. In concert with surface geomorphic processes, bioturbation alters fundamental properties of soil, including particle-size distribution, porosity, the content of carbon and other nutrients, and creep flux rate. The precise influence of biotic mixing is regulated by its depth function. Earth's incredibly diverse soil biota also perform a number of functions, at a range of spatial and temporal scales, that extend beyond soil to landscape evolution, ecosystem engineering, niche construction, and carbon cycling. Understanding these linkages—which have operated since the evolution of trees in the Devonian Period—is of growing importance as we seek a fuller picture of Earth's history to predict and manage its future.

  7. Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates

    NASA Astrophysics Data System (ADS)

    Lambert, Fabrice; Tagliabue, Alessandro; Shaffer, Gary; Lamy, Frank; Winckler, Gisela; Farias, Laura; Gallardo, Laura; De Pol-Holz, Ricardo

    2015-07-01

    Mineral dust aerosols play a major role in present and past climates. To date, we rely on climate models for estimates of dust fluxes to calculate the impact of airborne micronutrients on biogeochemical cycles. Here we provide a new global dust flux data set for Holocene and Last Glacial Maximum (LGM) conditions based on observational data. A comparison with dust flux simulations highlights regional differences between observations and models. By forcing a biogeochemical model with our new data set and using this model's results to guide a millennial-scale Earth System Model simulation, we calculate the impact of enhanced glacial oceanic iron deposition on the LGM-Holocene carbon cycle. On centennial timescales, the higher LGM dust deposition results in a weak reduction of <10 ppm in atmospheric CO2 due to enhanced efficiency of the biological pump. This is followed by a further ~10 ppm reduction over millennial timescales due to greater carbon burial and carbonate compensation.

  8. Estimation of depth to magnetic source using maximum entropy power spectra, with application to the Peru-Chile Trench

    USGS Publications Warehouse

    Blakely, Richard J.

    1981-01-01

    Estimations of the depth to magnetic sources using the power spectrum of magnetic anomalies generally require long magnetic profiles. The method developed here uses the maximum entropy power spectrum (MEPS) to calculate depth to source on short windows of magnetic data; resolution is thereby improved. The method operates by dividing a profile into overlapping windows, calculating a maximum entropy power spectrum for each window, linearizing the spectra, and calculating with least squares the various depth estimates. The assumptions of the method are that the source is two dimensional and that the intensity of magnetization includes random noise; knowledge of the direction of magnetization is not required. The method is applied to synthetic data and to observed marine anomalies over the Peru-Chile Trench. The analyses indicate a continuous magnetic basement extending from the eastern margin of the Nazca plate and into the subduction zone. The computed basement depths agree with acoustic basement seaward of the trench axis, but deepen as the plate approaches the inner trench wall. This apparent increase in the computed depths may result from the deterioration of magnetization in the upper part of the ocean crust, possibly caused by compressional disruption of the basaltic layer. Landward of the trench axis, the depth estimates indicate possible thrusting of the oceanic material into the lower slope of the continental margin.

  9. A Cadaveric Analysis of the Optimal Radiographic Angle for Evaluating Trochlear Depth.

    PubMed

    Weinberg, Douglas Stanley; Gilmore, Allison; Guraya, Sahejmeet S; Wang, David M; Liu, Raymond W

    2017-02-01

    Disorders of the patellofemoral joint are common. Diagnosis and management often involves the use tangential imaging of the patella and trochlear grove, with the sunrise projection being the most common. However, imaging protocols vary between institutions, and limited data exist to determine which radiographic projections provide optimal visualization of the trochlear groove at its deepest point. Plain radiographs of 48 cadaveric femora were taken at various beam-femur angles and the maximum trochlear depth was measured; a tilt-board apparatus was used to elevate the femur in 5-degree increments between 40 and 75 degrees. A corollary experiment was undertaken to investigate beam-femur angles osteologically: digital representations of each bone were created with a MicroScribe digitizer, and trochlear depth was measured on all specimens at beam-femur angles from 0 to 75 degrees. The results of the radiographic and digitizer experiments showed that the maximum trochlear grove depth occurred at a beam-femur angle of 50 degrees. These results suggest that the optimal beam-femur angle for visualizing maximum trochlear depth is 50 degrees. This is significantly lower than the beam-femur angle of 90 degrees typically used in the sunrise projection. Clinicians evaluating trochlear depth on sunrise projections may be underestimating maximal depth and evaluating a nonarticulating portion of the femur. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  10. Could a secular increase in organic burial explain the rise of oxygen? Insights from a geological carbon cycle model constrained by the carbon isotope record

    NASA Astrophysics Data System (ADS)

    Krissansen-Totton, J.; Kipp, M.; Catling, D. C.

    2017-12-01

    The stable isotopes of carbon in marine sedimentary rock provide a window into the evolution of the Earth system. Conventionally, a relatively constant carbon isotope ratio in marine sedimentary rocks has been interpreted as implying constant organic carbon burial relative to total carbon burial. Because organic carbon burial corresponds to net oxygen production from photosynthesis, it follows that secular changes in the oxygen source flux cannot explain the dramatic rise of oxygen over Earth history. Instead, secular declines in oxygen sink fluxes are often invoked as causes for the rise of oxygen. However, constant fractional organic burial is difficult to reconcile with tentative evidence for low phosphate concentrations in the Archean ocean, which would imply lower marine productivity and—all else being equal—less organic carbon burial than today. The conventional interpretation of the carbon isotope record rests on the untested assumption that the isotopic ratio of carbon inputs into the ocean reflect mantle isotopic values throughout Earth history. In practice, differing rates of carbonate and organic weathering will allow for changes in isotopic inputs, as suggested by [1] and [2]. However, these inputs can not vary freely because large changes in isotopic inputs would induce secular trends in carbon reservoirs, which are not observed in the isotope record. We apply a geological carbon cycle model to all Earth history, tracking carbon isotopes in crustal, mantle, and ocean reservoirs. Our model is constrained by the carbon isotope record such that we can determine the extent to which large changes in organic burial are permitted. We find both constant organic burial and 3-5 fold increases in organic burial since 4.0 Ga can be reconciled with the carbon isotope record. Changes in the oxygen source flux thus need to be reconsidered as a possible contributor to Earth's oxygenation. [1] L. A. Derry, Organic carbon cycling and the lithosphere, in Treatise on Geochemistry (2nd. Ed.), H. D. Holland, K. K. Turekian, Eds. (Elsevier, Oxford, 2014), 239-249. [2] S. J. Daines, B. J. W. Mills, and T. M. Lenton, Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon, Nat. Commun. 8 (2017): 14379.

  11. New Hydroxyproline Radiocarbon Dates from Sungir, Russia, Confirm Early Mid Upper Palaeolithic Burials in Eurasia

    PubMed Central

    Nalawade-Chavan, Shweta; McCullagh, James; Hedges, Robert

    2014-01-01

    Sungir (Russia) is a key Mid-Upper Palaeolithic site in Eurasia, containing several spectacular burials that disclose early evidence for complex burial rites in the form of a range of grave goods deposited along with the dead. Dating has been particularly challenging, with multiple radiocarbon dates ranging from 19,160±270 to 28,800±240 BP for burials that are believed to be closely similar in age. There are disparities in the radiocarbon dates of human bones, faunal remains and charcoal found on the floor of burials [1], [2], [3]. Our approach has been to develop compound-specific methods using High Performance Liquid Chromatography (HPLC) to separate single amino acids, such as hydroxyproline, and thereby avoid the known human contamination on the bones themselves. Previously, we applied this technique to obtain radiocarbon dates of ∼30,000 BP for Sungir 2, Sungir 3 and a mammoth bone from the occupation levels of the site [4]. The single amino acid radiocarbon dates were in good agreement with each other compared to all the dates previously reported, supporting their reliability. Here we report new hydroxyproline dates for two more human burials from the same site, Sungir 1 and Sungir 4. All five hydroxyproline dates reported are statistically indistinguishable and support an identical age for the group. The results suggest that compound-specific radiocarbon analysis should be considered seriously as the method of choice when precious archaeological remains are to be dated because they give a demonstrably contaminant-free radiocarbon age. The new ages are, together with the previously dated ‘Red Lady of Paviland’ human in the British Isles, the earliest for Mid Upper Palaeolithic burial behaviour in Eurasia, and point to the precocious appearance of this form of rite in Europe Russia. PMID:24416120

  12. Estimating the number of secondary Ebola cases resulting from an unsafe burial and risk factors for transmission during the West Africa Ebola epidemic

    PubMed Central

    Dalziel, Benjamin D.; Kagume Njenge, Hilary; Johnson, Ginger; Nugba Ballah, Roselyn; James, Daniel; Wone, Abdoulaye; Bedford, Juliet; McClelland, Amanda

    2017-01-01

    Background Safely burying Ebola infected individuals is acknowledged to be important for controlling Ebola epidemics and was a major component of the 2013–2016 West Africa Ebola response. Yet, in order to understand the impact of safe burial programs it is necessary to elucidate the role of unsafe burials in sustaining chains of Ebola transmission and how the risk posed by activities surrounding unsafe burials, including care provided at home prior to death, vary with human behavior and geography. Methodology/Principal findings Interviews with next of kin and community members were carried out for unsafe burials in Sierra Leone, Liberia and Guinea, in six districts where the Red Cross was responsible for safe and dignified burials (SDB). Districts were randomly selected from a district-specific sampling frame comprised of villages and neighborhoods that had experienced cases of Ebola. An average of 2.58 secondary cases were potentially generated per unsafe burial and varied by district (range: 0–20). Contact before and after death was reported for 142 (46%) contacts. Caregivers of a primary case were 2.63 to 5.92 times more likely to become EVD infected compared to those with post-mortem contact only. Using these estimates, the Red Cross SDB program potentially averted between 1,411 and 10,452 secondary EVD cases, reducing the epidemic by 4.9% to 36.5%. Conclusions/Significance SDB is a fundamental control measure that limits community transmission of Ebola; however, for those individuals having contact before and after death, it was impossible to ascertain the exposure that caused their infection. The number of infections prevented through SDB is significant, yet greater impact would be achieved by early hospitalization of the primary case during acute illness. PMID:28640823

  13. New hydroxyproline radiocarbon dates from Sungir, Russia, confirm early Mid Upper Palaeolithic burials in Eurasia.

    PubMed

    Nalawade-Chavan, Shweta; McCullagh, James; Hedges, Robert

    2014-01-01

    Sungir (Russia) is a key Mid-Upper Palaeolithic site in Eurasia, containing several spectacular burials that disclose early evidence for complex burial rites in the form of a range of grave goods deposited along with the dead. Dating has been particularly challenging, with multiple radiocarbon dates ranging from 19,160±270 to 28,800±240 BP for burials that are believed to be closely similar in age. There are disparities in the radiocarbon dates of human bones, faunal remains and charcoal found on the floor of burials. Our approach has been to develop compound-specific methods using High Performance Liquid Chromatography (HPLC) to separate single amino acids, such as hydroxyproline, and thereby avoid the known human contamination on the bones themselves. Previously, we applied this technique to obtain radiocarbon dates of ∼30,000 BP for Sungir 2, Sungir 3 and a mammoth bone from the occupation levels of the site. The single amino acid radiocarbon dates were in good agreement with each other compared to all the dates previously reported, supporting their reliability. Here we report new hydroxyproline dates for two more human burials from the same site, Sungir 1 and Sungir 4. All five hydroxyproline dates reported are statistically indistinguishable and support an identical age for the group. The results suggest that compound-specific radiocarbon analysis should be considered seriously as the method of choice when precious archaeological remains are to be dated because they give a demonstrably contaminant-free radiocarbon age. The new ages are, together with the previously dated 'Red Lady of Paviland' human in the British Isles, the earliest for Mid Upper Palaeolithic burial behaviour in Eurasia, and point to the precocious appearance of this form of rite in Europe Russia.

  14. Micromorphological Aspects of Forensic Geopedology II: Ultramicroscopic vs Microscopic Characterization of Phosphatic Impregnations on Soil Particles in Experimental Burials

    NASA Astrophysics Data System (ADS)

    Ern, S. I. E.; Trombino, L.; Cattaneo, C.

    2012-04-01

    Grows up the importance of the role played by soil scientists in the modern forensic sciences, in particular when buried human remains strongly decomposed or skeletonized are found in different environment situations. Among the different techniques normally used in geopedology, it is usefull to apply in such forensic cases, soil micromorphology (including optical microscopy and ultramicroscopy) that has been underused up today, for various kind of reasons. An interdisciplinary Italian-team, formed by earth scientists and legal medicine, is working on several sets of experimental burial of pigs and piglets in different soil types and for different times of burial, in order to get new evidences on environmental behaviour related to the burial, focalising on geopedological and micropedological aspects. The present work is focused on: - ultramicroscopic (SEM-EDS) characterization of the phosphatic impregnation (by body fluids) on soils sampled under the dead bodies of five couples of pigs, buried respectively for one month, six month, one year, two years and two years and half in two different areas; - microscopic (petrographic microscope) and ultramicroscopic (SEM-EDS) cross characterization of the phosphatic impregnation (by body fluids) on soils sampled under the dead bodies of several piglets, buried for twenty months. The first results show trends of persistency of such phosphatic features, mainly related to the grain size of the impregnated soil particles and weather conditions (or seasons) of exhumation, while apparently time since burial is only marginally effective for the investigated burial period. Further experiments are in progress in order to clarify the pathways of phosphorus precipitation and leaching for longer times of burial and different seasons of exhumation, both from the microscopic and the pedological/chemical point of view.

  15. New incision rates along the Colorado River system based on cosmogenic burial dating of terraces: implications for regional controls on differential incision

    NASA Astrophysics Data System (ADS)

    Darling, A. L.; Karlstrom, K. E.; Granger, D. E.; Aslan, A.; Kirby, E.; Ouimet, W. B.; Coblentz, D. D.; Crest Working Group

    2010-12-01

    The Green and Colorado Rivers comprise the main drainage system of the western slope of the Colorado Rockies and Colorado Plateau. In this region we compare river profiles and incision rates between these rivers to resolve controls on river evolution. Disequilibrium profiles in both rivers are evident by numerous knickpoints and convexities which we analyze in the context of a new compilation of incision rate data, including new isochron cosmogenic burial dates on early Quaternary terraces. The Lees Ferry knickpoint is interpreted to be an upstream-migrating knickpoint initiated by integration of the Colorado system through Grand Canyon about 6 Ma. An isochron cosmogenic burial date of 1.5 +/-0.13 Ma, on a 190-m-high strath terrace at Bullfrog Marina 169 km northeast of the knickpoint indicates an incision rate of 126 m/Ma. This date is 3x older than a cosmogenic surface date from the same terrace suggesting that high terraces dated by surface cosmogenic techniques are minimum dates. Available incision rates across the Lee’s Ferry knickpoint show rates of 150- 175 m/Ma below Lees Ferry and ca. 100- 130 m/Ma above the knickpoint (over 0.5 to 1 Ma) above. A burial date of 2.9 +0.7/-0.5 on a 110 m terrace that is 70 km farther upstream at Hite Crossing is problematic because the strath is lower, the date older, and the rate slower than nearby Bullfrog. The Hite data show significantly more scatter, and additional samples have been collected to clarify the age. Ca. 300-500 m/Ma rates within and above the knickpoint based on cosmogenic surface dates (with the caution these are maximum rates), suggest acceleration of incision rates in the late Quaternary due to a pulse of diffuse knickpoint propagation extending to several hundred km above Lees Ferry in the last few hundred-thousand years, as suggested by Cook et al. (2009). On the Green River, a new isochron cosmogenic burial date of 1.48 +/-0.12 Ma on an abandoned meander 60 m above the river in upper Desolation Canyon gives an incision rate of 40 m/Ma. Thus, the Green River displays much slower incision rates relative to the Colorado River, both from reaches equidistant upstream from their confluence and within the Colorado Plateau. The combination of higher gradient, higher discharge and higher incision rates over the last several million years for the upper Colorado River, relative to the Green, suggests differential rock uplift of the Colorado Rockies relative to the Colorado Plateau in the Quaternary. This may be driven by mantle flow and buoyancy associated with the Aspen Anomaly of central Colorado and is consistent with the strong correlation between mantle-uplift driving forces and surface topographic expression.

  16. Shallow depth of seismogenic coupling in southern Mexico: implications for the maximum size of earthquakes in the subduction zone

    NASA Astrophysics Data System (ADS)

    Suárez, Gerardo; Sánchez, Osvaldo

    1996-01-01

    Studies of locally recorded microearthquakes and the centroidal depths of the largest earthquakes analyzed using teleseismic data show that the maximum depth of thrust faulting along the Mexican subduction zone is anomalously shallow. This observed maximum depth of about 25 ± 5 km is about half of that observed in most subduction zones of the world. A leveling line that crosses the rupture zone of the 19 September 1985 Michoacan event was revisited after the earthquake and it shows anomalously low deformation during the earthquake. The comparison between the observed coseismic uplift and dislocation models of the seismogenic interplate contact that extend to depths ranging from 20 to 40 km shows that the maximum depth at which seismic slip took place is about 20 km. This unusually shallow and narrow zone of seismogenic coupling apparently results in the occurrence of thrust events along the Mexican subduction zone that are smaller than would be expected for a trench where a relatively young slab subducts at a rapid rate of relative motion. A comparison with the Chilean subduction zone shows that the plate interface in Mexico is half that in Chile, not only in the down-dip extent of the seismogenic zone of plate contact, but also in the distance of the trench from the coast and in the thickness of the upper continental plate. It appears that the narrow plate contact produced by this particular plate geometry in Mexico is the controlling variable defining the size of the largest characteristic earthquakes in the Mexican subduction zone.

  17. Effects of urban stream burial on nitrogen uptake and ...

    EPA Pesticide Factsheets

    Urbanization has resulted in extensive burial and channelization of headwater streams, yet little is known about impacts on stream ecosystem functions critical for reducing downstream nitrogen pollution. To characterize the biogeochemical impact of stream burial, we measured NO3- uptake, using 15N-NO3- isotope tracer releases, and whole stream metabolism, during four seasons in three paired buried and open streams reaches within the Baltimore Ecosystem Study Long-term Ecological Research Network. Stream burial increased NO3- uptake lengths, by a factor of 7.5 (p < 0.01) and decreased nitrate uptake velocity and areal nitrate uptake rate by factors of 8.2 (p = 0.01) and 9.6 (p < 0.001), respectively. Stream burial decreased gross primary productivity by a factor of 9.2 (p < 0.05) and decreased ecosystem respiration by a factor of 4.2 (p = 0.06). From statistical analysis of Excitation Emissions Matrices (EEMs), buried streams were also found to have significantly less labile dissolved organic matter. Furthermore, buried streams had significantly lower transient storage and water temperatures. Overall, differences in NO3- uptake and metabolism were primarily explained by decreased transient storage and light availability in buried streams. We estimate that stream burial increases daily watershed nitrate export by as much as 500% due to decreased in-stream retention and may considerably decrease carbon export via decreased primary production. These results

  18. [Scientific substantiation of sizes of sanitary protection zones of anthrax burial sites based on the comprehensive evaluation of risk factors].

    PubMed

    Kartavaya, S A; Simonova, E G; Loktionova, M N; Kolganova, O A; Ladny, V I; Raichich, S R

    In the Russian Federation anthrax epizootics are still being registered among animals as well as epidemic foci of the population. This situation is linked to natural reservoirs of the pathogen - numerous anthrax burial sites which belong to class I of dangerous objects. In this connection, a one-kilometer sanitary protective zone is required according to current Russian Federation legislation. As a result, a significant land of the country is unsuitable for any agricultural use. Meanwhile, epizootologo-epidemiological observations indicate to that different anthrax burial sites differ in their characteristics and represent varying degrees of the risk. In connection with the development of the agricultural sector, intensive construction and the development of new and abandoned areas there is a need of creating unified approaches to assess the risk of anthrax burial sites, as well as to determine the size of sanitary protection zones based on the risk assessment. This article represents an original methodology to assess the actual danger of anthrax burial sites. It is based on a comprehensive multi-factor quantity-related risk assessment, described by a model that accounting the importance of each study for natural, social and biological factors. Undertaking this methodology allowed to reveal a degree of danger of anthrax burial sites located in different territories of the Russian Federation, and helped to substantiate the dimensions of their sanitary protection zones.

  19. Syn- and post-sedimentary controls on clay mineral assemblages in a tectonically active basin, Andean Argentinean foreland

    NASA Astrophysics Data System (ADS)

    Do Campo, Margarita; Nieto, Fernando; del Papa, Cecilia; Hongn, Fernando

    2014-07-01

    In the northern part of the Calchaquí Valley (NW Argentina), Palaeogene Andean foreland sediments are represented by a 1400-metre-thick continental succession (QLC: Quebrada de Los Colorados Formation) consisting of claystones, siltstones, sandstones, and conglomerates representing sedimentation in fluvial-alluvial plains and alluvial fan settings. To understand the main syn- and postsedimentary variables controlling the clay mineral assemblages of this succession, we have studied the fine-grained clastic sediments by X-ray diffraction and electron microscopy, along with a detailed sedimentary facies analysis, for two representative sections. In the northern section, the whole succession was sampled and analysed by XRD, whereas in the second section, a control point 15 km to the south, only the basal levels were analysed. The XRD study revealed a strong contrast in clay mineral assemblages between these two sections as well as with sections in the central Calchaquí Valley studied previously. In the northernmost part of the study area, a complete evolution from smectite at the top to R3 illite/smectite mixed-layers plus authigenic kaolinite at the bottom, through R1-type mixed-layers in between, has been recognized, indicating the attainment of late diagenesis. In contrast, the clay mineral assemblages of equivalent foreland sediments cropping out only 15 km to the south contain abundant smectite and micas, subordinate kaolinite and chlorite, and no I/S mixed-layers to the bottom of the sequence. Early diagenetic conditions were also inferred in a previous study for equivalent sediments of the QLC Formation cropping out to the south, in the central Calchaquí Valley, as smectite occurs in basal strata. Burial depths of approximately 3000 m were estimated for the QLC Formation in the central and northern Calchaquí Valley; in addition, an intermediate to slightly low geothermal gradient can be considered likely for both areas as foreland basins are regarded as hypothermal basins. Consequently, the attainment of late diagenesis in the northernmost study area cannot be explained by significant differences in burial depth nor in geothermal gradient in relation to the section 15 km to the south nor with the central Calchaquí Valley. The formation of R3 mixed-layer I/S and authigenic kaolinite in the northern study area was most likely controlled by the circulation of hot, deep fluids along the reverse faults that bounded the Calchaquí valley. These faults were active during the Cenozoic, as evidenced by the syndepositional deformation features preserved in the studied sediments. Stress could also have been a driving force in burial diagenesis at the R3 mixed-layer I/S stage in these young continental sediments.

  20. The Bowland Basin, NW England: Base metal mineralisation and its relationship to basin evolution

    NASA Astrophysics Data System (ADS)

    Gaunt, Jonathan Mark

    The Bowland Basin of NW England is a Carboniferous half graben. The Basin was initiated in the Devonian and actively extended during the Carboniferous until the late Westphalian. From the late Westphalian to the early Permian the Bowland Basin underwent inversion in response to Hercynian collision tectonics. Renewed subsidence commenced in the Permian and continued until inversion in the Cenozoic. The sedimentary succession of the Bowland Basin is dominated by Carboniferous strata, but some Permo-Triassic strata are present. The basal sedimentary succession may be comprised of Devonian to early Dinantian syn-rift clastics. The main Dinantian succession is comprised of interbedded limestones, calcareous mudstones and clastic strata. The Dinantian strata include the Waulsortian-facies Clitheroe Limestone and the Limekiln Wood Limestone, both of which host mineralisation. The overlying Namurian is comprised of shales and sandstones. The diagenetic history of the Limekiln Wood Limestone and Waulsortian-facies Clitheroe Limestone in the Cow Ark-Marl Hill Moor district is a function of changes in the burial environment during the Carboniferous. Both exhibit a pre-basin inversion diagenetic sequence that changes with time from shallow to moderate burial depth cements. Late Carbonifeous basin inversion resulted in the formation of tectonic stylolites. Tectonic stylolitisation was postdated by dolomitisation and silicification. Dolomitisation and silicification are suggested to have taken place in the deep burial environment. The base metal mineralisation studied in this work comes from the Cow Ark- Marl Hill Moor district, which is sited on the present basin inversion axis. Mineralisation occurs as four distinct episodes (Period 1, Period 2, Period 3 and Post-Period 3) within a complex multigeneration vein suite. The vein suite, which postdates tectonic stylolitisation and hence end-Carboniferous basin inversion, is comprised of calcite, baroque dolomite, baroque ankerite and siderite. The veins, which are often spatially associated with faults, exhibit a variety of morphologies, and are largely hosted by hydraulic shear fractures. Compositional variations between the different vein carbonates occur with time and the calcites, baroque dolomites, baroque ankerites and siderites are interpreted to have had several different fluid sources. Fluids precipitating siderite, baroque dolomite and baroque ankerite may have been produced by clay mineral transformations and decarboxylation of organic matter within the calcareous strata. The multiple vein calcite generations belong to three MnO:FeO compositional classes, each occupying a specific paragenetic position. The trend from ferroan to manganoan calcite with time may be a consequence of calcite-forming fluids being derived from successively shallower depths within the sedimentary succession, or of increased permeation by meteoric fluids. (Abstract shortened by ProQuest.).

  1. Site Survey of the Martha's Vineyard Coastal Observatory: Backscatter, Grain Size and Temporal Evolution of Rippled Scour Depressions

    NASA Astrophysics Data System (ADS)

    Goff, J. A.; Mayer, L.; Schwab, B.; Traykovski, P.; Wilkins, R.; Jenkins, C.; Kraft, B.; Evans, R.; Buynevich, I.

    2002-12-01

    The Office of Naval Research's Mine Burial Prediction program has chosen the Martha's Vineyard Coastal Observatory (MVCO) as a natural laboratory for experimental observations of object burial by nearshore processes (e.g., bedform migration, scour). In support of this program, the MVCO has been subject to an intensive site survey program, involving, since early 2001: (1) three swath backscatter and/or bathymetry surveys; (2) three high resolution seismic surveys; (3) ultra-high resolution sector-scanning sonar on pole mounts; (4) in situ geotechnical (velocity and resistivity) measurements, (5) grab sampling, and (6) vibracoring. These efforts are concentrated in water depths between ~8 and 18 m, centered on the site of the MVCO permanent node at ~12 m water depth Rippled scour depressions (RSDs) are pervasive within the MVCO. RSDs are ~shore-perpendicular bands of coarse sands separated by overlying fine sands. The term itself implies that the coarse sands are heavily rippled (~0.5-1 m wavelength, ~0.1 m amplitude) and slightly depressed relative to the fine sands which, in the MVCO, are generally just a few 10's of cm thick. The RSDs are clearly evident on sidescan data as bands of high backscatter. For the most part, grain size measurements confirm a strong positive correspondence between mean grain size and backscatter intensity. However, a critical exception is seen in deeper water where, well within the area of fine sands, backscatter increases noticeably as mean grain size decreases from ~150μ to ~130μ. Topographic expression related to the RSDs is confined primarily to evident scour depressions at the edges. The RSDs are highly asymmetric: backscatter is higher, the coarse/fine transition is more sharply defined, and the scour depression is deeper on one side than the other. This pattern changes within the survey: the higher backscatter edge is always to the west in the western part of the survey, and vice versa to the east. The strike of the RSDs also changes, from being slightly east of north in the western part of the survey to slightly west of north to the east. The MVCO site survey work establishes a baseline set of observations against which physical changes in the seafloor with time can be measured. Early evidence of significant change has been provided by comparison of the first two sidescan surveys, which indicates a shift in the RSD boundaries by as much as 50 m between February and September of 2001. Continued seafloor evolution is evidenced by the August 2002 grab sampling and sector scanning sonar. This dynamic setting will continue to be monitored by additional swath mapping and sampling in conjunction with the planned winter 2003/2004 mine burial experiment.

  2. GPR studies at the Nuvuk burial site at Point Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Herman, R. B.; Palmer, J.

    2011-12-01

    Ground penetrating radar was used to study a portion of the Nuvuk (Thule people) prehistoric burial site and to search for a buried prehistoric strand line at Point Barrow. GPR operating at 500MHz resolved features up to 2.5m deep in this area and were used to aid in search and recovery efforts. These scans imaged areas of recent disturbance that required shovel testing to confirm the lack of burials. This survey was able to rule out burials in several areas. Scans determined at least one area where a burial was found that would have been too deep for normal shovel tests to detect. A nearby area was scanned to trace the path of a prehistoric strand line whose initial presence had been revealed by exposure on the bluff adjacent to the Beaufort Sea. The GPR data revealed the path of that strand line along with a number of others. Final GPR images and GPS maps of the survey areas and the strand lines will be presented. The results of follow-up excavations will be discussed, along with the GPR parameters that gave the best results.

  3. Interpretation of K-Ar dates of illitic clays from sedimentary rocks aided by modeling

    USGS Publications Warehouse

    Srodon, J.; Clauer, Norbert; Eberl, D.D.D.

    2002-01-01

    K-Ar dates of illitic clays from sedimentary rocks may contain "mixed ages," i.e., may have ages that are intermediate between the ages of end-member events. Two phenomena that may cause mixed ages are: (1) long-lasting reaction during the burial illitization of smectite: and (2) physical mixing of detrital and diagenetic components. The first phenomenon was investigated by simulation of illitization reactions using a nucleation and growth mechanism. These calculations indicate that values for mixed ages are related to burial history: for an equivalent length of reaction time, fast burial followed by slow burial produces much older mixed ages than slow burial followed by fast. The type of reaction that occured in a rock can be determined from the distribution of ages with respect to the thickness of illite crystals. Dating of artificial mixtures confirms a non-linear relation between mixed ages and the proportions of the components. Vertical variation of K-Ar age dates from Gulf Coast shales can be modeled by assuming diagenetic illitization that overprints a subtle vertical trend (presumably of sedimentary origin) in detrital mineral content.

  4. Stress Study on Southern Segment of Longmenshan Fault Constrained by Focal Mechanism Data

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Liang, C.; Su, J.; Zhou, L.

    2016-12-01

    The Longmenshan fault (LMSF) lies at the eastern margin of Tibetan plateau and constitutes the boundary of the active Bayankala block and rigid Sichuan basin. This fault was misinterpreted as an inactive fault before the great Wenchuan earthquake. Five years after the devastating event, the Lushan MS 7.0 stroke the southern segment of the LMSF but fractured in a very limited scale and formed a seismic gap between the two earthquakes. In this study, we determined focal mechanisms of earthquakes with magnitude M≥3 from Jan 2008 to July 2014 in the southern segment of LMSF, and then applied the damped linear inversion to derive the regional stress field based on the focal mechanisms. Focal mechanisms of 755 earthquakes in total were determined. We further used a damped linear inversion technique to produce a 2D stress map in upper crust in the study region. A dominant thrust regime is determined south of the seismic gap, with a horizontal maximum compression oriented in NWW-SEE. But in the area to the north of the seismic gap is characterized as a much more complex stress environment. To the west of the Dujiangyan city, there appear to be a seismic gap in the Pengguan complex. The maximum compressions show the anti-clockwise and clockwise patterns to the south and north of this small gap. Thus the small gap seems to be an asperity that causes the maximum compression to rotate around it. While combined the maximum compression pattern with the focal solutions of strong earthquakes (Mw≥5) in this region, two of those strong earthquakes located near the back-range-fault have strikes parallel to the Miyaluo fault. Considering a large amount of earthquakes in Lixian branch, the Miyaluo fault may be extended to LMSF following the great Wenchuan earthquake. Investigations on the stress field of different depths indicate complex spatial variations. The Pengguan complex is almost aseismic in shallow depth in its central part. In deeper depth, the maximum compressions show the NNW-SSE and NE-SW directions to the north and south of the seismic gap respectively, this are surprisingly different from that of the shallower depth. Thus the maximum compressions vary with depth may imply the movement in depth is decoupled from the movement in shallow depth. This work was partially supported by National Natural Science Foundation of China (41340009).

  5. Proceedings of the 11th Annual DARPA/AFGL Seismic Research symposium

    NASA Astrophysics Data System (ADS)

    Lewkowicz, James F.; McPhetres, Jeanne M.

    1990-11-01

    The following subjects are covered: near source observations of quarry explosions; small explosion discrimination and yield estimation; Rg as a depth discriminant for earthquakes and explosions: a case study in New England; a comparative study of high frequency seismic noise at selected sites in the USSR and USA; chemical explosions and the discrimination problem; application of simulated annealing to joint hypocenter determination; frequency dependence of Q(sub Lg) and Q in the continental crust; statistical approaches to testing for compliance with a threshold test ban treaty; broad-band studies of seismic sources at regional and teleseismic distances using advanced time series analysis methods; effects of depth of burial and tectonic release on regional and teleseismic explosion waveforms; finite difference simulations of seismic wave excitation at Soviet test sites with deterministic structures; stochastic geologic effects on near-field ground motions; the damage mechanics of porous rock; nonlinear attenuation mechanism in salt at moderate strain; compressional- and shear-wave polarizations at the Anza seismic array; and a generalized beamforming approach to real time network detection and phase association.

  6. Martian neutron leakage spectra

    NASA Astrophysics Data System (ADS)

    Drake, D. M.; Feldman, W. C.; Jakosky, B. M.

    1988-06-01

    A high-energy nucleon-meson transport code is used to calculate energy spectra of Martian leakage neutrons. Four calculations are used to simulate a uniform surface layer containing various amounts of water, different burial depths of a 50 percent water layer underneath a 1 percent water layer, changing atmospheric pressure, and a thick carbon dioxide ice sheet overlying a "dirty" water ice sheet. Calculated spectra at energies less than about 1000 eV were fitted by a superposition of thermal and epithermal functions having four free parameters, two of which (thermal and epithermal amplitudes) were found to vary systematically and to specify uniquely the configuration in each of the series. Parameter variations depend on the composition of the assumed surface layers through the average atomic mass and the macroscopic scattering and absorption cross sections. It is concluded that measurements of leakage neutron spectra should allow determination of the hydrogen content of surface layers buried to depths up to about 100 g/sq. cm and determination of the thickness of a polar dry ice cap up to a thickness of about 250 g/sq. cm.

  7. Chemical Explosion Experiments to Improve Nuclear Test Monitoring [Developing a New Paradigm for Nuclear Test Monitoring with the Source Physics Experiments (SPE)

    DOE PAGES

    Snelson, Catherine M.; Abbott, Robert E.; Broome, Scott T.; ...

    2013-07-02

    A series of chemical explosions, called the Source Physics Experiments (SPE), is being conducted under the auspices of the U.S. Department of Energy’s National Nuclear Security Administration (NNSA) to develop a new more physics-based paradigm for nuclear test monitoring. Currently, monitoring relies on semi-empirical models to discriminate explosions from earthquakes and to estimate key parameters such as yield. While these models have been highly successful monitoring established test sites, there is concern that future tests could occur in media and at scale depths of burial outside of our empirical experience. This is highlighted by North Korean tests, which exhibit poormore » performance of a reliable discriminant, mb:Ms (Selby et al., 2012), possibly due to source emplacement and differences in seismic responses for nascent and established test sites. The goal of SPE is to replace these semi-empirical relationships with numerical techniques grounded in a physical basis and thus applicable to any geologic setting or depth.« less

  8. WEXFORD containment data report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbs, T.; Heinle, R.

    The WEXFORD event was detonated in hole U2cr of the Nevada Test Site. A plan view map of the local region of hole U2cr showing the surface projections of the faults and the local drill holes is given. The device had a depth-of-burial of 314 m in the Tunnel Beds tuff of Area 2, about 120 m above the standing water level (SWL). Stemming of the 2.44 m diameter emplacement hole followed the plan. A log of the stemming operations was maintained by Holmes and Narver. Detonation time was 07:45 PDT on August 30, 1984 and about 26 minutes latermore » the chimney collapsed to the surface leaving a small, off-center crater which grew, over several days, until it took on a cookie cutter form encompassing the emplacement hole and having a mean diameter of about 35 m. An interior, highly asymmetric crater had a mean diameter of about 12 m. No functioning monitors detected radiation arrivals in the emplacement hole above a depth of 130 m and the WEXFORD containment was considered successful.« less

  9. Did the Middlesboro, Kentucky, bolide impact event influence coal rank?

    USGS Publications Warehouse

    Hower, J.C.; Greb, S.F.; Kuehn, K.W.; Eble, C.F.

    2009-01-01

    The Middlesboro Basin, southeastern Kentucky, occurs on the Cumberland Overthrust Sheet and includes a ca. 5.5-km diameter impact structure. The Lower and Middle Pennsylvanian coal-bearing strata are faulted, with some evidence for shock metamorphism. The event post-dated the latest-Pennsylvanian-early-Permian thrusting and was likely prior to late-Mesozoic entrenchment of drainages. The impact of a 0.5-km meteor traveling at ca. 60,000??km/h would release about 1??EJ, the approximate equivalent of the instantaneous combustion of 30??Mt of coal. The coal rank, while increased slightly above the regional level, still is within the upper portion of the high volatile A bituminous rank range. This helps to constrain the depth of burial at the time of the impact. The coal would have had to have been at a depth of a few kilometers to have avoided a more substantial rank increase. In addition, it is possible that some of the coal rank increase might be attributable to movements along the cross-cutting Rocky Face fault, unrelated to the impact. ?? 2009 Elsevier B.V. All rights reserved.

  10. Mesozoic clay diagenesis in the Appalachian Plateau

    NASA Astrophysics Data System (ADS)

    Boles, A.; Mulch, A.; van der Pluijm, B.

    2017-12-01

    Integrated investigation of authigenic clays in the Appalachian Plateau of the northeastern US Midcontinent using X-ray goniometry, Rietveld-method based illite polytype analysis, and 40Ar/39Ar geochronology yields novel insights about the structural diagenetic history of the North American sedimentary cover sequence. Texture analysis by High Resolution X-ray Texture Goniometry records the presence of a bedding-parallel diagenetic fabric, corresponding to a burial depth of 2-5 km. New development of polytype modeling using BGMN®, a quantitative X-ray powder diffraction forward modeling and whole-pattern matching program matches mineralic characteristic of illite at those depths and reduces uncertainty estimates in age analysis. Based on dating size fractions, the diagenetic age is constrained to 225-250 Ma (Triassic) by four authigenic illite samples, reflecting protracted, regional diagenesis in the area. Preliminary H isotopic analysis points to a surface-derived diagenetic fluid with δD values ranging from -48 to -72‰ (in the range of predicted Pangea meteoric fluid), with a dependence on proximity to the Appalachian Mountains that may reflect a rain shadow effect.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snelson, C. M., Chipman, V. D., White, R. L., Emmitt, R. F., Townsend, M. J., Barker, D., Lee, P.

    Understanding the changes in seismic energy as it travels from the near field to the far field is the ultimate goal in monitoring for explosive events of interest. This requires a clear understanding of explosion phenomenology as it relates to seismic, infrasound, and acoustic signals. Although there has been much progress in modeling these phenomena, this has been primarily based in the empirical realm. As a result, the logical next step in advancing the seismic monitoring capability of the United States is to conduct field tests that can expand the predictive capability of the physics-based modeling currently under development. Themore » Source Physics Experiment at the Nevada National Security Site (SPE-N) is the first step in this endeavor to link the empirically based with the physics-based modeling. This is a collaborative project between National Security Technologies (NSTec), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), the Defense Threat Reduction Agency (DTRA), and the Air Force Technical Applications Center (AFTAC). The test series require both the simple and complex cases to fully characterize the problem, which is to understand the transition of seismic energy from the near field to the far field; to understand the development of S-waves in explosives sources; and how anisotropy controls seismic energy transmission and partitioning. The current series is being conducted in a granite body called the Climax Stock. This location was chosen for several reasons, including the fairly homogenous granite; the location of previous nuclear tests in the same rock body; and generally the geology has been well characterized. The simple geology series is planned for 7 shots using conventional explosives in the same shot hole surrounded by Continuous Reflectometry for Radius vs. Time Experiment (CORRTEX), Time of Arrival (TOA), Velocity of Detonation (VOD), down-hole accelerometers, surface accelerometers, infrasound, and a suite of seismic sensors of various frequency bands from the near field to the far field. This allows for the use of a single test bed in the simple geology case instead of multiple tests beds to obtain the same results. The shots are planned at various depths to obtain a Green’s function, scaled-depth of burial data, nominal depth of burial data and damage zone data. SPE1-N was conducted in May 2011 as a 220 lb (100 kg) TNT equivalent calibration shot at a depth of 180 ft (55 m). SPE2-N was conducted in October 2011 as a 2200 lb (1000 kg) TNT equivalent calibration shot at a depth of 150 ft (46 m). SPE3-N was conducted in July 2012 as a 2200 lb (1000 kg) TNT equivalent calibration shot at a depth of 150 ft (46 m) in the damaged zone. Over 400 data channels were recorded for each of these shots and data recovery was about 95% with high signal to noise ratio. Once the simple geology site data has been utilized, a new test bed will be developed in a complex geology site to test these physics based models. Ultimately, the results from this project will provide the next advances in the science of monitoring to enable a physics-based predicative capability.« less

  12. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Ludowise

    2006-12-12

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for themore » 300-FF-2 Burial Grounds Remediation Project.« less

  13. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. J. Rodovsky

    2006-12-06

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  14. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. J. Rodovsky

    2007-04-12

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  15. Scour around vertical wall abutment in cohesionless sediment bed

    NASA Astrophysics Data System (ADS)

    Pandey, M.; Sharma, P. K.; Ahmad, Z.

    2017-12-01

    At the time of floods, failure of bridges is the biggest disaster and mainly sub-structure (bridge abutments and piers) are responsible for this failure of bridges. It is very risky if these sub structures are not constructed after proper designing and analysis. Scour is a natural phenomenon in rivers or streams caused by the erosive action of the flowing water on the bed and banks. The abutment undermines due to river-bed erosion and scouring, which generally recognized as the main cause of abutment failure. Most of the previous studies conducted on scour around abutment have concerned with the prediction of the maximum scour depth (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005). Dey and Barbhuiya (2005) proposed a relationship for computing maximum scour depth near an abutment, based on laboratory experiments, for computing maximum scour depth around vertical wall abutment, which was confined to their experimental data only. However, this relationship needs to be also verified by the other researchers data in order to support the reliability to the relationship and its wider applicability. In this study, controlled experimentations have been carried out on the scour near a vertical wall abutment. The collected data in this study along with data of the previous investigators have been carried out on the scour near vertical wall abutment. The collected data in this study along with data of the previous have been used to check the validity of the existing equation (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005) of maximum scour depth around the vertical wall abutment. A new relationship is proposed to estimate the maximum scour depth around vertical wall abutment, it gives better results all relationships.

  16. Selected meteorological data for an arid site near Beatty, Nye County, Nevada, calendar year 1987

    USGS Publications Warehouse

    Wood, James L.; Fischer, Jeffrey M.

    1992-01-01

    Selected meteorological data were collected at a study site adjacent to a low-level radioactive-waste burial facility near Beatty, Nevada, for calendar year 1987. Data were collected in support of an ongoing study to estimate the potential for downward movement of radionuclides into the unsaturated sediments beneath waste-burial trenches at the facility. The data include air temperature, relative humidity, vapor pressure, incident solar radiation, windspeed, wind direction, and precipitation. The data are summarized in tables and graphs A discussion of the instrumentation used at the site is presented. Included in the discussion are the type of sensors, their reported accuracy, and mounting height of each sensor.In 1987, the average hourly air temperatures ranged from -7.6 degrees Celsius, in December, to 43.1 degrees Celsius, in July. Hourly averaged relative humidity ranged from about 12 percent to over 80 percent. Hourly vapor pressures ranged from 0.12 to 1.77 kilopascals. Daily values for maximum incident solar radiation ranged from 118 to 1,067 watts per square meter. Daily mean windspeed ranged from 1.4 to 9.4 meters per second. Monthly wind-direction patterns are shown in a series of diagrams in which wind direction is summed over 10-degree arcs from hourly averaged data. Total precipitation for 1987 was 136.4 millimeters, more than 75 percent occurring during January-April and November-December.

  17. Numerical Study of Mechanical Response of Pure Titanium during Shot Peening

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Cheng, J. P.; Yang, H. P.; Zhang, C. H.

    2018-05-01

    Mechanical response of pure titanium impacted by a steel ball was simulated using finite element method to investigate stress and strain evolution during shot peening. It is indicated that biaxial residual stress was obtained in the surface layer while in the interior triaxial residual stress existed because the S33 was comparable to S11 and S22. With decreasing the depth from the top surface, the stress was higher during impacting, but the stress relief extent became more significant when the ball rebounded. Therefore the maximum residual stress was formed in the subsurface layer with depth of 130 μm. As for the residual strain, it is shown that the maximum residual strain LE33 was obtained at the depth of 60 μm corresponding to the maximum shear stress during impacting.

  18. Subsurface geology and porosity distribution, Madison Limestone and underlying formations, Powder River basin, northeastern Wyoming and southeastern Montana and adjacent areas

    USGS Publications Warehouse

    Peterson, James A.

    1978-01-01

    To evaluate the Madison Limestone and associated rocks as potential sources for water supplies in the Powder River Basin and adjacent areas, an understanding of the geologic framework of these units, their lithologic facies patterns, the distribution of porosity zones, and the relation between porosity development and stratigraphic facies is necessary. Regionally the Madison is mainly a fossiliferous limestone. However, in broad areas of the eastern Rocky Mountains and western Great Plains, dolomite is a dominant constituent and in places the Madison is almost entirely dolomite. Within these areas maximum porosity development is found and it seems to be related to the coarser crystalline dolomite facies. The porosity development is associated with tabular and fairly continuous crystalline dolomite beds separated by non-porous limestones. The maximum porosity development in the Bighorn Dolomite, as in the Madison, is directly associated with the occurrence of a more coarsely crystalline sucrosic dolomite facies. Well data indicate, however, that where the Bighorn is present in the deeper parts of the Powder River Basin, it may be dominated by a finer crystalline dolomite facies of low porosity. The 'Winnipeg Sandstone' is a clean, generally well-sorted, medium-grained sandstone. It shows good porosity development in parts of the northern Powder River Basin and northwestern South Dakota. Because the sandstone is silica-cemented and quartzitic in areas of deep burial, good porosity is expected only where it is no deeper than a few thousand feet. The Flathead Sandstone is a predominantly quartzose, slightly feldspathic sandstone, commonly cemented with iron oxide. Like the 'Winnipeg Sandstone,' it too is silica-cemented and quartzitic in many places so that its porosity is poor in areas of deep burial. Illustrations in this report show the thickness, percent dolomite, and porosity-feet for the Bighorn Dolomite and the Madison Limestone and its subdivisions. The porosity-feet for the 'Winnipeg' and Flathead Sandstones and four regional geologic sections are also shown.

  19. Stability numerical analysis of soil cave in karst area to drawdown of underground water level

    NASA Astrophysics Data System (ADS)

    Mo, Yizheng; Xiao, Rencheng; Deng, Zongwei

    2018-05-01

    With the underground water level falling, the reliable estimates of the stability and deformation characteristics of soil caves in karst region area are required for analysis used for engineering design. Aimed at this goal, combined with practical engineering and field geotechnical test, detail analysis on vertical maximum displacement of top, vertical maximum displacement of surface, maximum principal stress and maximum shear stress were conducted by finite element software, with an emphasis on two varying factors: the size and the depth of soil cave. The calculations on the soil cave show that, its stability of soil cave is affected by both the size and depth, and only when extending a certain limit, the collapse occurred along with the falling of underground water; Additionally, its maximum shear stress is in arch toes, and its deformation curve trend of maximum displacement is similar to the maximum shear stress, which further verified that the collapse of soil cave was mainly due to shear-failure.

  20. Quantification of in vitro produced wear sites on composite resins using contact profilometry and CCD microscopy: a methodological investigation.

    PubMed

    Koottathape, Natthavoot; Takahashi, Hidekazu; Finger, Wernerj; Kanehira, Masafumi; Iwasaki, Naohiko; Aoyagi, Yujin

    2012-06-01

    Although attritive and abrasive wear of recent composite resins has been substantially reduced, in vitro wear testing with reasonably simulating devices and quantitative determination of resulting wear is still needed. Three-dimensional scanning methods are frequently used for this purpose. The aim of this trial was to compare maximum depth of wear and volume loss of composite samples, evaluated with a contact profilometer and a non-contact CCD camera imaging system, respectively. Twenty-three random composite specimens with wear traces produced in a ball-on-disc sliding device, using poppy seed slurry and PMMA suspension as third-body media, were evaluated with the contact profilometer (TalyScan 150, Taylor Hobson LTD, Leicester, UK) and with the digital CCD microscope (VHX1000, KEYENCE, Osaka, Japan). The target parameters were maximum depth of the wear and volume loss.Results - The individual time of measurement needed with the non-contact CCD method was almost three hours less than that with the contact method. Both, maximum depth of wear and volume loss data, recorded with the two methods were linearly correlated (r(2) > 0.97; p < 0.01). The contact scanning method and the non-contact CCD method are equally suitable for determination of maximum depth of wear and volume loss of abraded composite resins.

  1. Electron fluence correction factors for various materials in clinical electron beams.

    PubMed

    Olivares, M; DeBlois, F; Podgorsak, E B; Seuntjens, J P

    2001-08-01

    Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at dmax in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than +/- 1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83+/-0.01 and 1.55+/-0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1sigma level. Excluding the data for Cu, electron fluence correction factors for open electron beams are approximately proportional to the electron density of the phantom material and only weakly dependent on electron beam energy.

  2. 38 CFR 3.1609 - Forfeiture.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... not preclude payment of burial and plot or interment allowance if otherwise in order. No benefits will...) Burial and plot or interment allowance is not payable based on a period of service commencing prior to...

  3. Analyzing and Interpreting Lime Burials from the Spanish Civil War (1936-1939): A Case Study from La Carcavilla Cemetery.

    PubMed

    Schotsmans, Eline M J; García-Rubio, Almudena; Edwards, Howell G M; Munshi, Tasnim; Wilson, Andrew S; Ríos, Luis

    2017-03-01

    Over 500 victims of the Spanish Civil War (1936-1939) were buried in the cemetery of La Carcavilla (Palencia, Spain). White material, observed in several burials, was analyzed with Raman spectroscopy and powder XRD, and confirmed to be lime. Archaeological findings at La Carcavilla's cemetery show that the application of lime was used in an organized way, mostly associated with coffinless interments of victims of Francoist repression. In burials with a lime cast, observations made it possible to draw conclusions regarding the presence of soft tissue at the moment of deposition, the sequence of events, and the presence of clothing and other evidence. This study illustrates the importance of analyzing a burial within the depositional environment and taphonomic context. © 2016 American Academy of Forensic Sciences.

  4. Methane emissions partially offset “blue carbon” burial in mangroves

    PubMed Central

    Maher, Damien T.

    2018-01-01

    Organic matter burial in mangrove forests results in the removal and long-term storage of atmospheric CO2, so-called “blue carbon.” However, some of this organic matter is metabolized and returned to the atmosphere as CH4. Because CH4 has a higher global warming potential than the CO2 fixed in the organic matter, it can offset the CO2 removed via carbon burial. We provide the first estimate of the global magnitude of this offset. Our results show that high CH4 evasion rates have the potential to partially offset blue carbon burial rates in mangrove sediments on average by 20% (sensitivity analysis offset range, 18 to 22%) using the 20-year global warming potential. Hence, mangrove sediment and water CH4 emissions should be accounted for in future blue carbon assessments.

  5. Diagenetic effects of compaction on reservoir properties: The case of early callovian ``Dalle Nacrée'' formation (Paris basin, France)

    NASA Astrophysics Data System (ADS)

    Nader, Fadi H.; Champenois, France; Barbier, Mickaël; Adelinet, Mathilde; Rosenberg, Elisabeth; Houel, Pascal; Delmas, Jocelyne; Swennen, Rudy

    2016-11-01

    The impact of compaction diagenesis on reservoir properties is addressed by means of observations made on five boreholes with different burial histories of the Early Callovian ;Dalle Nacrée; Formation in the Paris Basin. Petrographic analyses were carried out in order to investigate the rock-texture, pore space type and volume, micro-fabrics, and cement phases. Based on the acquired data, a chronologically ordered sequence of diagenetic events (paragenesis) for each borehole was reconstructed taking the burial history into account. Point counting and a segmentation algorithm (Matlab) were used to quantify porosity, as well as the amounts of grain constituents and cement phases on scanned images of studied thin sections. In addition, four key samples were analyzed by 3D imaging using microfocus X-ray computer tomography. Basin margin grainstones display a different burial diagenesis when compared to basin centre grainstones and wackestones. The former have been affected by considerable cementation (especially by blocky calcite) prior to effective burial, in contrast to the basin centre lithologies where burial and compaction prevailed with relatively less cementation. Fracturing and bed-parallel stylolitization, observed especially in basinal wackestone facies also invoke higher levels of mechanical and chemical compaction than observed in basin marginal equivalents. Compaction fluids may have migrated at the time of burial from the basin centre towards its margins, affecting hence the reservoir properties of similar rock textures and facies and resulting in cross-basin spatial diagenetic heterogeneities.

  6. Are iron-phosphate minerals a sink for phosphorus in anoxic Black Sea sediments?

    PubMed

    Dijkstra, Nikki; Kraal, Peter; Kuypers, Marcel M M; Schnetger, Bernhard; Slomp, Caroline P

    2014-01-01

    Phosphorus (P) is a key nutrient for marine organisms. The only long-term removal pathway for P in the marine realm is burial in sediments. Iron (Fe) bound P accounts for a significant proportion of this burial at the global scale. In sediments underlying anoxic bottom waters, burial of Fe-bound P is generally assumed to be negligible because of reductive dissolution of Fe(III) (oxyhydr)oxides and release of the associated P. However, recent work suggests that Fe-bound P is an important burial phase in euxinic (i.e. anoxic and sulfidic) basin sediments in the Baltic Sea. In this study, we investigate the role of Fe-bound P as a potential sink for P in Black Sea sediments overlain by oxic and euxinic bottom waters. Sequential P extractions performed on sediments from six multicores along two shelf-to-basin transects provide evidence for the burial of Fe-bound P at all sites, including those in the euxinic deep basin. In the latter sediments, Fe-bound P accounts for more than 20% of the total sedimentary P pool. We suggest that this P is present in the form of reduced Fe-P minerals. We hypothesize that these minerals may be formed as inclusions in sulfur-disproportionating Deltaproteobacteria. Further research is required to elucidate the exact mineral form and formation mechanism of this P burial phase, as well as its role as a sink for P in sulfide-rich marine sediments.

  7. Hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass disposal

    NASA Astrophysics Data System (ADS)

    Kaown, D.; Kim, H.; Lee, S.; Hyun, Y.; Moon, H.; Ko, K.; Lee, K.

    2012-12-01

    The release of leachate from animal carcass disposal can potentially contaminate soil and groundwater. During the Korea's foot-and-mouth disease (FMD) outbreak in 2010-2011, about 3.53 million of pigs and cattle were slaughtered and 4,538 burial sites were constructed. The objectives of this study are to determine the hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass disposal. Hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass burial facilities were monitored to prevent further soil and groundwater contamination and to build effective plans for stabilization of the burial site. Two burial sites were investigated in this study. An animal carcass disposal site is located in a flat area and another disposal site is found in mountain area. The hydrogeochemical and hydrogeological characteristics were analyzed to identify groundwater contamination by leachate from livestock burial sites. After 5-6 months of burial, the concentrations of NH4+, Cl-, and HCO3- in leachate were decreased since the leachate was regularly pumped and treated. However, high concentrations of major contaminants (NH4+, Cl-, and HCO3-) were still observed in landfill leachate of mountain area even though pumping and treatment of leachate were continuously conducted. Bacterial community diversity over time in leachate from animal carcass disposal was analyzed using 16S rRNA gene-based pyrosequencing. The impact of landfill leachate on change of bacterial community in soil and groundwater were monitored for a year.

  8. Soil, plant, and structural considerations for surface barriers in arid environments: Application of results from studies in the Mojave Desert near Beatty, Nevada

    USGS Publications Warehouse

    Andraski, Brian J.; Prudic, David E.; ,

    1997-01-01

    The suitability of a waste-burial site depends on hydrologic processes that can affect the near-surface water balance. In addition, the loss of burial trench integrity by erosion and subsidence of trench covers may increase the likelihood of infiltration and percolation, thereby reducing the effectiveness of the site in isolating waste. Although the main components of the water balance may be defined, direct measurements can be difficult, and actual data for specific locations are seldom available. A prevalent assumption is that little or no precipitation will percolate to buried wastes at an arid site. Thick unsaturated zones, which are common to arid regions, are thought to slow water movement and minimize the risk of waste migration to the underlying water table. Thus, reliance is commonly placed on the natural system to isolate contaminants at waste-burial sites in the arid West.Few data are available to test assumptions about the natural soil-water flow systems at arid sites, and even less is known about how the natural processes are altered by construction of a waste-burial facility. The lack of data is the result of technical complexity of hydraulic characterization of the dry, stony soils, and insufficient field studies that account for the extreme temporal and spatial variations in precipitation, soils, and plants in arid regions. In 1976, the U.S. Geological Survey (USGS) began a long-term study at a waste site in the Mojave Desert. This paper summarizes the findings of ongoing investigations done under natural-site and waste-burial conditions, and discusses how this information may be applied to the design of surface barriers for waste sites in arid environments.The waste-burial site is in one of the most arid parts of the United States and is about 40 km northeast of Death Valley, near Beatty, Nev. (Figure 1). Precipitation averaged 108 mm/yr during 1981-1992. The water table is 85-115 m below land surface (Fischer, 1992). Sediments are largely alluvial and fluvial deposits (Nichols, 1987). Vegetation is sparse; creosote bush is the dominant species. The waste facility has been used for burial of low-level radioactive waste (1962-1992) and hazardous chemical waste (1970 to present). Burial-trench construction includes excavation of native soil, emplacement of waste, and backfilling with previously stockpiled soil. Only the most recently closed hazardous-waste trench (1991) incorporates a plastic liner in the cover. The surfaces of completed burial trenches and perimeter areas are kept free of vegetation.

  9. Occurrence of microbial acetate-oxidation in ~2 km-deep coal-bearing sediments off the Shimokita Peninsula, Japan (IODP Expedition 337)

    NASA Astrophysics Data System (ADS)

    Ijiri, A.; Inagaki, F.

    2015-12-01

    During the Integrated Ocean Drilling Program (IODP) Expedition 337 in 2012, the riser-drilling vessel Chikyu extended the previous world depth record of scientific ocean drilling and made one of the deepest scientific borehole down to 2466 m below the seafloor (mbsf) at Site C0020 Hole A off the Shimokita Peninsula, Japan. The sedimentary sequence consists of 17 lignite layers below 1.5 km bellow the seafloor. Microbiological and geochemical data consistently showed evidence for the existence of microbial communities associated with lignite coal beds in the coal-bearing sediments (Inagaki and Hinrichs et al., Science, 2015). Since lignite coals produce substantial dissolved organic compounds during the burial alternation process, volatile fatty acids may play important roles for microbial life and its activity in the deep sedimentary environment. To address this hypothesis, we measured methanogenic and acetate-oxidation activities by radiotracer incubation experiments using 14C-labelled substrate ([2-14C]-acetate) immediately after core recovery. Activity of aceticlastic methanogenesis was observed in the sediment above the coal-baring layers (>1990 mbsf), ranging from 0.2 to 1.2 pmol cm-3 d-1. The highest activity was observed in a coal-bed horizon at 1990 mbsf. However, aceticlastic methanogenesis was below the detection limit in sediment samples below the 2 km-coal layers. Activity of acetate oxidation to CO2 was measured by 14CO2 production rate from [2-14C]-acetate. Interestingly, the acetate-oxidation activity was observed in sediments above the coal beds, which values were generally higher than those of methanogenesis with the maximum value of 33 pmol cm-3 d-1 at 1800 mbsf. The rates gradually decreased with increasing depth from 1800 mbsf and reached below the detection limit (i.e., 0.05 pmol cm-3 d-1) in 2 km-deep coal-bed samples. The occurrence of relatively high acetate oxidation at ~1800 mbsf above the coal formation suggests that microbes respire acetate with available electron acceptors such as glauconitic iron oxides in the deep sedimentary environment.

  10. There’s plenty of light at the bottom: statistics of photon penetration depth in random media

    PubMed Central

    Martelli, Fabrizio; Binzoni, Tiziano; Pifferi, Antonio; Spinelli, Lorenzo; Farina, Andrea; Torricelli, Alessandro

    2016-01-01

    We propose a comprehensive statistical approach describing the penetration depth of light in random media. The presented theory exploits the concept of probability density function f(z|ρ, t) for the maximum depth reached by the photons that are eventually re-emitted from the surface of the medium at distance ρ and time t. Analytical formulas for f, for the mean maximum depth 〈zmax〉 and for the mean average depth reached by the detected photons at the surface of a diffusive slab are derived within the framework of the diffusion approximation to the radiative transfer equation, both in the time domain and the continuous wave domain. Validation of the theory by means of comparisons with Monte Carlo simulations is also presented. The results are of interest for many research fields such as biomedical optics, advanced microscopy and disordered photonics. PMID:27256988

  11. An entropy-based method for determining the flow depth distribution in natural channels

    NASA Astrophysics Data System (ADS)

    Moramarco, Tommaso; Corato, Giovanni; Melone, Florisa; Singh, Vijay P.

    2013-08-01

    A methodology for determining the bathymetry of river cross-sections during floods by the sampling of surface flow velocity and existing low flow hydraulic data is developed . Similar to Chiu (1988) who proposed an entropy-based velocity distribution, the flow depth distribution in a cross-section of a natural channel is derived by entropy maximization. The depth distribution depends on one parameter, whose estimate is straightforward, and on the maximum flow depth. Applying to a velocity data set of five river gage sites, the method modeled the flow area observed during flow measurements and accurately assessed the corresponding discharge by coupling the flow depth distribution and the entropic relation between mean velocity and maximum velocity. The methodology unfolds a new perspective for flow monitoring by remote sensing, considering that the two main quantities on which the methodology is based, i.e., surface flow velocity and flow depth, might be potentially sensed by new sensors operating aboard an aircraft or satellite.

  12. Centers of control: Revealing elites among the Ancestral Pueblo during the "Chaco Phenomenon".

    PubMed

    Harrod, Ryan P

    The use of violence as a means of social control among higher status members of the Ancestral Pueblo is explored by using data derived from the burials and the burial context of several sites between AD 850 and 1300. High-status burials, while relatively rare in the archeological record, are of interest because of the role the individuals are assumed to have played in the culture. It has been suggested that there were "elites" among the Ancestral Pueblo during a particularly volatile period that corresponds with the growth, development, and decline of Chacon Canyon and to a lesser extent Aztec Ruins, two major political and ritual centers. Using a bioarchaeological approach that integrates the human remains with the archeological context, burials from Chaco Canyon were compared with burials from other sites in the region based on demographic (age and sex), nutritional (stature), activity (robusticity and entheses), health (pathological conditions), violence (cranial trauma), and cultural (mortuary pattern) patterns. Crucial for expanding our understanding of the role of hierarchy and social control in the Pueblo world, these data suggest that there were high-status individuals who functioned as political and ceremonial leaders. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Early evidence (ca. 12,000 B.P.) for feasting at a burial cave in Israel

    PubMed Central

    Munro, Natalie D.; Grosman, Leore

    2010-01-01

    Feasting is one of humanity's most universal and unique social behaviors. Although evidence for feasting is common in the early agricultural societies of the Neolithic, evidence in pre-Neolithic contexts is more elusive. We found clear evidence for feasting on wild cattle and tortoises at Hilazon Tachtit cave, a Late Epipaleolithic (12,000 calibrated years B.P.) burial site in Israel. This includes unusually high densities of butchered tortoise and wild cattle remains in two structures, the unique location of the feasting activity in a burial cave, and the manufacture of two structures for burial and related feasting activities. The results indicate that community members coalesced at Hilazon to engage in special rituals to commemorate the burial of the dead and that feasts were central elements in these important events. Feasts likely served important roles in the negotiation and solidification of social relationships, the integration of communities, and the mitigation of scalar stress. These and other social changes in the Natufian period mark significant changes in human social complexity that continued into the Neolithic period. Together, social and economic change signal the very beginning of the agricultural transition. PMID:20805510

  14. Geophysical and botanical monitoring of simulated graves in a tropical rainforest, Colombia, South America

    NASA Astrophysics Data System (ADS)

    Molina, Carlos Martin; Pringle, Jamie K.; Saumett, Miguel; Evans, Gethin T.

    2016-12-01

    In most Latin American countries there are significant numbers of missing people and forced disappearances, currently 80,000 only in Colombia. Successful detection of shallow buried human remains by forensic search teams is currently difficult in varying terrain and climates. Within this research we built four simulated clandestine burial styles in tropical rainforests, as this is a common scenario and depositional environment encountered in Latin America, to gain knowledge of optimum forensic geophysics detection techniques. The results of geophysically monitoring these burials using ground penetrating radar, magnetic susceptibility, bulk ground conductivity and electrical resistivity are presented from one to forty three weeks post-burial. Radar survey results with both the 250 MHz and 500 MHz frequency antennae showed good detection of modern simulated burials on 2D profiles and horizontal time slices but poor detection on the other simulated graves. Magnetic susceptibility, bulk ground conductivity and electrical resistivity results were generally poor at detecting the simulated targets. Observations of botanical variations on the test site show rapid regrowth of Malvaceae and Petiveria alliacea vegetation over all burials that are common in these forests, which can make detection more difficult.

  15. Great earthquakes and tsunamis of the past 2000 years at the Salmon River estuary, central Oregon coast, USA

    USGS Publications Warehouse

    Nelson, A.R.; Asquith, A.C.; Grant, W.C.

    2004-01-01

    Four buried tidal marsh soils at a protected inlet near the mouth of the Salmon River yield definitive to equivocal evidence for coseismic subsidence and burial by tsunami-deposited sand during great earthquakes at the Cascadia subduction zone. An extensive, landward-tapering sheet of sand overlies a peaty tidal-marsh soil over much of the lower estuary. Limited pollen and macrofossil data suggest that the soil suddenly subsided 0.3-1.0 m shortly before burial. Regional correlation of similar soils at tens of estuaries to the north and south and precise 14C ages from one Salmon River site imply that the youngest soil subsided during the great earthquake of 26 January A.D. 1700. Evidence for sudden subsidence of three older soils during great earthquakes is more equivocal because older-soil stratigraphy can be explained by local hydrographic changes in the estuary. Regional 14C correlation of two of the three older soils with soils at sites that better meet criteria for a great-earthquake origin is consistent with the older soils recording subsidence and tsunamis during at least two great earthquakes. Pollen evidence of sudden coseismic subsidence from the older soils is inconclusive, probably because the amount of subsidence was small (<0.5 m). The shallow depths of the older soils yield rates of relative sea-level rise substantially less than rates previously calculated for Oregon estuaries.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldham, D.W.

    Commercial quantities of gas have been produced from shallow sandstone reservoirs of the Fort Union Formation (Paleocene) in the Powder River Basin of Wyoming. The two largest accumulations discovered to date, Oedekoven and Chan pools, were drilled on prospects which invoked differential compaction as a mechanism for gas entrapment and prospect delineation. Gas is believed to have accumulated in localized structural highs early in the burial history of lenticular sands. Structural relief is due to the compaction contrast between sand and stratigraphically-equivalent fine-grained sediments. A shallow Fort Union gas play was based on reports of shallow gas shows, the occurrencemore » of thick coals which could have served as sources for bacterial gas, and the presence of lenticular sandstones which may have promoted the development of compaction structures early in the burial process, to which bacterial gas migrated. Five geologic elements related to compactional trap development were used to rank prospects. Drilling of the Oedekoven prospect, which possessed all prospect elements, led to the discovery of the Oedekoven Fort Union gas pool at a depth of 340 ft (104 m). The uncemented, very fine grained, well-sorted {open_quotes}Canyon sand{close_quotes} pay has extremely high intergranular porosity. Low drilling and completion costs associated with shallow, high-permeability reservoirs, an abundance of subsurface control with which to delineate prospects, and existing gas-gathering systems make Fort Union sandstones attractive primary targets in shallow exploration efforts as well as secondary objectives in deeper drilling programs.« less

  17. Textural and mineralogical study of sandstones from the onshore Gulf of Alaska Tertiary Province, southern Alaska

    USGS Publications Warehouse

    Winkler, Gary R.; McLean, Hugh; Plafker, George

    1976-01-01

    Petrographic examination of 74 outcrop samples of Paleocene through Pliocene age from the onshore Gulf of Alaska Tertiary Province indicates that sandstones of the province characteristically are texturally immature and mineralogically unstable. Diagenetic alteration of framework grains throughout the stratigraphic sequence has produced widespread zeolite cement or phyllosilicate grain coatings and pseudomatrix. Multiple deformation and deep burial of the older Tertiary sequence--the Orca Group, the shale of Haydon Peak, and the Kulthieth and Tokun Formations--caused extensive alteration and grain interpenetration, resulting in low porosity values. Less intense deformation and intermediate depth of burial of the younger Tertiary sequence--the Katalla, Poul Creek, Redwood, and Yakataga Formations--has resulted in a greater range in textural properties. Most sandstone samples in the younger Tertiary sequence are poorly sorted, tightly packed, and have strongly appressed framework grains, but some are less tightly packed and contain less matrix. Soft and mineralogically unstable framework grains have undergone considerable alteration, reducing pore space even in the youngest rocks. Measurements of porosity, permeability, grain density, and sonic velocity of outcrop samples of the younger Tertiary sequence indicate a modest up-section improvement in sandstone reservoir characteristics. Nonetheless porosity and permeability values typically are below 16 percent and 15 millidarcies respectively and grain densities are consistently high, about 2.7 gm/cc. Low permeability and porosity values, and high grain densities and sonic velocities appear to be typical of most outcrop areas throughout the onshore Gulf of Alaska Tertiary Province.

  18. Burial of thermally perturbed Lesser Himalayan mid-crust: Evidence from petrochemistry and P-T estimation of the western Arunachal Himalaya, India

    NASA Astrophysics Data System (ADS)

    Goswami-Banerjee, Sriparna; Bhowmik, Santanu Kumar; Dasgupta, Somnath; Pant, Naresh Chandra

    2014-11-01

    In this work, we establish a dual prograde P-T path of the Lesser Himalayan Sequence (LHS) rocks from the western Arunachal Himalaya (WAH). The investigated metagranites, garnet- and kyanite-zone metapelites of the LHS are part of an inverted metamorphic sequence (IMS) that is exposed on the footwall side of the Main Central Thrust (MCT). Integrated petrographic, mineral chemistry, geothermobarometric (conventional and isopleth intersection methods) and P-T pseudosection modeling studies reveal a near isobaric (at P ~ 8-9 kbar) peak Barrovian metamorphism with increase in TMax from ~ 560 °C in the metagranite through ~ 590-600 °C in the lower and middle garnet-zone to ~ 600-630 °C in the upper garnet- and kyanite-zone rocks. The metamorphic sequence of the LHS additionally records a pre-Barrovian near isobaric thermal gradient in the mid crust (at ~ 6 kbar) from ~ 515 °C (in the middle garnet zone) to ~ 560-580 °C (in the upper garnet- and kyanite zone, adjoining the Main Central Thrust). Further burial (along steep dP/dT gradient) to a uniform depth corresponding to ~ 8-9 kbar and prograde heating of the differentially heated LHS rocks led to the formation of near isobaric metamorphic field gradient in the Barrovian metamorphic zones of the WAH. A combined critical taper and channel flow model is presented to explain the inverted metamorphic zonation of the rocks of the WAH.

  19. On the use of a (252Cf-3He) assembly for landmine detection by the neutron back-scattering method.

    PubMed

    Elsheikh, N; Viesti, G; ElAgib, I; Habbani, F

    2012-04-01

    Experiments were carried out to optimize the performance of the neutron back-scattering (NBS) technique in landmine detection using an assembly consisting of three different layers placed above a (252)Cf neuron source, producing about 10(4)s(-1), in conjunction with a (3)He detector. The assembly was optimized experimentally. The selected assembly configuration was then examined against different (252)Cf stand-off distances and mine burial depths using dummy landmines. Furthermore, Monte Carlo simulations were performed to study the effect of the shield when a (252)Cf source in the range 10(4)-10(7)s(-1) was employed, and to optimize the geometry for future prototypes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. HYDROCARBON SOURCE ROCK EVALUATION OF MIDDLE PROTEROZOIC SOLOR CHURCH FORMATION, NORTH AMERICAN MID-CONTINENT RIFT SYSTEM, RICE COUNTY, MINNESOTA.

    USGS Publications Warehouse

    Hatch, J.R.; Morey, G.B.

    1985-01-01

    Hydrocarbon source rock evaluation of the Middle Proterozoic Solor Church Formation (Keweenawan Supergroup) as sampled in the Lonsdale 65-1 well, Rice County, shows that: the rocks are organic matter lean; the organic matter is thermally post-mature, probably near the transition between the wet gas phase of catagenesis and metagenesis; and the rocks have minimal potential for producing additional hydrocarbons. The observed thermal maturity of the organic matter requires significantly greater burial depths, a higher geothermal gradient, or both. It is likely, that thermal maturation of the organic matter in the Solor Church took place relatively early, and that any hydrocarbons generated during this early phase were probably lost prior to deposition of the overlying formation.

  1. CFD analysis of onshore oil pipelines in permafrost

    NASA Astrophysics Data System (ADS)

    Nardecchia, Fabio; Gugliermetti, Luca; Gugliermetti, Franco

    2017-07-01

    Underground pipelines are built all over the world and the knowledge of their thermal interaction with the soil is crucial for their design. This paper studies the "thermal influenced zone" produced by a buried pipeline and the parameters that can influence its extension by 2D-steady state CFD simulations with the aim to improve the design of new pipelines in permafrost. In order to represent a real case, the study is referred to the Eastern Siberia-Pacific Ocean Oil Pipeline at the three stations of Mo'he, Jiagedaqi and Qiqi'har. Different burial depth sand diameters of the pipe are analyzed; the simulation results show that the effect of the oil pipeline diameter on the thermal field increases with the increase of the distance from the starting station.

  2. Evaluation of communication in wireless underground sensor networks

    NASA Astrophysics Data System (ADS)

    Yu, X. Q.; Zhang, Z. L.; Han, W. T.

    2017-06-01

    Wireless underground sensor networks (WUSN) are an emerging area of research that promises to provide communication capabilities to buried sensors. In this paper, experimental measurements have been conducted with commodity sensor motes at the frequency of 2.4GHz and 433 MHz, respectively. Experiments are run to examine the received signal strength of correctly received packets and the packet error rate for a communication link. The tests show the potential feasibility of the WUSN with the use of powerful RF transceivers at 433MHz frequency. Moreover, we also illustrate a classification for wireless underground sensor network communication. Finally, we conclude that the effects of burial depth, inter-node distance and volumetric water content of the soil on the signal strength and packet error rate in communication of WUSN.

  3. Thermal stability analysis under embankment with asphalt pavement and cement pavement in permafrost regions.

    PubMed

    Junwei, Zhang; Jinping, Li; Xiaojuan, Quan

    2013-01-01

    The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results.

  4. Thermal Stability Analysis under Embankment with Asphalt Pavement and Cement Pavement in Permafrost Regions

    PubMed Central

    Jinping, Li; Xiaojuan, Quan

    2013-01-01

    The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results. PMID:24027444

  5. Final Hazard Categorization and Auditable Safety Analysis for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. J. Rodovsky

    2006-03-01

    This report presents the initial hazard categorization, final hazard categorization and auditable safety analysis for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  6. Archaeological and Osteological Analysis of Two Burial Sites Along Harlan County Lake, Nebraska: Chronological and Evolutionary Implications

    DTIC Science & Technology

    1989-01-01

    14GE4 ( Mound 2), 14GE5 and 14GE6 ......................... 99 9.2 Comparative percentages of bone elements for sites 14CY12 and 14CY32 ( Mounds 1 and 2...100 9.3 Comparative percentages of bone elements for sites 14GE2 ( Mounds 1 and 3), 14GE4 ( Mound 1) and 14GE7...et al. (1981:123) describe the burial patterns of the Valley focus as follows: Many burial mounds (as opposed to habitation sites) attributable to

  7. Taenia sp. in human burial from Kan River, East Siberia.

    PubMed

    Slepchenko, Sergey Mikhailovich; Ivanov, Sergey Nikolaevich; Vybornov, Anton Vasilevich; Alekseevich, Tsybankov Alexander; Sergeyevich, Slavinsky Vyacheslav; Lysenko, Danil Nikolaevich; Matveev, Vyacheslav Evgenievich

    2017-05-01

    We present an arhaeoparasitological analysis of a unique burial from the Neftprovod II burial ground in East Siberia, which dated from the Bronze Age. Analysis of a sediment sample from the sacral region of the pelvis revealed the presence of Taenia sp. eggs. Because uncooked animal tissue is the primary source of Taenia, this indicated that the individual was likely consuming raw or undercooked meat of roe deer, red deer, or elk infected with Taenia. This finding represents the oldest case of a human infected with Taenia sp. from Eastern Siberia and Russia.

  8. Development of a Lunar Borehole Seismometer

    NASA Astrophysics Data System (ADS)

    Passmore, P. R.; Siegler, M.; Malin, P. E.; Passmore, K.; Zacny, K.; Avenson, B.; Weber, R. C.; Schmerr, N. C.; Nagihara, S.

    2017-12-01

    Nearly all seismic stations on Earth are buried below the ground. Burial provides controlled temperatures and greater seismic coupling at little cost. This is also true on the Moon and other planetary bodies. Burial of a seismometer under just 1 meter of lunar regolith would provide an isothermal environment and potentially reduce signal scattering noise by an order of magnitude. Here we explain how we will use an existing NASA SBIR and PIDDP funded subsurface heat flow probe deployment system to bury a miniaturized, broadband, optical seismometer 1 meter below the lunar surface. The system is sensitive, low mass and low power. We believe this system offers a compelling architecture for NASA's future seismic exploration of the solar system. We will report on a prototype 3-axis, broadband seismometer package that has been tested under low pressure conditions in lunar-regolith simulant. The deployment mechanism reaches 1m depth in less than 25 seconds. Our designed and tested system: 1) Would be deployed at least 1m below the lunar surface to achieve isothermal conditions without thermal shielding or heaters, increase seismic coupling, and decrease noise. 2) Is small (our prototype probe is a cylinder 50mm in diameter, 36cm long including electronics, potentially as small as 10 cm with sensors only). 3) Is low-mass (each sensor is 0.1 kg, so an extra redundancy 4-component seismograph plus 1.5 kg borehole sonde and recorder weighs less than 2 kg and is feasibly smaller with miniaturized electronics). 4) Is low-power (our complete 3-sensor borehole seismographic system's power consumption is about half a Watt, or 7% of Apollo's 7.1 W average and 30% of the InSight SEIS's 1.5W winter-time heating system). 5) Is broadband and highly sensitive (the "off the shelf" sensors have a wide passband: 0.005-1000 Hz - and high dynamic range of 183 dB (or about 10-9g Hz-1/2, with hopes for simple modifications to be at least an order of magnitude better). Burial also aids the sensitivity, by decreasing scattered noise through the upper, extremely low density lunar regolith.

  9. High temperature annealing of fission tracks in fluorapatite, Santa Fe Springs oil field, Los Angeles Basin, California

    USGS Publications Warehouse

    Naeser, Nancy D.; Crowley, Kevin D.; McCulloh, Thane H.; Reaves, Chris M.; ,

    1990-01-01

    Annealing of fission tracks is a kinetic process dependent primarily on temperature and to a laser extent on time. Several kinetic models of apatite annealing have been proposed. The predictive capabilities of these models for long-term geologic annealing have been limited to qualitative or semiquantitative at best, because of uncertainties associated with (1) the extrapolation of laboratory observations to geologic conditions, (2) the thermal histories of field samples, and (3) to some extent, the effect of apatite composition on reported annealing temperatures. Thermal history in the Santa Fe Springs oil field, Los Angeles Basin, California, is constrained by an exceptionally well known burial history and present-day temperature gradient. Sediment burial histories are continuous and tightly constrained from about 9 Ma to present, with an important tie at 3.4 Ma. No surface erosion and virtually no uplift were recorded during or since deposition of these sediments, so the burial history is simple and uniquely defined. Temperature gradient (???40??C km-1) is well established from oil-field operations. Fission-track data from the Santa Fe Springs area should thus provide one critical field test of kinetic annealing models for apatite. Fission-track analysis has been performed on apatites from sandstones of Pliocene to Miocene age from a deep drill hole at Santa Fe Springs. Apatite composition, determined by electron microprobe, is fluorapatite [average composition (F1.78Cl0.01OH0.21)] with very low chlorine content [less than Durango apatite; sample means range from 0.0 to 0.04 Cl atoms, calculated on the basis of 26(O, F, Cl, OH)], suggesting that the apatite is not unusually resistant to annealing. Fission tracks are preserved in these apatites at exceptionally high present-day temperatures. Track loss is not complete until temperatures reach the extreme of 167-178??C (at 3795-4090 m depth). The temperature-time annealing relationships indicated by the new data from Santa Fe Springs conflict with predictions based on previously published, commonly used, kinetic annealing models for apatite. Work is proceeding on samples from another area of the basin that may resolve this discrepancy.

  10. Insights on fluid-rock interaction evolution during deformation from fracture network geochemistry at reservoir-scale

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Bellahsen, Nicolas; Emmanuel, Laurent

    2015-04-01

    Fluid migration and fluid-rock interactions during deformation is a challenging problematic to picture. Numerous interplays, as between porosity-permeability creation and clogging, or evolution of the mechanical properties of rock, are key features when it comes to monitor reservoir evolution, or to better understand seismic cycle n the shallow crust. These phenomenoms are especially important in foreland basins, where various fluids can invade strata and efficiently react with limestones, altering their physical properties. Stable isotopes (O, C, Sr) measurements and fluid inclusion microthermometry of faults cement and veins cement lead to efficient reconstruction of the origin, temperature and migration pathways for fluids (i.e. fluid system) that precipitated during joints opening or faults activation. Such a toolbox can be used on a diffuse fracture network that testifies the local and/or regional deformation history experienced by the rock at reservoir-scale. This contribution underlines the advantages and limits of geochemical studies of diffuse fracture network at reservoir-scale by presenting results of fluid system reconstruction during deformation in folded structures from various thrust-belts, tectonic context and deformation history. We compare reconstructions of fluid-rock interaction evolution during post-deposition, post-burial growth of basement-involved folds in the Sevier-Laramide American Rocky Mountains foreland, a reconstruction of fluid-rock interaction evolution during syn-depostion shallow detachment folding in the Southern Pyrenean foreland, and a preliminary reconstruction of fluid-rock interactions in a post-deposition, post-burial development of a detachment fold in the Appenines. Beyond regional specification for the nature of fluids, a common behavior appears during deformation as in every fold, curvature-related joints (related either to folding or to foreland flexure) connected vertically the pre-existing stratified fluid system. The lengthscale of the migration and the nature of invading fluids during these connections is different in every studied example, and can be related to the tectonic nature of the fold, along with the burial depth at the time of deformation. Thus, to decipher fluid-fracture relationships provides insights to better reconstruct the mechanisms of deformation at reservoir-scale.

  11. Determining rates of sediment accumulation on the Mekong shelf: Timescales, steady-state assumptions, and radiochemical tracers

    NASA Astrophysics Data System (ADS)

    DeMaster, D. J.; Liu, J. P.; Eidam, E.; Nittrouer, C. A.; Nguyen, T. T.

    2017-09-01

    Thirty-two kasten cores, collected from the proximal Mekong continental shelf, have been analyzed for their excess 210Pb distributions in an effort to establish rates of sediment accumulation over the past 100 years. The length of the cores varied from 0.5 to 3 m, and stations sampled topset, foreset, and bottomset beds (water depths 7-21 m). Apparent excess 210Pb sediment accumulation rates ranged from > 10 cm/y (no down-core decrease of excess activity over 300 cm core length) near the Song Hau river mouth, to 1-3 cm/y in topset and foreset beds within 20-50 km of the river mouth, to rates as low as 0.4 cm/y in cores from bottomset beds. The 210Pb sediment accumulation rates yield an overall sediment burial rate of 6.1 × 1013 g/y for the proximal deltaic deposits, which corresponds to 43% of the total modern Mekong sediment burial on the southern Vietnam shelf (1.4 × 1014 g/y; based on our 210Pb and seismic data and 210Pb data from the literature). This shelf burial rate is in reasonable agreement with current long-term estimates of Mekong River sediment discharge (1.3-1.6 × 1014 g/y) from the literature. The inventory of excess 210Pb in the proximal Mekong deltaic deposits indicates that the shoreward flow of offshore water (entrained during river/ocean mixing) is approximately twice the flow of the Mekong freshwater discharge. Organic-carbon 14C ages were measured on 10 cores from the proximal Mekong delta and compared to 210Pb sediment accumulation rates in the same core. The 210Pb accumulation rates in all 10 cores were considered to be more robust and accurate than the 14C geochronologies, primarily because of down-core variations in the source of organic carbon deposited on the seafloor (old terrestrial carbon versus younger marine carbon). Variations in the source of organic carbon accumulating in the seabed were resolved by measuring the δ13C value of the seabed organic carbon.

  12. Fe-C-S systematics in Bengal Fan sediments

    NASA Astrophysics Data System (ADS)

    Volvoikar, S. P.; Mazumdar, A.; Goswami, H.; Pujari, S.; Peketi, A.

    2017-12-01

    Global biogeochemical cycles of iron, carbon and sulfur (Fe-C-S) are interrelated. Sulfate reduction in marine sediments is the major factor controlling the cycling and burial of carbon, sulfur and iron. Organoclastic sulfate reduction and anaerobic oxidation of methane (AOM) are the two main processes responsible for sulfate reduction in marine sediments. The amount and reactivity of organic matter, iron minerals and concentrations of dissolved sulfide in pore water control the burial of iron sulfide and organic bound sulfur in marine sediments. Here we investigate the sulfidization process in a sediment core from the western part of upper Bay of Bengal fan characterized by efficient burial of organic matter with siliclastic load. A 30 m long sediment core (MD 161/29, Lat. 170 18.04' N, Long. 870 22.56' E, water depth: 2434m) was collected onboard Marion Dufresne (May, 2007) and studied for Fe-S speciation and organic matter characterization. Buffered dithionite extractable iron (FeD) varies from 0.71 to 1.43 wt % (Avg. 0.79 wt %). FeD represents Fe oxides and oxyhydroxides mainly, ferrihydrite, lepidocrocite, goethite and hematite. Acid volatile sulfur (AVS) varies from 0.0015 to 0.63 wt % (avg: 0.058 wt %), while chromium reducible sulfur (CRS) varies from 0.00047 to 0.29 wt % (avg. 0.054 wt %). Based on the vertical distribution patterns of FeD, AVS and CRS, the core is divided into three zones, the lower (3000 to 1833 cm), middle (1833 to 398 cm) and upper (398 cm to surface) zones. FeD shows higher concentration in the lower zone. FeTR (FeOx + FeD + FeCRS + FeAVS) also exhibit higher concentration in this zone, suggesting higher availability of reactive iron for iron sulfide precipitation. AVS, elemental sulfur, spikes of CRS and gradual enrichment of δ34SAVS and δ34SCRS with sharp peaks in-between is noted in the lower zone. The gradual enrichment of δ34SAVS and δ34SCRS is the outcome of late diagenetic pyritization with higher availability of sulfide (HS- and H2S) from AOM.

  13. The thermal history of the Karoo Moatize-Minjova Basin, Tete Province, Mozambique: An integrated vitrinite reflectance and apatite fission track thermochronology study

    NASA Astrophysics Data System (ADS)

    Fernandes, Paulo; Cogné, Nathan; Chew, David M.; Rodrigues, Bruno; Jorge, Raul C. G. S.; Marques, João; Jamal, Daud; Vasconcelos, Lopo

    2015-12-01

    The Moatize-Minjova Basin is a Karoo-aged rift basin located in the Tete Province of central Mozambique along the present-day Zambezi River valley. In this basin the Permian Moatize and Matinde formations consist of interbedded carbonaceous mudstones and sandstones with coal seams. The thermal history has been determined using rock samples from two coal exploration boreholes (ca. 500 m depth) to constrain the burial and exhumation history of the basin. Organic maturation levels were determined using vitrinite reflectance and spore fluorescence/colour. Ages and rates of tectonic uplift and denudation have been assessed by apatite fission track analysis. The thermal history was modelled by inverse modelling of the fission track and vitrinite reflectance data. The Moatize Formation attained a coal rank of bituminous coals with low to medium volatiles (1.3-1.7%Rr). Organic maturation levels increase in a linear fashion downhole in the two boreholes, indicating that burial was the main process controlling peak temperature maturation. Calculated palaeogeothermal gradients range from 59 °C/km to 40 °C/km. According to the models, peak burial temperatures were attained shortly (3-10 Ma) after deposition. Apatite fission track ages [146 to 84 Ma (Cretaceous)] are younger than the stratigraphic age. Thermal modelling indicates two episodes of cooling and exhumation: a first period of rapid cooling between 240 and 230 Ma (Middle - Upper Triassic boundary) implying 2500-3000 m of denudation; and a second period, also of rapid cooling, from 6 Ma (late Miocene) onwards implying 1000-1500 m of denudation. The first episode is related to the main compressional deformation event within the Cape Fold Belt in South Africa, which transferred stress northwards on pre-existing transtensional fault systems within the Karoo rift basins, causing tectonic inversion and uplift. During the Mesozoic and most of the Cenozoic the basin is characterized by very slow cooling. The second period of fast cooling and denudation during the Pliocene was likely related to the southward propagation of the East African Rift System into Mozambique.

  14. Tritium plume dynamics in the shallow unsaturated zone in an arid environment

    USGS Publications Warehouse

    Maples, S.R.; Andraski, Brian J.; Stonestrom, David A.; Cooper, C.A.; Pohll, G.; Michel, R.L.

    2014-01-01

    The spatiotemporal variability of a tritium plume in the shallow unsaturated zone and the mechanisms controlling its transport were evaluated during a 10-yr study. Plume movement was minimal and its mass declined by 68%. Upward-directed diffusive-vapor tritium fluxes and radioactive decay accounted for most of the observed plume-mass declines.Effective isolation of tritium (3H) and other contaminants at waste-burial facilities requires improved understanding of transport processes and pathways. Previous studies documented an anomalously widespread (i.e., theoretically unexpected) distribution of 3H (>400 m from burial trenches) in a dry, sub-root-zone gravelly layer (1–2-m depth) adjacent to a low-level radioactive waste (LLRW) burial facility in the Amargosa Desert, Nevada, that closed in 1992. The objectives of this study were to: (i) characterize long-term, spatiotemporal variability of 3H plumes; and (ii) quantify the processes controlling 3H behavior in the sub-root-zone gravelly layer beneath native vegetation adjacent to the facility. Geostatistical methods, spatial moment analyses, and mass flux calculations were applied to a spatiotemporally comprehensive, 10-yr data set (2001–2011). Results showed minimal bulk-plume advancement during the study period and limited Fickian spreading of mass. Observed spreading rates were generally consistent with theoretical vapor-phase dispersion. The plume mass diminished more rapidly than would be expected from radioactive decay alone, indicating net efflux from the plume. Estimates of upward 3H efflux via diffusive-vapor movement were >10× greater than by dispersive-vapor or total-liquid movement. Total vertical fluxes were >20× greater than lateral diffusive-vapor fluxes, highlighting the importance of upward migration toward the land surface. Mass-balance calculations showed that radioactive decay and upward diffusive-vapor fluxes contributed the majority of plume loss. Results indicate that plume losses substantially exceeded any continuing 3H contribution to the plume from the LLRW facility during 2001 to 2011 and suggest that the widespread 3H distribution resulted from transport before 2001.

  15. L-band InSAR Penetration Depth Experiment, North Slope Alaska

    NASA Astrophysics Data System (ADS)

    Muskett, R. R.

    2017-12-01

    Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA's SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising form permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales. Ref.: Geoscience and Environment Protection, vol. 5, no. 3, p. 14-30, 2017. DOI: 10.4236/gep.2017.53002.

  16. A gel probe equilibrium sampler for measuring arsenic porewater profiles and sorption gradients in sediments: II. Field application to Haiwee reservoir sediment

    USGS Publications Warehouse

    Campbell, K.M.; Root, R.; O'Day, P. A.; Hering, J.G.

    2008-01-01

    Arsenic (As) geochemistry and sorption behavior were measured in As- and iron (Fe)-rich sediments of Haiwee Reservoir by deploying undoped (clear) polyacrylamide gels and hydrous ferric oxide (HFO)-doped gels in a gel probe equilibrium sampler, which is a novel technique for directly measuring the effects of porewater composition on As adsorption to Fe oxides phases in situ. Arsenic is deposited at the sediment surface as As(V) and is reduced to As(III) in the upper layers of the sediment (0-8 cm), but the reduction of As(V) does not cause mobilization into the porewater. Dissolved As and Fe concentrations increased at depth in the sediment column driven by the reductive dissolution of amorphous Fe(III) oxyhydroxides and conversion to a mixed Fe(II, III) green rust-type phase. Adsorption of As and phosphorous (P) onto HFO-doped gels was inhibited at intermediate depths (10-20 cm), possibly due to dissolved organic or inorganic carbon, indicating that dissolved As concentrations were at least partially controlled by porewater composition rather than surface site availability. In sediments that had been recently exposed to air, the region of sorption inhibition was not observed, suggesting that prior exposure to air affected the extent of reductive dissolution, porewater chemistry, and As adsorption behavior. Arsenic adsorption onto the HFO-doped gels increased at depths >20 cm, and the extent of adsorption was most likely controlled by the competitive effects of dissolved phosphate. Sediment As adsorption capacity appeared to be controlled by changes in porewater composition and competitive effects at shallower depths, and by reductive dissolution and availability of sorption sites at greater burial depths. ?? 2008 American Chemical Society.

  17. Mass composition results from the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Riggi, Simone; Pierre Auger Collaboration

    2011-03-01

    The present paper reports the recent composition results obtained by the Pierre Auger Observatory using both hybrid and surface detector data. The reconstruction of the shower longitudinal profile and depth of maximum with the fluorescence detector is described. The measured average depth of maximum and its fluctuations as function of the primary energy is presented. The sensitivity of rise time parameters measured with the ground stations and the obtained composition results are discussed.

  18. Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian Alb, southern Germany

    NASA Astrophysics Data System (ADS)

    Reinhold, C.

    1998-10-01

    The Upper Jurassic of the eastern Swabian Alb is composed of oolitic platform sands with associated microbe-siliceous sponge mounds at the platform margins. They are surrounded by argillaceous or calcareous mudstones and marl-limestone alternations, deposited in adjacent marl basins. Partial to complete dolomitization is predominantly confined to the mound facies. Six types of dolomite, as well as one type of ankerite, document a complex diagenetic history during shallow burial with multiple episodes of dolomite formation and recrystallization. The earliest massive matrix dolomitization is Ca-rich, has slightly depleted oxygen isotope values relative to Late Jurassic seawater, and carbon isotopic values in equilibrium with Late Jurassic seawater. This initial massive matrix dolomitization occurred during latest Jurassic to earliest Cretaceous and is related to pressure dissolution during very shallow burial at temperatures of at least 50°C. Hydrologic conditions and mass-balance calculations indicate that burial compaction provided sufficient fluids for dolomitization. Mg is derived from negligibly modified seawater, that was expelled from the adjacent off-reef strata into the mound facies. Position of the mounds along the platform margins controlled the distribution of the shallow-burial dolomite. Covariant trends between textural modification, increasing stoichiometry, partial changes in trace element content (Mn, Fe, Sr) and depletion in stable isotopes as well as distinctive CL pattern illustrate two recrystallization phases of the precursor matrix dolomite during further burial at elevated temperatures. Strong Sr enrichment of the second phase of recrystallized dolomite is ascribed to Sr-rich meteoric waters descending from overlying aragonite-bearing reef limestones or evaporite-bearing peritidal carbonates. Late-stage coarsely crystalline dolomite cements occur as vug and fracture fillings and formed during burial. Ankerite, associated with sulphide and sulphate minerals, and saddle dolomite are assumed to have formed from hydrothermal waters that moved to higher stratigraphic levels along fracture conduit systems that developed during Late Cretaceous to Tertiary Alpine orogenesis.

  19. Spatial Variability of Salt Marsh Vertical Accretion and Carbon Burial Rates along the Gulf of Mexico at Local and Regional Scales

    NASA Astrophysics Data System (ADS)

    Arriola, J.; Cable, J. E.

    2017-12-01

    Many studies quantifying salt marsh vertical accretion and carbon burial have been conducted along the Gulf of Mexico over the past several decades. These results are often used in conjunction with sea level rise estimates to evaluate the long term storage, and potential release, of carbon as salt marshes are overtaken by rising waters. However, results from these studies are not always comparable because of diverse sampling and analytical methods, which may skew regional averages. In addition, salt marsh vertical accretion and carbon burial rates can be highly variable on local scales depending on sampling locations within the marsh, e.g. levee vs marsh plain, and methods to determine carbon quantity, such as utilizing linear relationships between % organic matter and % carbon from other studies. Anthropogenic impacts on accretion and carbon burial may also influence interpretation of results. Utilizing consistent methods for local and regional marsh research will improve the accuracy of accretion and burial rates which is fundamental to our ability to predict responses to climate change. Our study examined sediment cores extracted from 6 salt marshes - 5 marshes along Texas to Florida coasts and 1 marsh on the Florida Atlantic coast. These marshes were selected for minimal human influence and consistent sampling and analytical methodologies were employed to compare vertical accretion and carbon burial variability on local and regional scales. Total organic carbon (TOC) and total nitrogen were determined via direct measurement and accretion rates were calculated based on 210Pb via 210Po alpha spectrometry. The lowest TOC inventory was found at Mission-Aransas, TX (18.57 g OC), whereas the highest was found at Apalachicola, FL (35.05 g OC). Anahuac, TX, was found to have the highest modern vertical accretion rates of all 6 sites, whereas Guana Tolomato-Matanzas, FL, has the lowest. This research yields regional carbon burial estimates for the Gulf of Mexico using comparable analyses to improve climate change and sea level rise predictions.

  20. [Left ventricular volume determination by first-pass radionuclide angiocardiography using a semi-geometric count-based method].

    PubMed

    Kinoshita, S; Suzuki, T; Yamashita, S; Muramatsu, T; Ide, M; Dohi, Y; Nishimura, K; Miyamae, T; Yamamoto, I

    1992-01-01

    A new radionuclide technique for the calculation of left ventricular (LV) volume by the first-pass (FP) method was developed and examined. Using a semi-geometric count-based method, the LV volume can be measured by the following equation: CV = CM/(L/d). V = (CT/CV) x d3 = (CT/CM) x L x d2. (V = LV volume, CV = voxel count, CM = the maximum LV count, CT = the total LV count, L = LV depth where the maximum count was obtained, and d = pixel size.) This theorem was applied to FP LV images obtained in the 30-degree right anterior oblique position. Frame-mode acquisition was performed and the LV end-diastolic maximum count and total count were obtained. The maximum LV depth was obtained as the maximum width of the LV on the FP end-diastolic image, using the assumption that the LV cross-section is circular. These values were substituted in the above equation and the LV end-diastolic volume (FP-EDV) was calculated. A routine equilibrium (EQ) study was done, and the end-diastolic maximum count and total count were obtained. The LV maximum depth was measured on the FP end-diastolic frame, as the maximum length of the LV image. Using these values, the EQ-EDV was calculated and the FP-EDV was compared to the EQ-EDV. The correlation coefficient for these two values was r = 0.96 (n = 23, p less than 0.001), and the standard error of the estimated volume was 10 ml.(ABSTRACT TRUNCATED AT 250 WORDS)

Top