1981-07-01
C’, and at temperature T, are Infiltrated by !L amougt of liquid of composition C’., such that ,C, 4 f+.C’L - X. V. 7 average carbon content of the...maximum liquid penetration was 100 mm at an infiltration pressure of 755 kPa. The average casting composition was 0.94 w/o carbon . The segregation at...content* at four casting locations. 2. Results The casting composition ( carbon content) as a function of casting location is given in Table D-IV. The
Effect of carbon nanofibers on the infiltration and thermal conductivity of carbon/carbon composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jinsong, E-mail: lijinsong@buaa.edu.cn; School of Physics and Nuclear Energy Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191; Luo, Ruiying, E-mail: ryluo@buaa.edu.cn
Highlights: {yields} The CNFs improve the infiltration rate and thermal properties of carbon/carbon composites. {yields} The densification rate increases with the CNF content increasing at the beginning of infiltration. {yields} The values of the thermal conductivity of the composite obtain their maximum values at 5 wt.%. -- Abstract: Preforms containing 0, 5, 10, 15 and 20 wt.% carbon nanofibers (CNFs) were fabricated by spreading layers of carbon cloth, and infiltrated using the electrified preform heating chemical vapor infiltration method (ECVI) under atmospheric pressure. Initial thermal gradients were determined. Resistivity and density evolutions with infiltration time have been recorded. Scanning electronmore » microscopy, polarized light micrograph and X-ray diffraction technique were used to analyze the experiment results. The results showed that the infiltration rate increased with the rising of CNF content, and after 120 h of infiltration, the density was the highest when the CNF content was 5 wt.%, but the composite could not be densified efficiently as the CNF content ranged from 10 wt.% to 20 wt.%. CNF-reinforced C/C composites have enhanced thermal conductivity, the values at 5 wt.% were increased by nearly 5.5-24.1% in the X-Y direction and 153.8-251.3% in the Z direction compared to those with no CNFs. When the additive content was increased to 20 wt.%, due to the holes and cavities in the CNF web and between carbon cloth and matrix, the thermal conductivities in the X-Y and Z directions decreased from their maximum values at 5 wt.%.« less
Choi, Gyung-Goo; Oh, Seung-Jin; Lee, Soon-Jang; Kim, Joo-Sik
2015-02-01
A fraction of palm kernel shells (PKS) was pyrolyzed in a fluidized bed reactor. The experiments were performed in a temperature range of 479-555 °C to produce bio-oil, biochar, and gas. All the bio-oils were analyzed quantitatively and qualitatively by GC-FID and GC-MS. The maximum content of phenolic compounds in the bio-oil was 24.8 wt.% at ∼500 °C. The maximum phenol content in the bio-oil, as determined by the external standard method, was 8.1 wt.%. A bio-oil derived from the pyrolysis of PKS was used in the synthesis of phenolic resin, showing that the bio-oil could substitute for fossil phenol up to 25 wt.%. The biochar was activated using CO2 at a final activation temperature of 900 °C with different activation time (1-3 h) to produce activated carbon. Activated carbons produced were microporous, and the maximum surface area of the activated carbons produced was 807 m(2)/g. Copyright © 2014 Elsevier Ltd. All rights reserved.
HIGH DENSITY NUCLEAR FUEL COMPOSITION
Litton, F.B.
1962-07-17
ABS>A nuclear fuel consisting essentially of uranium monocarbide and containing 2.2 to 4.6 wt% carbon, 0.1 to 2.3 wt% oxygen, 0.05 to 2.5 wt% nitrogen, and the balance uranium was developed. The maximum oxygen content was less than one-half the carbon content by weight and the carbon, oxygen, and nitrogen are present as a single phase substituted solid solution of UC, C, O, and N. A method of preparing the fuel composition is described. (AEC)
A study on experimental characteristic of microwave-assisted pyrolysis of microalgae.
Hu, Zhifeng; Ma, Xiaoqian; Chen, Chunxiang
2012-03-01
The microwave-assisted pyrolysis of Chlorella vulgaris was carried out under different microwave power levels, catalysts and contents of activated carbon and solid residue. The products, pyrolysis temperature and temperature rising rate were analyzed in order to obtain the optimal conditions. The results indicated that the higher the microwave power level was, the higher the maximum temperature rising rate and pyrolysis temperature were. The maximum bio-oil yield (35.83 wt.%) and gas yield (52.37%) were achieved under the microwave power of 1500 W and 2250 W, respectively. And 2250 W was the optimal power to obtain bio-fuel product. High microwave power level and catalyst can enhance the production of gas. Catalysts can promote the pyrolysis of C. vulgaris, and activated carbon was the best among the tested catalysts followed by the solid residue. The optimal content of activated carbon is 5% with the maximum bio-fuel yield of 87.47%. Copyright © 2011 Elsevier Ltd. All rights reserved.
Leaching behavior of total organic carbon, nitrogen, and phosphorus from banana peel.
Jiang, Ruixue; Sun, Shujuan; Xu, Yan; Qiu, Xiudong; Yang, Jili; Li, Xiaochen
2015-01-01
The leaching behavior of organic carbon and nutrient compounds from banana peel (BP) was investigated in batch assays with respect to particle size, contact time, pH value, and temperature. The granularity, contact time, pH, and temperature caused no significant effects on the leaching of total phosphorus (TP) from the BP. The maximum leached total nitrogen (TN) content was found at pH 5.0 and 90 minutes, while no significant effects were caused by the granularity and temperature. The maximum leached total organic carbon (TOC) content was found by using a powder of 40 mesh, 150 minutes and at pH 6.0, while the temperature had no effect on the TOC leaching. The proportions of the TN, TP, and TOC contents leached from the dried BP ranged from 33.6% to 40.9%, 60.4% to 72.7%, and 8.2% to 9.9%, respectively, indicating that BP could be a potential pollution source for surface and ground water if discharged as domestic waste or reutilized without pretreatment.
Area and Carbon Content of Sphagnum Since Last Glacial Maximum
Gajewski, K. [University of Ottawa, Ottawa, Ontario (Canada); Viau, A. [University of Ottawa, Ottawa, Ontario (Canada); Sawada, M. [University of Ottawa, Ottawa, Ontario (Canada); Atkinson, D. [University of Ottawa, Ottawa, Ontario (Canada); Wilson, S. [University of Ottawa, Ottawa, Ontario (Canada)
2002-01-01
The distribution and abundance of Sphagnum spores in North America and Eurasia are mapped for the past 21ka, as described in Gajewski et al. (2002). In summary, spore data were taken from existing pollen data bases, as were radiocarbon chronologies. The abundance of Sphagnum spores was mapped at 2000-year intervals beginning 21000 years BP (before present). The present-day distribution of abundant Sphagnum spores corresponds closely to areas with peatland development, with maximum Sphagnum abundance between 630 and 1300 mm annual precipitation and between -2° and 60°C mean annual air temperature. Carbon content of peatlands was generated from estimated peatland area, calculated values of peat thickness, and specified values of bulk density (112 × 103 g m-3) and fraction of carbon (51.7%).
Code of Federal Regulations, 2010 CFR
2010-10-01
...) High alloy steel plate: High alloy steel plate must comply with one of the following specifications... and with the indicated minimum tensile strength and elongation in the welded condition. (b) Carbon steel plate: The maximum allowable carbon content must be 0.31 percent when the individual specification...
49 CFR Appendix A to Part 178 - Specifications for Steel
Code of Federal Regulations, 2011 CFR
2011-10-01
... maximum. Manganese 1.10/1.60 0.50/1.00 1.25 maximum. Phosphorus, maximum 0.04 0.04 0.045.6 Sulfur, maximum... more than 0.15 percent phosphorus are permitted if carbon content does not exceed 0.15 percent and....03 Over 0.60 to 1.15 inclusive 0.04 0.04 Over 1.15 to 2.50 inclusive 0.05 0.05 Phosphorus 7 All...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-29
... of 0.40 percent of nitrogen, a minimum of 0.85 percent of the combined content of carbon and nitrogen, and a balance minimum of iron, having a maximum core hardness of 385 HB and a maximum surface hardness...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
... nickel, a minimum of 0.20 percent and a maximum of 0.40 percent of nitrogen, a minimum of 0.85 percent of the combined content of carbon and nitrogen, and a balance minimum of iron, having a maximum core...
Effect of C content on the mechanical properties of solution treated as-cast ASTM F-75 alloys.
Herrera, M; Espinoza, A; Méndez, J; Castro, M; López, J; Rendón, J
2005-07-01
The mechanical properties of solution treated ASTM F-75 alloys with various carbon contents have been studied. Alloys cast under the same conditions were subjected to solution treatment for several periods and then their tensile properties were evaluated. In the as-cast conditions, the alloys exhibited higher strength values with increasing carbon content whereas their ductility was not significantly affected. For the solution treated alloys, the variation of the strength was characterized by a progressive increase for short treatment times until a maximum value was achieved, which was followed by a diminution in this property for longer treatment times. This behavior was more accentuated for the case of the alloys with medium carbon contents, which also exhibited the highest values of strength. Furthermore, the alloy's ductility was enhanced progressively with increasing solution treatment time. This improvement in ductility was significantly higher for the medium carbon alloys compared with the rest of the studied alloys. Thus, high and low carbon contents in solution treated ASTM F-75 alloys did not produced sufficiently high tensile properties.
49 CFR Appendix A to Part 178 - Specifications for Steel
Code of Federal Regulations, 2010 CFR
2010-10-01
... 0.24 maximum 0.22 maximum. Manganese 1.10/1.60 0.50/1.00 1.25 maximum. Phosphorus, maximum 0.04 0.04... containing no more than 0.15 percent phosphorus are permitted if carbon content does not exceed 0.15 percent... 0.03 Over 0.60 to 1.15 inclusive 0.04 0.04 Over 1.15 to 2.50 inclusive 0.05 0.05 Phosphorus 7 All...
Bozym, David J; Uralcan, Betül; Limmer, David T; Pope, Michael A; Szamreta, Nicholas J; Debenedetti, Pablo G; Aksay, Ilhan A
2015-07-02
We use electrochemical impedance spectroscopy to measure the effect of diluting a hydrophobic room temperature ionic liquid with miscible organic solvents on the differential capacitance of the glassy carbon-electrolyte interface. We show that the minimum differential capacitance increases with dilution and reaches a maximum value at ionic liquid contents near 5-10 mol% (i.e., ∼1 M). We provide evidence that mixtures with 1,2-dichloroethane, a low-dielectric constant solvent, yield the largest gains in capacitance near the open circuit potential when compared against two traditional solvents, acetonitrile and propylene carbonate. To provide a fundamental basis for these observations, we use a coarse-grained model to relate structural variations at the double layer to the occurrence of the maximum. Our results reveal the potential for the enhancement of double-layer capacitance through dilution.
Acoustic emission-microstructural relationships in ferritic steels. Part 2: The effect of tempering
NASA Astrophysics Data System (ADS)
Scruby, C. B.; Wadley, H. N. G.
1985-07-01
Tempering of Fe-3.25 wt%Ni alloys with carbon contents of between 0.057 and 0.49 wt% leads to a pronounced acoustic emission activity during ambient temperature tensile testing. The maximum emission occurs from samples tempered approx. 250 deg C and appears only weakly influenced by carbon content. Mechanical property determinations link the maximum to a precipitation hardening effect. A model involving the cooperative motion of dislocations over distances corresponding to the lath-packet dimension is proposed. The mechanism responsible for cooperative motion is believed to be a precipitate shearing process, the first time such a process has been proposed for quenched and tempered ferritic steels. A second, much weaker source of emission has been identified in material subjected to prolonged tempering at 625 deg C. The mechanism responsible for this emission is believed to be the sudden multiplication and propagation of dislocations during microyield events. No evidence has been found to support the view that carbide fracture in quenched and tempered steels is a direct source of acoustic emission. The microstructural states in which most quenched and tempered steels are used in practice, generate very little detectable acoustic emission either during deformation or fracture, irrespective of carbon content.
The influence of carbon content on cyclic fatigue of NiTi SMA wires.
Matheus, T C U; Menezes, W M M; Rigo, O D; Kabayama, L K; Viana, C S C; Otubo, J
2011-06-01
To evaluate two NiTi wires with different carbon and oxygen contents in terms of mechanical resistance to rotary bending fatigue (RBF) under varied parameters of strain amplitude and rotational speed. The wires produced from two vacuum induction melting (VIM) processed NiTi ingots were tested, Ti-49.81 at%Ni and Ti-50.33 at%Ni, named VIM 1 and VIM 2. A brief analysis related to wire fabrication is also presented, as well as chemical and microstructural analysis by energy dispersive spectroscopy (EDS) and optical microscope, respectively. A computer controlled RBF machine was specially constructed for the tests. Three radii of curvature were used: 50.0, 62.5 and 75.0 mm, respectively, R(1), R(2) and R(3), resulting in three strain amplitudes ε(a) : 1.00%, 0.80% and 0.67%. The selected rotational speeds were 250 and 455 rpm. The VIM 1 wire had a high carbon content of 0.188 wt% and a low oxygen content of 0.036 wt%. The oxygen and carbon contents of wire VIM 2 did not exceed their maximum, of 0.070 and 0.050 wt%, according to ASTM standard (ASTM F-2063-00 2001). The wire with lower carbon content performed better when compared to the one with higher carbon content, withstanding 29,441 and 12,895 cycles, respectively, to fracture. The surface quality of the wire was associated with resistance to cyclic fatigue. Surface defects acted as stress concentrators points. Overall, the number of cycles to failure was higher for VIM 2 wires with lower carbon content. © 2011 International Endodontic Journal.
Pardo, Beatrice; Ferrer, Nabí; Sempere, Julià; Gonzalez-Olmos, Rafael
2016-11-01
A total of 11 different commercial activated carbons (AC) with well characterized textural properties and oxygen surface content were tested as adsorbents for the removal of aniline as a target water pollutant. The maximum adsorption capacity of aniline for the studied AC was from 138.9 to 257.9 mg g(-1) at 296.15 K and it was observed to be strongly related to the textural properties of the AC, mainly with the BET surface area and the micropore volume. It was not observed any influence of the oxygen surface content of the AC on the maximum adsorption capacity. However, it was found that at low aniline aqueous concentration, the presence of oxygen surface groups plays a dominant role during the adsorption. A high concentration of oxygen surface groups, mainly carboxylic and phenolic groups, decreases the aniline adsorption regardless of the surface area of the AC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lambe, Andrew T; Onasch, Timothy B; Croasdale, David R; Wright, Justin P; Martin, Alexander T; Franklin, Jonathan P; Massoli, Paola; Kroll, Jesse H; Canagaratna, Manjula R; Brune, William H; Worsnop, Douglas R; Davidovits, Paul
2012-05-15
Functionalization (oxygen addition) and fragmentation (carbon loss) reactions governing secondary organic aerosol (SOA) formation from the OH oxidation of alkane precursors were studied in a flow reactor in the absence of NO(x). SOA precursors were n-decane (n-C10), n-pentadecane (n-C15), n-heptadecane (n-C17), tricyclo[5.2.1.0(2,6)]decane (JP-10), and vapors of diesel fuel and Southern Louisiana crude oil. Aerosol mass spectra were measured with a high-resolution time-of-flight aerosol mass spectrometer, from which normalized SOA yields, hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios, and C(x)H(y)+, C(x)H(y)O+, and C(x)H(y)O(2)+ ion abundances were extracted as a function of OH exposure. Normalized SOA yield curves exhibited an increase followed by a decrease as a function of OH exposure, with maximum yields at O/C ratios ranging from 0.29 to 0.74. The decrease in SOA yield correlates with an increase in oxygen content and decrease in carbon content, consistent with transitions from functionalization to fragmentation. For a subset of alkane precursors (n-C10, n-C15, and JP-10), maximum SOA yields were estimated to be 0.39, 0.69, and 1.1. In addition, maximum SOA yields correspond with a maximum in the C(x)H(y)O+ relative abundance. Measured correlations between OH exposure, O/C ratio, and H/C ratio may enable identification of alkane precursor contributions to ambient SOA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demicheli, M.C.; Duprez, D.; Barbier, J.
The influence of potassium on the hydrogenolysis of cyclopentane and on the simultaneous carbon formation over a series of alumina-supported Ni catalysts was studied. With increasing potassium loadings at temperatures where either a deactivating two-dimensional carbon or a filamentary carbon was formed, the catalytic activity passed through a maximum and then decreased. With relatively high K-doses there was less coking in the presence of steam; the growth of filamentary carbon was then largely reduced. Characterization of the coked catalysts by temperature-programmed oxidation and SEM disclosed quite different roles of alkali: at lower contents, associated with alumina, potassium facilitates the formationmore » of filamentary carbon and minimizes the generation of coke precursors, whereas at higher contents it acts as a poison for both hydrogenolysis and coking reactions. In all cases, the alkali promoted the catalytic oxidation of the carbon deposits. Because of its localization, the alkali could also modify the nickel-carbon interface in carbon filaments. 32 refs., 12 figs., 5 tabs.« less
Composition effects on mechanical properties of tungsten-rhenium-hafnium-carbon alloys
NASA Technical Reports Server (NTRS)
Witzke, W. R.
1973-01-01
The mechanical properties of rod and sheet fabricated from arc melted W-4Re-Hf-C alloys containing up to about 0.8 mol percent hafnium carbide (HfC) were evaluated in the as-worked condition. The DBTT's of electropolished bend and tensile specimens were independent of HfC content in this range but dependent on excess Hf or C above that required for stoichiometric HfC. Low temperature ductility was a maximum at Hf contents slightly in excess of stoichiometric. Variations in high temperature strength were also dependent on excess Hf and C. Maximum creep strengthening also occurred at Hf contents in excess of stoichiometric. Analysis of extracted second phase particles indicated that creep strength was reduced by increasing WC content in the HfC particles.
Ota, Masaki; Takenaka, Motohiro; Sato, Yoshiyuki; Smith, Richard L; Inomata, Hiroshi
2015-01-01
Photoautotrophic fatty acid production of a highly CO2 -tolerant green alga Chlorococcum littorale in the presence of inorganic carbon at 295 K and light intensity of 170 µmol-photon m(-2) s(-1) was investigated. CO2 concentration in the bubbling gas was adjusted by mixing pure gas components of CO2 and N2 to avoid photorespiration and β-oxidation of fatty acids under O2 surrounding conditions. Maximum content of total fatty acid showed pH-dependence after nitrate depletion of the culture media and increased with the corresponding inorganic carbon ratio. Namely, [HCO3 (-) ]/([CO2 ]+n[ CO32-]) ratio in the culture media was found to be a controlling factor for photoautotrophic fatty acid production after the nitrate limitation. At a CO2 concentration of 5% (vol/vol) and a pH of 6.7, the fatty acid content was 47.8 wt % (dry basis) at its maximum that is comparable with land plant seed oils. © 2015 American Institute of Chemical Engineers.
Aguirre, Ana-Maria; Bassi, Amarjeet
2013-08-01
The microalgae Chlorella vulgaris produce lipids that after extraction from cells can be converted into biodiesel. However, these lipids cannot be efficiently extracted from cells due to the presence of the microalgae cell wall, which acts as a barrier for lipid removal when traditional extraction methods are employed. Therefore, a microalgae system with high lipid productivity and thinner cell walls could be more suitable for lipid production from microalgae. This study addresses the effect of culture conditions, specifically carbon dioxide and sodium nitrate concentrations, on biomass concentration and the ratio of lipid productivity/cellulose content. Optimization of culture conditions was done by response surface methodology. The empirical model for biomass concentration (R(2) = 96.0%) led to a predicted maximum of 1123.2 mg dw L(-1) when carbon dioxide and sodium nitrate concentrations were 2.33% (v/v) and 5.77 mM, respectively. For lipid productivity/cellulose content ratio (R(2) = 95.2%) the maximum predicted value was 0.46 (mg lipid L(-1) day(-1) )(mg cellulose mg biomass(-1) )(-1) when carbon dioxide concentration was 4.02% (v/v) and sodium nitrate concentration was 3.21 mM. A common optimum point for both variables (biomass concentration and lipid productivity/cellulose content ratio) was also found, predicting a biomass concentration of 1119.7 mg dw L(-1) and lipid productivity/cellulose content ratio of 0.44 (mg lipid L(-1) day(-1) )(mg cellulose mg biomass(-1) )(-1) for culture conditions of 3.77% (v/v) carbon dioxide and 4.01 mM sodium nitrate. The models were experimentally validated and results supported their accuracy. This study shows that it is possible to improve lipid productivity/cellulose content by manipulation of culture conditions, which may be applicable to any scale of bioreactors. Copyright © 2013 Wiley Periodicals, Inc.
[Effects of different fertilization treatments on soil humic acid structure characteristics].
Zhao, Nan; Lü, Yi-Zhong
2012-07-01
The present article used soil humic acid as research object to study effects on the structure characteristics of soil humic acid under the condition of applying cake fertilizer, green manure, straw fertilizer with the same contents of nitrogen and phosphorus. It used element analysis, micro infrared, and solid 13C-NMR for structure analysis, the results indicated that: The chemical composition and structure characteristics of humic acids were similar, but they also had many obvious differences. (1) The atomic ratios of H/C, O/C, and C/N were all different for the humic acids, the soil humic acid of cake fertilizer processing had the highest contents of H and N, green manure processing of soil humic acid contained the highest content of O, while straw fertilizer processing of soil humic acid contained highest content of C. (2) Infrared analysis displayed that the three soil humic acids contained protein Cake fertilizer processing of soil humic acid contained the most amino compounds, green manure processing of soil humic acid contained the maximum contents of hydroxyl and aliphatic hydrocarbon, while straw fertilizer processing of soil humic acid contained the highest contents of alcohol and phenol. (3) Solid 13C-NMR data indicated that cake fertilizer processing of soil humic acid contained the most carboxyl carbon, green manure processing of soil humic acid contained the highest contents of alkyl carbon and carbonyl carbon, while straw fertilizer processing of soil humic acids had the most alkoxy carbon and aromatic carbon
Li, Xiongwei; Wang, Zhe; Fu, Yangting; Li, Zheng; Liu, Jianmin; Ni, Weidou
2014-01-01
Measurement of coal carbon content using laser-induced breakdown spectroscopy (LIBS) is limited by its low precision and accuracy. A modified spectrum standardization method was proposed to achieve both reproducible and accurate results for the quantitative analysis of carbon content in coal using LIBS. The proposed method used the molecular emissions of diatomic carbon (C2) and cyanide (CN) to compensate for the diminution of atomic carbon emissions in high volatile content coal samples caused by matrix effect. The compensated carbon line intensities were further converted into an assumed standard state with standard plasma temperature, electron number density, and total number density of carbon, under which the carbon line intensity is proportional to its concentration in the coal samples. To obtain better compensation for fluctuations of total carbon number density, the segmental spectral area was used and an iterative algorithm was applied that is different from our previous spectrum standardization calculations. The modified spectrum standardization model was applied to the measurement of carbon content in 24 bituminous coal samples. The results demonstrate that the proposed method has superior performance over the generally applied normalization methods. The average relative standard deviation was 3.21%, the coefficient of determination was 0.90, the root mean square error of prediction was 2.24%, and the average maximum relative error for the modified model was 12.18%, showing an overall improvement over the corresponding values for the normalization with segmental spectrum area, 6.00%, 0.75, 3.77%, and 15.40%, respectively.
Co-pyrolysis of rice straw and polypropylene using fixed-bed pyrolyzer
NASA Astrophysics Data System (ADS)
Izzatie, N. I.; Basha, M. H.; Uemura, Y.; Mazlan, M. A.; Hashim, M. S. M.; Amin, N. A. M.; Hamid, M. F.
2016-11-01
The present work encompasses the impact of temperature (450, 500, 550, 600 °C) on the properties of pyrolysis oil and on other product yield for the co-pyrolysis of Polypropylene (PP) plastics and rice straw. Co-pyrolysis of PP plastic and rice straw were conducted in a fixed-bed drop type pyrolyzer under an inert condition to attain maximum oil yield. Physically, the pyrolysis oil is dark-brown in colour with free flowing and has a strong acrid smell. Copyrolysis between these typically obtained in maximum pyrolysis oil yields up to 69% by ratio 1:1 at a maximum temperature of 550 °C. From the maximum yield of pyrolysis oil, characterization of pyrolysis product and effect of biomass type of the composition were evaluated. Pyrolysis oil contains a high water content of 66.137 wt.%. Furfural, 2- methylnaphthalene, tetrahydrofuran (THF), toluene and acetaldehyde were the major organic compounds found in pyrolysis oil of rice straw mixed with PP. Bio-char collected from co-pyrolysis of rice straw mixed with PP plastic has high calorific value of 21.190 kJ/g and also carbon content with 59.02 wt.% and could contribute to high heating value. The non-condensable gases consist of hydrogen, carbon monoxide, and methane as the major gas components.
Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.
2016-01-01
We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2–53 μm) and sand (53–2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg−1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg−1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation. PMID:27251365
NASA Astrophysics Data System (ADS)
Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.
2016-06-01
We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg-1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg-1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.
Effect of home construction on soil carbon storage-A chronosequence case study.
Majidzadeh, Hamed; Lockaby, B Graeme; Governo, Robin
2017-07-01
Urbanization results in the rapid expansion of impervious surfaces, therefore a better understanding of biogeochemical consequences of soil sealing is crucial. Previous research documents a significant reduction in soil carbon and nitrogen content, however, it is unclear if this decrease is a result of top soil removal or long-term soil sealing. In this study, soil biogeochemical properties were quantified beneath homes built on a crawl space at two depths (0-10 cm, and 10-20 cm). All homes, 11-114 years in age, were sampled in the Piedmont region of Alabama and Georgia, USA. This age range enabled the use of a chronosequence approach to estimate carbon loss or gain under the sampled homes. The difference in soil carbon content beneath homes and adjoining urban lawns showed a quadratic relation with age. Maximum C loss occurred at approximately fifty years. The same pattern was observed for MBC: C ratio suggesting that the soil carbon content was decreasing beneath the homes for first fifty years, then increased afterward. The average soil C and N content in the top 10 cm were respectively 61.86% (±4.42%), and 65.77% (±5.65%) lower underneath the homes in comparison to urban lawns. Microbial biomass carbon (MBC), and nitrogen (MBN) were significantly lower below the homes compared to the urban lawns, while bulk density and phosphorus content were higher beneath the homes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimization of bio-ethanol autothermal reforming and carbon monoxide removal processes
NASA Astrophysics Data System (ADS)
Markova, D.; Bazbauers, G.; Valters, K.; Alhucema Arias, R.; Weuffen, C.; Rochlitz, L.
Experimental investigation of bio-ethanol autothermal reforming (ATR) and water-gas shift (WGS) processes for hydrogen production and regression analysis of the data is performed in the study. The main goal was to obtain regression relations between the most critical dependent variables such as hydrogen, carbon monoxide and methane content in the reformate gas and independent factors such as air-to-fuel ratio (λ), steam-to-carbon ratio (S/C), inlet temperature of reactants into reforming process (T ATRin), pressure (p) and temperature (T ATR) in the ATR reactor from the experimental data. Purpose of the regression models is to provide optimum values of the process factors that give the maximum amount of hydrogen. The experimental ATR system consisted of an evaporator, an ATR reactor and a one-stage WGS reactor. Empirical relations between hydrogen, carbon monoxide, methane content and the controlling parameters downstream of the ATR reactor are shown in the work. The optimization results show that within the considered range of the process factors the maximum hydrogen concentration of 42 dry vol. % and yield of 3.8 mol mol -1 of ethanol downstream of the ATR reactor can be achieved at S/C = 2.5, λ = 0.20-0.23, p = 0.4 bar, T ATRin = 230 °C, T ATR = 640 °C.
NASA Astrophysics Data System (ADS)
Ramírez-Herrera, C. A.; Pérez-González, J.; Solorza-Feria, O.; Romero-Partida, N.; Flores-Vela, A.; Cabañas-Moreno, J. G.
2018-04-01
In the last decade, numerous investigations have been devoted to the preparation of polypropylene-multiwalled carbon nanotubes (PP/MWCNT) nanocomposites having enhanced properties, and in particular, high electrical conductivities (> 1 S cm-1). The present work establishes that the highest electrical conductivity in PP/MWCNT nanocomposites is limited by the amount of nanofiller content which can be incorporated in the polymer matrix, namely, about 20 wt%. This concentration of MWCNT in PP leads to a maximum electrical conductivity slightly lower than 8 S cm-1, but only by assuring an adequate combination of dispersion and spatial distribution of the carbon nanotubes. The realization of such an optimal microstructure depends on the characteristics of the production process of the PP/MWCNT nanocomposites; in our experiments, involving composite fabrication by melt mixing and hot pressing, a second re-processing cycle is shown to increase the electrical conductivity values by up to two orders of magnitude, depending on the MWCNT content of the nanocomposite. A modest increase of the highest electrical conductivity obtained in nanocomposites with 21.5 wt% MWCNT content has been produced by the combined use of carbon nanofibers (CNF) and MWCNT, so that the total nanofiller content was increased to 30 wt% in the nanocomposite with PP—15 wt% MWCNT—15 wt%CNF.
Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67.
Torad, Nagy L; Salunkhe, Rahul R; Li, Yunqi; Hamoudi, Hicham; Imura, Masataka; Sakka, Yoshio; Hu, Chi-Chang; Yamauchi, Yusuke
2014-06-23
Nanoporous carbons (NPCs) have large specific surface areas, good electrical and thermal conductivity, and both chemical and mechanical stability, which facilitate their use in energy storage device applications. In the present study, highly graphitized NPCs are synthesized by one-step direct carbonization of cobalt-containing zeolitic imidazolate framework-67 (ZIF-67). After chemical etching, the deposited Co content can be completely removed to prepare pure NPCs with high specific surface area, large pore volume, and intrinsic electrical conductivity (high content of sp(2) -bonded carbons). A detailed electrochemical study is performed using cyclic voltammetry and galvanostatic charge-discharge measurements. Our NPC is very promising for efficient electrodes for high-performance supercapacitor applications. A maximum specific capacitance of 238 F g(-1) is observed at a scan rate of 20 mV s(-1) . This value is very high compared to previous works on carbon-based electric double layer capacitors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbon sequestration via reaction with basaltic rocks: geochemical modeling and experimental results
Rosenbauer, Robert J.; Thomas, Burt; Bischoff, James L.; Palandri, James
2012-01-01
Basaltic rocks are potential repositories for sequestering carbon dioxide (CO2) because of their capacity for trapping CO2 in carbonate minerals. We carried out a series of thermodynamic equilibrium models and high pressure experiments, reacting basalt with CO2-charged fluids over a range of conditions from 50 to 200 °C at 300 bar. Results indicate basalt has a high reactivity to CO2 acidified brine. Carbon dioxide is taken up from solution at all temperatures from 50 to 200 °C, 300 bar, but the maximum extent and rate of reaction occurs at 100 °C, 300 bar. Reaction path simulations utilizing the geochemical modeling program CHILLER predicted an equilibrium carbonate alteration assemblage of calcite, magnesite, and siderite, but the only secondary carbonate identified in the experiments was a ferroan magnesite. The amount of uptake at 100 °C, 300 bar ranged from 8% by weight for a typical tholeite to 26% for a picrite. The actual amount of CO2 uptake and extent of rock alteration coincides directly with the magnesium content of the rock suggesting that overall reaction extent is controlled by bulk basalt Mg content. In terms of sequestering CO2, an average basaltic MgO content of 8% is equivalent to 2.6 × 108 metric ton CO2/km3 basalt.
Carbon transfer from magnesia-graphite ladle refractories to ultra-low carbon steel
NASA Astrophysics Data System (ADS)
Russo, Andrew Arthur
Ultra-low carbon steels are utilized in processes which require maximum ductility. Increases in interstitial carbon lower the ductility of steel; therefore, it is important to examine possible sources of carbon. The refractory ladle lining is one such source. Ladle refractories often contain graphite for its desirable thermal shock and slag corrosion resistance. This graphite is a possible source of carbon increase in ultra-low carbon steels. The goal of this research is to understand and evaluate the mechanisms by which carbon transfers to ultra-low carbon steel from magnesia-graphite ladle refractory. Laboratory dip tests were performed in a vacuum induction furnace under an argon atmosphere to investigate these mechanisms. Commercial ladle refractories with carbon contents between 4-12 wt% were used to investigate the effect of refractory carbon content. Slag-free dip tests and slag-containing dip tests with varying MgO concentrations were performed to investigate the influence of slag. Carbon transfer to the steel was controlled by steel penetrating into the refractory and dissolving carbon in dip tests where no slag was present. The rate limiting step for this mechanism is convective mass transport of carbon into the bulk steel. No detectable carbon transfer occurred in dip tests with 4 and 6 wt%C refractories without slag because no significant steel penetration occurred. Carbon transfer was controlled by the corrosion of refractory by slag in dip tests where slag was present.
Supercritical water pyrolysis of sewage sludge.
Ma, Wenchao; Du, Guiyue; Li, Jian; Fang, Yuanhao; Hou, Li'an; Chen, Guanyi; Ma, Degang
2017-01-01
Municipal sewage sludge (SS) from wastewater treatment plant containing high water content (>85wt.%), lead to the difficulty of co-combustion with MSW or coal due to the high cost of drying. This study explores an alternative method by supercritical water (SCW) pyrolysis of sewage sludge (SS) in a high pressure reaction vessel. The effects of temperature and moisture content of SS on yield and composition of the products (bio-oil, bio char and non-condensable gas) were studied. A temperature of 385°C and moisture content of 85wt.% were found to be the optimum conditions for the maximum bio-oil production of 37.23wt.%, with a higher heating value of 31.08MJ/kg. In the optimum condition, the yields of aliphatic hydrocarbon and phenols were about 29.23wt.% and 12.51wt.%, respectively. The physical and chemical properties of bio-char were analyzed by using XRF and BET. Results of GC analyses of NCG showed that it has the maximum HHV of 13.39MJ/m 3 at 445°C and moisture content of 85wt.%. The reaction path from SS to bio-oil through SCW pyrolysis was given. Moreover, carbon balance was calculated for the optimal condition, and finding out that 64.27wt.% of the carbon content was transferred from SS to bio-oil. Finally, this work demonstrates that the SCW pyrolysis is a promising disposal method for SS. Copyright © 2016. Published by Elsevier Ltd.
The effect of aluminum on the work hardening and wear resistance of hadfield manganese steel
NASA Astrophysics Data System (ADS)
Zuidema, B. K.; Subramanyam, D. K.; Leslie, W. C.
1987-09-01
A study has been made of the work-hardening and wear resistance of aluminum-modified Hadfield manganese steels ranging in composition from 1.00 to 1.75 Pct carbon and from 0.0 to 4.0 Pct aluminum. Aluminum additions reduced carbon activity and diffusivity in austenites of Hadfield’s composition, increasing the metastable solubility of carbon in Hadfield steel. Aluminum additions inhibited mechanical twinning and, by inference, increased the stacking fault energy of austenite. Increasing carbon in solution in austenite expanded the temperature range over which dynamic strain aging and rapid work hardening occurred. Simultaneous aluminum additions and increased carbon content increased the work-hardening rate and high-stress abrasion resistance of Hadfield steel, but there was an optimum aluminum content beyond which both declined. Maximum work-hardening rate was exhibited by an alloy containing nominally 1.75 Pct C, 13.5 Pct Mn, and 1.3 Pct Al. Improved high-stress abrasion resistance was also found in an alloy containing nominally 1.00 Pct C, 13.5 Pct Mn, and 4.0 Pct Al.
Tropical Africa: Land use, biomass, and carbon estimates for 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.; Gaston, G.; Daniels, R.C.
1996-06-01
This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980 and describes a methodology that may be used to extend this data set to 1990 and beyond based on population and land cover data. The biomass data and carbon estimates are for woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with the possible magnitude of historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth`s landmore » surface and includes those countries that for the most part are located in Tropical Africa. Countries bordering the Mediterranean Sea and in southern Africa (i.e., Egypt, Libya, Tunisia, Algeria, Morocco, South Africa, Lesotho, Swaziland, and Western Sahara) have maximum potential biomass and land cover information but do not have biomass or carbon estimate. The database was developed using the GRID module in the ARC/INFO{sup TM} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass-carbon values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.« less
Natural desulfurization in coal-fired units using Greek lignite.
Konidaris, Dimitrios N
2010-10-01
This paper analyzes the natural desulfurization process taking place in coal-fired units using Greek lignite. The dry scrubbing capability of Greek lignite appears to be extremely high under special conditions, which can make it possible for the units to operate within the legislative limits of sulfur dioxide (SO2) emissions. According to this study on several lignite-fired power stations in northern Greece, it was found that sulfur oxide emissions depend on coal rank, sulfur content, and calorific value. On the other hand, SO2 emission is inversely proportional to the parameter gammaCO2(max), which is equal to the maximum carbon dioxide (CO2) content by volume of dry flue gas under stoichiometric combustion. The desulfurization efficiency is positively correlated to the molar ratio of decomposed calcium carbonate to sulfur and negatively correlated to the free calcium oxide content of fly ash.
NASA Astrophysics Data System (ADS)
Delusina, I.; Verosub, K. L.
2014-12-01
The Sacramento-San Joaquin Delta of California is a critical ecosystem for reconstructing natural and anthropogenic impacts on environmental conditions, understanding stream development, and assessing the fate of artificial levees. Peat formation is influenced by all these processes and represents the combined effects of climatic and hydrographic evolution. In the framework of Project REPEAT, we studied three peat cores using palynological and paleomagnetic methods, focusing on the influence of the general climatic setting and postglacial sea-level changes during the last 6500 years on the process of peat formation and the interplay of local environmental and hydrological conditions. In this report we consider the hypothesis that peat accretion was closely related to general climatic trends, as reflected in atmospheric carbon storage in the Delta sediments, and to general sea-level fluctuation. Based on the fact that the bulk density of the peat is closely correlated with organic carbon content, we examine: 1) whether the pollen concentration is highest when the organic carbon content in the cores is a maximum and corresponds to the warmest episodes; 2) whether organic content is inversely related to the lithic content as determined by paleomagnetic measurements; 3) whether a salinity index based on pollen criteria is highest during the highest stands of sea level; 4) and whether the C3/C4 plant index is a good measure of the carbon content of the peat.
[Seasonality and contribution to acid rain of the carbon abundance in rainwater].
Xu, Tao; Song, Zhi-guang; Liu, Jun-feng; Wang, Cui-ping
2008-02-01
This paper reports the results from a study of the carbon abundance in rainwater of Guangzhou city, China. The determination of TOC, DOC, POC and PEC helps to study the seasonality of carbon abundance and its contribution to the acid rain. The results display the fact that the average contents of TOC, DOC, POC and PEC are 7.10 mg/L, 3.58 mg/L, 3.60 mg/L and 0.72 mg/L, respectively. These results confirm the deep effect of the organic pollutant to the rain. The seasonality exists in the carbon abundance of rainwater. The contents of TOC and DOC are up to the maximum in spring and the minimum in summer; the contribution of POC to TOC in summer is obviously higher than that in other seasons; and the relative content of POC is clearly higher in dry season than that in wet season. The seasonality reflects the more emission of the total pollutant in spring and the solid particle pollutant in summer than those in other seasons. Moreover, the emission of the organic pollutant from the mobile vehicles is more obvious in dry season than that in wet season. The contents of TOC and DOC have the negative correlation to the pH values, which confirms the contribution effect of the organic pollutant, such as vehicle emission, to the acid rain.
Estimation of organic carbon loss potential in north of Iran
NASA Astrophysics Data System (ADS)
Shahriari, A.; Khormali, F.; Kehl, M.; Welp, G.; Scholz, Ch.
2009-04-01
The development of sustainable agricultural systems requires techniques that accurately monitor changes in the amount, nature and breakdown rate of soil organic matter and can compare the rate of breakdown of different plant or animal residues under different management systems. In this research, the study area includes the southern alluvial and piedmont plains of Gorgan River extended from east to west direction in Golestan province, Iran. Samples from 10 soil series and were collected from cultivation depth (0-30 cm). Permanganate-oxidizable carbon (POC) an index of soil labile carbon, was used to show soil potential loss of organic carbon. In this index shows the maximum loss of OC in a given soil. Maximum loss of OC for each soil series was estimated through POC and bulk density (BD). The potential loss of OC were estimated between 1253263 and 2410813 g/ha Carbon. Stable organic constituents in the soil include humic substances and other organic macromolecules that are intrinsically resistant against microbial attack, or that are physically protected by adsorption on mineral surfaces or entrapment within clay and mineral aggregates. However, the (Clay + Silt)/OC ratio had a negative significant (p < 0.001) correlation with POC content, confirming the preserving effect of fine particle.
NASA Astrophysics Data System (ADS)
Semelsberger, Troy A.; Borup, Rodney L.
Thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the combined processes of dimethyl ether (DME) partial oxidation and steam reforming were investigated as a function of oxygen-to-carbon ratio (0.00-2.80), steam-to-carbon ratio (0.00-4.00), temperature (100 °C-600 °C), pressure (1-5 atm) and product species. Thermodynamically, dimethyl ether processed with air and steam generates hydrogen-rich fuel-cell feeds; however, the hydrogen concentration is less than that for pure DME steam reforming. Results of the thermodynamic processing of dimethyl ether indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 °C, oxygen-to-carbon ratios greater than 0.00 and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure has negligible effects on the hydrogen content. Thermodynamically, dimethyl ether can produce concentrations of hydrogen and carbon monoxide of 52% and 2.2%, respectively, at a temperature of 300 °C, and oxygen-to-carbon ratio of 0.40, a pressure of 1 atm and a steam-to-carbon ratio of 1.50. The order of thermodynamically stable products (excluding H 2, CO, CO 2, DME, NH 3 and H 2O) in decreasing mole fraction is methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol and methyl-ethyl ether; trace amounts of formaldehyde, formic acid and methanol are observed. Ammonia and hydrogen cyanide are also thermodynamically favored products. Ammonia is favored at low temperatures in the range of oxygen-to-carbon ratios of 0.40-2.50 regardless of the steam-to-carbon ratio employed. The maximum ammonia content (i.e., 40%) occurs at an oxygen-to-carbon ratio of 0.40, a steam-to-carbon ratio of 1.00 and a temperature of 100 °C. Hydrogen cyanide is favored at high temperatures and low oxygen-to-carbon ratios with a maximum of 3.18% occurring at an oxygen-to-carbon ratio of 0.40 and a steam-to-carbon ratio of 0.00 in the temperature range of 400 °C-500 °C. Increasing the system pressure shifts the equilibrium toward ammonia and hydrogen cyanide.
Hybrid Composite Using Natural Filler and Multi-Walled Carbon Nanotubes (MWCNTs)
NASA Astrophysics Data System (ADS)
Nabinejad, Omid; Sujan, D.; Rahman, Muhammad Ekhlasur; Liew, Willey Yun Hsien; Davies, Ian J.
2017-12-01
This paper presents an experimental study on the development of hybrid composites comprising of multi-walled carbon nanotubes (MWCNTs) and natural filler (oil palm shell (OPS) powder) within unsaturated polyester (UP) matrix. The results revealed that the dispersion of pristine MWCNTs in the polymer matrix was strongly enhanced through use of the solvent mixing method assisted by ultrasonication. Four different solvents were investigated, namely, ethanol, methanol, styrene and acetone. The best compatibility with minimum side effects on the curing of the polyester resin was exhibited by the styrene solvent and this produced the maximum tensile and flexural properties of the resulting nanocomposites. A relatively small amount of pristine MWCNTs well dispersed within the natural filler polyester composite was found to be capable of improving mechanical properties of hybrid composite. However, increasing the MWCNT amount resulted in increased void content within the matrix due to an associated rapid increase in viscosity of the mixture during processing. Due to this phenomenon, the maximum tensile and flexural strengths of the hybrid composites were achieved at MWCNT contents of 0.2 to 0.4 phr and then declined for higher MWCNT amounts. The flexural modulus also experienced its peak at 0.4 phr MWCNT content whereas the tensile modulus exhibited a general decrease with increasing MWCNT content. Thermal stability analysis using TGA under an oxidative atmosphere showed that adding MWCNTs shifted the endset degradation temperature of the hybrid composite to a higher temperature.
USDA-ARS?s Scientific Manuscript database
Introduction: Contaminated fresh-cut spinach and other leafy greens have caused foodborne illness in the United States. In response, growers are adopting recommendations stated in the California Leafy Greens Marketing Agreement (LGMA). The LGMA permits a maximum population of 126 Most Probable Nu...
Salinity of the Eocene Arctic Ocean from oxygen isotope analysis of fish bone carbonate
NASA Astrophysics Data System (ADS)
Waddell, Lindsey M.; Moore, Theodore C.
2008-03-01
Stable isotope analysis was performed on the structural carbonate of fish bone apatite from early and early middle Eocene samples (˜55 to ˜45 Ma) recently recovered from the Lomonosov Ridge by Integrated Ocean Drilling Program Expedition 302 (the Arctic Coring Expedition). The δ18O values of the Eocene samples ranged from -6.84‰ to -2.96‰ Vienna Peedee belemnite, with a mean value of -4.89‰, compared to 2.77‰ for a Miocene sample in the overlying section. An average salinity of 21 to 25‰ was calculated for the Eocene Arctic, compared to 35‰ for the Miocene, with lower salinities during the Paleocene Eocene thermal maximum, the Azolla event at ˜48.7 Ma, and a third previously unidentified event at ˜47.6 Ma. At the Azolla event, where the organic carbon content of the sediment reaches a maximum, a positive δ13C excursion was observed, indicating unusually high productivity in the surface waters.
NASA Astrophysics Data System (ADS)
Mishra, Srinibash; Roy, Gour Gopal
2016-08-01
The effect of carbon-to-hematite molar ratio has been studied on the reduction efficiency of iron ore-coal composite pellet reduced at 1523 K (1250 °C) for 20 minutes in a laboratory scale multi-layer bed rotary hearth furnace (RHF). Reduced pellets have been characterized through weight loss measurement, estimation of porosity, shrinkage, qualitative and quantitative phase analysis by XRD. Performance parameters such as the degree of reduction, metallization, carbon efficiency, productivity, and compressive strength have been calculated to compare the process efficacy at different carbon levels in the pellets. Pellets with optimum carbon-to-hematite ratio (C/Fe2O3 molar ratio = 1.66) that is much below the stoichiometric carbon required for direct reduction of hematite yielded maximum reduction, better carbon utilization, and productivity for all three layers. Top layer exhibited maximum reduction at comparatively lower carbon level (C/Fe2O3 molar ratio <2.33) in the pellet, while bottom layer exceeded top layer reduction at higher carbon level (C/Fe2O3 molar ratio >2.33). Correlation between degree of reduction and metallization indicated non-isothermal kinetics influenced by heat and mass transfer in multi-layer bed RHF. Compressive strength of the partially reduced pellet with optimum carbon content (C/Fe2O3 molar ratio = 1.66) showed that they could be potentially used as an alternate feed in a blast furnace or any other smelting reactor.
Tian, Sicong; Jiang, Jianguo
2012-12-18
Direct gas-solid carbonation reactions of residues from an air pollution control system (APCr) were conducted using different combinations of simulated flue gas to study the impact on CO₂ sequestration. X-ray diffraction analysis of APCr determined the existence of CaClOH, whose maximum theoretical CO₂ sequestration potential of 58.13 g CO₂/kg APCr was calculated by the reference intensity ratio method. The reaction mechanism obeyed a model of a fast kinetics-controlled process followed by a slow product layer diffusion-controlled process. Temperature is the key factor in direct gas-solid carbonation and had a notable influence on both the carbonation conversion and the CO₂ sequestration rate. The optimal CO₂ sequestrating temperature of 395 °C was easily obtained for APCr using a continuous heating experiment. CO₂ content in the flue gas had a definite influence on the CO₂ sequestration rate of the kinetics-controlled process, but almost no influence on the final carbonation conversion. Typical concentrations of SO₂ in the flue gas could not only accelerate the carbonation reaction rate of the product layer diffusion-controlled process, but also could improve the final carbonation conversion. Maximum carbonation conversions of between 68.6% and 77.1% were achieved in a typical flue gas. Features of rapid CO₂ sequestration rate, strong impurities resistance, and high capture conversion for direct gas-solid carbonation were proved in this study, which presents a theoretical foundation for the applied use of this encouraging technology on carbon capture and storage.
Flux of particulate matter through copepods in the Northeast water polynya
NASA Astrophysics Data System (ADS)
Daly, Kendra L.
1997-01-01
Particulate organic carbon (POC) and nitrogen (PON) production by large calanoid copepods was investigated on the northeast Greenland shelf during August 1992 and May to August 1993. Both Calanus hyperboreus and C. glacialis females, when suspended in seawater collected from the chlorophyll maximum, produced about 40 pellets per day, which contained a carbon and nitrogen content equivalent to 8% and 6% of body carbon, respectively, and 2% of body nitrogen. In experiments, the carbon:nitrogen (C:N) ratio by weight of suspended particulates, C. hyperboreus, and fecal pellets was 6.7, 7.7 and 28.5, respectively. The unusually high C:N ratio for pellets, in part, may be attributed to elevated ratios of > 20μm size fractions of particulate organic matter, the size fraction more common in the diet of these large copepods and the fraction dominated by diatoms according to microscopic and pigment data. The implied elevated C:N ratios of large phytoplankton cells were probably due to nitrogen deficiency, as shown by other studies in this region. In addition, female C. hyperboreus appeared to be more efficient in assimilating nitrogen than carbon, which also would have contributed to high C:N ratios in egested pellets. Unfractionated POC concentrations explained 54% of the variability in carbon egestion and 70% of the variability in nitrogen egestion in copepods, whereas copepod body content accounted for little of the variation on the short time scales of the experiments. Carbon egestion by C. hyperboreus was positively correlated with POC concentrations at the depth of the chlorophyll maximum, while nitrogen egestion was negatively correlated with PON concentrations in the euphotic zone. Estimates of potential community egestion rates for the upper water column indicate that copepods represent a major pathway of organic carbon transformation in this Arctic shelf system. On average, copepods may have ingested 45% of the primary production and egested fecal matter equivalent to 20% of the carbon and 12% of the nitrogen particulate flux sedimenting from the surface layer. However, several lines of evidence suggest that pellets were remineralized in the water column and, hence, may have contributed little organic carbon and nitrogen to the benthos.
NASA Astrophysics Data System (ADS)
Uniyal, S.; Singh, S.; Rao, S. S.
2017-12-01
Trees Outside Forest (TOF) grow on a variety of landscapes , e.g. linear, scattered, block etc. and include unique range of species that are specific to the local environmental and socio-cultural conditions. TOF usefulness came into knowledge when the ongoing anthropogenic activities increases the CO2 concentration in the atmosphere and it has been understood that CO2 can also be sequestered by increasing rate of afforestation.This study illustrates a methodology to estimate individual tree phytomass, their contribution to the environment and microclimate, spatial distribution of TOF phytomass and their carbon storage in Gwalior and Sheopur districts of Madhya Pradesh using very high resolution satellite data. Attempt has been made to estimate phytomass at pixel level also using various regression models. Phytomass is an important parameter to assess the atmospheric carbon that is harvested by trees .More the amount of phytomass more will be the Carbon content of trees and in similar way more will be their contribution for regulation of CO2 and vice versa. Tree Canopies extraction was done using very high resolution satellite data within an area of 5´5 km grids using various remote sensing techniques. Field data were collected from different types of TOFs, e.g. linear, scattered, block etc. from varying plot shapes and sizes, and Stratum-wise phytomass was estimated. Findings of study reported here says that varying phytomass range has been observed for road, agriculture and settlement with varying number of individual trees.The Phytomass in scattered TOFs varied from 0.22 to 15.68 t/ha and carbon content 0.104 to 7.4tC whereas, in linear TOFs it varied from 5.26 to 156.71 t/ha with carbon content 2.49 to 74.43tC. Phytomass along the road-side varied from 20.75 to 879.8 t/ha and carbon content 9.85 to 417.90 tC. Stratum-wise total phytomass and carbon content in areas having TOF was estimated. Of the 10 grids considered, the maximum Phytomass of 1363 tonnes with carbon content 647.425tC was recorded around Gwalior airport and minimum of 367.55 tonnes and carbon content 174.325tC in the surroundings of Mohana town. Analysis has been performed on how climatic variables affect the growth and structure of these trees and vice versa.
Jiang, Zhi Jian; Huang, Xiao-Pin; Zhang, Jing-Ping
2010-10-01
The effects of CO₂ enrichment on various ecophysiological parameters of tropical seagrass Thalassia hemprichii (Ehrenb.) Aschers were tested. T. hemprichii, collected from a seagrass bed in Xincun Bay, Hainan island of Southern China, was cultured at 4 CO₂ (aq) concentrations in flow-through seawater aquaria bubbled with CO₂ . CO₂ enrichment considerably enhanced the relative maximum electron transport rate (RETR(max) ) and minimum saturating irradiance (E(k) ) of T. hemprichii. Leaf growth rate of CO₂ -enriched plants was significantly higher than that in unenriched treatment. Nonstructural carbohydrates (NSC) of T. hemprichii, especially in belowground tissues, increased strongly with elevated CO₂ (aq), suggesting a translocation of photosynthate from aboveground to belowground tissues. Carbon content in belowground tissues showed a similar response with NSC, while in aboveground tissues, carbon content was not affected by CO₂ treatments. In contrast, with increasing CO₂ (aq), nitrogen content in aboveground tissues markedly decreased, but nitrogen content in belowground was nearly constant. Carbon: nitrogen ratio in both tissues were obviously enhanced by increasing CO₂ (aq). Thus, these results indicate that T. hemprichii may respond positively to CO₂ -induced acidification of the coastal ocean. Moreover, the CO₂ -stimulated improvement of photosynthesis and NSC content may partially offset negative effects of severe environmental disturbance such as underwater light reduction. © 2010 Institute of Botany, Chinese Academy of Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, S.; Ghosh, A., E-mail: sspag@iacs.res.in
We have studied ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of freemore » ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.« less
NASA Astrophysics Data System (ADS)
Leal-Acosta, M. L.; Shumilin, E.
2016-12-01
The intertidal geothermal hot springs (GHS) in Bahia Concepcion, Gulf of California are the source of potentially toxic elements to the adjacent marine environment surrounded by mangroves trees. The anoxic sediments enriched in organic carbon accumulate As, Hg and other heavy metals that can be bioavailable for the biota. To know the vertical distribution of these elements the geochemistry of a short sediment core was carried out. It was collected in June, 2010 in the mangrove area near to GHS (1 m) during a low tide, pushing manually a polypropylene tube into the sediments. The extracted sediment core was cut with plastic knife on 1 cm thick sub-samples, stored in plastic bags and transported on ice to the laboratory. The major and trace elements contents were determinate by ICP-MS after total digestion with stronger acids (HClO4-HNO3-HCl-HF). Certificate reference materials were used for the quality control of the method obtaining good recoveries for most of the elements (80-105%). The sediment core had high maximum contents of CaCO3 (70%) and total organic carbon (12%). The concentration of Hg along the core ranges from 650 to 74300 mg kg-1 and had more than three orders of magnitude above the reference values of 40 mg kg-1 for the Upper Continental Crust (UCC)1. In contrast, As ranges from 12 to 258 mg kg-1 resulting in more than one order of magnitude respect to UCC1 (1.7 mg kg-1). Similar pattern result for Mn, Cu, Pb, and Zn with the maximum values of 3200 mg kg-1, 42 mg kg-1, 12.4 mg kg-1, 71 mg kg-1 respectively that coincide with the maximum for As at the same core depth (4 cm). The Ca, Li, Co, Sb, U, and Mg also show high contents in comparison with the UCC1reference values. The maximum contents of Mo and Cd coincide with maximum concentration of sulfur (2%) at 6 to 8 cm. The enrichment factor calculated using Al as normalizing element showed Cd (7-280), As (26-329) and Hg (23-1196) as highly enriched mainly in the first centimeters of the sediment core. 1 Wedephol (1995)
USDA-ARS?s Scientific Manuscript database
In response to U.S. foodborne illnesses caused by contaminated spinach, growers have adopted regulations stated in the California Leafy Greens Marketing Agreement (LGMA). The LGMA permits a maximum population mean of 126 Most Probable Number (MPN) generic E. coli per 100 ml irrigation water. These...
Liu, Ming-Hsu; Chen, Yi-Jr; Lee, Chia-Yin
2018-03-01
Polyhydroxyalkanoates (PHAs) are biopolyesters produced by microorganisms that are environmentally friendly. PHAs can be used to replace traditional plastic to reduce environmental pollution in various fields. PHA production costs are high because PHA must be produced from a carbon substrate. The purpose of this study was to find the strain that can used the BDF by-product as the sole carbon source to produce high amounts of medium-chain-length PHA. Three isolates were evaluated for potential PHA production by using biodiesel-derived crude glycerol as the sole carbon source. Among them, Pseudomonas mosselii TO7 yielded high PHA content. The PHA produced from P. mosselii TO7 were medium-chain-length-PHAs. The PHA content of 48% cell dry weight in 48 h with a maximum PHA productivity of 13.16 mg PHAs L -1 h -1 . The narrow polydispersity index value of 1.3 reflected the homogeneity of the polymer chain, which was conducive to industrial applications.
Tribological characterization of TiCN coatings deposited by two crossed laser ablation plasma beams
NASA Astrophysics Data System (ADS)
Camps, Enrique; Escobar-Alarcón, L.; Camps, Iván; Muhl, Stephen; Flores, Martín
2013-03-01
The simultaneous laser ablation of two targets (graphite and titanium) in an Ar-N2 gas mixture was carried out to deposit thin films of the ternary compound TiCN at room temperature. The base conditions used to produce the TiN without carbon were taken from our previous studies. The experimental conditions for the ablation of the carbon target were varied so that the carbon content in the films could be changed depending on the carbon ion energy. The control of the experimental conditions was carried out using a Langmuir planar probe which permitted the determination of the mean kinetic ion energy. The maximum hardness value of 35 GPa, was obtained with a carbon ion energy of about 250 eV, which corresponds to a film with 5 at% carbon content. In order to perform tribological and scratch tests, two types of substrate were used: nitrided AISI 316 stainless steel and AISI 316 stainless steel previously coated with a thin titanium layer (˜50 nm). Values of the wear rate in the range of 1.39×10-6 to 7.45×10-5 mm3 N-1 m-1, friction coefficient from 0.21 to 0.28 and adhesion from scratch test measurements up to 80 N for final critical load, were obtained.
Chang, Qigang; Lin, Wei; Ying, Wei-Chi
2012-06-01
Iron-impregnated granular activated carbons (Fe-GAC) can remove arsenic effectively from water. In this study, Fe-GACs with iron content of 1.64 to 28.90% were synthesized using a new multi-step procedure for the investigation of effects of iron amount on arsenic adsorption capacities and kinetics. Langmuir model satisfactorily fit arsenic adsorption on Fe-GACs. The maximum arsenic adsorption capacity (q(m)) increased significantly with iron impregnation and reached 1,867 to 1,912 microg/g with iron content of 9.96 to 13.59%. Further increase of iron content (> 13.59%) caused gradual decrease of q(m). It was found that the amount of impregnated iron showed little impact on the affinity for arsenate. Kinetic study showed that the amount of impregnated iron affected the arsenic intraparticle diffusion rate greatly. The pseudo-second-order kinetic model fit arsenic adsorption kinetics on Fe-GACs better than the pseudo-first-order model. The arsenic adsorption rate increased with increasing of iron content from 1.64% to 13.59%, and then decreased with more impregnated iron (13.59 to 28.90%).
Wang, Meimei; Xia, Yonggao; Wang, Xiaoyan; Xiao, Ying; Liu, Rui; Wu, Qiang; Qiu, Bao; Metwalli, Ezzeldin; Xia, Senlin; Yao, Yuan; Chen, Guoxin; Liu, Yan; Liu, Zhaoping; Meng, Jian-Qiang; Yang, Zhaohui; Sun, Ling-Dong; Yan, Chun-Hua; Müller-Buschbaum, Peter; Pan, Jing; Cheng, Ya-Jun
2016-06-08
A new facile scalable method has been developed to synthesize silicon oxycarbide (SiOC)/carbon nanohybrids using difunctional dental methacrylate monomers as solvent and carbon source and the silane coupling agent as the precursor for SiOC. The content (from 100% to 40% by mass) and structure (ratio of disordered carbon over ordered carbon) of the free carbon matrix have been systematically tuned by varying the mass ratio of methacryloxypropyltrimethoxysilane (MPTMS) over the total mass of the resin monomers from 0.0 to 6.0. Compared to the bare carbon anode, the introduction of MPTMS significantly improves the electrochemical performance as a lithium-ion battery anode. The initial and cycled discharge/charge capacities of the SiOC/C nanohybrid anodes reach maximum with the MPTMS ratio of 0.50, which displays very good rate performance as well. Detailed structures and electrochemical performance as lithium-ion battery anodes have been systematically investigated. The structure-property correlation and corresponding mechanism have been discussed.
Li, Penglin; Miao, Xiaoling; Li, Rongxiu; Zhong, Jianjiang
2011-01-01
Rice straw hydrolysate was used as lignocellulose-based carbon source for Chlorella pyrenoidosa cultivation and the feasibility of in situ biodiesel production was investigated. 13.7 g/L sugar was obtained by enzymatic hydrolyzation of rice straw. Chlorella pyrenoidosa showed a rapid growth in the rice straw hydrolysate medium, the maximum biomass concentration of 2.83 g/L was obtained in only 48 hours. The lipid content of the cells reached as high as 56.3%. In situ transesterification was performed for biodiesel production. The optimized condition was 1 g algal powder, 6 mL n-hexane, and 4 mL methanol with 0.5 M sulfuric acid at the temperature of 90°C in 2-hour reaction time, under which over 99% methyl ester content and about 95% biodiesel yield were obtained. The results suggested that the method has great potential in the production of biofuels with lignocellulose as an alternative carbon source for microalgae cultivation. PMID:21318171
NASA Astrophysics Data System (ADS)
Yuliah, Y.; Kartawidjaja, M.; Suryaningsih, S.; Ulfi, K.
2017-05-01
Rice husk and coconut shell have been disposed or burned as waste. As biomass, both of materials are the potential sources of carbon which can be utilized as alternative energy sources. The energy content can be exploited more intensively when packaged in a brief and convenient. In this work, the mixtures of rice husks and coconut shells charcoal were prepared as briquettes. After going through the carbonization process, several measurements have been taken to find out the factors that determine the value of heat energy contains by each component of the charcoals. The basic ingredients briquettes prepared from rice husk and coconut shell charcoal with varying composition and addition of tapioca starch gradually as adhesive material to obtain briquettes in solid with the maximum heat energy content. After going through pressing and drying process, the briquettes with 50:50 percent of composition and the 6% addition of adhesive was found has the highest heat energy content, equal to 4966 cal/g.
NASA Astrophysics Data System (ADS)
Ohnuma, Shun; Kim, Yun-Jung; Suzuki, Atsushi; Nishiumi, Tadayuki
2013-06-01
We investigated the effect of combined high pressure and sodium hydrogen carbonate (NaHCO3) treatment on the physical properties and color of silverside Australian beef. Meat samples were pressurized at 100-500 MPa and the water content, weight reduction, rupture stress, and meat color were determined. The water content of meat treated with NaHCO3 and high pressure (300 MPa) reached a maximum of 70.1%. Weight reduction tended to decrease with high pressure treatment at 300 MPa. Meats treated with NaHCO3 and high pressure at 400 MPa showed a>50% decrease in hardness. Whitening of the meat was reduced by the combined high pressure and NaHCO3 treatment. Therefore, the combined high pressure and NaHCO3 treatment is effective for improvement of beef quality.
[Foliar water use efficiency of Platycladus orientalis sapling under different soil water contents].
Zhang, Yong E; Yu, Xin Xiao; Chen, Li Hua; Jia, Guo Dong; Zhao, Na; Li, Han Zhi; Chang, Xiao Min
2017-07-18
The determination of plant foliar water use efficiency will be of great value to improve our understanding about mechanism of plant water consumption and provide important basis of regional forest ecosystem management and maintenance, thus, laboratory controlled experiments were carried out to obtain Platycladus orientalis sapling foliar water use efficiency under five different soil water contents, including instantaneous water use efficiency (WUE gs ) derived from gas exchange and short-term water use efficiency (WUE cp ) caculated using carbon isotope model. The results showed that, controlled by stomatal conductance (g s ), foliar net photosynthesis rate (P n ) and transpiration rate (T r ) increased as soil water content increased, which both reached maximum va-lues at soil water content of 70%-80% field capacity (FC), while WUE gs reached a maximum of 7.26 mmol·m -2 ·s -1 at the lowest soil water content (35%-45% FC). Both δ 13 C of water-soluble leaf and twig phloem material achieved maximum values at the lowest soil water content (35%-45% FC). Besides, δ 13 C values of leaf water-soluble compounds were significantly greater than that of phloem exudates, indicating that there was depletion in 13 C in twig phloem compared with leaf water-soluble compounds and no obvious fractionation in the process of water-soluble material transportation from leaf to twig. Foliar WUE cp also reached a maximum of 7.26 mmol·m -2 ·s -1 at the lowest soil water content (35%-45% FC). There was some difference between foliar WUE gs and WUE cp under the same condition, and the average difference was 0.52 mmol·m -2 ·s -1 . The WUE gs had great space-time variability, by contrast, WUE cp was more representative. It was concluded that P. orientalis sapling adapted to drought condition by increasing water use efficiency and decreasing physiological activity.
NASA Astrophysics Data System (ADS)
Liu, S.; Wei, Y.; Post, W. M.; Cook, R. B.; Schaefer, K.; Thornton, M. M.
2013-05-01
The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled by using the Harmonized World Soil Database version 1.21 (HWSD1.21). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the topsoil layer (0-30 cm) and the subsoil layer (30-100 cm), respectively, of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 365.96 Pg, of which 23.1% is under trees, 14.1% is in shrubland, and 4.6% is in grassland and cropland. This UNASM data will provide a resource for use in terrestrial ecosystem modeling both for input of soil characteristics and for benchmarking model output.
NASA Astrophysics Data System (ADS)
Liu, S.; Wei, Y.; Post, W. M.; Cook, R. B.; Schaefer, K.; Thornton, M. M.
2012-10-01
The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled with the Harmonized World Soil Database version 1.1 (HWSD1.1). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the top soil layer (0-30 cm) and the sub soil layer (30-100 cm) respectively, of the spatial resolution of 0.25° in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and Central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 347.70 Pg, of which 24.7% is under trees, 14.2% is under shrubs, and 1.3% is under grasses and 3.8% under crops. This UNASM data will provide a resource for use in land surface and terrestrial biogeochemistry modeling both for input of soil characteristics and for benchmarking model output.
NASA Astrophysics Data System (ADS)
Zhang, Huining; Dong, Jianhong; Li, Hui; Xiong, Huihui; Xu, Anjun
2018-06-01
To evaluate the effect of the mineralogical phase on carbonation efficiency for CaO-Al2O3-SiO2 slag, a calcite phase conversion prediction model is proposed. This model combines carbon dioxide solubility with carbonation reaction kinetic analysis to improve the prediction capability. The effect of temperature and carbonation time on the carbonation degree is studied in detail. Results show that the reaction rate constant ranges from 0.0135 h-1 to 0.0458 h-1 and that the mineralogical phase contribution sequence for the carbonation degree is C2S, CaO, C3A and CS. The model accurately predicts the effect of temperature and carbonation time on the simulated calcite conversion, and the results agree with the experimental data. The optimal carbonation temperature and reaction time are 333 K and 90 min, respectively. The maximum carbonation efficiency is about 184.3 g/kg slag, and the simulation result of the calcite phase content in carbonated slag is about 20%.
Meza, Francisco J; Montes, Carlo; Bravo-Martínez, Felipe; Serrano-Ortiz, Penélope; Kowalski, Andrew S
2018-06-05
Biosphere-atmosphere water and carbon fluxes depend on ecosystem structure, and their magnitudes and seasonal behavior are driven by environmental and biological factors. We studied the seasonal behavior of net ecosystem CO 2 exchange (NEE), Gross Primary Productivity (GPP), Ecosystem Respiration (RE), and actual evapotranspiration (ETa) obtained by eddy covariance measurements during two years in a Mediterranean Acacia savanna ecosystem (Acacia caven) in Central Chile. The annual carbon balance was -53 g C m -2 in 2011 and -111 g C m -2 in 2012, showing that the ecosystem acts as a net sink of CO 2 , notwithstanding water limitations on photosynthesis observed in this particularly dry period. Total annual ETa was of 128 mm in 2011 and 139 mm in 2012. Both NEE and ETa exhibited strong seasonality with peak values recorded in the winter season (July to September), as a result of ecosystem phenology, soil water content and rainfall occurrence. Consequently, the maximum carbon assimilation rate occurred in wintertime. Results show that soil water content is a major driver of GPP and RE, defining their seasonal patterns and the annual carbon assimilation capacity of the ecosystem, and also modulating the effect that solar radiation and air temperature have on NEE components at shorter time scales.
NASA Astrophysics Data System (ADS)
Slotnick, B. S.; Lauretano, V.; Backman, J.; Dickens, G. R.; Sluijs, A.; Lourens, L.
2015-03-01
Major variations in global carbon cycling occurred between 62 and 48 Ma, and these very likely related to changes in the total carbon inventory of the ocean-atmosphere system. Based on carbon cycle theory, variations in the mass of the ocean carbon should be reflected in contemporaneous global ocean carbonate accumulation on the seafloor and, thereby, the depth of the calcite compensation depth (CCD). To better constrain the cause and magnitude of these changes, the community needs early Paleogene carbon isotope and carbonate accumulation records from widely separated deep-sea sediment sections, especially including the Indian Ocean. Several CCD reconstructions for this time interval have been generated using scientific drill sites in the Atlantic and Pacific oceans; however, corresponding information from the Indian Ocean has been extremely limited. To assess the depth of the CCD and the potential for renewed scientific drilling of Paleogene sequences in the Indian Ocean, we examine lithologic, nannofossil, carbon isotope, and carbonate content records for late Paleocene - early Eocene sediments recovered at three sites spanning Ninetyeast Ridge: Deep Sea Drilling Project (DSDP) Sites 213 (deep, east), 214 (shallow, central), and 215 (deep, west). The disturbed, discontinuous sediment sections are not ideal, because they were recovered in single holes using rotary coring methods, but remain the best Paleogene sediments available from the central Indian Ocean. The δ13C records at Sites 213 and 215 are similar to those generated at several locations in the Atlantic and Pacific, including the prominent high in δ13C across the Paleocene carbon isotope maximum (PCIM) at Site 215, and the prominent low in δ13C across the early Eocene Climatic Optimum (EECO) at both Site 213 and Site 215. The Paleocene-Eocene thermal maximum (PETM) and the K/X event are found at Site 213 but not at Site 215, presumably because of coring gaps. Carbonate content at both Sites 213 and 215 drops to <5% shortly after the first occurrence of Discoaster lodoensis and the early Eocene rise in δ13C (~52 Ma). This reflects a rapid shoaling of the CCD, and likely a major decrease in the net flux of 13C-depleted carbon to the ocean. Our results support ideas that major changes in net fluxes of organic carbon to and from the exogenic carbon cycle occurred during the early Paleogene. Moreover, we conclude that excellent early Paleogene carbonate accumulation records might be recovered from the central Indian Ocean with future scientific drilling.
Arsenic in ground water in selected parts of southwestern Ohio, 2002-03
Thomas, Mary Ann; Schumann, Thomas L.; Pletsch, Bruce A.
2005-01-01
Arsenic concentrations were measured in 57 domestic wells in Preble, Miami, and Shelby Counties, in southwestern Ohio. The median arsenic concentration was 7.1 ?g/L (micrograms per liter), and the maximum was 67.6 ?g/L. Thirty-seven percent of samples had arsenic concentrations greater than the U.S. Environmental Protection Agency drinking-water standard of 10 ?g/L. Elevated arsenic concentrations (>10 ?g/L) were detected over the entire range of depths sampled (42 to 221 feet) and in each of three aquifer types, Silurian carbonate bedrock, glacial buried-valley deposits, and glacial till with interbedded sand and gravel. One factor common in all samples with elevated arsenic concentrations was that iron concentrations were greater than 1,000 ?g/L. The observed correlations of arsenic with iron and alkalinity are consistent with the hypothesis that arsenic was released from iron oxides under reducing conditions (by reductive dissolution or reductive desorption). Comparisons among the three aquifer types revealed some differences in arsenic occurrence. For buried-valley deposits, the median arsenic concentration was 4.6 ?g/L, and the maximum was 67.6 ?g/L. There was no correlation between arsenic concentrations and depth; the highest concentrations were at intermediate depths (about 100 feet). Half of the buried-valley samples were estimated to be methanic. Most of the samples with elevated arsenic concentrations also had elevated concentrations of dissolved organic carbon and ammonia. For carbonate bedrock, the median arsenic concentration was 8.0 ?g/L, and the maximum was 30.7 ?g/L. Arsenic concentrations increased with depth. Elevated arsenic concentrations were detected in iron- or sulfate-reducing samples. Arsenic was significantly correled with molybdenum, strontium, fluoride, and silica, which are components of naturally ocurring minerals. For glacial till with interbedded sand and gravel, half of the samples had elevated arsenic concentrations. The median was 11.4 ?g/L, and the maximum was 27.6 ?g/L. At shallow depths (<100 feet), this aquifer type had higher arsenic and iron concentrations than carbonate bedrock. It is not known whether these observed differences among aquifer types are related to variations in (1) arsenic content of the aquifer material, (2) organic carbon content of the aquifer material, (3) mechanisms of arsenic mobilization (or uptake), or (4) rates of arsenic mobilization (or uptake). A followup study that includes solid-phase analyses and geochemical modeling was begun in 2004 in northwestern Preble County.
The glacial/deglacial history of sedimentation in Bear Lake, Utah and Idaho
Rosenbaum, J.G.; Heil, C.W.
2009-01-01
Bear Lake, in northeastern Utah and southern Idaho, lies in a large valley formed by an active half-graben. Bear River, the largest river in the Great Basin, enters Bear Lake Valley ???15 km north of the lake. Two 4-m-long cores provide a lake sediment record extending back ???26 cal k.y. The penetrated section can be divided into a lower unit composed of quartz-rich clastic sediments and an upper unit composed largely of endogenic carbonate. Data from modern fluvial sediments provide the basis for interpreting changes in provenance of detrital material in the lake cores. Sediments from small streams draining elevated topography on the east and west sides of the lake are characterized by abundant dolomite, high magnetic susceptibility (MS) related to eolian magnetite, and low values of hard isothermal remanent magnetization (HIRM, indicative of hematite content). In contrast, sediments from the headwaters of the Bear River in the Uinta Mountains lack carbonate and have high HIRM and low MS. Sediments from lower reaches of the Bear River contain calcite but little dolomite and have low values of MS and HIRM. These contrasts in catchment properties allow interpretation of the following sequence from variations in properties of the lake sediment: (1) ca. 26 cal ka-onset of glaciation; (2) ca. 26-20 cal ka-quasicyclical, millennial-scale variations in the concentrations of hematite-rich glacial fl our derived from the Uinta Mountains, and dolomite- and magnetite-rich material derived from the local Bear Lake catchment (reflecting variations in glacial extent); (3) ca. 20-19 cal ka-maximum content of glacial fl our; (4) ca. 19-17 cal ka-constant content of Bear River sediment but declining content of glacial fl our from the Uinta Mountains; (5) ca. 17-15.5 cal ka-decline in Bear River sediment and increase in content of sediment from the local catchment; and (6) ca. 15.5-14.5 cal ka-increase in content of endogenic calcite at the expense of detrital material. The onset of glaciation indicated in the Bear Lake record postdates the initial rise of Lake Bonneville and roughly corresponds to the Stansbury shoreline. The lake record indicates that maximum glaciation occurred as Lake Bonneville reached its maximum extent ca. 20 cal ka and that deglaciation was under way while Lake Bonneville remained at its peak. The transition from siliciclastic to carbonate sedimentation probably indicates increasingly evaporative conditions and may coincide with the climatically driven fall of Lake Bonneville from the Provo shoreline. Although lake levels fluctuated during the Younger Dryas, the Bear Lake record for this period is more consistent with drier conditions, rather than cooler, moister conditions interpreted from many studies from western North America. Copyright ?? 2009 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Shaheen, H.; Saeed, Y.; Abbasi, M. K.; Khaliq, A.
2017-04-01
The carbon sequestration potential of soils plays an important role in mitigating the effect of climate change, because soils serve as sinks for atmospheric carbon. The present study was conducted to estimate the carbon stocks and their variation with altitudinal gradient in the Lesser Himalayan foothills of Kashmir. The carbon stocks were estimated in different land use categories, namely: closed canopy forests, open forests, disturbed forests, and agricultural lands within the altitudinal range from 900 to 2500 m. The soil carbon content was determined by the Walkley-Black titration method. The average soil carbon stock was found to be 2.59 kg m-2. The average soil carbon stocks in closed canopy forests, open forests, and disturbed forests were 3.39, 2.06, and 2.86 kg m-2, respectively. The average soil carbon stock in the agricultural soils was 2.03 kg m-2. The carbon stocks showed a significant decreasing trend with the altitudinal gradient with maximum values of 4.13 kg m-2 at 900-1200 m a.s.l. and minimum value of 1.55 kg m-2 at 2100-2400 m a.s.l. The agricultural soil showed the least carbon content values indicating negative impacts of soil plowing, overgrazing, and soil degradation. Lower carbon values at higher altitudes attest to the immature character of forest stands, as well as to degradation due to immense fuel wood extraction, timber extraction, and harsh climatic conditions. The study indicates that immediate attention is required for the conservation of rapidly declining carbon stocks in agricultural soils, as well as in the soils of higher altitudes.
Neves, Fábio de Farias; Hoinaski, Leonardo; Rörig, Leonardo Rubi; Derner, Roberto Bianchini; de Melo Lisboa, Henrique
2018-05-15
This study evaluated productivity, CO 2 biofixation, and lipid content in biomass of the acidophilic microalga Chlamydomonas acidophila LAFIC-004 cultivated with five different carbon dioxide concentrations. The influence of carbon dioxide concentration on nutrient removal and pH was also investigated. Treated wastewater (secondary effluent) was used as culture medium. Five experimental setups were tested: T-0% - injection of atmospheric air (0.038% CO 2 ), T-5% (5% CO 2 ), T-10% (10% CO 2 ), T-15% (15% CO 2 ) and T-20% (20% CO 2 ). The T-5% and T-10% experiments showed the highest values of productivity and CO 2 biofixation, and maximum biomass dry weight was 0.48 ± 0.02 and 0.51 ± 0.03 g L -1 , respectively. This acidophilic microalga proved to be suitable for carbon biofixation and removal of nutrients from secondary effluent of wastewater treatment plants with high CO 2 concentration. All assays were performed without pH control. This microalga species presented high lipid content. However, fatty acid methyl esters (FAME) are not suitable for biodiesel use.
NASA Astrophysics Data System (ADS)
Pardo, A.; Buijnsters, J. G.; Endrino, J. L.; Gómez-Aleixandre, C.; Abrasonis, G.; Bonet, R.; Caro, J.
2013-09-01
The influence of the metal content (Cu: 0-28 at.%) on the structural, mechanical and tribological properties of amorphous carbon films grown by pulsed filtered cathodic vacuum arc deposition is investigated. Silicon and AISI 301 stainless steel have been used as substrate materials. The microstructure, composition and bonding structure have been determined by scanning electron microscopy, combined Rutherford backscattered spectroscopy-nuclear reaction analysis, and Raman spectroscopy, respectively. The mechanical and tribological properties have been assessed using nanoindentation and reciprocating sliding (fretting tests) and these have been correlated with the elemental composition of the films. A self-organized multilayered structure consisting of alternating carbon and copper metal nanolayers (thickness in the 25-50 nm range), whose formation is enhanced by the Cu content, is detected. The nanohardness and Young’s modulus decrease monotonically with increasing Cu content. A maximum value of the Young’s modulus of about 255 GPa is obtained for the metal-free film, whereas it drops to about 174 GPa for the film with a Cu content of 28 at.%. In parallel, a 50% drop in the nanohardness from about 28 GPa towards 14 GPa is observed for these coatings. An increase in the Cu content also produces an increment of the coefficient of friction in reciprocating sliding tests performed against a corundum ball counterbody. As compared to the metal free film, a nearly four times higher coefficient of friction value is detected in the case of a Cu content of 28 at.%. Nevertheless, the carbon-copper composite coatings produced a clear surface protection of the substrate despite an overall increase in wear loss with increasing Cu content in the range 3-28 at.%.
Selection of oleaginous yeasts for fatty acid production.
Lamers, Dennis; van Biezen, Nick; Martens, Dirk; Peters, Linda; van de Zilver, Eric; Jacobs-van Dreumel, Nicole; Wijffels, René H; Lokman, Christien
2016-05-27
Oleaginous yeast species are an alternative for the production of lipids or triacylglycerides (TAGs). These yeasts are usually non-pathogenic and able to store TAGs ranging from 20 % to 70 % of their cell mass depending on culture conditions. TAGs originating from oleaginous yeasts can be used as the so-called second generation biofuels, which are based on non-food competing "waste carbon sources". In this study the selection of potentially new interesting oleaginous yeast strains is described. Important selection criteria were: a broad maximum temperature and pH range for growth (robustness of the strain), a broad spectrum of carbon sources that can be metabolized (preferably including C-5 sugars), a high total fatty acid content in combination with a low glycogen content and genetic accessibility. Based on these selection criteria, among 24 screened species, Schwanniomyces occidentalis (Debaromyces occidentalis) CBS2864 was selected as a promising strain for the production of high amounts of lipids.
NASA Astrophysics Data System (ADS)
Raj, C. Justin; Rajesh, Murugesan; Manikandan, Ramu; Yu, Kook Hyun; Anusha, J. R.; Ahn, Jun Hwan; Kim, Dong-Won; Park, Sang Yeup; Kim, Byung Chul
2018-05-01
Activated carbon containing nitrogen functionalities exhibits excellent electrochemical property which is more interesting for several renewable energy storage and catalytic applications. Here, we report the synthesis of microporous oxygen and nitrogen doped activated carbon utilizing chitin from the gladius of squid fish. The activated carbon has large surface area of 1129 m2 g-1 with microporous network and possess ∼4.04% of nitrogen content in the form of pyridinic/pyrrolic-N, graphitic-N and N-oxide groups along with oxygen and carbon species. The microporous oxygen/nitrogen doped activated carbon is utilize for the fabrication of aqueous and flexible supercapacitor electrodes, which presents excellent electrochemical performance with maximum specific capacitance of 204 Fg-1 in 1 M H2SO4 electrolyte and 197 Fg-1 as a flexible supercapacitor. Moreover, the device displays 100% of specific capacitance retention after 25,000 subsequent charge/discharge cycles in 1 M H2SO4 electrolyte.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shishi; Wei, Yaxing; Post, Wilfred M
2013-01-01
The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art U.S. STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled with the Harmonized World Soil Database version 1.1 (HWSD1.1). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the top soil layer (0-30 cm) and the sub soil layer (30-100 cm) respectively,more » of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 347.70 Pg, of which 24.7% is under trees, 14.2% is under shrubs, and 1.3% is under grasses and 3.8% under crops. This UNASM data will provide a resource for use in land surface and terrestrial biogeochemistry modeling both for input of soil characteristics and for benchmarking model output.« less
NASA Astrophysics Data System (ADS)
Wei, Y.; Liu, S.; Huntzinger, D. N.; Michalak, A. M.; Post, W. M.; Cook, R. B.; Schaefer, K. M.; Thornton, M.
2014-12-01
The Unified North American Soil Map (UNASM) was developed by Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled by using the Harmonized World Soil Database version 1.21 (HWSD1.21). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the topsoil layer (0-30 cm) and the subsoil layer (30-100 cm), respectively, of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 365.96 Pg, of which 23.1% is under trees, 14.1% is in shrubland, and 4.6% is in grassland and cropland. This UNASM data has been provided as a resource for use in terrestrial ecosystem modeling of MsTMIP both for input of soil characteristics and for benchmarking model output.
NASA Astrophysics Data System (ADS)
Komar, Nemanja; Zeebe, Richard E.
2017-12-01
Geological records reveal a major perturbation in carbon cycling during the Paleocene-Eocene Thermal Maximum (PETM, ∼56 Ma), marked by global warming of more than 5 °C and a prominent negative carbon isotope excursion of at least 2.5‰ within the marine realm. The entire event lasted about 200,000 yr and was associated with a massive release of light carbon into the ocean-atmosphere system over several thousands of years. Here we focus on the terminal stage of the PETM, during which the ocean-atmosphere system rapidly recovered from the carbon cycle perturbation. We employ a carbon-cycle box model to examine the feedbacks between surface ocean biological production, carbon, oxygen, phosphorus, and carbonate chemistry during massive CO2 release events, such as the PETM. The model results indicate that the redox-controlled carbon-phosphorus feedback is capable of producing enhanced organic carbon sequestration during large carbon emission events. The locale of carbon oxidation (ocean vs. atmosphere) does not affect the amount of carbon sequestered. However, even though the model produces trends consistent with oxygen, excess accumulation rates of organic carbon (∼1700 Pg C during the recovery stage), export production and δ13 C data, it fails to reproduce the magnitude of change of sediment carbonate content and the CCD over-deepening during the recovery stage. The CCD and sediment carbonate content overshoot during the recovery stage is muted by a predicted increase in CaCO3 rain. Nonetheless, there are indications that the CaCO3 export remained relatively constant during the PETM. If this was indeed true, then an initial pulse of 3,000 Pg C followed by an additional, slow leak of 2,500 Pg C could have triggered an accelerated nutrient supply to the surface ocean instigating enhanced organic carbon export, consequently increasing organic carbon sequestration, resulting in an accelerated restoration of ocean-atmosphere biogeochemistry during the termination phase of the PETM.
Blanco-Martínez, D A; Giraldo, L; Moreno-Piraján, J C
2009-09-30
An activated carbon Carbochem--PS230 was modified by chemical and thermal treatment in flow of H(2) in order to evaluate the influence of the activated carbon chemical surface in the adsorption of the monohydroxylated phenols. The solid-solution interaction was determined by analyzing the adsorption isotherms at 298 K at pH 7, 9 and 11 during 48 h. The adsorption capacity of activated carbons increases when the pH solution decreases. The amount adsorbed increases in the reduced carbon at the maximum adsorption pH and decreases in the oxidized carbon. In the sample of granulated activated carbon, CAG, the monohydroxylated phenols adsorption capacity diminishes in the following order catechol >hydroquinone >resorcinol, at the three pH values. The experimental data are evaluated with Freundlich's and Langmuir's models. The immersion enthalpies are determined and increase with the retained amount, ranging between 21.5 and 45.7 J g(-1). In addition, the immersion enthalpies show more interaction with the reduced activated carbon that has lower total acidity contents.
Emission factors from different burning stages of agriculture wastes in Mexico.
Santiago-De la Rosa, Naxieli; Mugica-Álvarez, Violeta; Cereceda-Balic, Francisco; Guerrero, Fabián; Yáñez, Karen; Lapuerta, Magin
2017-11-01
Open-air burning of agricultural wastes from crops like corn, rice, sorghum, sugar cane, and wheat is common practice in Mexico, which in spite limiting regulations, is the method to eliminate such wastes, to clear the land for further harvesting, to control grasses, weeds, insects, and pests, and to facilitate nutrient absorption. However, this practice generates air pollution and contributes to the greenhouse effect. Burning of straws derived from the said crops was emulated in a controlled combustion chamber, hence determining emission factors for particles, black carbon, carbon dioxide, carbon monoxide, and nitric oxide throughout the process, which comprised three apparent stages: pre-ignition, flaming, and smoldering. In all cases, maximum particle concentrations were observed during the flaming stage, although the maximum final contributions to the particle emission factors corresponded to the smoldering stage. The comparison between particle size distributions (from laser spectrometer) and black carbon (from an aethalometer) confirmed that finest particles were emitted mainly during the flaming stage. Carbon dioxide emissions were also highest during the flaming stage whereas those of carbon monoxide were highest during the smoldering stage. Comparing the emission factors for each straw type with their chemical analyses (elemental, proximate, and biochemical), some correlations were found between lignin content and particle emissions and either particle emissions or duration of the pre-ignition stage. High ash or lignin containing-straw slowed down the pre-ignition and flaming stages, thus favoring CO oxidation to CO 2 .
Mendes, Tiago C; Xiao, Changlong; Zhou, Fengling; Li, Haitao; Knowles, Gregory P; Hilder, Matthias; Somers, Anthony; Howlett, Patrick C; MacFarlane, Douglas R
2016-12-28
Protic salts have been recently recognized to be an excellent carbon source to obtain highly ordered N-doped carbon without the need of tedious and time-consuming preparation steps that are usually involved in traditional polymer-based precursors. Herein, we report a direct co-pyrolysis of an easily synthesized protic salt (benzimidazolium triflate) with calcium and sodium citrate at 850 °C to obtain N-doped mesoporous carbons from a single calcination procedure. It was found that sodium citrate plays a role in the final carbon porosity and acts as an in situ activator. This results in a large surface area as high as 1738 m 2 /g with a homogeneous pore size distribution and a moderate nitrogen doping level of 3.1%. X-ray photoelectron spectroscopy (XPS) measurements revealed that graphitic and pyridinic groups are the main nitrogen species present in the material, and their content depends on the amount of sodium citrate used during pyrolysis. Transmission electron microscopy (TEM) investigation showed that sodium citrate assists the formation of graphitic domains and many carbon nanosheets were observed. When applied as supercapacitor electrodes, a specific capacitance of 111 F/g in organic electrolyte was obtained and an excellent capacitance retention of 85.9% was observed at a current density of 10 A/g. At an operating voltage of 3.0 V, the device provided a maximum energy density of 35 W h/kg and a maximum power density of 12 kW/kg.
Xu, Yiting; Chai, Xiaoli
2018-02-01
Highly porous activated carbons were prepared from a coal gasification slag (CGS) precursor, by KOH activation to remove Pb 2+ from aqueous solution. The effects of pretreatment methods and activation parameters on the properties of the activated carbon were investigated, such as KOH/CGS mass ratio, activation temperature and activation time. The results showed that the maximum Brunauer-Emmett-Teller surface area and total pore volume with the value of 2481 m 2 g -1 and of 1.711 cc g -1 were obtained at a KOH/CGS ratio of 3.0 by physical mixing, an activation temperature of 750°C and an activation time of 80 min. SEM, FTIR and EA analyses indicated that pronounced pores existed on the exterior surface of the activated samples, and the contents of H and O decreased due to the loss of surface chemical groups during activation. Experimental data for the Pb 2+ adsorption were fitted well by Freundlich equation and a pseudo-second-order model with a maximum experimental adsorption capacity of 141 mg/g. All of the results indicated that CGS could be a promising material to prepare porous activated carbon for Pb 2+ removal from wastewater.
Isotopic Clues on Factors Controlling Geochemical Fluxes From Large Watersheds in Eastern Canada
NASA Astrophysics Data System (ADS)
Rosa, E.; Helie, J.; Ghaleb, B.; Hillaire-Marcel, C.; Gaillardet, J.
2008-12-01
A monitoring and monthly sampling program of the Nelson, Ottawa, St. Lawrence, La Grande and Great Whale rivers was started in September 2007. It provides information on the seasonality and sources of geochemical fluxes into the Hudson Bay and the North Atlantic from watersheds covering more than 2.6 106 km2 of the eastern Canadian boreal domain. Measurements of pH and alkalinity, analyses of major ions, strontium and dissolved silica, 2H and 18O of water, concentrations and isotopic properties of dissolved organic and inorganic carbon (13C) and uranium (234U/238U) were performed. Lithology more than latitudinal climatic gradients controls the river geochemistry. Rivers draining silicate terrains show lower dissolved U concentrations but greater 234U/238U disequilibria than rivers draining carbonates (average of 1.38 vs. 1.23). Groundwater supplies might exert some control on these U- isotope signatures. No clear seasonality is observed in 234U/238U ratios, but U concentrations are correlated to dissolved organic carbon (DOC) concentrations in most rivers. Rivers draining carbonates present higher total dissolved carbon concentrations and higher 13C-contents in dissolved inorganic carbon (DIC), in response to the dissolution of soil carbonates. DOC/DIC ratios above 2.4 are observed in rivers draining silicates; their lower 13C-DIC content directly reflects the organic matter oxidation in soils. Total dissolved solids are one order of magnitude or more greater in rivers draining carbonates, showing the strong difference in chemical weathering rates according to the geological setting. The stability in chemical fluxes and water isotopic compositions in the La Grande River, which hosts hydroelectric reservoirs covering more than 12 000 km2, indicates that it is the most buffered hydrological system among the investigated watersheds. Seasonal fluctuations are observed elsewhere, with maximum geochemical fluxes during the spring snowmelt. 2H-18O content of river water appears to be the only parameter presenting a strong latitudinal and climatic gradient (independent of lithology).
Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate
NASA Astrophysics Data System (ADS)
Hardisty, Dalton S.; Lu, Zunli; Bekker, Andrey; Diamond, Charles W.; Gill, Benjamin C.; Jiang, Ganqing; Kah, Linda C.; Knoll, Andrew H.; Loyd, Sean J.; Osburn, Magdalena R.; Planavsky, Noah J.; Wang, Chunjiang; Zhou, Xiaoli; Lyons, Timothy W.
2017-04-01
The Proterozoic Eon hosted the emergence and initial recorded diversification of eukaryotes. Oxygen levels in the shallow marine settings critical to these events were lower than today's, although how much lower is debated. Here, we use concentrations of iodate (the oxidized iodine species) in shallow-marine limestones and dolostones to generate the first comprehensive record of Proterozoic near-surface marine redox conditions. The iodine proxy is sensitive to both local oxygen availability and the relative proximity to anoxic waters. To assess the validity of our approach, Neogene-Quaternary carbonates are used to demonstrate that diagenesis most often decreases and is unlikely to increase carbonate-iodine contents. Despite the potential for diagenetic loss, maximum Proterozoic carbonate iodine levels are elevated relative to those of the Archean, particularly during the Lomagundi and Shuram carbon isotope excursions of the Paleo- and Neoproterozoic, respectively. For the Shuram anomaly, comparisons to Neogene-Quaternary carbonates suggest that diagenesis is not responsible for the observed iodine trends. The baseline low iodine levels in Proterozoic carbonates, relative to the Phanerozoic, are linked to a shallow oxic-anoxic interface. Oxygen concentrations in surface waters would have at least intermittently been above the threshold required to support eukaryotes. However, the diagnostically low iodine data from mid-Proterozoic shallow-water carbonates, relative to those of the bracketing time intervals, are consistent with a dynamic chemocline and anoxic waters that would have episodically mixed upward and laterally into the shallow oceans. This redox instability may have challenged early eukaryotic diversification and expansion, creating an evolutionary landscape unfavorable for the emergence of animals.
Smith, Nicholas G; Dukes, Jeffrey S
2017-11-01
Leaf canopy carbon exchange processes, such as photosynthesis and respiration, are substantial components of the global carbon cycle. Climate models base their simulations of photosynthesis and respiration on an empirical understanding of the underlying biochemical processes, and the responses of those processes to environmental drivers. As such, data spanning large spatial scales are needed to evaluate and parameterize these models. Here, we present data on four important biochemical parameters defining leaf carbon exchange processes from 626 individuals of 98 species at 12 North and Central American sites spanning ~53° of latitude. The four parameters are the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport for the regeneration of Ribulose-1,5,-bisphosphate (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and leaf dark respiration (R d ). The raw net photosynthesis by intercellular CO 2 (A/C i ) data used to calculate V cmax , J max , and V pmax rates are also presented. Data were gathered on the same leaf of each individual (one leaf per individual), allowing for the examination of each parameter relative to others. Additionally, the data set contains a number of covariates for the plants measured. Covariate data include (1) leaf-level traits (leaf mass, leaf area, leaf nitrogen and carbon content, predawn leaf water potential), (2) plant-level traits (plant height for herbaceous individuals and diameter at breast height for trees), (3) soil moisture at the time of measurement, (4) air temperature from nearby weather stations for the day of measurement and each of the 90 d prior to measurement, and (5) climate data (growing season mean temperature, precipitation, photosynthetically active radiation, vapor pressure deficit, and aridity index). We hope that the data will be useful for obtaining greater understanding of the abiotic and biotic determinants of these important biochemical parameters and for evaluating and improving large-scale models of leaf carbon exchange. © 2017 by the Ecological Society of America.
Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes.
Cho, Hyun-Hee; Smith, Billy A; Wnuk, Joshua D; Fairbrother, D Howard; Ball, William P
2008-04-15
As greater quantities of carbon nanotubes (CNTs) enter the environment, they will have an increasingly important effect on the availability and transport of aqueous contaminants. As a consequence of purification, deliberate surface functionalization, and/or exposure to oxidizing agents after release to the environment, CNTs often contain surface oxides (i.e., oxygen containing functional groups). To probe the influence that surface oxides exert on CNT sorption properties, multiwalled CNTs (MWCNTs) with varying oxygen concentrations were studied with respect to their sorption properties toward naphthalene. For pristine (as-received) MWCNTs, the sorption capacity was intermediate between that of a natural char and a granular activated carbon. Sorption data also reveal that a linear relationship exists between the oxygen content of MWCNTs and their maximum adsorption capacity for naphthalene, with 10% surface oxygen concentration resulting in a roughly 70% decrease in maximum adsorption capacity. The relative distribution of sorption energies, as characterized by Freundlich isotherm exponents was, however, unaffected by oxidation. Thus, the data are consistent with the idea that incorporated surface oxides create polar regions that reduce the surface area available for naphthalene sorption. These results highlight the important role of surface chemistry in controlling the environmental properties of CNTs.
NASA Astrophysics Data System (ADS)
Cheng, Yinfeng; Li, Baoqiang; Huang, Yanjuan; Wang, Yaming; Chen, Junchen; Wei, Daqing; Feng, Yujie; Jia, Dechang; Zhou, Yu
2018-05-01
Nitrogen and oxygen enriched hierarchically porous carbons (NOHPCs) derived from biomass have been successfully prepared by rapid microwave carbonization coupled with molten salt synthesis method in only 4 min. ZnCl2 plays important roles as microwave absorber, chemical activation agent and porogen in this process. NOHPC-1:10 sample possesses the maximum specific surface area of 1899 m2 g-1 with a pore volume of 1.16 cm3 g-1 and mesopore ratio of 70%, as well as nitrogen content of 5.30 wt% and oxygen content of 14.12 wt%. When evaluated as an electrode in a three-electrode system with 6 M KOH electrolyte, the material exhibits a high specific capacitance of 276 F g-1 at 0.2 A g-1, with a good rate capability of 90.9% retention at 10 A g-1. More importantly, the symmetric supercapacitor based on NOHPC-1:10 in 1 M Na2SO4 electrolyte exhibits a high energy density of 13.9 Wh kg-1 at a power density of 120 W kg-1 in a wide voltage window of 0-1.6 V, an excellent cycling stability with 95% of capacitance retention after 10,000 cycles. Our strategy provides a facile and rapid way for the preparation of advanced carbon materials derived from biomass towards energy storage applications.
NASA Astrophysics Data System (ADS)
Guadagno, Liberata; Naddeo, Carlo; Raimondo, Marialuigia; Barra, Giuseppina; Vertuccio, Luigi; Russo, Salvatore; Lafdi, Khalid; Tucci, Vincenzo; Spinelli, Giovanni; Lamberti, Patrizia
2017-03-01
The focus of this study is to design new nano-modified epoxy formulations using carbon nanofillers, such as carbon nanotubes, carbon nanofibers and graphene-based nanoparticles (CpEG), that reduce the moisture content and provide additional functional performance. The chemical structure of epoxy mixture, using a non-stoichiometric amount of hardener, exhibits unique properties in regard to the water sorption for which the equilibrium concentration of water (C eq) is reduced up to a maximum of 30%. This result, which is very relevant for several industrial applications (aeronautical, shipbuilding industries, wind turbine blades, etc), is due to a strong reduction of the polar groups and/or sites responsible to bond water molecules. All nanofillers are responsible of a second phase at lower glass transition temperature (Tg). Compared with other carbon nanofillers, functionalized graphene-based nanoparticles exhibit the best performance in the multifunctionality. The lowest moisture content, the high performance in the mechanical properties, the low electrical percolation threshold (EPT) have been all ascribed to particular arrangements of the functionalized graphene sheets embedded in the polymeric matrix. Exfoliation degree and edge carboxylated groups are responsible of self-assembled architectures which entrap part of the resin fraction hindering the interaction of water molecules with the polar sites of the resin, also favouring the EPT paths and the attractive/covalent interactions with the matrix.
Guadagno, Liberata; Naddeo, Carlo; Raimondo, Marialuigia; Barra, Giuseppina; Vertuccio, Luigi; Russo, Salvatore; Lafdi, Khalid; Tucci, Vincenzo; Spinelli, Giovanni; Lamberti, Patrizia
2017-03-03
The focus of this study is to design new nano-modified epoxy formulations using carbon nanofillers, such as carbon nanotubes, carbon nanofibers and graphene-based nanoparticles (CpEG), that reduce the moisture content and provide additional functional performance. The chemical structure of epoxy mixture, using a non-stoichiometric amount of hardener, exhibits unique properties in regard to the water sorption for which the equilibrium concentration of water (C eq ) is reduced up to a maximum of 30%. This result, which is very relevant for several industrial applications (aeronautical, shipbuilding industries, wind turbine blades, etc), is due to a strong reduction of the polar groups and/or sites responsible to bond water molecules. All nanofillers are responsible of a second phase at lower glass transition temperature (Tg). Compared with other carbon nanofillers, functionalized graphene-based nanoparticles exhibit the best performance in the multifunctionality. The lowest moisture content, the high performance in the mechanical properties, the low electrical percolation threshold (EPT) have been all ascribed to particular arrangements of the functionalized graphene sheets embedded in the polymeric matrix. Exfoliation degree and edge carboxylated groups are responsible of self-assembled architectures which entrap part of the resin fraction hindering the interaction of water molecules with the polar sites of the resin, also favouring the EPT paths and the attractive/covalent interactions with the matrix.
Age, extent and carbon storage of the central Congo Basin peatland complex.
Dargie, Greta C; Lewis, Simon L; Lawson, Ian T; Mitchard, Edward T A; Page, Susan E; Bocko, Yannick E; Ifo, Suspense A
2017-02-02
Peatlands are carbon-rich ecosystems that cover just three per cent of Earth's land surface, but store one-third of soil carbon. Peat soils are formed by the build-up of partially decomposed organic matter under waterlogged anoxic conditions. Most peat is found in cool climatic regions where unimpeded decomposition is slower, but deposits are also found under some tropical swamp forests. Here we present field measurements from one of the world's most extensive regions of swamp forest, the Cuvette Centrale depression in the central Congo Basin. We find extensive peat deposits beneath the swamp forest vegetation (peat defined as material with an organic matter content of at least 65 per cent to a depth of at least 0.3 metres). Radiocarbon dates indicate that peat began accumulating from about 10,600 years ago, coincident with the onset of more humid conditions in central Africa at the beginning of the Holocene. The peatlands occupy large interfluvial basins, and seem to be largely rain-fed and ombrotrophic-like (of low nutrient status) systems. Although the peat layer is relatively shallow (with a maximum depth of 5.9 metres and a median depth of 2.0 metres), by combining in situ and remotely sensed data, we estimate the area of peat to be approximately 145,500 square kilometres (95 per cent confidence interval of 131,900-156,400 square kilometres), making the Cuvette Centrale the most extensive peatland complex in the tropics. This area is more than five times the maximum possible area reported for the Congo Basin in a recent synthesis of pantropical peat extent. We estimate that the peatlands store approximately 30.6 petagrams (30.6 × 10 15 grams) of carbon belowground (95 per cent confidence interval of 6.3-46.8 petagrams of carbon)-a quantity that is similar to the above-ground carbon stocks of the tropical forests of the entire Congo Basin. Our result for the Cuvette Centrale increases the best estimate of global tropical peatland carbon stocks by 36 per cent, to 104.7 petagrams of carbon (minimum estimate of 69.6 petagrams of carbon; maximum estimate of 129.8 petagrams of carbon). This stored carbon is vulnerable to land-use change and any future reduction in precipitation.
Singhasuwan, Somruethai; Choorit, Wanna; Sirisansaneeyakul, Sarote; Kokkaew, Nakhon; Chisti, Yusuf
2015-12-20
Chlorella sp. TISTR 8990 was cultivated heterotrophically in media with various initial carbon-to-nitrogen ratios (C/N ratio) and at different agitation speeds. The production of the biomass, its total fatty acid content and the composition of the fatty acids were affected by the C/N ratio, but not by agitation speed in the range examined. The biomass production was maximized at a C/N mass ratio of 29:1. At this C/N ratio, the biomass productivity was 0.68gL(-1)d(-1), or nearly 1.6-fold the best attainable productivity in photoautotrophic growth. The biomass yield coefficient on glucose was 0.62gg(-1) during exponential growth. The total fatty acids (TFAs) in the freeze-dried biomass were maximum (459mgg(-1)) at a C/N ratio of 95:1. Lower values of the C/N ratio reduced the fatty acid content of the biomass. The maximum productivity of TFAs (186mgL(-1)d(-1)) occurred at C/N ratios of 63:1 and higher. At these conditions, the fatty acids were mostly of the polyunsaturated type. Allowing the alga to remain in the stationary phase for a prolonged period after N-depletion, reduced the level of monounsaturated fatty acids and the level of polyunsaturated fatty acids increased. Biotin supplementation of the culture medium reduced the biomass productivity relative to biotin-free control, but had no effect on the total fatty acid content of the biomass. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Donghyun; Lee, Yong Il; Hyeong, Kiseong; Yoo, Chan Min
2016-09-01
The appearance and expansion of C4 plants in the Late Cenozoic was a dramatic example of terrestrial ecological change. The fire hypothesis, which suggests fire as a major cause of C4 grassland is gaining support, yet a more detailed relationship between fire and vegetation-type change remains unresolved. We report the content and stable carbon isotope record of black carbon (BC) in a sediment core retrieved from the northeastern equatorial Pacific that covers the past 14.3 million years. The content record of BC suggests the development process of a flammable ecosystem. The stable carbon isotope record of BC reveals the existence of the Late Miocene C4 expansion, the ‘C4 maximum period of burned biomass’ during the Pliocene to Early Pleistocene, and the collapse of the C4 in the Late Pleistocene. Records showing the initial expansion of C4 plants after large fire support the role of fire as a destructive agent of C3-dominated forest, yet the weak relationships between fire and vegetation after initial expansion suggest that environmental advantages for C4 plants were necessary to maintain the development of C4 plants during the late Neogene. Among the various environmental factors, aridity is likely most influential in C4 expansion.
NASA Astrophysics Data System (ADS)
Mamauod, Siti Nur Liyana; Romli, Ahmad Zafir; Rizuan, Mohd Ismail Rifdi
2017-09-01
This research was carried out as to develop hybrid filler reinforced into the blend of natural rubber (NR) and styrene butadiene rubber (SBR). The NR/SBR blend was reinforced using carbon black (CB) and nano calcium carbonate (NCC). The NCC content varied from 2-10 phr which was incorporated into the NR/SBR blend filled with fixed 50 phr of CB. The main aim of this project was to study the synergistic effect of NCC and CB reinforced NR/SBR blends towards the curing characteristics using cure rheometer, the viscosity of uncured NR/SBR compounds, physical and mechanical property blends. From the results obtained, the optimum ratio of blending was identified at 4 phr of NCC loading. Tensile strength, elongation at break, modulus and hardness increased progressively with increasing the NCC loading from 0 phr up to a maximum value at 4 phr. This increment occurs due to consolidation of the network structure of the polymer chains with the increasing NCC content. Up to the optimum amount of NCC, the tendency for NCC particles to form aggregate was very high and hence reduces the properties of rubber blends. It proved that NCC acts as a co-reinforcing agent for CB to improve the performance in the NR/SBR blends.
NASA Astrophysics Data System (ADS)
Wu, D.; Chen, F.; Zhou, A.; Abbott, M. B.
2016-12-01
Variability of the Asian summer monsoon (ASM) significantly affects environment and hydrology conditions within its area of influence, as well as economic and social development. Thus it is important to investigate the variability of the ASM on various time-scales and to explore its underlying forcing mechanisms, in order to improve our ability to predict the long-term trends of regional and global climate. Northeastern Tibetan Plateau, a margin area of modern ASM, is sensitive to summer monsoon changes. Existing paleoclimate records from this region contain conflicting evidence for the timing of summer monsoon advance into this region: an early arrival pre-Younger Dryas or a late arrival at the beginning of the Holocene. In addition, it is also debated that whether the Holocene ASM maximum in this region occurred during the early Holocene or the middle Holocene. Here we present a high-resolution record of a 52-m drilling core from Lake Dalianhai in this region. Multiply geochemistry indexes were obtained from the sediment core. 22 AMS 14C data from plant remains and bulk organic matters illustrate that the upper 52 m core covered the whole period since the last glacial maximum (LGM). The results generally indicate that the Lake Dalianhai was occupied by very shallow water body with eolian sand surrounding the lake from 20 to 15 ka BP (1ka=1000 cal yr). With the beginning of the B/A warm period, the sedimentary sequence changed to grey lacustrine clay abruptly. The sedimentary environment was relatively stable under a high lake level state during the B/A period which was marked with fine mean grain size, and high exogenous detrital element content (such as Al, K, Ti and Rb), but with low organic matter content. This perhaps was caused by the increasing of ASM precipitation. Increased contents of element Ca, Sr, and Br, as well as TOC and TN, highlight the increase of ASM during the Holocene. However, reddish lacustrine clay with lower magnetic susceptibility and low TOC and TN content during the early Holocene may indicate lower lake level. The contents of Sr, Br, TOC and TN reached a higher status and carbonate carbon isotope decreased sharply and maintained low values since around 7ka BP, thus indicating the lake changed to another status.
Brown, Sandra [University of Illinois, Urbana, IL (USA); Winrock International, Arlington, Virginia (USA); Gaston, Greg [University of Illinois, Urbana, IL (USA); Oregon State University; Beaty, T. W. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory, Oak Ridge, TN (USA); Olsen, L. M. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory, Oak Ridge, TN (USA)
2001-01-01
This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980. The biomass data and carbon estimates are associated with woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with estimating historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10E6 km2 of the earth's land surface and is comprised of countries that are located in tropical Africa (Angola, Botswana, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Congo, Benin, Equatorial Guinea, Ethiopia, Djibouti, Gabon, Gambia, Ghana, Guinea, Ivory Coast, Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria, Guinea-Bissau, Zimbabwe (Rhodesia), Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Tanzania, Togo,Uganda, Burkina Faso (Upper Volta), Zaire, and Zambia). The database was developed using the GRID module in the ARC/INFO (TM geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.
NASA Astrophysics Data System (ADS)
Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K.
2018-05-01
High surface area nitrogen enriched carbon adsorbents were prepared from a low cost and widely available urea-formaldehyde resin using a standard chemical activation with KOH and characterized using different characterization techniques for their porous structure and surface functional groups. Maximum surface area and total pore volume of 4547 m2 g-1 and 4.50 cm3 g-1 were found by controlling the activation conditions. Nitrogen content of this sample was found to be 5.62%. Adsorption of CO2 uptake for the prepared carbon adsorbents was studied using a dynamic fixed bed adsorption system at different adsorption temperatures (30-100 °C) and at different CO2 concentrations (5-12.5%), relevant from the flue gas point application. Maximum CO2 uptake of 1.40 mmol g-1 for UFA-3-700 at 30 °C under 12.5% CO2 flow was obtained. Complete regenerability of the adsorbents over multiple adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description over all adsorption temperatures and CO2 concentrations. Heterogeneity of the adsorbent surface was confirmed from Temkin adsorption isotherm model fit and isosteric heat of adsorption values. Negative value of ΔG° and ΔH° confirms spontaneous, feasible nature and exothermic nature of adsorption process. Overall, very high surface area of carbon adsorbent makes this adsorbent a new promising carbon material for CO2 capture from power plant flue gas and for other relevant applications.
The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle
NASA Astrophysics Data System (ADS)
Buchanan, Pearse J.; Matear, Richard J.; Lenton, Andrew; Phipps, Steven J.; Chase, Zanna; Etheridge, David M.
2016-12-01
The ocean's ability to store large quantities of carbon, combined with the millennial longevity over which this reservoir is overturned, has implicated the ocean as a key driver of glacial-interglacial climates. However, the combination of processes that cause an accumulation of carbon within the ocean during glacial periods is still under debate. Here we present simulations of the Last Glacial Maximum (LGM) using the CSIRO Mk3L-COAL (Carbon-Ocean-Atmosphere-Land) earth system model to test the contribution of physical and biogeochemical processes to ocean carbon storage. For the LGM simulation, we find a significant global cooling of the surface ocean (3.2 °C) and the expansion of both minimum and maximum sea ice cover broadly consistent with proxy reconstructions. The glacial ocean stores an additional 267 Pg C in the deep ocean relative to the pre-industrial (PI) simulation due to stronger Antarctic Bottom Water formation. However, 889 Pg C is lost from the upper ocean via equilibration with a lower atmospheric CO2 concentration and a global decrease in export production, causing a net loss of carbon relative to the PI ocean. The LGM deep ocean also experiences an oxygenation ( > 100 mmol O2 m-3) and deepening of the calcite saturation horizon (exceeds the ocean bottom) at odds with proxy reconstructions. With modifications to key biogeochemical processes, which include an increased export of organic matter due to a simulated release from iron limitation, a deepening of remineralisation and decreased inorganic carbon export driven by cooler temperatures, we find that the carbon content of the glacial ocean can be sufficiently increased (317 Pg C) to explain the reduction in atmospheric and terrestrial carbon at the LGM (194 ± 2 and 330 ± 400 Pg C, respectively). Assuming an LGM-PI difference of 95 ppm pCO2, we find that 55 ppm can be attributed to the biological pump, 28 ppm to circulation changes and the remaining 12 ppm to solubility. The biogeochemical modifications also improve model-proxy agreement in export production, carbonate chemistry and dissolved oxygen fields. Thus, we find strong evidence that variations in the oceanic biological pump exert a primary control on the climate.
Huang, Zhi-hong; Wang, Zhi-li; Shi, Bao-lin; Wei, Dong; Chen, Jian-xin; Wang, Su-li; Gao, Bao-jia
2015-01-01
Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA) and graphitized carbon blacks (GCB), the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite. PMID:26457083
Huang, Zhi-Hong; Wang, Zhi-Li; Shi, Bao-Lin; Wei, Dong; Chen, Jian-Xin; Wang, Su-Li; Gao, Bao-Jia
2015-01-01
Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA) and graphitized carbon blacks (GCB), the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite.
Dielectric properties of carbon nanotubes/epoxy composites.
Peng, Jin-Ping; Zhang, Hui; Tang, Long-Cheng; Jia, Yu; Zhang, Zhong
2013-02-01
Material with high dielectric properties possesses the effect of energy storage and electric field homogenization, which plays an important role in the electrical and electronics domain, especially in the capacitor, electrical machinery and cable realm. In this paper, epoxy-based nanocomposites with high dielectric constant were fabricated by adding pristine and ozone functionalized multi-wall carbon nanotubes (MWCNTs). In the process-related aspect, the favorable technological parameter was obtained via reasonable arrangement and consideration of the dispersing methods including high-speed stirring and three-roller mill. As a result, a uniform dispersion status of MWCNTs in matrix has been guaranteed, which was observed by scanning and transmission electron microscopy. Meanwhile, the influence of different MWCNTs contents and diverse frequencies on the dielectric properties was compared. It was found that the dielectric constant of nano-composites decreased gradually with the increasing of frequency (10(3)-10(6) Hz). Moreover, as the content of MWCNTs increasing, the dielectric constant reached to a maximum of about 1,328 at 10(3) Hz when the pristine MWCNTs content was 0.5 wt.%. Accordingly, the DC conductivity results could interpret the peak value phenomenon by percolation threshold of MWCNTs. In addition, at the fixed content, the dielectric constant of epoxy-based nano-composites with ozone functionalized MWCNTs was lower than that of pristine ones.
Yu, Fei; Wu, Yanqing; Ma, Jie; Zhang, Chi
2013-01-01
The effects of different outer diameters and surface oxygen contents on the adsorption of heavy metals onto six types of multi-walled carbon nanotubes (MWCNTs) were investigated in an aqueous solution and lead was chosen as a model metal ion. The results indicated that the percentage removal and adsorption capacity of lead remarkably increased with decreasing outer diameter due to larger specific surface area (SSA). The SSA-normalized maximum adsorption capacity (qmSSA) and SSA-normalized adsorption coefficient (Kd/SSA) were strongly positively correlated with surface oxygen content, implying that lead adsorption onto MWCNTs significantly increases with the rise of oxygen content and decreases with decreasing SSA. The calculated thermodynamic parameters indicated that adsorption of lead on MWCNTs was endothermic and spontaneous. When the oxygen content of MWCNTs increased from 2.0% to 5.9%, the standard free energy (deltaG0) became more negative, which implied that the oxygenated functional groups increased the adsorption affinity of MWCNTs for lead. Through calculation of enthalpy (deltaH0), deltaG0 and free energy of adsorption (Ea), lead adsorption onto MWCNTs was recognized as a chemisorption process. The chemical interaction between lead and the phenolic groups of MWCNTs could be one of the main adsorption mechanisms due to highly positive correlations between the phenolic groups and Kd/SSA or qm/SSA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.
This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980. The biomass data and carbon estimates are associated with woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with estimating historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth's land surface and is comprised of countries that are located in tropical Africa (Angola, Botswana, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Congo, Benin, Equatorial Guinea,more » Ethiopia, Djibouti, Gabon, Gambia, Ghana, Guinea, Ivory Coast, Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria, Guinea-Bissau, Zimbabwe (Rhodesia), Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Tanzania, Togo, Uganda, Burkina Faso (Upper Volta), Zaire, and Zambia). The database was developed using the GRID module in the ARC/INFO{trademark} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.« less
Saleh, Muhammad; Tiwari, Jitendra N; Kemp, K Christain; Yousuf, Muhammad; Kim, Kwang S
2013-05-21
Adsorption with solid sorbents is considered to be one of the most promising methods for the capture of carbon dioxide (CO₂) from power plant flue gases. In this study, microporous carbon materials used for CO₂ capture were synthesized by the chemical activation of polyindole nanofibers (PIF) at temperatures from 500 to 800 °C using KOH, which resulted in nitrogen (N)-doped carbon materials. The N-doped carbon materials were found to be microporous with an optimal adsorption pore size for CO₂ of 0.6 nm and a maximum (Brunauer-Emmett-Teller) BET surface area of 1185 m(2) g(-1). The PIF activated at 600 °C (PIF6) has a surface area of 527 m(2) g(-1) and a maximum CO₂ storage capacity of 3.2 mmol g(-1) at 25 °C and 1 bar. This high CO₂ uptake is attributed to its highly microporous character and optimum N content. Additionally, PIF6 material displays a high CO₂ uptake at low pressure (1.81 mmol g(-1) at 0.2 bar and 25 °C), which is the best low pressure CO₂ uptake reported for carbon-based materials. The adsorption capacity of this material remained remarkably stable even after 10 cycles. The isosteric heat of adsorption was calculated to be in the range of 42.7-24.1 kJ mol(-1). Besides the excellent CO₂ uptake and stability, PIF6 also exhibits high selectivity values for CO₂ over N₂, CH₄, and H₂ of 58.9, 12.3, and 101.1 at 25 °C, respectively, and these values are significantly higher than reported values.
Pollastro, R.M.; Martinez, C.J.
1985-01-01
The types of hydrocarbons produced from these chalks are determined by the level of thermal maturity associated with present-day burial or paleoburial conditions. Detailed analyses of deeply-buried chalk from core of the Smoky Hill Chalk Member of the Niobrara Formation in the Champlin Petroleum 2 Boxelder Farms well combined with core data from other Niobrara wells have helped identify many depositional and diagenetic relationships. Porosity of the chalk is proportional to maximum burial depth and inversely proportional to the amount of non-carbonate material (acid- insoluble residue content) in the chalk. Total organic carbon content in the chalk is proportional to the amount of acid-insoluble residue and relative abundance of pyrite in the acid-insoluble fraction. Quartz is inversely proportional to the amount of insoluble material, and the amount of clay tends to increase as insolubles increase, suggesting that detritus in these chalks is greatly influenced by reworked, altered, volcanic products rather than siliceous clastics.-from Authors
Yousuf, R G; Winterburn, J B
2016-12-01
Poly-3-hydroxybutrate (PHB) is a biodegradable polymer synthesised via bacterial fermentation as a means of storing carbon and energy under unbalanced growth conditions. The production cost of petroleum-based plastics is currently lower than that for biopolymers, and the carbon source is the most significant contributor to biopolymer production cost. A feasibility study to assess the suitability of using a date seed derived media as an alternative for PHB production under various stress conditions was investigated. Results include fructose extraction from date seeds and a mass transfer model to describe the process, demonstrating that the high nutrient content of date seeds makes them a promising raw material for microbial growth and that a meaningful amount of PHB can be produced without supplementation. Maximum dry cell weight and PHB concentrations were 6.3g/l and 4.6g/l respectively, giving a PHB content of 73%, when an initial fructose concentration of 10.8g/l was used. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Penkett, S. A.; Blake, N. J.; Lightman, P.; Marsh, A. R. W.; Anwyl, P.; Butcher, G.
1993-02-01
Observations of the buildup in wintertime of a substantial concentration of hydrocarbons in the free troposphere over the North Atlantic Ocean are extended to the seasonal cycles of a much wider range of hydrocarbons, from C2 to C8. A large seasonal variation was found in the hydrocarbon content in the free troposphere over the north Atlantic Ocean. The maximum carbon concentration occurs in winter and is of the order of 20 ppbv in the form of reactive carbon compounds with lifetimes of days to months. The hydrocarbon content of air in winter over the Atlantic depends greatly on its source area, with polar maritime air containing much higher concentrations than air with a tropical maritime origin. There is evidence from detailed hydrocarbon data that NO3 chemistry may play a significant role in the removal of hydrocarbons from the atmosphere. This is more evident in the wintertime, when the hydroxyl chemistry is less dominant.
Soil Carbon Chronosequences From Post-Agricultural Land in Western New England.
NASA Astrophysics Data System (ADS)
Clark, J. D.; Johnson, A. H.; Richter, S.; Art, H. W.
2007-12-01
We used quantitatively excavated soil pits to sample chronosequences of post-agricultural northern hardwood forest soils in the Hopkins Memorial Forest, Williamstown, MA, to determine how much carbon was lost during the period of agricultural use, and the rates at which C accumulated after abandonment. We developed chronosequences (based on the time of abandonment) for the three main agricultural uses--cultivated cropland, pasture or hay, and woodlot. Active farms served as our theoretical zero time points and old-growth stands in the region served as the likely maximum. Our data show a significant direct relationship between time since abandonment and carbon amount for the organic horizons (Oe and Oa) of plots that were cultivated, hayed or pastured, but not for stands that were formerly woodlots. There was likewise a significant direct relationship between C content and time for the plowed horizons (0-10 cm) of cultivated ground, but not for the top 10 cm of mineral soils that were formerly in hay/pasture or woodlot. Our best estimates suggest that cultivation reduced the C content of plowed soils by 50% to a depth of 10 cm, and that complete recovery of the soil C pool requires about 120 years.
NASA Technical Reports Server (NTRS)
Bittker, D. A.
1980-01-01
The influence of ground-based gas turbine combustor operating conditions and fuel-bound nitrogen (FBN) found in coal-derived liquid fuels on the formation of nitrogen oxides and carbon monoxide is investigated. Analytical predictions of NOx and CO concentrations are obtained for a two-stage, adiabatic, perfectly-stirred reactor operating on a propane-air mixture, with primary equivalence ratios from 0.5 to 1.7, secondary equivalence ratios of 0.5 or 0.7, primary stage residence times from 12 to 20 msec, secondary stage residence times of 1, 2 and 3 msec and fuel nitrogen contents of 0.5, 1.0 and 2.0 wt %. Minimum nitrogen oxide but maximum carbon monoxide formation is obtained at primary zone equivalence ratios between 1.4 and 1.5, with percentage conversion of FBN to NOx decreasing with increased fuel nitrogen content. Additional secondary dilution is observed to reduce final pollutant concentrations, with NOx concentration independent of secondary residence time and CO decreasing with secondary residence time; primary zone residence time is not observed to affect final NOx and CO concentrations significantly. Finally, comparison of computed results with experimental values shows a good semiquantitative agreement.
The simulated climate of the Last Glacial Maximum and insights into the global carbon cycle.
NASA Astrophysics Data System (ADS)
Buchanan, P. J.; Matear, R.; Lenton, A.; Phipps, S. J.; Chase, Z.; Etheridge, D. M.
2016-12-01
The ocean's ability to store large quantities of carbon, combined with the millennial longevity over which this reservoir is overturned, has implicated the ocean as a key driver of glacial-interglacial climates. However, the combination of processes that cause an accumulation of carbon within the ocean during glacial periods is still under debate. Here we present simulations of the Last Glacial Maximum (LGM) using the CSIRO Mk3L-COAL Earth System Model to test the contribution of key biogeochemical processes to ocean carbon storage. For the coupled LGM simulation, we find that significant cooling (3.2 °C), expanded minimum (Northern Hemisphere: 105 %; Southern Hemisphere: 225 %) and maximum (Northern Hemisphere: 145 %; Southern Hemisphere: 120 %) sea ice cover, and a reorganisation of the overturning circulation caused significant changes in ocean biogeochemical fields. The coupled LGM simulation stores an additional 322 Pg C in the deep ocean relative to the Pre-Industrial (PI) simulation. However, 839 Pg C is lost from the upper ocean via equilibration with a lower atmospheric CO2 concentration, causing a net loss of 517 Pg C relative to the PI simulation. The LGM deep ocean also experiences an oxygenation (>100 mmol O2 m-3) and deepening of the aragonite saturation depth (> 2,000 m deeper) at odds with proxy reconstructions. Hence, these physical changes cannot in isolation produce plausible biogeochemistry nor the required drawdown of atmospheric CO2 of 80-100 ppm at the LGM. With modifications to key biogeochemical processes, which include an increased export of organic matter due to a simulated release from iron limitation, a deepening of remineralisation and decreased inorganic carbon export driven by cooler temperatures, we find that the carbon content in the glacial oceanic reservoir can be increased (326 Pg C) to a level that is sufficient to explain the reduction in atmospheric and terrestrial carbon at the LGM (520 ± 400 Pg C). These modifications also go some way to reconcile simulated export production, aragonite saturation state and oxygen fields with those that have been reconstructed by proxy measurements, thereby implicating past changes in ocean biogeochemistry as an essential driver of the climate system.
Seyedmahmoud, Rasoul; McGuire, Jacob D; Wang, Yong; Thiagarajan, Ganesh; Walker, Mary P
2017-10-01
The aim of this paper is to determine the interrelationship between the microstructure - in terms of chemical composition and crystallinity - to the microhardness of coronal dentin. Dentin microhardness was tested by a novel reference point indenter and compared to the traditional Knoop hardness method. Micro-Raman spectroscopy was used to determine the chemical composition and crystallinity of dentin. From the occlusal groove to the border of the coronal pulp chamber, dentin hardness decreased from superficial dentin (SD) to deep dentin (DD). Mineral/organic matrix ratios (phosphate/CH and phosphate/amide I) also decreased from SD to DD; however, this change was significant (P<0.05) in the phosphate/amide I ratio only. The phosphate/carbonate ratio decreased significantly by varying position from SD to DD. The degree of the crystallinity, as measured by the full width at half maximum (FWHM) of the peak at 960cm -1 , decreased significantly going from superficial to deep dentin. For the first time, the interrelationship between the microstructure and the mechanical properties of coronal dentin was determined by using the novel reference point indentation technique and micro-Raman spectroscopy. We hypothesize that the decrease in hardness from superficial to deep dentin can potentially be explained by decreased mineral content and increased carbonate content, which is also associated with decreased crystallinity. Collectively, there is a positive association between dentin hardness and mineral content and a negative association between dentin hardness and carbonate content. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Carbon dioxide capture by activated methyl diethanol amine impregnated mesoporous carbon
NASA Astrophysics Data System (ADS)
Ardhyarini, N.; Krisnandi, Y. K.
2017-07-01
Activated Methyl Diethanol Amine (aMDEA) were impregnated onto the surface of the mesoporous carbon to increase carbon dioxide (CO2) adsorption capacity. The mesoporous carbon was synthesized through soft template method with phloroglucinol as carbon precursor and triblock copolymer (Pluronic F127) as structure directing agent. These activated MDEA impregnated mesoporous carbon (aMDEA-MC) were characterized using various solid characterization techniques. CO2 adsorption was investigated using autoclaved-reactor in the batch system. The FTIR spectrum of aMDEA-MC had absorption peaks at 3395 cm-1 and 1031 cm-1 which are characteristic for O-H stretch and amine C-N stretch in MDEA. The elemental analyzer showed that nitrogen content on the mesoporous carbon increased after impregnation by 23 wt.%. The BET surface area and total pore volume of mesoporous carbon decreased after impregnation, 43 wt.% and 50 wt.%, respectively. The maximum CO2 adsorption capacity of aMDEA43-MC was 2.63 mmol/g (298 K, 5 psi and pure CO2). This is 64 % and 35 % higher compared to the CO2 adsorption capacity of the starting MC and also commercially available activated carbon with higher surface area. All the results suggest that MDEA-MC is a promising adsorbent for CO2 capture.
Xu, Zhaohua; Zhang, Yaqiong; Wang, Zhigang; Sun, Ning; Li, Heng
2011-12-01
Composites consisting of polylactide (PLA) and poly(ε-caprolactone) (PCL) filled with acid-oxidized multiwalled carbon nanotubes (A-MWCNTs) were prepared through melt compounding. Phase morphologies of PLA/PCL/A-MWCNT composites with different contents of filled A-MWCNTs and PCL compositions were mainly observed by scanning electron microscope. The results show that A-MWCNTs are selectively dispersed in the PCL phase, regardingless of PCL phase domain sizes. For PLA/PCL/A-MWCNT composites with fixed PLA/PCL ratio of 95/5, the dispersed PCL phase domain sizes in the PLA matrix decrease even though a small content of A-MWCNTs is added, compared with PLA/PCL blend with the same composition, indicating that A-MWCNTs effectively prevent from coalescence of the dispersed PCL phase domains. With filling of 1.0 wt % A-MWCNTs, an interesting change of electrical conductivity for PLA/PCL/A-MWCNT composites is observed, in which the maximum conductivity is observed for PLA/PCL/A-MWCNT composite with PLA/PCL ratio of 60/40. The result is well-explained by the formed cocontinuous phase morphology and effective A-MWCNT content. © 2011 American Chemical Society
Preparation and microwave absorbing properties of carbon/cobalt ferromagnetic composites.
Li, Wangchang; Qiao, Xiaojing; Zhao, Hui; Wang, Shuman; Ren, Qingguo
2013-02-01
Carbon/cobalt ferromagnetic light composites with high performance of microwave absorbing properties were prepared by hydrothermal method using starch and hollow cobalt ferrites. It was concluded that after carbonization the spinel structure ferrites changed to Co3Fe7 alloys and the temperature of graphitization was significantly decreased for the catalytic of CoFe2O4/Co3Fe7. The increase of carbon content, and exist of CoFe2O4/Co3Fe7 heightened the microwave absorbing properties. Electromagnetic parameters were tested with 40% of the titled materials and 60% of paraffin wax composites by using HP8722ES vector network analyzer. The reflection was also simulated through transmission line theory. The microwave absorbers exhibited a maximum reflection loss -43 dB and the electromagnetic wave absorption less than -10 dB was found to exceed 3.0 GHz between 11.6 GHz and 15 GHz for an absorber thickness of 2 mm.
NASA Astrophysics Data System (ADS)
McPartland, M.; Kane, E. S.; Turetsky, M. R.; Douglass, T.; Falkowski, M. J.; Montgomery, R.; Edwards, J.
2015-12-01
Arctic and boreal peatlands serve as major reservoirs of terrestrial organic carbon (C) because Net Primary Productivity (NPP) outstrips C loss from decomposition over long periods of time. Peatland productivity varies as a function of water table position and surface moisture content, making C storage in these systems particularly vulnerable to the climate warming and drying predicted for high latitudes. Detailed spatial knowledge of how aboveground vegetation communities respond to changes in hydrology would allow for ecosystem response to environmental change to be measured at the landscape scale. This study leverages remotely sensed data along with field measurements taken at the Alaska Peatland Experiment (APEX) at the Bonanza Creek Long Term Ecological Research site to examine relationships between plant solar reflectance and surface moisture. APEX is a decade-long experiment investigating the effects of hydrologic change on peatland ecosystems using water table manipulation treatments (raised, lowered, and control). Water table levels were manipulated throughout the 2015 growing season, resulting in a maximum separation of 35 cm between raised and lowered treatment plots. Water table position, soil moisture content, depth to seasonal ice, soil temperature, photosynthetically active radiation (PAR), CO2 and CH4 fluxes were measured as predictors of C loss through decomposition and NPP. Vegetation was surveyed for percent cover of plant functional types. Remote sensing data was collected during peak growing season, when the separation between treatment plots was at maximum difference. Imagery was acquired via a SenseFly eBee airborne platform equipped with a Canon S110 red-edge camera capable of detecting spectral reflectance from plant tissue at 715 nm band center to within centimeters of spatial resolution. Here, we investigate empirical relationships between spectral reflectance, water table position, and surface moisture in relation to peat carbon balance.
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or pressure; and maximum...
NASA Astrophysics Data System (ADS)
Liu, Yi; Zhao, Yong; Li, Kexun; Wang, Zhong; Tian, Pei; Liu, Di; Yang, Tingting; Wang, Junjie
2018-02-01
Chitosan with rich of nitrogen is used as carbon precursor to synthesis activated carbon through directly heating method in this study. The obtained carbon is activated by different amount of KOH at different temperatures, and then prepared as air cathodes for microbial fuel cells. Carbon sample treated with double amount of KOH at 850 °C exhibits maximum power density (1435 ± 46 mW m-2), 1.01 times improved, which ascribes to the highest total surface area, moderate micropore and mesoporous structure and the introduction of nitrogen. The electrochemical impedance spectroscopy and powder resistivity state that carbon treated with double amount of KOH at 850 °C possesses lower resistance. The other electrochemical measurements demonstrate that the best kinetic activity make the above treated sample to show the best oxygen reduction reaction activity. Besides, the degree of graphitization of samples increases with the activated temperature increasing, which is tested by Raman. According to elemental analysis and X-ray photoelectron spectroscopy, all chitosan samples are nitrogen-doped carbon, and high content nitrogen (pyridinic-N) improves the electrochemical activity of carbon treated with KOH at 850 °C. Thus, carbon materials derived from chitosan would be an optimized catalyst for oxygen reduction reaction in microbial fuel cell.
Feng, Huajun; Jia, Yufeng; Shen, Dongsheng; Zhou, Yuyang; Chen, Ting; Chen, Wei; Ge, Zhipeng; Zheng, Shuting; Wang, Meizhen
2018-04-13
Conversion of sewage sludge (SS) into value-added material has garnered increasing attention due to its potential applications. In this study, we propose a new application of the sewage sludge-derived carbon (SSC) as an electrode without binder in microbial fuel cells (MFCs). SS was firstly converted into SSC monoliths by methane chemical vapor method at different temperature (600, 800, 1000 or 1200°C). Scanning electron microscopy images showed that carbon micro-wires were present on the surfaces of the samples prepared at 1000 and 1200°C. The results showed that it was beneficial for converting sludge into a highly conductive electrode and increasing carbon content of the electrode at higher temperatures, thereby improving the current generation. The conductivity results show that a higher temperature favors the conversion of sludge into a highly conductive electrode. The MFC using an SSC anode processed at 1200°C generated the maximum power density of 2228mWm -2 and the maximum current density of 14.2Am -2 . This value was 5 times greater than that generated by an MFC equipped with a graphite anode. These results present a promising means of converting SS into electrode materials. Copyright © 2018 Elsevier B.V. All rights reserved.
Saleh, Muhammad; Chandra, Vimlesh; Kemp, K Christian; Kim, Kwang S
2013-06-28
A polyindole-reduced graphene oxide (PIG) hybrid was synthesized by reducing graphene oxide sheets in the presence of polyindole. We have shown PIG as a material for capturing carbon dioxide (CO2). The PIG hybrid was chemically activated at temperatures of 400-800 °C, which resulted in nitrogen (N)-doped graphene sheets. The N-doped graphene sheets are microporous with an adsorption pore size of 0.6 nm for CO2 and show a maximum (Brunauer, Emmet and Teller) surface area of 936 m(2) g(-1). The hybrid activated at 600 °C (PIG6) possesses a surface area of 534 m(2) g(-1) and a micropore volume of 0.29 cm(3) g(-1). PIG6 shows a maximum CO2 adsorption capacity of 3.0 mmol g(-1) at 25 °C and 1 atm. This high CO2 uptake is due to the highly microporous character of the material and its N content. The material retains its original adsorption capacity on recycling even after 10 cycles (within experimental error). PIG6 also shows high adsorption selectivity ratios for CO2 over N2, CH4 and H2 of 23, 4 and 85 at 25 °C, respectively.
NASA Astrophysics Data System (ADS)
Dilles, Z. Y. G.; Prokopenko, M. G.; Bergmann, K.; Loyd, S. J.; Corsetti, F. A.; Berelson, W.; Gaines, R. R.
2014-12-01
Nitrogen, a major nutrient of marine primary production whose many redox states are linked through biological processes to O2, may afford better understanding of changes in post-Great Oxidation Event (GOE) environmental redox conditions. Using a novel approach to quantify nitrate content in carbonates, we identified a trend of CAN increase in the late-Proterozoic, including several distinct peaks within a carbonate succession of the Sonora province, Mexico, deposited ~630-500 Ma. The goal of the current study was to investigate CAN variability in the context of the global "Shuram" event, a large negative δ13C excursion expressed in Rainstorm member carbonates of the Johnnie Formation in Death Valley, CA. The lower Rainstorm Member "Johnnie Oolite", a time-transgressive, regionally extensive, shallow dolomitic oolite, was sampled. CAN concentrations ranged from 7.31 to 127.36 nmol/g, with higher values measured toward the base of the bed. This trend held at each sampled locality, along with a tendency towards decreasing CAN with larger magnitude negative δ13C excursions. Modern analog ooids formed in low-latitude marine environments lack CAN, consistent with their formation in low-nitrate waters of the euphotic zone characteristic of the modern ocean nitrogen cycling. In contrast, maximum values within the Johnnie oolite exceed by a factor of five to seven CAN measured in carbonates deposited below the main nitracline in the modern ocean, implying high nitrate content within shallow depositional environments. Johnnie oolite data, broadly consistent with the Sonora sequence findings, may indicate large perturbations in the Ediacaran nitrogen cycle immediately preceding the negative δ13C excursion. The implication of these findings for possible changes in the Ediacaran nitrogen, oxygen and carbon biogeochemical cycling will be further discussed.
NASA Astrophysics Data System (ADS)
Dusenge, Mirindi Eric; Wallin, Göran; Gårdesten, Johanna; Adolfsson, Lisa; Niyonzima, Felix; Nsabimana, Donat; Uddling, Johan
2014-05-01
Tropical forests are crucial in the global carbon balance, yet information required to estimate how much carbon that enter these ecosystems through photosynthesis is very limited, in particular for Africa and for tropical montane forests. In order to increases the knowledge of natural variability of photosynthetic capacities in tropical tree species in tropical Africa, measurements of leaf traits and gas exchange were conducted on sun and shade leaves of ten tree species growing in two tropical forests in Rwanda in central Africa. Seven species were studied in Ruhande Arboretum, a forest plantation at mid altitude (1700 m), and six species in Nyungwe National Park, a cooler and higher altitude (at 2500 m) montane rainforest. Three species were common to both sites. At Nyungwe, three species each belonged to the successional groups pioneer and climax species. Climax species had considerably lower maximum rates of photosynthetic carboxylation (Vcmax) and electron transport (Jmax) than pioneer species. This difference was not related to leaf nutrient content, but rather seemed to be caused by differences in within-leaf N allocation between the two successional groups. With respect to N, leaves of climax species invested less N into photosynthetic enzymes (as judged by lower Vcmax and Jmax values) and more N into chlorophyll (as judged by higher SPAD values). Photosynthetic capacities, (i.e., Jmax and Vcmax), Jmax to Vcmax ratio and P content were significantly higher in Nyungwe than in Arboretum. Sun leaves had higher photosynthetic capacities and nutrient content than shade leaves. Across the entire dataset, variation in photosynthetic capacities among species was not related to leaf nutrient content, although significant relationships were found within individual species. This study contributes critical tropical data for global carbon models and suggests that, for montane rainforest trees of different functional types, successional group identity is a better predictor of photosynthetic capacities than leaf nutrient content.
Mechanism of unintentionally produced persistent organic pollutant formation in iron ore sintering.
Sun, Yifei; Liu, Lina; Fu, Xin; Zhu, Tianle; Buekens, Alfons; Yang, Xiaoyi; Wang, Qiang
2016-04-05
Effects of temperature, carbon content and copper additive on formation of chlorobenzenes (CBzs) and polychlorinated biphenyls (PCBs) in iron ore sintering were investigated. By heating simulated fly ash (SFA) at a temperature range of 250-500°C, the yield of both CBzs and PCBs presented two peaks of 637ng/g-fly ash at 350°C and 1.5×10(5)ng/g-fly ash at 450°C for CBzs, and 74ng/g-fly ash at 300°C and 53ng/g-fly ash at 500°C. Additionally, in the thermal treatment of real fly ash (RFA), yield of PCBs displayed two peak values at 350°C and 500°C, however, yield of CBzs showed only one peak at 400°C. In the thermal treatment of SFA with a carbon content range of 0-20wt% at 300°C, both CBzs and PCBs obtained the maximum productions of 883ng/g-fly ash for CBzs and 127ng/g-fly ash for PCBs at a 5wt% carbon content. Copper additives also affected chlorinated aromatic formation. The catalytic activity of different copper additives followed the orders: CuCl2∙2H2O>Cu2O>Cu>CuSO4>CuO for CBzs, and CuCl2∙2H2O>Cu2O>CuO>Cu>CuSO4 for PCBs. Copyright © 2015 Elsevier B.V. All rights reserved.
Panek, Jeanne A
2004-03-01
This paper describes 3 years of physiological measurements on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growing along an ozone concentration gradient in the Sierra Nevada, California, including variables necessary to parameterize, validate and modify photosynthesis and stomatal conductance algorithms used to estimate ozone uptake. At all sites, gas exchange was under tight stomatal control during the growing season. Stomatal conductance was strongly correlated with leaf water potential (R2=0.82), which decreased over the growing season with decreasing soil water content (R2=0.60). Ozone uptake, carbon uptake, and transpirational water loss closely followed the dynamics of stomatal conductance. Peak ozone and CO2 uptake occurred in early summer and declined progressively thereafter. As a result, periods of maximum ozone uptake did not correspond to periods of peak ozone concentration, underscoring the inappropriateness of using current metrics based on concentration (e.g., SUM0, W126 and AOT40) for assessing ozone exposure risk to plants in this climate region. Both Jmax (maximum CO2-saturated photosynthetic rate, limited by electron transport) and Vcmax (maximum rate of Rubisco-limited carboxylation) increased toward the middle of the growing season, then decreased in September. Intrinsic water-use efficiency rose with increasing drought stress, as expected. The ratio of Jmax to Vcmax was similar to literature values of 2.0. Nighttime respiration followed a Q10 of 2.0, but was significantly higher at the high-ozone site. Respiration rates decreased by the end of the summer as a result of decreased metabolic activity and carbon stores.
Rattanapoltee, Panida; Kaewkannetra, Pakawadee
2014-07-01
The aim of this study is to optimize the lipid accumulation in microalgae by using two agricultural residues of pineapple peels and sugarcane bagasse as low-cost organic carbon sources. Green microalgae Scenedesmus acutus was isolated and selected for cultivation. Effects of three initial sugar concentrations and the stage for adding sugar during cultivation on biomass and lipid production were investigated. The results clearly showed that two-stage cultivation is more suitable than one-stage. The maximum biomass concentration and productivity were obtained at 3.85 g/L and 160.42 mg/L/day when sugarcane bagasse was used. The highest lipid content and lipid yield was reached at 28.05 % and 0.93 g/L when pineapple peels were used, while in the case of sugarcane bagasse, 40.89 % and 1.24 g/L lipid content and yield were obtained. Lipid content was found in normal condition (autotrophic) at 17.71 % which was approximately 2.13-fold lower than when sugarcane bagasse was used (40.89 %). Biodiesel production via in situ transesterification was also investigated; the main fatty acids of palmitic acid and oleic acid were found. This work indicates that using agricultural residues as organic carbon sources could be able to increase lipid content and reduce the cost of biofuel production.
NASA Astrophysics Data System (ADS)
Shahi, Amandeep S.; Pandey, Sunil
2008-02-01
Weld cladding is a process for producing surfaces with good corrosion resistant properties by means of depositing/laying of stainless steels on low-carbon steel components with an objective of achieving maximum economy and enhanced life. The aim of the work presented here was to investigate the effect of auxiliary preheating of the solid filler wire in mechanized gas metal arc welding (GMAW) process (by using a specially designed torch to preheat the filler wire independently, before its emergence from the torch) on the quality of the as-welded single layer stainless steel overlays. External preheating of the filler wire resulted in greater contribution of arc energy by resistive heating due to which significant drop in the main welding current values and hence low dilution levels were observed. Metallurgical aspects of the as welded overlays such as chemistry, ferrite content, and modes of solidification were studied to evaluate their suitability for service and it was found that claddings obtained through the preheating arrangement, besides higher ferrite content, possessed higher content of chromium, nickel, and molybdenum and lower content of carbon as compared to conventional GMAW claddings, thereby giving overlays with superior mechanical and corrosion resistance properties. The findings of this study not only establish the technical superiority of the new process, but also, owing to its productivity-enhanced features, justify its use for low-cost surfacing applications.
NASA Astrophysics Data System (ADS)
Violette, Aurélie; Riotte, Jean; Braun, Jean-Jacques; Oliva, Priscia; Marechal, Jean-Christophe; Sekhar, M.; Jeandel, Catherine; Subramanian, S.; Prunier, Jonathan; Barbiero, Laurent; Dupre, Bernard
2010-12-01
The influence of the pedogenic and climatic contexts on the formation and preservation of pedogenic carbonates in a climosequence in the Western Ghats (Karnataka Plateau, South West India) has been studied. Along the climosequence, the current mean annual rainfall (MAR) varies within a 80 km transect from 6000 mm at the edge of the Plateau to 500 mm inland. Pedogenic carbonates occur in the MAR range of 500-1200 mm. In the semi-arid zone (MAR: 500-900 mm), carbonates occur (i) as thick hardpan calcretes on pediment slopes and (ii) as nodular horizons in polygenic black soils (i.e. vertisols). In the sub-humid zone (MAR: 900-1500 mm), pedogenic carbonates are disseminated in the black soil matrices either as loose, irregular and friable nodules of millimetric size or as indurated botryoidal nodules of centimetric to pluricentimetric size. They also occur at the top layers of the saprolite either as disseminated pluricentimetric indurated nodules or carbonate-cemented lumps of centimetric to decimetric size. Chemical and isotopic ( 87Sr/ 86Sr) compositions of the carbonate fraction were determined after leaching with 0.25 N HCl. The corresponding residual fractions containing both primary minerals and authigenic clays were digested separately and analyzed. The trend defined by the 87Sr/ 86Sr signatures of both labile carbonate fractions and corresponding residual fractions indicates that a part of the labile carbonate fraction is genetically linked to the local soil composition. Considering the residual fraction of each sample as the most likely lithogenic source of Ca in carbonates, it is estimated that from 24% to 82% (55% on average) of Ca is derived from local bedrock weathering, leading to a consumption of an equivalent proportion of atmospheric CO 2. These values indicate that climatic conditions were humid enough to allow silicate weathering: MAR at the time of carbonate formation likely ranged from 400 to 700 mm, which is 2- to 3-fold less than the current MAR at these locations. The Sr, U and Mg contents and the ( 234U/ 238U) activity ratio in the labile carbonate fraction help to understand the conditions of carbonate formation. The relatively high concentrations of Sr, U and Mg in black soil carbonates may indicate fast growth and accumulation compared to carbonates in saprolite, possibly due to a better confinement of the pore waters which is supported by their high ( 234U/ 238U) signatures, and/or to higher content of dissolved carbonates in the pore waters. The occurrence of Ce, Mn and Fe oxides in the cracks of carbonate reflects the existence of relatively humid periods after carbonate formation. The carbonate ages determined by the U-Th method range from 1.33 ± 0.84 kyr to 7.5 ± 2.7 kyr and to a cluster of five ages around 20 kyr, i.e. the Last Glacial Maximum period. The young occurrences are only located in the black soils, which therefore constitute sensitive environments for trapping and retaining atmospheric CO 2 even on short time scales. The maximum age of carbonates depends on their location in the climatic gradient: from about 20 kyr for centimetric nodules at Mule Hole (MAR = 1100 mm/yr) to 200 kyr for the calcrete at Gundlupet (MAR = 700 mm/yr, Durand et al., 2007). The intensity of rainfall during wet periods would indeed control the lifetime of pedogenic carbonates and thus the duration of inorganic carbon storage in soils.
Moreno-Castilla, Carlos; García-Rosero, Helena; Carrasco-Marín, Francisco
2017-07-04
Waste biomass-derived activated carbons (ACs) are promising materials for supercapacitor electrodes due to their abundance and low cost. In this study, we investigated the potential use of Melia azedarach (MA) stones to prepare ACs for supercapacitors. The ash content was considerably lower in MA stones (0.7% ash) than that found in other lignocellulosic wastes. ACs were prepared by KOH activation of pristine, carbonized, and hydrothermally-treated MA stones. The morphology, composition, surface area, porosity, and surface chemistry of the ACs were determined. Electrochemical measurements were carried out in three- and two-electrode cells, 3EC and 2EC, respectively, using 1 M H₂SO₄ as the electrolyte. The highest capacitance from galvanostatic charge-discharge (GCD) in 2EC ranged between 232 and 240 F·g -1 at 1 A·g -1 . The maximum energy density reached was 27.4 Wh·kg -1 at a power density of 110 W·kg -1 . Electrochemical impedance spectroscopy (EIS) revealed an increase in equivalent series resistance (ESR) and charge transfer resistance (R CT ) with greater ash content. Electrochemical performance of MA stone-derived ACs was compared with that of other ACs described in the recent literature that were prepared from different biomass wastes and results showed that they are among the best ACs for supercapacitor applications.
Heiden, Jasmin P; Thoms, Silke; Bischof, Kai; Trimborn, Scarlett
2018-05-23
Impacts of rising atmospheric CO 2 concentrations and increased daily irradiances from enhanced surface water stratification on phytoplankton physiology in the coastal Southern Ocean remain still unclear. Therefore, in the two Antarctic diatoms Fragilariopsis curta and Odontella weissflogii the effects of moderate and high natural solar radiation combined with either ambient or future pCO 2 on cellular particulate organic carbon (POC) contents and photophysiology were investigated. Results showed that increasing CO 2 concentrations had greater impacts on diatom physiology than exposure to increasing solar radiation. Irrespective of the applied solar radiation regime, cellular POC quotas increased with future pCO 2 in both diatoms. Lowered maximum quantum yields of photochemistry in PSII (F v /F m ) indicated a higher photosensitivity under these conditions, being counteracted by increased cellular concentrations of functional photosynthetic reaction centers. Overall, our results suggest that both bloom-forming Antarctic coastal diatoms might increase carbon contents under future pCO 2 conditions despite reduced physiological fitness. This indicates a higher potential for primary productivity by the two diatom species with important implications for the CO 2 sequestration potential of diatom communities in the future coastal Southern Ocean. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids.
Vajpeyi, Shashwat; Chandran, Kartik
2015-01-01
Lipid accumulation in the oleaginous yeast Cryptococcus albidus was evaluated using mixtures of volatile fatty acids (VFA) as substrates. In general, batch growth under nitrogen limitation led to higher lipid accumulation using synthetic VFA. During batch growth, an initial COD:N ratio of 25:1mg COD:mg N led to maximum intracellular lipid accumulation (28.3 ± 0.7% g/g dry cell weight), which is the maximum reported for C. albidus using VFA as the carbon source, without compromising growth kinetics. At this feed COD:N ratio, chemostat cultures fed with synthetic VFA yielded statistically similar intracellular lipid content as batch cultures (29.9 ± 1.9%, g/g). However, batch cultures fed with VFA produced from the fermentation of food waste, yielded a lower lipid content (14.9 ± 0.1%, g/g). The lipid composition obtained with synthetic and food-waste-derived VFA was similar to commercial biodiesel feedstock. We therefore demonstrate the feasibility of linking biochemical waste treatment and biofuel production using VFA as key intermediates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Seasonal variation of leaf traits in two woody species of an urban park
NASA Astrophysics Data System (ADS)
Kim, H.; Ryu, Y.
2013-12-01
Leaf traits are important for understanding physiology of woody plants. Some leaf traits such as maximum carboxylation rate (Vcamx) and maximum electron transport rate (Jmax) are especially crucial parameters for photosynthesis modelling. In this study, we report leaf traits (leaf mass per unit area, leaf carbon and nitrogen contents and C:N, Vcmax, Jmax) of two species (Zelkova serrata and Prunus yedoensis) in the Seoul Forest Park in 2013. From May to July, Vcmax and Jmax show gradual increase. In contrast, N concentration and C:N show the opposite pattern. Also we find that the ratio of Jmax to Vcmax was 1.05, which is substantially lower than many previous studies. We discuss main factors that control seasonal variation of leaf traits and correlation between Vcmax and Jmax.
Stable carbon isotope ratios of archaeal GDGTs in the marine water column and surface sediments
NASA Astrophysics Data System (ADS)
Pearson, A.; Hurley, S.; Close, H. G.; Jasper, C. E.
2016-12-01
Archaeal glycerol dibiphytanyl glycerol tetraether (GDGT) lipids are ubiquitous throughout the marine environment and are preserved in sediments and sedimentary rocks on million-year timescales. Variations in the number of ring-containing GDGT isomers in sediments correlate with differences in overlying sea surface temperatures, a relationship formalized in the TEX86 paleotemperature proxy. Ammonia-oxidizing Thaumarchaeota are believed to be the major sources of these GDGTs, implying that the greatest production and export of GDGTs from the water column should be associated with the maximum expression of ammonia monooxygenase (amoA) genes and maximum number of thaumarchaeal cells, both of which occur in the subsurface NO2- maximum near a depth of ca. 80-250 m. To examine the relationship between production and export of GDGTs from the water column, we measured the concentrations and δ13C values of GDGTs in suspended particulate matter (SPM) of the western South Atlantic Ocean and compared them to values from pure thaumarchaeal cultures and from available sediment core-tops from other locations. Thaumarchaeota are believed to fix the majority of their carbon directly from dissolved inorganic carbon (DIC). However, both the SPM and core-top δ13C values in some cases are moderately more 13C-depleted than would be predicted based on the 13C content of local DIC and the previously-published biosynthetic isotope fractionation (ɛ). This indicates that the average metabolism of the planktonic archaeal community either is mixotrophic (≥ 25% organic carbon assimilation) or that the published ɛ value for the model organism Nitrosopumilus maritimus may not be representative of the total autotrophic community. In addition to this offset, δ13C values of GDGTs in SPM inversely mirror DIC profiles, with lowest values in the nitrite maximum and higher values in the deeper water column, similar to the overall trends for bulk SPM. Finally, while individual GDGTs in SPM samples have similar δ13C values, in many sediments measured to date, the isotopic composition of individual GDGTs differs. This implies that multiple sources of GDGTs are required to explain core-top 13C distributions, especially on continental margins.
Soil Carbon Chronosequnces from Post-Agricultural Land in Western New England
NASA Astrophysics Data System (ADS)
Clark, J. D.; Johnson, A. H.; Richter, S. L.; Art, H. W.
2008-12-01
Using quantitative soil pits, we sampled chronosequences of post-agricultural northern hardwood forest soils in the Hopkins Memorial Forest (Williamstown, MA) to determine the amount of carbon lost during the period of agricultural use, as well as the rates at which C accumulates after abandonment. Chronosequences based on the time of abandonment were developed for the three main agricultural uses: cultivated cropland, pasture or hay, and woodlot. Active farms served as our theoretical zero time points and old growth stands in the region served as our likely maximum for C-accumulation. We then tested this chronosequence model throughout the three main physiographic provinces of the Berkshire-Taconic landscape: carbonate lowlands, Taconic uplands, and Berkshire highlands. Our data show a significant direct relationship between time since abandonment and carbon amount for the organic horizons (Oe and Oa) of cultivated as well as pastured or hayed plots but not for stands formerly used as woodlots. Likewise there was a significant relationship between C content and time for plowed horizons (0-20 cm) of cultivated ground, but not for the top 20 cm of mineral soils that were formerly pasture, hay, or woodlot. Our best estimate suggests that cultivation reduced the C-content of plowed soils by 50% to a depth of 20 cm, and that complete recovery of the C-pool requires approximately 120 years. Management practices of post-settlement New England farms differ significantly from those used by modern farms. These methodological differences complicate efforts to quantify the recovery of carbon in the western New England landscape.
Utilization of lignite power generation residues for the production of lightweight aggregates.
Anagnostopoulos, Iason M; Stivanakis, Victor E
2009-04-15
A novel process is proposed for the utilization of lignite combustion solid residues in the production of inflammable lightweight aggregates (LWA). The process consists of two stages, pelletization and sintering, and carbon contained in BA was used as the process fuel. The main residues bottom ash (BA) and fly ash (FA) from Megalopolis power plant were characterized, mixed in different proportions and treated through pelletization and sintering process. Sintering benefits from combustion of BA carbon content and the product is a hardened porous cake. The energy required for achievement of high temperatures, in the range of 1250 degrees C, was offered by carbon combustion and CO(2) evolution is responsible for porous structure formation. Selected physical properties of sintered material relevant to use as lightweight aggregates were determined, including bulk density, porosity and water absorption. Bulk density varies from 0.83 to 0.91 g/cm(3), porosity varies from 60% to 64% and water absorption varies from 66% to 80%. LWA formed is used for the production of lightweight aggregate concrete (LWAC). Thermal conductivity coefficient varies from 0.25 to 0.37 W/mK (lower than maximum limit 0.43 W/mK) and compressive strength varies from 19 to 23 MPa (higher than minimum limit 17 MPa). The results indicate that sintering of lignite combustion residues is an efficient method of utilization of carbon containing BA and production of LWA for structural and insulating purposes. Carbon content of BA is a key factor in LWA production. Finally, this research work comprises the first proposed application for utilization of BA in Greece.
Parameters of microbial respiration in soils of the impact zone of a mineral fertilizer factory
NASA Astrophysics Data System (ADS)
Zhukova, A. D.; Khomyakov, D. M.
2015-08-01
The carbon content in the microbial biomass and the microbial production of CO2 (the biological component of soil respiration) were determined in the upper layer (0-10 cm) of soils in the impact zone of the OJSC Voskresensk Mineral Fertilizers, one of the largest factories manufacturing mineral fertilizers in Russia. Statistical characteristics and schematic distribution of the biological parameters in the soil cover of the impact zone were analyzed. The degree of disturbance of microbial communities in the studied objects varied from weak to medium. The maximum value (0.44) was observed on the sampling plot 4 km away from the factory and 0.5 km away from the place of waste (phosphogypsum) storage. Significantly lower carbon content in the microbial biomass and its specific respiration were recorded in the agrosoddy-podzolic soil as compared with the alluvial soil sampled at the same distance from the plant. The effects of potential soil pollutants (fluorine, sulfur, cadmium, and stable strontium) on the characteristics of soil microbial communities were described with reliable regression equations.
Explosion characteristics of synthesised biogas at various temperatures.
Dupont, L; Accorsi, A
2006-08-25
Biogas is considered as a valuable source of renewable energy. Indeed, it can be turned into useful energy (heat, electricity, fuel) and can contribute to reduce greenhouse gas emissions. Knowledge of its safety characteristics is a very important practical issue. Experimental investigation of synthesised biogas explosion characteristics was conducted in a 20-L sphere at various temperatures (30-70 degrees C) and at atmospheric pressure. The studied biogas was made of 50% methane (CH(4)) and 50% carbon dioxide (CO(2)). It was also saturated with humidity: this composition is frequently met in digesters during waste methanisation. There are two inert gases in biogas: water vapour and carbon dioxide. Its vapour water content rises along with temperature. The presence of these inert gases modifies considerably biogas characteristics compared to the ones of pure methane: explosion limits are lowered and beyond 70 degrees C, water vapour content is sufficient to inert the mixture. Furthermore, explosion violence (estimated with the maximum rate of pressure rise values, (dp/dt)(max)) is three times lower for biogas than for pure methane at ambient temperature.
NASA Technical Reports Server (NTRS)
Nienow, J. A.; McKay, C. P.; Friedmann, E. I.
1988-01-01
The vertical zonation of the Antarctic cryptoendolithic community appears to form in response to the light regime in the habitat. However, because of the structure of the habitat, the light regime is difficult to study directly. Therefore, a mathematical model of the light regime was constructed, which was used to estimate the total photon flux in different zones of the community. Maximum fluxes range from about 150 micrometers photons m-2 s-1 at the upper boundary of the community to about 0.1 micrometer photons m-2 s-1. Estimates of the annual productivity in the community indicate that the lowest zone of the community is light limited, with the maximal annual carbon uptake equivalent to less than the carbon content of one algal (Hemichloris) cell.
Poontawee, Warut; Natakankitkul, Surapol; Wongmekiat, Orawan
2015-01-01
Supercritical fluid extraction (SFE) has increasingly gained attention as an alternative technique for extraction of natural products without leaving toxic residues in extracts. Antidesma thwaitesianum Muell. Arg. (Phyllanthaceae), or ma mao, has been reported to exhibit antioxidant health benefits due to its phenolic constituents. To determine whether SFE technique could impact on phenolic contents and associated antioxidant potentials, ripe fruits of Antidesma thwaitesianum (Phyllanthaceae) were extracted using supercritical carbon dioxide (SC-CO2) and conventional solvents (ethanol, water). The results showed that the SC-CO2 extract contained significantly higher yield, total phenolic, flavonoid, and proanthocyanidin contents than those obtained from ethanol and water. It also demonstrated the greatest antioxidant activities as assessed by ABTS radical cation decolorization, DPPH radical scavenging, and ferric reducing antioxidant power (FRAP) assays. Further analysis using high-performance liquid chromatography with diode array and mass spectrometry detectors (HPLC-DAD/MSD) revealed the presence of catechin as a major phenolic compound of Antidesma thwaitesianum (Phyllanthaceae), with the maximum amount detected in the SC-CO2 extract. These data indicate that SFE technology improves both quantity and quality of Antidesma thwaitesianum fruit extract. The findings added more reliability of using this technique to produce high added value products from this medicinal plant. PMID:25977832
Ahmad, Zaki Uddin; Chao, Bing; Konggidinata, Mas Iwan; Lian, Qiyu; Zappi, Mark E; Gang, Daniel Dianchen
2018-04-27
Numerous research works have been devoted in the adsorption area using experimental approaches. All these approaches are based on trial and error process and extremely time consuming. Molecular simulation technique is a new tool that can be used to design and predict the performance of an adsorbent. This research proposed a simulation technique that can greatly reduce the time in designing the adsorbent. In this study, a new Rhombic ordered mesoporous carbon (OMC) model is proposed and constructed with various pore sizes and oxygen contents using Materials Visualizer Module to optimize the structure of OMC for resorcinol adsorption. The specific surface area, pore volume, small angle X-ray diffraction pattern, and resorcinol adsorption capacity were calculated by Forcite and Sorption module in Materials Studio Package. The simulation results were validated experimentally through synthesizing OMC with different pore sizes and oxygen contents prepared via hard template method employing SBA-15 silica scaffold. Boric acid was used as the pore expanding reagent to synthesize OMC with different pore sizes (from 4.6 to 11.3 nm) and varying oxygen contents (from 11.9% to 17.8%). Based on the simulation and experimental validation, the optimal pore size was found to be 6 nm for maximum adsorption of resorcinol. Copyright © 2018 Elsevier B.V. All rights reserved.
Combuston method of oil shale retorting
Jones, Jr., John B.; Reeves, Adam A.
1977-08-16
A gravity flow, vertical bed of crushed oil shale having a two level injection of air and a three level injection of non-oxygenous gas and an internal combustion of at least residual carbon on the retorted shale. The injection of air and gas is carefully controlled in relation to the mass flow rate of the shale to control the temperature of pyrolysis zone, producing a maximum conversion of the organic content of the shale to a liquid shale oil. The parameters of the operation provides an economical and highly efficient shale oil production.
Farrelly, Damien J; Brennan, Liam; Everard, Colm D; McDonnell, Kevin P
2014-04-01
Bio-fixation of carbon dioxide (CO2) by microalgae has been recognised as an attractive approach to offset anthropogenic emissions. Biological carbon mitigation is the process whereby autotrophic organisms, such as microalgae, convert CO2 into organic carbon and O2 through photosynthesis; this process through respiration produces biomass. In this study Dunaliella tertiolecta was cultivated in a semicontinuous culture to investigate the carbon mitigation rate of the system. The algae were produced in 1.2-L Roux bottles with a working volume of 1 L while semicontinuous production commenced on day 4 of cultivation when the carbon mitigation rate was found to be at a maximum for D. tertiolecta. The reduction in CO2 between input and output gases was monitored to predict carbon fixation rates while biomass production and microalgal carbon content are used to calculate the actual carbon mitigation potential of D. tertiolecta. A renewal rate of 45 % of flask volume was utilised to maintain the culture in exponential growth with an average daily productivity of 0.07 g L(-1) day(-1). The results showed that 0.74 g L(-1) of biomass could be achieved after 7 days of semicontinuous production while a total carbon mitigation of 0.37 g L(-1) was achieved. This represented an increase of 0.18 g L(-1) in carbon mitigation rate compared to batch production of D. tertiolecta over the same cultivation period.
40 CFR 98.183 - Calculating GHG emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... = Carbon content of the lead ore, from the carbon analysis results (percent by weight, expressed as a... = Carbon content of the lead scrap, from the carbon analysis (percent by weight, expressed as a decimal... (tons). CFlux = Carbon content of the flux materials, from the carbon analysis (percent by weight...
Mohamed, Saleh A; Al-Malki, Abdulrahman L; Khan, Jalaluddin A; Kabli, Saleh A; Al-Garni, Saleh M
2013-10-01
Different solid state fermentation (SSF) sources were tested such as cantaloupe and watermelon rinds, orange and banana peels, for the production of polygalacturonase (PG) and xylanase (Xyl) by Trichoderma harzianum and Trichoderma virens. The maximum production of both PG and Xyl were obtained by T. harzianum and T. virnes grown on cantaloupe and watermelon rinds, respectively. Time course, moisture content, temperature, pH, supplementation with carbon and nitrogen sources were optimized to achieve the maximum production of both PG and Xyl of T. harzianum and T. virens using cantaloupe and watermelon rinds, respectively. The maximum production of PG and Xyl of T. harzianum and T. virens was recorded at 4-5 days of incubation, 50-66% moisture, temperature 28-35°C and pH 6-7. The influence of supplementary carbon and nitrogen sources was studied. For T. harzianum, lactose enhanced PG activity from 87 to 120 units/g solid, where starch and maltose enhanced Xyl activity from 40 to 55-60 units/g solid for T. virnes. Among the nitrogen sources, ammonium sulphate, ammonium nitrate, yeast extract and urea increased PG activity from 90 to 110-113 units/g solid for T. harzianum. Similarly, ammonium chloride, ammonium sulphate and yeast extract increased Xyl activity from 45 to 55-70 units/g solid for T. virens.
Liu, Shan-Shan; Zhang, Xing-Hua; Gong, Yuan-Bo; Li, Yuan; Wang, Yan; Yin, Yan-Jie; Ma, Jin-Song; Guo, Ting
2014-02-01
Effects of grazing disturbance on the soil carbon contents and active components in the four vegetations, i.e., artificial Robinia pseudoacacia plantation, artificial poplar plantation, Berberis aggregate shrubland and grassland, were studied in the mountain forest-arid valley ecotone in the upper Minjiang River. Soil organic carbon and active component contents in 0-10 cm soil layer were greater than in 10-20 cm soil layer at each level of grazing disturbance. With increasing the grazing intensity, the total organic carbon (TOC), light fraction organic carbon (LFOC), particulate organic carbon (POC) and easily oxidized carbon (LOC) contents in 0-10 cm soil layer decreased gradually in the artificial R. pseudoacacia plantation. The LFOC content decreased, the POC content increased, and the TOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the artificial poplar plantation. The POC content decreased, and the TOC, LFOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the B. aggregate shrubland. The POC and TOC contents decreased, and the LFOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the grassland. The decreasing ranges of LOC, LFOC and POC contents were 0.1-7.9 times more than that of TOC content. There were significant positive relationships between TOC and LOC, LFOC and POC, suggesting that the active organic carbon components could reflect the change of soil total carbon content.
Vandenhove, H; Van Hees, M; Wouters, K; Wannijn, J
2007-01-01
Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for (238)U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K(d), L kg(-1)) and the organic matter content (R(2)=0.70) and amorphous Fe content (R(2)=0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH=6, log(K(d)) was linearly related with pH [log(K(d))=-1.18 pH+10.8, R(2)=0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fornos, J.J.; Forteza, V.; Jaume, C.
1990-05-01
Cala Fornells is a restricted bay located in the northern section of the island Minorca. Cala Fornells has a surface area of 4 km{sup 2} and a maximum depth of 25 m at the mouth, which connects with the northern Minorca platform. Due to ephemeral streams with very fine textural inflow, the sedimentary facies present in the floor of the bay are primarily controlled by the bioclastic carbonate ecosystem production and the terrigenous input. The distribution of the facies is related to three major factors: (1) bathymetry, which controls the ecosystem distribution (Cymodocea nodosa-Caulerpa prolifera, Posidonia oceanica, and maeerl communities,more » from shallowest to deepest); (2) hydrodynamic conditions due to northern winds (locally called Tramuntana), which control the grain size distribution; and (3) local ephemeral streams, which control the terrigenous input. In the coarser fractions of the sediment (gravel and sand), the main component in the deepest zones are skeletal fragments of red algae. The shallowest zones contain fragments of the green alga Halimeda tuna, which may represent up to 50% of the total bioclastic fraction. The terrigenous components are mostly shales and only locally do they find a sand fragment of limestone and quartz grains. The organic matter content is very high (over 6% in the finest fractions), whereas in the more hydrodynamic and deeper facies (25 m) where the bioclastic fractions are predominant, the organic carbon content is below 0.5%.« less
Fatigue behavior of ultrafine grained medium Carbon steel processed by severe plastic deformation
NASA Astrophysics Data System (ADS)
Ruffing, C.; Ivanisenko, Yu; Kerscher, E.
2014-08-01
The endurance limit of materials has been observed to be significantly increased in materials with an ultrafine grained microstructure [1, 2]. As this effect, however, has not yet been investigated in steels, fatigue experiments of an unalloyed medium carbon steel with a carbon content of 0.45 wt.-%, which was treated by high pressure torsion (HPT) [3-5] at elevated temperature were carried out. The treatments were applied to discs which had different initial carbide morphologies and showed an increase of hardness after HPT by a factor of 1.75 - 3.2 compared to the initial states, whereby the amount of increase depends on the initial carbide morphology. The maximum hardness achieved was 810 HV. The discs were cut into fatigue specimens in the form of bars of the size of 4 mm x 1 mm x 600 gm. Until a hardness of 500 HV the endurance limits correspond linearly with the hardness. This is no longer the case at higher hardness values, where inherent and process-initiated flaws lead to lower fatigue limits. The maximum endurance limit exceeded 1050 MPa in 4-point-micro-bending and at a load ratio of R = 0.1. Fractography revealed different crack initiation sites like pre cracks and shear bands [6, 7] resulting from HPT or fisheye fractures initiated from non-metallic inclusions.
Carbonate substitution in lead hydroxyapatite Pb5(PO4)3OH
NASA Astrophysics Data System (ADS)
Kwaśniak-Kominek, M.; Manecki, M.; Matusik, J.; Lempart, M.
2017-11-01
Synthetic carbonate lead hydroxyapatite Pb5(PO4,CO3)3(OH,CO3) was precipitated from aqueous solution and characterized. The maximum content of CO32- ion in lead apatites does not exceed 2.25 wt%. For precipitation from aqueous solutions this is even lower and controlled by the solubility of cerussite PbCO3. Carbonate substitution occurs simultaneously in two structural positions: at OH- sites (A-type substitution) and at PO43- sites (B-type substitution). This is the most pronounced in FTIR (Fourier Transform Infrared Spectroscopy) spectra at 865 cm-1 and within the range of 1300-1500 cm-1. The substitution results in slight increase of the unit cell parameter a from 9.874 to 9.904 A. The presence of CO32- in two structural positions results in two stages of the release of CO2 upon heating: at 300-350 °C and at 400 °C. The presence of carbonates has little effect on thermal decomposition of lead hydroxyapatite which starts at about 450 °C resulting in the formation of lead pyrophosphate.
Evaluation of T-111 forced-convection loop tested with lithium at 1370 C. [free convection
NASA Technical Reports Server (NTRS)
Devan, J. H.; Long, E. L., Jr.
1975-01-01
A T-111 alloy (Ta-8% W-2% Hf) forced-convection loop containing molten lithium was operated 3000 hr at a maximum temperature of 1370 C. Flow velocities up to 6.3 m/sec were used, and the results of this forced-convection loop are very similar to those observed in lower velocity thermal-convection loops of T-111 containing lithium. Weight changes were determined at 93 positions around the loop. The maximum dissolution rate occurred at the maximum wall temperature of the loop and was less than 1.3 microns/year. Mass transfer of hafnium, nitrogen, and, to a lesser extent, carbon occurred from the hotter to cooler regions. Exposed surfaces in the highest temperature region were found to be depleted in hafnium to a depth of 60 microns with no detectable change in tungsten content. There was some loss in room-temperature tensile strength for specimens exposed to lithium at 1370 C, attributable to depletion of hafnium and nitrogen and to attendant grain growth.
Ozone-induced changes in natural organic matter (NOM) structure
Westerhoff, P.; Debroux, J.; Aiken, G.; Amy, G.
1999-01-01
Hydrophobic organic acids (combined humic and fulvic acids), obtained from an Antarctic Lake with predominantly microbially derived organic carbon sources and two US fiver systems with terrestrial organic carbon sources, were ozonated. Several analyses, including 13C-NMR, UV absorbance, fluorescence, hydrophobic/transphilic classification, and potentiometric titrations, were performed before and after ozonation. Ozonation reduced aromatic carbon content, selectively reducing phenolic carbon content. Ozonation of the samples resulted in increased aliphatic, carboxyl, plus acetal and ketal anomeric carbon content and shifted towards less hydrophobic compounds.Hydrophobic organic acids (combined humic and fulvic acids), obtained from an Antarctic Lake with predominantly microbially derived organic carbon sources and two US river systems with terrestrial organic carbon sources, were ozonated. Several analyses, including 13C-NMR, UV absorbance, fluorescence, hydrophobic/transphilic classification, and potentiometric titrations, were performed before and after ozonation. Ozonation reduced aromatic carbon content, selectively reducing phenolic carbon content. Ozonation of the samples resulted in increased aliphatic, carboxyl, plus acetal and ketal anomeric carbon content and shifted towards less hydrophobic compounds.
NASA Astrophysics Data System (ADS)
Hallmark, A.; Litvak, M. E.; Collins, S. L.
2015-12-01
Arid and semi-arid ecosystems account for over 45% of global land cover. While mean annual carbon uptake in these ecosystems is relatively low, aridlands collectively store a significant amount of carbon. There is high inter- and intra-annual variability of plant growth in aridlands, depending largely on the timing and size of rainfall events. This variation is also of great significance, as the variation in annual semi-aridland carbon uptake accounts for ~39% of the inter-annual variability of the global terrestrial carbon sink, the largest percentage of any land cover type. Although arid and semi-arid ecosystems are of global importance, they are understudied. To better understand the drivers and variability of carbon uptake in these critical ecosystems, we utilize a six-year record of digital images (45,000+ images), carbon flux and meteorological data, soil water content, and associated ecological measurements from three eddy covariance tower sites in central New Mexico. These sites include a Chihuahuan Desert/short-grass Plains grassland site, and post-fire successional grassland site, and a creosote-encroached shrubland site, each of which have unique species compositions, carbon fluxes, and reactions to disturbance and resource addition. All images used are co-registered and corrected for radial lens distortions (when necessary) and greenness indices (2GRBi, gcc, and/or NDVI) are calculated for each scene's overall "canopy" and for individual species and plant functional types therein. At all three sites, camera-derived greenness is correlated to measured carbon uptake with fine resolution (R2 up to 0.8), capturing temporal and spatial variation usually not seen in satellite-based imagery. At sites with lower LAI, species-specific ROI's were more correlated to the site's measured carbon flux across shorter time scales. Understanding the biota comprising each image and its contribution to changing scene greenness at different times of year can lead to more accurate carbon flux predictions in semi-arid systems, with species-specific biotic constraints (maximum growth rate, lifespan, and seasonality), growth parameters (light availability, VPD, soil water content, and temperature) as well as community-wide abiotic drivers considered.
Risberg, Kajsa; Cederlund, Harald; Pell, Mikael; Arthurson, Veronica; Schnürer, Anna
2017-03-01
The growing number of biogas plants in Europe has resulted in increased production of nutrient-rich digestate with great potential as fertilizer for arable land. The nutrient composition of digestate varies with the substrate treated in the biogas plant and may contain compounds that stimulate or inhibit soil microbial activity. This study compared 20 digestates (D) with 10 pig slurries (PS) and 10 cow manures (CM) regarding their chemical content and their effect on soil microbial activities, i.e. potential ammonia oxidation rate (PAO) and soil respiration. The results showed no significant differences within the D group when divided based on substrate type. i.e. manure dominated vs. other organic waste materials in any of the tests. In general D contained significantly higher concentrations of ammonium while the concentrations of total carbon and volatile fatty acids were higher in PS and CM than in D. The D showed both stimulating and inhibiting effects on PAO, while all CM and all PS except one showed inhibiting effects on PAO. However, PAO activity was negatively correlated with the content of volatile fatty acids in the residues indicating that these compounds may be the cause of the inhibition. The maximum respiration activity (h peakmax ) was lower and the time point for the maximum respiration activity (t peakmax ) occurred earlier for D compared with CM and PS. This earlier peak time could be indicative of a high proportion of easily degradable carbon in D compared with PS and CM. However, the utilization rate of carbon, i.e. the proportion of added organic C converted to CO 2 -C during 12days, did not differ significantly between D, PS and CM, indicating that overall carbon quality in the different fertilizers was still roughly comparable. In short, our results suggest that digestates were different compared with PS and CM but without posing a higher risk with respect to their impact on soil microbial activity. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Biodiesel production from marine cyanobacteria cultured in plate and tubular photobioreactors.
Selvan, B Karpanai; Revathi, M; Piriya, P Sobana; Vasan, P Thirumalai; Prabhu, D Immuanual Gilwax; Vennison, S John
2013-03-01
Carbon (neutral) based renewable liquid biofuels are alternative to petroleum derived transport fuels that contribute to global warming and are of a limited availability. Microalgae based biofuels are considered as promising source of energy. Lyngbya sp. and Synechococcus sp. were studied for the possibility of biodiesel production in different media such as ASNIII, sea water enrichment medium and BG11. The sea water enrichment medium was found superior in enhancing the growth rate of these microalgae. Nitrogen depletion has less effect in total chlorophyll a content, at the same time the lipid content was increased in both Lyngbya sp. and Synechococcus sp. by 1.4 and 1.2 % respectively. Increase in salinity from 0.5-1.0 M also showed an increase in the lipid content to 2.0 and 0.8 % in these strains; but a salinity of 1.5 M has a total inhibitory effect in the growth. The total biomass yield was comparatively higher in tubular LED photobioreactor than the fluorescent flat plated photobioreactor. Lipid extraction was obtained maximum at 60 degrees C in 1:10 sample: solvent ratio. GC-MS analysis of biodiesel showed high content of polyunsaturated fatty acids (PUFA; 4.86 %) than saturated fatty acid (SFA; 4.10 %). Biodiesel production was found maximum in Synechococcus sp. than Lyngbya sp. The viscosity of the biodiesel was closely related to conventional diesel. The results strongly suggest that marine microalgae could be used as a renewable energy source for biodiesel production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Zhifeng; Liu, Chongxuan; Todd-Brown, Katherine E.
The relationship between microbial respiration rate and soil moisture content is an important property for understanding and predicting soil organic carbon degradation, CO 2 production and emission, and their subsequent effects on climate change. This paper reports a pore-scale modeling study to investigate the response of heterotrophic respiration to moisture conditions in soils and to evaluate various factors that affect this response. X-ray computed tomography was used to derive soil pore structures, which were then used for pore-scale model investigation. The pore-scale results were then averaged to calculate the effective respiration rates as a function of water content in soils.more » The calculated effective respiration rate first increases and then decreases with increasing soil water content, showing a maximum respiration rate at water saturation degree of 0.75 that is consistent with field and laboratory observations. The relationship between the respiration rate and moisture content is affected by various factors, including pore-scale organic carbon bioavailability, the rate of oxygen delivery, soil pore structure and physical heterogeneity, soil clay content, and microbial drought resistivity. Simulations also illustrates that a larger fraction of CO 2 produced from microbial respiration can be accumulated inside soil cores under higher saturation conditions, implying that CO 2 flux measured on the top of soil cores may underestimate or overestimate true soil respiration rates under dynamic moisture conditions. Overall, this study provides mechanistic insights into the soil respiration response to the change in moisture conditions, and reveals a complex relationship between heterotrophic microbial respiration rate and moisture content in soils that is affected by various hydrological, geochemical, and biophysical factors.« less
NASA Astrophysics Data System (ADS)
Kim, Jong Bae; Sohn, Il
2018-02-01
The effect of the initial FeO content and CaO:SiO2 ratio (CaO mass pct/SiO2 mass pct) on the reduction smelting of FeO with carbon flake addition is investigated in the CaO-MgOsatd.-SiO2-FeO slag system at 1823 K (1550 °C). Carbon rapidly reacted with FeO in the molten slag, causing both foaming and compositional changes in the slag. As FeO is reduced, the MgO saturation is modified, and solid precipitants, including MgO and other complex oxides, were observed, which significantly affected the slag properties, including the viscosity and foaming behavior. The solid-phase fraction and viscosity were estimated from changes in the measured FeO content over time using the thermochemical software FactSage. The iron recovery, which is distinguished from the amount of reduced Fe droplets, showed opposite behavior to the measured maximum foaming height and modified foaming index. According to the FeO mass transfer coefficient considering slag foaming at various initial FeO contents and CaO:SiO2 ratios, the reduction rate was optimal at higher initial FeO contents and a CaO:SiO2 ratio of 2.0, which did not correspond to the optimal iron recovery at an initial FeO content of 44 mass pct and above and a CaO:SiO2 ratio of 1.2. The results showed that slag foaming may increase the reduction kinetics, but the slag composition needs to be optimized for greater iron recovery.
Characterization and optimization of flexible dual mode sensor based on Carbon Micro Coils
NASA Astrophysics Data System (ADS)
Dat Nguyen, Tien; Kim, Taeseung; Han, Hyoseung; Shin, Hyun Yeong; Nguyen, Canh Toan; Phung, Hoa; Ryeol Choi, Hyouk
2018-01-01
Carbon Microcoils (CMCs) is a 3D helical micro structure grown via a chemical vapor deposition process. It is noted that composites in which CMCs are embedded in polymer matrixes, called CMC sheets, experience a drastic change of electrical impedance depending on the proximity and contact of external objects. In this paper, a dual functional sensor, that is, tactile and proximity sensor fabricated with CMC/silicone composite is presented to demonstrate the advanced characteristics of CMCs sheets. Characteristics of sensor responses depending on CMC compositions are investigated and optimal conditions are determined. The candidates of polymer matrices are also investigated. As the results, the CMC sheet consisting of Ecoflex 30, CMC 30 {{wt}} % , and multiwall carbon nanotubes 1 {{wt}} % shows the most appropriate tactile sensing characteristics with more than 1 mm of thickness. The proximity sensing capability is the maximum when the 1.5 {{wt}} % CMC content is mixed with Dragon skin 30 silicone substrate. Finally, multiple target objects are recognized with the results and their feasibilities are experimentally validated.
MW-assisted synthesis of LiFePO 4 for high power applications
NASA Astrophysics Data System (ADS)
Beninati, Sabina; Damen, Libero; Mastragostino, Marina
LiFePO 4/C was prepared by solid-state reaction from Li 3PO 4, Fe 3(PO 4) 2·8H 2O, carbon and glucose in a few minutes in a scientific MW (microwave) oven with temperature and power control. The material was characterized by X-ray diffraction, scanning electron microscopy and by TGA analysis to evaluate carbon content. The electrochemical characterization as positive electrode in EC (ethylene carbonate)-DMC (dimethylcarbonate) 1 M LiPF 6 was performed by galvanostatic charge-discharge cycles at C/10 to evaluate specific capacity and by sequences of 10 s discharge-charge pulses, at different high C-rates (5-45C) to evaluate pulse-specific power in simulate operative conditions for full-HEV application. The maximum pulse-specific power and, particularly, pulse efficiency values are quite high and make MW synthesis a very promising route for mass production of LiFePO 4/C for full-HEV batteries at low energy costs.
Ma, Jian Ye; Tong, Xiao Gang; Li, Zhan Bin; Fu, Guang Jun; Li, Jiao; Hasier
2016-11-18
The aim of this study was to investigate the effects of carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand Land, soil samples were collected from quicksand land, semifixed sand and fixed sand lands that were established by the shrub for 20-55 year-old and the arbor for 20-50 year-old at sand control region of Yulin in Northern Shaanxi Province. The dynamics and sequestration rate of soil organic carbon (SOC) associated with sand, silt and clay were measured by physical fractionation method. The results indicated that, compared with quicksand area, the carbon content in total SOC and all soil particle-sized fractions at bothsand-fixing sand forest lands showed a significant increasing trend, and the maximum carbon content was observed in the top layer of soils. From quicksand to fixed sand land with 55-year-old shrub and 50-year-old arbor, the annual sequestration rate of carbon stock in 0-5 cm soil depth was same in silt by 0.05 Mg·hm -2 ·a -1 . The increase rate of carbon sequestration in sand was 0.05 and 0.08 Mg·hm -2 ·a -1 , and in clay was 0.02 and 0.03 Mg·hm -2 ·a -1 at shrubs and arbors land, respectively. The increase rate of carbon sequestration in 0-20 cm soil layer for all the soil particles was averagely 2.1 times as that of 0-5 cm. At the annual increase rate of carbon, the stock of carbon in sand, silt and clay at the two fixed sand lands were increased by 6.7, 18.1 and 4.4 times after 50-55 year-old reversion of quicksand land to fixed sand. In addition, the average percentages that contributed to accumulation of total SOC by different particles in 0-20 cm soil were in the order of silt carbon (39.7%)≈sand carbon (34.6%) > clay carbon (25.6%). Generally, the soil particle-sized fractions had great carbon sequestration potential during reversion of desertification in Mu Us Sand Land, and the slit and sand were the main fractions for carbon sequestration at both fixed sand lands.
Abiotic and biotic determinants of leaf carbon exchange capacity from tropical to high boreal biomes
NASA Astrophysics Data System (ADS)
Smith, N. G.; Dukes, J. S.
2016-12-01
Photosynthesis and respiration on land represent the two largest fluxes of carbon dioxide between the atmosphere and the Earth's surface. As such, the Earth System Models that are used to project climate change are high sensitive to these processes. Studies have found that much of this uncertainty is due to the formulation and parameterization of plant photosynthetic and respiratory capacity. Here, we quantified the abiotic and biotic factors that determine photosynthetic and respiratory capacity at large spatial scales. Specifically, we measured the maximum rate of Rubisco carboxylation (Vcmax), the maximum rate of Ribulose-1,5-bisphosphate regeneration (Jmax), and leaf dark respiration (Rd) in >600 individuals of 98 plant species from the tropical to high boreal biomes of Northern and Central America. We also measured a bevy of covariates including plant functional type, leaf nitrogen content, short- and long-term climate, leaf water potential, plant size, and leaf mass per area. We found that plant functional type and leaf nitrogen content were the primary determinants of Vcmax, Jmax, and Rd. Mean annual temperature and mean annual precipitation were not significant predictors of these rates. However, short-term climatic variables, specifically soil moisture and air temperature over the previous 25 days, were significant predictors and indicated that heat and soil moisture deficits combine to reduce photosynthetic capacity and increase respiratory capacity. Finally, these data were used as a model benchmarking tool for the Community Land Model version 4.5 (CLM 4.5). The benchmarking analyses determined errors in the leaf nitrogen allocation scheme of CLM 4.5. Under high leaf nitrogen levels within a plant type the model overestimated Vcmax and Jmax. This result suggested that plants were altering their nitrogen allocation patterns when leaf nitrogen levels were high, an effect that was not being captured by the model. These data, taken with models in mind, provide paths forward for improving model structure and parameterization of leaf carbon exchange at large spatial scales.
Pazó, Jose A.; Granada, Enrique; Saavedra, Ángeles; Eguía, Pablo; Collazo, Joaquín
2010-01-01
The objective of this study was to develop a methodology for the determination of the maximum sampling error and confidence intervals of thermal properties obtained from thermogravimetric analysis (TG), including moisture, volatile matter, fixed carbon and ash content. The sampling procedure of the TG analysis was of particular interest and was conducted with care. The results of the present study were compared to those of a prompt analysis, and a correlation between the mean values and maximum sampling errors of the methods were not observed. In general, low and acceptable levels of uncertainty and error were obtained, demonstrating that the properties evaluated by TG analysis were representative of the overall fuel composition. The accurate determination of the thermal properties of biomass with precise confidence intervals is of particular interest in energetic biomass applications. PMID:20717532
NASA Astrophysics Data System (ADS)
Wang, Yuebo; Su, Xiaoli; Xu, Zhen; Wen, Ke; Zhang, Ping; Zhu, Jianxi; He, Hongping
2016-02-01
A new type of surface-functionalized porous clay heterostructures (SF-PCH) was synthesized via carbonization of the template agents with sulfuric acid. The converted carbons deposited on the porous surface of the SF-PCH samples and changed their surface chemical properties. The composites possessed a maximum carbon content of 5.35%, a large specific surface area of 428 m2/g and micropore volume of approximately 0.2 cm3/g. The layered and porous structure of SF-PCH was retained after carbonization and calcination when sulfuric acid solution with a mild concentration was used. Analysis by XPS confirmed that the carbonaceous matter in the pore channels was functionalized with various organic groups, including carbonaceous, nitrogenous, and sulfated groups. Both the surface chemical property and structural characteristic of adsorbents have effects on the adsorption properties of SF-PCH for toluene. The SF-PCH samples exhibited a stronger adsorption affinity to toluene compared with untreated PCH in the low pressure region, which is more valuable in the practical applications. These results demonstrate that carbonization of soft-template is a feasible process for the surface modification of PCH, enabling the resulting composites to become promising candidates for application in toluene emission control.
Lignin phenols in sediments of Lake Baikal, Siberia: Application to paleoenvironmental studies
Orem, W.H.; Colman, Steven M.; Lerch, H.E.
1997-01-01
Sediments from three cores obtained from distinct depositional environments in Lake Baikal, Siberia were analyzed for organic carbon, total nitrogen and lignin phenol concentration and composition. Results were used to examine changes in paleoenvironmental conditions during climatic cycles of the late Quaternary (< 125 ka). Average organic carbon, and total nitrogen concentrations, atomic C/N ratios and organic carbon accumulation rates were significantly higher in the Holocene compared with the late Pleistocene, reflecting overall warmer temperatures and increased runoff during the Holocene. A Holocene maximum in organic carbon was observed at about 6 ka, and may represent the warmest wettest period of the Holocene. At one site (Academician Ridge) pronounced late Pleistocene maxima in organic carbon and biogenic silica were observed at about 80-85 ka, probably indicative of an interstadial period with enhanced aquatic productivity. Total sedimentary lignin phenol contents were generally lower in the late Pleistocene compared to the Holocene, but with several peaks in concentration during the late Pleistocene. These late Pleistocene peaks in total sedimentary lignin content (dated at about 80, 50 and 30 ka) directly precede or occur during peaks in sedimentary biogenic silica contents. These periods likely represent relatively warm interstadial times, with increased precipitation producing the observed increase in terrestrial runoff and aquatic productivity. Lignin phenol ratios (S/V, C/V and P/V) were used to examine changes in terrestrial vegetation type resulting from changes in paleoenvironmental conditions during the late Pleistocene. A degree of caution must be used in the interpretation of these ratios with regard to vegetation sources and paleoenvironmental conditions, because of potential compositional changes in lignin resulting from biodegradation. Nevertheless, results show that long glacial periods were characterized by terrestrial vegetation composed of a mix of non-woody angiosperm vegetation and minor gymnosperm forest. Shorter interstadial periods are defined by a change to dominant gymnosperm forest and were observed at about 80, 75, 63, 50 and 30 ka, ranging from about 2-6 kyr in duration. These interstadial periods of the late Pleistocene defined by lignin phenol ratios generally occur during longer periods of enhanced sedimentary biogenic silica content (about 10-15 ka in duration), providing corroborative evidence of these warm interstadial periods.Sediments obtained in Lake Baikal were analyzed for organic carbon, total nitrogen and lignin phenol composition and used to study changes in paleoenvironmental conditions during climatic cycles of the late Quaternary. The organic carbon, total nitrogen concentrations, atomic C/N ratios and organic carbon accumulation rates were higher in the Holocene showing overall warmer temperatures and increased runoff. Total lignin phenol contents were lower in the Pleistocene representing relatively warm interstadial times with increased precipitation, runoff and aquatic productivity. Lignin phenol was used to examine vegetation changes due to paleoenvironmental conditions and showed that long glacial periods were characterized by terrestrial vegetation.
NASA Technical Reports Server (NTRS)
Valdivia-Silva, Julio E.; Karouia, Fathi; Navarro-Gonzalez, Rafael; McKay, Christopher
2016-01-01
Soil samples from the hyper-arid region in the Atacama 23 Desert in Southern Peru (La Joya Desert) were analyzed for total and labile organic carbon (TOC & LOC), phospholipid fatty acids analysis (PLFA), quantitative real time polymerase chain reaction (qRT-PCR), 4',6- diamidino-2-phenylindole (DAPI)-fluorescent microscopy, culturable microorganisms, and oxidant activity, in order to understand the relationship between the presence of organic matter and microorganisms in these types of soils. TOC content levels were similar to the labile pool of carbon suggesting the absence of recalcitrant carbon in these soils. The range of LOC was from 2 to 60 micro-g/g of soil. PLFA analysis indicated a maximum of 2.3 x 10(exp 5) cell equivalents/g. Culturing of soil extracts yielded 1.1 x 10(exp 2)-3.7 x 10(exp 3) CFU/g. qRT-PCR showed between 1.0 x 10(exp 2) and 8 x 10(exp 3) cells/g; and DAPI fluorescent staining indicated bacteria counts up to 5 x 104 cells/g. Arid and semiarid samples (controls) showed values between 10(exp 7) and 10(exp 11) cells/g with all of the methods used. Importantly, the concentration of microorganisms in hyper-arid soils did not show any correlation with the organic carbon content; however, there was a significant dependence on the oxidant activity present in these soil samples evaluated as the capacity to decompose sodium formate in 10 hours. We suggest that the analysis of oxidant activity could be a useful indicator of the microbial habitability in hyper-arid soils, obviating the need to measure water activity over time. This approach could be useful in astrobiological studies on other worlds.
Gong, Lu; Zhu, Mei-ling; Liu, Zeng-yuan; Zhang, Xue-ni; Xie, Li-na
2016-04-15
We analyzed the differentiation among the environmental factors and soil organic/inorganic carbon contents of irrigated desert soil, brown desert soil, saline soil and aeolian sandy soil by classical statistics methods, and studied the correlation between soil carbon contents and the environmental factor by redundancy analysis (RDA) in a typical oasis of Yutian in the southern edge of the Tarim Basin. The results showed that the average contents of soil organic carbon and soil inorganic carbon were 2.51 g · kg⁻¹ and 25.63 g · kg⁻¹ respectively. The soil organic carbon content of the irrigated desert soil was significantly higher than those of brown desert soil, saline soil and aeolian sandy soil, while the inorganic carbon content of aeolian sandy soil was significantly higher than those of other soil types. The soil moisture and nutrient content were the highest in the irrigated desert soil and the lowest in the aeolian sandy sail. All soil types had high degree of salinization except the irrigated desert soil. The RDA results showed that the impacts of environmental factors on soil carbon contents ranked in order of importance were total nitrogen > available phosphorus > soil moisture > ground water depth > available potassium > pH > total salt. The soil carbon contents correlated extremely significantly with total nitrogen, available phosphorus, soil moisture and ground water depth (P < 0.01), and it correlated significantly with available potassium and pH (P < 0.05). There was no significant correlation between soil carbon contents and other environmental factors (P > 0.05).
Yang, Jin; Bitter, Julie L; Smith, Billy A; Fairbrother, D Howard; Ball, William P
2013-12-17
This paper provides results from studies of the transport of oxidized multi-walled carbon nanotubes (O-MWCNTs) of varying surface oxygen concentrations under a range of aquatic conditions and through uniform silica glass bead media. In the presence of Na(+), the required ionic strength (IS) for maximum particle attachment efficiency (i.e., the critical deposition concentration, or CDC) increased as the surface oxygen concentration of the O-MWCNTs or pH increased, following qualitative tenets of theories based on electrostatic interactions. In the presence of Ca(2+), CDC values were lower than those with Na(+) present, but were no longer sensitive to surface oxygen content, suggesting that Ca(2+) impacts the interactions between O-MWCNTs and glass beads by mechanisms other than electrostatic alone. The presence of Suwannee River natural organic matter (SRNOM) decreased the attachment efficiency of O-MWCNTs in the presence of either Na(+) or Ca(2+), but with more pronounced effects when Na(+) was present. Nevertheless, low concentrations of SRNOM (<4 mg/L of dissolved organic carbon) were sufficient to mobilize all O-MWCNTs studied at CaCl2 concentrations as high as 10 mM. Overall, this study reveals that NOM content, pH, and cation type show more importance than surface chemistry in affecting O-MWCNTs deposition during transport through silica-based porous media.
NASA Astrophysics Data System (ADS)
Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu
2018-06-01
Hydrogenated amorphous carbon (a-C:H) films are deposited on silicon (Si) substrates using a high-repetition microsecond-pulsed DC plasma chemical vapor deposition (CVD) system from acetylene (C2H2) at a gas pressure of 15 Pa inside a custom-made vacuum chamber. The plasma discharge characteristics, hydrocarbon species, and the microstructure of the resulting films are examined at various pulse repetition rates from 50 to 400 kHz and a fixed duty cycle of 50%. The optical emission spectra confirmed the increase in electron excitation energy from 1.09 to 1.82 eV and the decrease in the intensity ratio of CH/C2 from 1.04 to 0.75 with increasing pulse frequency, indicating the enhanced electron impact dissociation of C2H2 gas. With increasing pulse frequency, the deposition rate gradually increased, reaching a maximum rate of 60 nm/min at 200 kHz, after which a progressive decrease was noted, whereas the deposition area was almost uniform for all the prepared films. Clear trends of increasing sp3 content (amorphization) and decreasing hydrogen (H) content in the films were observed as the pulse repetition rate increased, while most of the hydrogen atoms bonded to carbon atoms by sp3 hybridization rather than by sp2 hybridization.
Fernandez, Pamela A.; Leal, Pablo P.; Noisette, Fanny; McGraw, Christina M.; Revill, Andrew T.; Hurd, Catriona L.; Kübler, Janet E.
2017-01-01
The responses of macroalgae to ocean acidification could be altered by availability of macronutrients, such as ammonium (NH4+). This study determined how the opportunistic macroalga, Ulva australis responded to simultaneous changes in decreasing pH and NH4+ enrichment. This was investigated in a week-long growth experiment across a range of predicted future pHs with ambient and enriched NH4+ treatments followed by measurements of relative growth rates (RGR), NH4+ uptake rates and pools, total chlorophyll, and tissue carbon and nitrogen content. Rapid light curves (RLCs) were used to measure the maximum relative electron transport rate (rETRmax) and maximum quantum yield of photosystem II (PSII) photochemistry (Fv/Fm). Photosynthetic capacity was derived from the RLCs and included the efficiency of light harvesting (α), slope of photoinhibition (β), and the light saturation point (Ek). The results showed that NH4+ enrichment did not modify the effects of pH on RGRs, NH4+ uptake rates and pools, total chlorophyll, rETRmax, α, β, Fv/Fm, tissue C and N, and the C:N ratio. However, Ek was differentially affected by pH under different NH4+ treatments. Ek increased with decreasing pH in the ambient NH4+ treatment, but not in the enriched NH4+ treatment. NH4+ enrichment increased RGRs, NH4+ pools, total chlorophyll, rETRmax, α, β, Fv/Fm, and tissue N, and decreased NH4+ uptake rates and the C:N ratio. Decreased pH increased total chlorophyll content, rETRmax, Fv/Fm, and tissue N content, and decreased the C:N ratio. Therefore, the results indicate that U. australis growth is increased with NH4+ enrichment and not with decreasing pH. While decreasing pH influenced the carbon and nitrogen metabolisms of U. australis, it did not result in changes in growth. PMID:29176815
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2011 CFR
2011-07-01
... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2013 CFR
2013-07-01
... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2014 CFR
2014-07-01
... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...
High conductivity a-C:N thin films prepared by electron gun evaporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebollo-Plata, B.; Lozada-Morales, R.; Palomino-Merino, R.
2007-08-15
By employing electron beam evaporation, amorphous carbon nitride (a-C:N) thin films, with a low nitrogen content ({approx} 1%), were prepared on Si(110) and glass substrates at about 150 deg. C. The source was a graphite target and an ambient of N{sub 2} was introduced into the growing chamber. The source-substrate distance (SSD) was the main parameter that was intentionally varied. Electron dispersion spectroscopy measurements indicate the nitrogen concentration in the layer as {approx} 1%. The dark electrical conductivity ({sigma}) of layers was very sensitive to SSD variation, changing up to six orders of magnitude when this parameter was varied frommore » 10.5 to 23.5 cm. A maximum value of {sigma} = 1 x 10{sup 3} {omega}{sup -1} cm{sup -1} at room temperature was obtained when the SSD was equal to 15.5 cm. We have deduced that, in accordance with the Ferrari-Robertson model (FRM), our samples are localized in the second stage of the amorphization trajectory of FRM. When the SSD increases the C atoms have more probability to collide with N{sub 2} molecules, and the content of nitrogen in the a-C film increases. The amorphization trajectory followed by the films with an SSD increase is from nanocrystalline graphite to amorphous carbon. The changes in the amorphization are due to the nitrogen content in the layers.« less
Matyszewska, Dorota; Napora, Ewelina; Żelechowska, Kamila; Biernat, Jan F; Bilewicz, Renata
2018-01-01
The synthesis, characterization, and the influence of single-walled carbon nanotubes (SWCNTs) modified with an anticancer drug doxorubicin (DOx) on the properties of model biological membrane as well as the comparison of the two modes of modification has been presented. The drug was covalently attached to the nanotubes either preferentially on the sides or at the ends of the nanotubes by the formation of hydrazone bond. The efficiency of the modification was proved by the results of FTIR, Raman, and thermogravimetric analysis. In order to characterize the influence of SWCNT-DOx conjugates on model biological membranes, Langmuir technique has been employed. The mixed monolayers composed of 1,2-dipalmitoyl- sn -glycero-3-phosphothioethanol (DPPTE) and SWCNT-DOx with different weight ratio have been prepared. It has been shown that changes in the isotherm characteristics depend on the SWCNTs content. While smaller amounts of SWCNTs do not exert significant differences, the introduction of the prevailing content of the nanotubes increases area per molecule and decreases the maximum value of compression modulus, leading to more fluid monolayer. However, upon increasing the surface pressure, the aggregation of carbon nanotubes within the thiolipid matrix has been observed. Mixed layers of DPPTE/SWCNT-DOx were also transferred onto gold electrodes by means of LB method. Cyclic voltammetry showed that SWCNT-DOx conjugates remain adsorbed at the electrode surface and are stable in time. Additionally, higher values of peak current and DOx surface concentration obtained for side modification prove that side modification allows for more efficient conjugation of the drug to carbon nanotubes. Graphical abstractᅟ.
NASA Astrophysics Data System (ADS)
Matyszewska, Dorota; Napora, Ewelina; Żelechowska, Kamila; Biernat, Jan F.; Bilewicz, Renata
2018-05-01
The synthesis, characterization, and the influence of single-walled carbon nanotubes (SWCNTs) modified with an anticancer drug doxorubicin (DOx) on the properties of model biological membrane as well as the comparison of the two modes of modification has been presented. The drug was covalently attached to the nanotubes either preferentially on the sides or at the ends of the nanotubes by the formation of hydrazone bond. The efficiency of the modification was proved by the results of FTIR, Raman, and thermogravimetric analysis. In order to characterize the influence of SWCNT-DOx conjugates on model biological membranes, Langmuir technique has been employed. The mixed monolayers composed of 1,2-dipalmitoyl- sn-glycero-3-phosphothioethanol (DPPTE) and SWCNT-DOx with different weight ratio have been prepared. It has been shown that changes in the isotherm characteristics depend on the SWCNTs content. While smaller amounts of SWCNTs do not exert significant differences, the introduction of the prevailing content of the nanotubes increases area per molecule and decreases the maximum value of compression modulus, leading to more fluid monolayer. However, upon increasing the surface pressure, the aggregation of carbon nanotubes within the thiolipid matrix has been observed. Mixed layers of DPPTE/SWCNT-DOx were also transferred onto gold electrodes by means of LB method. Cyclic voltammetry showed that SWCNT-DOx conjugates remain adsorbed at the electrode surface and are stable in time. Additionally, higher values of peak current and DOx surface concentration obtained for side modification prove that side modification allows for more efficient conjugation of the drug to carbon nanotubes. [Figure not available: see fulltext.
Rostad, C.E.; Leenheer, J.A.; Daniel, S.R.
1997-01-01
Suspended material samples were collected at 16 sites along the Mississippi River and some of its tributaries during July-August 1991, October-November 1991, and April-May 1992, and separated into colloid and particulate fractions to determine the organic carbon content of these two fractions of suspended material. Sample collection involved centrifugation to isolate the suspended particulate fraction and ultrafiltration to isolate the colloid fraction. For the first time, particulate and colloid concentrations and organic carbon and nitrogen content were investigated along the entire reach of the Mississippi River from above Minneapolis, Minnesota, to below New Orleans, Louisiana. Organic carbon content of the colloid (15.2 percent) was much higher than organic carbon content of the particulate material (4.8 percent). Carbon/nitrogen ratios of colloid and particulate phases were more similar to ratios for microorganisms than to ratios for soils, humic materials, or plants.Suspended material samples were collected at 16 sites along the Mississippi River and some of its tributaries during July-August 1991, October-November 1991, and April-May 1992, and separated into colloid and particulate fractions to determine the organic carbon content of these two fractions of suspended material. Sample collection involved centrifugation to isolate the suspended particulate fraction and ultrafiltration to isolate the colloid fraction. For the first time, particulate and colloid concentrations and organic carbon and nitrogen content were investigated along the entire reach of the Mississippi River from above Minneapolis, Minnesota, to below New Orleans, Louisiana. Organic carbon content of the colloid (15.2 percent) was much higher than organic carbon content of the particulate material (4.8 percent). Carbon/nitrogen ratios of colloid and particulate phases were more similar to ratios for microorganisms than to ratios for soils, humic materials, or plants.
Bainitic stabilization of austenite in low alloy sheet steels
NASA Astrophysics Data System (ADS)
Brandt, Mitchell L.
The stabilization of retained austenite in 'triple phase' ferrite/bainite/austenite sheet steels by isothermal bainite transformation after intercritical annealing has been studied in 0.27C-1.5Si steels with 0.8 to 2.4Mn. Dilatometric studies show that cooling rates comparable to CAPL processing result in approximately 30% conversion of austenite to epitaxial ferrite, but the reaction can be suppressed by the faster cooling rate of salt bath quenching. Measured isothermal transformation kinetics at 350 to 450sp°C shows a maximum overall rate near 400sp°C. X-ray diffraction shows that the amount of austenite retained from 400sp°C treatment peaks at 3 minutes but the carbon content increases monotonically to a saturation level. The stability of austenite in this type of steel has been quantified for the first time by direct measurement of the characteristic Msbsps{sigma} temperature. With variations in processing conditions and test temperatures, the tensile uniform ductility has been correlated with the amount and stability of retained austenite, while maintaining a constant 3% flow of 83 ksi. Consistent with previous transformations plasticity studies an optimal austenite stability is found at approximately 10 K above the Msbsps{sigma} temperature, demonstrating a maximum uniform ductility of 44% for an austenite content of 16%. Correlations indicate that desired uniform ductility levels of 20 to 25% could be achieved with only approximately 5% austenite if stability is optimized by placing Msbsps{sigma} 10 K below ambient temperature. Measured uniform ductility in plane strain tension shows similar trends with processing conditions, but models predict that stress state effects will shift the Msbsps{sigma} temperature approximately 5 K higher than that for uniaxial tension. The measured dependence of Msbsps{sigma} on austenite composition and particle size has been modeled via heterogeneous nucleation theory. The composition dependence is consistent with contributions from the transformation chemical driving force and the interfacial frictional work from solution hardening. An inverse dependence on the log of the particle volume is consistent with statistics of heterogeneous nucleation. The observed austenite carbon content at the end of bainitic transformation is consistent with paraequilibrium calculations adding a stored energy term to the bainitic ferrite. The model predicts that optimal austenite stability for maximum uniform ductility can be achieved at fixed particle size by lowering Mn and/or reducing the isothermal bainite transformation temperature.
Lin, Wenlin Yvonne; Heng, Kim Soon; Sun, Xiaolong; Wang, Jing-Yuan
2015-09-01
This study investigated the influence of moisture content and temperature on the degree of carbonation of municipal solid waste (MSW) incineration bottom ash (IBA) from two different incineration plants in Singapore. The initial rate of carbonation was affected by the nominal moisture content used. Carbonation temperature seemed to play a part in changing the actual moisture content of IBA during carbonation, which in turn affected the degree of carbonation. Results showed that 2h of carbonation was sufficient for the samples to reach a relatively high degree of carbonation that was close to the degree of carbonation observed after 1week of carbonation. Both Cu and Cr leaching also showed significant reduction after only 2h of carbonation. Therefore, the optimum moisture content and temperature were selected based on 2h of carbonation. The optimum moisture content was 15% for both incineration plants while the optimum temperature was different for the two incineration plants, at 35°C and 50°C. The effect on Cu and Cr leaching from IBA after accelerated carbonation was evaluated as a function of carbonation time. Correlation coefficient, Pearson's R, was used to determine the dominant leaching mechanism. The reduction in Cu leaching was found to be contributed by both formation of carbonate mineral and reduction of DOC leaching. On the other hand, Cr leaching seemed to be dominantly controlled by pH. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kilic, Saliha Meltem
The primary production of aluminum is done by means of the Hall-Heroult process where large amounts of carbon anodes are required and consumed. The quality of carbon anodes used in electrolysis is one of the most important parameters affecting the production of primary aluminum. The anode quality widely depends on the raw materials, one of which is the petroleum coke. Green petroleum coke is produced from the heavy residual fractions of petroleum. Petroleum cokes produced from sour crude oil sources contain high quantity of sulfur. A certain level of sulfur is needed to reduce the anode reactivities; however, the demand for anode-grade coke with acceptable sulfur content is increasing faster than the available supply. High sulfur levels in carbon anodes would have an adverse effect on environment; hence, the desulfurization of high sulfur green petroleum cokes is necessary. There are different ways of desulfurizing green petroleum cokes: solvent extraction, thermal desulfurization, and hydrodesulfurization. Coke produced by solvent extraction is prone to contamination. The thermal approach requires greater energy consumption and causes an increase in coke porosity. The global objective of this master project is to find an alternative solution for desulfurization that will produce quality calcined coke with minimum impact on environment. Hydrodesulfurization seems to be a viable option and was investigated in this study. Water was used for the hydrodesulfurization of commercially available high sulfur green petroleum coke. Different experimental systems were tried during the hydrodesulfurization experiments. A systematic approach was used to investigate the influence of hydrodesulfurization parameters including water injection temperature, duration, and water flow rate as well as coke particle size on the hydrodesulfurization of green petroleum coke. In addition to hydrodesulfurization, a number of thermal desulfurization experiments were carried out with the same green petroleum coke in this study. Sulfur removal as well as weight loss results which were obtained from the two methods were compared. The petroleum coke sulfur content as well as its structure were characterized using C-S analysis equipment, SEM-EDX, XPS, FT-IR, XRD, and helium pycnometer prior to the experiments. Hydrodesulfurized cokes which gave maximum sulfur removal were compared with thermally desulfurized cokes in terms of the degree of desulfurization and coke structure by using the above characterization techniques. This study has indicated that different parameters affect the rate of desulfurization to different extents. Maximum sulfur removal was obtained when the water was injected to coke surface at 1 ml/min flow rate for 60 min at 650°C and 850°C resulting in the removal of 22.87% and 22.60% sulfur, respectively. Weight loss percentages were 26.07% and 24.34%, respectively, under these conditions. Hydrodesulfurization involves the loss of a small quantity of carbon due to gasification of coke by water. The characterization of hydrodesulfurized coke with the highest desulfurization rate showed similar structure with its counterpart which was thermally desulfurized to the same maximum temperature. This result, thus, reveals that the hydrodesulfurization does not create a more porous calcined coke compared to that of thermal desulfurization. Therefore, it seems to be a promising method to produce anode-grade calcined coke with lower sulfur content and suitable structure for carbon anode production.
Austenitic stainless steel for high temperature applications
Johnson, Gerald D.; Powell, Roger W.
1985-01-01
This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; 0.01-0.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; 0.03 maximum, As; 0.01 maximum, O; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P+wt. % B+wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.
Code of Federal Regulations, 2010 CFR
2010-10-01
... closed-circuit apparatus; maximum allowable limits. 84.97 Section 84.97 Public Health PUBLIC HEALTH... ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.97 Test for carbon dioxide in inspired gas; open- and closed-circuit apparatus; maximum allowable limits. (a) Open...
Code of Federal Regulations, 2011 CFR
2011-10-01
... closed-circuit apparatus; maximum allowable limits. 84.97 Section 84.97 Public Health PUBLIC HEALTH... ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.97 Test for carbon dioxide in inspired gas; open- and closed-circuit apparatus; maximum allowable limits. (a) Open...
Che, Bien Dong; Nguyen, Bao Quoc; Nguyen, Le-Thu T; Nguyen, Ha Tran; Nguyen, Viet Quoc; Van Le, Thang; Nguyen, Nieu Huu
2015-01-01
Carbon nanotube (CNT) characteristics, besides the processing conditions, can change significantly the microwave absorption behavior of CNT/polymer composites. In this study, we investigated the influence of three commercial multi-walled CNT materials with various diameters and length-to-diameter aspect ratios on the X-band microwave absorption of epoxy nanocomposites with CNT contents from 0.125 to 2 wt%, prepared by two dispersion methods, i.e. in solution with surfactant-aiding and via ball-milling. The laser diffraction particle size and TEM analysis showed that both methods produced good dispersions at the microscopic level of CNTs. Both a high aspect ratio resulting in nanotube alignment trend and good infiltration of the matrix in the individual nanotubes, which was indicated by high Brookfield viscosities at low CNT contents of CNT/epoxy dispersions, are important factors to achieve composites with high microwave absorption characteristics. The multi-walled carbon nanotube (MWCNT) with the largest aspect ratio resulted in composites with the best X-band microwave absorption performance, which is considerably better than that of reported pristine CNT/polymer composites with similar or lower thicknesses and CNT loadings below 4 wt%. A high aspect ratio of CNTs resulting in microscopic alignment trend of nanotubes as well as a good level of micro-scale CNT dispersion resulting from good CNT-matrix interactions are crucial to obtain effective microwave absorption performance. This study demonstrated that effective radar absorbing MWCNT/epoxy nanocomposites having small matching thicknesses of 2-3 mm and very low filler contents of 0.25-0.5 wt%, with microwave energy absorption in the X-band region above 90% and maximum absorption peak values above 97%, could be obtained via simple processing methods, which is promising for mass production in industrial applications. Graphical AbstractComparison of the X-band microwave reflection loss of epoxy composites of various commercial multi-walled carbon nanotube materials.
Lu, Ling-Xiao; Song, Tong-Qing; Peng, Wan-Xia; Zeng, Fu-Ping; Wang, Ke-Lin; Xu, Yun-Lei; Yu, Zi; Liu, Yan
2012-05-01
Soil profiles were collected from three primary forests (Itoa orientalis, Platycladus orientalis, and Radermachera sinica) in Karst cluster-peak depression region to study the composition of soil aggregates, their organic carbon contents, and the profile distribution of the organic carbon. In the three forests, >2 mm soil aggregates were dominant, occupying about 76% of the total. The content of soil total organic carbon ranged from 12.73 to 68.66 g x kg(-1), with a significant difference among the forests. The organic carbon content in <1 mm soil aggregates was slightly higher than that in >2 mm soil aggregates, but most of soil organic carbon was stored in the soil aggregates with greater particle sizes. About 70% of soil organic carbon came from >2 mm soil aggregates. There was a significant positive relationship between the contents of 2-5 and 5-8 mm soil aggregates and the content of soil organic carbon. To increase the contents of 2-8 mm soil aggregates could effectively improve the soil carbon sequestration in Karst region. In Itoa orientalis forest, 2-8 mm soil aggregates accounted for 46% of the total, and the content of soil total organic carbon reached to 37.62 g x kg(-1), which implied that Itoa orientalis could be the suitable tree species for the ecological restoration in Karst region.
Kandoi, Deepika; Mohanty, Sasmita; Govindjee; Tripathy, Baishnab C
2016-12-01
Plants with C4 photosynthesis are efficient in carbon assimilation and have an advantage over C3 photosynthesis. In C4 photosynthesis, the primary CO 2 fixation is catalyzed by phosphoenolpyruvate carboxylase (PEPC). Here, we show that overexpression of Zea mays PEPC cDNA, under the control of 35 S promoter, in Arabidopsis thaliana resulted in ~7-10 fold higher protein abundance and ~7-10 fold increase in PEPC activity in the transgenic lines than that in the vector control. We suggest that overexpression of PEPC played an anaplerotic role to increase the supply of 4-carbon carboxylic acids, which provided carbon skeletons for increased amino acid and protein synthesis. Higher protein content must have been responsible for increased metabolic processes including chlorophyll biosynthesis, photosynthesis, and respiration. Consequently, the PEPC-overexpressed transgenic plants had higher chlorophyll content, enhanced electron transport rate (ETR), lower non-photochemical quenching (NPQ) of chlorophyll a fluorescence, and a higher performance index (PI) than the vector control. Consistent with these observations, the rate of CO 2 assimilation, the starch content, and the dry weight of PEPC-overexpressed plants increased by 14-18 %, 10-18 %, and 6.5-16 %, respectively. Significantly, transgenics were tolerant to salt stress as they had increased ability to synthesize amino acids, including the osmolyte proline. NaCl (150 mM)-treated transgenic plants had higher variable to maximum Chl a fluorescence (F v /F m ) ratio, higher PI, higher ETR, and lower NPQ than the salt-treated vector controls. These results suggest that expression of C4 photosynthesis enzyme(s) in a C3 plant can improve its photosynthetic capacity with enhanced tolerance to salinity stress.
Influence of carbon content on photocatalytic performance of C@ZnO hollow nanospheres
NASA Astrophysics Data System (ADS)
Jin, Changqing; Zhu, Kexin; Jian, Zengyun; Wei, Yongxing; Gao, Ling; Zhang, Zhihong; Zheng, Deshan
2018-02-01
Mesoporous C@ZnO hollow spheres were successfully synthesized through a carbon-sphere template combined hydrothermal method. The photocatalytic activities of the samples to rhodamine B (RhB) were investigated, and the sample of 3 wt% carbon has the best photocatalytic activity to RhB. The excellent photocatalytic performance could come from both enhanced photogenerated electron-hole pair separation, and the larger specific surface area induced by mesoporous hollow nanostructure. The photocatalytic performance sensitively depends upon content of amorphous carbon. Too much or too little carbon content decreases sample performance. The changes in performance according to carbon content are probably a result of the competing mechanism: the increasing rate of separation efficiency of photogenerated carriers and the decreasing contact area of ZnO with RhB according to the carbon content. This work would help us to better understand the important roles of carbon content in the fabricated nano-heterojunctions and also provide us with a feasible route to improve UV photocatalytic activities of ZnO and other metal oxides greatly.
Carbon losses from all soils across England and Wales 1978-2003.
Bellamy, Pat H; Loveland, Peter J; Bradley, R Ian; Lark, R Murray; Kirk, Guy J D
2005-09-08
More than twice as much carbon is held in soils as in vegetation or the atmosphere, and changes in soil carbon content can have a large effect on the global carbon budget. The possibility that climate change is being reinforced by increased carbon dioxide emissions from soils owing to rising temperature is the subject of a continuing debate. But evidence for the suggested feedback mechanism has to date come solely from small-scale laboratory and field experiments and modelling studies. Here we use data from the National Soil Inventory of England and Wales obtained between 1978 and 2003 to show that carbon was lost from soils across England and Wales over the survey period at a mean rate of 0.6% yr(-1) (relative to the existing soil carbon content). We find that the relative rate of carbon loss increased with soil carbon content and was more than 2% yr(-1) in soils with carbon contents greater than 100 g kg(-1). The relationship between rate of carbon loss and carbon content is irrespective of land use, suggesting a link to climate change. Our findings indicate that losses of soil carbon in England and Wales--and by inference in other temperate regions-are likely to have been offsetting absorption of carbon by terrestrial sinks.
A method for quantifying bioavailable organic carbon in aquifer sediments
Rectanus, H.V.; Widdowson, M.; Novak, J.; Chapelle, F.
2005-01-01
The fact that naturally occurring microorganisms can biodegrade PCE and TCE allows the use of monitored natural attenuation (MNA) as a remediation strategy at chlorinated solvent-contaminated sites. Research at numerous chlorinated solvent sites indicates an active dechlorinating microbial population coupled with an ample supply of organic carbon are conditions needed to sustain reductive dechlorination. A series of extraction experiments was used to compare the ability of the different extractants to remove organic carbon from aquifer sediments. The different extractants included pyrophosphate, sodium hydroxide, and polished water. Pyrophosphate served as a mild extractant that minimally alters the organic structure of the extracted material. Three concentrations (0.1, 0.5, and 1%) of pyrophosphate extracted 18.8, 24.9, and 30.8% of sediment organic carbon, respectively. Under alkali conditions (0.5 N NaOH), which provided the harshest extractant, 30.7% of the sediment organic carbon was recovered. Amorphous organic carbon, measured by potassium persulfate oxidization, consisted of 44.6% of the sediment organic carbon and served as a baseline control for maximum carbon removal. Conversely, highly purified water provided a minimal extraction control and extracted 5.7% of the sediment organic carbon. The removal of organic carbon was quantified by aqueous TOC in the extract and residual sediment organic carbon content. Characterization of the organic carbon extracts by compositional analysis prior and after exposure to the mixed culture might indicate the type organic carbon and functional groups used and/or generated by the organisms. This is an abstract of a paper presented at the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).
Soil organic carbon in Apolobamba (Bolivia): Quantity and quality of the reservoir
NASA Astrophysics Data System (ADS)
Muñoz, M. Á.; Faz, A.
2009-04-01
Global carbon cycle mainly depends on the soil organic matter (SOM). Some reducction of climatic impact techiques are related to the increase of the soil organic carbon (SOC) contents in order to elevate atmospherical carbon inputs. Kinetic mechanisms of the SOC are differents due to the complex interation between biological, physical and chemical processes in the soil. For a full understanding of the SOM contribution to the carbon cycle in the soil, the SOC contents should be addressed. The vicuna (Vicugna vicugna) is an endangered species which belongs to camelid family. Its natural habitat is located in highland grasses in the Andes Montain Range, above 4,000 m.a.s.l. In Bolivia the vicuna is distributed around some andean regions such as Apolobamba. It is a protected area located in the Northwest of Bolivia where native inhabitants carry out a sustainable management of the vicuna. This activity is considered within a programme to improve economical conditions in the area. The vicuna lives in the same habitat than other cattle camelid like alpaca (Lama pacos). The soil is an essential natural resource in the vicuna development and the biodiversity conservation due to its role to support the native vegetation in Apolobamba. The objectives of this research were: (i) the quantification of SOC contents, (ii) the study of the SOC quality and (iii) the determination of the soil degradation degree in some zones in Apolobamba. Eight zones or census places, separated areas with geographic accidents, with different vicuna and alpaca densities were selected: Ulla-Ulla and Killu (low density), Ucha-Ucha and Wakampata (medium density), Sucondori and Caballchiñuni (high density) and Puyo-Puyo and Japu (very high density). One soil profile was taken and three sampling plots were determined in each zone. Three sampling points were selected in each plot and surface (0-5 cm) and subsurface samples (5-15 cm) were collected. Total carbon, total organic carbon (TOC) and water soluble organic carbon (WSOC) were messure. In addition, 13C MNR technique was used in surface samples in each plot in order to determine the main carbonide groups: alkyl, O-alkyl, aromatic and carboxilic. Results were discussing through statistical analyses. Soil profile datas exhibited very low TOC in Ulla-Ulla zone including the surface horizon. Sampling plot results showed maximum TOC contents in Wakampata and Puyo-Puyo surface samples; on the other hand, Sucondori, Caballchiñuni and Ulla-Ulla presented minimum contents. Generally speaking, low and medium WSOC inputs were determined in surface and subsurface samples, respectively, in studied areas. Moreover, Wakampata and Japu zones presented high O-alkyl percentages; it could be related to highest polysacharide concentrations and the easiest SOM degradation, taking into account alkyl/O-alkyl ratios. On the contrary, Ulla-Ulla and Caballchiñuni exhibited highest carboxilic percentages pointing out a SOM oxidation increase. In conclusion, Apolobamba soils presented different SOC conditions. There were some zones which could be characterized as excellent carbon reservoirs due to high SOM quantity and quality; however, in other census places could be identify a certain soil exhaustion degree, as a consequence to the soil overexploitation due to the cattle camelid concentrations both the natural wind erosion in these zones. It should be carried out conservation actions in order to improve the carbon sink and to preserve the soil and the biodiversity in Apolobamba.
Beigbeder, Alexandre; Mincheva, Rosica; Pettitt, Michala E; Callow, Maureen E; Callow, James A; Claes, Michael; Dubois, Philippe
2010-05-01
The present work reports on the influence of the dispersion quality of multiwall carbon nanotubes (MWCNTs) in a silicone matrix on the marine fouling-release performance of the resulting nanocomposite coatings. A first set of coatings filled with different nanofiller contents was prepared by the dilution of a silicone/MWCNTs masterbatch within a hydrosilylation-curing polydimethylsiloxane resin. The fouling-release properties of the nanocomposite coatings were studied through laboratory assays with the marine alga (seaweed) Ulva, a common fouling species. As reported previously (see Ref. [19]), the addition of a small (0.05%) amount of carbon nanotubes substantially improves the fouling-release properties of the silicone matrix. This paper shows that this improvement is dependent on the amount of filler, with a maximum obtained with 0.1 wt% of multiwall carbon nanotubes (MWCNTs). The method of dispersion of carbon nanotubes in the silicone matrix is also shown to significantly (p = 0.05) influence the fouling-release properties of the coatings. Dispersing 0.1% MWCNTs using the masterbatch approach yielded coatings with circa 40% improved fouling-release properties over those where MWCNTs were dispersed directly in the polymeric matrix. This improvement is directly related to the state of nanofiller dispersion within the cross-linked silicone coating.
Zhang, Xingmiao; Ji, Guangbin; Liu, Wei; Quan, Bin; Liang, Xiaohui; Shang, Chaomei; Cheng, Yan; Du, Youwei
2015-08-14
A novel FeCo nanoparticle embedded nanoporous carbon composite (Fe-Co/NPC) was synthesized via in situ carbonization of dehydro-ascorbic acid (DHAA) coated Fe3O4 nanoparticles encapsulated in a metal-organic framework (zeolitic imidazolate framework-67, ZIF-67). The molar ratio of Fe/Co significantly depends on the encapsulated content of Fe3O4 in ZIF-67. The composites filled with 50 wt% of the Fe-Co/NPC-2.0 samples in paraffin show a maximum reflection loss (RL) of -21.7 dB at a thickness of 1.2 mm; in addition, a broad absorption bandwidth for RL < -10 dB which covers from 12.2 to 18 GHz can be obtained, and its minimum reflection loss and bandwidth (RL values exceeding -10 dB) are far greater than those of commercial carbonyl iron powder under a very low thickness (1-1.5 mm). This study not only provides a good reference for future preparation of carbon-based lightweight microwave absorbing materials but also broadens the application of such kinds of metal-organic frameworks.
Shuang-Chen, Ma; Yao, Juan-Juan; Gao, Li
2012-01-01
Experimental studies were carried out on flue gas denitrification using activated carbon irradiated by microwave. The effects of microwave irradiation power (reaction temperature), the flow rate of flue gas, the concentration of NO and the flue gas coexisting compositions on the adsorption property of activated carbon and denitrification efficiency were investigated. The results show that: the higher of microwave power, the higher of denitrification efficiency; denitrification efficiency would be greater than 99% and adsorption capacity of NO is relatively stable after seven times regeneration if the microwave power is more than 420 W; adsorption capacity of NO in activated carbon bed is 33.24 mg/g when the space velocity reaches 980 per hour; adsorption capacity declines with increasing of the flow rate of flue gas; the change in denitrification efficiency is not obvious with increasing oxygen content in the flue gas; and the maximum adsorption capacity of NO was observed when moisture in flue gas was about 5.88%. However, the removal efficiency of NO reduces with increasing moisture, and adsorption capacity and removal efficiency of NO reduce with increasing of SO2 concentration in the flue gas.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Jian, Ming; He, Hua; Ma, Changsong; Wu, Yan; Yang, Hao
2017-05-17
This article studies the price competition and cooperation in a duopoly that is subjected to carbon emissions cap. The study assumes that in a departure from the classical Bertrand game, there is still a market for both firms' goods regardless of the product price, even though production capacity is limited by carbon emissions regulation. Through the decentralized decision making of both firms under perfect information, the results are unstable. The firm with the lower maximum production capacity under carbon emissions regulation and the firm with the higher maximum production capacity both seek market price cooperation. By designing an internal carbon credits trading mechanism, we can ensure that the production capacity of the firm with the higher maximum production capacity under carbon emissions regulation reaches price equilibrium. Also, the negotiation power of the duopoly would affect the price equilibrium.
Climate legacies drive global soil carbon stocks in terrestrial ecosystems
Delgado-Baquerizo, Manuel; Eldridge, David J.; Maestre, Fernando T.; Karunaratne, Senani B.; Trivedi, Pankaj; Reich, Peter B.; Singh, Brajesh K.
2017-01-01
Climatic conditions shift gradually over millennia, altering the rates at which carbon (C) is fixed from the atmosphere and stored in the soil. However, legacy impacts of past climates on current soil C stocks are poorly understood. We used data from more than 5000 terrestrial sites from three global and regional data sets to identify the relative importance of current and past (Last Glacial Maximum and mid-Holocene) climatic conditions in regulating soil C stocks in natural and agricultural areas. Paleoclimate always explained a greater amount of the variance in soil C stocks than current climate at regional and global scales. Our results indicate that climatic legacies help determine global soil C stocks in terrestrial ecosystems where agriculture is highly dependent on current climatic conditions. Our findings emphasize the importance of considering how climate legacies influence soil C content, allowing us to improve quantitative predictions of global C stocks under different climatic scenarios. PMID:28439540
Wang, Cuicui; Ge, Heyi; Ma, Xiaolong; Liu, Zhifang; Wang, Ting; Zhang, Jingyi
2018-04-01
In this study, the watersoluble epoxy resin was prepared via the ring-opening reaction between diethanolamine and epoxy resin. The modified resin mixed with graphene oxide (GO) as a sizing agent was coated onto carbon fiber (CF) and then the GO-CF reinforced acrylonitrile-butadienestyrene (ABS) composites were prepared. The influences of the different contents of GO on CF and CF/ABS composite were explored. The combination among epoxy, GO sheets and maleic anhydride grafted ABS (ABSMA) showed a synergistic effect on improving the properties of GO-CF and GO-CF/ABS composite. The GO-CF had higher single tensile strength than the commercial CF. The maximum ILSS of GO-CF/ABS composite obtained 19.2% improvement as compared with that of the commercial CF/ABS composite. Such multiscale enhancement method and the synergistic reinforced GO-CF/ABS composite show good prospective applications in many industry areas.
Activity of Highly Dispersed Co/SBA-15 Catalysts (Low Content) in Carbon Black Oxidation
NASA Astrophysics Data System (ADS)
Hassan, Nissrine El; Casale, Sandra; Aouad, Samer; Hanein, Theodor; Jabbour, Karam; Chidiac, Elvis; Khoury, Bilal el; Zakhem, Henri El; Nakat, Hanna El
Cobalt supported on mesoporous silica SBA-15 (0.75, 1.5 and 3 wt% Co) were used as catalysts for the oxidation of carbon black. Catalysts were characterized by N2 sorption, XRD, TEM and TPR. The catalytic activity in CB oxidation was measured. It has been shown that only small cobalt domains (less than 5 nm) are present on all samples. A homogeneous dispersion was obtained for all catalysts. With increasing cobalt loading, crystalline species start to appear. Using an intermediate contact between the CB and the catalyst, the best activity is that of 0.75Co/SBA-15 catalyst where the oxidation reaches the maximum (Tmax) 68 K before the non-catalyzed reaction. On the same catalyst used in tight contact mode with CB, even if Tmax didn't decrease for more than additional 12 K but the Ti decreases by 38K and thus starts 83 K before.
Ramesh, Renganath Rao; Muralidharan, Vimudha; Palanivel, Saravanan
2018-01-01
Usage of the animal fleshing waste as the source of carbon and nitrogen for animal skin unhairing protease (EC 3.4.21) production along with agro-industrial wastes like wheat bran has been investigated. Thermal hydrolysis of delimed fleshing waste for 3 h yielded a fleshing hydrolysate (FH) having a protein content of 20.86 mg/mL and total solids of 46,600 ppm. The FH was lyophilized and spray dried to obtain fleshing hydrolysate powder (FHP) to be used along with wheat bran and rice bran for protease production. The carbon, nitrogen, hydrogen, and sulfur contents of the FHP were found to be 40.1, 13.8, 5.4, and 0.2%. The control solid-state fermented (SSF) medium without FHP showed a maximum activity of only 550 U/g. A maximum protease activity of 956 U/g was obtained by using 6% FHP (taken based on the combined total weight of wheat bran and rice bran) after 96 h of fermentation, resulting in a 1.7-fold increase in the protease activity. The total cost of producing 1 kg of FHP and the cost of producing 1000 kU of protease using FHP along with wheat bran and rice bran were found to be USD 24.62 and USD 2.08, respectively; 25% of SSF protease along with 40% water was found to be capable of unhairing the sheepskins in 7 h eliminating the hazardous conventional lime sulfide unhairing system. Thus, the leather industry's solid waste internalized for the production of unhairing enzyme resulted in a sustainable solution for pollution problems. Graphical abstract ᅟ.
Zhang, Jun-Hua; Li, Guo-Dong; Wang, Yan-Song; Nan, Zhong-Ren; Zhao, Li-Ping
2012-12-01
Taking the seven typical land use types (paddy field, dry land, medium coverage grassland, saline-alkali field, bare land, desert, and sandlot) in the middle reaches of Heihe River as test objects, this paper studied the relationships of soil organic carbon content with its components. In the 0-100 cm soil profile, the contents of soil total organic carbon (TOC) , active organic carbon (AOC), and non-active organic carbon (NOC) decreased with increasing depth. The soil TOC, AOC, and NOC contents differed with land use type. Land use change induced the increase or decrease of soil organic carbon content. The tillage in paddy field was an available way to increase the contents of soil TOC, AOC, and NOC. After land use change, soil NOC rather than AOC contributed more to soil TOC content. For the same land use types, soil AOC and NOC contents increased together with increasing soil TOC content, and the NOC content increased faster than the AOC content. The soil TOC content corresponding to the crossing point of the variation trend lines of soil AOC and NOC contents could be considered as the boundary point of TOC accumulation or loss, and the saturation capacities of soil AOC and NOC could be obtained by the variation trend lines of the AOC and NOC.
Dron, Anthony; Rabouille, Sophie; Claquin, Pascal; Le Roy, Bertrand; Talec, Amélie; Sciandra, Antoine
2012-04-01
This study provides with original data sets on the physiology of the unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501, maintained in continuous culture in conditions of obligate diazotrophy. Cultures were exposed to a 12:12 light-dark regime, representative of what they experience in nature and where growth is expected to be balanced. Nitrogen and carbon metabolism were monitored at high frequency and their dynamics was compared with the cell cycle. Results reveal a daily cycle in the physiological and biochemical parameters, tightly constrained by the timely decoupled processes of N(2) fixation and carbon acquisition. The cell division rate increased concomitantly to carbon accumulation and peaked 6 h into the light. The carbon content reached a maximum at the end of the light phase. N(2) fixation occurred mostly during the dark period and peaked between 9 and 10 h into the night, while DNA synthesis, reflected by DNA fluorescence, increased until the end of the night. Consequently, cells in G1- and S-phases present a marked decrease in their C:N ratio. Nitrogen acquisition through N(2) fixation exceeded 1.3- to 3-fold the nitrogen requirements for growth, suggesting that important amounts of nitrogen are excreted even under conditions supposed to favour balanced, carbon and nitrogen acquisitions. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
The Path of Carbon in Photosynthesis
DOE R&D Accomplishments Database
Calvin, M.; Benson, A. A.
1948-03-08
The dark fixation of carbon dioxide by green algae has been investigated and found to be closely related to photosynthesis fixation. By illumination in the absence of carbon dioxide followed by treatment with radioactive carbon dioxide in the dark, the amount fixed has been increased ten to twenty fold. This rate of maximum fixation approaches photosynthesis maximum rates. The majority of the radioactive products formed under these conditions have been identified and isolated and the distribution of labeled carbon determined. From these results a tentative scheme for the mechanism of photosynthesis is set forth.
Effect of carbon content on friction and wear of cast irons
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1977-01-01
Friction and wear experiments were conducted with cast irons and wrought steels containing various amounts of carbon in the alloy structure in contact with 52100 steel. Gray cast irons were found to exhibit lower friction and wear characteristics than white cast irons. Further, gray cast iron wear was more sensitive to carbon content than was white. Wear with gray cast iron was linearly related to load, and friction was found to be sensitive to relative humidity and carbon content. The form, in which the carbon is present in the alloy, is more important, as the carbon content and no strong relationship seems to exist between hardness of these ferrous alloys and wear.
Chen, Qin; Pu, Wenhong; Hou, Huijie; Hu, Jingping; Liu, Bingchuan; Li, Jianfeng; Cheng, Kai; Huang, Long; Yuan, Xiqing; Yang, Changzhu; Yang, Jiakuan
2018-02-01
Microbial fuel cells (MFCs) are promising biotechnologies tool to harvest electricity by decomposing organic matter in waste water, and the anode material is a critical factor in determining the performance of MFCs. In this study, chestnut shell is proposed as a novel anode material with mesoporous and microporous structure prepared via a simple carbonization procedure followed by an activation process. The chemical activation process successfully modified the macroporous structure, created more mesoporous and microporous structure and decreased the O-content and pyridinic/pyrrolic N groups on the biomass anode, which were beneficial for improving charge transfer efficiency between the anode surface and microbial biofilm. The MFC with activated biomass anode achieved a maximum power density (23.6 W m -3 ) 2.3 times higher than carbon cloth anode (10.4 W m -3 ). This study introduces a promising and feasible strategy for the fabrication of high performance anodes for MFCs derived from cost-effective, sustainable natural materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
40 CFR 98.336 - Data reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... carbon analysis (percent by weight, expressed as a decimal fraction). (11) Whether carbon content of the...) Carbon content of each carbon-containing input material charged to each kiln or furnace (including zinc bearing material, flux materials, and other carbonaceous materials) from the annual carbon analysis for...
Evaluation of nutraceutical properties of selected small millets.
Rao, B Raghavendra; Nagasampige, Manojkumar H; Ravikiran, M
2011-04-01
The aim of this study was to evaluate the nutraceutical properties and nutritional value of grains of four selected small millets viz. finger millet, foxtail millet, prosomillet and khodomillet. The qualitative analysis of phytochemicals viz. phenolics, flavonoids, alkaloids and saponins present in the four small millets was done. The water-soluble proteins, crude fiber content and the reducing power of the grains of these four millets were analyzed. The khodomillet showed maximum phenolic content (10.3%) and foxtail millet showed minimum phenolics (2.5%). As far as reducing capacity was concerned, finger millet was highest (5.7%). The prosomillet showed least reducing property (2.6%). The finger millet (391.3 mg/g each) showed maximum reducing sugar content. The prosomillet showed minimum reducing sugar (195 mg/g). The foxtail millet showed maximum protein content (305.76 mg/g) and prosomillet showed minimum protein content (144.23 mg/g). The khodomillet showed maximum crude fiber content (14.3%).The finger millet showed maximum reducing sugar content (391.3 mg/g) whereas, the khodomillet showed minimum reducing sugar (130.43 mg/g).
NASA Astrophysics Data System (ADS)
Zou, Y. S.; Wu, Y. F.; Yang, H.; Cang, K.; Song, G. H.; Li, Z. X.; Zhou, K.
2011-12-01
Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.
Saejung, Chewapat; Thammaratana, Thani
2016-12-01
Utilization of photosynthetic bacteria (PSB) for wastewater treatment and production of biomass for economical single cell protein production is a feasible option. In this study, Rhodopseudomonas sp. CSK01 was used for municipal wastewater treatment and the effect of initial pH, light intensity and additional carbon source was investigated. Optimum chemical oxygen demand (COD) removal and biomass production were achieved when the initial pH and light intensity were 7 and 4000 lux, respectively. The specific growth rate, biomass yield and biomass productivity were found to be 0.4/d, 3.2 g/g COD and 2.1 g/L/d, respectively, which were improved by 100%, 167% and 200% relative to the original condition. Under the optimal conditions, COD removal reached 85% and maximum biomass was 6.2 g/L accomplished within three days of cultivation. The biomass had a relatively high protein content (60.1%) consisting of all essential amino acids. The contents of histidine, lysine, phenylalanine and leucine were superior to those of the previously described PSB. Results showed that COD removal was not improved in the presence of additional carbon sources (glucose, sucrose and malic acid). The addition of malic acid significantly increased the biomass accumulation by 279% relative to the original condition, whereas COD removal was declined due to carbon catabolite repression. In this study, PSB biomass recovery and catabolite repression are proposed in municipal wastewater treatment by Rhodopseudomonas sp.
[Distribution characteristics of soil organic carbon of burned area under different restorations.
Li, Hong Yun; Xin, Ying; Zhao, Yu Sen
2016-09-01
The distribution characteristics of soil organic carbon (SOC), soil dissolved organic carbon (DOC) and soil microbial biomass carbon (MBC) under different restorations were studied in Larix gmelinii plantation, Pinus sylvestris var. mongolica plantation, artificial promotion poplar-birch forest and the natural secondary poplar-birch forest restored from burned area after the severe fire of Greater Xing' an Mountains in 1987. The results showed that the variations in SOC, DOC and MBC ranged from 9.63 to 79.72 g·kg -1 , from 33.21 to 186.30 mg·kg -1 and from 200.85 to 1755.63 mg·kg -1 , respectively, which decreased with soil depth increasing. There was significant diffe-rence in SOC, DOC and MBC among different restorations, with the maximum carbon contents for artificial promotion poplar-birch forest, followed by L. gmelinii plantation, natural secondary poplar-birch forest and P. sylvestris var. mongolica plantation successively. The soil microbial quotient va-ried from 1.1% under P. sylvestris var. mongolica plantation to 2.3% under artificial promotion poplar-birch forest, and its vertical distributions were different in the four restoration forests. Correlation analysis indicated that MBC had a significant positive correlation with SOC and DOC, respectively. The activity of soil organic carbon in artificial promotion poplar-birch forest was higher than in other forest stands, suggesting a stronger capacity of the soil carbon cycle through natural regeneration with artificial promotion on burned area in Greater Xing'an Mountains.
Sewu, Divine Damertey; Boakye, Patrick; Jung, Hwansoo; Woo, Seung Han
2017-11-01
The potential of activating terrestrial biomass (spent mushroom substrate, SMS) with ash-laden marine biomass [kelp seaweed, KE] via co-pyrolysis in the field of adsorption was first investigated. KE biochar (KBC), SMS biochar (SMSBC), biochar (SK10BC) from 10%-KE added SMS, and biochar (ESBC) from KE-extract added SMS were used for the adsorption of cationic dye crystal violet (CV). ESBC had highest fixed carbon content (70.60%) and biochar yield (31.6%). SK10BC exhibited high ash content, abundant functional groups, coarser surface morphology and Langmuir maximum adsorptive capacity (610.1mg/g), which is 2.2 times higher than that of SMSBC (282.9mg/g). Biochar activated by a small amount of high ash-containing biomass such as seaweed via co-pyrolysis can serve as viable alternative adsorbent for cationic dye removal. Copyright © 2017 Elsevier Ltd. All rights reserved.
Regional geophysics of western Utah and eastern Nevada, with emphasis on the Confusion Range
Mankinen, Edward A.; Rowley, Peter D.; Dixon, Gary L.; McKee, Edwin H.
2016-01-01
As befits its name, the geology of the Confusion Range of Utah has been a point of contention for many years, so we looked at it in greater detail in the course of our regional study. The northern part of the range is underlain by a large gravity high, which continues south through the Conger Range, Burbank Hills, and northern Mountain Home Range. This is the "structural trough" reported in the literature that was mapped as the axial part of a Sevier synclinorium and contains the maximum thickness (7 km) of high-density carbonates in the area, thus the largest high gravity anomaly.
Shafagoj, Yanal A; Mohammed, Faisal I
2002-08-01
The physiological effects of cigarette smoking have been widely studied, however, little is known regarding the effects of smoking hubble-bubble. We examined the acute effects of hubble-bubble smoking on heart rate, systolic, diastolic, and mean arterial blood pressure and maximum end-expiratory carbon monoxide. This study was carried out in the student laboratory, School of Medicine, Department of Physiology, University of Jordan, Amman, Jordan, during the summer of 1999. In 18 healthy habitual hubble-bubble smokers, heart rate, blood pressure, and maximum end-expiratory carbon monoxide was measured before, during and post smoking of one hubble-bubble run (45 minutes). Compared to base line (time zero), at the end of smoking heart rate, systolic blood pressure, diastolic blood pressure, mean arterial blood pressure, and maximum end-expiratory carbon monoxide were increased 16 2.4 beats per minute, 6.7 2.5 mm Hg, 4.4 1.6 mm Hg, 5.2 1.7 mm Hg, and 14.2 1.8 ppm, (mean standard error of mean, P<.05). Acute short-term active hubble-bubble smoking elicits a modest increase in heart rate, systolic blood pressure, diastolic blood pressure, mean arterial blood pressure and maximum end-expiratory carbon monoxide in healthy hubble-bubble smokers.
Electronic properties of prismatic modifications of single-wall carbon nanotubes
NASA Astrophysics Data System (ADS)
Tomilin, O. B.; Muryumin, E. E.; Rodionova, E. V.; Ryskina, N. P.
2018-01-01
The article shows the possibility of target modifying the prismatic single-walled carbon nanotubes (SWCNTs) by regular chemisorption of fluorine atoms in the graphene surface. It is shown that the electronic properties of prismatic SWCNT modifications are determined by the interaction of π- and ρ(in-plane)-electron conjugation in the carbon-conjugated subsystems (tracks) formed in the faces. The contributions of π- and ρ(in-plane)-electron conjugation depend on the structural characteristics of the tracks. It was found that the minimum of degree deviation of the track from the plane of the prism face and the maximum of the track width ensure the maximum contribution of the π-electron conjugation, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the hydrocarbon analog of the carbon track. It is established that the maximum of degree deviation of the track from the plane of the prism face and the maximum of track width ensure the maximum contribution of the ρ(in-plane) electron interface, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the unmodified carbon nanotube. The calculation of the model systems has been carried out using an ab initio Hartree-Fock method in the 3-21G basis.
Biogeochemical controls on microbial CH4 and CO2 production in Arctic polygon tundra
NASA Astrophysics Data System (ADS)
Zheng, J.
2016-12-01
Accurately simulating methane (CH4) and carbon dioxide (CO2) emissions from high latitude soils is critically important for reducing uncertainties in soil carbon-climate feedback predictions. The signature polygonal ground of Arctic tundra generates high level of heterogeneity in soil thermal regime, hydrology and oxygen availability, which limits the application of current land surface models with simple moisture response functions. We synthesized CH4 and CO2 production measurements from soil microcosm experiments across a wet-to dry permafrost degradation gradient from low-centered (LCP) to flat-centered (FCP), and high-centered polygons (HCP) to evaluate the relative importance of biogeochemical processes and their response to warming. More degraded polygon (HCP) showed much less carbon loss as CO2 or CH4, while the total CO2 production from FCP is comparable to that from LCP. Maximum CH4 production from the active layer of LCP was nearly 10 times that of permafrost and FCP. Multivariate analyses identifies gravimetric water content and organic carbon content as key predictors for CH4 production, and iron reduction as a key regulator of pH. The synthesized data are used to validate the geochemical model PHREEQC with extended anaerobic organic substrate turnover, fermentation, iron reduction, and methanogenesis reactions. Sensitivity analyses demonstrate that better representations of anaerobic processes and their pH dependency could significantly improve estimates of CH4 and CO2 production. The synthesized data suggest local decreases in CH4 production along the polygon degradation gradient, which is consistent with previous surface flux measurements. Methane oxidation occurring through the soil column of degraded polygons contributes to their low CH4 emissions as well.
Relating Stomatal Conductance to Leaf Functional Traits.
Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge
2015-10-12
Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.
Sircely, Jason; Naeem, Shahid
2012-01-01
Recent studies indicate that species richness can enhance the ability of plant assemblages to support multiple ecosystem functions. To understand how and when ecosystem services depend on biodiversity, it is valuable to expand beyond experimental grasslands. We examined whether plant diversity improves the capacity of agroecosystems to sustain multiple ecosystem services—production of wood and forage, and two elements of soil formation—in two types of smallholder fallows in western Kenya. In 18 grazed and 21 improved fallows, we estimated biomass and quantified soil organic carbon, soil base cations, sand content, and soil infiltration capacity. For four ecosystem functions (wood biomass, forage biomass, soil base cations, steady infiltration rates) linked to the focal ecosystem services, we quantified ecosystem service multi-functionality as (1) the proportion of functions above half-maximum, and (2) mean percentage excess above mean function values, and assessed whether plant diversity or environmental favorability better predicted multi-functionality. In grazed fallows, positive effects of plant diversity best explained the proportion above half-maximum and mean percentage excess, the former also declining with grazing intensity. In improved fallows, the proportion above half-maximum was not associated with soil carbon or plant diversity, while soil carbon predicted mean percentage excess better than diversity. Grazed fallows yielded stronger evidence for diversity effects on multi-functionality, while environmental conditions appeared more influential in improved fallows. The contrast in diversity-multi-functionality relationships among fallow types appears related to differences in management and associated factors including disturbance and species composition. Complementary effects of species with contrasting functional traits on different functions and multi-functional species may have contributed to diversity effects in grazed fallows. Biodiversity and environmental favorability may enhance the capacity of smallholder fallows to simultaneously provide multiple ecosystem services, yet their effects are likely to vary with fallow management. PMID:23209662
Cao, Zhiming; Rossi, Lorenzo; Stowers, Cheyenne; Zhang, Weilan; Lombardini, Leonardo; Ma, Xingmao
2018-01-01
The ongoing global climate change raises concerns over the decreasing moisture content in agricultural soils. Our research investigated the physiological impact of two types of cerium oxide nanoparticles (CeO 2 NPs) on soybean at different moisture content levels. One CeO 2 NP was positively charged on the surface and the other negatively charged due to the polyvinylpyrrolidone (PVP) coating. The results suggest that the effect of CeO 2 NPs on plant photosynthesis and water use efficiency (WUE) was dependent upon the soil moisture content. Both types of CeO 2 NPs exhibited consistently positive impacts on plant photosynthesis at the moisture content above 70% of field capacity (θ fc ). Similar positive impact of CeO 2 NPs was not observed at 55% θ fc , suggesting that the physiological impact of CeO 2 NPs was dependent upon the soil moisture content. The results also revealed that V Cmax (maximum carboxylation rate) was affected by CeO 2 NPs, indicating that CeO 2 NPs affected the Rubisco activity which governs carbon assimilation in photosynthesis. In conclusion, CeO 2 NPs demonstrated significant impacts on the photosynthesis and WUE of soybeans and such impacts were affected by the soil moisture content. Graphical abstract Soil moisture content affects plant cerium oxide nanoparticle interactions.
USDA-ARS?s Scientific Manuscript database
Inelastic neutron scattering (INS) was applied to determine soil carbon content. Due to non-uniform soil carbon depth distribution, the correlation between INS signals with some soil carbon content parameter is not obvious; however, a proportionality between INS signals and average carbon weight per...
Potency of bio-charcoal briquette from leather cassava tubers and industrial sludge
NASA Astrophysics Data System (ADS)
Citrasari, Nita; Pinatih, Tety A.; Kuncoro, Eko P.; Soegianto, Agoes; Salamun, Irawan, Bambang
2017-06-01
The purpose of this study was to determine the quality of the bio-charcoal briquette with materials from leather cassava tubers and sludge of wastewater treatment plant. The first, bio-charcoal briquette analized stability test and compressive strength. Then, bio-charcoal briquette with best value analyzed for parameter including moisture content, ash content, calorific content, and burned test. The result briquette quality based on compressive strength for bio-charcoal briquettes carbonated water content between 3.8%-4.5% and non-carbonated bio-charcoal briquettes between 5.2%-7.6%. Bio-charcoal carbonation briquette ash content was between 5.30%-7.40% and non-carbonated bio-charcoal briquettes was between 6.86%-7.46%. Bio-charcoal carbonation levels briquettes heated between 578.2 calories/g-1837.7 calories/g and non carbonatedbio-charcoal briquettes between 858.1 calories/g-891.1 calories/g. Carbonated bio-charcoal burned test was between 48-63 minutes and non-carbonated bio-charcoal was between 22-42 minutes. Emissions resulted from the bio-charcoal briquettes for carbonated and non carbonated composition according to the government regulations ESDM No. 047 of 2006 which, at 128 mg/Nm3 and 139 mg/Nm3.
40 CFR 98.316 - Data reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... analysis results of carbon content of petroleum coke as determined for QA/QC of supplier data under § 98...). (9) Monthly carbon content factor of petroleum coke from the supplier (percent by weight expressed as a decimal fraction). (10) Whether monthly carbon content of the petroleum coke is based on reports...
40 CFR 98.315 - Procedures for estimating missing data.
Code of Federal Regulations, 2010 CFR
2010-07-01
... measured parameters used in the GHG emissions calculations is required (e.g., carbon content values, etc... such estimates. (a) For each missing value of the monthly carbon content of calcined petroleum coke the substitute data value shall be the arithmetic average of the quality-assured values of carbon contents for...
Carbon accumulation in peatlands of West Siberia over the last 2000 years
NASA Astrophysics Data System (ADS)
Beilman, David W.; MacDonald, Glen M.; Smith, Laurence C.; Reimer, Paula J.
2009-03-01
We use a network of cores from 77 peatland sites to determine controls on peat C content and peat C accumulation over the last 2000 years (since 2 ka) across Russia's West Siberian Lowland (WSL), the world's largest wetland region. Our results show a significant influence of fossil plant composition on peat C content, with peats dominated by Sphagnum having a lower C content. Radiocarbon-derived C accumulation since 2 ka at 23 sites is highly variable from site to site, but displays a significant N-S trend of decreasing accumulation at higher latitudes. Northern WSL peatlands show relatively small C accumulation of 7 to 35 kg C m-2 since 2 ka. In contrast, peatlands south of 60°N show larger accumulation of 42 to 88 kg C m-2. Carbon accumulation since 2 ka varies significantly with modern mean annual air temperature, with maximum C accumulation found between -1 and 0°C. Rates of apparent C accumulation since 2 ka show no significant relationship to long-term Holocene averages based on total C accumulation. A GIS-based extrapolation of our site data suggests that a substantial amount (˜40%) of total WSL peat C has accumulated since 2 ka, with much of this accumulation south of 60°N. The large peatlands in the southern WSL may be an important component of the Eurasian terrestrial C sink, and future warming could result in a shift northward in long-term WSL C sequestration.
Jeon, Ju-Won; Sharma, Ronish; Meduri, Praveen; Arey, Bruce W; Schaef, Herbert T; Lutkenhaus, Jodie L; Lemmon, John P; Thallapally, Praveen K; Nandasiri, Manjula I; McGrail, Benard Peter; Nune, Satish K
2014-05-28
A hierarchically structured nitrogen-doped porous carbon is prepared from a nitrogen-containing isoreticular metal-organic framework (IRMOF-3) using a self-sacrificial templating method. IRMOF-3 itself provides the carbon and nitrogen content as well as the porous structure. For high carbonization temperatures (950 °C), the carbonized MOF required no further purification steps, thus eliminating the need for solvents or acid. Nitrogen content and surface area are easily controlled by the carbonization temperature. The nitrogen content decreases from 7 to 3.3 at % as carbonization temperature increases from 600 to 950 °C. There is a distinct trade-off between nitrogen content, porosity, and defects in the carbon structure. Carbonized IRMOFs are evaluated as supercapacitor electrodes. For a carbonization temperature of 950 °C, the nitrogen-doped porous carbon has an exceptionally high capacitance of 239 F g(-1). In comparison, an analogous nitrogen-free carbon bears a low capacitance of 24 F g(-1), demonstrating the importance of nitrogen dopants in the charge storage process. The route is scalable in that multi-gram quantities of nitrogen-doped porous carbons are easily produced.
NASA Astrophysics Data System (ADS)
Fan, Fuqiang; Fang, Guoqing; Zhang, Ruixue; Xu, Yanhui; Zheng, Junwei; Li, Decheng
2014-08-01
A series of core-shell carbon coated amorphous CoSnO3 (CoSnO3@C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO3@C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g-1 after 100 cycles.
NASA Technical Reports Server (NTRS)
Martin, Audrey M.; Righter, Kevin
2010-01-01
Carbon is present in various forms in the Earth s upper mantle (carbonate- or diamond-bearing mantle xenoliths, carbonatite magmas, CO2 emissions from volcanoes...). Moreover, there is enough carbon in chondritic material to stabilize carbonates into the mantles of Mars or Venus as well as in the Earth. However, the interactions with iron have to be constrained, because Fe is commonly thought to buffer oxygen fugacity into planetary mantles. [1] and [2] show evidences of the stability of clinopyroxene Ca(Mg,Fe)Si2O6 + magnesite (Mg,Fe)CO3 in the Earth s mantle around 6GPa (about 180km). The stability of oxidized forms of carbon (like magnesite) depends on the oxygen fugacity of the system. In the Earth s mantle, the maximum carbon content is 10000 ppm [3]. The fO2 parameter varies vertically as a function of pressure, but also laterally because of geodynamic processes like subduction. Thus, carbonates, graphite, diamond, C-rich gases and melts are all stable forms of carbon in the Earth s mantle. [4] show that the fO2 variations observed in SNC meteorites can be explained by polybaric graphite-CO-CO2 equilibria in the Martian mantle. [5] inferred from thermodynamic calculations that the stable form of carbon in the source regions of the Martian basalts should be graphite (and/or diamond). After [6], a metasomatizing agent like a CO2-rich melt may infiltrate the mantle source of nakhlites. However, according to [7] and [8], the FeO wt% value in the Martian bulk mantle is more than twice that of the Earth s mantle (KLB-1 composition by [9]). As iron and carbon are two elements with various oxidation states, Fe/C interaction mechanisms must be considered.
Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens
NASA Astrophysics Data System (ADS)
Valentine, David L.; Chidthaisong, Amnat; Rice, Andrew; Reeburgh, William S.; Tyler, Stanley C.
2004-04-01
A series of laboratory studies were conducted to increase understanding of stable carbon (13C/12C) and hydrogen (D/H) isotope fractionation arising from methanogenesis by moderately thermophilic acetate- and hydrogen-consuming methanogens. Studies of the aceticlastic reaction were conducted with two closely related strains of Methanosaeta thermophila. Results demonstrate a carbon isotope fractionation of only 7‰ (α = 1.007) between the methyl position of acetate and the resulting methane. Methane formed by this process is enriched in 13C when compared with other natural sources of methane; the magnitude of this isotope effect raises the possibility that methane produced at elevated temperature by the aceticlastic reaction could be mistaken for thermogenic methane based on carbon isotopic content. Studies of H2/CO2 methanogenesis were conducted with Methanothermobacter marburgensis. The fractionation of carbon isotopes between CO2 and CH4 was found to range from 22 to 58‰ (1.023 ≤ α ≤ 1.064). Greater fractionation was associated with low levels of molecular hydrogen and steady-state metabolism. The fractionation of hydrogen isotopes between source H2O and CH4 was found to range from 127 to 275‰ (1.16 ≤ α ≤ 1.43). Fractionation was dependent on growth phase with greater fractionation associated with later growth stages. The maximum observed fractionation factor was 1.43, independent of the δD-H2 supplied to the culture. Fractionation was positively correlated with temperature and/or metabolic rate. Results demonstrate significant variability in both hydrogen and carbon isotope fractionation during methanogenesis from H2/CO2. The relatively small fractionation associated with deuterium during H2/CO2 methanogenesis provides an explanation for the relatively enriched deuterium content of biogenic natural gas originating from a variety of thermal environments. Results from these experiments are used to develop a hypothesis that differential reversibility in the enzymatic steps of the H2/CO2 pathway gives rise to variability in the observed carbon isotope fractionation. Results are further used to constrain the overall efficiency of electron consumption by way of the hydrogenase system in M. marburgensis, which is calculated to be less than 55%.
Survase, Shrikant A; Shaligram, Nikhil S; Pansuriya, Ruchir C; Annapure, Uday S; Singhal, Rekha S
2009-05-01
Cyclosporin A (CyA) produced by Tolypocladium inflatum is a promising drug owing to its immunosuppressive and antifungal activities. From an industrial point of view, the necessity to obtain a suitable and economic medium for higher production of CyA was the aim of this work. The present study evaluated the effect of different fermentation parameters in solid state fermentation, such as selection of solid substrate, hydrolysis of substrates, initial moisture content, supplementation of salts, additional carbon, and nitrogen sources, as well as the inoculum age and size, on production of CyA by Tolypocladium inflatum MTCC 557. The fermentation was carried out at 25+/-2 degrees for 9 days. A combination of hydrolyzed wheat bran flour and coconut oil cake (1:1) at 70% initial moisture content supported a maximum production of 3,872+/-156 mg CyA/kg substrate as compared with 792+/-33 mg/kg substrate before optimization. Furthermore, supplementation of salts, glycerol (1%w/w), and ammonium sulfate (1%w/w) increased the production of CyA to 5,454+75 mg/kg substrate. Inoculation of 5 g of solid substrate with 6 ml of 72-h-old seed culture resulted in a maximum production of 6,480+95 mg CyA/kg substrate.
A preliminary estimate of changing calcrete carbon storage on land since the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Adams, J. M.; Post, W. M.
1999-05-01
The glacial-to-interglacial shift in land carbon storage is important in understanding the global carbon cycle and history of the climate system. While organic carbon storage on land appears to have been much less than present during the cold, dry glacial maximum, calcrete (soil carbonate) carbon storage would have been greater. Here we attempt a global estimation of this change; we use published figures for present soil carbonate by biome to estimate changing global soil carbonate storage, on the basis of reconstruction of vegetation areas for four timeslices since the Last Glacial Maximum. It appears that there would most likely have been around a 30-45% decrease in calcrete carbon on land accompanying the transition between glacial and interglacial conditions. This represents a change of about 500-400 GtC (outer error limits are estimated at 750-200 GtC) . In order to be weathered into dissolved bicarbonate, this would take up an additional 500-400 GtC (750-200 GtC) in CO 2 from ocean/atmosphere sources. An equivalent amount to the carbonate leaving the caliche reservoir on land may have accumulated in coral reefs and other calcareous marine sediments during the Holocene, liberating an equimolar quantity of CO 2 back into the ocean-atmosphere system as the bicarbonate ion breaks up.
Free-radical concentrations and other properties of pile-irradiated coals
Friedel, R.A.; Breger, I.A.
1959-01-01
Five coals reacted quite differently when they were exposed to pile-irradiation. Little or no change was found in free-radical content for the three coals of lowest carbon content, whereas the two coals of highest carbon content were found to have a considerable increase in free-radical content. The infrared spectra and the apparent hardness of the irradiated coals of higher carbon content indicate that polymerization occurred. Radiation of these coals in chemical reagents may promote reactivity.
Not Available
This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; .01-.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; .03 maximum, As; 0.01 maximum, 0; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P + wt. % B + wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.
Influence of test fuel properties and composition on UNECE R101 CO2 and fuel economy valuation
NASA Astrophysics Data System (ADS)
Parker, A.
2015-12-01
CO2 emission and fuel consumption of passenger cars is now assessed by using a simplistic procedure measuring the emission during a test performed without any control of the fuel properties and computing the fuel consumption through an unsophisticated formula. As pump gasoline and diesel fuels are refinery products mixture of many different hydrocarbons, and in case of gasoline may also contain a significant amount of oxygenates, the fuel properties, including the density, carbon and energy content may strongly vary from one pump fuel to the other. Being the specific test fuels carefully selected by the car manufacturers and everything but randomly chosen pump fuels, the claimed CO2 emission and fuel economy figures may differ largely from the certification values. I show from the analysis of the 2014 UK government data for 2358 diesel and 2103 petrol vehicles how same volumes of only theoretically same pump fuels used during the certification test by the cars manufacturers unfortunately do not produce the same carbon dioxide emission, and very likely do not have the same energy content. The CO2 emission per liter of diesel fuel is shown to oscillate froma maximum of 3049 g to a minimum of 2125 g, with an average of 2625 g, froma +16.13% to a -19.06% of the average. TheCO2 emission per liter of petrol fuel is shown to oscillate even more from a maximum of 3735 g to a minimum of 1767 g with an average of 2327 g, from a +60.48% to a -24.05% of the average. The proposed solution is to center the assessment on the energy demand by measuring with accuracy the mass of fuel consumed and the fuel properties of the test fuel starting from the lower heating. The corrected fuel consumption and the corrected carbon dioxide emission to mention from the test are then computed by using pure hydrocarbon reference fuels for diesel and petrol having a given lower heating value and a given hydrocarbon composition. Alternatively, exactly the same test fuel should be used by all the manufacturers.
The Effects of Carbon Nanotubes on the Mechanical and Wear Properties of AZ31 Alloy
Zhou, Mingyang; Qu, Xiaoni; Ren, Lingbao; Fan, Lingling; Zhang, Yuwenxi; Guo, Yangyang; Quan, Gaofeng; Liu, Bin; Sun, Hao
2017-01-01
Carbon nanotube (CNT)-reinforced AZ31 matrix nanocomposites were successfully fabricated using a powder metallurgy method followed by hot extrusion. The influence of CNTs on microstructures, mechanical properties, and wear properties were systematically investigated by optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD), hardness test, tensile test, and wear test. The results revealed that the nanocomposites showed a slightly smaller grain size compared with the matrix and uniform distribution that CNTs could achieve at proper content. As a result, the addition of CNTs could weaken basal plane texture. However, the yield strength and ultimate tensile strength of the composites were enhanced as the amount of CNTs increased up to 2.0 wt. %, reaching maximum values of 241 MPa (+28.2%) and 297 MPa (+6.1%), respectively. The load transfer mechanism, Orowan mechanism, and thermal mismatch mechanism played important roles in the enhancement of the yield strength, and several classical models were employed to predict the theoretical values. The effect of CNT content on the friction coefficient and weight loss of the nanocomposites was also studied. The relationships between the amount of CNTs, the friction coefficient, and weight loss could be described by the exponential decay model and the Boltzmann model, respectively. PMID:29207543
Jellyfish Body Plans Provide Allometric Advantages beyond Low Carbon Content
Pitt, Kylie A.; Duarte, Carlos M.; Lucas, Cathy H.; Sutherland, Kelly R.; Condon, Robert H.; Mianzan, Hermes; Purcell, Jennifer E.; Robinson, Kelly L.; Uye, Shin-Ichi
2013-01-01
Jellyfish form spectacular blooms throughout the world’s oceans. Jellyfish body plans are characterised by high water and low carbon contents which enables them to grow much larger than non-gelatinous animals of equivalent carbon content and to deviate from non-gelatinous pelagic animals when incorporated into allometric relationships. Jellyfish have, however, been argued to conform to allometric relationships when carbon content is used as the metric for comparison. Here we test the hypothesis that differences in allometric relationships for several key functional parameters remain for jellyfish even after their body sizes are scaled to their carbon content. Data on carbon and nitrogen contents, rates of respiration, excretion, growth, longevity and swimming velocity of jellyfish and other pelagic animals were assembled. Allometric relationships between each variable and the equivalent spherical diameters of jellyfish and other pelagic animals were compared before and after sizes of jellyfish were standardised for their carbon content. Before standardisation, the slopes of the allometric relationships for respiration, excretion and growth were the same for jellyfish and other pelagic taxa but the intercepts differed. After standardisation, slopes and intercepts for respiration were similar but excretion rates of jellyfish were 10× slower, and growth rates 2× faster than those of other pelagic animals. Longevity of jellyfish was independent of size. The slope of the allometric relationship of swimming velocity of jellyfish differed from that of other pelagic animals but because they are larger jellyfish operate at Reynolds numbers approximately 10× greater than those of other pelagic animals of comparable carbon content. We conclude that low carbon and high water contents alone do not explain the differences in the intercepts or slopes of the allometric relationships of jellyfish and other pelagic animals and that the evolutionary longevity of jellyfish and their propensity to form blooms is facilitated by their unique body plans. PMID:23967331
Jellyfish body plans provide allometric advantages beyond low carbon content.
Pitt, Kylie A; Duarte, Carlos M; Lucas, Cathy H; Sutherland, Kelly R; Condon, Robert H; Mianzan, Hermes; Purcell, Jennifer E; Robinson, Kelly L; Uye, Shin-Ichi
2013-01-01
Jellyfish form spectacular blooms throughout the world's oceans. Jellyfish body plans are characterised by high water and low carbon contents which enables them to grow much larger than non-gelatinous animals of equivalent carbon content and to deviate from non-gelatinous pelagic animals when incorporated into allometric relationships. Jellyfish have, however, been argued to conform to allometric relationships when carbon content is used as the metric for comparison. Here we test the hypothesis that differences in allometric relationships for several key functional parameters remain for jellyfish even after their body sizes are scaled to their carbon content. Data on carbon and nitrogen contents, rates of respiration, excretion, growth, longevity and swimming velocity of jellyfish and other pelagic animals were assembled. Allometric relationships between each variable and the equivalent spherical diameters of jellyfish and other pelagic animals were compared before and after sizes of jellyfish were standardised for their carbon content. Before standardisation, the slopes of the allometric relationships for respiration, excretion and growth were the same for jellyfish and other pelagic taxa but the intercepts differed. After standardisation, slopes and intercepts for respiration were similar but excretion rates of jellyfish were 10× slower, and growth rates 2× faster than those of other pelagic animals. Longevity of jellyfish was independent of size. The slope of the allometric relationship of swimming velocity of jellyfish differed from that of other pelagic animals but because they are larger jellyfish operate at Reynolds numbers approximately 10× greater than those of other pelagic animals of comparable carbon content. We conclude that low carbon and high water contents alone do not explain the differences in the intercepts or slopes of the allometric relationships of jellyfish and other pelagic animals and that the evolutionary longevity of jellyfish and their propensity to form blooms is facilitated by their unique body plans.
NASA Astrophysics Data System (ADS)
Postma, Dieke; Pham, Thi Kim Trang; Sø, Helle Ugilt; Hoang, Van Hoan; , Mai Lan, Vi; Nguyen, Thi Thai; Larsen, Flemming; Pham, Hung Viet; Jakobsen, Rasmus
2016-12-01
Aquifers on the Red River flood plain with burial ages ranging from 500 to 6000 years show, with increasing age, the following changes in solute concentrations; a decrease in arsenic, increase in Fe(II) and decreases in both pH, Ca and bicarbonate. These changes were interpreted in terms of a reaction network comprising the kinetics of organic carbon degradation, the reduction kinetics of As containing Fe-oxides, the sorption of arsenic, the kinetics of siderite precipitation and dissolution, as well as of the dissolution of CaCO3. The arsenic released from the Fe-oxide is preferentially partitioned into the water phase, and partially sorbed, while the released Fe(II) is precipitated as siderite. The reaction network involved in arsenic mobilization was analyzed by 1-D reactive transport modeling. The results reveal complex interactions between the kinetics of organic matter degradation and the kinetics and thermodynamic energy released by Fe-oxide reduction. The energy released by Fe-oxide reduction is strongly pH dependent and both methanogenesis and carbonate precipitation and dissolution have important influences on the pH. Overall it is the rate of organic carbon degradation that determines the total electron flow. However, the kinetics of Fe-oxide reduction determines the distribution of this flow of electrons between methanogenesis, which is by far the main pathway, and Fe-oxide reduction. Modeling the groundwater arsenic content over a 6000 year period in a 20 m thick aquifer shows an increase in As during the first 1200 years where it reaches a maximum of about 600 μg/L. During this initial period the release of arsenic from Fe-oxides actually decreases but the adsorption of arsenic onto the sediment delays the build-up in the groundwater arsenic concentration. After 1200 years the groundwater arsenic content slowly decreases controlled both by desorption and continued further, but diminishing, release from Fe-oxide being reduced. After 6000 years the arsenic content has decreased to 33 μg/L. The modeling enables a quantitative description of how the aquifer properties, the reactivity of organic carbon and Fe-oxides, the number of sorption sites and the buffering mechanisms change over a 6000 year period and how the combined effect of these interacting processes controls the groundwater arsenic content.
Trang, Pham Thi Kim; Sø, Helle Ugilt; Van Hoan, Hoang; Lan, Vi Mai; Thai, Nguyen Thi; Larsen, Flemming; Viet, Pham Hung; Jakobsen, Rasmus
2016-01-01
Aquifers on the Red River flood plain with burial ages ranging from 500 to 6000 years show, with increasing age, the following changes in solute concentrations; a decrease in arsenic, increase in Fe(II) and decreases in both pH, Ca and bicarbonate. These changes were interpreted in terms of a reaction network comprising the kinetics of organic carbon degradation, the reduction kinetics of As containing Fe-oxides, the sorption of arsenic, the kinetics of siderite precipitation and dissolution, as well as of the dissolution of CaCO3. The arsenic released from the Fe-oxide is preferentially partitioned into the water phase, and partially sorbed, while the released Fe(II) is precipitated as siderite. The reaction network involved in arsenic mobilization was analyzed by 1-D reactive transport modeling. The results reveal complex interactions between the kinetics of organic matter degradation and the kinetics and thermodynamic energy released by Fe-oxide reduction. The energy released by Fe-oxide reduction is strongly pH dependent and both methanogenesis and carbonate precipitation and dissolution have important influences on the pH. Overall it is the rate of organic carbon degradation that determines the total electron flow. However, the kinetics of Fe-oxide reduction determines the distribution of this flow of electrons between methanogenesis, which is by far the main pathway, and Fe-oxide reduction. Modeling the groundwater arsenic content over a 6000 year period in a 20 m thick aquifer shows an increase in As during the first 1200 years where it reaches a maximum of about 600 μg/L. During this initial period the release of arsenic from Fe-oxides actually decreases but the adsorption of arsenic onto the sediment delays the build-up in the groundwater arsenic concentration. After 1200 years the groundwater arsenic content slowly decreases controlled both by desorption and continued further, but diminishing, release from Fe-oxide being reduced. After 6000 years the arsenic content has decreased to 33 μg/L. The modeling enables a quantitative description of how the aquifer properties, the reactivity of organic carbon and Fe-oxides, the number of sorption sites and the buffering mechanisms change over a 6000 year period and how the combined effect of these interacting processes controls the groundwater arsenic content. PMID:27867210
NASA Astrophysics Data System (ADS)
Odalen, M.; Nycander, J.; Oliver, K. I. C.; Nilsson, J.; Brodeau, L.; Ridgwell, A.
2016-02-01
During glacials, atmospheric CO2 is significantly lowered; the decrease is about 1/3 or 90 ppm during the last four glacial cycles. Since the ocean reservoir of carbon, and hence the ocean capacity for storing carbon, is substantially larger than the atmospheric and terrestrial counterparts, it is likely that this lowering was caused by ocean processes, drawing the CO2 into the deep ocean. The Southern Ocean circulation and biological efficiency are widely accepted as having played an important part in this CO2 drawdown. However, the relative effects of different processes contributing to this oceanic uptake have not yet been well constrained. In this work, we focus on better constraining two of these processes; 1) the effect of increased efficiency of the biological carbon uptake, and 2) the effect of changes in global mean ocean temperature on the abiotic ocean-atmosphere CO2 equilibrium. By performing ensemble runs using an Earth System Model of Intermediate Complexity (EMIC) we examine the changes in atmospheric pCO2 achieved by 100% nutrient utilization efficiency of biology. The simulations display different ocean circulation patterns and hence different global ocean mean temperatures. By restoring the atmospheric pCO2 to a target value during the spin-up phase, the total carbon content differs between each of the ensemble members. The difference is due to circulation having direct effects on biology, but also on global ocean mean temperature, changing the solubility of CO2. This study reveals the relative importance of of the processes 1 and 2 (mentioned above) for atmospheric pCO2 in a changed climate. The results of this study also show that a difference in carbon content after spin-up can have a significant effect on the drawdown potential of a maximised biological efficiency. Thus, the choice of spin-up characteristics in a model study of climate change CO2 dynamics may significantly affect the outcome of the study.
Guo, Xing-Sen; Lü, Ying-Chun; Sun, Zhi-Gao; Wang, Chuan-Yuan; Zhao, Quan-Sheng
2015-02-01
Estuary is an important area contributing to the global carbon cycle. In order to analyze the spatial-temporal distribution characteristics of the dissolved inorganic carbon (DIC) in the surface water of Yellow River estuary. Samples were collected in spring, summer, fall, winter of 2013, and discussed the correlation between the content of DIC and environmental factors. The results show that, the DIC concentration of the surface water in Yellow River estuary is in a range of 26.34-39.43 mg x L(-1), and the DIC concentration in freshwater side is higher than that in the sea side. In some areas where the salinity is less than 15 per thousand, the DIC concentration appears significant losses-the maximum loss is 20.46%. Seasonal distribution of performance in descending order is spring, fall, winter, summer. Through principal component analysis, it shows that water temperature, suspended solids, salinity and chlorophyll a are the main factors affecting the variation of the DIC concentration in surface water, their contribution rate is as high as 83% , and alkalinity, pH, dissolved organic carbon, dissolved oxygen and other factors can not be ignored. The loss of DIC in the low area is due to the calcium carbonate sedimentation. DIC presents a gradually increasing trend, which is mainly due to the effects of water retention time, temperature, outside input and environmental conditions.
NASA Astrophysics Data System (ADS)
Matuoog, Naeema; Li, Kai; Yan, Yunjun
2017-12-01
In this study, lipase from Thermomyces lanuginosus (TLL) was immobilized on carbon nanotubes (MWCNTs) by physical adsorption, and the immobilizing conditions were optimized for maximum activity. The effects of enzyme loading, pH, temperature and time on the immobilization efficiency and specific activity were evaluated. The highest enzyme activity and immobilization efficiency of 90.66% and 110.5%, respectively, were achieved when the immobilized pH was 8, and a high rate of recovery activity of 111.3% occurred at 45 °C with 30-60 min providing a good result. When the immobilization efficiency was 95.8%, the recovery activity was 112.4%. The immobilization time had little effect on the immobilization efficiency, and 6 mg g-1 of lipase provided the highest immobilization efficiency of 97.78% and recovery activity of 112.8%. When the immobilized lipase was utilized to enrich docosahexaenoic acid (DHA) from fish oil, the DHA content increased with increasing amount of lipase up to 9 mg g-1. The water content had a clear effect when of 50% water was used at 45 °C and at a pH of 7 after 10 h. The DHA contents were 4.2-fold and 2.5-fold greater than the initial content of DHA fish oil for TLL-MWCNTs and free lipase, respectively. The degrees of hydrolysis after 6 cycles of successive use were over 80% and 62% for the immobilized TLL and free TLL, respectively, indicating the system recyclability and the ease of use of the immobilized TLL in industrial applications, especially in the fields of food and medicine.
Determining the bio-based content of bio-plastics used in Thailand by radiocarbon analysis
NASA Astrophysics Data System (ADS)
Ploykrathok, T.; Chanyotha, S.
2017-06-01
Presently, there is an increased interest in the development of bio-plastic products from agricultural materials which are biodegradable in order to reduce the problem of waste disposal. Since the amount of modern carbon in bio-plastics can indicate how much the amount of agricultural materials are contained in the bio-plastic products, this research aims to determine the modern carbon in bio-plastic using the carbon dioxide absorption method. The radioactivity of carbon-14 contained in the sample is measured by liquid scintillation counter (Tri-carb 3110 TR, PerkinElmer). The percentages of bio-based content in the samples were determined by comparing the observed modern carbon content with the values contained in agricultural raw materials. The experimental results show that only poly(lactic acid) samples have the modern carbon content of 97.4%, which is close to the agricultural materials while other bio-plastics types are found to have less than 50% of the modern carbon content. In other words, most of these bio-plastic samples were mixed with other materials which are not agriculturally originated.
Jain, Priyanka; Arora, Neha; Mehtani, Juhi; Pruthi, Vikas; Majumder, C B
2017-10-01
In the present investigation, toxic algal bloom, a copious and low-cost nutrient source was deployed for cultivating Chlorella pyrenoidosa. Various pre-treatment methods using combinations of acid/alkali and autoclave/microwave were tested for preparing hydrolysates and compared with minimal media (BG-11). Acid autoclave treatment resulted in maximum carbon, nitrogen and phosphorous content which substantially boosted the growth of the microalgal cells (4.36g/L) as compared to rest of the media. The microalga grown in this media also showed enhanced lipid content (43.2%) and lipid productivity (188mg/L/d) as compared to BG-11 (19.42mg/L/d). The biochemical composition showed 1.6-fold declines in protein while 1.27 folds in carbohydrate content as compared to BG-11. The fatty acid profile revealed the presence of C14-C22 with increased amount of monounsaturated fatty acids as compared to BG-11. The results obtained showed that algal bloom can be used as a potential nutrient source for microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vidyashankar, S; Deviprasad, K; Chauhan, V S; Ravishankar, G A; Sarada, R
2013-09-01
Five indigenous microalgal strains of Scenedesmus, Chlorococcum, Coelastrum, and Ankistrodesmus genera, isolated from Indian fresh water habitats, were studied for carbon-dioxide tolerance and its effect on growth, lipid and fatty acid profile. Scenedesmus dimorphus strain showed maximum growth (1.5 g/L) and lipid content (17.83% w/w) under CO2 supplementation, hence selected for detailed evaluation. The selected strain was alkaline adapted but tolerated (i) wide range of pH (5-11); (ii) elevated salinity levels (up to 100 mM, NaCl) with low biomass yields and increased carotenoids (19.34 mg/g biomass); (iii) elevated CO2 levels up to 15% v/v with enhancement in specific growth rate (0.137 d(-1)), biomass yield (1.57 g/L), lipid content (19.6% w/w) and CO2 biofixation rate (0.174 g L(-1) d(-1)). Unsaturated fatty acid content (alpha linolenic acid) increased with CO2 supplementation in the strain. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Y. L.; Miller, J. R.; Chen, J. M.
2009-05-01
Foliage nitrogen concentration is a determinant of photosynthetic capacity of leaves, thereby an important input to ecological models for estimating terrestrial carbon and water budgets. Recently, spectrally continuous airborne hyperspectral remote sensing imagery has proven to be useful for retrieving an important related parameter, total chlorophyll content at both leaf and canopy scales. Thus remote sensing of vegetation biochemical parameters has promising potential for improving the prediction of global carbon and water balance patterns. In this research, we explored the feasibility of estimating leaf nitrogen content using hyperspectral remote sensing data for spatially explicit estimation of carbon and water budgets. Multi-year measurements of leaf biochemical contents of seven major boreal forest species were carried out in northeastern Ontario, Canada. The variation of leaf chlorophyll and nitrogen content in response to various growth conditions, and the relationship between them,were investigated. Despite differences in plant type (deciduous and evergreen), leaf age, stand growth conditions and developmental stages, leaf nitrogen content was strongly correlated with leaf chlorophyll content on a mass basis during the active growing season (r2=0.78). With this general correlation, leaf nitrogen content was estimated from leaf chlorophyll content at an accuracy of RMSE=2.2 mg/g, equivalent to 20.5% of the average measured leaf nitrogen content. Based on this correlation and a hyperspectral remote sensing algorithm for leaf chlorophyll content retrieval, the spatial variation of leaf nitrogen content was inferred from the airborne hyperspectral remote sensing imagery acquired by Compact Airborne Spectrographic Imager (CASI). A process-based ecological model Boreal Ecosystem Productivity Simulator (BEPS) was used for estimating terrestrial carbon and water budgets. In contrast to the scenario with leaf nitrogen content assigned as a constant value without differentiation between and within vegetation types for calculating the photosynthesis rate, we incorporated the spatial distribution of leaf nitrogen content in the model to estimate net primary productivity and evaportranspiration of boreal ecosystem. These regional estimates of carbon and water budgets with and without N mapping are compared, and the importance of this leaf biochemistry information derived from hyperspectral remote sensing in regional mapping of carbon and water fluxes is quantitatively assessed. Keywords: Remote Sensing, Leaf Nitrogen Content, Spatial Distribution, Carbon and Water Budgets, Estimation
Soil organic carbon response to shrub encroachment regulated by soil aggregates
NASA Astrophysics Data System (ADS)
Zhu, Y.; Li, H.; Shen, H.; Feng, Y.; Fang, J.
2017-12-01
Shrub encroachment leads to change in soil organic carbon content, but there still exists a lot of uncertainty in its mechanism as it relates to deep soil research. Soil organic carbon is usually associated with stable aggregate quantity. In this study, we conducted a field investigation for typical steppe and desert steppe in Inner Mongolia with the view to examining the impact of shrub encroachment on soil organic carbon with soil aggregate at a depth of 0-500 cm. The results show that in the desert steppe, the particle size of soil aggregate content level in different depth are presented the trend of shrub patches is lower than the herb matrix, organic carbon content of soil aggregate under 50 cm deeper presents the trend of shrub patches is higher than herb matrix, eventually leading to shrub patches whole soil organic carbon in the 0 to 50 cm depth lower than the herb matrix, and in deeper soil below 50 cm higher than the herb matrix. In the typical steppe, there is no significant difference between soil aggregate structure of shrub patches and herb matrix, but organic carbon content of soil aggregate, especially large aggregate organic carbon content in the shrub patches is significantly higher than the herb matrix, so that the whole soil organic carbon content in the shrub patches is significantly higher than herb matrix. The rate of soil organic carbon content change (0-100 cm) by shrub encroachment showed significant negative correlation with the mean weight diameter of soil aggregate of herb matrix. We also found that the variations of soil organic carbon in desert steppe is not dominant by aggregates of some size, but the change of the typical steppe soil organic carbon mainly contributed by > 0.25 mm and 0.053-0.25 mm aggregates. The results suggested that the effects of shrub encroachment on soil organic carbon is regulated by soil aggregate, but it is varied for different type of grassland, which should provide some insights into our understanding on regional carbon budget under global environment change.
Paleocene-Eocene Thermal Maximum triggered by Volcanism revealed by Mercury anomalies
NASA Astrophysics Data System (ADS)
Khozyem, Hassan; Adatte, Thierry; Mbabi Bitchong, André; Chevalier, Yoann; Keller, Gerta
2017-04-01
The Paleocene-Eocene Thermal Maximum (PETM, 55.8±0.2 Ma) is marked by a global drop of 2-6‰ in 13C values and rapid warming of 4-5°C in tropical surface waters and 4-8°C in high latitudes. Climate warming persisted for several tens of thousands of years and resulted in rapid diversification in terrestrial mammals and marine planktic foraminifera. Deep-water bathyal benthic foraminifera suffered a mass extinction ( 40% species) but no significant extinctions occurred shallow shelf environments. Benthic extinctions are commonly explained as the effects of the initial stage of climate warming due to North Atlantic Volcanic Province volcanism (NAVP), which triggered methane release from ocean sediments causing global warming and ocean acidification. But the relationship between NAPV and the PETM events are not clearly demonstrated. Several studies [1-4] demonstrated the relationship between Hg anomalies in sediments and LIP activity associated with mass extinctions. We investigated the mercury (Hg) content of several sections located in deep bathyal (Zumaya, Trabakua, N-Spain) and outer shelf environments (Dababiya GSSP, Duwi, Egypt). At Zumaya the PETM is marked by a red clayey and marly interval poor in organic matter and coincident with a pronounced ∂13C negative shift. A comparable clay interval with low TOC content is also present in the Dababyia section in the lower part of the negative ∂13C shift, whereas the upper part of is enriched in TOC, reflecting increased productivity. A significant but unique Hg enrichment is observed at the onset of the PETM just below the carbone isotope shift in Spain as well as in Egypt. This increase, which is not correlated with clay or total organic carbon contents, suggests the Hg anomaly resulted from higher atmospheric Hg input into the marine realm, rather than organic matter scavenging and/or increased run-off. This Hg anomaly at the onset of the PETM provides the first direct evidence that volcanism played a crucial role in triggering the PETM events by initiating the warming that likely released methane gases that accelerated greenhouse warming and ocean acidification.
Liu, Jinbao; Han, Jichang; Zhang, Yang; Wang, Huanyuan; Kong, Hui; Shi, Lei
2018-06-05
The storage of soil organic carbon (SOC) should improve soil fertility. Conventional determination of SOC is expensive and tedious. Visible-near infrared reflectance spectroscopy is a practical and cost-effective approach that has been successfully used SOC concentration. Soil spectral inversion model could quickly and efficiently determine SOC content. This paper presents a study dealing with SOC estimation through the combination of soil spectroscopy and stepwise multiple linear regression (SMLR), partial least squares regression (PLSR), principal component regression (PCR). Spectral measurements for 106 soil samples were acquired using an ASD FieldSpec 4 standard-res spectroradiometer (350-2500 nm). Six types of transformations and three regression methods were applied to build for the quantification of different parent materials development soil. The results show that (1)the basaltic volcanic clastics development of SOC spectral response bands located in 500 nm, 800 nm; Trachyte spectral response of the soil quality, and the volcanic clastics development at 405 nm, 465 nm, 575 nm, 1105 nm. (2) Basaltic volcanic debris soil development, first deviation of maximum correlation coefficient is 0.8898; thick surface soil of the development of rocky volcanic debris from bottom reflectivity logarithm of first deviation of maximum correlation coefficient is 0.9029. (3) Soil organic matter content of basaltic volcanic clastics development optimal prediction model based on spectral reflectance inverse logarithms of first deviation of SMLR. Independent variable number is 7, Rv 2 = 0.9720, RMSEP = 2.0590, sig = 0.003. Trachyte qualitative volcanic clastics developed soil organic matter content of the optimal prediction model based on spectral reflectance inverse logarithms of first deviation of PLSR. Model number of the independent variables Pc = 5, Rc = 0.9872, Rc 2 = 0.9745, RMSEC = 0.4821, SEC = 0.4906, forecasts determine coefficient Rv 2 = 0.9702, RMSEP = 0.9563, SEP = 0.9711, Bias = 0.0637. Copyright © 2018 Elsevier B.V. All rights reserved.
Yang, Chunzhen; Zhou, Ming; Xu, Qian
2013-12-07
MnO2/carbon composites with ultrathin MnO2 nanofibers (diameter of 5-10 nm) uniformly deposited on three dimensional ordered macroporous (3DOM) carbon frameworks were fabricated via a self-limiting redox process. The MnO2 nanofibers provide a large surface area for charge storage, whereas the 3DOM carbon serves as a desirable supporting material providing rapid ion and electron transport through the composite electrodes. Cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) were used to characterize the capacitive performance of these composites. Optimization of the composition results in a composite with 57 wt% MnO2 content, which gives both a high specific capacitance (234 F g(-1) at a discharge current of 0.1 A g(-1)) and good rate capability (52% retention of the capacitance at 5 A g(-1)). An asymmetric supercapacitor was fabricated by assembling the optimized MnO2/carbon composite as the positive electrode and 3DOM carbon as the negative electrode. The asymmetric supercapacitor exhibits superior electrochemical performances, which can be reversibly charged and discharged at a maximum cell voltage of 2.0 V in 1.0 M Na2SO4 aqueous electrolyte, delivering both high energy density (30.2 W h kg(-1)) and power density (14.5 kW kg(-1)). Additionally, the asymmetric supercapacitor exhibits an excellent cycle life, with 95% capacitance retained after 1000 cycles.
NASA Astrophysics Data System (ADS)
Lamb, B. T.; Tzortziou, M.; McDonald, K. C.
2017-12-01
Wetlands play a key role in Earth's carbon cycle. However, wetland carbon cycling exhibits a high level of spatiotemporal dynamism, and thus, is not as well understood as carbon cycling in other ecosystems. In order to accurately characterize wetland carbon cycling and fluxes, wetland vegetation phenology, seasonal inundation dynamics, and tidal regimes must be understood as these factors influence carbon generation and transport. Here, we use radar remote sensing to map wetland properties in the Chesapeake Bay, the largest estuary in the United States with more than 1,500 square miles of tidal wetlands, across a range of tidal amplitudes, salinity regimes, and soil organic matter content levels. We have been using Sentinel-1 and ALOS PALSAR-1 radar measurements to characterize vegetation and seasonal inundation dynamics with the future goal of characterizing salinity gradients and tidal regimes. Differences in radar backscatter from various surface targets has been shown to effectively discriminate between dry soil, wet soil, vegetated areas, and open water. Radar polarization differences and ratios are particularly effective at distinguishing between vegetated and non-vegetated areas. Utilizing these principles, we have been characterizing wetland types using supervised classification techniques including: Random Forest, Maximum Likelihood, and Minimum Distance. The National Wetlands Inventory has been used as training and validation data. Ideally, the techniques we outline in this research will be applicable to the characterization of wetlands in coastal areas outside of Chesapeake Bay.
Chen, Zhiqiang; Huang, Long; Wen, Qinxue; Zhang, Huichao; Guo, Zirui
2017-02-01
Four sequence batch reactors (SBRs) fed by fermented sugar cane wastewater were continuously operated under the aerobic dynamic feeding (ADF) mode with different configurations of sludge retention time (SRT), carbon and initial biomass concentrations to enrich polyhydroxyalkanoate (PHA) accumulating mixed microbial cultures (MMCs) from municipal activated sludge. The stability of SBRs was investigated besides the enrichment performance. The microbial community structures of the enriched MMCs were analyzed using terminal restriction fragment length polymorphism (T-RFLP). The optimum operating conditions for the enrichment process were: SRT of 5days, carbon concentration of 2.52g COD/L and initial biomass concentration of 3.65g/L. The best enrichment performance in terms of both operating stability and PHA storage ability of enriched cultures (with the maximum PHA content and PHA storage yield (Y PHA/S ) of 61.26% and 0.68mg COD/mg COD, respectively) was achieved under this condition. Effects of the SRT, carbon concentration and initial biomass concentration on the PHA accumulating MMCs selection process were discussed respectively. A new model including the segmentation of the enrichment process and the effects of SRT on each phase was proposed. Copyright © 2016. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokorowski, H D; Anderson, P M; Sletten, R S
Palynological (species assemblage, pollen accumulation rate), geochemical (carbon to nitrogen ratios, organic carbon and biogenic silica content), and sedimentological (particle size, magnetic susceptibility) data combined with improved chronology and greater sampling resolution from a new core from Elikchan 4 Lake provide a stronger basis for defining paleoenvironmental changes than was previously possible. Persistence of herb-dominated tundra, slow expansion of Betula and Alnus shrubs, and low percentages of organic carbon and biogenic silica suggest that the Late-Glacial transition (ca. 16,000-11,000 cal. yr BP) was a period of gradual rather than abrupt vegetation and climatic change. Consistency of all Late-Glacial data indicatesmore » no Younger Dryas climatic oscillation. A dramatic peak in pollen accumulation rates (ca. 11,000-9800 cal. yr BP) suggests a possible summer temperature optimum, but finer grain-sizes, low magnetic susceptibility, and greater organic carbon and biogenic silica, while showing significant warming at ca. 11,000 cal. yr BP, offer no evidence of a Holocene thermal maximum. When compared to trends in other paleo-records, the new Elikchan data underscore the apparent spatial complexity of climatic responses in Northeast Siberia to global forcings between ca. 16,000-9000 cal. yr BP.« less
Vithanage, Meththika; Wijesekara, Hasintha; Mayakaduwa, S S
2017-07-01
Extract and analysis of the Dissolved Organic Carbon (DOC) fractions were analyzed from the leachate of an uncontrolled dumpsite at Gohagoda, Sri Lanka. DOC fractions, humic acid (HA), fulvic acid (FA) and the hydrophilic (Hyd) fractions were isolated and purified with the resin techniques. Spectroscopic techniques and elemental analysis were performed to characterize DOCs. Maximum TOC and DOC values recorded were 56,955 and 28,493 mg/L, respectively. Based on the total amount of DOC fractionation, Hyd dominated accounting for ∼60%, and HA and FA constituted ∼22% and ∼17%, respectively, exhibiting the mature phase of the dumpsite. The elemental analysis of DOCs revealed carbon variation following HA > FA > Hyd, while hydrogen and nitrogen were similar in each fraction. The N/C ratio for HA was recorded as 0.18, following a similar trend in old dumpsite leachate elsewhere. The O/C ratios for HA and FA were recorded higher as much as 1.0 and 9.3, respectively, indicating high degree of carbon mineralization in the leachates. High content of carboxylic, phenolic and lactone groups in all DOCs was observed disclosing their potential for toxic substances transportation. The results strongly suggest the risk associated with DOCs in dumpsite leachate to the aquatic and terrestrial environment.
Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Young; Kang, Chang Han; Jeong, Gwi-Taek; Kim, Sung-Koo
2015-06-01
The objective of this study was to optimize the slurry contents and salt concentrations for ethanol production from hydrolysates of the seaweed Eucheuma spinosum. A monosaccharide concentration of 44.2 g/l as 49.6% conversion of total carbohydrate of 89.1 g/l was obtained from 120 g dw/l seaweed slurry. Monosaccharides from E. spinosum slurry were obtained by thermal acid hydrolysis and enzymatic hydrolysis. Addition of activated carbon at 2.5% (w/v) and the adsorption time of 2 min were used in subsequent adsorption treatments to prevent the inhibitory effect of HMF. The adsorption surface area of the activated carbon powder was 1,400-1,600 m(2)/g and showed selectivity to 5-hydroxymethyl furfural (HMF) from monosaccharides. Candida tropicalis KCTC 7212 was cultured in yeast extract, peptone, glucose, and high-salt medium, and exposed to 80, 90, 100, and 110 practical salinity unit (psu) salt concentrations in the lysates. The 100 psu salt concentration showed maximum cell growth and ethanol production. The ethanol fermentations with activated carbon treatment and use of C. tropicalis acclimated to a high salt concentration of 100 psu produced 17.9 g/l of ethanol with a yield (YEtOH) of 0.40 from E. spinosum seaweed.
Effect of Carbon on the Electrical Properties of Copper Oxide-Based Bulk Composites
NASA Astrophysics Data System (ADS)
Kalinin, Yu. E.; Kashirin, M. A.; Makagonov, V. A.; Pankov, S. Yu.; Sitnikov, A. V.
2018-04-01
The effect of carbon filler on the electrical resistance and the thermopower of copper oxide-based composites produced by ceramic technology by hot pressing has been studied. It is found that the dependences of the electrical resistivity on the filler concentration are characteristic by S-like curves that are typical of percolation systems; in this case, the resistivity decreases more substantially as the carbon content increases as compared to the decrease in thermopower value, which is accompanied by the existence of the maximum of the factor of thermoelectric power near the percolation threshold. The studies of the temperature dependences of the resistivity and the thermopower at low temperatures show that, in the range 240-300 K, the predominant mechanism of the electrotransfer of all the composites under study is the hopping mechanism. At temperatures lower than 240 K, the composites with a nanocrystalline CuO matrix have a hopping conductivity with a variable hopping distance over localized states of the matrix near the Fermi level, which is related to the conductivity over intergrain CuO boundaries. A schematic model of the band structure of nanocrystalline CuO with carbon filler is proposed on the base of the analysis of the found experimental regularities of the electrotransfer.
Laser Induced Hydrogen Generation from Coal in Water
NASA Astrophysics Data System (ADS)
Seyitliyev, Dovletgeldi; Kholikov, Khomidkhodzha; Er, Ali
We report an alternative way of obtaining hydrogen using nanosecond laser pulses and various ranks of coal and coke. SEM-EDS analysis shows the atomic concentrations of elements on each of the powders which also is in good agreement with calorimeter analysis. Coal and coke powders were irradiated with 1064nm IR and 532 nm green Nd:YAG pulsed laser beam for 45 minutes. The volume of the total gas generated after irradiation of each rank was measured using the water displacement method. The amount of gas generated increased when using 532 nm compared to 1064 nm. Post-irradiation SEM images show structural differences with samples before irradiation. The amount of gas generation with respect to laser energy density shows nonlinear correlation. Generated gas concentrations were then analyzed using gas chromatography (GC). Hydrogen and carbon monoxide were the two most highly generated gases, and the efficiency of each rank of coal was determined by analyzing the hydrogen to carbon monoxide ratio. The highest efficiency rank was anthracite, with hydrogen to carbon monoxide ratio of 1.4. GC analysis also showed that the maximum hydrogen generation occurs at 100 mJ/pulse laser energy. The efficiency of each rank of coal was observed to correlate with carbon content. American Chemical Society Petroleum Research Fund.
NASA Astrophysics Data System (ADS)
Zhang, Enren; Wang, Feng; Yu, Qingling; Scott, Keith; Wang, Xu; Diao, Guowang
2017-08-01
The performance of activated carbon catalyst in air-cathodes in microbial fuel cells was investigated over one year. A maximum power of 1722 mW m-2 was produced within the initial one-month microbial fuel cell operation. The air-cathodes produced a maximum power >1200 mW m-2 within six months, but gradually became a limiting factor for the power output in prolonged microbial fuel cell operation. The maximum power decreased by 55% when microbial fuel cells were operated over one year due to deterioration in activated carbon air-cathodes. While salt/biofilm removal from cathodes experiencing one-year operation increased a limiting performance enhancement in cathodes, a washing-drying-pressing procedure could restore the cathode performance to its original levels, although the performance restoration was temporary. Durable cathodes could be regenerated by re-pressing activated carbon catalyst, recovered from one year deteriorated air-cathodes, with new gas diffusion layer, resulting in ∼1800 mW m-2 of maximum power production. The present study indicated that activated carbon was an effective catalyst in microbial fuel cell cathodes, and could be recovered for reuse in long-term operated microbial fuel cells by simple methods.
Wang, Shuang Lei; Liu, Yan Hui; Song, Xian Liang; Wei, Shao Bin; Li, Jin Pu; Nie, Jun Jun; Qin, Du Lin; Sun, Xue Zhen
2016-12-01
To clarify the effects of cotton straw returning on the composition and contents of nu-trients in different particle sizes of aggregates, two treatments with or without cotton straw returning were tested in continuous three years. After three years straw treatments, we collected undisturbed soil within 0-5, 5-10, 10-20 and 20-30 cm soil layers, and to measure the composition, soil organic carbon, nitrogen, phosphorus and potassium contents in different particle sizes of aggregates classified using dry sieving. Returning cotton straw into the field significantly increased particle contents of 2-5 mm and >5 mm aggregates in 0-5 cm soil layer, while the content of <0.25 mm micro-aggregates was decreased. Cotton straw returning significantly improved soil organic carbon, nitrogen, and potassium contents by 19.2%, 14.2% and 17.3%, respectively, compared to no returning control. In 5-10 cm soil layer, cotton straw returning increased the contents of 2-5 mm and >5 mm aggregates, reduced the content of <0.25 mm micro-aggregate, but significantly increased contents of soil organic carbon, available nitrogen and potassium by 19.6%, 12.6% and 23.4%, compared to no straw returning control. In 10-20 cm soil layer, cotton straw returning significantly reduced the content of <0.25 mm micro-aggregates, and significantly enhanced soil organic carbon, nitrogen, and potassium contents by 8.4%, 10.9% and 11.5%, compared to the control. However, in 20-30 cm soil layer, cotton straw returning only increased soil available potassium content by 12.0%, while there were no significant changes in particle size, organic carbon, nitrogen and phosphorus contents. We concluded that cotton straw returning could significantly improve the structure of surface soil by increasing the number of macro-aggregates, contents of organic carbon, available nitrogen and potassium in aggregates, while decreasing micro-aggregate content. The enhancement of the contribution of macro-aggregates to soil fertility by returning cotton straw could improve soil physical structure, fertility and then increase cotton yield.
[Effects of tree species fine root decomposition on soil active organic carbon].
Liu, Yan; Wang, Si-Long; Wang, Xiao-Wei; Yu, Xiao-Jun; Yang, Yue-Jun
2007-03-01
With incubation test, this paper studied the effects of fine root decomposition of Alnus cremastogyne, Cunninghamia lanceolata and Michelia macclurei on the content of soil active organic carbon at 9 degrees C , 14 degrees C , 24 degrees C and 28 degrees C. The results showed that the decomposition rate of fine root differed significantly with test tree species, which was decreased in the order of M. macclurei > A. cremastogyne > C. lanceolata. The decomposition rate was increased with increasing temperature, but declined with prolonged incubation time. Fine root source, incubation temperature, and incubation time all affected the contents of soil microbial biomass carbon and water-soluble organic carbon. The decomposition of fine root increased soil microbial biomass carbon and water-soluble organic carbon significantly, and the effect decreased in the order of M. macclurei > A. cremastogyne > C. lanceolata. Higher contents of soil microbial biomass carbon and water-soluble organic carbon were observed at medium temperature and middle incubation stage. Fine root decomposition had less effect on the content of soil readily oxidized organic carbon.
Ge, Nan Nan; Shi, Yun; Yang, Xian Long; Zhang, Qing Yin; Li, Xue Zhang; Jia, Xiao Xu; Shao, Ming An; Wei, Xiao Rong
2017-05-18
In this study, combined with field investigation and laboratory analyses, we assessed the distribution of soil organic carbon, nitrogen, phosphorous contents and their stoichiometric ratios, and the distribution of soil water stable aggregates along a soil texture gradient in the cropland of the Loess Plateau to understand the effect of soil texture and the regulation of soil aggregates on soil fertility in cropland. The results showed that, with the change from fine soils to coarse soils along the texture gradient (loam clay→ clay loam→ sandy loam), the contents of macroaggregates, organic carbon, nitrogen, phosphorous and their stoichiometric ratios decreased, while pH value and microaggregates content showed an opposite changing pattern. The contents of macroaggregates, organic carbon, nitrogen, phosphorous, and C/P and N/P were significantly increased, but pH value and microaggregates content were significantly decreased with increasing the soil clay content. Furthermore, the contents of organic carbon, nitrogen, phosphorous, and C/P and N/P increased with the increase of macroaggregates content. These results indicated that soil fertility in croplands at a regional scale was mainly determined by soil texture, and was regulated by soil macroaggregates.
Bates, A.L.; Hatcher, P.G.
1992-01-01
Isolated lignin with a low carbohydrate content was spiked with increasing amounts of alpha-cellulose, and then analysed by solid-state 13C nuclear magnetic resonance (NMR) using cross-polarization with magic angle spinning (CPMAS) and dipolar dephasing methods in order to assess the quantitative reliability of CPMAS measurement of carbohydrate content and to determine how increasingly intense resonances for carbohydrate carbons affect calculations of the degree of lignin's aromatic ring substitution and methoxyl carbon content. Comparisons were made of the carbohydrate content calculated by NMR with carbohydrate concentrations obtained by phenol-sulfuric acid assay and by the calculation from the known amounts of cellulose added. The NMR methods used in this study yield overestimates for carbohydrate carbons due to resonance area overlap from the aliphatic side chain carbons of lignin. When corrections are made for these overlapping resonance areas, the NMR results agree very well with results obtained by other methods. Neither the calculated methoxyl carbon content nor the degree of aromatic ring substitution in lignin, both calculated from dipolar dephasing spectra, change with cellulose content. Likewise, lignin methoxyl content does not correlate with cellulose abundance when measured by integration of CPMAS spectra. ?? 1992.
NASA Astrophysics Data System (ADS)
Schulte, Peter; Bornemann, André; Speijer, Robert P.
2010-05-01
The Paleocene to early Eocene is punctuated by several transient, ˜20-200 ky lasting hyperthermal events of which the Paleocene-Eocene Thermal Maximum (PETM) was the most prominent one. Abrupt shallowing of the lysocline/CCD, negative carbon isotope excursions, and benthic faunal turnover all imply a major perturbation of the ocean system during these events. Our recent research at the Southern Tethyan shelf suggests the presence of an additional hyperthermal event associated with sea-level fluctuations, the Latest Danian Event (LDE; Speijer, 2003; Bornemann et al., 2009). At Zumaia, Northern Spain, a negative ~0.5 per mil carbon isotope excursion is present in the uppermost Danian that may correlate to the LDE (Arenillas et al. 2008). Moreover, cyclostratigraphic studies have shown that several deep-sea sites are characterized by a prominent peak in both Fe and MS data at cycle Pc100-38 in the uppermost Danian: this applies to all Walvis Ridge (Atlantic) and Shatsky Rise (Pacific) sites as well as Site 1001 in the Caribbean Sea (Top Chron C27n Event; Westerhold et al., 2007). These results suggest that the LDE in the Tethys and the Top Chron C27n Event in the Atlantic may be correlative. We have conducted mineralogical, geochemical, and micropaleontological investigations to characterize this event in the Western Atlantic. Our first results from ODP Leg 165 Site 1001 show that the Top Chron 27n Event shown by Westerhold el al. (2008) corresponds to a ~12 cm thick clay layer. Mineralogical analyses reveal a sharp ~50% drop of the carbonate content in the clay layer and a disproportionally high increase of the phyllosilicate content in the insoluble residue compared to the quartz and illite content. Bulk rock isotope analyses show an abrupt negative ~0.6 per mil carbon isotope excursion at the onset of the clay layer, followed by a 1-m thick interval where carbon isotopes shows a tailing back to pre-event values. The magnitude and pattern of the carbon isotope excursion is very similar to the results for the LDE in the Tethys and at Zumaia. In conclusion, our results demonstrate a supra-regional transient perturbation of the carbon cycle during the LDE in the Tethyan realm, the Atlantic, and possibly the Pacific Ocean. Arenillas, I. et al., 2008, Terra Nova v. 20, p. 38-44. Bornemann, A. et al., 2009, Journal of the Geological Society, London v. 166, p. 1135-1142. Speijer, R.P., 2003, GSA Special Paper v. 369, p. 275-290. Westerhold, T. et al., 2007, Palaeogeography, Palaeoclimatology, Palaeoecology v. 257, p. 377-403.
Ammonia removal via microbial fuel cell (MFC) dynamic reactor
NASA Astrophysics Data System (ADS)
Alabiad, I.; Ali, U. F. M.; Zakarya, I. A.; Ibrahim, N.; Radzi, R. W.; Zulkurnai, N. Z.; Azmi, N. H.
2017-06-01
Landfill leachate is generally known as high-strength wastewater that is difficult to handle and contains dissolved extracts and suspended matter. Microbial fuel cells (MFCs) were designed to treat landfill leachate while continuously producing power (voltage output). Three different anodes were tested in MFC reactors: carbon black, activated carbon, and zinc electrodes. Movements in the MFC reactor during treatment were also a key factor for testing. Results showed a difference in ammonia levels in the three anodes used. The study compared the efficiency of static and dynamic modes of MFC in removing ammonia. Continual leachate movement in the reactor could increase the rate of removal of the ammonia components. The setup provided a viable condition for maximum removal because the reactor movement caused the sludge to disintegrate, which allowed ammonia to separate easily from the parent leachate. Ammonia removal also resulted from the transfer of ammonium through the membrane or from ammonia loss. Constant exchange of ionic content benefited the MFC performance by increasing power production and decreasing internal electrode material resistance. This paper presents the results of the analyses of leachate treatment from the solid waste landfill located in Padang Siding Landfill, Perlis. The performance of ammonia removal was enhanced using different types of electrodes. In both modes, activated carbon performed better than black carbon and zinc. The respective percentages of ammonia removal for activated carbon of dynamic over static were 96.6%, 66.6%, and 92.8% for activated carbon, zinc, and black carbon. The results provide further information on the possibility of using MFCs in landfill leachate treatment systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density B Appendix B to Subpart II to Part 63 Protection of...—Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density EC01MY92.046 ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density B Appendix B to Subpart II to Part 63 Protection of...—Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density EC01MY92.046 ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density B Appendix B to Subpart II of Part 63 Protection of...—Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density EC01MY92.046 ...
NASA Astrophysics Data System (ADS)
Chen, Janet; Heiling, Maria; Resch, Christian; Gruber, Roman; Dercon, Gerd
2017-04-01
Agricultural soils have the potential to contain a large pool of carbon and, depending on the farming techniques applied, can either effectively store carbon belowground, or further release carbon, in the form of CO2, into the atmosphere. Farming techniques, such as mulch application, are frequently proposed to increase carbon content belowground and improve soil quality and can be used in efforts to reduce greenhouse gas levels, such as in the "4 per 1000" Initiative. To test the effectiveness of mulch application to store carbon belowground in the short term and improve soil nutrient quality, we maintained agricultural soils with low and high organic carbon content (disturbed top soil from local Cambisols and Chernozems) in greenhouse mesocosms (70 cm deep with a radius of 25 cm) with controlled moisture for 4 years. Over the 4 years, maize and soybean were grown yearly in rotation and mulch was removed or applied to soils once plant material was harvested at 2 ton/ha dry matter. In addition, soil disturbance was kept to a minimum, with only surface disturbance of a few centimeters to keep soil free from weeds. After 4 years, we measured effects of mulch application on soluble soil and microbial carbon and nitrogen in the mesocosms and compared effects of mulch application versus no mulch on soils from 0-5 cm and 5-15 cm with low and high organic matter. We predicted that mulch would increase soil carbon and nitrogen content and mulch application would have a greater effect on soils with low organic matter than soils with high organic matter. In soils with low organic carbon content and larger predicted potential to increase soil carbon, mulch application did not increase soluble soil or microbial carbon or nitrogen compared to the treatments without mulch application. However, mulch application significantly increased the δ13C of both microbial and soluble soil carbon in these soils by 1 ‰ each, indicating a shift in belowground processes, such as increased decomposition coupled with increased carbon inputs. In soils with more organic content and lower potential to increase soil carbon, mulch application decreased microbial carbon by 0.01 mg C g soil-1 and increased soluble soil nitrogen by 0.01 mg N g soil-1. Soluble soil carbon also decreased by 0.04 mg C g soil-1 and microbial nitrogen increased with mulch application by 0.006 mg N g soil-1, but only in 5-15 cm soil. Mulch application only decreased δ13C of soluble soil carbon by 1.5 ‰, likely indicating a decrease in decomposition. Contrary to our initial predictions, mulch did not increase soil carbon content and only increased nitrogen content in soils that already had relatively higher organic matter content. These results suggest that mulch application (with only soil surface disturbance) may not play a significant role in increasing soil carbon content and overall soil quality, at least in a short 4-year term.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jin-Woo; Kim, Changhyeon; Ryu, Ho-Suk
2015-09-15
Highlights: • The content of sulfur in activated carbon was controlled by solution process. • The sulfur electrode with low sulfur content shows the best performance. • The Li/S battery has capacity of 1360 mAh/g at 1 C and 702 mAh/g at 10 C. - Abstract: The content of sulfur in sulfur/activated carbon composite is controlled from 32.37 wt.% to 55.33 wt.% by a one-step solution-based process. When the sulfur content is limited to 41.21 wt.%, it can be loaded into the pores of an activated carbon matrix in a highly dispersed state. On the contrary, when the sulfur contentmore » is 55.33 wt.%, crystalline sulfur can be detected on the surface of the activated carbon matrix. The best electrochemical performance can be obtained for a sulfur electrode with the lowest sulfur content. The sulfur/activated carbon composite with 32.37 wt.% sulfur afforded the highest first discharge capacity of 1360 mAh g{sup −1} at 1 C rate and a large reversible capacity of 702 mAh g{sup −1} at 10 C (16.75 A/g)« less
Hwang, Hyewon; Lee, Jae Hoon; Choi, In-Gyu; Choi, Joon Weon
2018-01-29
Hydrothermal liquefaction (HTL) of lignocellulosic biomass has been widely investigated for the production of renewable and alternative bio-crude oil. In this study, catalytic hydrothermal processing of two biomasses (larch and Mongolian oak) was performed using different K 2 CO 3 concentrations (0, 0.1, 0.5, 1.0 wt% of solvent) to improve fuel yield and properties. HTL oil, hydrochar, water-soluble fraction (WSF) and gas were characterized, and carbon balance was investigated. As a result, the maximum yield of HTL oil, 27.7 wt% (Mongolian oak) and 25.7 wt% (larch), and the highest carbon conversion ratio was obtained with 0.5 wt% of catalyst. The high catalyst concentration also resulted in an increase in higher heating values up to 31.9 MJ/kg. In addition, the amount of organic compounds in HTL oil also increased, specifically for lignin-derived compounds including catechol and hydroquinone which can be derived from secondary hydrolysis of lignin. On the other hand, formation of hydrochar was suppressed with the addition of alkali catalyst and the yield dramatically decreased from 30.7-40.8 wt.% to 20.0-21.8 wt.%. Furthermore, it was revealed that WSF had low organic carbon content less than 3.4% and high potassium content mostly derived from alkali catalyst, indicating that it may be reusable with simple purification. This work suggests that the addition of the proper amount of alkali catalyst can improve the production efficiency and quality of bio-crude oil, and another potential of WSF to be recyclable in further work.
Optoelectronic system of online measurements of unburned carbon in coal fly ash
NASA Astrophysics Data System (ADS)
Golas, Janusz; Jankowski, Henryk; Niewczas, Bogdan; Piechna, Janusz; Skiba, Antoni; Szkutnik, Wojciech; Szkutnik, Zdzislaw P.; Wartak, Ryszarda; Worek, Cezary
2001-08-01
Carbon-in-ash level is an important consideration for combustion efficiency as well as ash marketing. The optoelectronic analyzing system for on-line determination and monitoring of the u burned carbon content of ash samples is presented. The apparatus operates on the principle that carbon content is proportional to the reflectance of IR light. Ash samples are collected iso kinetically from the flue gas duct and placed in a sample tube with a flat glass bottom. The same is then exposed to a light. The reflectance intensity is used by the system's computer to determine residual carbon content from correlation curves. The sample is then air purged back to the duct or to the attached sample canister to enable laboratory check analysis. The total cycle time takes between 5 and 10 minutes. Real time result of carbon content with accuracy 0.3-0.7 percent are reported and can be used for boiler controlling.
King, Gary M; Weber, Carolyn F; Nanba, Kenji; Sato, Yoshinori; Ohta, Hiroyuki
2008-01-01
We have assayed rates of atmospheric CO and hydrogen uptake, maximum potential CO uptake and the major phylogenetic composition of CO-oxidizing bacterial communities for a variety of volcanic deposits on Miyake-jima, Japan. These deposits represented different ages and stages of plant succession, ranging from unvegetated scoria deposited in 1983 to forest soils on deposits >800 yr old. Atmospheric CO and hydrogen uptake rates varied from -2.0±1.8-6.3±0.1 mg CO m(-2) d(-1) and 0.0±0.4-2.0±0.2 mg H(2) m(-2) d(-1), respectively, and were similar to or greater than values reported for sites on Kilauea volcano, Hawaii, USA. At one of the forested sites, CO was emitted to the atmosphere, while two vegetated sites did not consume atmospheric hydrogen, an unusual observation. Although maximum potential CO uptake rates were also comparable to values for Kilauea, the relationship between these rates and organic carbon contents of scoria or soil indicated that CO oxidizers were relatively more abundant in Miyake-jima deposits. Phylogenetic analyses based on the large sub-unit gene for carbon monoxide dehydrogenase (coxL) indicated that many novel lineages were present on Miyake-jima, that CO-oxidizing Proteobacteria were prevalent in vegetated sites and that community structure appeared to vary more than composition among sites.
Zhang, Cai; Chen, Xiaohua; Tan, Liju; Wang, Jinagtao
2018-05-01
To investigate the combined toxicities of copper nanoparticles (nano-Cu) with carbon nanotubes (CNTs) on marine microalgae Skeletonema costatum, algal growth inhibition tests were carried out. Toxicities of nano-Cu with CNTs and without CNTs on microalgae were determined, respectively. Chlorophyll content and photosynthetic efficiency (ΦPSII) were determined to compare negative effects of nano-Cu with CNTs and without CNTs on photosynthesis. The concentration of Cu 2+ released by nano-Cu into the medium was determined, and interactions between nano-Cu and CNTs were analyzed to study toxic mechanisms of combined toxicities of nano-Cu with CNTs. It was found that both nano-Cu and CNTs could inhibit the growth of the microalgae; however, the toxicity of CNTs on the microalgae was far lower than that of nano-Cu. The maximum growth inhibition ratio (IR) of nano-Cu on the microalgae was 86% appearing at 96 h under 1.0 mg/L nano-Cu treatment, while the maximum IR of CNTs on the microalgae was 58% at 96 h under 200 mg/L CNT treatment. CNTs could reduce the toxicity of nano-Cu on the microalgae in processes of growth and photosynthesis. Adsorption of Cu 2+ on CNTs and aggregate between Cu and CNTs in the medium were main reasons for attenuation of toxicity of nano-Cu with adding CNTs.
Formulation and optimisation of raft-forming chewable tablets containing H2 antagonist
Prajapati, Shailesh T; Mehta, Anant P; Modhia, Ishan P; Patel, Chhagan N
2012-01-01
Purpose: The purpose of this research work was to formulate raft-forming chewable tablets of H2 antagonist (Famotidine) using a raft-forming agent along with an antacid- and gas-generating agent. Materials and Methods: Tablets were prepared by wet granulation and evaluated for raft strength, acid neutralisation capacity, weight variation, % drug content, thickness, hardness, friability and in vitro drug release. Various raft-forming agents were used in preliminary screening. A 23 full-factorial design was used in the present study for optimisation. The amount of sodium alginate, amount of calcium carbonate and amount sodium bicarbonate were selected as independent variables. Raft strength, acid neutralisation capacity and drug release at 30 min were selected as responses. Results: Tablets containing sodium alginate were having maximum raft strength as compared with other raft-forming agents. Acid neutralisation capacity and in vitro drug release of all factorial batches were found to be satisfactory. The F5 batch was optimised based on maximum raft strength and good acid neutralisation capacity. Drug–excipient compatibility study showed no interaction between the drug and excipients. Stability study of the optimised formulation showed that the tablets were stable at accelerated environmental conditions. Conclusion: It was concluded that raft-forming chewable tablets prepared using an optimum amount of sodium alginate, calcium carbonate and sodium bicarbonate could be an efficient dosage form in the treatment of gastro oesophageal reflux disease. PMID:23580933
Formulation and optimisation of raft-forming chewable tablets containing H2 antagonist.
Prajapati, Shailesh T; Mehta, Anant P; Modhia, Ishan P; Patel, Chhagan N
2012-10-01
The purpose of this research work was to formulate raft-forming chewable tablets of H2 antagonist (Famotidine) using a raft-forming agent along with an antacid- and gas-generating agent. Tablets were prepared by wet granulation and evaluated for raft strength, acid neutralisation capacity, weight variation, % drug content, thickness, hardness, friability and in vitro drug release. Various raft-forming agents were used in preliminary screening. A 2(3) full-factorial design was used in the present study for optimisation. The amount of sodium alginate, amount of calcium carbonate and amount sodium bicarbonate were selected as independent variables. Raft strength, acid neutralisation capacity and drug release at 30 min were selected as responses. Tablets containing sodium alginate were having maximum raft strength as compared with other raft-forming agents. Acid neutralisation capacity and in vitro drug release of all factorial batches were found to be satisfactory. The F5 batch was optimised based on maximum raft strength and good acid neutralisation capacity. Drug-excipient compatibility study showed no interaction between the drug and excipients. Stability study of the optimised formulation showed that the tablets were stable at accelerated environmental conditions. It was concluded that raft-forming chewable tablets prepared using an optimum amount of sodium alginate, calcium carbonate and sodium bicarbonate could be an efficient dosage form in the treatment of gastro oesophageal reflux disease.
Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T
2015-11-10
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.
NASA Astrophysics Data System (ADS)
Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
2015-11-01
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.
Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal.
Gu, Zhimang; Fang, Jun; Deng, Baolin
2005-05-15
Granular activated carbon-based, iron-containing adsorbents (As-GAC) were developed for effective removal of arsenic from drinking water. Granular activated carbon (GAC) was used primarily as a supporting medium for ferric iron that was impregnated by ferrous chloride (FeCl2) treatment, followed by chemical oxidation. Sodium hypochlorite (NaClO) was the most effective oxidant, and carbons produced from steam activation of lignite were most suitable for iron impregnation and arsenic removal. Two As-GAC materials prepared by FeCl2 treatment (0.025 -0.40 M) of Dacro 20 x 50 and Dacro 20 x 40LI resulted in a maximum impregnated iron of 7.89% for Dacro 20 x 50 and 7.65% for Dacro 20 x 40Ll. Nitrogen adsorption-desorption analyses showed the BET specific surface area, total pore volume, porosity, and average mesoporous diameter all decreased with iron impregnation, indicating that some micropores were blocked. SEM studies with associated EDS indicated that the distribution of iron in the adsorbents was mainly on the edge of As-GAC in the low iron content (approximately 1% Fe) sample but extended to the center at the higher iron content (approximately 6% Fe). When the iron content was > approximately 7%, an iron ring formed at the edge of the GAC particles. No difference in X-ray diffraction patterns was observed between untreated GAC and the one with 4.12% iron, suggesting that the impregnated iron was predominantly in amorphous form. As-GAC could remove arsenic most efficiently when the iron content was approximately 6%; further increases of iron decreased arsenic adsorption. The removal of arsenate occurred in a wide range of pH as examined from 4.4 to 11, but efficiency was decreased when pH was higher than 9.0. The presence of phosphate and silicate could significantly decrease arsenate removal at pH > 8.5, while the effects of sulfate, chloride, and fluoride were minimal. Column studies showed that both As(V) and As(III) could be removed to below 10 microg/L within 6000 empty bed volume when the groundwater containing approximately 50 microg/L of arsenic was treated.
JV Task 107- Pilot-Scale Emission Control Technology Testing for Constellation Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Jones; Brandon Pavlish; Stephen Sollom
2007-06-30
An Indonesian, Colombian, and Russian coal were tested in the Energy & Environmental Research Center's combustion test facility for their performance and an evaluation of mercury release and capture with selected additives in both electrostatic precipitator and baghouse configurations. Sorbents included the carbon-based materials NORIT DARCO Hg, Sorbent Technologies B-PAC and B-PAC LC, STI Rejects provided by Constellation Energy, and Envergex e-Sorb, along with ChemMod's high-temperature additive. Each coal was evaluated over several days and compared. Ash-fouling tests were conducted, and mercury levels were monitored using continuous mercury monitors (CMMs). The Ontario Hydro mercury sampling method was also utilized. Themore » Indonesian coal had the lowest ash content, lowest sulfur content, and lowest energy content of the three coals tested. The Colombian coal had the highest mercury content and did contain a significant level of selenium which can interfere with the ability of a CMM to monitor mercury in the gas stream. All sorbents displayed very favorable results. In most cases, mercury removal greater than 86% could be obtained. The Indonesian coal displayed the best mercury removal with sorbent addition. A maximum removal of 97% was measured with this coal using Envergex's carbon-based sorbent at a rate of 4 lb/Macf across an electrostatic precipitator. The high ash and selenium content of the Colombian coal caused it to be a problematic fuel, and ash plugging of the test furnace was a real concern. Problems with the baghouse module led to limited testing. Results indicated that native capture across the baghouse for each coal type was significant enough not to warrant sorbent addition necessary. The fouling potential was the lowest for the Indonesian coal. Low sulfur content contributes to the poor potential for fouling, as witnessed by the lack of deposits during testing. The Russian and Colombian coals had a much higher potential for fouling primarily because of their high ash contents, but the potential was highest for the Colombian coal. Of the three coals tested, the Colombian would be the least desirable.« less
Wang, Xiubin; Zhou, Wei; Liang, Guoqing; Song, Dali; Zhang, Xiaoya
2015-12-15
In this study, the characteristics of maize biochar produced at different pyrolysis temperatures (300, 450 and 600°C) and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil were investigated. As pyrolysis temperature increased, ash content, pH, electrical conductivity, surface area, pore volume and aromatic carbon content of biochar increased while yield, ratios of oxygen:carbon and hydrogen: carbon and alkyl carbon content decreased. During incubation, SOC, total N, and ammonium-N contents increased in all biochar-amended treatments compared with the urea treatment; however, soil nitrate-N content first increased and then decreased with increasing pyrolysis temperature of the applied biochar. Extracellular enzyme activities associated with carbon transformation first increased and then decreased with biochars pyrolyzed at 450 and 600°C. Protease activity markedly increased with increased pyrolysis temperatures, whereas pyrolysis temperature had limited effect on soil urease activity. The results indicated that the responses of extracellular enzymes to biochar were dependent on the pyrolysis temperature, the enzyme itself and incubation time as well. Copyright © 2015. Published by Elsevier B.V.
Di Domenico, Enea Gino; Petroni, Gianluca; Mancini, Daniele; Geri, Alberto; Di Palma, Luca; Ascenzioni, Fiorentina
2015-01-01
Microbial Fuel cells (MFCs) have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m(2). The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox) bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate.
Sun, Yue; Zhou, Yunjie; Zhu, Cheng; Hu, Lulu; Han, Mumei; Wang, Aoqi; Huang, Hui; Liu, Yang; Kang, Zhenhui
2017-05-04
Highly efficient electrocatalysts remain huge challenges in direct methanol fuel cells (DMFCs). Here, a Pt-Co 3 O 4 -CDs/C composite was fabricated as an anode electrocatalyst with low Pt content (12 wt%) by using carbon dots (CDs) and Co 3 O 4 nanoparticles as building blocks. The Pt-Co 3 O 4 -CDs/C composite catalyst shows a significantly enhanced electrocatalytic activity (1393.3 mA mg -1 Pt), durability (over 4000 s) and CO-poisoning tolerance. The superior catalytic activity should be attributed to the synergistic effect of CDs, Pt and Co 3 O 4 . Furthermore, the Pt-Co 3 O 4 -CDs/C catalyst was integrated into a single cell, which exhibits a maximum power density of 45.6 mW cm -2 , 1.7 times the cell based on the commercial 20 wt% Pt/C catalyst.
Sodeifian, Gholamhossein; Sajadian, Seyed Ali; Honarvar, Bizhan
2018-04-01
Extraction of oil from Dracocephalum kotschyi Boiss seeds using supercritical carbon dioxide was designed using central composite design to evaluate the effect of various operating parameters including pressure, temperature, particle size and extraction time on the oil yield. Maximum extraction yield predicted from response surface method was 71.53% under the process conditions with pressure of 220 bar, temperature of 35 °C, particle diameter of 0.61 mm and extraction time of 130 min. Furthermore, broken and intact cells model was utilised to consider mass transfer kinetics of extracted natural materials. The results revealed that the model had a good agreement with the experimental data. The oil samples obtained via supercritical and solvent extraction methods were analysed by gas chromatography. The most abundant acid was linolenic acid. The results analysis showed that there was no significant difference between the fatty acid contents of the oils obtained by the supercritical and solvent extraction techniques.
Petroni, Gianluca; Mancini, Daniele; Geri, Alberto; Palma, Luca Di
2015-01-01
Microbial Fuel cells (MFCs) have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox) bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate. PMID:26273609
Han, Wei; Hu, Yunyi; Li, Shiyi; Li, Feifei; Tang, Junhong
2016-10-01
Waste pastry was hydrolyzed by glucoamylase and protease which were obtained from solid state fermentation of Aspergillus awamori and Aspergillus oryzae to produce waste pastry hydrolysate. Then, the effects of hydraulic retention times (HRTs) (4-12h) on hydrogen production rate (HPR) in the suspended microbial growth system (continuous stirred tank reactor, CSTR) and attached microbial growth system (continuous mixed immobilized sludge reactor, CMISR) from waste pastry hydrolysate were investigated. The maximum HPRs of CSTR (201.8mL/(h·L)) and CMISR (255.3mL/(h·L)) were obtained at HRT of 6h and 4h, respectively. The first-order reaction could be used to describe the enzymatic hydrolysis of waste pastry. The carbon content of the waste pastry remained 22.8% in the undigested waste pastry and consumed 77.2% for carbon dioxide and soluble microbial products. To our knowledge, this is the first study which reports biohydrogen production from waste pastry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhou, Wen-jie; Zhang, Peng; Qin, Si-jun; Lyu, De-guo
2015-11-01
One-year-old potted sweet cheery trees were treated with 4 g · kg(-1) exogenous glucose or starch and with non-addition of exogenous carbon as the control for up to 60 days. Soil of root zone was sampled to analyze soil microbial biomass carbon, activities of invertase and amylase and microbial community functional diversity during the 60-day treatment, and roots were sampled for analysis of root respiratory rate, respiratory pathways and root viability after treatment for 30 days. Results showed that the invertase activity and the microbial biomass carbon initially increased and decreased subsequently, with the maxima which were 14.0% and 13.1% higher in the glucose treatment than in the control treatment appeared after 15 and 7 days of treatments, respectively. Soil organic matter content increased first then decreased and finally moderately increased again. Amylase activity was 7.5-fold higher in the starch treatment than in the control treatment after 15-day treatment. Soil microbial biomass carbon was higher in the starch treatment than in the control treatment except after 7-day treatment. Soil organic matter content initially increased and then decreased, but it was still 19.8% higher than in the control after 60-day treatment. BIOLOG results showed that the maximum average well color development (AWCD) value and microbial activity appeared after 15-day treatment in the following order: starch>glucose>control. After 30-day treatment, glucose treatment resulted in a significant increase in the soil microbial utilization of carbohydrates, carboxylic acid, amino acids, phenolic acids and amines, and starch treatment significantly increased the soil microbial utilization of carbohydrates, carboxylic acid, polymers and phenolic acids. After 30-day treatment, the total root respiratory rate and root viability were 21.4%, 19.4% and 65.5%, 37.0% higher in glucose treatment than in the control and starch treatments, respectively. These results indicated exogenous glucose and starch affected soil carbon metabolism and enhanced soil microbial activity, the root respiratory rate and root viability.
van der Merwe, M M; Bandosz, T J
2005-02-01
A study of the reason for the early ignition of coconut-based impregnated carbon in comparison with the peat-based impregnated carbon was conducted. The surface features of carbons were evaluated using various physicochemical methods. The metal analysis of the initial carbon indicated that the content of potassium was higher in the coconut-based carbon. The surface functional group analysis revealed the presence of similar surface species; however, the peat-based carbon was more acidic in its chemical nature. Since the oxygen content was higher in the peat-based carbon, the early ignition of the coconut-based material was attributed to its higher affinity to chemisorb oxygen, which leads to exothermic effects. This conclusion was confirmed by performing oxidation of coconut-based carbon prior to impregnation. This process increased the ignition temperature for Cu/Cr impregnated coconut-based material from 186 to 289 degrees C and for the Cu/Zn/Mo impregnated carbon from 235 to 324 degrees C.
NASA Astrophysics Data System (ADS)
Chauhan, Teena; Noormets, Riko; Rasmussen, Tine L.
2016-04-01
Palaeo-bottom current strength of the West Spitsbergen Current (WSC) and the influence of the Svalbard-Barents Sea Ice Sheet (SBIS) on the depositional environment along the northern Svalbard margins are poorly known. Two gravity cores from the southern Yermak Plateau and the upper slope north of Nordaustlandet, covering marine isotope stage (MIS) 1 to MIS 5, are investigated. Five lithofacies, based on grain size distribution, silt/clay ratio, content and mean of sortable silt (SS), are distinguished to characterise the contourite-dominated sedimentary environments. In addition, depositional environments are described using total organic carbon (TOC), total sulphur (TS) and calcium carbonate (CaCO3) contents of sediments. Facies A, containing coarse SS, suggests strong bottom current activity and good bottom water ventilation conditions as inferred from low TOC content. This facies was deposited during the glacial periods MIS 4, MIS 2 and during the late Holocene. Facies B is dominated by fine SS indicating weak bottom current and poor ventilation (cf. high TOC content of 1.2-1.6%), and correlates with the MIS 4/3 and MIS 2/1 transition periods. With an equal amount of clay and sand, fine SS and high content of TOC, facies C indicates reduced bottom current strength for intervals with sediment supply from proximal sources such as icebergs, sea ice or meltwater discharge. This facies was deposited during the last glacial maximum. Facies D represents mass-flow deposits on the northern Svalbard margin attributed to the SBIS advance at or near the shelf edge. Facies E sediments indicating moderate bottom current strength were deposited during MIS 5 and MIS 3, and during parts of MIS 2. This first late Quaternary proxy record of the WSC flow and sedimentation history from the northern Svalbard margin suggests that the oceanographic conditions and ice sheet processes have exerted first-order control on sediment properties.
Grote, Edmund E.; Belnap, Jayne; Housman, David C.; Sparks, Jed P.
2010-01-01
Biological soil crusts (biocrusts) are an integral part of the soil system in arid regions worldwide, stabilizing soil surfaces, aiding vascular plant establishment, and are significant sources of ecosystem nitrogen and carbon. Hydration and temperature primarily control ecosystem CO2 flux in these systems. Using constructed mesocosms for incubations under controlled laboratory conditions, we examined the effect of temperature (5-35 1C) and water content (WC, 20-100%) on CO2 exchange in light cyanobacterially dominated) and dark cyanobacteria/lichen and moss dominated) biocrusts of the cool Colorado Plateau Desert in Utah and the hot Chihuahuan Desert in New Mexico. In light crusts from both Utah and New Mexico, net photosynthesis was highest at temperatures 430 1C. Net photosynthesis in light crusts from Utah was relatively insensitive to changes in soil moisture. In contrast, light crusts from New Mexico tended to exhibit higher rates of net photosynthesis at higher soil moisture. Dark crusts originating from both sites exhibited the greatest net photosynthesis at intermediate soil water content (40-60%). Declines in net photosynthesis were observed in dark crusts with crusts from Utah showing declines at temperatures 425 1C and those originating from New Mexico showing declines at temperatures 435 1C. Maximum net photosynthesis in all crust types from all locations were strongly influenced by offsets in the optimal temperature and water content for gross photosynthesis compared with dark respiration. Gross photosynthesis tended to be maximized at some intermediate value of temperature and water content and dark respiration tended to increase linearly. The results of this study suggest biocrusts are capable of CO2 exchange under a wide range of conditions. However, significant changes in the magnitude of this exchange should be expected for the temperature and precipitation changes suggested by current climate models.
40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND...) The use of linearizing circuits is permitted. (c) The minimum water rejection ratio (maximum CO 2...) The minimum CO 2 rejection ratio (maximum CO 2 interference) as measured by § 86.322 for CO analyzers...
NASA Astrophysics Data System (ADS)
Byun, Uk Hwan; Lee, Hyun Suk; Kwon, Yi Kyun
2018-02-01
The Jigunsan Formation is the middle Ordovician shale-dominated transgressive succession in the Taebaeksan Basin, located in the eastern margin of the North China platform. The total organic carbon (TOC) content and some geochemical properties of the succession exhibit a stratigraphically distinct distribution pattern. The pattern was closely associated with the redox conditions related to decomposition, bulk sedimentation rate (dilution), and productivity. To explain the distinct distribution pattern, this study attempted to construct a high-resolution sequence stratigraphic framework for the Jigunsan Formation. The shale-dominated Jigunsan Formation comprises a lower layer of dark gray shale, deposited during transgression, and an upper layer of greenish gray siltstone, deposited during highstand and falling stage systems tracts. The concept of a back-stepped carbonate platform is adopted to distinguish early and late transgressive systems tracts (early and late TST) in this study, whereas the highstand systems tracts and falling stage systems tracts can be divided by changes in stacking patterns from aggradation to progradation. The late TST would be initiated on a rapidly back-stepping surface of sediments and, just above the surface, exhibits a high peak in TOC content, followed by a gradually upward decrease. This trend of TOC distribution in the late TST continues to the maximum flooding surface (MFS). The perplexing TOC distribution pattern within the late TST most likely resulted from both a gradual reduction in productivity during the late TST and a gradual increase in dilution effect near the MFS interval. The reduced production of organic matter primarily incurred decreasing TOC content toward the MFS when the productivity was mainly governed by benthic biota because planktonic organisms were not widespread in the Ordovician. Results of this study will help improve the understanding of the source rock distribution in mixed carbonate-siliciclastic successions within a stratigraphic framework, particularly for unconventional shale reservoirs.
NASA Astrophysics Data System (ADS)
Zou, J. J.; Shi, X.; Zhu, A.
2017-12-01
In this study, we investigate a suite of sediment geochemical proxies (total organic carbon and carbonate contents, carbon to nitrogen ratio, aluminum and redox-sensitive elements) to reconstruct the history of sedimentary oxygenation in the northern Okinawa Trough (OT) over the last 50 thousand years (ka). Our data support the presence of oxygen-deficient deep waters during the late deglacial and Preboreal phases (15‒9.5 ka), but oxygenated water column during the Heinrich Stadial 1 (HS1) and the Last Glacial Maximum (LGM). In contrast, increased sedimentary oxygenations are evident during the late glacial period and since 8.5 ka. Fluctuations of sedimentary oxygenation were widespread and apparently coherent over the entire North Pacific basin, reflecting broad effects of North Pacific Intermediate Water (NPIW) ventilation and export productivity. Intensified Kuroshio, however, improved the sedimentary oxygenation since 8.5 ka. We found the correspondence between changes in deglacial sedimentary oxygenation in the OT and Atlantic Meridional Overturning Circulation through the NPIW ventilation. The mechanism behind Atlantic-Pacific ventilation seesaw seems to be attributed to the perturbation of sea ice formation in high latitude North Pacific through atmospheric teleconnection.
Talley, L D; Feely, R A; Sloyan, B M; Wanninkhof, R; Baringer, M O; Bullister, J L; Carlson, C A; Doney, S C; Fine, R A; Firing, E; Gruber, N; Hansell, D A; Ishii, M; Johnson, G C; Katsumata, K; Key, R M; Kramp, M; Langdon, C; Macdonald, A M; Mathis, J T; McDonagh, E L; Mecking, S; Millero, F J; Mordy, C W; Nakano, T; Sabine, C L; Smethie, W M; Swift, J H; Tanhua, T; Thurnherr, A M; Warner, M J; Zhang, J-Z
2016-01-01
Global ship-based programs, with highly accurate, full water column physical and biogeochemical observations repeated decadally since the 1970s, provide a crucial resource for documenting ocean change. The ocean, a central component of Earth's climate system, is taking up most of Earth's excess anthropogenic heat, with about 19% of this excess in the abyssal ocean beneath 2,000 m, dominated by Southern Ocean warming. The ocean also has taken up about 27% of anthropogenic carbon, resulting in acidification of the upper ocean. Increased stratification has resulted in a decline in oxygen and increase in nutrients in the Northern Hemisphere thermocline and an expansion of tropical oxygen minimum zones. Southern Hemisphere thermocline oxygen increased in the 2000s owing to stronger wind forcing and ventilation. The most recent decade of global hydrography has mapped dissolved organic carbon, a large, bioactive reservoir, for the first time and quantified its contribution to export production (∼20%) and deep-ocean oxygen utilization. Ship-based measurements also show that vertical diffusivity increases from a minimum in the thermocline to a maximum within the bottom 1,500 m, shifting our physical paradigm of the ocean's overturning circulation.
Effects of carbonization and solvent-extraction on change in fuel characteristics of sewage sludge.
Park, Sang-Woo; Jang, Cheol-Hyeon
2011-09-01
Urban sewage sludge was carbonized at 300-500°C for 1h, and combustible components were extracted through the solvent-extraction process. N-methyl-2-pyrrolidinone (NMP) was used as the solvent for extraction, and the extraction temperature was fixed at 360°C. The atomic ratios of the solvent-extracted sludge of CS300 (ECS300) were shown to be 1.04 for H/C and 0.11 for O/C, which represented the characteristics of its coal band. Thus, its coal band was similar to that of a high-rank fuel such as bituminous coal. FT-IR analysis showed that the absorbance band of ECS300 was considerably different from that of dried sludge (RS) or the carbonized sludge at 300°C (CS300) but similar to that of coal, although the ash content absorbance band of 800-1200 cm(-1) was of very low intensity. The combustion profile showed that combustion of ESC300 occurred at a temperature higher than the ignition temperature (T(i)) or maximum weight loss rate (DTG(max)) of coal. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effect of Graphitic Content on Carbon Supported Catalyst Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen
2011-07-01
The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150oC and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metalic content, however they also showed depressed catalyticmore » activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.« less
[Characteristics of organic carbon forms in the sediment of Wuliangsuhai and Daihai Lakes].
Mao, Hai-Fang; He, Jiang; Lü, Chang-Wei; Liang, Ying; Liu, Hua-Lin; Wang, Feng-Jiao
2011-03-01
The characteristics and differences of organic carbon forms in the sediments of the Wuliangsuhai and the Daihai Lakes with different eutrophication types were discussed in the present study. The results showed that the range of total organic carbon content (TOC) in Wuliangsuhai Lake was 4.50-22.83 g x kg(-1) with the average of 11.80 g x kg(-1). The range of heavy-fraction organic carbon content was 3.38-21.67 g x kg(-1) with the average of 10.76 g x kg(-1). The range of light-fraction organic carbon content was 0.46-1.80 g x kg(-1) with the average of 1.04 g x kg(-1); The range of ROC content was 0.62-3.64 g x kg(-1) with the average of 2.11 g x kg(-1), while the range of total organic carbon content in Daihai lake was 6.84-23.46 g x kg(-1) with the average of 14.94 g x kg(-1). The range of heavy-fraction organic carbon content was 5.27-22.23 g x kg(-1) with the average of 13.89 g x kg(-1). The range of light-fraction organic carbon content was 0.76-1.57 g x kg(-1). The range of ROC content was 1.54-7.08 g x kg(-1) with the average of 3.62 g x kg(-1). The results indicated that the heavy-fraction organic carbon was the major component of the organic carbon and plays an important role in the accumulation of organic carbon in the sediments of two Lakes. The content of light-fraction organic carbon was similar in the sediments of two lakes, whereas, the contents of total organic carbon and heavy-fraction organic carbon in the sediment of Wuliangsuhai Lake were less than those in the sediment of Daihai Lake, and the value of LFOC/TOC in the Wuliangsuhai Lake was larger than that in the Daihai Lake. The humin was the dominant component of the sediment humus, followed by fulvic acid in the two lakes. The values of HM/HS in the sediments of Wuliangsuhai lake range from 43.06% to 77.25% with the average of 62.15% and values of HM/HS in the sediments of Dahai lake range from 49.23% to 73.85% with the average of 65.30%. The tightly combined humus was the dominant form in the sediment humus of two lakes, and the followed was loosely combined humus. As a whole, the carbon storage of two lakes were all relatively stable, but the values of PQ, LFOC/TOC, the ratio of loosely to tightly combined humus and HA/FA revealed that, in the sediment of Wuliangsuhai, the humification degree of organic matter was lower than that of Daihai, while the activity of humus was higher than that of Daihai, thus the carbon storage is less stable than that of Daihai.
Safari, Yaser; Delavar, Mohammad-Amir; Zhang, Chaosheng; Esfandiarpour-Boroujeni, Isa; Owliaie, Hamid-Reza
2015-12-01
Accumulated anthropogenic heavy metals in the surface layer of agricultural soils may be transferred through the food chain via plant uptake processes. The objectives of this study were to assess the spatial distribution of lead (Pb) in the soils and wheat plants and to determine the soil properties which may affect the Pb transferring from soil to wheat plants in Zanjan Zinc Town area, northwestern Iran. A total of 110 topsoil samples (0-20 cm) were systematically collected from an agricultural area near a large metallurgical factory for the analyses of physico-chemical properties and total and bioavailable Pb concentrations. Furthermore, a total of 65 wheat samples collected at the same soil sampling locations were analyzed for Pb concentration in different plant parts. The results showed that elevated Pb concentrations were mostly found in soils located surrounding the industrial source of pollution. The bioavailable Pb concentration in the studied soils was up to 128.4 mg kg(-1), which was relatively high considering the observed soil alkalinity. 24.6% of the wheat grain samples exceeded the FAO/WHO maximum permitted concentration of Pb in wheat grain (0.2 mg kg(-1)). Correlation analyses revealed that soil organic matter, soil pH, and clay content showed insignificant correlation with Pb concentration in the soil and wheat grains, whereas calcium carbonate content showed significantly negative correlations with both total and bioavailable Pb in the soil, and Pb content in wheat grains, demonstrating the strong influences of calcium carbonate on Pb bioavailability in the polluted calcareous soils.
Mancini, E.A.; Tew, B.H.
1997-01-01
The maximum flooding event within a depositional sequence is an important datum for correlation because it represents a virtually synchronous horizon. This event is typically recognized by a distinctive physical surface and/or a significant change in microfossil assemblages (relative fossil abundance peaks) in siliciclastic deposits from shoreline to continental slope environments in a passive margin setting. Recognition of maximum flooding events in mixed siliciclastic-carbonate sediments is more complicated because the entire section usually represents deposition in continental shelf environments with varying rates of biologic and carbonate productivity versus siliciclastic influx. Hence, this event cannot be consistently identified simply by relative fossil abundance peaks. Factors such as siliciclastic input, carbonate productivity, sediment accumulation rates, and paleoenvironmental conditions dramatically affect the relative abundances of microfossils. Failure to recognize these complications can lead to a sequence stratigraphic interpretation that substantially overestimates the number of depositional sequences of 1 to 10 m.y. duration.
Ocean carbon and heat variability in an Earth System Model
NASA Astrophysics Data System (ADS)
Thomas, J. L.; Waugh, D.; Gnanadesikan, A.
2016-12-01
Ocean carbon and heat content are very important for regulating global climate. Furthermore, due to lack of observations and dependence on parameterizations, there has been little consensus in the modeling community on the magnitude of realistic ocean carbon and heat content variability, particularly in the Southern Ocean. We assess the differences between global oceanic heat and carbon content variability in GFDL ESM2Mc using a 500-year, pre-industrial control simulation. The global carbon and heat content are directly out of phase with each other; however, in the Southern Ocean the heat and carbon content are in phase. The global heat mutli-decadal variability is primarily explained by variability in the tropics and mid-latitudes, while the variability in global carbon content is primarily explained by Southern Ocean variability. In order to test the robustness of this relationship, we use three additional pre-industrial control simulations using different mesoscale mixing parameterizations. Three pre-industrial control simulations are conducted with the along-isopycnal diffusion coefficient (Aredi) set to constant values of 400, 800 (control) and 2400 m2 s-1. These values for Aredi are within the range of parameter settings commonly used in modeling groups. Finally, one pre-industrial control simulation is conducted where the minimum in the Gent-McWilliams parameterization closure scheme (AGM) increased to 600 m2 s-1. We find that the different simulations have very different multi-decadal variability, especially in the Weddell Sea where the characteristics of deep convection are drastically changed. While the temporal frequency and amplitude global heat and carbon content changes significantly, the overall spatial pattern of variability remains unchanged between the simulations.
Munsell color value as related to organic carbon in Devonian shale of Appalachian basin
Hosterman, J.W.; Whitlow, S.I.
1981-01-01
Comparison of Munsell color value with organic carbon content of 880 samples from 50 drill holes in Appalachian basin shows that a power curve is the best fit for the data. A color value below 3 to 3.5 indicates the presence of organic carbon but is meaningless in determining the organic carbon content because a large increase in amount of organic carbon causes only a minor decrease in color value. Above 4, the color value is one of the factors that can be used in calculating the organic content. For samples containing equal amounts of organic carbon, calcareous shale containing more than 5% calcite is darker than shale containing less than 5% calcite.-Authors
NASA Astrophysics Data System (ADS)
Bykova, Galina; Umarova, Aminat; Tyugai, Zemfira; Milanovskiy, Evgeny; Shein, Evgeny
2017-04-01
Intensive tillage affects the properties of soil: decrease in content of soil organic matter and in hydrophobicity of the soil's solid phase, the reduction of amount of water stable aggregates - all this leads to deterioration of the structure of the soil and affects the process of movement of moisture in the soil profile. One of the hypotheses of soil's structure formation ascribes the formation of water stable aggregates with the presence of hydrophobic organic substances on the surface of the soil's solid phase. The aim of this work is to study the effect of tillage on properties of typical chernozems (pachic Voronic Chernozems, Haplic Chernozems) (Russia, Kursk region), located under the forest and under the arable land. The determination of soil-water contact angle was performed by a Drop Shape Analyzer DSA100 (Krüss GmbH, Germany) by the static sessile drop method. For all samples the content of total and organic carbon by dry combustion in oxygen flow and the particle size distribution by the laser diffraction method on the device Analysette 22 comfort, FRITCH, Germany were determined. The estimation of aggregate composition was performed by dry sieving (AS 200, Retsch, Germany), the content of water stable aggregates was estimated by the Savvinov method. There was a positive correlation between the content of organic matter and soil's wettability in studied soils, a growth of contact angle with the increasing the content of organic matter. Under the forest the content of soil organic matter was changed from 6,41% on the surface up to 1,9% at the depth of 100 cm. In the Chernozem under the arable land the organic carbon content in arable horizon is almost two times less. The maximum of hydrophobicity (78.1o) was observed at the depth of 5 cm under the forest. In the profile under the arable land the contact angle value at the same depth was 50o. The results of the structure analysis has shown a decrease in the content of agronomically valuable and water stable aggregates in the profile under arable land. These data indicate the correlation between the wettability of soils with the content of organic matter and their influence on the formation of water stable structure, as well as the negative impact of tillage on the analyzed characteristics.
Salvati, Luca; Barone, Pier Matteo; Ferrara, Carlotta
2015-05-01
Topsoil organic carbon (TOC) and soil organic carbon (SOC) are fundamental in the carbon cycle influencing soil functions and attributes. Many factors have effects on soil carbon content such as climate, parent material, land topography and the human action including agriculture, which sometimes caused a severe loss in soil carbon content. This has resulted in a significant differentiation in TOC or SOC at the continental scale due to the different territorial and socioeconomic conditions. The present study proposes an exploratory data analysis assessing the relationship between the spatial distribution of soil organic carbon and selected socioeconomic attributes at the local scale in Italy with the aim to provide differentiated responses for a more sustainable use of land. A strengths, weaknesses, opportunities and threats (SWOT) analysis contributed to understand the effectiveness of local communities responses for an adequate comprehension of the role of soil as carbon sink.
Blue carbon stocks in Baltic Sea eelgrass (Zostera marina) meadows
NASA Astrophysics Data System (ADS)
Röhr, Maria Emilia; Boström, Christoffer; Canal-Vergés, Paula; Holmer, Marianne
2016-11-01
Although seagrasses cover only a minor fraction of the ocean seafloor, their carbon sink capacity accounts for nearly one-fifth of the total oceanic carbon burial and thus play a critical structural and functional role in many coastal ecosystems. We sampled 10 eelgrass (Zostera marina) meadows in Finland and 10 in Denmark to explore seagrass carbon stocks (Corg stock) and carbon accumulation rates (Corg accumulation) in the Baltic Sea area. The study sites represent a gradient from sheltered to exposed locations in both regions to reflect expected minimum and maximum stocks and accumulation. The Corg stock integrated over the top 25 cm of the sediment averaged 627 g C m-2 in Finland, while in Denmark the average Corg stock was over 6 times higher (4324 g C m-2). A conservative estimate of the total organic carbon pool in the regions ranged between 6.98 and 44.9 t C ha-1. Our results suggest that the Finnish eelgrass meadows are minor carbon sinks compared to the Danish meadows, and that majority of the Corg produced in the Finnish meadows is exported. Our analysis further showed that > 40 % of the variation in the Corg stocks was explained by sediment characteristics, i.e. dry density, porosity and silt content. In addition, our analysis show that the root : shoot ratio of Z. marina explained > 12 % and the contribution of Z. marina detritus to the sediment surface Corg pool explained > 10 % of the variation in the Corg stocks. The mean monetary value for the present carbon storage and carbon sink capacity of eelgrass meadows in Finland and Denmark, were 281 and 1809 EUR ha-1, respectively. For a more comprehensive picture of seagrass carbon storage capacity, we conclude that future blue carbon studies should, in a more integrative way, investigate the interactions between sediment biogeochemistry, seascape structure, plant species architecture and the hydrodynamic regime.
Li, Zhong-Wu; Guo, Wang; Wang, Xiao-Yan; Shen, Wei-Ping; Zhang, Xue; Chen, Xiao-Lin; Zhang, Yue-Nan
2012-04-01
The changes in organic carbon content in different sized soil particles under different land use patterns partly reflect the variation of soil carbon, being of significance in revealing the process of soil organic carbon cycle. Based on the long-term monitoring of soil erosion, and by the methods of soil particle size fractionation, this paper studied the effects of different land use types (wasteland, pinewood land, and grassland) on the distribution of organic carbon content in different sized soil particles and its relationships to the herb biomass. Land use type and slope position had obvious effects on the organic carbon content in different sized soil particles, and the organic carbon content was in the order of grassland > pinewood land > wasteland. The proportion of the organic carbon in different sized soil particles was mainly depended on the land use type, and had little relationships with slope position. According to the analysis of the ratio of particle-associated organic carbon to mineral-associated organic carbon (POC/MOC), the soil organic carbon in grassland was easily to be mineralized, whereas that in wasteland and pinewood land was relatively stable. On the slopes mainly in hilly red soil region, the soil organic carbon in sand fraction had great effects on herb biomass.
Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data
NASA Astrophysics Data System (ADS)
Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina
2015-04-01
Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE
soil organic matter fractionation
NASA Astrophysics Data System (ADS)
Osat, Maryam; Heidari, Ahmad
2010-05-01
Carbon is essential for plant growth, due to its effects on other soil properties like aggregation. Knowledge of dynamics of organic matter in different locations in the soil matrix can provide valuable information which affects carbon sequestration and soil the other soil properties. Extraction of soil organic matter (SOM) fractions has been a long standing approach to elucidating the roles of soil organic matter in soil processes. Several kind fractionation methods are used and all provide information on soil organic matter function. Physical fractionation capture the effects on SOM dynamics of the spatial arrangement of primary and secondary organomineral particles in soil while chemical fractionation can not consider the spatial arrangement but their organic fractions are suitable for advanced chemical characterization. Three method of physical separation of soil have been used, sieving, sedimentation and densitometry. The distribution of organic matter within physical fractions of the soil can be assessed by sieving. Sieving separates soil particles based strictly on size. The study area is located on north central Iran, between 35° 41'- 36° 01' N and 50° 42'- 51° 14' E. Mean annual precipitation about 243.8 mm and mean annual air temperature is about 14.95 °C. The soil moisture and temperature regime vary between aridic-thermic in lower altitudes to xeric-mesic in upper altitudes. More than 36 surface soil samples (0-20 cm) were collected according to land-use map units. After preliminary analyzing of samples 10 samples were selected for further analyses in five size fractions and three different time intervals in September, January and April 2008. Fractionation carried out by dry sieving in five classes, 1-2 mm, 0.5-1 mm, 270 μm-0.5mm, 53-270 μm and <53 μm. Organic matter and C/N ratio were determined for all fractions at different time intervals. Chemical fractionation of organic matter also carried out according to Tan (2003), also Mineralogical studies were carried out to illustrate the relationship between clay mineral series and organic matter. According to the results the amount of organic carbon increases by decreasing size fractions and reaches to its maximum in <250μ classes, also 2:1 and expanding clays which have the ability to maintain larger amounts of organic carbon were the dominant clay minerals. Chemical fractionation of soil organic matter to humic acid and fulvic acid shows that there is a better correlation between humic acid contents and soil organic matter (R2 = 0.86) than fulvic acid and organic matter (R2=0.5). The amount of humic and fulvic acids varies in different size fractions and reaches to its minimum in the E fraction in all three stages. The relationships between fulvic and humic acids with organic matter content, demonstrating that at the lower organic matter content, humification is slow, thus humic acid content is rather low than the fulvic acid content. By increasing the organic matter content biological activity increases and followed by humification process proceeds so that the humic acid content locates over the fulvic acid content.
Anaerobic digestion of glycerol and co-digestion of glycerol and pig manure.
Nuchdang, Sasikarn; Phalakornkule, Chantaraporn
2012-06-30
The potential of glycerol obtained from transesterification of waste cooking oil as a main carbon source for biogas production was investigated. The glycerol was highly contaminated with oils and fats and was pretreated with sulfuric acid. Using a carbon source of glucose as a control, we compared biogas production from the acid-treated glycerol in a synthetic medium and the acid-treated glycerol mixed with pig manure. The anaerobic digestion of acid-treated glycerol with supplement in a synthetic medium was found to be satisfactory at organic loading rates (OLR) between 1.3, 1.6 and 2.6 g chemical oxygen demand (COD) L(-1) d(-1). The maximum methane yield of 0.32 L at Standard temperature and pressure (STP) g(-1) COD removal was achieved at an OLR of 1.6 g COD L(-1) d(-1) and the methane content was 54% on an average. At a higher organic loading rate of 5.4 g COD L(-1) d(-1), the propionic acid to acetic acid ratio was higher than the critical threshold limit for metabolic imbalance. Anaerobic digestion of acid-treated glycerol with pig manure was also investigated at the COD ratio of 80:20 (glycerol:pig manure). The anaerobic digestion of acid-treated glycerol with pig manure was found to be satisfactory at organic loading rates between 1.3, 1.7, 2.9 and 5.0 g COD L(-1) d(-1) in terms of COD reduction (>80%) and methane content of (62% on an average). However, the biogas production rate was found to significantly decrease at the highest load. The maximum methane yield of 0.24 L STP g(-1) COD removal was achieved at an OLR of 1.3 g COD L(-1) d(-1). Copyright © 2012 Elsevier Ltd. All rights reserved.
Ivarsson, M; Lausmaa, J; Lindblom, S; Broman, C; Holm, N G
2008-12-01
We have observed filamentous carbon-rich structures in samples drilled at 3 different seamounts that belong to the Emperor Seamounts in the Pacific Ocean: Detroit (81 Ma), Nintoku (56 Ma), and Koko Seamounts (48 Ma). The samples consist of low-temperature altered basalts recovered from all 3 seamounts. The maximum depth from which the samples were retrieved was 954 meters below seafloor (mbsf). The filamentous structures occur in veins and fractures in the basalts, where they are attached to the vein walls and embedded in vein-filling minerals like calcite, aragonite, and gypsum. The filaments were studied with a combination of optical microscopy, environmental scanning electron microscopy (ESEM), Raman spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Minerals were identified by a combination of optical microscopy, X-ray diffraction, Raman spectrometry, and energy dispersive spectrometry on an environmental scanning electron microscope. Carbon content of the filaments ranges between approximately 10 wt % and approximately 50 wt % and is not associated with carbonates. These results indicate an organic origin of the carbon. The presence of C(2)H(4), phosphate, and lipid-like molecules in the filaments further supports a biogenic origin. We also found microchannels in volcanic glass enriched in carbon (approximately 10-40 wt %) compatible with putative microbial activity. Our findings suggest new niches for life in subseafloor environments and have implications for further exploration of the subseafloor biosphere on Earth and beyond.
NASA Astrophysics Data System (ADS)
Ivarsson, M.; Lausmaa, J.; Lindblom, S.; Broman, C.; Holm, N. G.
2008-12-01
We have observed filamentous carbon-rich structures in samples drilled at 3 different seamounts that belong to the Emperor Seamounts in the Pacific Ocean: Detroit (81 Ma), Nintoku (56 Ma), and Koko Seamounts (48 Ma). The samples consist of low-temperature altered basalts recovered from all 3 seamounts. The maximum depth from which the samples were retrieved was 954 meters below seafloor (mbsf). The filamentous structures occur in veins and fractures in the basalts, where they are attached to the vein walls and embedded in vein-filling minerals like calcite, aragonite, and gypsum. The filaments were studied with a combination of optical microscopy, environmental scanning electron microscopy (ESEM), Raman spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Minerals were identified by a combination of optical microscopy, X-ray diffraction, Raman spectrometry, and energy dispersive spectrometry on an environmental scanning electron microscope. Carbon content of the filaments ranges between ˜10 wt % and ˜50 wt % and is not associated with carbonates. These results indicate an organic origin of the carbon. The presence of C2H4, phosphate, and lipid-like molecules in the filaments further supports a biogenic origin. We also found microchannels in volcanic glass enriched in carbon (˜10 40 wt %) compatible with putative microbial activity. Our findings suggest new niches for life in subseafloor environments and have implications for further exploration of the subseafloor biosphere on Earth and beyond.
Li, Xin; Ma, Rui-ping; An, Shao-shan; Zeng, Quan-chao; Li, Ya-yun
2015-08-01
In order to explore the distribution characteristics of organic carbon of different forms and the active enzymes in soil aggregates with different particle sizes, soil samples were chosen from forest zone, forest-grass zone and grass zone in the Yanhe watershed of Loess Plateau to study the content of organic carbon, easily oxidized carbon, and humus carbon, and the activities of cellulase, β-D-glucosidase, sucrose, urease and peroxidase, as well as the relations between the soil aggregates carbon and its components with the active soil enzymes were also analyzed. It was showed that the content of organic carbon and its components were in order of forest zone > grass zone > forest-grass zone, and the contents of three forms of organic carbon were the highest in the diameter group of 0.25-2 mm. The content of organic carbon and its components, as well as the activities of soil enzymes were higher in the soil layer of 0-10 cm than those in the 10-20 cm soil layer of different vegetation zones. The activities of cellulase, β-D-glucosidase, sucrose and urease were in order of forest zone > grass zone > forest-grass zone. The peroxidase activity was in order of forest zone > forest-grass zone > grass zone. The activities of various soil enzymes increased with the decreasing soil particle diameter in the three vegetation zones. The activities of cellulose, peroxidase, sucrose and urease had significant positive correlations with the contents of various forms of organic carbon in the soil aggregates.
Millhollon, Eddie P.; Williams, Larry E.
1986-01-01
Patterns of leaf carbohydrate partitioning and nodule activity in soybean plants grown under natural conditions and the irradiance level required to produce sufficient carbohydrate to obtain maximum rates of apparent N2-fixation (acetylene reduction) were measured. Soybean plants, grown outdoors, maintained constant levels of leaf soluble sugars while leaf starch pools varied diurnally. When root temperature was kept at 25°C and shoot temperature was allowed to vary with ambient temperature, the plants maintained constant rates of apparent N2-fixation and root+nodule respiration. Results from a second experiment, in which the entire plant was kept at 25°C, were similar to those of the first experiment. Shoot carbon exchange rate of plants from the second experiment was light saturated at photosynthetic photon flux densities between 400 and 600 micromoles per square meter per second. When plants were subjected to an extended 40-hour dark period to deplete carbohydrate reserves, apparent N2-fixation was unaffected during the first 10 hours of darkness, decreased rapidly between 10 and 16 hours, and plateaued at one-third the initial level thereafter. After the extended dark period, plants were exposed to photosynthetic photon flux density from 200 to 1000 micromoles per square meter per second for 10 hours. Photosynthetic photon flux densities of 200 micromoles per square meter per second and greater resulted in maximum leaf soluble sugar content and nodule activity. Leaf starch content increased with irradiance levels up to 600 micromoles per square meter per second with no further increase at higher irradiance levels. Results presented here indicate that maximum nodule activity occurs at irradiance levels that do not saturate the plant's photosynthetic apparatus. This response would allow for maximum N2-fixation to occur in a nodulated legume during periods of inclement weather. PMID:16664789
Wang, Di; Geng, Zeng-Chao; She, Diao; He, Wen-Xiang; Hou, Lin
2014-06-01
Adopting field investigation and indoor analysis methods, the distribution patterns of soil active carbon and soil carbon storage in the soil profiles of Quercus aliena var. acuteserrata (Matoutan Forest, I), Pinus tabuliformis (II), Pinus armandii (III), pine-oak mixed forest (IV), Picea asperata (V), and Quercus aliena var. acuteserrata (Xinjiashan Forest, VI) of Qinling Mountains were studied in August 2013. The results showed that soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and easily oxidizable carbon (EOC) decreased with the increase of soil depth along the different forest soil profiles. The SOC and DOC contents of different depths along the soil profiles of P. asperata and pine-oak mixed forest were higher than in the other studied forest soils, and the order of the mean SOC and DOC along the different soil profiles was V > IV > I > II > III > VI. The contents of soil MBC of the different forest soil profiles were 71.25-710.05 mg x kg(-1), with a content sequence of I > V > N > III > II > VI. The content of EOC along the whole soil profile of pine-oak mixed forest had a largest decline, and the order of the mean EOC was IV > V> I > II > III > VI. The sequence of soil organic carbon storage of the 0-60 cm soil layer was V > I >IV > III > VI > II. The MBC, DOC and EOC contents of the different forest soils were significanty correlated to each other. There was significant positive correlation among soil active carbon and TOC, TN. Meanwhile, there was no significant correlation between soil active carbon and other soil basic physicochemical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hershey, Ronald L.; Fereday, Wyatt
Dissolved inorganic carbon (DIC) carbon-14 ( 14C) is used to estimate groundwater ages by comparing the DIC 14C content in groundwater in the recharge area to the DIC 14C content in the downgradient sampling point. However, because of chemical reactions and physical processes between groundwater and aquifer rocks, the amount of DIC 14C in groundwater can change and result in 14C loss that is not because of radioactive decay. This loss of DIC 14C results in groundwater ages that are older than the actual groundwater ages. Alternatively, dissolved organic carbon (DOC) 14C in groundwater does not react chemically with aquifermore » rocks, so DOC 14C ages are generally younger than DIC 14C ages. In addition to chemical reactions, 14C ages may also be altered by the physical process of matrix diffusion. The net effect of a continuous loss of 14C to the aquifer matrix by matrix diffusion and then radioactive decay is that groundwater appears to be older than it actually is. Laboratory experiments were conducted to measure matrix diffusion coefficients for DOC 14C in volcanic and carbonate aquifer rocks from southern Nevada. Experiments were conducted using bromide (Br-) as a conservative tracer and 14C-labeled trimesic acid (TMA) as a surrogate for groundwater DOC. Outcrop samples from six volcanic aquifers and five carbonate aquifers in southern Nevada were used. The average DOC 14C matrix diffusion coefficient for volcanic rocks was 2.9 x 10 -7 cm 2/s, whereas the average for carbonate rocks was approximately the same at 1.7 x 10 -7 cm 2/s. The average Br- matrix diffusion coefficient for volcanic rocks was 10.4 x 10 -7 cm 2/s, whereas the average for carbonate rocks was less at 6.5 x 10 -7 cm 2/s. Carbonate rocks exhibited greater variability in DOC 14C and Br- matrix diffusion coefficients than volcanic rocks. These results confirmed, at the laboratory scale, that the diffusion of DOC 14C into southern Nevada volcanic and carbonate aquifers is slower than DIC 14C. Because of the apparent sorption of 14C-labeled TMA in the experiments, matrix diffusion coefficients are likely even lower. The reasons for the higher than expected Br-/ 14C-labeled TMA are unknown. Because the molecular size of TMA is on the low end of the range in molecular size for typical humic substances, the matrix diffusion coefficients for the 14C-labeled TMA likely represent close to the maximum diffusion rates for DOC 14C in the volcanic and carbonate aquifers in southern Nevada.« less
Zhang, Rui; Bai, Yang; Liu, Juan; Jiang, Pei-kun; Zhou, Guo-mo; Wu, Jia-sen; Tong, Zhi-peng; Li, Yong-fu
2015-10-01
Soil CO2 effluxes in natural broad-leaved forest and the conversed Chinese fir plantation in Linglong Mountains Scenic of Zhejiang Province were evaluated by using static closed chamber and gas chromatography method. The results showed that soil CO2 efflux showed consistent seasonal dynamics in natural broad-leaved forest and Chinese fir plantation, with the maximums observed in summer and autumn, the minimums in winter and spring. Soil CO2 effluxes were 20.0-111.3 and 4.1-118.6 mg C . m-2 . h-1 in natural broad-leaved forest and Chinese fir plantation, respectively. The cumulative soil CO2 emission of natural broad-leaved forest (16.46 t CO2 . hm-2 . a-1) was significantly higher than that of Chinese fir plantation (11.99 t CO2 . hm-2 . a-1). Soil moisture did not affect soil CO2 efflux. There was a significant relationship between soil CO2 efflux and soil temperature at 5 cm depth. There was no significant relationship between soil CO2 efflux of natural broad-leaved forest and water soluble organic carbon content, while water soluble organic carbon content affected significantly soil CO2 efflux in Chinese fir plantation. Converting the natural broad-leaved forest to Chinese fir plantation reduced soil CO2 efflux significantly but improved the sensitivity of soil respiration to environmental factors.
Du, Can; Geng, Zengchao; Wang, Qiang; Zhang, Tongtong; He, Wenxiang; Hou, Lin; Wang, Yueling
2017-09-01
Microbial communities in subsurface soil are specialized for their environment, which is distinct from that of the surface communities. However, little is known about the microbial communities (bacteria and fungi) that exist in the deeper soil horizons. Vertical changes in microbial alpha-diversity (Chao1 and Shannon indices) and community composition were investigated at four soil depths (0-10, 10-20, 20-40, and 40-60 cm) in a natural secondary forest of Betula albosinensis by high-throughput sequencing of the 16S and internal transcribed spacer rDNA regions. The numbers of operational taxonomic units (OTUs), and the Chao1 and Shannon indices decreased in the deeper soil layers. Each soil layer contained both mutual and specific OTUs. In the 40-60 cm soil layer, 175 and 235 specific bacterial and fungal OTUs were identified, respectively. Acidobacteria was the most dominant bacterial group in all four soil layers, but reached its maximum at 40-60 cm (62.88%). In particular, the 40-60 cm soil layer typically showed the highest abundance of the fungal genus Inocybe (47.46%). The Chao1 and Shannon indices were significantly correlated with the soil organic carbon content. Redundancy analysis indicated that the bacterial communities were closely correlated with soil organic carbon content (P = 0.001). Collectively, these results indicate that soil nutrients alter the microbial diversity and relative abundance and affect the microbial composition.
Three approaches to define desired soil organic matter contents.
Sparling, G; Parfitt, R L; Hewitt, A E; Schipper, L A
2003-01-01
Soil organic C is often suggested as an indicator of soil quality, but desirable targets are rarely specified. We tested three approaches to define maximum and lowest desirable soil C contents for four New Zealand soil orders. Approach 1 used the New Zealand National Soils Database (NSD). The maximum C content was defined as the median value of long-term pastures, and the lower quartile defined the lowest desirable soil C content. Approach 2 used the CENTURY model to predict maximum C contents of long-term pasture. Lowest desirable content was defined by the level that still allowed recovery to 80% of the maximum C content over 25 yr. Approach 3 used an expert panel to define desirable C contents based on production and environmental criteria. Median C contents (0-20 cm) for the Recent, Granular, Melanic, and Allophanic orders were 72, 88, 98, 132 Mg ha(-1), and similar to contents predicted by the CENTURY model (78, 93, 102, and 134 Mg ha(-1), respectively). Lower quartile values (54, 78, 73, and 103 Mg ha(-1), respectively) were similar to the lowest desirable C contents calculated by CENTURY (55, 54, 67, and 104 Mg ha(-1), respectively). Expert opinion was that C contents could be depleted below these values with tolerable effects on production but less so for the environment. The CENTURY model is our preferred approach for setting soil organic C targets, but the model needs calibrating for other soils and land uses. The statistical and expert opinion approaches are less defensible in setting lower limits for desirable C contents.
NASA Astrophysics Data System (ADS)
CHEN, Q.; Liu, Z.; Stattegger, K.
2012-12-01
Clay mineralogy of two gravity cores (18428 and 18429) on the upper continental slope of the northwestern South China Sea was investigated in order to understand terrigenous sediment sources and to evaluate the contribution from the Red River since the Late Glacial Maximum. Planktonic foraminiferal oxygen isotope and carbonate stratigraphies suggest that Core 18428 is constrained in Holocene while Core 18429 covers the period of MIS 1-2. Clay mineral assemblages of two cores are composed mainly of smectite (18-57%) and illite (21-41%), with minor chlorite (12-21%) and kaolinite (8-26%). In despite of relatively constant values of illite crystallinity, ranging among 0.14°-0.20° Δ2θ, the time series variation in clay mineral distributions indicates a strong glacial-interglacial shift. Contents of illite, chlorite, and kaolinite (Core 18429) in the Holocene are lower than in the glacial period, and vice versa for the smectite content. The provenance analysis based on clay mineralogy suggests the Red River as a predominant sedimentary source of illite, chlorite, and kaolinite during all the depositional period of MIS 1-2. The sea level change actually controlled the variations of clay mineral assemblages on the upper slope since the Last Glacial Maximum. When the sea level was low during the last glacial period, more terrigenous sediments from the Red River could reach the continental slope in the northwestern South China Sea. However, when the sea level is closed to the present situation during the Holocene, most of Red River sediments could be trapped in the Gulf of Tonkin, instead of draining in the deep South China Sea.
NASA Astrophysics Data System (ADS)
Duncan, Megan S.; Dasgupta, Rajdeep; Tsuno, Kyusei
2017-05-01
Knowledge of the carbon carrying capacity of peridotite melt at reducing conditions is critical to constrain the mantle budget and planet-scale distribution of carbon set at early stage of differentiation. Yet, neither measurements of CO2 content in reduced peridotite melt nor a reliable model to extrapolate the known solubility of CO2 in basaltic (mafic) melt to solubility in peridotitic (ultramafic) melt exist. There are several reasons for this gap; one reason is due to the unknown relative contributions of individual network modifying cations, such as Ca2+ versus Mg2+, on carbonate dissolution particularly at reducing conditions. Here we conducted high pressure, temperature experiments to estimate the CO2 contents in silicate melts at graphite saturation over a compositional range from natural basalts toward peridotite at a fixed pressure (P) of 1.0 GPa, temperature (T) of 1600 °C, and oxygen fugacity (log fO2 ∼ IW + 1.6). We also conducted experiments to determine the relative effects of variable Ca and Mg contents in mafic compositions on the dissolution of carbonate. Carbon in quenched glasses was measured and characterized using Fourier transform infrared spectroscopy (FTIR) and Raman Spectroscopy and was found to be dissolved as carbonate (CO32-). The FTIR spectra showed CO32- doublets that shifted systematically with the MgO and CaO content of silicate melts. Using our data and previous work we constructed a new composition-based model to determine the CO2 content of ultramafic (peridotitic) melt representative of an early Earth, magma ocean composition at graphite saturation. Our data and model suggest that the dissolved CO2 content of reduced, peridotite melt is significantly higher than that of basaltic melt at shallow magma ocean conditions; however, the difference in C content between the basaltic and peridotitic melts may diminish with depth as the more depolymerized peridotite melt is more compressible. Using our model of CO2 content at graphite saturation as a function of P-T-fO2-melt composition, we predict that a superliquidus shallow magma ocean should degas CO2. Whereas if the increase of fO2 with depth is weak, a magma ocean may ingas a modest amount of carbon during crystallization. Further, using the carbon content of peridotite melt at log fO2 of IW and the knowledge of C content of Fe-rich alloy melt, we also consider the core-mantle partitioning of carbon, showing that DCmetal/peridotite of a shallow magma ocean is generally higher than previously estimated.
Ahmed, Imteaz; Panja, Tandra; Khan, Nazmul Abedin; Sarker, Mithun; Yu, Jong-Sung; Jhung, Sung Hwa
2017-03-22
Porous carbons were prepared from a metal-organic framework (MOF, named ZIF-8), with or without modification, via high-temperature pyrolysis. Porous carbons with high nitrogen content were obtained from the calcination of MOF after introducing an ionic liquid (IL) (IL@MOF) via the ship-in-bottle method. The MOF-derived carbons (MDCs) and IL@MOF-derived carbons (IMDCs) were characterized using various techniques and used for liquid-phase adsorptions in both water and hydrocarbon to understand the possible applications in purification of water and fuel, respectively. Adsorptive performances for the removal of organic contaminants, atrazine (ATZ), diuron, and diclofenac, were remarkably enhanced with the modification/conversion of MOFs to MDC and IMDC. For example, in the case of ATZ adsorption, the maximum adsorption capacity of IMDC (Q 0 = 208 m 2 /g) was much higher than that of activated carbon (AC, Q 0 = 60 m 2 /g) and MDC (Q 0 = 168 m 2 /g) and was found to be the highest among the reported results so far. The results of adsorptive denitrogenation and desulfurization of fuel were similar to that of water purification. The IMDCs are very useful in the adsorptions since these new carbons showed remarkable performances in both the aqueous and nonaqueous phases. These results are very meaningful because hydrophobic and hydrophilic adsorbents are usually required for the adsorptions in the water and fuel phases, respectively. Moreover, a plausible mechanism, H-bonding, was also suggested to explain the remarkable performance of the IMDCs in the adsorptions. Therefore, the IMDCs derived from IL@MOF might have various applications, especially in adsorptions, based on high porosity, mesoporosity, doped nitrogen, and functional groups.
Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen
2016-01-01
Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types. PMID:27485896
NASA Astrophysics Data System (ADS)
Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen
2016-08-01
Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types.
Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen
2016-08-03
Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types.
TiCN thin films grown by reactive crossed beam pulsed laser deposition
NASA Astrophysics Data System (ADS)
Escobar-Alarcón, L.; Camps, E.; Romero, S.; Muhl, S.; Camps, I.; Haro-Poniatowski, E.
2010-12-01
In this work, we used a crossed plasma configuration where the ablation of two different targets in a reactive atmosphere was performed to prepare nanocrystalline thin films of ternary compounds. In order to assess this alternative deposition configuration, titanium carbonitride (TiCN) thin films were deposited. Two crossed plasmas were produced by simultaneously ablating titanium and graphite targets in an Ar/N2 atmosphere. Films were deposited at room temperature onto Si (100) and AISI 4140 steel substrates whilst keeping the ablation conditions of the Ti target constant. By varying the laser fluence on the carbon target it was possible to study the effect of the carbon plasma on the characteristics of the deposited TiCN films. The structure and composition of the films were analyzed by X-ray Diffraction, Raman Spectroscopy and non-Rutherford Backscattering Spectroscopy. The hardness and elastic modulus of the films was also measured by nanoindentation. In general, the experimental results showed that the TiCN thin films were highly oriented in the (111) crystallographic direction with crystallite sizes as small as 6.0 nm. It was found that the hardness increased as the laser fluence was increased, reaching a maximum value of about 33 GPa and an elastic modulus of 244 GPa. With the proposed configuration, the carbon content could be easily varied from 42 to 5 at.% by changing the laser fluence on the carbon target.
Zhang, Bo; He, Pinjing; Lü, Fan; Shao, Liming
2008-01-01
The vegetable wastes and flower stems were co-digested to evaluate the anaerobic hydrolysis performance of difficultly biodegradable organic wastes by introducing readily biodegradable organic wastes. The experiments were carried out in batches. When the vegetable wastes were mixed with the flower stems at the dry weight ratio of 1 to 13, the overall hydrolysis rate increased by 8%, 12%, and 2% according to the carbon, nitrogen, and total solid (TS) conversion rate, respectively. While the dry weight ratio was designed as 1 to 3, there was a respective rise of 5%, 15%, and 4% in the conversion rate of carbon, nitrogen, and TS. The enhancement of anaerobic hydrolysis from the mixed vegetable wastes and flower stems can be attributed to the formation of volatile fatty acids (VFA) and nutrient supplement like nitrogen content. The maximum VFA concentration can achieve 1.7 g/L owing to the rapid acidification of vegetable wastes, loosing the structure of lignocellulose materials. The statistic bivariate analysis revealed that the hydrolysis performance was significantly related to the physical and biochemical compositions of the feeding substrate. Especially, the soluble carbon concentration in the liquid was significantly positively correlated to the concentration of nitrogen and hemicellulose, and negatively correlated to the concentration of carbon and lignocellulose in the feeding substrate, suggesting that the regulation and control of feedstock can have an important influence on the anaerobic hydrolysis of organic wastes.
Implication of using different carbon sources for denitrification in wastewater treatments.
Cherchi, Carla; Onnis-Hayden, Annalisa; El-Shawabkeh, Ibrahim; Gu, April Z
2009-08-01
Application of external carbon sources for denitrification becomes necessary for wastewater treatment plants that have to meet very stringent effluent nitrogen limits (e.g., 3 to 5 mgTN/L). In this study, we evaluated and compared three carbon sources--MicroC (Environmental Operating Solutions, Bourne, Massachusetts), methanol, and acetate-in terms of their denitrification rates and kinetics, effect on overall nitrogen removal performance, and microbial community structure of carbon-specific denitrifying enrichments. Denitrification rates and kinetics were determined with both acclimated and non-acclimated biomass, obtained from laboratory-scale sequencing batch reactor systems or full-scale plants. The results demonstrate the feasibility of the use of MicroC for denitrification processes, with maximum denitrification rates (k(dmax)) of 6.4 mgN/gVSSh and an observed yield of 0.36 mgVSS/mgCOD. Comparable maximum nitrate uptake rates were found with methanol, while acetate showed a maximum denitrification rate nearly twice as high as the others. The maximum growth rates measured at 20 degrees C for MicroC and methanol were 3.7 and 1.2 day(-1), respectively. The implications resulting from the differences in the denitrification rates and kinetics of different carbon sources on the full-scale nitrogen removal performance, under various configurations and operational conditions, were assessed using Biowin (EnviroSim Associates, Ltd., Flamborough, Ontario, Canada) simulations for both pre- and post-denitrification systems. Examination of microbial population structures using Automated Ribosomal Intergenic Spacer Analysis (ARISA) throughout the study period showed dynamic temporal changes and distinct microbial community structures of different carbon-specific denitrifying cultures. The ability of a specific carbon-acclimated denitrifying population to instantly use other carbon source also was investigated, and the chemical-structure-associated behavior patterns observed suggested that the complex biochemical pathways/enzymes involved in the denitrification process depended on the carbon sources used.
NASA Astrophysics Data System (ADS)
Siewers, Fredrick D.; Phillips, Tom L.
2015-11-01
Petrographic analyses of 25 coal balls from well-studied paleobotanical profiles in the Middle Pennsylvanian Herrin Coal (Westphalian D, Illinois Basin) and five select coal balls from university collections, indicate that Herrin Coal-ball peats were permineralized by fibrous and non-fibrous carbonates. Fibrous carbonates occur in fan-like to spherulitic arrays in many intracellular (within tissue) pores, and are best developed in relatively open extracellular (between plant) pore spaces. Acid etched fibrous carbonates appear white under reflected light and possess a microcrystalline texture attributable to abundant microdolomite. Scanning electron microscopy, X-ray diffraction, and electron microprobe analysis demonstrate that individual fibers have a distinct trigonal prism morphology and are notable for their magnesium content (≈ 9-15 mol% MgCO3). Non-fibrous carbonates fill intercrystalline spaces among fibers and pores within the peat as primary precipitates and neomorphic replacements. In the immediate vicinity of plant cell walls, non-fibrous carbonates cut across fibrous carbonates as a secondary, neomorphic phase attributed to coalification of plant cell walls. Dolomite occurs as diagenetic microdolomite associated with the fibrous carbonate phase, as sparite replacements, and as void-filling cement. Maximum dolomite (50-59 wt.%) is in the top-of-seam coal-ball zone at the Sahara Mine, which is overlain by the marine Anna Shale. Coal-ball formation in the Herrin Coal began with the precipitation of fibrous high magnesium calcite. The trigonal prism morphology of the carbonate fibers suggests rapid precipitation from super-saturated, meteoric pore waters. Carbonate precipitation from marine waters is discounted on the basis of stratigraphic, paleobotanical, and stable isotopic evidence. Most non-fibrous carbonate is attributable to later diagenetic events, including void-fill replacements, recrystallization, and post-depositional fracture fills. Evidence suggests that CO2 degassing was important in coal-ball formation in the Herrin Coal, which mainly occurred sequentially upward with peat accumulation in the sites studied.
Preparation of Activated Carbon from Palm Shells Using KOH and ZnCl2 as the Activating Agent
NASA Astrophysics Data System (ADS)
Yuliusman; Nasruddin; Afdhol, M. K.; Amiliana, R. A.; Hanafi, A.
2017-07-01
Palm shell is a potential source of raw materials for the produce of activated carbon as biosorbent for quite large numbers. The purpose of this study is to produce activated carbon qualified Indonesian Industrial Standard (SNI), which will be used as biosorbent to purify the impurities in the off gas petroleum refinery products. Stages of manufacture of activated carbon include carbonization, activation of chemistry and physics. Carbonization of activated carbon is done at a temperature of 400°C followed by chemical activation with active agent KOH and ZnCl2. Then the physical activation is done by flowing N2 gas for 1 hour at 850°C and followed by gas flow through the CO2 for 1 hour at 850°C. Research results indicate that activation of the active agent KOH produce activated carbon is better than using the active agent ZnCl2. The use of KOH as an active agent to produce activated carbon with a water content of 13.6%, ash content of 9.4%, iodine number of 884 mg/g and a surface area of 1115 m2/g. While the use of ZnCl2 as the active agent to produce activated carbon with a water content of 14.5%, total ash content of 9.0%, iodine number 648 mg/g and a surface area of 743 m2/g.
NASA Astrophysics Data System (ADS)
Devulder, Wouter; Opsomer, Karl; Franquet, Alexis; Meersschaut, Johan; Belmonte, Attilio; Muller, Robert; De Schutter, Bob; Van Elshocht, Sven; Jurczak, Malgorzata; Goux, Ludovic; Detavernier, Christophe
2014-02-01
In this paper, we investigate the influence of the carbon content on the Cu-Te phase formation and on the resistive switching behavior in carbon alloyed Cu0.6Te0.4 based conductive bridge random access memory (CBRAM) cells. Carbon alloying of copper-tellurium inhibits the crystallization, while attractive switching behavior is preserved when using the material as Cu-supply layer in CBRAM cells. The phase formation is first investigated in a combinatorial way. With increasing carbon content, an enlargement of the temperature window in which the material stays amorphous was observed. Moreover, if crystalline phases are formed, subsequent phase transformations are inhibited. The electrical switching behavior of memory cells with different carbon contents is then investigated by implementing them in 580 μm diameter dot TiN/Cu0.6Te0.4-C/Al2O3/Si memory cells. Reliable switching behavior is observed for carbon contents up to 40 at. %, with a resistive window of more than 2 orders of magnitude, whereas for 50 at. % carbon, a higher current in the off state and only a small resistive window are present after repeated cycling. This degradation can be ascribed to the higher thermal and lower drift contribution to the reset operation due to a lower Cu affinity towards the supply layer, leading cycle-after-cycle to an increasing amount of Cu in the switching layer, which contributes to the current. The thermal diffusion of Cu into Al2O3 under annealing also gives an indication of the Cu affinity of the source layer. Time of flight secondary ion mass spectroscopy was used to investigate this migration depth in Al2O3 before and after annealing, showing a higher Cu, Te, and C migration for high carbon contents.
Kaewbai-Ngam, Auratai; Incharoensakdi, Aran; Monshupanee, Tanakarn
2016-07-01
The cellular PHB content was determined in 137 strains of cyanobacteria representing 88 species in 26 genera under six photoautotrophic nutrient conditions. One hundred and thirty-four strains were PHB producers. The PHB contents of these 134 strains were subtle under normal growth condition, but were significantly increased in 63 strains under nitrogen deprivation (-N), a higher frequency than with phosphate and/or potassium and all-nutrient deprivation. A high PHB accumulation was not associated with any particular evolutionary groups, but was strain specific. The filamentous Calothrix scytonemicola TISTR 8095 produced 356.5±63.4mg/L PHB under -N from a biomass of 1396.6±66.1mg/L, giving a PHB content of 25.4±3.5% (w/w dry weight). This PHB productivity is equivalent to the CO2 consumption of 729.2±129.8mg/L. The maximum energy conversion from solar energy to PHB obtained by C. scytonemicola TISTR 8095 was 1.42±0.30%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Seasonal and spatial variation in broadleaf forest model parameters
NASA Astrophysics Data System (ADS)
Groenendijk, M.; van der Molen, M. K.; Dolman, A. J.
2009-04-01
Process based, coupled ecosystem carbon, energy and water cycle models are used with the ultimate goal to project the effect of future climate change on the terrestrial carbon cycle. A typical dilemma in such exercises is how much detail the model must be given to describe the observations reasonably realistic while also be general. We use a simple vegetation model (5PM) with five model parameters to study the variability of the parameters. These parameters are derived from the observed carbon and water fluxes from the FLUXNET database. For 15 broadleaf forests the model parameters were derived for different time resolutions. It appears that in general for all forests, the correlation coefficient between observed and simulated carbon and water fluxes improves with a higher parameter time resolution. The quality of the simulations is thus always better when a higher time resolution is used. These results show that annual parameters are not capable of properly describing weather effects on ecosystem fluxes, and that two day time resolution yields the best results. A first indication of the climate constraints can be found by the seasonal variation of the covariance between Jm, which describes the maximum electron transport for photosynthesis, and climate variables. A general seasonality we found is that during winter the covariance with all climate variables is zero. Jm increases rapidly after initial spring warming, resulting in a large covariance with air temperature and global radiation. During summer Jm is less variable, but co-varies negatively with air temperature and vapour pressure deficit and positively with soil water content. A temperature response appears during spring and autumn for broadleaf forests. This shows that an annual model parameter cannot be representative for the entire year. And relations with mean annual temperature are not possible. During summer the photosynthesis parameters are constrained by water availability, soil water content and vapour pressure deficit.
Zhou, Ji Dong; Shi, Rong Jiu; Zhao, Feng; Han, Si Qin; Zhang, Ying
2016-08-01
A four-year simulated nitrogen (N) deposition experiment involving nine N gradients and two N deposition frequencies (N was added either twice yearly or monthly) was conducted in Inner Mongolian grassland, to examine the effects of frequency and intensity of N addition on pH and the contents of carbon, nitrogen and phosphorus in soil. The results indicated that the soil pH and total phosphorus content, regardless of the N addition frequency, gradually decreased with the increase of N addition intensity. By contrast, the contents of soil available nitrogen and available phosphorus showed an increasing trend, while no significant variation in dissolved organic carbon (DOC) content was observed, and the contents of soil total carbon and total nitrogen had no change. Compared with the monthly N addition, the twice-a-year N addition substantially overestimated the effects of N deposition on decreasing the soil pH and increasing the available phosphorus content, but underestimated the effects of N deposition on increasing the soil available nitrogen content, and the significant difference was found in 0-5 cm soil layer.
Cole, B.E.; Harmon, D.D.
1981-01-01
Rates of phytoplankton productivity, respiration, and nutrient uptake and regeneration are presented. These observations were made on the Potomac River estuary (POTE) during four cruises between August 1977 and August 1978. Four experimental methods were used: carbon uptake using carbon-14, carbon uptake and respiration by a pH method, productivity and respiration by the dissolved oxygen method, and nutrient (NH4+, NO3-, NO2-, PO4=, and SiO2=) uptake and regeneration by colorimetry. The experiments were made at sites representative of conditions in four principal reaches of the tidal Potomac River estuary: near the mouth, seaward of the summer nutrient and phytoplankton maximum, near the region of maximum phytoplankton standing stock , and near the maximum anthropogenic nutrient source. (USGS)
NASA Astrophysics Data System (ADS)
Benthien, A.; Schulte, S.; Andersen, N.; Müller, P. J.; Schneider, R. R.
The carbon isotopic signal of the C37-alkenone, a taxon-specific biomarker for hap- tophyte algae, has been used in various paleoceanographic studies as a proxy for an- cient surface water CO2 concentration ([CO2aq]). However, a number of recent cul- ture, field and sediment studies imply that the carbon isotopic fractionation (ep) of alkenones is controlled predominantly by physiological processes and environmental factors other than the ambient CO2 concentration (i.e., growth rate, nutrient availabil- ity, light intensity, active carbon uptake, bicarbonate utilisation). The environmental conditions controlling phytoplankton growth are likely to vary strongly with oceano- graphic setting. Culture experiments can not perfectly recreate natural growth con- ditions and physical processes which affect the carbon isotopic signal in the field and its preservation in the sediment. Consequently, the use of the carbon isotopic record of alkenones as a reliable paleoceonographic proxy also requires sediment- based studies covering a broad range of different oceanic regimes for the past and modern ocean. Here, we present the first basin-wide comparison of alkenone ep val- ues from sediments of the Last Glacial Maximum (LGM) and the latest Holocene. Different oceanographic regions from the equatorial and South Atlantic Ocean were examined. Generally, alkenone ep is lower during the LGM compared to the Holocene. Considering present understanding of LGM-Holocene changes in surface water condi- tions, the observed glacial/interglacial difference in ep indicates that different effects controlled the isotopic fractionation in alkenone-producing algae depending on the regional setting. In upwelling regions, the variations in ep probably reflect a glacial increase in haptophyte productivity controlled by the availability of surface water nu- trient concentrations. By contrast, in oligotrophic areas slightly lower nutrient content was available during LGM. Here, the observed ep difference can be explained partly with an assumed glacial decrease in surface water [CO2aq]. However, it can not be ruled out that changes in haptophyte productivity also affected the ep signal to some extent. This study clearly demonstrates that a reliable reconstruction of [CO2aq] on the basis of the isotopic composition of alkenones is not feasible without a detailed 1 knowledge of ancient haptophyte growth conditions. 2
NASA Astrophysics Data System (ADS)
Joseph, C. G.; Anisuzzaman, S. M.; Daud, W. M. A. W.; Krishnaiah, D.; Ng, K. A.
2017-06-01
In this study, activated carbons (ACs) wereprepared from tea leaves by using a two-stage self-generated atmosphere method. The process was done by semi-carbonizing the precursor at 300 °C for 1 h, followed by the impregnation of the resulting char at 85 °C for 4 h and finally activation at 500 °C for 2 h. The semi-carbonised samples were impregnated with different ratios of zinc chloride (ZnCl2) and their physicochemical effect was studied. The prepared ACs underwent several aspects of both, chemical and physical characterizations, such as the percentage of yield, moisture content, ash content, pH, porosity, adsorption capacity of 2,4-dichlorophenol (2,4-DCP), surface area, porosity, morphology and surface chemistry studies. It was found that sample AC2, with an impregnation ratio of 2:1 was the best AC produced in this study. The maximum Brunauer, Emmett and Teller surface area of AC2 was found to be 695 m2/g. Langmuir, Freundlich and Temkin isotherm models were used to examine the experimental isotherms while the kinetic data was analyzed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The 2,4-DCP adsorption isotherm results complied well to the Langmuir isotherm for the equilibrium data while the adsorption kinetic data fitted well to the pseudo-second order model, indicating that chemisorption by valency forces via the sharing (covalent bond) or exchanging of electrons between the AC and the 2,4-DCP molecules were mainly responsible for the adsorption process. From these findings, it is concluded that tea leaves can be used as a low cost precursor for the removal of 2,4-DCP in aqueous medium.
Spaceflight-relevant types of ionizing radiation and cortical bone: Potential LET effect?
NASA Astrophysics Data System (ADS)
Lloyd, Shane A. J.; Bandstra, Eric R.; Travis, Neil D.; Nelson, Gregory A.; Bourland, J. Daniel; Pecaut, Michael J.; Gridley, Daila S.; Willey, Jeffrey S.; Bateman, Ted A.
2008-12-01
Extended exposure to microgravity conditions results in significant bone loss. Coupled with radiation exposure, this phenomenon may place astronauts at a greater risk for mission-critical fractures. In a previous study, we identified a profound and prolonged loss of trabecular bone (29-39%) in mice following exposure to an acute, 2 Gy dose of radiation simulating both solar and cosmic sources. However, because skeletal strength depends on trabecular and cortical bone, accurate assessment of strength requires analysis of both bone compartments. The objective of the present study was to examine various properties of cortical bone in mice following exposure to multiple types of spaceflight-relevant radiation. Nine-week old, female C57BL/6 mice were sacrificed 110 days after exposure to a single, whole body, 2 Gy dose of gamma, proton, carbon, or iron radiation. Femora were evaluated with biomechanical testing, microcomputed tomography, quantitative histomorphometry, percent mineral content, and micro-hardness analysis. Compared to non-irradiated controls, there were significant differences compared to carbon or iron radiation for only fracture force, medullary area and mineral content. A greater differential effect based on linear energy transfer (LET) level may be present: high-LET (carbon or iron) particle irradiation was associated with a decline in structural properties (maximum force, fracture force, medullary area, and cortical porosity) and mineral composition compared to low-LET radiation (gamma and proton). Bone loss following irradiation appears to be largely specific to trabecular bone and may indicate unique biological microenvironments and microdosimetry conditions. However, the limited time points examined and non-haversian skeletal structure of the mice employed highlight the need for further investigation.
The effect of alumina in slag on manganese and silicon distributions in silicomanganese smelting
NASA Astrophysics Data System (ADS)
Swinbourne, D. R.; Rankin, W. J.; Eric, R. H.
1995-02-01
The distribution ratios of manganese and silicon between silicomanganese alloy and slag, in equilibrium with carbon, were investigated at 1500 °C. The alumina content of the slag was varied from about 9 to 32 pct. Both distribution ratios decreased as A12O3 increased to about 20 pct and, thereafter, remained constant. The value of the “apparent equilibrium constant” displayed a maximum at about 24 pct A12O3, mainly because of the variation in the values of the activity coefficients of SiO2 and MnO. It was concluded that the slag and silicomanganese alloy in a submerged arc furnace are at, or at least close to, equilibrium.
Yan, S; Tyagi, R D; Surampalli, R Y
2006-01-01
Activated sludge from different full-scale wastewater treatment plants (municipal, pulp and paper industry, starch manufacturing and cheese manufacturing wastewaters) was used as a source of microorganisms to produce biodegradable plastics in shake flask experiments. Acetate, glucose and different wastewaters were used as carbon sources. Pulp and paper wastewater sludge was found to accumulate maximum concentration (43% of dry weight of suspended solids) of polyhydroxy alkanoates (PHA) with acetate as carbon source. Among the different wastewaters tested as a source of carbon, pulp and paper industry and starch industry wastewaters were found to be the best source of carbon while employing pulp and paper activated sludge for maximum accumulation of PHA. High concentration of volatile fatty acids in these wastewaters was the probable reason.
USDA-ARS?s Scientific Manuscript database
Converting native grassland (NGL) to cropland (CL) decreases soil organic matter contents (components of soil total carbon contents, STCCs), which often leads to soil degradation. Reestablishing grass on CL generally increases soil organic matter, which improves soil conditions. This study was condu...
40 CFR 98.286 - Data reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... petroleum coke consumed). (7) Sampling analysis results for carbon content of consumed petroleum coke as... content factor of petroleum coke from the supplier or as measured by the applicable method in § 98.284(c) for each month (percent by weight expressed as a decimal fraction). (5) Whether carbon content of the...
NASA Astrophysics Data System (ADS)
Reichstein, M.; Rey, A.; Freibauer, A.; Tenhunen, J.; Valentini, R.; Soil Respiration Synthesis Team
2003-04-01
Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, inter-annual and spatial variability of soil respiration as affected by water availability, temperature and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g. leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical non-linear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and inter-site variability of soil respiration with a mean absolute error of 0.82 µmol m-2 s-1. The parameterised model exhibits the following principal properties: 1) At a relative amount of upper-layer soil water of 16% of field capacity half-maximal soil respiration rates are reached. 2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. 3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly time-scale we employed the approach by Raich et al. (2002, Global Change Biol. 8, 800-812) that used monthly precipitation and air temperature to globally predict soil respiration (T&P-model). While this model was able to explain some of the month-to-month variability of soil respiration, it failed to capture the inter-site variability, regardless whether the original or a new optimized model parameterization was used. In both cases, the residuals were strongly related to maximum site leaf area index. Thus, for a monthly time scale we developed a simple T&P&LAI-model that includes leaf area index as an additional predictor of soil respiration. This extended but still simple model performed nearly as well as the more detailed time-step model and explained 50 % of the overall and 65% of the site-to-site variability. Consequently, better estimates of globally distributed soil respiration should be obtained with the new model driven by satellite estimates of leaf area index.
Reburning Characteristics of Residual Carbon in Fly Ash from CFB Boilers
NASA Astrophysics Data System (ADS)
Zhang, S. H.; Luo, H. H.; Chen, H. P.; Yang, H. P.; Wang, X. H.
The content of residual carbon in fly ash of CFB boilers is a litter high especially when low-grade coal, such as lean coal, anthracite coal, gangue, etc. is in service, which greatly influences the efficiency of boilers and fly ash further disposal. Reburn of fly ash through collection, recirculation in CFB furnace or external combustor is a possibly effective strategy to decrease the carbon content, mainly depending on the residual carbon reactivity. In this work, the combustion properties of residual carbon in fly ash and corresponding original coal from large commercial CFB boilers (Kaifeng (440t/h), and Fenyi (410t/h), all in china) are comparably investigated through experiments. The residual carbon involved was firstly extracted and enriched from fly ash by means of floating elutriation to mitigate the influence of ash and minerals on the combustion behavior of residual carbon. Then, the combustion characteristic of two residual carbons and the original coal particles was analyzed with thermogravimetric analyzer (TGA, STA409C from Nestch, Germany). It was observed that the ignition temperature of the residual carbon is much higher than that of original coal sample, and the combustion reactivity of residual carbon is not only dependent on the original coal property, but also the operating conditions. The influence of oxygen content and heating rate was also studied in TGA. The O2 concentration is set as 20%, 30%, 40% and 70% respectively in O2/N2 gas mixture with the flow rate of 100ml/min. It was found that higher oxygen content is favor for decreasing ignition temperature, accelerating the combustion rate of residual carbon. And about 40% of oxygen concentration is experimentally suggested as an optimal value when oxygen-enriched combustion is put into practice for decreasing residual carbon content of fly ash in CFB boilers.
NASA Astrophysics Data System (ADS)
Becklin, K. M.; Medeiros, J. S.; Sale, K. R.; Ward, J. K.
2014-12-01
Assessing family and species-level variation in physiological responses to global change across geologic time is critical for understanding factors that underlie changes in species distributions and community composition. Ancient plant specimens preserved within packrat middens are invaluable in this context since they allow for comparisons between co-occurring plant lineages. Here we used modern and ancient plant specimens preserved within packrat middens from the Snake Range, NV to investigate the physiological responses of a mixed montane conifer community to global change since the last glacial maximum. We used a conceptual model to infer relative changes in stomatal conductance and maximum photosynthetic capacity from measures of leaf carbon isotopes, stomatal characteristics, and leaf nitrogen content. Our results indicate that most of the sampled taxa decreased stomatal conductance and/or photosynthetic capacity from glacial to modern times. However, plant families differed in the timing and magnitude of these physiological responses. Additionally, leaf-level responses were more similar within plant families than within co-occurring species assemblages. This suggests that adaptation at the level of leaf physiology may not be the main determinant of shifts in community composition, and that plant evolutionary history may drive physiological adaptation to global change over recent geologic time.
Hydraulic constraints modify optimal photosynthetic profiles in giant sequoia trees.
Ambrose, Anthony R; Baxter, Wendy L; Wong, Christopher S; Burgess, Stephen S O; Williams, Cameron B; Næsborg, Rikke R; Koch, George W; Dawson, Todd E
2016-11-01
Optimality theory states that whole-tree carbon gain is maximized when leaf N and photosynthetic capacity profiles are distributed along vertical light gradients such that the marginal gain of nitrogen investment is identical among leaves. However, observed photosynthetic N gradients in trees do not follow this prediction, and the causes for this apparent discrepancy remain uncertain. Our objective was to evaluate how hydraulic limitations potentially modify crown-level optimization in Sequoiadendron giganteum (giant sequoia) trees up to 90 m tall. Leaf water potential (Ψ l ) and branch sap flow closely followed diurnal patterns of solar radiation throughout each tree crown. Minimum leaf water potential correlated negatively with height above ground, while leaf mass per area (LMA), shoot mass per area (SMA), leaf nitrogen content (%N), and bulk leaf stable carbon isotope ratios (δ(13)C) correlated positively with height. We found no significant vertical trends in maximum leaf photosynthesis (A), stomatal conductance (g s), and intrinsic water-use efficiency (A/g s), nor in branch-averaged transpiration (E L), stomatal conductance (G S), and hydraulic conductance (K L). Adjustments in hydraulic architecture appear to partially compensate for increasing hydraulic limitations with height in giant sequoia, allowing them to sustain global maximum summer water use rates exceeding 2000 kg day(-1). However, we found that leaf N and photosynthetic capacity do not follow the vertical light gradient, supporting the hypothesis that increasing limitations on water transport capacity with height modify photosynthetic optimization in tall trees.
Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
2015-01-01
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215
Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
2015-10-26
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO 2 reduction on silver and coppermore » cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H 2 and CO) and Hythane (H 2 and CH 4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. Finally, we show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C 2H 4 have high profitability indices.« less
NASA Astrophysics Data System (ADS)
Shinde, Pragati A.; Lokhande, Vaibhav C.; Patil, Amar M.; Ji, Taeksoo; Lokhande, Chandrakant D.
2017-12-01
To enhance the energy density and power performance of supercapacitors, the rational design and synthesis of active electrode materials with hierarchical mesoporous structure is highly desired. In the present work, fabrication of high-performance hierarchical mesoporous WO3-MnO2 composite nanostructures on carbon cloth substrate via a facile hydrothermal method is reported. By varying the content of MnO2 in the composite, different WO3-MnO2 composite thin films are obtained. The formation of composite is confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. The Brunauer-Emmett-Teller (BET) analysis reveals maximum specific surface area of 153 m2 g-1. The optimized WO3-MnO2 composite electrode demonstrates remarkable electrochemical performance with high specific capacitance of 657 F g-1 at a scan rate of 5 mV s-1 and superior longterm cycling stability (92% capacity retention over 2000 CV cycles). Furthermore, symmetric flexible solid-state supercapacitor based on WO3-MnO2 electrodes has been fabricated. The device exhibits good electrochemical performance with maximum specific capacitance of 78 F g-1 at a scan rate of 5 mV s-1 and specific energy of 10.8 Wh kg-1 at a specific power of 0.65 kW kg-1. The improved electrochemical performance could be ascribed to the unique combination of multivalence WO3 and MnO2 nanostructures and synergistic effect between them
Nitrogen doped microporous carbon by ZnCl2 activation of protein
NASA Astrophysics Data System (ADS)
Wilson, Praveen; Vijayan, Sujith; Prabhakaran, K.
2017-09-01
ZnCl2 activation of protein containing biomass has been studied for the preparation of N-doped activated carbon (NDC) using powdered dry fish as a source of protein. Nearly 52% increase in the yield of NDC is observed by activation with ZnCl2 due to an increase in the thermal stability of Zn2+-fish protein complex compared to the protein alone. The NDCs obtained are characterized by XRD, IR, XPS, Raman spectroscopy, SEM, TEM, elemental analysis and N2 adsorption-desorption studies. The activation at 550 °C produces NDC with the highest surface area and total pore volume of 1001 m2 g-1 and 0.719 cm3 g-1, respectively, at a ZnCl2 to fish powder weight ratio of 3. A maximum micropore volume of 0.273 cm3 g-1 is obtained at a ZnCl2 to fish powder weight ratio of 1:1. The N-content (12.4-5.2 wt%) decreases with an increase in activation temperature and ZnCl2 to fish powder weight ratio. The NDC obtained by activation at 550 °C at a ZnCl2 to fish powder weight ratio of 1:1 shows the maximum CO2 adsorption capacity of 2.4 and 3.73 mmol g-1 at 25 and 0 °C, respectively, at 1 atmosphere. The CO2 adsorption on the NDC shows excellent cyclic stability and high selectivity over nitrogen gas.
PTSD in Limb Trauma and Recovery
2012-10-01
to walking, each subject’s maximum voluntary contraction (MVC) for each muscle was recorded during a 10 second maximum effort, isometric ...robotic knee coupled to a conventional energy storage and release carbon- fiber prosthetic foot. The knee itself (mechanism and electronics) fits...and gait improvements of the AAA Knee over conventional prosthetic knee systems (standard of care knee with carbon- fiber foot). To that end, the
Nelson, Erik; Polasky, Stephen; Lewis, David J.; Plantinga, Andrew J.; Lonsdorf, Eric; White, Denis; Bael, David; Lawler, Joshua J.
2008-01-01
We develop an integrated model to predict private land-use decisions in response to policy incentives designed to increase the provision of carbon sequestration and species conservation across heterogeneous landscapes. Using data from the Willamette Basin, Oregon, we compare the provision of carbon sequestration and species conservation under five simple policies that offer payments for conservation. We evaluate policy performance compared with the maximum feasible combinations of carbon sequestration and species conservation on the landscape for various conservation budgets. None of the conservation payment policies produce increases in carbon sequestration and species conservation that approach the maximum potential gains on the landscape. Our results show that policies aimed at increasing the provision of carbon sequestration do not necessarily increase species conservation and that highly targeted policies do not necessarily do as well as more general policies. PMID:18621703
40 CFR 98.163 - Calculating GHG emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... atmospheric pressure) of fuel and feedstock). CCn = Average carbon content of the gaseous fuel and feedstock, from the results of one or more analyses for month n (kg carbon per kg of fuel and feedstock). MW... fuel and feedstock). CCn = Average carbon content of the liquid fuel and feedstock, from the results of...
Effects of water stress on irradiance acclimation of leaf traits in almond trees.
Egea, Gregorio; González-Real, María M; Baille, Alain; Nortes, Pedro A; Conesa, María R; Ruiz-Salleres, Isabel
2012-04-01
Photosynthetic acclimation to highly variable local irradiance within the tree crown plays a primary role in determining tree carbon uptake. This study explores the plasticity of leaf structural and physiological traits in response to the interactive effects of ontogeny, water stress and irradiance in adult almond trees that have been subjected to three water regimes (full irrigation, deficit irrigation and rain-fed) for a 3-year period (2006-08) in a semiarid climate. Leaf structural (dry mass per unit area, N and chlorophyll content) and photosynthetic (maximum net CO(2) assimilation, A(max), maximum stomatal conductance, g(s,max), and mesophyll conductance, g(m)) traits and stem-to-leaf hydraulic conductance (K(s-l)) were determined throughout the 2008 growing season in leaves of outer south-facing (S-leaves) and inner northwest-facing (NW-leaves) shoots. Leaf plasticity was quantified by means of an exposure adjustment coefficient (ε=1-X(NW)/X(S)) for each trait (X) of S- and NW-leaves. Photosynthetic traits and K(s-l) exhibited higher irradiance-elicited plasticity (higher ε) than structural traits in all treatments, with the highest and lowest plasticity being observed in the fully irrigated and rain-fed trees, respectively. Our results suggest that water stress modulates the irradiance-elicited plasticity of almond leaves through changes in crown architecture. Such changes lead to a more even distribution of within-crown irradiance, and hence of the photosynthetic capacity, as water stress intensifies. Ontogeny drove seasonal changes only in the ε of area- and mass-based N content and mass-based chlorophyll content, while no leaf age-dependent effect was observed on ε as regards the physiological traits. Our results also indicate that the irradiance-elicited plasticity of A(max) is mainly driven by changes in leaf dry mass per unit area, in g(m) and, most likely, in the partitioning of the leaf N content.
Rostan, J C; Juget, J; Brun, A M
1997-01-30
Former river channels are aquatic ecosystems with a different geomorphology generated by fluvial dynamics more or less linked to the main channel. They present different ecological successions to become terrestrial ecosystems and are thus supposed to have different sedimentation rates. The aim of this paper is to assess this sedimentation rate using radioactive tracer methodology commonly used in lake studies. Chernobyl impacts, expressed in 137Cs concentration and 137Cs/134Cs ratio, were determined in sediment cores. Sites (21) were sampled in the alluvial plain of the Upper Rhône River from 1989 to 1994. The contamination presented a high spatial heterogeneity. The maximum values encountered by site ranged between 34 and 541 Bq/kg of dry matter. The method generally gave good core profiles. Sedimentation rate ranged between 0.14 and 0.70 cm/year for the former meanders and between 0.14 and 2.86 cm/year for the braided channels. The sediment accumulation rates ranged from 0.03 to 0.25 g/cm2 per year and 0.03 to 2.26 g/cm2 per year, respectively. These values are similar to those found for Lake Geneva. The importance of the former channels in relation to the main channel is enhanced by the higher contamination and radionuclides retention. The sediment accumulation rate is related to the organic carbon content in the sediment. A comparison between two former channels with different productivity showed that the the allogenous driven system presents a high organic sediment accumulation rate with a low organic content in the sediment and inversely, a low organic sediment accumulation rate with a high organic carbon content was found for the autogenous drive system.
Pinto, Stefania; Gatti, Fabio; García-Montero, Luis G; Menta, Cristina
2017-04-15
There are numerous aspects related to Tuber species, which have not been explored to date. Tuber aestivum Vitt. is an ectomycorrhizal fungus, that produces an area (called brûlé) around the host plant trunk, where the germination of other plants is inhibited. What happens inside this particular environment is still not sufficiently understood, especially in terms of soil fauna. A previous work showed that there were higher microarthropod abundances outside during the period of maximum activity of the mycelium. The genus Folsomia (Isotomidae Family; Order Collembola) showed higher abundance inside. The aim of this paper is to investigate the effects of brûlé, on soil parameters and soil fauna, during the annual biological cycle of T. aestivum. This study was carried out in nine spontaneous brûlés situated in Northern Italy (Emilia Romagna Region - Piacenza Province). Soil cores were collected in order to perform soil chemical and biological analysis. Moisture content, pH, organic matter content, total organic carbon were analyzed. Biodiversity and soil quality indices were applied. We found higher pH, lower carbon and organic matter content within the brûlé. Soil fauna community also showed some differences, seasonal and inside vs outside the brûlé. Some groups seem to be negatively affected by Tuber while Folsomia genus recorded almost always higher values inside. These results suggest that some organisms, such as some Collembola, might find a favorable environment inside the brûlé, while others - a negative one. However, these results should be compared by other analysis either on other Tuber species and on other soil organisms, such as nematodes and earthworms. Copyright © 2017 Elsevier B.V. All rights reserved.
Yu, Ji-Kuen; Pan, Huichin; Huang, Shing-Moo; Huang, Nan-Lan; Yao, Chung-Chin; Hsiao, Kuang-Ming; Wu, Chew-Wun
2013-01-01
Our aim was to investigate the calcium content of different gallstone compositions and the pathogenic mechanisms of calcium carbonate gallstones. Between August 2001 and July 2007, gallstones from 481 patients, including 68 calcium carbonate gallstones, were analyzed for total calcium content. Gallbladder bile samples from 33 cases and six controls were analyzed for pH, carbonate anion level, free-ionized calcium concentration and saturation index for calcium carbonate. Total calcium content averaged 75.6 %, 11.8 %, and 4.2 % for calcium carbonate, calcium bilirubinate and cholesterol gallstones. In 29.4 % of patients, chronic and/or intermittent cystic duct obstructions were caused by polypoid lesions in the neck region and 70.6 % were caused by stones. A total of 82 % of patients had chronic low-grade inflammation of the gallbladder wall and 18.0 % had acute inflammatory exacerbations. In the bile, we found the mean pH, mean carbonate anion, free-ionized calcium concentrations, and mean saturation index for calcium carbonate to be elevated in comparison to controls. From our study, we found chronic and/or intermittent cystic duct obstructions and low-grade GB wall inflammation lead to GB epithelium hydrogen secretion dysfunction. Increased calcium ion efflux into the GB lumen combined with increased carbonate anion presence increases SI_CaCO(3) from 1 to 22.4. Thus, in an alkaline milieu with pH 7.8, calcium carbonate begins to aggregate and precipitate. Copyright © 2012. Published by Elsevier B.V.
Lithium insertion in carbonaceous materials containing silicon
NASA Astrophysics Data System (ADS)
Wilson, Alfred Macdonald
Three different series of silicon-containing carbonaceous materials were synthesized for use as anodes in lithium ion cells. Disordered (or pregraphitic) carbons containing nanodispersed silicon were prepared by the chemical vapour deposition (CVD) of various chlorosilanes (SiClsb4, (CHsb3)sb2Clsb2Si, and (CHsb3)sb3ClSi) with benzene in two different apparatuses. Silicon oxycarbide glasses were synthesized by the pyrolysis of over 50 silicon-containing polymers at various temperatures, although the principal materials in the study were prepared at 1000sp°C. Finally, materials which we believe to be similar to disordered carbons containing nanodispersed silicon were prepared by the pyrolysis of various blends of pitches with polysilanes. Powder X-ray diffraction was used to learn about the structure of all the materials made. Thermal gravimetric analysis was used to determine the silicon content in the CVD materials and, when coupled to a residual gas analyzer, to study the decomposition process of the polymers. Near edge X-ray absorption spectroscopy measurements of the silicon L- and K-edges of CVD materials and the silicon K-edges of silicon oxycarbides were used to learn about local chemical environments of the silicon atoms. Lithium metal electrochemical test cells of the silicon-containing CVD materials showed larger capacities (up to 500 mAh/g) than pure carbons prepared in the same way (˜300 mAh/g). The additional capacity was observed to be centered near 0.4 V on charge, the average voltage observed for the removal of lithium from a silicon-lithium alloy. Chemical analysis showed that the stoichiometries of materials made by polymer pyrolysis were distributed over a well-defined region in the Si-O-C Gibbs phase diagram. An interesting series of materials is found near the line in the Si-O-C Gibbs triangle connecting carbon to SiOsb{1.3}. Lithium metal electrochemical test cells made using all the silicon oxycarbides synthesized showed that a stoichiometry of about Sisb{.25}Csb{.45}Osb{.30} gave the maximum reversible capacity (about 900 mAh/g). However, materials near this stoichiometry exhibit large irreversible capacities (>350 mAh/g) and significant hysteresis (the voltage difference between charge and discharge) in the voltage profile (˜0.8 V). In an attempt to reduce the oxygen content in one of the silicon oxycarbide glasses, a sample was washed in a dilute solution of hydrofluoric acid (HF) for times ranging from 2 minutes to 24 hours. The material lost, at most, 40 percent of its initial mass, although there was only a small change in its stoichiometry. In addition to the techniques mentioned above, small angle X-ray scattering and BET surface area measurements were used to study the microscopic pore network that was created by the HF washing. Lithium metal electrochemical test cells made using the product of pyrolysing pitch-polysilane blends showed that the capacity increased with silicon content from 340 mAh/g for pure carbon to a maximum of 600 mAh/g for samples with about 15 atomic % silicon (Sisb{.14}Osb{.09}Csb{.77}). The capacity then decreased to near zero as the composition approached SiC. These materials contain oxygen which is correlated to irreversible capacity loss. (Abstract shortened by UMI.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hao; Wang, Yun; Dai, Xiao
2015-08-01
In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.
Production of polyhydroxybutyrate by the marine photosynthetic bacterium Rhodovulum sulfidophilum P5
NASA Astrophysics Data System (ADS)
Cai, Jinling; Wei, Ying; Zhao, Yupeng; Pan, Guanghua; Wang, Guangce
2012-07-01
The effects of different NaCl concentrations, nitrogen sources, carbon sources, and carbon to nitrogen molar ratios on biomass accumulation and polyhydroxybutyrate (PHB) production were studied in batch cultures of the marine photosynthetic bacterium Rhodovulum sulfidophilum P5 under aerobic-dark conditions. The results show that the accumulation of PHB in strain P5 is a growth-associated process. Strain P5 had maximum biomass and PHB accumulation at 2%-3% NaCl, suggesting that the bacterium can maintain growth and potentially produce PHB at natural seawater salinity. In the nitrogen source test, the maximum biomass accumulation (8.10±0.09 g/L) and PHB production (1.11±0.13 g/L and 14.62%±2.2 of the cell dry weight) were observed when peptone and ammonium chloride were used as the sole nitrogen source. NH{4/+}-N was better for PHB production than other nitrogen sources. In the carbon source test, the maximum biomass concentration (7.65±0.05 g/L) was obtained with malic acid as the sole carbon source, whereas the maximum yield of PHB (5.03±0.18 g/L and 66.93%±1.69% of the cell dry weight) was obtained with sodium pyruvate as the sole carbon source. In the carbon to nitrogen ratios test, sodium pyruvate and ammonium chloride were selected as the carbon and nitrogen sources, respectively. The best carbon to nitrogen molar ratio for biomass accumulation (8.77±0.58 g/L) and PHB production (6.07±0.25 g/L and 69.25%±2.05% of the cell dry weight) was 25. The results provide valuable data on the production of PHB by R. sulfidophilum P5 and further studies are on-going for best cell growth and PHB yield.
Pretorius, M L; Van Huyssteen, C W; Brown, L R
2017-10-13
A relationship between soil organic carbon and soil color is acknowledged-albeit not a direct one. Since heightened carbon contents can be an indicator of wetlands, a quantifiable relationship between color and carbon might assist in determining wetland boundaries by rapid, field-based appraisal. The overarching aim of this initial study was to determine the potential of top soil color to indicate soil organic carbon, and by extension wetland boundaries, on a sandy coastal plain in South Africa. Data were collected from four wetland types in northern KwaZulu-Natal in South Africa. Soil samples were taken to a depth of 300 mm in three transects in each wetland type and analyzed for soil organic carbon. The matrix color was described using a Munsell soil color chart. Various color indices were correlated with soil organic carbon. The relationship between color and carbon were further elucidated using segmented quantile regression. This showed that potentially maximal carbon contents will occur at values of low color indices, and predictably minimal carbon contents will occur at values of low or high color indices. Threshold values can thus be used to make deductions such as "when the sum of dry and wet Value and Chroma values is 9 or more, carbon content will be 4.79% and less." These threshold values can then be used to differentiate between wetland and non-wetland sites with a 70 to 100% certainty. This study successfully developed a quantifiable correlation between color and carbon and showed that wetland boundaries can be determined based thereon.
NASA Astrophysics Data System (ADS)
Serrano, Oscar; Lavery, Paul S.; Duarte, Carlos M.; Kendrick, Gary A.; Calafat, Antoni; York, Paul H.; Steven, Andy; Macreadie, Peter I.
2016-09-01
The emerging field of blue carbon science is seeking cost-effective ways to estimate the organic carbon content of soils that are bound by coastal vegetated ecosystems. Organic carbon (Corg) content in terrestrial soils and marine sediments has been correlated with mud content (i.e., silt and clay, particle sizes < 63 µm), however, empirical tests of this theory are lacking for coastal vegetated ecosystems. Here, we compiled data (n = 1345) on the relationship between Corg and mud contents in seagrass ecosystems (79 cores) and adjacent bare sediments (21 cores) to address whether mud can be used to predict soil Corg content. We also combined these data with the δ13C signatures of the soil Corg to understand the sources of Corg stores. The results showed that mud is positively correlated with soil Corg content only when the contribution of seagrass-derived Corg to the sedimentary Corg pool is relatively low, such as in small and fast-growing meadows of the genera Zostera, Halodule and Halophila, and in bare sediments adjacent to seagrass ecosystems. In large and long-living seagrass meadows of the genera Posidonia and Amphibolis there was a lack of, or poor relationship between mud and soil Corg content, related to a higher contribution of seagrass-derived Corg to the sedimentary Corg pool in these meadows. The relatively high soil Corg contents with relatively low mud contents (e.g., mud-Corg saturation) in bare sediments and Zostera, Halodule and Halophila meadows was related to significant allochthonous inputs of terrestrial organic matter, while higher contribution of seagrass detritus in Amphibolis and Posidonia meadows disrupted the correlation expected between soil Corg and mud contents. This study shows that mud is not a universal proxy for blue carbon content in seagrass ecosystems, and therefore should not be applied generally across all seagrass habitats. Mud content can only be used as a proxy to estimate soil Corg content for scaling up purposes when opportunistic and/or low biomass seagrass species (i.e., Zostera, Halodule and Halophila) are present (explaining 34 to 91 % of variability), and in bare sediments (explaining 78 % of the variability). The results obtained could enable robust scaling up exercises at a low cost as part of blue carbon stock assessments.
Diel changes in the near-surface biomass of zooplankton and the carbon content of vertical migrants
NASA Astrophysics Data System (ADS)
Hays, Graeme C.; Harris, Roger P.; Head, Robert N.
Zooplankton biomass and the carbon content of vertical migrants were measured in the NE Atlantic (36.5°N, 19.2°W) between 11 and 18 July 1996 as part of the Plankton Reactivity in the Marine Environment (PRIME) programme. The increase in zooplankton biomass near the surface (0-100 m) at night compared to during the day suggested that diel vertical migration was an important feature at this site. For three species of vertically migrant copepods, Pleuromamma pisekii, P. gracilis and P. abdominalis, the carbon content of individuals collected at dusk was significantly less than for individuals collected at dawn, with this reduction being 6.2, 7.3 and 14.8%, respectively. This dawn-dusk reduction in carbon content is consistent with the diel pattern of feeding and fasting exhibited by vertical migrants and supports the suggestion that migrating zooplankton will cause an active export of carbon from the surface layers.
NASA Astrophysics Data System (ADS)
Sluijs, A.; Roij, L. V.; Frieling, J.; Laks, J.; Reichart, G. J.
2017-12-01
We present the first ever species-specific records of fossil dinoflagellate cyst stable carbon isotope ratios (δ13C). These records across a Paleocene-Eocene Thermal Maximum section in New Jersey were established using a novel coupled laser ablation - isotope ratio mass spectrometer setup. The overall good correspondence with carbonate δ13C records across the characteristic PETM carbon isotope excursion indicates that the δ13C of dissolved inorganic carbon exerts a major control on dinocysts δ13C. Pronounced and consistent differences between species, however, reflect the differential physiological response to changing seawater carbonate chemistry following PETM carbon injection. Moreover, they reflect different habitats or life cycle processes, notably related to bloom intensity. Intriguingly, decreased inter-specimen variability during the PETM in a species that also drops in abundance suggests a more limited niche, either in time (seasonal) or space. This opens a new approach for ecological and evolutionary reconstructions based on organic microfossils.
Fan, Chun-hui; Zhang, Ying-chao; Tang, Ze-heng; Wang, Jia-hong
2015-05-01
Nowadays, the wastewater quantity discharged yearly from tannery industry is around 0. 2 billion t in China. The contaminants of tannery wastewater include macromolecular organic matters, such as grease, fur scraps and collagen, and the alkaline wastewater appears to be of high content of salt and COD. The quality of tannery wastewater is monitored strictly among all kinds of industry wastewater. In the treatment process of tannery wastewater, the quality of inlet and outlet water is generally analyzed. In fact, the transformation behavior of contaminants should be additionally checked to optimize the treatment conditions. Dissolved organic matter (DOM) is commonly existed in water-bodies and helpful to understand the physicochemical characteristics, while the related work should be further studied on tannery wastewater. The approaches of elemental analysis, thermal gravimetric analysis (TG), Fourier infrared spectroscopy (FTIR) and 13C nuclear magnetic resonance (13C NMR) were used to reveal the characteristics of DOM in the treatment process of tannery wastewater. The results showed the carbon content of DOM samples increased gradually, atomic ratios of H/C increased firstly and then decreased, indicating the organic matters were decomposed into chain structures firstly, finally forming the component hard to degraded. The pyrolysis process of DOM mainly proceeded in the regions of 110~530 °C (aliphatic compound, protein, etc. ) and 530~800 °C (aromatic ring, single bond of C-C, etc. ). The functional groups of DOM included -OH, -NH2, C=O and so on, and the aromatic substances were detected, shown from FTIR figures, in the later period of the reaction, caused by the metabolism effect of micro-organism. The content of alkoxy-C increased to the maximum in the second biochemical pond, and the minimum content of aromatic-C appeared in the second biochemical pond, suggesting the transformation behavior of carbon functional groups. The investigation on DOM in tannery wastewater is significant to understand the purification mechanism of contaminants in tannery wastewater.
The effect of CNC and manual laser machining on electrical resistance of HDPE/MWCNT composite
NASA Astrophysics Data System (ADS)
Mohammadi, Fatemeh; Farshbaf Zinati, Reza; Fattahi, A. M.
2018-05-01
In this study, electrical conductivity of high-density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) composite was investigated after laser machining. To this end, produced using plastic injection process, nano-composite samples were laser machined with various combinations of input parameters such as feed rate (35, 45, and 55 mm/min), feed angle with injection flow direction (0°, 45°, and 90°), and MWCNT content (0.5, 1, and 1.5 wt%). The angle between laser feed and injected flow direction was set via either of two different methods: CNC programming and manual setting. The results showed that the parameters of angle between laser line and melt flow direction and feed rate were both found to have statistically significance and physical impacts on electrical resistance of the samples in manual setting. Also, maximum conductivity was seen when the angle between laser line and melt flow direction was set to 90° in manual setting, and maximum conductivity was seen at feed rate of 55 mm/min in both of CNC programming and manual setting.
Han, Wei; Wang, Bing; Zhou, Yan; Wang, De-Xin; Wang, Yan; Yue, Li-Ran; Li, Yong-Feng; Ren, Nan-Qi
2012-04-01
A novel continuous mixed immobilized sludge reactor (CMISR) containing activated carbon as support carrier was used for fermentative hydrogen production from molasses wastewater. When the CMISR system operated at the conditions of influent COD of 2000-6000mg/L, hydraulic retention time (HRT) of 6h and temperature of 35°C, stable ethanol type fermentation was formed after 40days operation. The H(2) content in biogas and chemical oxygen demand (COD) removal were estimated to be 46.6% and 13%, respectively. The effects of organic loading rates (OLRs) on the CMISR hydrogen production system were also investigated. It was found that the maximum hydrogen production rate of 12.51mmol/hL was obtained at OLR of 32kg/m(3)d and the maximum hydrogen yield by substrate consumed of 130.57mmol/mol happened at OLR of 16kg/m(3)d. Therefore, the continuous mixed immobilized sludge reactor (CMISR) could be a promising immobilized system for fermentative hydrogen production. Copyright © 2012 Elsevier Ltd. All rights reserved.
[Hygienic evaluation of direct heating of the air delivered to the shaft].
Velichkovskiĭ, B T; Malikov, Iu K; Troitskaia, N A; Belen'kaia, M A; Sergeeva, N V; Shirokova, O V; Kashanskiĭ, S V; Slyshkina, T V; Simonova, O V; Zykova, V A
2011-01-01
The paper gives the results of exploring a test pre-heating system for the air (APHS) delivered to the shaft. The system has been first used in the Urals. The supply air is heated by burning natural gas in the air current. The APHS system with a RG air heater (000 "Gas-Engineering") is equipped in addition to the existing heaters to enhance heat supply reliability in northern conditions. The data of the studies show that in all periods of the heating season (interseason, moderate frosts, the coldest month), the concentrations of hazardous substances, such as nitric oxides, nitric dioxide, sulfur dioxide, carbon dioxide, benz(a)pyrene, solid aerosol in the shaft-delivered air, do not exceed those given in the existing regulation provided that the design operating conditions are met. With the maximum gas consumption, the coldest month only was marked by the nitric dioxide content being greater than the standard values, causing the maximum projected natural gas consumption to be lower in the APHS system. The air level of nitric dioxide proved to be a major hygiene indicator while using this air heater.
Coal blending preparation for non-carbonized coal briquettes
NASA Astrophysics Data System (ADS)
Widodo; Fatimah, D.; Estiaty, L. M.
2018-02-01
Referring to the national energy policy targets for the years 2025, the government has launched the use of coal briquettes as an alternative energy replacement for kerosene and firewood. Non-carbonized briquettes in the form of coal briquettes as well as bio-coal briquettes are used in many small-medium industries and households, and are rarely used by large industries. The standard quality of coal briquettes used as raw material for non-carbonized briquettes is a minimum calorific value of 4,400 kcal/kg (adb); total sulfur at a maximum of 1% (adb), and water content at <12% (adb). The formation of coal deposits depends on the origin of the coal-forming materials (plants), the environment of deposition, and the geological conditions of the surrounding area, so that the coal deposits in each region will be different as well as the amount and also the quality. Therefore, the quantity and the quality of coal in each area are different to be eligible in the making of briquettes to do blending. In addition to the coal blending, it is also necessary to select the right materials in the making of coal briquettes and bio-coal briquettes. The formulation of the right mixture of material in the making of briquettes, can be produced of good quality and environmental friendly.
Cai, Yijin; Luo, Ying; Xiao, Yong; Zhao, Xiao; Liang, Yeru; Hu, Hang; Dong, Hanwu; Sun, Luyi; Liu, Yingliang; Zheng, Mingtao
2016-12-07
In this paper, we demonstrate that Moringa oleifera branches, a renewable biomass waste with abundant protein content, can be employed as novel precursor to synthesize three-dimensional heteroatom-doped and hierarchical egg-box-like carbons (HEBLCs) by a facile room-temperature pretreatment and direct pyrolysis process. The as-prepared HEBLCs possess unique egg-box-like frameworks, high surface area, and interconnected porosity as well as the doping of heteroatoms (oxygen and nitrogen), endowing its excellent electrochemical performances (superior capacity, high rate capability, and outstanding cycling stability). Therefore, the resultant HEBLC manifests a maximum specific capacitance of 355 F g -1 at current density of 0.5 A g -1 and remarkable rate performance. Moreover, 95% of capacitance retention of HEBLCs can be also achieved after 20 000 charge-discharge cycles at an extremely high current density (20 A g -1 ), indicating a prominent cycling stability. Furthermore, the as-assembled HEBLC//HEBLC symmetric supercapacitor displays a superior energy density of 20 Wh kg -1 in aqueous electrolyte and remarkable capacitance retention (95.6%) after 10 000 charge-discharge cycles. This work provides an environmentally friendly and reliable method to produce higher-valued carbon nanomaterials from renewable biomass wastes for energy storage applications.
Caffeine content of prepackaged national-brand and private-label carbonated beverages.
Chou, K-H; Bell, L N
2007-08-01
Caffeine is a well-known stimulant that is added as an ingredient to various carbonated soft drinks. Due to its stimulatory and other physiological effects, individuals desire to know the exact amount of caffeine consumed from these beverages. This study analyzed the caffeine contents of 56 national-brand and 75 private-label store-brand carbonated beverages using high-performance liquid chromatography. Caffeine contents ranged from 4.9 mg/12 oz (IGA Cola) to 74 mg/12 oz (Vault Zero). Some of the more common national-brand carbonated beverages analyzed in this study with their caffeine contents were Coca-Cola (33.9 mg/12 oz), Diet Coke (46.3 mg/12 oz), Pepsi (38.9 mg/12 oz), Diet Pepsi (36.7 mg/12 oz), Dr Pepper (42.6 mg/12 oz), Diet Dr Pepper (44.1 mg/12 oz), Mountain Dew (54.8 mg/12 oz), and Diet Mountain Dew (55.2 mg/12 oz). The Wal-Mart store-brand beverages with their caffeine contents were Sam's Cola (12.7 mg/12 oz), Sam's Diet Cola (13.3 mg/12 oz), Dr Thunder (30.6 mg/12 oz), Diet Dr Thunder (29.9 mg/12 oz), and Mountain Lightning (46.5 mg/12 oz). Beverages from 14 other stores were also analyzed. Most store-brand carbonated beverages were found to contain less caffeine than their national-brand counterparts. The wide range of caffeine contents in carbonated beverages indicates that consumers would benefit from the placement of caffeine values on food labels.
[Effects of long-term fertilization on pH buffer system of sandy loam calcareous fluvor-aquic soil].
Wang, Ji-Dong; Qi, Bing-Jie; Zhang, Yong-Chun; Zhang, Ai-Jun; Ning, Yun-Wang; Xu, Xian-Ju; Zhang, Hui; Ma, Hong-Bo
2012-04-01
Soil samples (0-80 cm) were collected from a 30-year fertilization experimental site in Xuzhou, Jiangsu Province of East China to study the variations of the pH, calcium carbonate and active calcium carbonate contents, and pH buffer capacity of sandy loam calcareous fluvor-aquic soil under different fertilization treatments. Thirty-year continuous application of different fertilizers accelerated the acidification of topsoil (0-20 cm), with the soil pH decreased by 0.41-0.70. Under different fertilization, the soil pH buffer capacity (pHBC) varied from 15.82 to 21.96 cmol x kg(-1). As compared with no fertilization, single N fertilization decreased the pHBC significantly, but N fertilization combined with organic fertilization could significantly increase the pHBC. The soil pHBC had significant positive correlations with soil calcium carbonate and active calcium carbonate contents, but less correlation with soil organic matter content and soil cation exchange capacity, suggesting that after a long-term fertilization, the sandy loam calcareous fluvor-aquic soil was still of an elementary calcium carbonate buffer system, and soil organic matter and cation exchange capacity contributed little to the buffer system. The soil calcium carbonate and active calcium carbonate contents were greater in 0-40 cm than in 40-80 cm soil layer. Comparing with soil calcium carbonate, soil active calcium carbonate was more sensitive to reflect the changes of soil physical and chemical properties, suggesting that the calcium carbonate buffer system could be further classified as soil active calcium carbonate buffer system.
Changes in soil characteristics and C dynamics after mangrove clearing (Vietnam).
Grellier, Séraphine; Janeau, Jean-Louis; Dang Hoai, Nhon; Nguyen Thi Kim, Cuc; Le Thi Phuong, Quynh; Pham Thi Thu, Thao; Tran-Thi, Nhu-Trang; Marchand, Cyril
2017-09-01
Of the blue carbon sinks, mangroves have one of the highest organic matter (OM) storage capacities in their soil due to low mineralization processes resulting from waterlogging. However, mangroves are disappearing worldwide because of demographic increases. In addition to the loss of CO 2 fixation, mangrove clearing can strongly affect soil characteristics and C storage. The objectives of the present study were to quantify the evolution of soil quality, carbon stocks and carbon fluxes after mangrove clearing. Sediment cores to assess physico-chemical properties were collected and in situ CO 2 fluxes were measured at the soil-air interface in a mangrove of Northern Vietnam. We compared a Kandelia candel mangrove forest with a nearby zone that had been cleared two years before the study. Significant decrease of clay content and an increase in bulk density for the upper 35cm in the cleared zone were observed. Soil organic carbon (OC) content in the upper 35cm decreased by >65% two years after clearing. The quantity and the quality of the carbon changed, with lower carbon to nitrogen ratios, indicating a more decomposed OM, a higher content of dissolved organic carbon, and a higher content of inorganic carbon (three times higher). This highlights the efficiency of mineralization processes following clearing. Due to the rapid decrease in the soil carbon content, CO 2 fluxes at sediment interface were >50% lower in the cleared zone. Taking into account carbonate precipitation after OC mineralization, the mangrove soil lost ~10MgOCha -1 yr -1 mostly as CO 2 to the atmosphere and possibly as dissolved forms towards adjacent ecosystems. The impacts on the carbon cycle of mangrove clearing as shown by the switch from a C sink to a C source highlight the importance of maintaining these ecosystems, particularly in a context of climate change. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hollis, C. J.; Crouch, E. M.; Dickens, G. R.
2004-12-01
Four sections in eastern New Zealand provide the only South Pacific record of the initial Eocene thermal maximum (IETM): a siliciclastic outer shelf section (Tawanui, Hawkes Bay) and three pelagic-hemipelagic sections forming an outer shelf-upper slope transect across a carbonate ramp (Muzzle, Dee and Mead Streams, Clarence Valley). Although the rocks are too indurated to yield reliable oxygen isotope data, the IETM is identified by bulk carbonate carbon isotopes as a sharp negative excursion followed by gradual recovery over 0.6 to 4.0 m. In all sections, the excursion is mirrored by terrigenous sediment concentration, due to reduced biogenic (carbonate and silica) input and increased terrigenous input. Increased precipitation under warm humid conditions appears to have increased terrestrial discharge, recorded by deposition of smectitic marl in pelagic settings and illite/kaolinite-bearing smectitic mudstone in neritic settings. Eutrophic conditions are inferred for the IETM interval at Tawanui based on dysoxia, carbonate dissolution, an acme for the peridinioid dinocyst Apectodinium and abundant Toweius spp in nannofossil assemblages. Continued abundance of Toweius and replacement of Apectodinium by peridinioids of the Deflandrea complex suggests that eutrophic, albeit cooler, conditions persisted for at least 0.5 Ma after the IETM. In contrast, the IETM in Clarence Valley is marked by reduced biogenic silica content but little change in carbonate, and no evidence for carbonate dissolution. Sparse, poorly preserved palynomorphs assemblages suggest organic matter was oxidised under fully oxic conditions. Reduced numbers of upwelling indicators in the siliceous microfossil assemblage and common warm-water planktic foraminifera (Morozovella spp.), nannoplankton (Discoaster spp.) and radiolarians (e.g. Podocyrtis and Theocorys spp.) signal a switch from eutrophic to oligotrophic conditions and significant warming of near-surface waters. A progressive increase in neritic symbiotrophes within the radiolarian assemblage during the IETM recovery phase suggests warm, stratified, oligotrophic oceanic conditions. Radiolarians are scarce and upwelling indicators are very rare in sediments overlying the IETM. In the Southwest Pacific, global warming during the IETM increased terrestrial discharge, which enhanced productivity in shallow marine environments. Reduced productivity in deeper marine settings may have been caused by the poleward expansion of oligotrophic subtropical surface waters, impinging on a southern cyclonic system that had promoted upwelling along the eastern New Zealand margin through the Paleocene. Little evidence is found for local plankton productivity having a role in the gradual decrease in global temperatures that defines the upper IETM.
Structural Evolution of Q-Carbon and Nanodiamonds
NASA Astrophysics Data System (ADS)
Gupta, Siddharth; Bhaumik, Anagh; Sachan, Ritesh; Narayan, Jagdish
2018-04-01
This article provides insights pertaining to the first-order phase transformation involved in the growth of densely packed Q-carbon and nanodiamonds by nanosecond laser melting and quenching of diamond-like carbon (DLC) thin films. DLC films with different sp 3 content were melted rapidly in a controlled way in super-undercooled state and quenched, leading to formation of distinct nanostructures, i.e., nanodiamonds, Q-carbon, and Q-carbon nanocomposites. This analysis provides direct evidence of the dependence of the super-undercooling on the structural evolution of Q-carbon. Finite element heat flow calculations showed that the super-undercooling varies monotonically with the sp 3 content. The phenomenon of solid-liquid interfacial instability during directional solidification from the melt state is studied in detail. The resulting lateral segregation leads to formation of cellular filamentary Q-carbon nanostructures. The dependence of the cell size and wavelength at the onset of instability on the sp 3 content of DLC thin films was modeled based on perturbation theory.
NASA Astrophysics Data System (ADS)
Luo, Y.; Boudreau, B. P.; Dickens, G. R.; Sluijs, A.; Middelburg, J. J.
2015-12-01
Carbon dioxide (CO2) release during the Paleocene-Eocene Thermal Maximum (PETM, 55.8 Myr BP) acidified the oceans, causing a decrease in calcium carbonate (CaCO3) preservation. During the subsequent recovery from this acidification, the sediment CaCO3 content came to exceed pre-PETM values, known as over-deepening or over-shooting. Past studies claim to explain these trends, but have failed to reproduce quantitatively the time series of CaCO3 preservation. We employ a simple biogeochemical model to recreate the CaCO3 records preserved at Walvis Ridge of the Atlantic Ocean. Replication of the observed changes, both shallowing and the subsequent over-deepening, requires two conditions not previously considered: (1) limited deep-water exchange between the Indo-Atlantic and Pacific oceans and (2) a ~50% reduction in the export of CaCO3 to the deep sea during acidification. Contrary to past theories that attributed over-deepening to increased riverine alkalinity input, we find that over-deepening is an emergent property, generated at constant riverine input when attenuation of CaCO3 export causes an unbalanced alkalinity input to the deep oceans (alkalinization) and the development of deep super-saturation. Restoration of CaCO3 export, particularly in the super-saturated deep Indo-Atlantic ocean, later in the PETM leads to greater accumulation of carbonates, ergo over-shooting, which returns the ocean to pre-PETM conditions over a time scale greater than 200 kyr. While this feedback between carbonate export and the riverine input has not previously been considered, it appears to constitute an important modification of the classic carbonate compensation concept used to explain oceanic response to acidification.
Emission of Carbon Dioxide Influenced by Different Water Levels from Soil Incubated Organic Residues
Hossain, M. B.; Puteh, A. B.
2013-01-01
We studied the influence of different organic residues and water levels on decomposition rate and carbon sequestration in soil. Organic residues (rice straw, rice root, cow dung, and poultry litter) including control were tested under moistened and flooding systems. An experiment was laid out as a complete randomized design at 25°C for 120 days. Higher CO2-C (265.45 mg) emission was observed in moistened condition than in flooding condition from 7 to 120 days. Among the organic residues, poultry litter produced the highest CO2-C emission. Poultry litter with soil mixture increased 121% cumulative CO2-C compared to control. On average, about 38% of added poultry litter C was mineralized to CO2-C. Maximum CO2-C was found in 7 days after incubation and thereafter CO2-C emission was decreased with the increase of time. Control produced the lowest CO2-C (158.23 mg). Poultry litter produced maximum cumulative CO2-C (349.91 mg). Maximum organic carbon was obtained in cow dung which followed by other organic residues. Organic residues along with flooding condition decreased cumulative CO2-C, k value and increased organic C in soil. Maximum k value was found in poultry litter and control. Incorpored rice straw increased organic carbon and decreased k value (0.003 g d−1) in soil. In conclusion, rice straw and poultry litter were suitable for improving soil carbon. PMID:24163626
Modelling and Validating Agricultural Biomass Potentials in Germany and Austria using BETHY/DLR
NASA Astrophysics Data System (ADS)
Tum, Markus; Niklaus, Markus; Günther, Kurt P.
2010-05-01
Using process models to describe the carbon uptake by vegetation (Net Primary Production, NPP), has become an important tool to study the mechanisms of carbon exchange and to quantify the magnitude of terrestrial carbon sinks and sources. The German Remote Sensing Data Center (DFD) is operating the modified model BETHY/DLR (Biosphere Energy Transfer Hydrology Model) to simulate the carbon cycle in vegetated areas to estimate the NPP for different regions on regional to national scales. BETHY/DLR belongs to the family of dynamic vegetation models, which primarily compute the photosynthetic rate of vegetation types, taking into account the water balance and the radiative energy transfer between atmosphere, soil and vegetation. To determine NPP the amount of the cumulative plant maintenance respiration has to be subtracted from the Gross Primary Productivity (GPP), which is the output value of BETHY/DLR and is calculated daily. The model is driven by remote sensing data and meteorological data. As remotely sensed datasets time series about the Leaf Area Index (LAI), which describes the condition of the vegetation, and a land cover classification (GLC2000), which provides information about the type of land use, are needed. In addition meteorological datasets are used, i.e. precipitation, cloud cover, temperature and dew point temperature in 2m height, soil water content and wind speed, which are derived from the European Centre for Medium range Weather Forecast (ECMWF). They have a spatial resolution of about 0.5° x 0.5° and a temporal resolution of up to four times a day. The information about the soil water content of the four upper layers is used to initialize the soil water balance. It could be proven that in general a spin up phase of about one year is needed to reach equilibrium. Thenceforward the soil water content is computed dynamically. Photosynthetic active radiation is estimated considering the low, medium and high cloud coverage in conjunction with the solar zenith angle. Information about the vegetation condition are delivered by time series of LAI, which are currently derived from SPOT-VEGETATION data available in a spatial resolution of 1km x 1km as so called 10-day composites. Land cover information is also derived from VEGETATION data (Global Land Cover 2000, GLC2000). The GLC2000 is representative for the year 2000 and provides 24 vegetation classes, which have to be translated into the currently 33 inherent vegetation types of BETHY/DLR, differing in plant-physiologic parameters, i.e. the maximum electron transport rate and the maximum carboxylation rate, as well as the plant height and rooting depth. In order to validate the modelled NPP, data of crop yield estimates derived from national statistics of Germany and Austria are used to calculate above and below ground biomass by using conversion factors of corn to straw and leaf to beet relations. Furthermore conversion factors of above to below ground biomass are used. Finally the carbon content of dry matter is estimated. To correlate the modelled data with statistical results, they are aggregated to NPP per administrative district (NUTS-3 level). With this method a coefficient of determination (r²) of about 0.67 combined with a slope of 0.83 is found for Germany. For Austrian NUTS-3 units an even slightly higher coefficient of determination is found (0.74) combined with a slope of 1.08. The results show that modelling NPP using the process model BETHY/DLR and remote sensing data and meteorological data as input delivers reliable estimates of above ground biomass when common agricultural conversion factors are taking into account.
NASA Astrophysics Data System (ADS)
Smit, Karen V.; Stachel, Thomas; Stern, Richard A.; Shirey, Steven B.; Steele, Andrew
2017-04-01
Traditional models for diamond formation within the lithospheric mantle invoke either carbonate reduction or methane oxidation. Both these mechanisms require some oxygen exchange with the surrounding wall-rock at the site of diamond precipitation. However, peridotite does not have sufficient buffering capacity to allow for diamond formation via these traditional models and instead peridotitic diamonds may form through isochemical cooling of H2O-rich CHO fluids [1]. Marange mixed-habit diamonds from eastern Zimbabwe provide the first natural confirmation of this new diamond growth model [2]. Although Marange diamonds do not contain any silicate or sulphide inclusions, they contain Ni-N-vacancy complexes detected through photoluminescence (PL) spectroscopy that suggest the source fluids equilibrated in the Ni-rich depleted peridotitic lithosphere. Cuboid sectors also contain abundant micro-inclusions of CH4, the first direct observation of reduced CH4-rich fluids that are thought to percolate through the lithospheric mantle [2]. In fluid inclusion-free diamonds, core-to-rim trends in δ13C and N content are used to infer the speciation of the diamond-forming fluid. Core to rim trends of increasing δ13C with decreasing N content are interpreted as diamond growth from oxidized CO2- or carbonate-bearing fluids. Diamond growth from reduced species should show the opposite trends - decreasing δ13C from core to rim with decreasing N content. Within the CH4-bearing growth sectors of Marange diamonds, however, such a 'reduced' trend is not observed. Rather, δ13C increases from core to rim within a homogeneously grown zone [2]. These contradictory observations can be explained through either mixing between CH4- and CO2-rich end-members of hydrous fluids [2] or through closed system precipitation from an already mixed CH4-CO2 H2O-maximum fluid with XCO2 (CO2/[CO2+CH4]) between 0.3 and 0.7 [3]. These results demonstrate that Marange diamonds precipitated from cooling CH4-CO2-bearing hydrous fluids rather than through redox buffering. As this growth mechanism applies to both the fluid-rich cuboid and gem-like octahedral sectors of Marange diamonds, a non-redox model for diamond formation from mixed CH4-CO2 fluids is indicated for a wider range of gem-quality peridotitic diamonds. Indeed, at the redox conditions of global diamond-bearing lithospheric mantle (FMQ -2 to -4; [4]), CHO fluids are strongly water-dominated and contain both CH4 and CO2 as dominant carbon species [5]. By contrast diamond formation in eclogitic assemblages, through either redox buffering or cooling of carbon-bearing fluids, is not as well constrained. Zimmi diamonds from the West African craton have eclogitic sulphide inclusions (with low Ni and high Re/Os) and formed at 650 Ma, overlapping with the timing of subduction [6]. In one Zimmi diamond, a core to rim trend of decreasing δ13C (-23.4 to -24.5 ) and N content is indicative of formation from reduced C2H6/CH4-rich fluids, likely derived from oceanic crust recycled during Neoproterozoic subduction. Unlike mixed CH4-CO2 fluids near the water maximum, isochemical cooling or ascent of such reduced CHO fluids is not effficient at diamond precipitation. Furthermore, measurable carbon isotopic variations in diamond are not predicted in this model and therefore cannot be reconciled with the ˜1 ‰ internal variation seen. Consequently, this Zimmi eclogitic diamond likely formed through redox buffering of reduced subduction-related fluids, infiltrating into sulphide-bearing eclogite. References 1. Luth and Stachel, 2014. CMP, 168, 1083 2. Smit et al., 2016. Lithos, 265, 68-81 3. Stachel et al., in review 4. Stagno et al., 2013. Nature, 493, 84-88 5. Zhang and Duan, 2009. GCA 73, 2089-2102 6. Smit et al., 2016. Precamb Res, 286, 152-166
NASA Astrophysics Data System (ADS)
Raimbault, P.; Garcia, N.; Cerutti, F.
2007-08-01
The BIOSOPE cruise of the RV Atalante was devoted to study the biogeochemical properties in the South Pacific between the Marquesas Islands (141° W-8° S) and the Chilean upwelling (73° W-34° S). The 8000 km cruise had the opportunity to encounter different trophic situations, and especially strong oligotrophic conditions in the Central South Pacific Gyre (SPG, between 123° W and 101° W). In this isolated region, nitrate was undetectable between surface and 160-180 m, while regenerated nitrogen (nitrite and ammonium) only revealed some traces (<20 nmoles l-1), even in the subsurface maximum. Integrated nitrate over the photic layer, which reached 165 m, was close to zero. In spite of this severe nitrogen-depletion, phosphate was always present at significant concentrations (≍0.1 μmoles l-1), while silicate maintained at low but classical oceanic levels (≍1 μmoles l-1). In contrast, the Marquesas region (MAR) at west and Chilean upwelling (UPW) at east were characterized by large nutrient contents one hundred to one thousand fold higher than in the SPG. Distribution of surface chlorophyll concentration reflected this gradient of nitrate availability. The lowest value (0.023 nmoles l-1) was measured in the centre of the SPG, where integrated chlorophyll over the photic layer was very weak (≍10 mg m-2), since a great part (up to 50%) of the deep chlorophyll maximum (DCM) was located below the 1% light. But, because of the relative high concentration encountered in the DCM (0.2 μg l-1), chlorophyll a content over the photic layer varied much less (by a factor 2 to 5) than the nitrate content. In contrast to chlorophyll a, integrated content of particulate organic matter (POM) remained more or less constant along the investigated area (500 mmoles m-2, 60 mmoles m-2 and 3.5 mmoles m-2 for particulate organic carbon, particulate organic nitrogen and particulate organic phosphorus, respectively), except in the upwelling where values were two fold higher. Extensive comparison has shown that glass fiber GF/F filters efficiency collected particulate chlorophyll, while a significant fraction of POM (up to 50%) passed trough this filter and was retained by 0.2 μm Teflon membrane. The most striking feature was the large accumulation of dissolved organic matter (DOM) in the SPG relative to surrounding waters, especially dissolved organic carbon (DOC) where concentrations were at levels rarely measured in oceanic waters (>100 μmoles l-1). Due to this large pool of DOM over the whole photic layer of the SPG, integrated values followed an opposite geographical pattern than this of inorganic nutrients with a large accumulation within the centre of the SPG. While suspended particulate matter in the mixed layer had C/N ratio largely conform to Redfield stoichiometry (C/N≍6.6), marked deviations were observed in this excess DOM (C/N≍16 to 23). The existence of C-rich dissolved organic matter is recognized as a feature typical of oligotrophic waters, requiring the over consumption of carbon. Thus, in spite of strong nitrate-depletion leading to low chlorophyll biomass, the closed ecosystem of the SPG can produce a large amount of carbon. The implications of this finding are discussed, the conclusion being that, due to the lack of seasonal vertical mixing and weak lateral advection, the dissolved organic carbon biologically produced can be accumulated and stored in the photic layer for a very long period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, R.A.; Quincy, R.B.; Guerin, M.R.
The tar, nicotine, carbon monoxide, and carbon dioxide contents of the smokes of 220 brands of foreign commercial cigarettes are reported. In some instances, filter cigarettes of certain brands were found to deliver as much or more smoke constituents than their nonfilter counterparts. Also, data indicated that there can be a great variation in the tar, nicotine, or carbon monoxide content of the smoke of samples of a given brand of cigarettes, depending on the nation in which they are purchased. 24 tables.
Ma, Li; Yang, Lin-Zhang; Ci, En; Wang, Yan; Yin, Shi-Xue; Shen, Ming-Xing
2008-09-01
Soil samples were collected from an experimental paddy field with long-term (26 years) fertilization in Taihu Lake region of Jiangsu Province to study the effects of different fertilization on the organic carbon distribution and stable carbon isotope natural abundance (delta 13C) in the soil profile, and on the humus composition. The results showed that long-term fertilization increased the organic carbon content in top soil significantly, and there was a significantly negative exponential correlation between soil organic carbon content and soil depth (P < 0.01). The organic carbon content in 10-30 cm soil layer under chemical fertilizations and in 20-40 cm soil layer under organic fertilizations was relatively stable. Soil delta 13C increased gradually with soil depth, its variation range being from -24% per thousand to -28 per thousand, and had a significantly negative linear correlation with soil organic carbon content (P < 0.05). In 0-20 cm soil layer, the delta 13C in treatments organic manure (M), M + NP, M + NPK, M + straw (R) + N, and R + N decreased significantly; while in 30-50 cm soil layer, the delta 13C in all organic fertilization treatments except R + N increased significantly. Tightly combined humus (humin) was the main humus composition in the soil, occupying 50% or more, and the rest were loosely and stably combined humus. Long-term fertilization increased the content of loosely combined humus and the ratio of humic acid (HA) to fulvic acid (FA).
Song, Mingming; Pei, Haiyan
2018-05-10
To overcome the bottlenecks of high cost and low production yields that restrict the commercial production of microalgae biodiesel, the use of xylose was evaluate by Scenedesmus quadricauda FACHB-1297, which was shown to be capable of mixotrophic and heterotrophic growth and lipid production on xylose, rich in the waste streams from pulp and paper industry, with increases in lipid productivities of 35.8-fold (mixotrophic) and 9.2-fold (heterotrophic) in comparison to photoautotrophic lipid yields. Five doses of xylose were tested to determine the effects and mechanisms of the carbon source on microalgae in mixotrophic mode. At the optimal xylose dosage of 4 g/L, the highest lipid content (38.61%) and productivity (139.55 mg/L/d) were achieved besides maximum biomass productivity (361.4 mg/L/d), nutrient removal efficiency of 68.4% (nitrogen), 97.2% (phosphorus) and 35.2% (xylose). Those indicated that S. quadricauda FACHB-1297 was suitable for further development of using xylose from certain waste streams for biofuel production. Copyright © 2018 Elsevier Ltd. All rights reserved.
High Performance Shape Memory Epoxy/Carbon Nanotube Nanocomposites.
Liu, Yayun; Zhao, Jun; Zhao, Lingyu; Li, Weiwei; Zhang, Hui; Yu, Xiang; Zhang, Zhong
2016-01-13
A series of shape memory nanocomposites based on diglycidyl ether of bisphenol A (DGEBA) E51/methylhexahydrophthalic anhydride (MHHPA)/multiwalled carbon nanotube (MWCNT) with various stoichiometric ratios (rs) of DGEBA/MHHPA from 0.5 to 1.2 and filler contents of 0.25 and 0.75 wt % are fabricated. Their morphology, curing kinetics, phase transition, mechanical properties, thermal conduction, and shape memory behaviors are systematically investigated. The prepared materials show a wide range of glass transition temperatures (Tg) of ca. 65-140 °C, high flexural modulus (E) at room temperature up to ca. 3.0 GPa, high maximum stress (σm) up to ca. 30 MPa, high strain at break (εb) above 10%, and a fast recovery of 32 s. The results indicate that a small amount of MWCNT fillers (0.75 wt %) can significantly increase all three key mechanical properties (E, σm, and εb) at temperatures close to Tg, the recovery rate, and the repetition stability of the shape memory cycles. All of these remarkable advantages make the materials good candidates for the applications in aerospace and other important fields.
[Effects of furfural on the growth and lipid production of oleaginous yeast Rhodotorula glutinis].
Yong, Zihan; Zhang, Xu; Tan, Tianwei
2015-10-01
In order to illustrate the effects of furfural, one of the most common inhibitory compounds in lignocellulosic hydrolysate, on oleaginous yeast Rhodotorula glutinis, we investigated the effects of different concentrations of furfural (0.1, 0.4, 0.6 and 1.5 g/L) on the biomass and lipid production of R. glutinis, as well as the effects of 1.0 g/L furfural on the utilization of glucose and xylose. Results showed that: when the furfural concentration reached 1.5 g/L, the lag phrase time was extended to 96 h, and the residual glucose was up to 17.7 g/L, with maximum biomass of only 6.6 g/L, which accounted for 47% of that in the basic medium (furfural-free), and the corresponding lipid content was reduced about 50%. Furfural showed lighter inhibitory degree on R. glutinis when xylose acted as the carbon source than glucose was the carbon source; more C18 fatty acids or unsaturated C18 fatty acids were generated in the presence of furfural.
In situ gas fuel production during the treatment of textile wastewater at supercritical conditions.
Kıpçak, Ekin; Akgün, Mesut
2013-01-01
Supercritical water gasification has recently received much attention as a potential alternative to energy conversion methods applied to aqueous/non-aqueous biomass sources, industrial wastes or fossil fuels such as coal because of the unique physical properties of water above its critical conditions (i.e. 374.8 °C and 22.1 MPa). This paper presents the results obtained for the hydrothermal gasification of textile wastewater at supercritical conditions. The experiments were carried out at five reaction temperatures (between 450 and 650 °C) and five reaction times (between 30 and 150 s), under a constant pressure of 25 MPa. It was found that the gaseous products contained considerable amounts of hydrogen, carbon monoxide, carbon dioxide, and C(1)-C(4) hydrocarbons, such as methane, ethane, propane and propylene. The maximum amount of the obtained gaseous product was 1.23 mL per mL textile wastewater, at a reaction temperature of 600 °C, with a reaction time of 150 s. At this state, the product comprised 13.02% hydrogen, 38.93% methane, 4.33% ethane, 0.10% propane, 0.01% propylene, 7.97% carbon monoxide, 27.22% carbon dioxide and 8.00% nitrogen. In addition, a 62.88% decrease in the total organic carbon (TOC) content was observed and the color of the wastewater was removed. Moreover, for the hydrothermal decomposition of the textile wastewater, a first-order reaction rate was designated with an activation energy of 50.42 (±2.33) kJ/mol and a pre-exponential factor of 13.29 (±0.41) s(-1).
NASA Astrophysics Data System (ADS)
Destyorini, Fredina; Indriyati; Indayaningsih, Nanik; Prihandoko, Bambang; Zulfia Syahrial, Anne
2018-03-01
The carbon composite papers were produced by utilizing carbon materials from coconut coir. In the present work, carbon composite papers (CCP) were prepared by mixing carbon materials in the form of powder and fibre with polymer (ethylene vinyl acetate and polyethylene glycol) in xylene at 100°C. Then, polytetrafluoroethylene (PTFE) with different content was used to treat the surface of CCP. The properties of PTFE-coated CCP were analysed by means of contact angle measurement, tensile testing, porosity, density, and electrical conductivity measurements. As expected, all CCP’s surfaces treated with PTFE were found to be hydrophobic with contact angle >120° and relatively constant during 60 minutes measurement. Furthermore, water contact angle, density, and mechanical properties of CCP generally increase with increasing PTFE content. However, the porosity and electrical conductivity of CCP decrease slightly as the PTFE content increased from 0 wt% to 30 wt%. Based on the observation and analysis, the optimum PTFE content on CCP was 20 %, in which the mechanical properties and hydrophobicity behaviour were improved significantly, but it was only caused a very small drop in porosity and electrical conductivity
NASA Astrophysics Data System (ADS)
Lin, Xiaomei; Chang, Penghui; Chen, Gehua; Lin, Jingjun; Liu, Ruixiang; Yang, Hao
2015-11-01
Our recent work has determined the carbon content in a melting ferroalloy by laser-induced breakdown spectroscopy (LIBS). The emission spectrum of carbon that we obtained in the laboratory is suitable for carbon content determination in a melting ferroalloy but we cannot get the expected results when this method is applied in industrial conditions: there is always an unacceptable error of around 4% between the actual value and the measured value. By comparing the measurement condition in the industrial condition with that in the laboratory, the results show that the temperature of the molten ferroalloy samples to be measured is constant under laboratory conditions while it decreases gradually under industrial conditions. However, temperature has a considerable impact on the measurement of carbon content, and this is the reason why there is always an error between the actual value and the measured value. In this paper we compare the errors of carbon content determination at different temperatures to find the optimum reference temperature range which can fit the requirements better in industrial conditions and, hence, make the measurement more accurate. The results of the comparative analyses show that the measured value of the carbon content in molten state (1620 K) is consistent with the nominal value of the solid standard sample (error within 0.7%). In fact, it is the most accurate measurement in the solid state. Based on this, we can effectively improve the accuracy of measurements in laboratory and can provide a reference standard of temperature for the measurement in industrial conditions. supported by National Natural Science Foundation of China (No. 51374040), and supported by Laser-Induced Plasma Spectroscopy Equipment Development and Application, China (No. 2014YQ120351)
The earthworm gut: an ideal habitat for ingested N2O-producing microorganisms.
Horn, Marcus A; Schramm, Andreas; Drake, Harold L
2003-03-01
The in vivo production of nitrous oxide (N(2)O) by earthworms is due to their gut microbiota, and it is hypothesized that the microenvironment of the gut activates ingested N(2)O-producing soil bacteria. In situ measurement of N(2)O and O(2) with microsensors demonstrated that the earthworm gut is anoxic and the site of N(2)O production. The gut had a pH of 6.9 and an average water content of approximately 50%. The water content within the gut decreased from the anterior end to the posterior end. In contrast, the concentration of N(2)O increased from the anterior end to the mid-gut region and then decreased along the posterior part of the gut. Compared to the soil in which worms lived and fed, the gut of the earthworm was highly enriched in total carbon, organic carbon, and total nitrogen and had a C/N ratio of 7 (compared to a C/N ratio of 12 in soil). The aqueous phase of gut contents contained up to 80 mM glucose and numerous compounds that were indicative of anaerobic metabolism, including up to 9 mM formate, 8 mM acetate, 3 mM lactate, and 2 mM succinate. Compared to the soil contents, nitrite and ammonium were enriched in the gut up to 10- and 100-fold, respectively. The production of N(2)O by soil was induced when the gut environment was simulated in anoxic microcosms for 24 h (the approximate time for passage of soil through the earthworm). Anoxia, high osmolarity, nitrite, and nitrate were the dominant factors that stimulated the production of N(2)O. Supplemental organic carbon had a very minimal stimulatory effect on the production of N(2)O, and addition of buffer or ammonium had essentially no effect on the initial N(2)O production rates. However, a combination of supplements yielded rates greater than that obtained mathematically for single supplements, suggesting that the maximum rates observed were due to synergistic effects of supplements. Collectively, these results indicate that the special microenvironment of the earthworm gut is ideally suited for N(2)O-producing bacteria and support the hypothesis that the in situ conditions of the earthworm gut activate ingested N(2)O-producing soil bacteria during gut passage.
NASA Astrophysics Data System (ADS)
Hajdas, Irka
2017-04-01
Radiocarbon (14C) is a naturally produced radioactive isotope of carbon (T1/2=5700 yrs), which is continuously produced in the atmosphere. This occur in a reaction of thermal neutrons, which are secondary particles, products of cosmic rays reactions with the atmosphere, with nitrogen that is commonly present in the atmosphere. Until the mid 19th century the natural concentration showed temporal variability around the mean value (14C / 12C ratio =1.8 x 10-12). However anthropogenic activity created 2 types effects that are changing the 14C concentration of the atmosphere. Industrial revolution triggered adding 14C free (old) carbon that originates from the burning of fossil fuels (Suess effect). This in the late 19th century and early 20th century atmosphere was becoming older. The nuclear tests in the 1950ties caused additional production of radiocarbon atoms (artificial). The effect has been almost double of the natural production and created an excess 14C activity in the atmosphere and in terrestrial carbon bearing materials. The bomb produced 14C has been identified soon after the tests started but the peak (ca. 100% above the normal levels) reached its maximum in 1963 in the northern Hemisphere where most of the tests took place. In the southern Hemisphere the bomb peak reached lower values (ca. 80 % of normal level) and was delayed by ca. 2 years. After the ban on nuclear tests the atmospheric 14C content began to decrease mainly due to the uptake by the ocean but also due to the above mentioned addition old carbon. Continuous monitoring of the atmospheric 14C ratio during the years that followed the nuclear tests, provide basis for environmental studies. Applications range from studies of ocean circulation, CO2 uptake, carbon storage in soils and peat, root turn over time to the medical, forensic and detection of forgeries. However, the so called ' 14C bomb peak' nearly disappeared due to the combined effect of ocean uptake of CO2 and an input to the atmosphere of the '14C-free' carbon dioxide. This paper will discuss effects that the ongoing change in atmospheric 14C has on geochronologies of the most recent deposits and future anthropogenic records.
Shao, Xuexin; Yang, Wenying; Wu, Ming
2015-01-01
Soil labile organic carbon and soil enzymes play important roles in the carbon cycle of coastal wetlands that have high organic carbon accumulation rates. Soils under three vegetations (Phragmites australis, Spartina alterniflora, and Scirpusm mariqueter) as well as bare mudflat in Hangzhou Bay wetland of China were collected seasonally. Seasonal dynamics and correlations of soil labile organic carbon fractions and soil enzyme activities were analyzed. The results showed that there were significant differences among vegetation types in the contents of soil organic carbon (SOC) and dissolved organic carbon (DOC), excepting for that of microbial biomass carbon (MBC). The P. australis soil was with the highest content of both SOC (7.86 g kg-1) and DOC (306 mg kg-1), while the S. mariqueter soil was with the lowest content of SOC (6.83 g kg-1), and the bare mudflat was with the lowest content of DOC (270 mg kg-1). Soil enzyme activities were significantly different among vegetation types except for urease. The P. australis had the highest annual average activity of alkaline phosphomonoesterase (21.4 mg kg-1 h-1), and the S. alterniflora had the highest annual average activities of β-glycosidase (4.10 mg kg-1 h-1) and invertase (9.81mg g-1 24h-1); however, the bare mudflat had the lowest activities of alkaline phosphomonoesterase (16.2 mg kg-1 h-1), β-glycosidase (2.87 mg kg-1 h-1), and invertase (8.02 mg g-1 24h-1). Analysis also showed that the soil labile organic carbon fractions and soil enzyme activities had distinct seasonal dynamics. In addition, the soil MBC content was significantly correlated with the activities of urease and β-glucosidase. The DOC content was significantly correlated with the activities of urease, alkaline phosphomonoesterase, and invertase. The results indicated that vegetation type is an important factor influencing the spatial-temporal variation of soil enzyme activities and labile organic carbon in coastal wetlands. PMID:26560310
Wang, Li; Li, Jun; Li, Juan; Bai, Wei-Xia
2014-03-01
A field experiment on effects of tillage rotation and fertilization on corn continuous cropping-practiced lands was carried out in Heyang of Shaanxi in 2007-2012. The tillage types included annual rotation of no-tillage and subsoiling (NT-ST), subsoiling and conventional tillage (ST-CT), or conventional tillage and no-tillage (CT-NT), and yearly practice of no tillage (NT-NT), subsoiling (ST-ST) or conventional tillage (CT-CT). The fertilization treatments included balanced fertilization, low-rate fertilization and conventional fertilization, which were separately practiced against the different tillage types. The experiment investigated compositions, mean mass diameters (MWD), geometrical mean diameters (GMD) and fraction dimension numbers (D) of soil aggregates in 0-40 cm soil and contents of organic carbon in 0-60 cm soil. The results indicated that: 1) The increased tillage intensity caused the reduced mechanical stability and content of soil aggregates and increased soil organic carbon loss. No-tillage or tillage rotation increased the MWD, GMD and contents of soil organic carbon and soil aggregates with diameters of more than 0.25 mm, but decreased D. Under the same fertilization treatment, the contents of soil aggregates with diameters of more than 0.25 mm were ranked in the order of NT-NT>NT-ST>NT-CT>ST-ST>CT-ST>CT-CT, and under the same tillage rotations, the soil aggregates were more stable with the balanced or low- rate fertilization than with the conventional fertilization. 2) Mathematical fractal dimension fitting of soil aggregates indicated that the fractal dimension numbers of soil aggregates ranged within 2.247-2.681 by dry sieving and 2.897-2.976 by wet sieving. In 0-30 cm soil, the fractal dimension numbers of soil aggregates were significantly lower under no-tillage or tillage rotation than under conventional tillage, and in 0-40 cm soil, the fractal dimensions of soil aggregates increased with soil depth, and tended to stabilize at the soil depth of 40 cm. 3) The different fertilization treatments exerted significantly different influences on the contents of soil organic carbon (P < 0.05), which tended to decline with soil depth. Compared to the conventional fertilization, the balanced fertilization increased the content of soil organic carbon by 6.9%, and the contents of soil organic carbon increased as the diameters of soil aggregates increased. The correlation analysis showed that the contents of soil aggregates with diameters of 0.25-2 mm significantly affected the content of soil organic carbon, with the coefficient of determination being 0.848 (P < 0.01).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr; Kraiem, T.; Département de Géologie, Université de Tunis, 2092, Tunis
Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. Themore » maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.« less
NASA Technical Reports Server (NTRS)
Goesele, U.; Ast, D. G.
1983-01-01
Some background information on intrinsic point defects is provided and on carbon and oxygen in silicon in so far as it may be relevant for the efficiency of solar cells fabricated from EFG ribbon material. The co-precipitation of carbon and oxygen and especially of carbon and silicon self interstitials are discussed. A simple model for the electrical activity of carbon-self-interstitial agglomerates is presented. The self-interstitial content of these agglomerates is assumed to determine their electrical activity and that both compressive stresses (high self-interstitial content) and tensile stresses (low self-interstitial content) give rise to electrical activity of the agglomerates. The self-interstitial content of these carbon-related agglomerates may be reduced by an appropriate high temperature treatment and enhanced by a supersaturation of self-interstitials generated during formation of the p-n junction of solar cells. Oxygen present in supersaturation in carbon-rich silicon may be induced to form SiO, precipitates by self-interstitials generated during phosphorus diffusion. It is proposed that the SiO2-Si interface of the precipates gives rise to a continuum of donor stables and that these interface states are responsible for at least part of the light inhancement effects observed in oxygen containing EFG silicon after phosphorus diffusion.
Xiao, Jin; Yuan, Jie; Tian, Zhongliang; Yang, Kai; Yao, Zhen; Yu, Bailie; Zhang, Liuyun
2018-01-01
The spent cathode carbon (SCC) from aluminum electrolysis was subjected to caustic leaching to investigate the different effects of ultrasound-assisted and traditional methods on element fluorine (F) leaching rate and leaching residue carbon content. Sodium hydroxide (NaOH) dissolved in deionized water was used as the reaction system. Through single-factor experiments and a comparison of two leaching techniques, the optimum F leaching rate and residue carbon content for ultrasound-assisted leaching process were obtained at a temperature of 70°C, residue time of 40min, initial mass ratio of alkali to SCC (initial alkali-to-material ratio) of 0.6, liquid-to-solid ratio of 10mL/g, and ultrasonic power of 400W, respectively. Under the optimal conditions, the leaching residue carbon content was 94.72%, 2.19% larger than the carbon content of traditional leaching residue. Leaching wastewater was treated with calcium chloride (CaCl 2 ) and bleaching powder and the treated wastewater was recycled caustic solution. All in all, benefiting from advantage of the ultrasonication effects, ultrasound-assisted caustic leaching on spent cathode carbon had 55.6% shorter residue time than the traditional process with a higher impurity removal rate. Copyright © 2017 Elsevier B.V. All rights reserved.
Jung, SungHoon; Myung, Yusik; Kim, Bit Na; Kim, In Gyoo; You, In-Kyu; Kim, TaeYoung
2018-01-30
Here, we present a facile and low-cost method to produce hierarchically porous graphene-based carbons from a biomass source. Three-dimensional (3D) graphene-based carbons were produced through continuous sequential steps such as the formation and transformation of glucose-based polymers into 3D foam-like structures and their subsequent carbonization to form the corresponding macroporous carbons with thin graphene-based carbon walls of macropores and intersectional carbon skeletons. Physical and chemical activation was then performed on this carbon to create micro- and meso-pores, thereby producing hierarchically porous biomass-derived graphene-based carbons with a high Brunauer-Emmett-Teller specific surface area of 3,657 m 2 g -1 . Owing to its exceptionally high surface area, interconnected hierarchical pore networks, and a high degree of graphitization, this carbon exhibited a high specific capacitance of 175 F g -1 in ionic liquid electrolyte. A supercapacitor constructed with this carbon yielded a maximum energy density of 74 Wh kg -1 and a maximum power density of 408 kW kg -1 , based on the total mass of electrodes, which is comparable to those of the state-of-the-art graphene-based carbons. This approach holds promise for the low-cost and readily scalable production of high performance electrode materials for supercapacitors.
NASA Astrophysics Data System (ADS)
Goldberg, M. A.; Shibaeva, T. V.; Smirnov, V. V.; Kutsev, S. V.; Barinov, S. M.; Grigorovich, K. V.
2012-12-01
Materials in the hydroxyapatite (HA)-calcium carbonate (CC) system were synthesized by a precipitation method from aqueous solutions. According to the data of X-ray phase analysis and IR spectroscopy, the powders consisted of CC and AB-type carbonate-substituted HA (CHA). In order to determine the content of carbonate-containing phases in materials, the temperature-temporal mode of fractionated-combustion analysis of carbon was developed. The quantitative phase ratios and the degree of substitution of carbonate groups in CHA were determined. It was shown that the degree of substitution of carbonate groups in CHA increased from 2.47 to 5.31 wt % as the CC content increased from 13.50 to 88.33 wt %.
Soil carbon storage in a small arid catchment in the Negev desert (Israel)
NASA Astrophysics Data System (ADS)
Hoffmann, Ulrike; Kuhn, Nikolaus
2010-05-01
The mineral soil represents a major pool in the global carbon cycle. The behavior of mineral soil as a carbon reservoir in global climate and environmental issues is far from fully understood and causes a serious lack of comparable data on mineral soil organic carbon (SOC) at regional scale. To improve our understanding of soil carbon sequestration, it is necessary to acquire regional estimates of soil carbon pools in different ecosystem types. So far, little attention has been given to Dryland ecosystems, but they are often considered as highly sensitive to environmental change, with large and rapid responses to even smallest changes of climate conditions. Due to this fact, Drylands, as an ecosystem with extensive surface area across the globe (6.15 billion ha), have been suggested as a potential component for major carbon storage. A priori reasoning suggests that regional spatial patterns of SOC density (kg/m²) in Drylands are mostly affected by vegetation, soil texture, landscape position, soil truncation, wind erosion/deposition and the effect of water supply. Particularly unassigned is the interaction between soil volume, geomorphic processes and SOC density on regional scale. This study aims to enhance our understanding of regional spatial variability in dependence on soil volume, topography and surface parameters in areas susceptible to environmental change. Soil samples were taken in small transects at different representative slope positions across a range of elevations, soil texture, vegetation types, and terrain positions in a small catchment (600 ha) in the Negev desert. Topographic variables were extracted from a high resolution (0.5m) digital elevation model. Subsequently, we estimated the soil volume by excavating the entire soil at the representative sampling position. The volume was then estimated by laser scanning before and after soil excavation. SOC concentration of the soil samples was determined by CHN-analyser. For each sample, carbon densities (in kg/m²) were estimated for the mineral soil layer. The results indicate a large spatial variability of the carbon contents, the soil volume and depths across the landscape. In general, topography exerts a strong control on the carbon contents and the soil depths in the study site. Lowest carbon contents are apparent at the hillslope tops with increasing contents downslope. Because of the significantly larger carbon content at the northern exposed slope, we suggest that solar radiation driven differences of soil moisture content major controls SOC. Regarding the soil depths, the differences are not that clear. Soil depths seem to be higher at the southern exposed slope, but differences with respect to the slope position are not significant. Concerning the total amount of carbon storage in the study area, the results show that soil carbon may not be neglected in arid areas. Our results should provide an indication that carbon contents in dynamic environments are more affected and controlled by surface properties (soil volume) than by climate. Concluding that hint, climate is less important than surface processes in dryland ecosystems.
Hashem, Kawther M; He, Feng J; Jenner, Katharine H; MacGregor, Graham A
2016-01-01
Objectives To investigate the free sugars and calorie content of carbonated sugar-sweetened beverages (CSSB) available in the main UK supermarkets. Study design We carried out a cross-sectional survey in 2014 of 169 CSSB. Methods The free sugars (sugars g/100 mL) and calorie (kcal/100 mL) were collected from product packaging and nutrient information panels of CSSB available in 9 main UK supermarkets. Results The average free sugars content in CSSB was 30.1±10.7 g/330 mL, and 91% of CSSB would receive a ‘red’ (high) label for sugars per serving. There was a large variation in sugars content between different flavours of CSSB and within the same type of flavour ranging from 3.3 to 52.8 g/330 mL. On average, ginger beer (38.5±9.9 g/330 mL) contained the highest amounts of sugars and ginger ale (22.9±7.7 g/330 mL) contained the lowest. Cola flavour is the most popular flavour in the UK with an average free sugars content of 35.0±1.1 g/330 mL. On average, the supermarket own brand contained lower levels of sugars than branded products (27.9±10.6 vs 31.6±10.6 g/330 mL, p=0.02). The average calorie content in CSSB was 126.1±43.5 kcal/330 mL. Cola flavour had a calorie content of 143.5±5.2 kcal/330 mL. Among the 169 products surveyed, 55% exceeded the maximum daily recommendation for free sugars intake (30 g) per 330 mL. Conclusions Free sugars content of CSSB in the UK is high and is a major contributor to free sugars intake. There is a wide variation in the sugars content of CSSB and even within the same flavour of CSSB. These findings demonstrate that the amount of free sugars added to CSSB can be reduced without technical issues, and there is an urgent need to set incremental free sugars reduction targets. A reduction in sugars content and overall CSSB consumption will be very beneficial in reducing obesity, type 2 diabetes and dental caries. PMID:28186923
Hashem, Kawther M; He, Feng J; Jenner, Katharine H; MacGregor, Graham A
2016-11-15
To investigate the free sugars and calorie content of carbonated sugar-sweetened beverages (CSSB) available in the main UK supermarkets. We carried out a cross-sectional survey in 2014 of 169 CSSB. The free sugars (sugars g/100 mL) and calorie (kcal/100 mL) were collected from product packaging and nutrient information panels of CSSB available in 9 main UK supermarkets. The average free sugars content in CSSB was 30.1±10.7 g/330 mL, and 91% of CSSB would receive a 'red' (high) label for sugars per serving. There was a large variation in sugars content between different flavours of CSSB and within the same type of flavour ranging from 3.3 to 52.8 g/330 mL. On average, ginger beer (38.5±9.9 g/330 mL) contained the highest amounts of sugars and ginger ale (22.9±7.7 g/330 mL) contained the lowest. Cola flavour is the most popular flavour in the UK with an average free sugars content of 35.0±1.1 g/330 mL. On average, the supermarket own brand contained lower levels of sugars than branded products (27.9±10.6 vs 31.6±10.6 g/330 mL, p=0.02). The average calorie content in CSSB was 126.1±43.5 kcal/330 mL. Cola flavour had a calorie content of 143.5±5.2 kcal/330 mL. Among the 169 products surveyed, 55% exceeded the maximum daily recommendation for free sugars intake (30 g) per 330 mL. Free sugars content of CSSB in the UK is high and is a major contributor to free sugars intake. There is a wide variation in the sugars content of CSSB and even within the same flavour of CSSB. These findings demonstrate that the amount of free sugars added to CSSB can be reduced without technical issues, and there is an urgent need to set incremental free sugars reduction targets. A reduction in sugars content and overall CSSB consumption will be very beneficial in reducing obesity, type 2 diabetes and dental caries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
ON MEASUREMENT OF CARBON CONTENT IN RETAINED AUSTENITE IN A NANOSTRUCTURED BAINITIC STEEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Mateo, C.; Caballero, Francesca G.; Miller, Michael K
2012-01-01
In this study, the carbon content of retained austenite in a nanostructured bainitic steel was measured by atom probe tomography and compared with data derived from the austenite lattice parameter determined by X-ray diffraction. The results provide new evidence about the heterogeneous distribution of carbon in austenite, a fundamental issue controlling ductility in this type of microstructure.
NASA Astrophysics Data System (ADS)
Peixi, Su; Zijuan, Zhou; Rui, Shi; tingting, Xie
2017-04-01
The alpine sod layer is a soft, tough and resistant to shifting surface soil layer under the formation of the natural vegetation in the plateau cold region, understanding its ecological function is a prerequisite to promote grass and animal husbandry production for recuperation and protection, and the active use of project construction. Based on the extensive investigation on the alpine vegetation of the Zoige Plateau in the Eastern Qinghai-Tibetan Plateau of China, set up moisture gradient community sample plots: swamp, degraded swamp, swampy meadow, wet meadow, dry meadow and degraded meadow, and the elevation gradient community sample plots: subalpine meadow, subalpine shrub meadow, alpine shrub meadow and alpine meadow were set up. The sod layer bulk density, soil particle composition and soil organic carbon (SOC) content of different types of community plots were analyzed and to compare its carbon sequestration capacity on the moisture and elevation gradients. The results showed that the average thickness of the sod layer was 30 cm, the bulk density of the swamp was the smallest, and the SOC content was above 300 g/kg. The bulk density of degraded meadow was the highest while its SOC content was decreased significantly. The SOC density of sod layer in different communities was between 10 and 24 kg C/m2, and decreased with the decreasing of soil water availability, and meadow degradation significantly decreased the soil organic carbon storage in sod layer. The sod layer SOC density of alpine shrub meadow was 15% higher than that of meadow on the altitudinal gradient. It was concluded that the mass water content threshold value for maintaining the sod layer stable is 30%. In the degraded succession of alpine vegetation from swamp to meadow, the bulk density and compactness of sod layer became larger, while the organic carbon content, carbon density and carbon storage decreased. The higher the gravel content of swamp, the more easily degraded, and the higher the sand content of the meadow, the more easily degraded. Shrub meadow had higher carbon sequestration capacity than that of meadow, but the productive function of shrub meadow was lower. Keeping the sustainable development of grassland productivity and maintaining the carbon sequestration ecological function, it is necessary to prevent the degradation of the sod layer, and restrain the succession from meadow to scrub meadow. Key Words: surface soil layer, soil organic carbon, carbon density, alpine vegetation, Zoige Plateau
Method and apparatus for selective removal of carbon monoxide
Borup, Rodney L.; Skala, Glenn W.; Brundage, Mark A.; LaBarge, William J.
2000-01-01
There is provided a method and apparatus for treatment of a hydrogen-rich gas to reduce the carbon monoxide content thereof by reacting the carbon monoxide in the gas with an amount of oxygen sufficient to oxidize at least a portion of the carbon monoxide in the presence of a catalyst in a desired temperature range without substantial reaction of hydrogen. The catalyst is an iridium-based catalyst dispersed on, and supported on, a carrier. In the presence of the catalyst, carbon monoxide in a hydrogen-rich feed gas is selectively oxidized such that a product stream is produced with a very low carbon monoxide content.
Calisto, Vânia; Jaria, Guilaine; Silva, Carla Patrícia; Ferreira, Catarina I A; Otero, Marta; Esteves, Valdemar I
2017-05-01
This work describes the adsorptive removal of three widely consumed psychiatric pharmaceuticals (carbamazepine, paroxetine and oxazepam) from ultrapure water. Two different adsorbents were used: a commercial activated carbon and a non-activated waste-based carbon (PS800-150-HCl), produced by pyrolysis of primary paper mill sludge. These adsorbents were used in single, binary and ternary batch experiments in order to determine the adsorption kinetics and equilibrium isotherms of the considered pharmaceuticals. For the three drugs and both carbons, the equilibrium was quickly attained (with maximum equilibrium times of 15 and 120 min for the waste-based and the commercial carbons, respectively) even in binary and ternary systems. Single component equilibrium data were adequately described by the Langmuir model, with the commercial carbon registering higher maximum adsorption capacities (between 272 ± 10 and 493 ± 12 μmol g -1 ) than PS800-150-HCl (between 64 ± 2 and 74 ± 1 μmol g -1 ). Multi-component equilibrium data were also best fitted by the single component Langmuir isotherm, followed by the Langmuir competitive model. Overall, competitive effects did not largely affect the performance of both adsorbents. Binary and ternary systems maintained fast kinetics, the individual maximum adsorption capacities were not lower than half of the single component systems and both carbons presented improved total adsorption capacities for multi-component solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microstructures and Hardness/Wear Performance of High-Carbon Stellite Alloys Containing Molybdenum
NASA Astrophysics Data System (ADS)
Liu, Rong; Yao, J. H.; Zhang, Q. L.; Yao, M. X.; Collier, Rachel
2015-12-01
Conventional high-carbon Stellite alloys contain a certain amount of tungsten which mainly serves to provide strengthening to the solid solution matrix. These alloys are designed for combating severe wear. High-carbon molybdenum-containing Stellite alloys are newly developed 700 series of Stellite family, with molybdenum replacing tungsten, which are particularly employed in severe wear condition with corrosion also involved. Three high-carbon Stellite alloys, designated as Stellite 706, Stellite 712, and Stellite 720, with different carbon and molybdenum contents, are studied experimentally in this research, focusing on microstructure and phases, hardness, and wear resistance, using SEM/EDX/XRD techniques, a Rockwell hardness tester, and a pin-on-disk tribometer. It is found that both carbon and molybdenum contents influence the microstructures of these alloys significantly. The former determines the volume fraction of carbides in the alloys, and the latter governs the amount of molybdenum-rich carbides precipitated in the alloys. The hardness and wear resistance of these alloys are increased with the carbide volume fraction. However, with the same or similar carbon content, high-carbon CoCrMo Stellite alloys exhibit worse wear resistance than high-carbon CoCrW Stellite alloys.
Methane and Carbon Dioxide Production Rates in Lake Sediments from Sub-Arctic Sweden
NASA Astrophysics Data System (ADS)
DeStasio, J.; Halloran, M.; Erickson, L. M.; Varner, R. K.; Johnson, J. E.; Setera, J.; Prado, M. F.; Wik, M.; Crill, P. M.
2013-12-01
Ecosystems at high latitudes are undergoing rapid change due to amplified arctic warming. Lakes in these regions are sources of both methane (CH4) and carbon dioxide (CO2) to the atmosphere and will likely be impacted by elevated temperatures. Because of the potential increase in the release of organic carbon due to thawing permafrost, it is believed that methanogenesis rates within neighboring fresh water sediments will display a positive feedback response, by increasing CH4 emission to the atmosphere. We studied CH4 production potential of sediments using cores from three lakes in the Stordalen Mire complex in sub-Arctic, Sweden: Inre Harrsjön, Mellan Harrsjön, and Villasjön. Sediment cores were incubated to determine CO2 and CH4 production rates and were analyzed for CH4 concentrations, dissolved inorganic carbon (DIC) concentrations, total organic carbon (TOC) concentrations, as well as carbon, nitrogen and sulfur content. Our results from the Villasjön cores indicate that CH4 production rates were highest at the same sediment depths as peak dissolved CH4 concentrations, with maximum values between depths of approximately 10cm and 30cm. Additionally, the highest observed CH4 production rates were in sediments from areas within Villasjön known to have the highest rates of CH4 ebullition. CO2 production rates were generally highest within surface sediments ranging from about 4cm to 11cm in depth, with production rates displaying a steady decrease below 11cm. Additionally, observed CO2 production rates correlated with total organic carbon (TOC) concentrations with respect to sediment depth, but displayed no relationship with dissolved inorganic carbon (DIC). Further analysis will be conducted to determine how CH4 and CO2 production characteristics vary between sediment core samples, as well as isotopic analysis of select samples taken from each lake.
Bubble Dynamics and Resulting Noise from Traveling Bubble Cavitation.
1982-04-13
proportional to the gas content. The subjectivity of visual cavitation determination is evidenced by the maximum standard deviation. As mentioned before...bubble radii at the maximum radius position on the model. The point on the model where the bubble will be at its maximum volume was determined by...48 3.7 Recording Bubble Dynamics . • . * . . . . 52 3.8 Measurement of Gas Nuclei in Water 0 • 52 3 TABLE OF CONTENTS (continued) Paqe
NASA Astrophysics Data System (ADS)
Guan, Zhen-Jie; Jiang, Jian-Tang; Chen, Na; Gong, Yuan-Xun; Zhen, Liang
2018-07-01
SiO2 and TiO2, as conventional dielectric shells of ferromagnetic/dielectric composite particles, can protect ferromagnetic particles from aggregation and oxidation, but contribute little to electromagnetic loss. In this work, we designed nano-assembled CoFe–CoFe2O4@C composite particles, in which ferrites with high permeability were dielectric elements and carbon was introduced as protective layers, aiming for high-efficiency microwave absorption. These assembled particles with different CoFe contents were prepared through solvothermal methods and subsequent hydrogen-thermal reduction. CoFe nanoparticles were dispersed on a CoFe2O4 matrix via an in situ reduction transformation from CoFe2O4 to CoFe. The microstructure evolution of composite particles and corresponding electromagnetic properties tailoring were investigated. The content and size of CoFe as well as the porosity of composite particles increase gradually as the annealing temperature increases. A maximum reflection loss (RL max) of –71.73 dB is observed at 4.78 GHz in 3.4 mm thick coating using particles annealed at 500 °C as fillers. The coating presents double-band absorbing characteristics, as broad effective absorption bandwidth with RL > 5 (ERL 5) and high RL max are observed in both S-C and X-Ku bands. The tunability as well as the assembled characteristic of the electromagnetic property that endued from the composite structure contributes to the excellent electromagnetic wave absorbing performances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohutskyi, Pavlo; Kucek, Leo A.; Hill, Eric
Metabolic flexibility and robustness of phototroph- heterotroph co-cultures provide a flexible binary engineering platform for a variety of biotechnological and environmental applications. Here, we metabolically coupled a heterotrophic bacterium Bacillus subtilis with astaxanthin producing alga Haematococcus pluvialis and successfully applied this binary co-culture for conversion of the starch-rich waste stream into valuable astaxanthin-rich biomass. Importantly, the implemented system required less mass transfer of CO2 and O2 due to in-situ exchange between heterotroph and phototroph, which can contribute to reduction in energy consumption for wastewater treatment. In addition, the maximum reduction in chemical oxygen demand, total nitrogen and phosphorus reached 65%,more » 55% and 30%, respectively. The preliminary economic analysis indicated that realization of produced biomass with 0.8% astaxanthin content may generate annual revenues of $3.2M (baseline scenario) from treatment of wastewater (1,090 m3/day) from a potato processing plant. Moreover, the revenues may be increased up to $18.2M for optimized scenario with astaxanthin content in algae of 2%. This work demonstrates a successful proof-of-principle for conversion of waste carbon and nutrients into targeted value-added products through metabolic connection of heterotrophic and phototrophic organisms. Utilization of heterotrophic-algal binary cultures opens new perspectives for designing highly-efficient production processes for feedstock biomass production as well as allows utilization of variety of organic agricultural, chemical, or municipal wastes.« less
Guan, Zhen-Jie; Jiang, Jian-Tang; Chen, Na; Gong, Yuan-Xun; Zhen, Liang
2018-07-27
SiO 2 and TiO 2 , as conventional dielectric shells of ferromagnetic/dielectric composite particles, can protect ferromagnetic particles from aggregation and oxidation, but contribute little to electromagnetic loss. In this work, we designed nano-assembled CoFe-CoFe 2 O 4 @C composite particles, in which ferrites with high permeability were dielectric elements and carbon was introduced as protective layers, aiming for high-efficiency microwave absorption. These assembled particles with different CoFe contents were prepared through solvothermal methods and subsequent hydrogen-thermal reduction. CoFe nanoparticles were dispersed on a CoFe 2 O 4 matrix via an in situ reduction transformation from CoFe 2 O 4 to CoFe. The microstructure evolution of composite particles and corresponding electromagnetic properties tailoring were investigated. The content and size of CoFe as well as the porosity of composite particles increase gradually as the annealing temperature increases. A maximum reflection loss (RL max ) of -71.73 dB is observed at 4.78 GHz in 3.4 mm thick coating using particles annealed at 500 °C as fillers. The coating presents double-band absorbing characteristics, as broad effective absorption bandwidth with RL > 5 (ERL 5 ) and high RL max are observed in both S-C and X-K u bands. The tunability as well as the assembled characteristic of the electromagnetic property that endued from the composite structure contributes to the excellent electromagnetic wave absorbing performances.
Mai, Ji-shan; Zhao, Ting-ning; Zheng, Jiang-kun; Shi, Chang-qing
2015-12-01
Based on grid sampling and laboratory analysis, spatial variability of surface soil nutrients was analyzed with GS⁺ and other statistics methods on the landslide area of Fenghuang Mountain, Leigu Town, Beichuan County. The results showed that except for high variability of available phosphorus, other soil nutrients exhibited moderate variability. The ratios of nugget to sill of the soil available phosphorus and soil organic carbon were 27.9% and 28.8%, respectively, showing moderate spatial correlation, while the ratios of nugget to sill of the total nitrogen (20.0%), total phosphorus (24.3%), total potassium (11.1%), available nitrogen (11.2%), and available potassium (22.7%) suggested strong spatial correlation. The total phosphorus had the maximum range (1232.7 m), followed by available nitrogen (541.27 m), total nitrogen (468.35 m), total potassium (136.0 m), available potassium (128.7 m), available phosphorus (116.6 m), and soil organic carbon (93.5 m). Soil nutrients had no significant variation with the increase of altitude, but gradually increased from the landslide area, the transition area, to the little-impacted area. The total and available phosphorus contents of the landslide area decreased by 10.3% and 79.7% compared to that of the little-impacted area, respectively. The soil nutrient contents in the transition area accounted for 31.1%-87.2% of that of the little-impacted area, with the nant reason for the spatial variability of surface soil nutrients.
NASA Astrophysics Data System (ADS)
Gohel, Khushbu; Kanchan, D. K.
Poly(vinylidene fluoride-hexafluropropylene) (PVDF-HFP) and poly(methyl methacrylate) (PMMA)-based gel polymer electrolytes (GPEs) comprising propylene carbonate and diethyl carbonate mixed plasticizer with variation of lithium perchlorate (LiClO4) salt concentrations have been prepared using a solvent casting technique. Structural characterization has been carried out using XRD wherein diffraction pattern reveals the amorphous nature of sample up to 7.5wt.% salt and complexation of polymers and salt have been studied by FTIR analysis. Surface morphology of the samples has been studied using scanning electron microscope. Electrochemical impedance spectroscopy in the temperature range 303-363K has been carried out for electrical conductivity. The maximum room temperature conductivity of 2.83×10-4S cm-1 has been observed for the GPE incorporating 7.5wt.% LiClO4. The temperature dependence of ionic conductivity obeys the Arrhenius relation. The increase in ionic conductivity with change in temperatures and salt content is observed. Transport number measurement is carried out by Wagner’s DC polarization method. Loss tangent (tan δ) and imaginary part of modulus (M‧‧) corresponding to dielectric relaxation and conductivity relaxation respectively show faster relaxation process with increasing salt content up to optimum value of 7.5wt.% LiClO4. The modulus (M‧‧) shows that the conductivity relaxation is of non-Debye type (broader than Debye peak).
Arikawa, Hisashi; Matsumoto, Keiji; Fujiki, Tetsuya
2017-10-01
Cupriavidus necator H16 is the most promising bacterium for industrial production of polyhydroxyalkanoates (PHAs) because of their remarkable ability to accumulate them in the cells. With genetic modifications, this bacterium can produce poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), which has better physical properties, as well as poly(3-hydroxybutyrate) (PHB) using plant oils and sugars as a carbon source. Considering production cost, sucrose is a very attractive raw material because it is inexpensive; however, this bacterium cannot assimilate sucrose. Here, we used the sucrose utilization (csc) genes of Escherichia coli W to generate C. necator strains that can assimilate sucrose. Especially, glucose-utilizing recombinant C. necator strains harboring the sucrose hydrolase gene (cscA) and sucrose permease gene (cscB) of E. coli W grew well on sucrose as a sole carbon source and accumulated PHB. In addition, strains introduced with a crotonyl-CoA reductase gene (ccr), ethylmalonyl-CoA decarboxylase gene (emd), and some other genetic modifications besides the csc genes and the glucose-utilizing mutations produced PHBHHx with a 3-hydroxyhexanoate (3HHx) content of maximum approximately 27 mol% from sucrose. Furthermore, when one of the PHBHHx-producing strains was cultured with sucrose solution in a fed-batch fermentation, PHBHHx with a 3HHx content of approximately 4 mol% was produced and reached 113 g/L for 65 h, which is approximately 1.5-fold higher than that produced using glucose solution.
Wang, Ying; Qu, Jiuhui; Wu, Rongcheng; Lei, Pengju
2006-03-01
The Pd/Sn-modified activated carbon fiber (ACF) electrodes were successfully prepared by the impregnation of Pd2+ and Sn2+ ions onto ACF, and their electrocatalytic reduction capacity for nitrate ions in water was evaluated in a batch experiment. The electrode was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS) and temperature programmed reduction (TPR). The capacity for nitrate reduction depending on Sn content on the electrode and the pH of electrolyte was discussed at length. The results showed that at an applied current density of 1.11 mA cm(-2), nitrate ions in water (solution volume: 400 mL) were reduced from 110 to 3.4 mg L(-1) after 240 min with consecutive change of intermediate nitrite. Ammonium ions and nitrogen were formed as the main final products. The amount of other possible gaseous products (including NO and N2O) was trace. With the increase of Sn content on the Pd/Sn-modified ACF electrode, the activity for nitrate reduction went up to reach a maximum (at Pd/Sn = 4) and then decreased, while the selectivity to N2 was depressed. Higher pH value of electrolyte exhibited more suppression effect on the reduction of nitrite than that of nitrate. However, no significant influence on the final ammonia formation was observed. Additionally, Cu ion in water was found to cover the active sites of the electrode to make the electrode deactivated.
Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile.
Zeikus, J G; Wolfe, R S
1972-02-01
The isolation of a new methanogenic bacterium, Methanobacterium thermoautotrophicus sp. n., is described. Successful isolation required a medium containing inorganic salts, an atmosphere consisting of an 80:20 mixture of hydrogen-carbon dioxide, and incubation temperatures of 65 to 70 C. Isolates of M. thermoautotrophicus were gram-positive, nonmotile, irregularly curved rods which frequently formed long filaments. The organism was found to be an autotroph and a strict anaerobe, and to have a pH optimum of 7.2 to 7.6. The optimal temperature for growth was 65 to 70 C, the maximum being 75 C and the minimum about 40 C. The generation time at the optimum was about 5 hr. The deoxyribonucleic acid of M. thermoautotrophicus had a guanine plus cytosine (GC) content of 52 moles per cent, whereas Methanobacterium sp. strain M.O.H. had a GC content of 38%. When heated, intact ribosomes of Methanobacterium sp. strain M.O.H. were stable up to 55 C and had a T(m) of 73 C. In contrast, ribosomes of M. thermoautotrophicus were stable up to 75 C and had a T(m) of 82 C. Upon complete thermal denaturation, ribosomes of strain M.O.H. underwent a 59% hyperchromic shift, whereas those of the thermophile showed only a 20% increase in hyperchromicity. Methane formation in cell-free extracts of M. thermoautotrophicus was temperature-dependent and required hydrogen and carbon dioxide; methyl cobalamin served as a methyl donor, and addition of coenzyme M stimulated methanogenesis.
Thermal treatment of medical waste in a rotary kiln.
Bujak, J
2015-10-01
This paper presents the results of a study of an experimental system with thermal treatment (incineration) of medical waste conducted at a large complex of hospital facilities. The studies were conducted for a period of one month. The processing system was analysed in terms of the energy, environmental and economic aspects. A rotary combustion chamber was designed and built with the strictly assumed length to inner diameter ratio of 4:1. In terms of energy, the temperature distribution was tested in the rotary kiln, secondary combustion (afterburner) chamber and heat recovery system. Calorific value of medical waste was 25.0 MJ/kg and the thermal efficiency of the entire system equalled 66.8%. Next, measurements of the pollutant emissions into the atmosphere were performed. Due to the nature of the disposed waste, particular attention was paid to the one-minute average values of carbon oxide and volatile organic compounds as well as hydrochloride, hydrogen fluoride, sulphur dioxide and total dust. Maximum content of non-oxidized organic compounds in slag and bottom ash were also verified during the analyses. The best rotary speed for the combustion chamber was selected to obtain proper afterburning of the bottom slag. Total organic carbon content was 2.9%. The test results were used to determine the basic economic indicators of the test system for evaluating the profitability of its construction. Simple payback time (SPB) for capital expenditures on the implementation of the project was 4 years. Copyright © 2015 Elsevier Ltd. All rights reserved.
Methanobacterium thermoautotrophicus sp. n., an Anaerobic, Autotrophic, Extreme Thermophile
Zeikus, J. G.; Wolee, R. S.
1972-01-01
The isolation of a new methanogenic bacterium, Methanobacterium thermoautotrophicus sp. n., is described. Successful isolation required a medium containing inorganic salts, an atmosphere consisting of an 80:20 mixture of hydrogen-carbon dioxide, and incubation temperatures of 65 to 70 C. Isolates of M. thermoautotrophicus were gram-positive, nonmotile, irregularly curved rods which frequently formed long filaments. The organism was found to be an autotroph and a strict anaerobe, and to have a pH optimum of 7.2 to 7.6. The optimal temperature for growth was 65 to 70 C, the maximum being 75 C and the minimum about 40 C. The generation time at the optimum was about 5 hr. The deoxyribonucleic acid of M. thermoautotrophicus had a guanine plus cytosine (GC) content of 52 moles per cent, whereas Methanobacterium sp. strain M.O.H. had a GC content of 38%. When heated, intact ribosomes of Methanobacterium sp. strain M.O.H. were stable up to 55 C and had a Tm of 73 C. In contrast, ribosomes of M. thermoautotrophicus were stable up to 75 C and had a Tm of 82 C. Upon complete thermal denaturation, ribosomes of strain M.O.H. underwent a 59% hyperchromic shift, whereas those of the thermophile showed only a 20% increase in hyperchromicity. Methane formation in cell-free extracts of M. thermoautotrophicus was temperature-dependent and required hydrogen and carbon dioxide; methyl cobalamin served as a methyl donor, and addition of coenzyme M stimulated methanogenesis. Images PMID:4550816
The adsorption kinetics of metal ions onto different microalgae and siliceous earth.
Schmitt, D; Müller, A; Csögör, Z; Frimmel, F H; Posten, C
2001-03-01
In the present work the adsorption kinetics of the six metal ions aluminum, zinc, mercury, lead, copper, and cadmium onto living microalgae were measured. The freshwater green microalga Scenedesmus subspicatus, the brackish water diatom Cyclotella cryptica, the seawater diatom Phaeodactylum tricornutum, and the seawater red alga Porphyridium purpureum were the subject of investigation. In most cases the adsorption rate of the metals could be well described by using the equation of the Langmuir adsorption rate expression. Inverse parameter estimation allowed the determination of the rate constants of the adsorption process and the maximum metal content of the algae. The highest values for the rate constant were obtained for Porphyridium purpureum followed by Phaeodactylum tricornutum. High values for the maximum content were obtained for Cyclotella cryptica and Scenedesmus subspicatus. The maximum rate constant was 24.21 h-1 for the adsorption of Hg to Porphyridium purpureum whereas the maximum metal content (0.243 g g-1) was obtained for Zn on Cyclotella cryptica. A comparison of these values with those obtained for the mineral siliceous earth exhibiting low maximum content and high adsorption rates reveals that the mechanism of adsorption onto the algae is a mixture of adsorption and accumulation.
Solidus of carbonated fertile peridotite under fluid-saturated conditions
NASA Astrophysics Data System (ADS)
Falloon, Trevor J.; Green, David H.
1990-03-01
The solidus for a fertile peridotite composition ("Hawaiian pyrolite") in the presence of a CO2-H2O fluid phase has been determined from 10 to 35 kbar. The intersection of the decarbonation reaction (olivine + diopside + CO2 ←→ orthopyroxene + dolomite) with the pyrolite solidus defines the point Q‧, located at 22 kbar and 940 °C. At pressures less than Q‧, the solidus passes through a temperature maximum at 14 kbar, 1060 °C. The solidus is coincident with amphibole breakdown at pressures less than 16 kbar. At pressures above Q‧, the solidus is defined by the dissolution of crystalline carbonate into a sodic, dolomitic carbonatite melt. The solidus is at a temperature of 925 °C at ˜28 kbar. The solidus temperature above the point Q‧ is similar to the solidus determined for Hawaiian pyrolite-H2O-CO2 for small contents of H2O (<0.3 wt%) and CO2 (<5 wt%), thus indicating that the primary sodic dolomitic carbonatite melt at both solidi has a very low and limited H2O solubility. The new data clarify the roles of carbonatite melt, carbonated silicate melt, and H2O-rich fluid in mantle conditions that are relatively oxidized (fO2 ˜ MW to FMQ). In particular, a carbonatite melt + garnet lherzolite region is intersected by continental shield geothermal gradients, but such geotherms only intersect regions with carbonated silicate melt if perturbed to higher temperatures ("kinked geotherm").
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehairs, F.; Jacquet, S.; Savoye, N.
This study focuses on the fate of exported organic carbon in the twilight zone at two contrasting environments in the North Pacific: the oligotrophic ALOHA site (22 degrees 45 minutes N 158 degrees W; Hawaii; studied during June-July 2004) and the mesotrophic Subarctic Pacific K2 site (47 degrees N, 161 degrees W; studied during July-August 2005). Earlier work has shown that non-lithogenic, excess particulate Ba (Ba{sub xs}) in the mesopelagic water column is a potential proxy of organic carbon remineralization. In general Ba{sub xs} contents were significantly larger at K2 than at ALOHA. At ALOHA the Ba{sub xs} profiles frommore » repeated sampling (5 casts) showed remarkable consistency over a period of three weeks, suggesting that the system was close to being at steady state. In contrast, more variability was observed at K2 (6 casts sampled) reflecting the more dynamic physical and biological conditions prevailing in this environment. While for both sites Ba{sub xs} concentrations increased with depth, at K2 a clear maximum was present between the base of the mixed layer at around 50m and 500m, reflecting production and release of Ba{sub xs}. Larger mesopelagic Ba{sub xs} contents and larger bacterial production in the twilight zone at the K2 site indicate that more material was exported from the upper mixed layer for bacterial degradation deeper, compared to the ALOHA site. Furthermore, application of a published transfer function (Dehairs et al., 1997) relating oxygen consumption to the observed Ba{sub xs} data indicated that the latter were in good agreement with bacterial respiration, calculated from bacterial production. These results corroborate earlier findings highlighting the potential of Ba{sub xs} as a proxy for organic carbon remineralization. The range of POC remineralization rates calculated from twilight zone excess particulate Ba contents did also compare well with the depth dependent POC flux decrease as recorded by neutrally buoyant sediment traps, except in 1 case (out of 4). This discrepancy could indicate that differences in sinking velocities cause an« less
Stevens, Antoine; Nocita, Marco; Tóth, Gergely; Montanarella, Luca; van Wesemael, Bas
2013-01-01
Soil organic carbon is a key soil property related to soil fertility, aggregate stability and the exchange of CO2 with the atmosphere. Existing soil maps and inventories can rarely be used to monitor the state and evolution in soil organic carbon content due to their poor spatial resolution, lack of consistency and high updating costs. Visible and Near Infrared diffuse reflectance spectroscopy is an alternative method to provide cheap and high-density soil data. However, there are still some uncertainties on its capacity to produce reliable predictions for areas characterized by large soil diversity. Using a large-scale EU soil survey of about 20,000 samples and covering 23 countries, we assessed the performance of reflectance spectroscopy for the prediction of soil organic carbon content. The best calibrations achieved a root mean square error ranging from 4 to 15 g C kg(-1) for mineral soils and a root mean square error of 50 g C kg(-1) for organic soil materials. Model errors are shown to be related to the levels of soil organic carbon and variations in other soil properties such as sand and clay content. Although errors are ∼5 times larger than the reproducibility error of the laboratory method, reflectance spectroscopy provides unbiased predictions of the soil organic carbon content. Such estimates could be used for assessing the mean soil organic carbon content of large geographical entities or countries. This study is a first step towards providing uniform continental-scale spectroscopic estimations of soil organic carbon, meeting an increasing demand for information on the state of the soil that can be used in biogeochemical models and the monitoring of soil degradation.
Stevens, Antoine; Nocita, Marco; Tóth, Gergely; Montanarella, Luca; van Wesemael, Bas
2013-01-01
Soil organic carbon is a key soil property related to soil fertility, aggregate stability and the exchange of CO2 with the atmosphere. Existing soil maps and inventories can rarely be used to monitor the state and evolution in soil organic carbon content due to their poor spatial resolution, lack of consistency and high updating costs. Visible and Near Infrared diffuse reflectance spectroscopy is an alternative method to provide cheap and high-density soil data. However, there are still some uncertainties on its capacity to produce reliable predictions for areas characterized by large soil diversity. Using a large-scale EU soil survey of about 20,000 samples and covering 23 countries, we assessed the performance of reflectance spectroscopy for the prediction of soil organic carbon content. The best calibrations achieved a root mean square error ranging from 4 to 15 g C kg−1 for mineral soils and a root mean square error of 50 g C kg−1 for organic soil materials. Model errors are shown to be related to the levels of soil organic carbon and variations in other soil properties such as sand and clay content. Although errors are ∼5 times larger than the reproducibility error of the laboratory method, reflectance spectroscopy provides unbiased predictions of the soil organic carbon content. Such estimates could be used for assessing the mean soil organic carbon content of large geographical entities or countries. This study is a first step towards providing uniform continental-scale spectroscopic estimations of soil organic carbon, meeting an increasing demand for information on the state of the soil that can be used in biogeochemical models and the monitoring of soil degradation. PMID:23840459
Dong, Hong-Fang; Yu, Jun-Bao; Guan, Bo
2013-01-01
Applying the method of physical fractionation, distribution characteristics of soil organic carbon and its composition in Suaeda salsa wetland in the Yellow River delta were studied. The results showed that the heavy fraction organic carbon was the dominant component of soil organic carbon in the studied region. There was a significantly positive relationship between the content of heavy fraction organic carbon, particulate organic carbon and total soil organic carbon. The ranges of soil light fraction organic carbon ratio and content were 0.008% - 0.15% and 0.10-0.40 g x kg(-1), respectively, and the range of particulate organic carbon ratio was 8.83% - 30.58%, indicating that the non-protection component of soil organic carbon was low and the carbon pool was relatively stable in Suaeda salsa wetland of the Yellow River delta.
Microbial biomass carbon and enzyme activities of urban soils in Beijing.
Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun
2011-07-01
To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p < 0.01. It was shown that the older and the biologically more stable part of city exhibited higher microbial activity levels than the more recently developed part of the city and the road areas of heavy traffic. It was concluded that the land use patterns in Beijing urban soils influenced the nature and activities of the microbial communities.
NASA Technical Reports Server (NTRS)
Moss, J. E.; Cullom, R. R.
1981-01-01
Emissions of carbon monoxide, total oxides of nitrogen, unburned hydrocarbons, and carbon dioxide from an F100, afterburning, two spool turbofan engine at simulated flight conditions are reported. For each flight condition emission measurements were made for two or three power levels from intermediate power (nonafterburning) through maximum afterburning. The data showed that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate power (nonafterburning) and partial afterburning, but regions of high carbon monoxide were present downstream of the flame holder at maximum afterburning. Unburned hydrocarbon emissions were low for most of the simulated flight conditions. The local NOX concentrations and their variability with power level increased with increasing flight Mach number at constant altitude, and decreased with increasing altitude at constant Mach number. Carbon dioxide emissions were proportional to local fuel air ratio for all conditions.
NASA Astrophysics Data System (ADS)
Shin, Soon-Gi
2018-03-01
The Editor-in-Chief and Editorial Board of Electronic Materials Letters have retracted this article [1] because its contents have been previously published by Miyasaka et al. [2]. The contents of this article are therefore redundant. Author Soon-Gi Shin has not responded to correspondence from the Editor about this retraction.
Jing, Yan; Chen, Xiao-min; Liu, Zu-xiang; Huang, Qian-ru; LiI, Qiu-xia; Chen, Chen; Lu, Shao-shan
2013-04-01
Aiming at the low content of available phosphorus in upland red soil of Southern China, this paper studied the effects of combined application of biochar and inorganic fertilizers on the available phosphorus and organic carbon contents and the pH of this soil. With the combined application of biochar and inorganic fertilizers, the soil physical and chemical properties improved to different degrees. As compared with the control, the soil pH and the soil organic carbon and available phosphorus contents at different growth stages of oil rape after the combined application of biochar and inorganic fertilizers all had an improvement, with the increments at bolting stage, flowering stage, and ripening stage being 16%, 24% and 26%, 23%, 34% and 38%, and 100%, 191% and 317% , respectively. The soil pH and the soil organic carbon and available phosphorus contents were increased with the increasing amount of applied biochar. Under-the application of biochar, the soil available phosphorus had a significant correlation with the soil pH and soil organic carbon content. This study could provide scientific basis to improve the phosphorus deficiency and the physical and chemical properties of upland red soil.
Kim, Sun-Il; Lee, Jae-Wook; Roh, Sung-Hee
2011-02-01
The performance of carbon nanotubes composite-modified carbon cloth electrodes in two-chambered microbial fuel cell (MFC) was investigated. The electrode modified with polyacrylonitrile-carbon nanotubes (PAN-CNTs) composite showed better electrochemical performance than that of plain carbon cloth. The MFC with the composite-modified anode containing 5 mg/cm2 PAN-CNTs exhibited a maximum power density of 480 mW/m2.
NASA Astrophysics Data System (ADS)
Raut, U.; Fulvio, D.; Loeffler, M. J.; Baragiola, R. A.
2012-06-01
We report the synthesis of carbon dioxide on an amorphous carbon-13 substrate coated with amorphous water ice from irradiation with 100 keV protons at 20 K and 120 K. The quantitative studies show that the CO2 is dispersed in the ice; its column density increases with ion fluence to a maximum value (in 1015 molecules cm-2) of ~1 at 20 K and ~3 at 120 K. The initial yield is 0.05 (0.1) CO2 per incident H+ at 20 (120) K. The CO2 destruction process, which limits the maximum column density, occurs with an effective cross section of ~2.5 (4.1) × 10-17 cm2 at 20 (120) K. We discuss radiation-induced oxidation by reactions of radicals in water with the carbon surface and demonstrate that these reactions can be a significant source of condensed carbon dioxide in interstellar grains and in icy satellites in the outer solar system.
Porous structure and surface chemistry of phosphoric acid activated carbon from corncob
NASA Astrophysics Data System (ADS)
Sych, N. V.; Trofymenko, S. I.; Poddubnaya, O. I.; Tsyba, M. M.; Sapsay, V. I.; Klymchuk, D. O.; Puziy, A. M.
2012-11-01
Active carbons have been prepared from corncob using chemical activation with phosphoric acid at 400 °C using varied ratio of impregnation (RI). Porous structure of carbons was characterized by nitrogen adsorption and scanning electron microscopy. Surface chemistry was studied by IR and potentiometric titration method. It has been shown that porosity development was peaked at RI = 1.0 (SBET = 2081 m2/g, Vtot = 1.1 cm3/g), while maximum amount of acid surface groups was observed at RI = 1.25. Acid surface groups of phosphoric acid activated carbons from corncob includes phosphate and strongly acidic carboxylic (pK = 2.0-2.6), weakly acidic carboxylic (pK = 4.7-5.0), enol/lactone (pK = 6.7-7.4; 8.8-9.4) and phenol (pK = 10.1-10.7). Corncob derived carbons showed high adsorption capacity to copper, especially at low pH. Maximum adsorption of methylene blue and iodine was observed for carbon with most developed porosity (RI = 1.0).
27 CFR 27.42a - Still wines containing carbon dioxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...
27 CFR 24.245 - Use of carbon dioxide in still wine.
Code of Federal Regulations, 2014 CFR
2014-04-01
... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than 0.009 grams per 100 milliliters to the maximum limitation of carbon dioxide in still wine will be allowed where the amount of carbon dioxide in excess of 0.392 grams per 100 milliliters is due to...
27 CFR 27.42a - Still wines containing carbon dioxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...
27 CFR 27.42a - Still wines containing carbon dioxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
.... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...
27 CFR 27.42a - Still wines containing carbon dioxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
.... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...
27 CFR 27.42a - Still wines containing carbon dioxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...
27 CFR 24.245 - Use of carbon dioxide in still wine.
Code of Federal Regulations, 2012 CFR
2012-04-01
... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than 0.009 grams per 100 milliliters to the maximum limitation of carbon dioxide in still wine will be allowed where the amount of carbon dioxide in excess of 0.392 grams per 100 milliliters is due to...
Osborne, C. P.; Drake, B. G.; LaRoche, J.; Long, S. P.
1997-05-01
As the partial pressure of CO2 (pCO2) in the atmosphere rises, photorespiratory loss of carbon in C3 photosynthesis will diminish and the net efficiency of light-limited photosynthetic carbon uptake should rise. We tested this expectation for Indiana strawberry (Duchesnea indica) growing on a Maryland forest floor. Open-top chambers were used to elevate the pCO2 of a forest floor habitat to 67 Pa and were paired with control chambers providing an ambient pCO2 of 38 Pa. After 3.5 years, D. indica leaves grown and measured in the elevated pCO2 showed a significantly greater maximum quantum efficiency of net photosynthesis (by 22%) and a lower light compensation point (by 42%) than leaves grown and measured in the control chambers. The quantum efficiency to minimize photorespiration, measured in 1% O2, was the same for controls and plants grown at elevated pCO2. This showed that the maximum efficiency of light-energy transduction into assimilated carbon was not altered by acclimation and that the increase in light-limited photosynthesis at elevated pCO2 was simply a function of the decrease in photorespiration. Acclimation did decrease the ribulose-1,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll protein content of the leaf by more than 30%. These changes were associated with a decreased capacity for light-saturated, but not light-limited, photosynthesis. Even so, leaves of D. indica grown and measured at elevated pCO2 showed greater light-saturated photosynthetic rates than leaves grown and measured at the current atmospheric pCO2. In situ measurements under natural forest floor lighting showed large increases in leaf photosynthesis at elevated pCO2, relative to controls, in both summer and fall. The increase in efficiency of light-limited photosynthesis with elevated pCO2 allowed positive net photosynthetic carbon uptake on days and at locations on the forest floor that light fluxes were insufficient for positive net photosynthesis in the current atmospheric pCO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborne, C.P.; Long, S.P.; Drake, B.G.
1997-05-01
As the partial pressure of CO{sub 2} (pCO{sub 2}) in the atmosphere rises, photorespiratory loss of carbon in C, photosynthesis will diminish and the net efficiency of light-limited photosynthetic carbon uptake should rise. Indiana strawberry (Duchesnea indica) growing on a Maryland forest floor was tested. Open-top chambers were used to elevate the pCO{sub 2} of a forest floor habitat to 67 Pa and were paired with control chambers with an ambient pCO{sub 2} of 38 Pa. After 3.5 years, D. indica leaves in the elevated pCO{sub 2} showed a significantly greater maximum quantum efficiency of net photosynthesis (by 22%) andmore » a lower light compensation point (by 42%) than leaves in the control chambers. The quantum efficiency to minimize photorespiration was the same for controls and plants grown at elevated pCO{sub 2}, showing the maximum efficiency of light-energy transduction into assimilated carbon was not altered by acclimation and the increase in light-limited photosynthesis at elevated pCO{sub 2} was a function of the decrease in photorespiration. Acclimation did decrease the ribulose-1,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll protein content of the leaf by more than 30%. These changes were associated with a decreased capacity for light-saturated, but not light-limited, photosynthesis. Leaves of D. indica grown and measured at elevated pCO{sub 2} showed greater light-saturated photosynthetic rates than leaves grown and measured at the current atmospheric pCO{sub 2}. In situ measurements under natural lighting showed large increases in leaf photosynthesis at elevated pCO{sub 2}, relative to controls, in both summer and fall. The increase in efficiency of light-limited photosynthesis with elevated pCO{sub 2} allowed positive net photosynthetic carbon uptake on days and at locations on the forest floor that light fluxes were insufficient for positive net photosynthesis in the current atmospheric pCO{sub 2}. 33 refs., 3 figs., 3 tabs.« less
Martensite phase stress and the strengthening mechanism in TRIP steel by neutron diffraction.
Harjo, Stefanus; Tsuchida, Noriyuki; Abe, Jun; Gong, Wu
2017-11-09
Two TRIP-aided multiphase steels with different carbon contents (0.2 and 0.4 mass%) were analyzed in situ during tensile deformation by time-of-flight neutron diffraction to clarify the deformation induced martensitic transformation behavior and its role on the strengthening mechanism. The difference in the carbon content affected mainly the difference in the phase fractions before deformation, where the higher carbon content increased the phase fraction of retained austenite (γ). However, the changes in the relative fraction of martensitic transformation with respect to the applied strain were found to be similar in both steels since the carbon concentrations in γ were similar regardless of different carbon contents. The phase stress of martensite was found much larger than that of γ or bainitic ferrite since the martensite was generated at the beginning of plastic deformation. Stress contributions to the flow stress were evaluated by multiplying the phase stresses and their phase fractions. The stress contribution from martensite was observed increasing during plastic deformation while that from bainitic ferrite hardly changing and that from γ decreasing.
Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment.
Chen, Chun-Chi; Lee, Wen-Jhy; Shih, Shun-I; Mou, Jin-Luh
2009-11-01
Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energy release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.
Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.C.; Lee, W.J.; Shih, S.I.
2009-07-01
Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energymore » release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.« less
Method for creating high carbon content products from biomass oil
Parker, Reginald; Seames, Wayne
2012-12-18
In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.
NASA Astrophysics Data System (ADS)
Kusmiyati, L., Puspita Adi; Deni, V.; Robi Indra, S.; Islamica, Dlia; Fuadi, M.
2016-04-01
Removal of vertigo blue dye from batik textile wastewater was studied by adsorptionprocess onto activated carbon (AC) and coal bottom ash (CBA).The influence of experimental conditions (pH solution, dye concentration, and contact time) were studied on the both adsorbents. At equilibrium conditions, the data were fitted to Langmuir and Freundlich adsorption models. The maximum adsorption capacity calculated from the Langmuir model for carbon active was 6.29mg/g at pH that found to be considerably higher than that obtained for coal bottom ash 3.72mg/g pH 9. From Freundlich model, the maximum adsorption capacity is less for coal bottom ash (pH 9) than that for carbon active (pH4).
Kazemi, Khoshrooz; Zhang, Baiyu; Lye, Leonard M; Cai, Qinghong; Cao, Tong
2016-12-01
A design of experiment (DOE) based methodology was adopted in this study to investigate the effects of multiple factors and their interactions on the performance of a municipal solid waste (MSW) composting process. The impact of four factors, carbon/nitrogen ratio (C/N), moisture content (MC), type of bulking agent (BA) and aeration rate (AR) on the maturity, stability and toxicity of compost product was investigated. The statistically significant factors were identified using final C/N, germination index (GI) and especially the enzyme activities as responses. Experimental results validated the use of enzyme activities as proper indices during the course of composting. Maximum enzyme activities occurred during the active phase of decomposition. MC has a significant effect on dehydrogenase activity (DGH), β-glucosidase activity (BGH), phosphodiesterase activity (PDE) and the final moisture content of the compost. C/N is statistically significant for final C/N, DGH, BGH, and GI. The results provided guidance to optimize a MSW composting system that will lead to increased decomposition rate and the production of more stable and mature compost. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Zengshe; Erhan, Sevim Z; Akin, Danny E; Barton, Franklin E
2006-03-22
In recent years there has been considerable interest in using natural plant fibers as reinforcements for plastics. The motivation includes cost, performance enhancement, weight reduction, and environment concerns. High performance flax fiber could potentially substitute for glass or carbon fibers as reinforcements for plastics. This study reports the "green" composites obtained from a mixture of epoxidized soybean oil and epoxy resin, 1,1,1-tris(p-hydroxyphenyl)ethane triglycidyl ether (THPE-GE), reinforced with flax fiber. The compression molding method is used for making the composites. Curing agents triethylenetetramine and diethylenetriamine provide better physical properties of the composites than Jeffamine agents D-230 and EDR-148. Both the flexural modulus and the tensile modulus of the composites increase as the amount of THPE-GE increases. The flexural modulus increased at a fiber content of <10 wt %, but there is a decrease beyond 10 wt %. The tensile modulus increases with fiber content until a maximum at 13.5 wt %, and then it decreases. The flax fiber length affected the mechanical properties of the composites: the longer the fiber length, the better are the mechanical properties observed.
Impact of phosphate limitation on PHA production in a feast-famine process.
Korkakaki, Emmanouela; van Loosdrecht, Mark C M; Kleerebezem, Robbert
2017-12-01
Double-limitation systems have shown to induce polyhydroxyalkanoates (PHA) production in chemostat studies limited in e.g. carbon and phosphate. In this work the impact of double substrate limitation on the enrichment of a PHA producing community was studied in a sequencing batch process. Enrichments at different C/P concentration ratios in the influent were established and the effect on the PHA production capacity and the enrichment community structure was investigated. Experimental results demonstrated that when a double substrate limitation is imposed at a C/P ratio in the influent in a range of 150 (C-mol/mol), the P-content of the biomass and the specific substrate uptake rates decreased. Nonetheless, the PHA storage capacity remained high (with a maximum of 84 wt%). At a C/P ratio of 300, competition in the microbial community is based on phosphate uptake, and the PHA production capacity is lost. Biomass specific substrate uptake rates are a linear function of the cellular P-content, offering advantages for scaling-up the PHA production process due to lower oxygen requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jung, Su-Hwa; Kim, Seon-Jin; Kim, Joo-Sik
2012-06-01
Fractions of waste square timber and waste ordinary plywood were pyrolyzed in a pyrolysis plant equipped with a fluidized bed reactor and a dual char separation system. The maximum bio-oil yield of about 65 wt.% was obtained at reaction temperatures of 450-500 °C for both feed materials. For quantitative analysis of bio-oil, the relative response factor (RRF) of each component was calculated using an effective carbon number (ECN) that was multiplied by the peak area of each component detected by a GC-FID. The predominant compounds in the bio-oils were methyl acetate, acids, hydroxyacetone, furfural, non-aromatic ketones, levoglucosan and phenolic compounds. The WOP-derived bio-oil showed it to have relatively high nitrogen content. Increasing the reaction temperature was shown to have little effect on nitrogen removal. The ash and solid contents of both bio-oils were below 0.1 wt.% due to the excellent performance of the char separation system. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Harper, D. T.; Zeebe, R. E.; Hoenisch, B.; Zachos, J. C.
2016-12-01
The early Eocene features several large abrupt global warming events ("hyperthermals") that were characterized by negative δ13C excursions suggesting isotopically `light' carbon release to the atmosphere. The most prominent events, the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM2), present an opportunity to study the operation of carbon cycle processes, and in particular negative feedbacks in the carbon cycle, such as silicate and carbonate weathering. Here we study sea surface temperature (SST) and ocean carbonate chemistry changes across ETM2, by measuring Mg/Ca, B/Ca, and δ13C in planktic foraminifera at two IODP sites (1209 in the Pacific and 1265 in the S. Atlantic). We observe a 2-3°C increase in SST in the Pacific and a 2°C increase in the Atlantic. The observed decrease in planktic B/Ca at both sites is consistent with increased atmospheric pCO2, and when scaled to the 0.3 pH unit decrease estimated for the PETM by Penman et al., 2014, the estimated pH decrease during the ETM2 is 0.15. However, reconstructions of the δ13C recovery during the ETM2 show that it is more rapid than models have been able to successfully simulate. We compare these new proxy data to LOSCAR model output, to assess whether the rapid δ13C recovery was a result of: 1) changes in the type and δ13C of weathered carbonates or δ13C of buried organic carbon during the recovery, 2) a one-time event of isotopically `light' carbon burial during the recovery phase, or 3) enhanced burial of `light' carbon due to background orbital eccentricity forcing during the recovery. Our preliminary results suggest that the phasing of the drop in the B/Ca relative to δ13C during recovery is due to the burial of organic carbon.
Recycling of coal combustion wastes.
Oz, Derya; Koca, Sabina; Koca, Huseyin
2009-05-01
The separation of unburned carbon from coal-fired power plant bottom ashes was conducted in order to increase the possibility of the recycling of coal combustion wastes. A two-stage flotation technique was used for this study. In the rougher flotation experiments the amounts of collector, dispersant and frother, pulp density, pH, particle size distribution, flotation time and flotation temperature were tested as variables. After rougher flotation experiments, at optimum conditions, the carbon content of the concentrate increased from 13.85 to 51.54% at a carbon recovery of 54.54%. Under the same conditions, the carbon content was reduced to 4.54% at a weight yield of over 80% in the tailings fraction. This fraction meets the industrial specifications and can be utilized as a cement additive. After the cleaner flotation experiment the carbon content of the product was enhanced to 64.81% with a 52.16% carbon recovery. This fraction can be blended back into the coal feed to the power plant boilers.
Vertical transport of carbon-14 into deep-sea food webs
NASA Astrophysics Data System (ADS)
Pearcy, W. G.; Stuiver, Minze
1983-04-01
During the years 1973 to 1976 the carbon-14 content was higher in epipelagic and vertically migrating, upper mesopelagic animals (caught between 0 and 500 m) than in lower mesopelagic, bathypelagic, and abyssobenthic animals (500 to 5180 m) in the northeastern Pacific Ocean. Only one species of deep-sea fish had a Δ14C value as high as surface-caught fish. The 14C content of most animals was higher pre-bomb levels, but the relatively low 14C content of most deep-sea animals indicates that the majority of their carbon was not derived directly from a near-surface food chain labeled with bomb carbon. A mean residence time of about 35 y was estimated for the organic carbon pool for abyssobenthic animals based on the relative increase of radiocarbon in surface-dwelling animals since 1967. The results suggest that rapidly sinking particles from surface waters, such as fecal pellets, are not the major source of organic carbon for deep-sea fishes and large benthic invertebrates.
Synthesis of a Carbon-activated Microfiber from Spider Webs Silk
NASA Astrophysics Data System (ADS)
Taer, E.; Mustika, W. S.; Taslim, R.
2017-03-01
Carbon fiber of spider web silk has been produced through the simple carbonization process. Cobwebs are a source of strong natural fiber, flexible and micrometer in size. Preparation of micro carbon fiber from spider webs that consist of carbonization and activation processes. Carbonization was performed in N2 gas environment by multi step heating profile up to temperature of 400 °C, while the activation process was done by using chemical activation with KOH activating agent assistance. Measurement of physical properties was conducted on the surface morphology, element content and the degree of crystallinity. The measurement results found that micro carbon fiber from spider webs has a diameter in the range of 0.5 -25 micrometers. It is found that the carbon-activated microfiber takes the amorphous form with the carbon content of 84 %.
NASA Astrophysics Data System (ADS)
Tripathi, D.; Dey, T. K.
2014-12-01
A series of MgB2 pellets with and without addition of carbon from different sources (viz. starch, polystyrene and carbon nanotubes) have been synthesized by solid state reaction under argon atmosphere. XRD analysis indicates a decrease in lattice parameters of MgB2 with addition of starch, polystyrene (PS) and MWCNT and confirms substitution of carbon in boron sites. The presence of nanosized carbon inclusions between the grain boundaries in the present set of samples is evident in TEM photographs. Resistivity data confirms a decrease in superconducting transition temperature (Tc0) for MgB2 doped with starch/PS/MWCNT. The effect of different field cooling heights (HIFC) at 20 K on maximum levitation force (FMLF) and maximum attractive force (FMAF) of pure MgB2 and MgB2 doped with starch/PS/MWCNT have been investigated. Except for MWCNT, doping of starch and PS in MgB2 is found to improve FMLF and FMAF and the best result is obtained for MgB2 doped with 1 wt.% PS. Levitation force measured as a function of decreasing initial field cooling height indicates exponential dependence of both maximum levitation force (FMLF) and maximum attractive force (FMAF). However, the gap distance between PM and the sample (H0AF and HMAF) corresponding to maximum attractive force (FMAF) and zero attractive force (F0AF) varies linearly and their difference remains constant. This constancy in (HMAF - H0AF) is understood in terms of constant reduction rate of magnetic flux density between H0AF and HMAF.
Improving the representation of Arctic photosynthesis in Earth system models
NASA Astrophysics Data System (ADS)
Rogers, A.; Serbin, S.; Ely, K.; Sloan, V. L.; Wyatt, R. A.; Kubien, D. S.; Ali, A. A.; Xu, C.; Wullschleger, S. D.
2015-12-01
The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this they must accurately represent the carbon fluxes associated with the terrestrial carbon cycle. Although Arctic carbon fluxes are small - relative to global carbon fluxes - uncertainty is large. As part of a multidisciplinary project to improve the representation of the Arctic in ESMs (Next Generation Ecosystem Experiments - Arctic) we are examining the photosynthetic parameterization of the Arctic plant functional type (PFT) in ESMs. Photosynthetic CO2 uptake is well described by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis. Most ESMs use a derivation of the FvCB model to calculate gross primary productivity. Two key parameters required by the FvCB model are an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max) and the maximum rate of electron transport (Jmax). In ESMs the parameter Vc,max is usually fixed for a given PFT. Only four ESMs currently have an explicit Arctic PFT and the data used to derive Vc,max for the Arctic PFT in these models relies on small data sets and unjustified assumptions. We examined the derivation of Vc,max and Jmax in current Arctic PFTs and estimated Vc,max and Jmax for 7 species representing both dominant vegetation and key Arctic PFTs growing on the Barrow Environmental Observatory, Barrow, AK. The values of Vc,max currently used to represent Arctic PFTs in ESMs are 70% lower than the values we measured in these species. Examination of the derivation of Vc,max in ESMs identified that the cause of the relatively low Vc,max value was the result of underestimating both the leaf N content and the investment of that N in Rubisco. Contemporary temperature response functions for Vc,max also appear to underestimate Vc,max at low temperature. ESMs typically use a single multiplier (JVratio) to convert Vc,max to Jmax for all PFTs. We found that the JVratio of Arctic plants is higher than current estimates suggesting that the Arctic PFT will be more responsive to rising carbon dioxide than currently projected. Our data suggest that the Arctic tundra has a much greater capacity for CO2 uptake, particularly at low temperature, and will be more CO2 responsive than is currently represented in ESMs.
Running, Steven W.; Gower, Stith T.
1991-01-01
A new version of the ecosystem process model FOREST-BGC is presented that uses stand water and nitrogen limitations to alter the leaf/root/stem carbon allocation fraction dynamically at each annual iteration. Water deficit is defined by integrating a daily soil water deficit fraction annually. Current nitrogen limitation is defined relative to a hypothetical optimum foliar N pool, computed as maximum leaf area index multiplied by maximum leaf nitrogen concentration. Decreasing availability of water or nitrogen, or both, reduces the leaf/root carbon partitioning ratio. Leaf and root N concentrations, and maximum leaf photosynthetic capacity are also redefined annually as functions of nitrogen availability. Test simulations for hypothetical coniferous forests were performed for Madison, WI and Missoula, MT, and showed simulated leaf area index ranging from 4.5 for a control stand at Missoula, to 11 for a fertilized stand at Madison, with Year 50 stem carbon biomasses of 31 and 128 Mg ha(-1), respectively. Total nitrogen incorporated into new tissue ranged from 34 kg ha(-1) year(-1) for the unfertilized Missoula stand, to 109 kg ha(-1) year(-1) for the fertilized Madison stand. The model successfully showed dynamic annual carbon partitioning controlled by water and nitrogen limitations.
Tardy, Gábor Márk; Lóránt, Bálint; Lóka, Máté; Nagy, Balázs; László, Krisztina
2017-07-01
Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source. This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m -3 . At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m -3 and 18.8 g COD m -3 h -1 , respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450-600 to 350-370 Ω. Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.
NASA Astrophysics Data System (ADS)
Jenkins, David M.; Holmes, Zachary F.; Ishida, Kiyotaka; Manuel, Phillip D.
2018-01-01
Autocorrelation analysis of infrared spectra can provide insights on the strain energy associated with cation substitutions along a solid-solution compositional join which to date has been applied primarily to silicate minerals. In this study, the method is applied to carbonates synthesized at 10 mol% increments along the calcite-dolomite (CaCO3-CaMg(CO3)2) join in the range of 1000-1150 °C and 0.6-2.5 GPa for the purpose of determining how the band broadening in both the far- and mid-infrared ranges, as represented by the autocorrelation parameter δΔCorr, compares with the existing enthalpy of mixing data for this join. It was found that the carbonate internal vibration ν2 (out-of-plane bending) in the mid-infrared range, and the sum of the three internal vibration modes ν4 + ν2 + ν3 most closely matched the enthalpy of mixing data for the synthetic carbonates. Autocorrelation analysis of a series of biogenic carbonates in the mid-infrared range showed only a systematic variation for the ν2 band. Using the biogenic carbonate with the lowest Mg content for reference, the trend in δΔCorr for biogenic carbonates shows a steady increase with increasing Mg content suggesting a steady increase in solubility with Mg content. The results from this study indicate that autocorrelation analysis of carbonates in the mid-infrared range provides an independent and reliable assessment of the crystallographic strain energy of carbonates. In particular, inorganic carbonates in the range of 0-17 mol% MgCO3 experience a minimum in strain energy and a corresponding minimum in the enthalpy of mixing, whereas biogenic carbonates show a steady increase in strain energy with increasing MgCO3 content. In the event of increasing ocean acidification, biogenic carbonates in the range of 0-17 mol% MgCO3 will dissolve more readily than the compositionally equivalent inorganic carbonates.
Loyd, S J
2017-01-01
Concretions are preferentially cemented zones within sediments and sedimentary rocks. Cementation can result from relatively early diagenetic processes that include degradation of sedimentary organic compounds or methane as indicated by significantly 13 C-depleted or enriched carbon isotope compositions. As minerals fill pore space, reduced permeability may promote preservation of sediment components from degradation during subsequent diagenesis, burial heating and outcrop weathering. Discrete and macroscopic organic remains, macro and microfossils, magnetic grains, and sedimentary structures can be preferentially preserved within concretions. Here, Cretaceous carbonate concretions of the Holz Shale are shown to contain relatively high carbonate-free total organic carbon (TOC) contents (up to ~18.5 wt%) compared to the surrounding host rock (with <2.1 wt%). TOC increases with total inorganic carbon (TIC) content, a metric of the degree of cementation. Pyrite contents within concretions generally correlate with organic carbon contents. Concretion carbonate carbon isotope compositions (δ 13 C carb ) range from -22.5 to -3.4‰ (VPDB) and do not correlate strongly with TOC. Organic carbon isotope compositions (δ 13 C org ) of concretions and host rock are similar. Thermal maturity data indicate that both host and concretion organic matter are overmature and have evolved beyond the oil window maturity stage. Although the organic matter in general has experienced significant oxidative weathering, concretion interiors exhibit lower oxygen indices relative to the host. These results suggest that carbonate concretions can preferentially preserve overmature, ancient, sedimentary organic matter during outcrop weathering, despite evidence for organic matter degradation genetic mechanisms. As a result, concretions may provide an optimal proxy target for characterization of more primary organic carbon concentrations and chemical compositions. In addition, these findings indicate that concretions can promote delayed oxidative weathering of organic carbon in outcrop and therefore impact local chemical cycling. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Jenkins, David M.; Holmes, Zachary F.; Ishida, Kiyotaka; Manuel, Phillip D.
2018-06-01
Autocorrelation analysis of infrared spectra can provide insights on the strain energy associated with cation substitutions along a solid-solution compositional join which to date has been applied primarily to silicate minerals. In this study, the method is applied to carbonates synthesized at 10 mol% increments along the calcite-dolomite (CaCO3-CaMg(CO3)2) join in the range of 1000-1150 °C and 0.6-2.5 GPa for the purpose of determining how the band broadening in both the far- and mid-infrared ranges, as represented by the autocorrelation parameter δΔCorr, compares with the existing enthalpy of mixing data for this join. It was found that the carbonate internal vibration ν2 (out-of-plane bending) in the mid-infrared range, and the sum of the three internal vibration modes ν4 + ν2 + ν3 most closely matched the enthalpy of mixing data for the synthetic carbonates. Autocorrelation analysis of a series of biogenic carbonates in the mid-infrared range showed only a systematic variation for the ν2 band. Using the biogenic carbonate with the lowest Mg content for reference, the trend in δΔCorr for biogenic carbonates shows a steady increase with increasing Mg content suggesting a steady increase in solubility with Mg content. The results from this study indicate that autocorrelation analysis of carbonates in the mid-infrared range provides an independent and reliable assessment of the crystallographic strain energy of carbonates. In particular, inorganic carbonates in the range of 0-17 mol% MgCO3 experience a minimum in strain energy and a corresponding minimum in the enthalpy of mixing, whereas biogenic carbonates show a steady increase in strain energy with increasing MgCO3 content. In the event of increasing ocean acidification, biogenic carbonates in the range of 0-17 mol% MgCO3 will dissolve more readily than the compositionally equivalent inorganic carbonates.
High capacity carbon dioxide sorbent
Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan
2015-09-01
The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.
Chaetognatha of the Namibian Upwelling Region: Taxonomy, Distribution and Trophic Position
Bohata, Karolina; Koppelmann, Rolf
2013-01-01
In October 2010, the vertical distribution, biodiversity and maturity stages of Chaetognatha species were investigated at four stations located off Walvis Bay, Namibia. Seventeen species were detected and classified as pelagic, shallow-mesopelagic, deep-mesopelagic and bathypelagic species based upon the weighted mean depth derived from their average vertical distribution. High abundances of Chaetognatha were found in the upper 100 m at all stations of the Walvis Bay transect with a maximum value of 20837 ind. 1000 m−3 at the outer shelf station near the surface. The community was dominated by species of the Serratodentata group. Furthermore, the distribution of Chaetognatha did not seem to be influenced by low oxygen concentrations. Stable isotope ratios of carbon and nitrogen in Chaetognatha were determined for seven different areas located off northern Namibia. The values of δ15N ranged from 6.05 ‰ to 11.39 ‰, while the δ13C values varied between −23.89 ‰ and −17.03 ‰. The highest values for δ15N were observed at the Walvis Bay shelf break station. The lowest δ13C values were found at the Rocky Point offshore station, which was statistically different from all other areas. Stable isotopes of carbon and nitrogen were determined for four taxa (Sagitta minima, Planctonis group, Sagitta enflata, Sagitta decipiens). In this case, the δ15N values ranged from 6.17 ‰ to 10.38 ‰, whereas the δ13C values varied from −22.70 ‰ to −21.56 ‰. The lowest δ15N values were found for S. minima. The C- and N-content revealed maximum C-values for S. decipiens and maximum N-values for the Planctonis group. The C:N ratio of Chaetognatha ranged between 5.25 and 6.20. Overall, Chaetognatha are a diverse group in the pelagic food web of the Benguela Upwelling System and act as competitors of fish larvae and jelly fish by preying on copepods. PMID:23342016
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-28
... Maximum Achievable Control Technology Standards for Carbon Black, Ethylene, Cyanide and Spandex (Renewal... Control Technology Standards for Carbon Black, Ethylene, Cyanide and Spandex (Renewal). ICR Numbers: EPA... control technology standards for carbon black, ethylene, cyanide and spandex facilities. Estimated Number...
METEOROLOGICAL FACTORS RESPONSIBLE FOR HIGH CO (CARBON MONOXIDE) LEVELS IN ALASKAN CITIES
High winter carbon monoxide levels in Anchorage, as in Fairbanks, are due to intense nocturnal (ground-based) inversions persisting through the periods of maximum emissions and at times throughout the day. The problem is exacerbated by the large amounts of carbon monoxide emitted...
Which is the best oxidant for complexed iron removal from groundwater: The Kogalym case
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munter, R.; Overbeck, P.; Sutt, J.
2008-07-01
A short overview of the significance of a preoxidation stage groundwater treatment is presented. As an example the case of complexed iron removal from Kogalym groundwater (Tjumen, Siberia, Russian Federation) using different preoxidants (ozone, oxygen, chlorine, hydrogen peroxide, and potassium permanganate) is discussed. The key problem is stable di- and trivalent iron-organic complexes in groundwater which after aeration tend to pass through the hydroanthracite-sand gravity filters. The total organic carbon (TOC) content in raw groundwater is in the range of 3.2-6.4 mg/L, total iron content 2.7-6.0 mg/L and divalent iron content 2.4-4.0 mg/L. Separation from Kogalym groundwater by XAD-16 adsorbentmore » humic matter fraction was homogeneous, with only 1 peak on the chromatogram with maximum Rt = 10.75 min and corresponding molecular mass 1911 ({lt} 2000). The final developed treatment technology is based on the water oxidation/reduction potential (ORP) optimization according to the iron system pE-pH diagram and consists of intensive aeration of raw water in the Gas-Degas Treatment (GDT) unit with the following sequence: filtration through the hydroanthracite and special anthracite Everzit, with intermediate enrichment of water with pure oxygen between the filtration stages.« less
Arora, Neha; Patel, Alok; Sartaj, Km; Pruthi, Parul A; Pruthi, Vikas
2016-10-01
The study illustrates the synergistic potential of novel microalgal, Chlamydomonas debaryana IITRIND3, for phycoremediation of domestic, sewage, paper mill and dairy wastewaters and then subsequent utilisation of its biomass for biodiesel production. Among these wastewaters, maximum lipid productivity (87.5 ± 2.3 mg L -1 day -1 ) was obtained in dairy wastewater with removal efficiency of total nitrogen, total phosphorous, chemical oxygen demand and total organic carbon to be 87.56, 82.17, 78.57 and 85.97 %, respectively. Metal ions such as sodium, calcium, potassium and magnesium were also removed efficiently from the wastewaters tested. Pigment analysis revealed loss of chlorophyll a while increase in carotenoid content in algal cells cultivated in different wastewaters. Biochemical data of microalgae grown in different wastewaters showed reduction in protein content with an increase in carbohydrate and lipid contents. The major fatty acids in algal cells grown in dairy wastewater were C14:0, C16:0, C16:1, C18:0, C18:2 and C18:3. The physical properties of biodiesel derived from microalgae grown in dairy wastewater were in compliance with the ASTM D6751 and EN 14214 fuel standards and were comparable to plant oil methyl esters.
Mahowald, N.M.; Muhs, D.R.; Levis, S.; Rasch, P.J.; Yoshioka, M.; Zender, C.S.; Luo, C.
2006-01-01
Desert dust simulations generated by the National Center for Atmospheric Research's Community Climate System Model for the current climate are shown to be consistent with present day satellite and deposition data. The response of the dust cycle to last glacial maximum, preindustrial, modern, and doubled-carbon dioxide climates is analyzed. Only natural (non-land use related) dust sources are included in this simulation. Similar to some previous studies, dust production mainly responds to changes in the source areas from vegetation changes, not from winds or soil moisture changes alone. This model simulates a +92%, +33%, and -60% change in dust loading for the last glacial maximum, preindustrial, and doubled-carbon dioxide climate, respectively, when impacts of carbon dioxide fertilization on vegetation are included in the model. Terrestrial sediment records from the last glacial maximum compiled here indicate a large underestimate of deposition in continental regions, probably due to the lack of simulation of glaciogenic dust sources. In order to include the glaciogenic dust sources as a first approximation, we designate the location of these sources, and infer the size of the sources using an inversion method that best matches the available data. The inclusion of these inferred glaciogenic dust sources increases our dust flux in the last glacial maximum from 2.1 to 3.3 times current deposition. Copyright 2006 by the American Geophysical Union.
Yang, Minhao; Zhao, Hang; He, Delong; Hu, Chaohe; Chen, Haowei; Bai, Jinbo
2017-01-01
Carbon coated boron nitride nanosheets (BNNSs@C) hybrids with different carbon contents were synthesized by a chemical vapor deposition (CVD) method. The content of carbon in as-obtained BNNSs@C hybrids could be precisely adjusted from 2.50% to 22.62% by controlling the carbon deposition time during the CVD procedure. Afterward, the BNNSs@C hybrids were subsequently incorporated into the polyvinylidene fluoride (PVDF) matrix to fabricate the BNNSs@C/PVDF nanocomposites through a combination of solution and melting blending methods. The dielectric properties of the as-obtained BNNSs@C/PVDF nanocomposites could be accurately tuned by adjusting the carbon content. The resultant nanocomposites could afford a high dielectric constant about 39 (103 Hz) at BNNSs@C hybrids loading of 30 vol %, which is 4.8 times larger than that of pristine BNNSs-filled ones at the same filler loading, and 3.5 times higher than that of pure PVDF matrix. The largely enhanced dielectric performance could be ascribed to the improved interfacial polarizations of BNNSs/carbon and carbon/PVDF interfaces. The approach reported here offers an effective and alternative method to fabricate high-performance dielectric nanocomposites, which could be potentially applied to the embedded capacitors with high dielectric performance. PMID:28773105
Testing of some assumptions about biodegradability in soil as measured by carbon dioxide evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Din Sharabi, N.; Bartha, R.
1993-04-01
The Toxic Substance Control Act calls for a premanufacturing review of novel chemical substances including their biodegradability. Carbon dioxide evolution, using non-labeled carbon or [sup 14]C, is a common method of testing. This study examines assumptions of carbon dioxide evolution testing. Test substances used included: glucose, adipic acid, benzoic acid, and n-hexadecane. Chemical composition other than carbon content appears to influence minimally the percentages conversion to CO[sub 2]. However, that although CO[sub 2] evolution seemed proportional to the carbon content and concentration of the test substance, at least one-half of the evolved net CO[sub 2] did not come directly frommore » the test substance. Conversion to CO[sub 2] in the soil appeared to depend on carbon content only. In experiments of 1 month or longer, the net CO[sub 2] evolution in response to substrate may be above 100% of the added substrate carbon. Whether this applies to all substrate additions remains to be studied. The authors conclude that net CO[sub 2] and [sup 14]CO[sub 2] evolution measurements are useful as a first-tier tests for assessing biodegradability in soil. 11 refs., 6 figs.« less
Carbon fiber content measurement in composite
NASA Astrophysics Data System (ADS)
Wang, Qiushi
Carbon fiber reinforced polymers (CFRPs) have been widely used in various structural applications in industries such as aerospace and automotive because of their high specific stiffness and specific strength. Their mechanical properties are strongly influenced by the carbon fiber content in the composites. Measurement of the carbon fiber content in CFRPs is essential for product quality control and process optimization. In this work, a novel carbonization-in-nitrogen method (CIN) is developed to characterize the fiber content in carbon fiber reinforced thermoset and thermoplastic composites. In this method, a carbon fiber composite sample is carbonized in a nitrogen environment at elevated temperatures, alongside a neat resin sample. The carbon fibers are protected from oxidization while the resin (the neat resin and the resin matrix in the composite sample) is carbonized under the nitrogen environment. The residue of the carbonized neat resin sample is used to calibrate the resin carbonization rate and calculate the amount of the resin matrix in the composite sample. The new method has been validated on several thermoset and thermoplastic resin systems and found to yield an accurate measurement of fiber content in carbon fiber polymer composites. In order to further understand the thermal degradation behavior of the high temperature thermoplastic polymer during the carbonization process, the mechanism and the kinetic model of thermal degradation behavior of carbon fiber reinforced poly (phenylene sulfide) (CPPS) are studied using thermogravimetry analysis (TGA). The CPPS is subjected to TGA in an air and nitrogen atmosphere at heating rates from 5 to 40°C min--1. The TGA curves obtained in air are different from those in nitrogen. This demonstrates that weight loss occurs in a single stage in nitrogen but in two stages in air. To elucidate this difference, thermal decomposition kinetics is analyzed by applying the Kissinger, Flynn-Wall-Ozawa, Coat-Redfern and Malek methods. The activation energy (Ea) of the solid-state process is determined to be 202 kJ mol--1 in an oxidative atmosphere using Kissinger's method, which is 10-15 kJ mol--1 more than the results calculated in a nitrogen atmosphere. The value of the activation energy obtained using Ozawa-Flynn methods is in agreement with that using the Kissinger method. Different degradation mechanisms are used to compare with this value. Based on the analytical result, the actual thermal degradation mechanism of the CPPS is a Dn deceleration type. The carbonization temperature range of the CPPS is the same as pure PPS resin.
Hu, Feinan; Huo, Na; Shang, Yingni; Chang, Wenqian
2018-01-01
Background The loess-paleosol sequence on the Loess Plateau has been considered an important paleoclimatic archive to study global climatic and environmental changes in the Quaternary. So far, little attention has been paid to the characteristics of soil organic carbon fractions in loess-paleosol sequences, which may provide valuable information for exploring the evolution of climate and environment in the Quaternary on the Loess Plateau. Methods In order to explore the significance of mineral-associated organic carbon to total organic carbon (MOC/TOC) ratios in the loess-paleosol sequence for reconstructing paleoenvironmental and paleoclimatic evolution in the Quaternary on the Loess Plateau, we selected a typical loess-paleosol profile in Chunhua county, Xianyang city, Shaanxi province, as the research object. The content of total organic carbon (TOC) and MOC/TOC ratio in each loess and paleosol layers of the Chunhua loess-paleosol profile were analyzed, together with the paleoclimatic proxies, such as soil grain size, CaCO3 content and their correlations with organic carbon parameters. Results The main results were as follows: (1) the total content of soil organic carbon and MOC/TOC ratios were generally higher in paleosol layers than in the underlying loess layers of the Chunhua loess-paleosol profile. Compared to total organic carbon content, MOC/TOC ratios changed more obviously in soil layers below a paleosol layer S8; (2) soil clay content and median grain size (Md (ϕ)) were higher in paleosol than in the underlying loess, while CaCO3 content showed an opposite tendency. In the Chunhua profile, the distribution characteristics of the three paleoclimatic proxies showed good indications of paleoclimate changes in the Quaternary; (3) in the Chunhua loess-paleosol profile, MOC/TOC ratios were positively correlated with clay content and median grain size (ϕ), while negatively correlated with CaCO3 content, and the correlations were more significant in soil layers below S8. Discussion Our results indicated that MOC/TOC ratios in the Chunhua loess-paleosol profile correlated with the cold dry-warm wet paleoclimatic cycle in the Quaternary. The high MOC/TOC ratios in the loess-paleosol profile might reflect warm and humid climate, while lower ratios indicated relatively cold and dry climate. That is because when the climate changed from warm-humid to cold-dry, the vegetation coverage and pedogenesis intensity decreased, which increased soil CaCO3 content and decreased soil clay content and Md (ϕ), leading to decreased MOC/TOC ratios. Compared to TOC, MOC/TOC ratios had greater significance in indicating paleoenvironmental evolution in the Quaternary on the Loess Plateau. Therefore, investigating MOC/TOC ratios in loess-paleosol profile can offer new evidence to reconstructing paleoenvironmental changes, and also provide a basis for predicting responses of soil organic carbon pools to vegetation and climate changes in the future. PMID:29666763
Chemistry of the Marlboro Clay in Virginia and Implications for the Paleocene-Eocene Thermal Maximum
NASA Astrophysics Data System (ADS)
Zimmer, M.; Cai, Y.; Corley, A.; Liang, J. A.; Powars, D.; Goldstein, S. L.; Kent, D. V.; Broecker, W. S.
2017-12-01
The Paleocene-Eocene Thermal Maximum (PETM) was a global hyperthermal ( 5ºC warming) event marked by a rapid carbon isotope excursion (CIE) of >1‰ in the marine carbonate record (e.g. Zeebe et al. Nature Geoscience 2009). Possible explanations for the CIE include intrusion of a sill complex into organic carbonate (Aarnes et al. J. Geol. Soc. 2015), dissolution of methane hydrates (Thomas et al. Geology 2002), and a comet impact event (Schaller et al. Science 2016). Here we present new data across the PETM from the VirginiaDEQ-USGS Surprise Hill (SH) core, Northumberland Co., VA. We analyzed the Marlboro Clay, a thick, kaolinite-rich clay unit that marks the initiation of the PETM in the mid-Atlantic Coastal Plain of North America, as well as units above and below it. Bulk sediment records a δ13C excursion of approximately -5‰ across the CIE, while benthic foraminifera (Cibicidoides spp.) record a synchronous excursion of approximately -4.5‰. These results are consistent with other records from the New Jersey Coastal Plain (Makarova et al. Paleoceanography 2017). The excursion coincides with an increase in magnetic susceptibility, a decrease in bulk CaCO3 content, and an 2.5‰ decrease of δ18O in both the bulk sediment and benthic foraminifera of the SH core. Pb isotope analyses of the <63 μm fraction sediments indicate a unique provenance make-up for the Marlboro Clay. The results of the study thus indicate that PETM Marlboro Clay was not generated simply by intensified weathering of the same source area as the underlying Aquia Formation and overlying Nanjemoy Formation. Any hypothesis that aims to explain the mechanism that triggered the PETM must also account for the observed distinct provenance make-up of the Marlboro Clay.
40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level... contaminants. (a) MCLGs are zero for the following contaminants: (1) Benzene (2) Vinyl chloride (3) Carbon...
40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level... contaminants. (a) MCLGs are zero for the following contaminants: (1) Benzene (2) Vinyl chloride (3) Carbon...
40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level... contaminants. (a) MCLGs are zero for the following contaminants: (1) Benzene (2) Vinyl chloride (3) Carbon...
40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level... contaminants. (a) MCLGs are zero for the following contaminants: (1) Benzene (2) Vinyl chloride (3) Carbon...
Esquivel-Hernández, Diego A.; López, Víctor H.; Rodríguez-Rodríguez, José; Alemán-Nava, Gibrán S.; Cuéllar-Bermúdez, Sara P.; Rostro-Alanis, Magdalena; Parra-Saldívar, Roberto
2016-01-01
Arthrospira platensis biomass was used in order to obtain functional lipophilic compounds through green extraction technologies such as supercritical carbon dioxide fluid extraction (SFE) and microwave-assisted extraction (MAE). The temperature (T) factor was evaluated for MAE, while for SFE, pressure (P), temperature (T), and co-solvent (ethanol) (CS) were evaluated. The maximum extraction yield of the obtained oleoresin was (4.07% ± 0.14%) and (4.27% ± 0.10%) for SFE and MAE, respectively. Extracts were characterized by gas chromatography mass spectrometry (GC-MS) and gas chromatography flame ionization detector (GC-FID). The maximum contents of functional lipophilic compounds in the SFE and MAE extracts were: for carotenoids 283 ± 0.10 μg/g and 629 ± 0.13 μg/g, respectively; for tocopherols 5.01 ± 0.05 μg/g and 2.46 ± 0.09 μg/g, respectively; and for fatty acids 34.76 ± 0.08 mg/g and 15.88 ± 0.06 mg/g, respectively. In conclusion, the SFE process at P 450 bar, T 60 °C and CS 53.33% of CO2 produced the highest yield of tocopherols, carotenoids and fatty acids. The MAE process at 400 W and 50 °C gives the best extracts in terms of tocopherols and carotenoids. For yield and fatty acids, the MAE process at 400 W and 70 °C produced the highest values. Both SFE and MAE showed to be suitable green extraction technologies for obtaining functional lipophilic compounds from Arthrospira platensis. PMID:27164081
Ames, Gregory M; Anderson, Steven M; Ungberg, Eric A; Wright, Justin P
2017-08-01
Understanding and predicting the response of plant communities to environmental changes and disturbances such as fire requires an understanding of the functional traits present in the system, including within and across species variability, and their dynamics over time. These data are difficult to obtain as few studies provide comprehensive information for more than a few traits or species, rarely cover more than a single growing season, and usually present only summary statistics of trait values. As part of a larger study seeking to understand the dynamics of plant communities in response to different prescribed fire regimes, we measured the functional traits of the understory plant communities located in over 140 permanent plots spanning strong gradients in soil moisture in a pyrogenic longleaf pine forest in North Carolina, USA, over a four-year period from 2011 and 2014. We present over 120,000 individual trait measurements from over 130 plant species representing 91 genera from 47 families. We include data on the following 18 traits: specific leaf area, leaf dry matter content, leaf area, leaf length, leaf width, leaf perimeter, plant height, leaf nitrogen, leaf carbon, leaf carbon to nitrogen ratio, water use efficiency, time to ignition, maximum flame height, maximum burn temperature, mass-specific burn time, mass-specific smolder time, branching architecture, and the ratio of leaf matter consumed by fire. We also include information on locations, soil moisture, relative elevation, soil bulk density, and fire histories for each site. © 2017 by the Ecological Society of America.
Sebestyen, Stephen D.; Norby, Richard J.; Hanson, Paul J.; ...
2017-04-18
Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum gross primary production (GPP)—the entry point of carbon into wetland ecosystems. Continuous flux measurements and flux partitioning show a seasonal cycle of Sphagnum GPP that peaked in the late summer, well after the peak in photosynthetically active radiation. Wavelet analysis showed that water table height was the key driver of weekly variation in Sphagnum GPPmore » in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. Flux partitioning and a process-based model of Sphagnum photosynthesis demonstrated the likelihood of seasonally dynamic maximum rates of photosynthesis and a logistic relationship between the water table and photosynthesizing tissue area when the water table was at the Sphagnum surface. Here, the model also suggested that variability in internal resistance to CO 2 transport, a function of Sphagnum water content, had minimal effect on GPP. To accurately model Sphagnum GPP, we recommend the following: (1) understanding seasonal photosynthetic trait variation and its triggers in Sphagnum; (2) characterizing the interaction of Sphagnum photosynthesizing tissue area with water table height; (3) modeling Sphagnum as a “soil” layer for consistent simulation of water dynamics; and (4) measurement of Sphagnum “canopy” properties: extinction coefficient (k), clumping (Ω), and maximum stem area index (SAI).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebestyen, Stephen D.; Norby, Richard J.; Hanson, Paul J.
Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum gross primary production (GPP)—the entry point of carbon into wetland ecosystems. Continuous flux measurements and flux partitioning show a seasonal cycle of Sphagnum GPP that peaked in the late summer, well after the peak in photosynthetically active radiation. Wavelet analysis showed that water table height was the key driver of weekly variation in Sphagnum GPPmore » in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. Flux partitioning and a process-based model of Sphagnum photosynthesis demonstrated the likelihood of seasonally dynamic maximum rates of photosynthesis and a logistic relationship between the water table and photosynthesizing tissue area when the water table was at the Sphagnum surface. Here, the model also suggested that variability in internal resistance to CO 2 transport, a function of Sphagnum water content, had minimal effect on GPP. To accurately model Sphagnum GPP, we recommend the following: (1) understanding seasonal photosynthetic trait variation and its triggers in Sphagnum; (2) characterizing the interaction of Sphagnum photosynthesizing tissue area with water table height; (3) modeling Sphagnum as a “soil” layer for consistent simulation of water dynamics; and (4) measurement of Sphagnum “canopy” properties: extinction coefficient (k), clumping (Ω), and maximum stem area index (SAI).« less
NASA Astrophysics Data System (ADS)
Walker, Anthony P.; Carter, Kelsey R.; Gu, Lianhong; Hanson, Paul J.; Malhotra, Avni; Norby, Richard J.; Sebestyen, Stephen D.; Wullschleger, Stan D.; Weston, David J.
2017-05-01
Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum gross primary production (GPP)—the entry point of carbon into wetland ecosystems. Continuous flux measurements and flux partitioning show a seasonal cycle of Sphagnum GPP that peaked in the late summer, well after the peak in photosynthetically active radiation. Wavelet analysis showed that water table height was the key driver of weekly variation in Sphagnum GPP in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. Flux partitioning and a process-based model of Sphagnum photosynthesis demonstrated the likelihood of seasonally dynamic maximum rates of photosynthesis and a logistic relationship between the water table and photosynthesizing tissue area when the water table was at the Sphagnum surface. The model also suggested that variability in internal resistance to CO2 transport, a function of Sphagnum water content, had minimal effect on GPP. To accurately model Sphagnum GPP, we recommend the following: (1) understanding seasonal photosynthetic trait variation and its triggers in Sphagnum; (2) characterizing the interaction of Sphagnum photosynthesizing tissue area with water table height; (3) modeling Sphagnum as a "soil" layer for consistent simulation of water dynamics; and (4) measurement of Sphagnum "canopy" properties: extinction coefficient (k), clumping (Ω), and maximum stem area index (SAI).
Using live algae at the anode of a microbial fuel cell to generate electricity.
Xu, Chang; Poon, Karen; Choi, Martin M F; Wang, Ruihua
2015-10-01
Live green microalgae Chlorella pyrenoidosa was introduced in the anode of a microbial fuel cell (MFC) to act as an electron donor. By controlling the oxygen content, light intensity, and algal cell density at the anode, microalgae would generate electricity without requiring externally added substrates. Two models of algal microbial fuel cells (MFCs) were constructed with graphite/carbon electrodes and no mediator. Model 1 algal MFC has live microalgae grown at the anode and potassium ferricyanide at the cathode, while model 2 algal MFC had live microalgae in both the anode and cathode in different growth conditions. Results indicated that a higher current produced in model 1 algal MFC was obtained at low light intensity of 2500 lx and algal cell density of 5 × 10(6) cells/ml, in which high algal density would limit the electricity generation, probably by increasing oxygen level and mass transfer problem. The maximum power density per unit anode volume obtained in model 1 algal MFC was relatively high at 6030 mW/m(2), while the maximum power density at 30.15 mW/m(2) was comparable with that of previous reported bacteria-driven MFC with graphite/carbon electrodes. A much smaller power density at 2.5 mW/m(2) was observed in model 2 algal MFC. Increasing the algal cell permeability by 4-nitroaniline would increase the open circuit voltage, while the mitochondrial acting and proton leak promoting agents resveratrol and 2,4-dinitrophenol would increase the electric current production in algal MFC.
Esquivel-Hernández, Diego A; López, Víctor H; Rodríguez-Rodríguez, José; Alemán-Nava, Gibrán S; Cuéllar-Bermúdez, Sara P; Rostro-Alanis, Magdalena; Parra-Saldívar, Roberto
2016-05-05
Arthrospira platensis biomass was used in order to obtain functional lipophilic compounds through green extraction technologies such as supercritical carbon dioxide fluid extraction (SFE) and microwave-assisted extraction (MAE). The temperature (T) factor was evaluated for MAE, while for SFE, pressure (P), temperature (T), and co-solvent (ethanol) (CS) were evaluated. The maximum extraction yield of the obtained oleoresin was (4.07% ± 0.14%) and (4.27% ± 0.10%) for SFE and MAE, respectively. Extracts were characterized by gas chromatography mass spectrometry (GC-MS) and gas chromatography flame ionization detector (GC-FID). The maximum contents of functional lipophilic compounds in the SFE and MAE extracts were: for carotenoids 283 ± 0.10 μg/g and 629 ± 0.13 μg/g, respectively; for tocopherols 5.01 ± 0.05 μg/g and 2.46 ± 0.09 μg/g, respectively; and for fatty acids 34.76 ± 0.08 mg/g and 15.88 ± 0.06 mg/g, respectively. In conclusion, the SFE process at P 450 bar, T 60 °C and CS 53.33% of CO₂ produced the highest yield of tocopherols, carotenoids and fatty acids. The MAE process at 400 W and 50 °C gives the best extracts in terms of tocopherols and carotenoids. For yield and fatty acids, the MAE process at 400 W and 70 °C produced the highest values. Both SFE and MAE showed to be suitable green extraction technologies for obtaining functional lipophilic compounds from Arthrospira platensis.
Esquivel-Hernández, Diego A; Rodríguez-Rodríguez, José; Cuéllar-Bermúdez, Sara P; García-Pérez, J Saúl; Mancera-Andrade, Elena I; Núñez-Echevarría, Jade E; Ontiveros-Valencia, Aura; Rostro-Alanis, Magdalena; García-García, Rebeca M; Torres, J Antonio; Chen, Wei Ning; Parra-Saldívar, Roberto
2017-06-12
Arthrospira platensis was used to obtain functional extracts through supercritical carbon dioxide extraction (SFE-CO₂). Pressure (P), temperature (T), co-solvent (CX), static extraction (SX), dispersant (Di) and dynamic extraction (DX) were evaluated as process parameters through a Plackett-Burman design. The maximum extract yield obtained was 7.48 ± 0.15% w/w. The maximum contents of bioactive metabolites in extracts were 0.69 ± 0.09 µg/g of riboflavin, 5.49 ± 0.10 µg/g of α-tocopherol, 524.46 ± 0.10 µg/g of β-carotene, 1.44 ± 0.10 µg/g of lutein and 32.11 ± 0.12 mg/g of fatty acids with 39.38% of palmitic acid, 20.63% of linoleic acid and 30.27% of γ-linolenic acid. A. platensis extracts had an antioxidant activity of 76.47 ± 0.71 µg GAE/g by Folin-Ciocalteu assay, 0.52 ± 0.02, 0.40 ± 0.01 and 1.47 ± 0.02 µmol TE/g by DPPH, FRAP and TEAC assays, respectively. These extracts showed antimicrobial activity against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and Candida albicans ATCC 10231. Overall, co-solvent was the most significant factor for all measured effects ( p < 0.05). Arthrospira platensis represents a sustainable source of bioactive compounds through SFE using the following extraction parameters P: 450 bar, CX: 11 g/min, SX: 15 min, DX: 25 min, T: 60 °C and Di: 35 g.
Esquivel-Hernández, Diego A.; Rodríguez-Rodríguez, José; Cuéllar-Bermúdez, Sara P.; García-Pérez, J. Saúl; Mancera-Andrade, Elena I.; Núñez-Echevarría, Jade E.; Ontiveros-Valencia, Aura; Rostro-Alanis, Magdalena; García-García, Rebeca M.; Torres, J. Antonio; Chen, Wei Ning; Parra-Saldívar, Roberto
2017-01-01
Arthrospira platensis was used to obtain functional extracts through supercritical carbon dioxide extraction (SFE-CO2). Pressure (P), temperature (T), co-solvent (CX), static extraction (SX), dispersant (Di) and dynamic extraction (DX) were evaluated as process parameters through a Plackett–Burman design. The maximum extract yield obtained was 7.48 ± 0.15% w/w. The maximum contents of bioactive metabolites in extracts were 0.69 ± 0.09 µg/g of riboflavin, 5.49 ± 0.10 µg/g of α-tocopherol, 524.46 ± 0.10 µg/g of β-carotene, 1.44 ± 0.10 µg/g of lutein and 32.11 ± 0.12 mg/g of fatty acids with 39.38% of palmitic acid, 20.63% of linoleic acid and 30.27% of γ-linolenic acid. A. platensis extracts had an antioxidant activity of 76.47 ± 0.71 µg GAE/g by Folin–Ciocalteu assay, 0.52 ± 0.02, 0.40 ± 0.01 and 1.47 ± 0.02 µmol TE/g by DPPH, FRAP and TEAC assays, respectively. These extracts showed antimicrobial activity against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and Candida albicans ATCC 10231. Overall, co-solvent was the most significant factor for all measured effects (p < 0.05). Arthrospira platensis represents a sustainable source of bioactive compounds through SFE using the following extraction parameters P: 450 bar, CX: 11 g/min, SX: 15 min, DX: 25 min, T: 60 °C and Di: 35 g. PMID:28604646
NASA Astrophysics Data System (ADS)
Jia, B.; Zhou, G.; Wang, H.; Yue, T.; Huang, W.
2018-04-01
Studies of the imbalance of source sinks in the carbon cycle show that CO2 absorbed during rock weathering is part of the "miss carbon" of the global carbon cycle. The carbon sink contribution of carbonate rocks obviously plays a very important role in the absorption of atmospheric CO2. Estimation of carbon sinks in karst dynamic system of Guangxi province has great significance for further understanding of global karst carbon cycle and global climate research. This paper quotes the rock data from Tao Xiaodong's paper, which is obtained using RS and GIS techniques. At the same time, the dissolution rate model studied by Zhou Guoqing and others was used to estimate the dissolution rate of carbonate rocks in Guangxi Province. Finally, the CO2 content consumed by carbonate karstification in Guangxi Province was 1342910.447 t a-1. The results obtained are in the same order of magnitude as the CO2 content consumed by carbonate rock karstification in Guangxi Province calculated by Tao Xiaodong.
As-Fabricated Reinforced Carbon/Carbon Characterized
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Calomino, Anthony M.; Webster, Neal
2004-01-01
Reinforced carbon/carbon (RCC) is a critical material for the space shuttle orbiter. It is used on the wing leading edge and the nose cap, where maximum temperatures are reached on reentry. The existing leading-edge system is a single-plate RCC composite construction with a wall thickness of approximately 1/4 in., making it a prime reliant protection scheme for vehicle operation.
Tannic acid degradation by Klebsiella strains isolated from goat feces
Tahmourespour, Arezoo; Tabatabaee, Nooroldin; Khalkhali, Hossein; Amini, Imane
2016-01-01
Background and Objectives: Tannins are toxic polyphenols that either bind and precipitate or condense proteins. The high tannin content of some plants is the preliminary limitation of using them as a ruminant feed. So, the aim of this study was the isolation and characterization of tannic acid degrading bacterial strains from goat feces before and after feeding on Pistachio-Soft Hulls as tannin rich diet (TRD). Materials and Methods: Bacterial strains capable of utilizing tannic acid as sole carbon and energy source were isolated and characterized from goat feces before and after feeding on TRD. Tannase activity, maximum tolerable concentration and biodegradation potential were assessed. Results: Four tannase positive isolates were identified as Klebsiella pneumoniae. Isolated strains showed the maximum tolerable concentration of 64g/L of tannin. The tannic acid degradation percentage at a concentration of 15.0 g/L reached a maximum of 68% after 24 h incubation, and more than 98% after 72 h incubation. The pH of the medium also decreased along with tannic acid utilization. Conclusions: It is obvious that TRD induced adaptive responses. Thus, while the bacteria were able to degrade and detoxify the tannic acids, they had to adapt in the presence of high concentrations of tannic acid. So, these isolates have an amazing potential for application in bioremediation, waste water treatment, also reduction of tannins antinutritional effects in animal feeds. PMID:27092220
Organic carbon content of marine aerosols collected on Bermuda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, E.J.; Duce, R.A.
1974-01-01
The concentration of total organic carbon in marine aerosols collected from a 20-m tower on the Southwest Coast of Bermuda ranged from 0.15 to 0.47 microgram/M/sup 3/ STP under onshore wind conditions. The mass of the organic carbon ranged from 1 to 19% of the mass of sea salt in the particles in Bermuda, and the percentage decreased with increasing salt content.
Kahraman, Kevser; Koksel, Hamit; Ng, Perry K W
2015-05-01
The optimum reaction conditions (temperature and pH) for the preparation of cross-linked (CL) corn and wheat starches with maximum resistant starch (RS) content were investigated by using response surface methodology (RSM). According to the preliminary results, five levels were selected for reaction temperature (38-70 °C) and pH (10-12) in the main study. RS contents of the CL corn and wheat starch samples increased with increasing temperature and pH, and pH had a greater influence on RS content than had temperature. The maximum RS content (with a maximum p value of 0.4%) was obtained in wheat starch cross-linked at 38 °C and pH 12. In the case of CL corn starch, the optimum condition was 70 °C and pH 12. CL corn and wheat starch samples were also produced separately under the optimum conditions and their RS contents were 80.4% and 83.9%, respectively. These results were also in agreement with the values predicted by RSM. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yamashita, Takako; Tanaka, Yuji; Yagoshi, Masayasu; Ishida, Kiyohito
2016-01-01
In multiphase steels, control of the carbon contents in the respective phases is the most important factor in alloy design for achieving high strength and high ductility. However, it is unusually difficult to determine the carbon contents in multiphase structures with high accuracy by electron probe microanalysis (EPMA) due to the unavoidable effect of hydrocarbon contamination during measurements. We have investigated new methods for suppressing hydrocarbon contamination during field emission (FE) EPMA measurements as well as a conventional liquid nitrogen trap. Plasma cleaner inside the specimen chamber results in a improvement of carbon-content determination by point analysis, increasing precision tenfold from the previous 0.1 mass%C to 0.01 mass%C. Stage heating at about 100 °C dramatically suppresses contamination growth during continuous point measurement and mapping. By the combination of above two techniques, we successfully visualized the two-dimensional carbon distribution in a dual-phase steel. It was also noted that the carbon concentrations at the ferrite/martensite interfaces were not the same across all interfaces, and local variation was observed. The developed technique is expected to be a powerful tool for understanding the mechanisms of mechanical properties and microstructural evolution, thereby contributing to the design of new steel products with superior properties. PMID:27431281
MINERAL AND BIOCHEMICAL ANALYSIS OF VARIOUS PARTS OF CISSUS QUADRANGULARIS LINN
Udayakumar, R.; Sundaran, M.; Krishna, Raghuram
2004-01-01
Ash, minerals and biochemical contents were determined in various parts of root, stem and leaf of Cissus quadrangularis. The maximum ash content was observed in the root. The maximum concentration of carbohydrate and protein in the root and phosphorus, iron, calcium and lipids in the stem were observed. PMID:22557157
Present state of boron-carbon thermoelectric materials
NASA Technical Reports Server (NTRS)
Elsner, N. B.; Reynolds, G. H.
1983-01-01
Boron-carbon p-type thermoelectric materials show promise for use in advanced thermal-to-electric space power conversion systems. Here, recent data on the thermoelectric properties of boron-carbon materials, such as B9C, B13C2, B15C2, and B4C, are reviewed. In particular, attention is given to the effect of the compositional homogeneity and residual impurity content on the Seeback coefficient, electrical resistivity, and thermal conductivity of these materials. The effect of carbon content for a given level of impurity and degree of homogeneity is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, G.K.
ORNL, through The Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE), collaborated with The Village Botanica, Inc. (VB) on a project investigating carbon sequestration in soils and commercial products from a new sustainable crop developed from perennial Hibiscus spp. Over 500 pre-treated samples were analyzed for soil carbon content. ORNL helped design a sampling scheme for soils during the planting phase of the project. Samples were collected and prepared by VB and analyzed for carbon content by ORNL. The project did not progress to a Phase II proposal because VB declined to prepare the required proposal.
Ivarsson, M; Lindblom, S; Broman, C; Holm, N G
2008-03-01
In this paper we describe carbon-rich filamentous structures observed in association with the zeolite mineral phillipsite from sub-seafloor samples drilled and collected during the Ocean Drilling Program (ODP) Leg 197 at the Emperor Seamounts. The filamentous structures are approximately 5 microm thick and approximately 100-200 microm in length. They are found attached to phillipsite surfaces in veins and entombed in vein-filling carbonates. The carbon content of the filaments ranges between approximately 10 wt% C and 55 wt% C. They further bind to propidium iodide (PI), which is a dye that binds to damaged cell membranes and remnants of DNA. Carbon-rich globular microstructures, 1-2 microm in diameter, are also found associated with the phillipsite surfaces as well as within wedge-shaped cavities in phillipsite assemblages. The globules have a carbon content that range between approximately 5 wt% C and 55 wt% C and they bind to PI. Ordinary globular iron oxides found throughout the samples differ in that they contain no carbon and do not bind to the dye PI. The carbon-rich globules are mostly concentrated to a film-like structure that is attached to the phillipsite surfaces. This film has a carbon content that ranges between approximately 25 wt% C and 75 wt% C and partially binds to PI. EDS analyses show that the carbon in all structures described are not associated with calcium and therefore not bound in carbonates. The carbon content and the binding to PI may indicate that the filamentous structures could represent fossilized filamentous microorganisms, the globules could represent fossilized microbial cells and the film-like structures could represent a microbially produced biofilm. Our results extend the knowledge of possible habitable niches for a deep biosphere in sub-seafloor environments and suggests, as phillipsite is one of the most common zeolite mineral in volcanic rocks of the oceanic crust, that it could be a common feature in the oceanic crust elsewhere.
Characteristics of Sodium Polyacrylate/Nano-Sized Carbon Hydrogel for Biomedical Patch.
Park, Jong-Kyu; Seo, Sun-Kyo; Cho, Seungkwan; Kim, Han-Sung; Lee, Chi-Hwan
2018-03-01
Conductive hydrogels were prepared for biomedical patch in order to improve the electrical conductivity. Sodium polyacrylate and nano-sized carbon were mixed and fabricated by aqueous solution gelation process in various contents of nano-sized carbon with 0.1, 0.5, 1.0 and 2.0 wt%. Sodium polyacrylate/nano-sized carbon conductive hydrogels were investigated by molecular structure, surface morphology and electrical conductivity. The conductivity of the hydrogel/nano-sized carbon conductive hydrogel proved to be 10% higher than conductive hydrogel without nano-sized carbon. However, it was founded that conductive hydrogels with nano-sized carbon content from 0.5 up to 2.0 wt% were remarkably decreased. This may be due to the non-uniform distribution of nano-sized carbon, resulting from agglomerates of nano-sized carbon. The developed hydrogel is intended for use in the medical and cosmetic fields that is applicable to supply micro-current from device to human body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, E-E; Pan, Shu-Yuan; Yang, Liuhanzi
2015-09-15
Highlights: • Carbonation was performed using CO{sub 2}, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO{sub 2} per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO{sub 2} emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO{sub 2} captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewatermore » (CRW) was investigated for carbon dioxide (CO{sub 2}) fixation under different operating conditions, i.e., reaction time, CO{sub 2} concentration, liquid-to-solid ratio, particle size, and CO{sub 2} flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO{sub 2} fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO{sub 2} reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO{sub 2} fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.« less
Controls upon biomass losses and char production from prescribed burning on UK moorland.
Worrall, Fred; Clay, Gareth D; May, Richard
2013-05-15
Prescribed burning is a common management technique used across many areas of the UK uplands. However, there are few data sets that assess the loss of biomass during burning and even fewer data on the effect of burning on above-ground carbon stocks and production of char. During fire the production of char occurs which represents a transfer of carbon from the short term bio-atmospheric cycle to the longer term geological cycle. However, biomass is consumed leading to the reduction in litter formation which is the principal mechanism for peat formation. This study aims to solve the problem of whether loss of biomass during a fire is ever outweighed by the production of refractory forms of carbon during the fire. This study combines both a laboratory study of char production with an assessment of biomass loss from a series of field burns from moorland in the Peak District, UK. The laboratory results show that there are significant effects due to ambient temperature but the most important control on dry mass loss is the maximum burn temperature. Burn temperature was also found to be linearly related to the production of char in the burn products. Optimisation of dry mass loss, char production and carbon content shows that the production of char from certain fires could store more carbon in the ecosystem than if there had been no fire. Field results show that approximately 75% of the biomass and carbon were lost through combustion, a figure comparable to other studies of prescribed fire in other settings. Char-C production was approximately 2.6% of the carbon consumed during the fire. This study has shown that there are conditions (fast burns at high temperatures) under which prescribed fire may increase C sequestration through char production and that these conditions are within existing management options available to practitioners. Copyright © 2013 Elsevier Ltd. All rights reserved.
Evidence for Biomass Burning from 14C and 13C/12C Measurements at T-0 and T-1 during MILAGRO.
NASA Astrophysics Data System (ADS)
Gaffney, J. S.; Marley, N. A.; Tackett, M. J.; Sturchio, N. C.; Heraty, L. J.; Martinez, N.; Hardy, K.; Guilderson, T.
2007-12-01
Both stable carbon isotopic and radiocarbon characterizations of aerosols can yield important information regarding the sources of carbonaceous aerosols in urban and regional environments. Biomass derived materials are labeled due to their recent photochemical activity in radiocarbon and vary depending upon the photochemical pathway (either C-4 or C-3) in stable carbon-13 content. C-4 being enriched over C-3. During the MILAGRO campaign, quartz filter samples were taken at 12 hour intervals from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. These samples were taken at the two super-sites, T-0 (Instituto Mexicano de Petroleo in Mexico City) and T-1 (Universidad Technologica de Tecamac, State of Mexico). The total carbon content was analyzed for stable carbon isotopic composition as well as for radiocarbon. Stable isotope mass spectroscopy was used to determine the carbon-13 to carbon-12 isotopic ratios on carbon dioxide. The carbon dioxide was then converted to graphite for analysis by accelerator mass spectrometry at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory. Results are presented for the carbon-13 content relative to the PDB standard and radiocarbon is given relative to recent carbon. The results for total radiocarbon content show that the carbonaceous aerosol content in Mexico City has more than half of the carbon coming from biomass derived sources. These can include inflow of biomass burning aerosols into the T-0 site as well as the input from local burning of biofuels and trash containing biomass derived materials (paper, boxes, etc.). Data also indicate that at the T-1 site biomass burning of C-4 grasses appears to be significant in that the carbon-13 values observed are enriched. Also at T-1 the radiocarbon levels are also found to be slightly higher indicating regional biomass burning as a significant contributor to aerosol carbon in the 0.1 to 1.0 micron size fraction. Some day and night differences were observed that indicate secondary organic aerosols are contributing and that a significant fraction of these aerosols are biomass derived. Further analyses of organic carbon and elemental carbon fractions are underway. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX- Mex) under the support of the Atmospheric Science Program. This research was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328.
Estimating Net Primary Productivity Using Satellite and Ancillary Data
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Houser, Paul (Technical Monitor)
2001-01-01
The net primary productivity (C) or annual rate of carbon accumulation per unit ground area by terrestrial plant communities is the difference of the rate of gross photosynthesis (A(sub g)) and autotrophic respiration (R) per unit ground area. Although available observations show that R is a large and variable fraction of A(sub g), viz., 0.3 to 0.7, it is generally recognized that much uncertainties exist in this fraction due to difficulties associated with the needed measurements. Additional uncertainties arise when these measurements are extrapolated to regional or global land surface using empirical equations, for example, using regression equations relating C to mean annual precipitation and air temperature. Here, a process-based approach has been taken to calculate A(sub g) and R using satellite and ancillary data. A(sub g) has been expressed as a product of radiation use efficiency, magnitude of intercepted photosynthetically active radiation (PAR), and normalized by stresses due to soil water shortage and air temperature away from the optimum range. A biophysical model has been used to determine the radiation use efficiency from the maximum rate of carbon assimilation by a leaf, foliage temperature, and the fraction of diffuse PAR incident on a canopy. All meteorological data (PAR, air temperature, precipitation, etc.) needed for the calculation are derived from satellite observations, while a land use, land cover data (based on satellite and ground measurements) have been used to assess the maximum rate of carbon assimilation by a leaf of varied cover type based on field measurements. R has been calculated as the sum of maintenance and growth components. The maintenance respiration of foliage and live fine roots at a standard temperature of different land cover has been determined from their nitrogen content using field and satellite measurements, while that of living fraction of woody stem (viz., sapwood) from the seasonal maximum leaf area index as determined from satellite observations. These maintenance respiration values were then adjusted to that corresponding to air temperature according to a prescribed non-linear variation of respiration with temperature. The growth respiration has been calculated from the difference of Ag and maintenance respiration, according to the two-compartment model. The results of calculations will be reported for 36 consecutive months (1987-1989) over large contiguous areas (ca. 10(exp 5) sq km) Of agricultural land and tropical humid evergreen forests, and compared with available field data.
Blue carbon content of mangrove vegetation in Subang district
NASA Astrophysics Data System (ADS)
Nurruhwati, I.; Purwita, S. D.; Sunarto; Zahidah
2018-04-01
The purpose of this research was to know the carbon content of mangrove parts such as leave, stems and roots and to know its ability to absorb carbondioxide (CO2). The research was conducted in 27th April until 16th May 2017 in Blanakan Village, Langensari Village and Jayamukti Village. The samples are dried at Pilotplane Laboratory Faculty of Industrial Engineering Padjadjaran University. The method in this research is explorative survey method. The results showed that there were two dominant mangroves species in three research stations, they are Avicennia marina and Rhizophora mucronata. Index of Important value of each mangrove type on the three stations in the medium criterion with a range of values is 106,86 %- 193,13 %. The highest carbon content was found in Rhizophora mucronata at station 1 (93,43 %) which was equivalent with 342,87 % absorption of CO2 which was The lowest carbon content was in Avicennia marina at station 1 (67,49 %) which was equivalent with 247,70 % absorption of CO2.
Barber, Nicholas A
2010-04-01
Insect herbivore abundances on host plants are influenced by both plant traits and the physical environment in which that plant grows. This study examined the role of the physical light environment and foliage characteristics in determining abundance of the lacebug Corythuca arcuata Say (Hemiptera: Tingidae) on Quercus alba L. I censused adult C. arcuata across a growing season, quantified leaf characteristics, and measured canopy cover over understory branches of mature Q. alba. Using an information-theoretic approach, a priori hypotheses of the relationship between light, plant traits, and C. arcuata abundance was evaluated. Abundance was best predicted by light environment and carbon content. Adult C. arcuata prefer trees growing under an open canopy and trees with low carbon content; abundance also positively correlated with leaf water content. Although carbon and water did not vary with light in this study, low carbon and high water content are often associated with shadier conditions, suggesting that C. arcuata faces a trade-off between preferences for physical habitat conditions and host plant characteristics.
NASA Astrophysics Data System (ADS)
Dong, Qi; Wan, Guoshun; Xu, Yongzheng; Guo, Yunli; Du, Tianxiang; Yi, Xiaosu; Jia, Yuxi
2017-12-01
The numerical model of carbon fiber reinforced polymer (CFRP) laminates with electrically modified interlayers subjected to lightning strike is constructed through finite element simulation, in which both intra-laminar and inter-laminar lightning damages are considered by means of coupled electrical-thermal-pyrolytic analysis method. Then the lightning damage extents including the damage volume and maximum damage depth are investigated. The results reveal that the simulated lightning damages could be qualitatively compared to the experimental counterparts of CFRP laminates with interlayers modified by nickel-coated multi-walled carbon nanotubes (Ni-MWCNTs). With higher electrical conductivity of modified interlayer and more amount of modified interlayers, both damage volume and maximum damage depth are reduced. This work provides an effective guidance to the anti-lightning optimization of CFRP laminates.
NASA Astrophysics Data System (ADS)
Chen, Zhuoqi; Chen, Jing M.; Zhang, Shupeng; Zheng, Xiaogu; Ju, Weiming; Mo, Gang; Lu, Xiaoliang
2017-12-01
The Global Carbon Assimilation System that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25°C (Vmax25), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1° resolution for the period from 2002 to 2008. The results indicate that vegetation from tropical zones has lower Vmax25 values than vegetation in temperate regions. Relatively high values of Q10 are derived over high/midlatitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at middle-high latitudes. The maxima in Vmax25 occur during growing seasons, while the minima appear during nongrowing seasons. Q10 values decrease with increasing temperature. The seasonal variabilities of Vmax25 and Q10 are larger at higher latitudes. Optimized Vmax25 and Q10 show little seasonal variabilities at tropical regions. The seasonal variabilities of Vmax25 are consistent with the variabilities of LAI for evergreen conifers and broadleaf evergreen forests. Variations in leaf nitrogen and leaf chlorophyll contents may partly explain the variations in Vmax25. The spatial distribution of the total soil carbon pool size after optimization is compared favorably with the gridded Global Soil Data Set for Earth System. The results also suggest that atmospheric CO2 data are a source of information that can be tapped to gain spatially and temporally meaningful information for key ecosystem parameters that are representative at the regional and global scales.
Temporal trends in organic carbon content in the main Swiss rivers, 1974-2010.
Rodríguez-Murillo, J C; Zobrist, J; Filella, M
2015-01-01
Increases in dissolved organic carbon (DOC) concentrations have often been reported in rivers and lakes of the Northern Hemisphere over the last few decades. High-quality organic carbon (OC) concentration data have been used to study the change in DOC and total (TOC) organic carbon concentrations in the main rivers of Switzerland (Rhône, Rhine, Thur and Aar) between 1974 and 2010. These rivers are characterized by high discharge regimes (due to their Alpine origin) and by running in populated areas. Small long term trends (a general statistically significant decrease in TOC and a less clear increase in DOC concentrations), on the order of 1% of mean OC concentration per year, have been observed. An upward trend before 1999 reversed direction to a more marked downward trend from 1999 to 2010. Of the potential causes of OC temporal variation analysed (water temperature, dissolved reactive phosphorus and river discharge), only discharge explains a significant, albeit still small, part of TOC variability (8-31%), while accounting for barely 2.5% of DOC variability. Estimated anthropogenic TOC and DOC loads (treated sewage) to the rivers could account for a maximum of 4-20% of the temporal trends. Such low predictability is a good example of the limitations faced when studying causality and drivers behind small variations in complex systems. River export of OC from Switzerland has decreased significantly over the period. Since about 5.5% of estimated NEP of Switzerland is exported by the rivers, riverine OC fluxes should be taken into account in a detailed carbon budget of the country. Copyright © 2014 Elsevier B.V. All rights reserved.
Mechanism of organic aerosol formation and aging: Role of the precursor carbon skeleton
NASA Astrophysics Data System (ADS)
Hunter, J. F.; Carrasquillo, A. J.; Daumit, K. E.; Cross, E. S.; Worsnop, D. R.; Kroll, J. H.
2012-12-01
Oxidative aging of organic aerosol consists of a complex set of reactions coupled with gas-particle partitioning processes. Functionalization reactions involve adding oxygen containing functional groups onto a molecule, leading to reduced vapor pressures and promoting aerosol formation. In fragmentation reactions carbon-carbon bonds are broken as oxygen containing functional groups are added, which generally splits the parent molecule into two smaller and more volatile products. The initial structure of an aerosol-forming precursor molecule may influence what chemistry will occur both by changing the branching between fragmentation and functionalization processes as well as changing the effects of those processes. The fate of early generation oxidation products upon further aging is dependent on this initial chemistry, leading to a persistent effect of the precursor carbon skeleton. Aging experiments have been conducted using a high NOx smog chamber based aging technique. Long residence times and modestly elevated OH concentrations lead to typical maximum OH exposure of 3e11 molecule*seconds/cc, approaching several days equivalent exposure to ambient OH concentrations. A broad set of linear, branched and cyclic aliphatic hydrocarbons has been oxidized to determine the effects of carbon skeleton on the relative importance of fragmentation and functionalization and impacts on aerosol formation chemistry. Relative degree of fragmentation and functionalization is constrained by mass spectrometry of both the gas and particle phase. Measurements of the aerosol oxygen content and mass yield are reported, and structural effects on these properties are determined. Degree of unsaturation is hypothesized to have a significant impact on the effect of fragmentation reactions and to promote additional aerosol formation, extended aging and more oxygenated aerosol.
Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K
2018-07-15
Nitrogen enriched carbon adsorbents with high surface areas were successfully prepared by carbonizing the low-cost urea formaldehyde resin, followed by KOH activation. Different characterization techniques were used to determine the structure and surface functional groups. Maximum surface area and total pore volume of 4547 m 2 g -1 and 4.50 cm 3 g -1 were found by controlling activation conditions. The optimized sample denoted as UFA-3-973 possesses a remarkable surface area, which is found to be one of the best surface areas achieved so far. Nitrogen content of this sample was found to be 22.32%. Dynamic CO 2 uptake capacity of the carbon adsorbents were determined thermogravimetrically at different CO 2 concentrations (6-100%) and adsorption temperatures (303-373 K) which have a much more relevance for the flue gas application. Highest adsorption capacity of 2.43 mmol g -1 for this sample was obtained at 303 K under pure CO 2 flow. Complete regenerability of the adsorbent over four adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description of adsorption over all adsorption temperatures and CO 2 concentrations. Heterogeneity of the adsorbent surface was confirmed from the Langmuir and Freundlich isotherms fits and isosteric heat of adsorption values. Exothermic, spontaneous and feasible nature of adsorption process was confirmed from thermodynamic parameter values. The combination of high surface area and large pore volume makes the adsorbent a new promising carbon material for CO 2 capture from power plant flue gas and for other relevant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Reichstein, Markus; Rey, Ana; Freibauer, Annette; Tenhunen, John; Valentini, Riccardo; Banza, Joao; Casals, Pere; Cheng, Yufu; Grünzweig, Jose M.; Irvine, James; Joffre, Richard; Law, Beverly E.; Loustau, Denis; Miglietta, Franco; Oechel, Walter; Ourcival, Jean-Marc; Pereira, Joao S.; Peressotti, Alessandro; Ponti, Francesca; Qi, Ye; Rambal, Serge; Rayment, Mark; Romanya, Joan; Rossi, Federica; Tedeschi, Vanessa; Tirone, Giampiero; Xu, Ming; Yakir, Dan
2003-12-01
Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, interannual and spatial variability of soil respiration as affected by water availability, temperature, and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g., leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical nonlinear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content, and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and intersite variability of soil respiration with a mean absolute error of 0.82 μmol m-2 s-1. The parameterized model exhibits the following principal properties: (1) At a relative amount of upper-layer soil water of 16% of field capacity, half-maximal soil respiration rates are reached. (2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. (3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly timescale, we employed the approach by [2002] that used monthly precipitation and air temperature to globally predict soil respiration (T&P model). While this model was able to explain some of the month-to-month variability of soil respiration, it failed to capture the intersite variability, regardless of whether the original or a new optimized model parameterization was used. In both cases, the residuals were strongly related to maximum site leaf area index. Thus, for a monthly timescale, we developed a simple T&P&LAI model that includes leaf area index as an additional predictor of soil respiration. This extended but still simple model performed nearly as well as the more detailed time step model and explained 50% of the overall and 65% of the site-to-site variability. Consequently, better estimates of globally distributed soil respiration should be obtained with the new model driven by satellite estimates of leaf area index. Before application at the continental or global scale, this approach should be further tested in boreal, cold-temperate, and tropical biomes as well as for non-woody vegetation.