Gardner, C.A.; Cashman, K.V.; Neal, C.A.
1998-01-01
The 1992 eruption of Crater Peak, Mount Spurr, Alaska, involved three subplinian tephra-producing events of similar volume and duration. The tephra consists of two dense juvenile clast types that are identified by color, one tan and one gray, of similar chemistry, mineral assemblage, and glass composition. In two of the eruptive events, the clast types are strongly stratified with tan clasts dominating the basal two thirds of the deposits and gray clasts the upper one third. Tan clasts have average densities between 1.5 and 1.7 g/cc and vesicularities (phenocryst free) of approximately 42%. Gray clasts have average densities between 2.1 and 2.3 g/cc, and vesicularities of approximately 20%; both contain abundant microlites. Average maximum plagioclase microlite lengths (13-15 ??m) in gray clasts in the upper layer are similar regardless of eruptive event (and therefore the repose time between them) and are larger than average maximum plagioclase microlite lengths (9-11 ???m) in the tan clasts in the lower layer. This suggests that microlite growth is a response to eruptive processes and not to magma reservoir heterogeneity or dynamics. Furthermore, we suggest that the low vesicularities of the clasts are due to syneruptive magmatic degassing resulting in microlitic growth prior to fragmentation and not to quenching of clasts by external groundwater.
NASA Astrophysics Data System (ADS)
Calder, E.; Clarke, B. A.; Cortes, J. A.; Butler, I. B.; Yirgu, G.
2016-12-01
In peralkaline rhyolitic melts, Na+ and K+ combined with halogens act to disrupt silicate polymers reducing melt viscosity in comparison to other melts of equivalent silica content. As a result, such magmas are often associated with somewhat unusual deposits for which the associated eruptive behaviours are relatively poorly understood. We have discovered unusual globule-shaped clasts within an unconsolidated pyroclastic succession associated with a pumice cone at Aluto volcano in the Main Ethiopian Rift. The clasts are lapilli to ash sized, often have a droplet-like morphology and are characterised by a distinctive obsidian skin indicative of having been shaped by surface tension. We adopt Walker's term achneliths for these clasts. These achneliths however, unlike their mafic counterparts, are highly vesicular ( 78 vol %), and the glassy skin often shows a bread-crusted texture. Importantly, there is strong evidence for post-depositional, in-situ, inflation, including expanding against other clasts and in some cases fusing together. The unconsolidated nature of the deposit at Aluto means that these peralkaline achneliths are easily separated and investigated in 3D, providing an unprecedented opportunity to study their features in detail through the use of µCT, SEM and EPMA. Textural observations and preliminary 3D vesicle size distribution data suggest that surface tension is an important factor in shaping these clasts, and that vesiculation and degassing occurs over a prolonged period post-emplacement. MELTS model calculations on the EPMA analyses assuming dry conditions, suggest maximum liquidus temperatures of 1030 °C and minimum viscosities of 6 Log(poise). These observations have important implications for understanding the nature of late stage degassing, fragmentation and eruption style in peralkaline rhyolite systems as well as incipient welding in peralkaline pyroclastic units.
NASA Astrophysics Data System (ADS)
Nichol, Scott L.; Lian, Olav B.; Carter, Charles H.
2003-01-01
A semi-continuous sheet of granule to cobble-size clasts forms a distinctive deposit on sand dunes located on a coastal barrier in Whangapoua Bay, Great Barrier Island, New Zealand. The gravel sheet extends from the toe of the foredune to 14.3 m above mean sea level and 200 m landward from the beach. Clasts are rounded to sub-rounded and comprise lithologies consistent with local bedrock. Terrestrial sources for the gravel are considered highly unlikely due to the isolation of the dunes from hillslopes and streams. The only source for the clasts is the nearshore to inner shelf of Whangapoua Bay, where gravel sediments have been previously documented. The mechanism for transport of the gravel is unlikely to be storm surge due to the elevation of the deposit; maximum-recorded storm surge on this coast is 0.8 m above mean high water spring tide. Aeolian processes are also discounted due to the size of clasts and the elevation at which they occur. Tsunami is therefore considered the most probable mechanism for gravel transport. Minimum run-up height of the tsunami was 14.3 m, based on maximum elevation of gravel deposits. Optical ages on dune sands beneath and covering the gravel allow age bracketing to 0-4.7 ka. Within this time frame, numerous documented regional seismic and volcanic events could have generated the tsunami, notably submarine volcanism along the southern Kermadec arc to the east-southeast of Great Barrier Island where large magnitude events are documented for the late Holocene. Radiocarbon ages on shell from Maori middens that appear to have been reworked by tsunami run-up constrain the age of this event to post ca. 1400 AD. Regardless of the precise age of this event, the well-preserved nature of the Whangapoua gravel deposit provides for an improved understanding of the high degree of spatial variability in tsunami run-up.
Relationship between geomorphology and lithotypes of lahar deposit from Chokai volcano, Japan
NASA Astrophysics Data System (ADS)
Minami, Y.; Ohba, T.; Hayashi, S.; Kataoka, K.
2013-12-01
Chokai volcano, located in the northern Honshu arc in Japan, is an andesitic stratovolcano that collapsed partly at ca. 2500 years ago. A post collapse lahar deposit (Shirayukigawa lahar deposit) is distributed in the northern foot of the volcanic edifice. The deposit consists of 16 units of debris flow, hyperconcentrated flow and streamflow deposits. The Shirayukigawa lahar deposit has a total thickness of 30 m and overlies the 2.5-ka Kisakata debris avalanche deposit. Shirayukigawa lahar deposit forms volcanic fan and volcanic apron. The volcanic fan is subdivided into four areas on the basis of slope angles and of geomorphological features: 1) steeply sloped area, 2) moderately sloped area, 3) gently sloped area and 4) horizontal area. From sedimentary facies and structures, each unit of the Shirayukigawa lahar deposit is classified into one of four lithotypes: clast-supported debris flow deposit (Cc), matrix-supported debris flow deposit (Cm1), hyperconcentrated flow deposit (Cm2) and streamflow deposit (Sl). Each type has the following lithological characteristics. The lithotypes are well correlated with the geomorphology of the volcanic fan. The steeply-sloped and the moderately-sloped areas are dominated by Cc, Cm1, and Cm2, and The horizontal area are dominated by Sl. Debris flow deposit (Cc) is massive, very poorly sorted, partly graded, and clast-supported with polymictic clasts dominated by subrounded to rounded volcanic clasts. Matrix is sandy to muddy. Preferred clast orientation are present. Debris flow deposit (Cm1) is massive, very poorly sorted, and matrix-supported with polymictic clasts dominated by subrounded to rounded volcanic clasts. Matrix is sandy to muddy. Some layers exhibit coarse-tail normal/inverse grading. Most clasts are oriented. Hyperconcentrated flow deposit (Cm2) is massive to diffusely laminated, very poorly sorted and matrix-supported with polymictic clasts dominated by subrounded to rounded volcanic rocks. Matrix is sandy. The clasts are randomly distributed in the sandy matrix except for some clast-concentrated lenticular layers. Clasts smaller than 1cm account for about 10 percent of the deposits. Maximum clast size is about 30 cm. Streamflow deposit (Sl) is weakly parallel/cross-laminated, sorted and partly graded. The deposit contains volcanic clasts smaller than 20cm, which clasts are preferentially oriented and account for about 5% of the deposit. Clasts of the deposits consist of altered andesite, fresh andesite, mudstone and sandstone. The sedimentary clasts were derived from the substrate. The proportion of altered andesite clasts decreases upwards through the units. Matrix components in the lower eight units (C-LHR) are different from those of the upper eight units (S-LHR). In C-LHR units, grayish blue clay is dominant in matrix, whereas in S-LHR units, brownish yellow volcanic sand is dominant in matrix. Hydrothermal clay minerals such as smectite, chlorite, pyrophyllite and kaoline group minerals are rich in C-LHR units, whereas they are poor in S-LHR units. The stratigraphic variation in matrix component reflects temporal variation in supplied materials from source region.
Ar-40/Ar-39 and U-Th-Pb dating of separated clasts from the Abee E4 chondrite
NASA Technical Reports Server (NTRS)
Bogard, D. D.; Unruh, D. M.; Tatsumoto, M.
1983-01-01
Ar-40/Ar-39 and U-Th-Pb are investigated for three clasts from the Abee (E4) enstatite chondrite, yielding Ar-40/Ar-39 plateau ages (and/or maximum ages) of 4.5 Gy, while two of the clasts give average ages of 4.4 Gy. The 4.4-4.5 Gy range does not resolve possible age differences among the clasts. The U-Th-Pb data are consistent with the interpretation that initial clast formation occurred 4.58 Gy ago, and that the clasts have since remained closed systems which have been contaminated with terrestrial Pb. The thermal history of Abee deduced from Ar data seems consistent with that deduced from magnetic data, suggesting that various Abee components experienced separate histories until brecciation no later than 4.4 Gy ago, experiencing no significant subsequent heating.
NASA Astrophysics Data System (ADS)
Aileen Yingst, R.; Cropper, Kevin; Blank, Jennifer; Goetz, Walter; Hamilton, Victoria; Hipkin, Victoria; Kah, Linda; Madsen, Morten Bo; Newsom, Horton; Williams, Rebecca; Bridges, John; Martinez-Frias, Jesús; King, Penelope
2015-04-01
The transport, sorting and abrasive processes that modify the loose surface fragments comprising a sedimentary population are best recorded in the morphologic characteristics of those fragments (also termed clasts or particles). Here we assess morphologic characteristics (size, shape, roundness, texture) of clasts in the pebble to cobble size range (2-256 mm) in Gale Crater imaged along the path of the Curisoty rover from sols 0 to 800. Pebble- to cobble-sized clasts along Curiosity's traverse most likely include geologic materials from the walls of fluvial canyons that debouch onto the crater floor, fragments shed from the central mound of the crater, and grains from modern eolian dunes. Our goal is to help constrain the boundaries of potential transport mechanisms important throughout the geologic history of the crater interior. Clast survey observations were taken on 162 sols. Most common clast types include: Type 1. These grey, fine-grained clasts are the most common type between sols 0 to ~650. Particles are angular to sub-angular (though sub-rounded clasts appear beginning ~sol 548), with flat facets terminating in sharp or slightly rounded edges. Surface texture is often smooth, but fresher facets can be rough and knobby at the sub-mm scale; occasionally, faint layers can be discerned. Wind-eroded features are common. Type 2. These clasts are gray and angular to sub-angular, displaying faces with circular or elongated concave-outward ellipsoids averaging 0.5-1.5 mm long-axis. A potential variant of this clast type is one in which ellipsoids are so deeply weathered that the particle takes on a scoria-like shape. Type 3. This class consists of angular to sub-angular void-rich clasts. These are rare, and disappear after ~sol 50, but reappear around sol 672. Type 4. These particles are angular to sub-angular and clast-rich. Clasts protrude as they wear, making surface textures jagged-looking. Type 5. Particles in this class vary in color, are equidimensional or somewhat elongate, and tend to be subrounded to well-rounded. Such fragments are a significant component of the clast population in some areas along traverse, often littering the surface surrounding larger conglomerate fragments. Type 6. These particles are angular to sub-rounded in shape, with a knobby, rugged surface texture. This type weathers to similar shapes as Type 4 but lacks protruding grains. Type 7. This class consists of platy or chunky fragments with a grainy surface texture. This type begins to appear around sol 746 and is the predominant clast type starting sol 780. This type is similar to the surrounding outcrop and thus likely did not travel far. The diverse morphology indicates that a complex interplay of varying lithologies, transport mechanisms, and environmental circumstances is responsible for the morphology observed. Morphology of clasts suggests that the majority of pebbles and cobbles have not been significantly altered in transport. The exceptions are pebbles that likely wore out of conglomerates, and a sub-rounded population near the base of Mt. Sharp that we are beginning to explore.
Nature of the H chondrite parent body regolith - Evidence from the Dimmitt breccia
NASA Technical Reports Server (NTRS)
Rubin, A. E.; Scott, E. R. D.; Taylor, G. J.; Keil, K.; Allen, J. S. B.; Mayeda, T. K.; Clayton, R. N.; Bogard, D. D.
1983-01-01
Meteorite regolith breccias are clastic rocks which formed by lithification of fragmental regolith material that once resided at the surface of a meteorite parent body. A study is reported of the matrix and 21 clasts of various sizes (0.2-24 mm) in the Dimmitt H chondrite regolith breccia using petrographic and electron microprobe techniques. In addition, oxygen isotope studies of three clasts and instrumental neutron activation analysis (INAA) and Ar-39/Ar-40 age dating of one clast are reported. The Dimmitt meteorite was found about 1942 near Dimmitt, Texas. Attention is given to analytical procedures, the clastic matrix, equilibrated clasts, poikilitic melt-rock clast, clasts of different chondrite groups, graphite-magnetite aggregates, the origin of exotic clasts, and the complexity of parent body surfaces processes.
Flotation Experiments with Seafloor-Sampled Pumice Lapilli, IODP 340 - Preliminary Results
NASA Astrophysics Data System (ADS)
Jutzeler, M.; Manga, M.; White, J. D.
2012-12-01
A 1.25-m-thick, unconsolidated unit of pink pumice lapilli was recovered at site U1396, IODP expedition 340. The drilling site lies at the top of an entirely submarine ridge in a back-arc of the Lesser Antilles volcanic arc, 35 km offshore from Montserrat Island. The unit was recovered from 122 m below sea floor, at a water depth of ~800 m. Preliminary biostratigraphy and paleomagnetic analysis yield an age of ~4 Ma. This age is much older than any rocks from the island of Montserrat, suggesting that the pumice lapilli unit may have submarine origin. In addition, the pumice lapilli unit has a grading and sorting that does not match conventional eruption-fed products from air-fall or turbidity currents. The pumice lapilli unit was recovered at two holes 40 m apart, and is identical in the two cores. The change in grain size in the stratigraphy of the unit defines a weak stratification. The pumice lapilli unit comprises two main sub-units, with four ash-rich intervals. The lower sub-unit is ~20 cm thick, framework-supported, and dominated by angular white tube-pumice lapilli (2-4 mm); dense lithic clasts (2 mm) are concentrated at the base of this sub-unit. The upper sub-unit is 1 m thick, and mostly composed of angular to sub-angular, white tube pumice lapilli (average 4 mm, max 32 mm), in a pink ash matrix. The ash is chiefly composed of micro-pumice clasts, feldspar and ferromagnesian crystal fragments, glass shards, and lithic clasts that commonly contain fresh pyrite. Three main parameters constrain the floatability of pumice clasts in water: vesicularity, clast size and shape, and clast temperature. The connected vesicularity of the pumice clasts was measured by subtracting the weight of dry pumice clasts from their water-saturated weight, and by functional stereology applied on SEM images. Clast-size distribution and clast shape were measured by particle size analyzer (CILAS) and sieving. We carried out pyroclast flotation and settling experiments in an attempt to find the best eruption and transport scenarios that match the distinctive grading and sorting of the natural unit. Hot and cold pumice clasts picked from every 3 cm in the entire stratigraphy were left to sink in water. Floating time and discrete sinking time were calculated for each pumice clast. To document different behavior in the ingestion of water by the pumice lapilli, two temperatures were used in the experiments: room temperature and ~500°C. These experiments narrowed the possible scenarios of eruption and transport processes by determining the time elapsed between eruption and final deposition of the pink pumice lapilli unit.
Oxygen Isotope Ratios of Magnetite in CI-Like Clasts from a Polymict Ureilite
NASA Technical Reports Server (NTRS)
Kita, N. T.; Defouilloy, C.; Goodrich, C. A.; Zolensky, M. E.
2017-01-01
Polymict ureilites contain a variety of Less than or equal to mm to cm sized non-ureilitic clasts, many of which can be identifed as chondritic and achondritic meteorite types. Among them, dark clasts have been observed in polymict ureilites that are similar to CI chondrites in mineralogy, containing phyllosilicates, magnetite, sulfide and carbonates. Bulk oxygen isotope analyses of a dark clast in Nilpena plot along the CCAM line and above the terrestrial fractionation line, on the O-poor extension of the main group ureilite trend and clearly different from bulk CI chondrites. One possible origins of such dark clast is that they represent aqueously altered precursors of ureilite parent body (UPB) that were preserved on the cold surface of the UPB. Oxygen isotope analyses of dark clasts are key to better understanding their origins. Oxygen isotope ratios of magnetite are of special interest because they reflect the compositions of the fluids in asteroidal bodies. In primitive chondrites, Delta O (= Delta O - 0.52× Delta O) values of magnetites are always higher than those of the bulk meteorites and represent minimum Delta O values of the initial O-poor aqueous fluids in the parent body. Previous SIMS analyses on magnetite and fayalite in dark clasts from the DaG 319 polymict ureilite were analytically difficult due to small grain sizes, though data indicated positive Delta O values of 3-4 per mille, higher than that of the dark clast in Nilpena (1.49per mille).
Rheological changes induced by clast fragmentation in debris flows
NASA Astrophysics Data System (ADS)
Caballero, Lizeth; Sarocchi, Damiano; Soto, Enrique; Borselli, Lorenzo
2014-09-01
On the basis of rotating drum analogue experiments, we describe a fragmentation process acting within debris flows during transport and its influence on rheologic behavior. Our hypothesis is based on a detailed textural analysis including granulometry, clast morphology, and rheologic properties of the fluid matrix. Results of the experiments point out that breakage of certain granulometric classes produces fine particles like fine sand and silt. The population growth of fine clasts with time leads to an increase in yield strength and viscosity that progressively modifies the rheologic behavior. From a textural point of view, this is reflected in a bimodal granulometric distribution. Up to now this characteristic has been explained as the effect of bulking and/or sedimentation processes during transport. Our experimental results show that the type of fragmentation depends on particle size and is the consequence of strong clast-clast interaction and clast-fluid interactions. Coarse particles develop small fractures which cause the loss of sharp edges and asperities. Medium-sized particles develop through-going fractures that cause them to break apart. The latter process explains why intermediate granulometric classes progressively diminish with time in debris flows. Analogue experiments enable us to study the efficacy of clast fragmentation in modifying the textural character and flow behavior of debris flows without the influence of external factors such as erosion and sedimentation. The obtained results constitute the base of a new approach for modeling debris flow dynamics.
Filling in the Gaps: Xenoliths in Meteorites are Samples of "Missing" Asteroid Lithologies
NASA Technical Reports Server (NTRS)
Zolensky, Mike
2016-01-01
We know that the stones that fall to earth as meteorites are not representative of the full diversity of small solar system bodies, because of the peculiarities of the dynamical processes that send material into Earth-crossing paths [1] which result in severe selection biases. Thus, the bulk of the meteorites that fall are insufficient to understand the full range of early solar system processes. However, the situation is different for pebble- and smaller-sized objects that stream past the giant planets and asteroid belts into the inner solar system in a representative manner. Thus, micrometeorites and interplanetary dust particles have been exploited to permit study of objects that do not provide meteorites to earth. However, there is another population of materials that sample a larger range of small solar system bodies, but which have received little attention - pebble-sized foreign clasts in meteorites (also called xenoliths, dark inclusions, clasts, etc.). Unfortunately, most previous studies of these clasts have been misleading, in that these objects have simply been identified as pieces of CM or CI chondrites. In our work we have found this to be generally erroneous, and that CM and especially CI clasts are actually rather rare. We therefore test the hypothesis that these clasts sample the full range of small solar system bodies. We have located and obtained samples of clasts in 81 different meteorites, and have begun a thorough characterization of the bulk compositions, mineralogies, petrographies, and organic compositions of this unique sample set. In addition to the standard e-beam analyses, recent advances in technology now permit us to measure bulk O isotopic compositions, and major- though trace-element compositions of the sub-mm-sized discrete clasts. Detailed characterization of these clasts permit us to explore the full range of mineralogical and petrologic processes in the early solar system, including the nature of fluids in the Kuiper belt and the outer main asteroid belt, as revealed by the mineralogy of secondary phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.A. Valentine; C.D. Harrington
Formation of desert pavement and accretionary soils are intimately linked in arid environments such as the Mojave Desert. Well-sorted fallout scoria lapilli at Lathrop Wells (75-80 ky) and Red Cone ({approx}1 Ma) volcanoes (southern Nevada) formed an excellent starting material for pavement, allowing infiltration of eolian silt and fine sand that first clogs the pore space of underlying tephra and then aggrades and develops vesicular A (Av) horizons. Variations in original pyroclast sizes provide insight into minimum and maximum clast sizes that promote pavement and soil formation: pavement becomes ineffective when clasts can saltate under the strongest winds, while clastsmore » larger than coarse lapilli are unable to form an interlocking pavement that promotes silt accumulation (necessary for Av development). Contrary to predictions that all pavements above altitudes of {approx}400 m would have been ''reset'' in their development after late Pleistocene vegetation advances (about 15 ka), the soils and pavements show clear differences in maturity between the two volcanoes. This indicates that either the pavement soils develop slowly over many 10,000's of years and then are very stable, or that, if they are disrupted by vegetation advances, subsequent pavements are reestablished with successively more mature characteristics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.A. Valentine; C.D. Harrington
Formation of desert pavement and accretionary soils are intimately linked in arid environments such as the Mojave Desert. Well-sorted fallout scoria lapilli at Lathrop Wells (75-80 ky) and Red Cone ({approx}1 Ma) volcanoes (southern Nevada) formed an excellent starting material for pavement, allowing infiltration of eolian silt and fine sand that first clogs the pore space of underlying tephra and then aggrades and develops vesicular A (Av) horizons. Variations in original pyroclast sizes provide insight into minimum and maximum clast sizes that promote pavement and soil formation: pavement becomes ineffective when clasts can saltate under the strongest winds, while clastsmore » larger than coarse lapilli are unable to form an interlocking pavement that promotes silt accumulation (necessary for Av development). Contrary to predictions that all pavements above altitudes of {approx}400 m would have been ''reset'' in their development after late Pleistocene vegetation advances (about 15 ka), the soils and pavements show clear differences in maturity between the two volcanoes. This indicates that either the pavements/soils develop slowly over many 10,000's of years and then are very stable, or that, if they are disrupted by vegetation advances, subsequent pavements are reestablished with successively more mature characteristics.« less
NASA Astrophysics Data System (ADS)
Miyabuchi, Yasuo; Iizuka, Yoshiyuki; Hara, Chihoko; Yokoo, Akihiko; Ohkura, Takahiro
2018-02-01
An explosive eruption occurred at Nakadake first crater, Aso Volcano in central Kyushu, southwestern Japan, on September 14, 2015. The sequence and causes of the eruption were reconstructed from the distribution, textures, grain-size, component and chemical characteristics of the related deposits, and video record. The eruptive deposits are divided into ballistics, pyroclastic density current and ash-fall deposits. A large number of ballistic clasts (mostly < 10 cm in diameter; maximum size 1.6 m) are scattered within about 500 m from the center of the crater. Almost half of the ballistics appear as fresh and unaltered basaltic andesite rocks interpreted to be derived from a fresh batch of magma, while the rest is weakly to highly altered clasts. A relatively thin ash derived from pyroclastic density currents covered an area of 2.3 km2 with the SE-trending main axis and two minor axes to the NE and NW. The pyroclastic density current deposit (maximum thickness < 10 cm even at the crater rim) is wholly fine grained, containing no block-sized clasts. Based on the isopach map, the mass of the pyroclastic density current deposit was estimated at ca. 5.2 × 104 tons. The ash-fall deposit is finer grained and clearly distributed to about 8 km west of the source crater. The mass of the ash-fall deposit was calculated at about 2.7 × 104 tons. Adding the mass of the pyroclastic density current deposit, the total discharged mass of the September 14, 2015 eruption was 7.9 × 104 tons. The September 14 pyroclastic density current and ash-fall deposits consist of glass shards (ca. 30%), crystals (20-30%) and lithic (40-50%) grains. Most glass shards are unaltered poorly crystallized pale brown glasses which probably resulted from quenching of juvenile magma. This suggests that the September 14, 2015 event at the Nakadake first crater was a phreatomagmatic eruption. Similar phreatomagmatic eruptions occurred at the same crater on September 6, 1979 and April 20, 1990 whose eruptive masses were one order larger than that of the September 14, 2015 eruption. These events highlight the potential hazard from phreatic or phreatomagmatic eruptions at Nakadake first crater, and provide useful information that will assist in preventing or mitigating future disasters at other similar volcanoes worldwide.
Thermomechanical milling of accessory lithics in volcanic conduits
NASA Astrophysics Data System (ADS)
Campbell, Michelle E.; Russell, James K.; Porritt, Lucy A.
2013-09-01
Accessory lithic clasts recovered from pyroclastic deposits commonly result from the failure of conduit wall rocks, and represent an underutilized resource for constraining conduit processes during explosive volcanic eruptions. The morphological features of lithic clasts provide distinctive 'textural fingerprints' of processes that have reshaped them during transport in the conduit. Here, we present the first study focused on accessory lithic clast morphology and show how the shapes and surfaces of these accessory pyroclasts can inform on conduit processes. We use two main types of accessory lithic clasts from pyroclastic fallout deposits of the 2360 B.P. subplinian eruption of Mount Meager, British Columbia, as a case study: (i) rough and subangular dacite clasts, and (ii) variably rounded and smoothed monzogranite clasts. The quantitative morphological data collected on these lithics include: mass, volume, density, 2-D image analysis of convexity (C), and 3-D laser scans for sphericity (Ψ) and smoothness (S). Shaping and comminution (i.e. milling) of clasts within the conduit are ascribed to three processes: (1) disruptive fragmentation due to high-energy impacts between clasts or between clasts and conduit walls, (2) ash-blasting of clasts suspended within the volcanic flux, and (3) thermal effects. We use a simplified conduit eruption model to predict ash-blasting velocities and lithic residence times as a function of clast size and source depth, thereby constraining the lithic milling processes. The extent of shape and surface modification (i.e. rounding and honing) is directly proportional to clast residence times within the conduit prior to evacuation. We postulate that the shallow-seated dacite clasts remain subangular and rough due to short (<2 min) residence times, whereas monzogranite clasts are much more rounded and smoothed due to deeper source depths and consequently longer residence times (up to ˜1 h). Larger monzogranite clasts are smoother than smaller clasts due to longer residence times and to greater differential velocities within the ash-laden jet. Lastly, our model residence times and mass loss estimates for rounded clasts are used to estimate minimum attrition rates due to volcanic ash-blasting within the conduit (e.g., 12 cm3 s-1 for 25 cm clasts, sourced at 2500 m depth).
Boulder-based wave hindcasting underestimates storm size
NASA Astrophysics Data System (ADS)
Kennedy, David; Woods, Joesphine; Rosser, Nick; Hansom, James; Naylor, Larissa
2017-04-01
Large boulder-size clasts represent an important archive of erosion and wave activity on the coast. From tropical coral reefs to eroding cliffs in the high-latitudes, boulders have been used to hindcast the frequency and magnitude of cyclones and tsunami. Such reconstructions are based on the balance between the hydrodynamic forces acting on individual clasts and the counteracting resistive forces of friction and gravity. Here we test the three principle hindcasting relationships on nearly 1000 intertidal boulders in North Yorkshire, U.K using a combination of field and airborne terrestrial LiDAR data. We quantify the predicted versus actual rates of movement and the degree to which local geomorphology can retard or accelerate transport. Actual clast movement is significantly less than predicted values, regardless of boulder volume, shape or location. In situ cementation of clasts to the substrate by marine organisms and clustering of clasts increases friction thereby preventing transport. The implication is that boulders do not always provide a reliable estimation of wave height on the coast and reliance solely on hindcasting relationships leads to an under prediction of the frequency and magnitude of past storm wave activity. The crucial need for process field studies to refine boulder transport models is thus demonstrated.
NASA Astrophysics Data System (ADS)
Chávez, G. Moreno; Sarocchi, D.; Santana, E. Arce; Borselli, L.
2015-12-01
The study of grain size distribution is fundamental for understanding sedimentological environments. Through these analyses, clast erosion, transport and deposition processes can be interpreted and modeled. However, grain size distribution analysis can be difficult in some outcrops due to the number and complexity of the arrangement of clasts and matrix and their physical size. Despite various technological advances, it is almost impossible to get the full grain size distribution (blocks to sand grain size) with a single method or instrument of analysis. For this reason development in this area continues to be fundamental. In recent years, various methods of particle size analysis by automatic image processing have been developed, due to their potential advantages with respect to classical ones; speed and final detailed content of information (virtually for each analyzed particle). In this framework, we have developed a novel algorithm and software for grain size distribution analysis, based on color image segmentation using an entropy-controlled quadratic Markov measure field algorithm and the Rosiwal method for counting intersections between clast and linear transects in the images. We test the novel algorithm in different sedimentary deposit types from 14 varieties of sedimentological environments. The results of the new algorithm were compared with grain counts performed manually by the same Rosiwal methods applied by experts. The new algorithm has the same accuracy as a classical manual count process, but the application of this innovative methodology is much easier and dramatically less time-consuming. The final productivity of the new software for analysis of clasts deposits after recording field outcrop images can be increased significantly.
NASA Astrophysics Data System (ADS)
Lindstrom, Marilyn M.; Shervais, John W.; Vetter, Scott K.
1993-05-01
Most of the recent advances in lunar petrology are the direct result of breccia pull-apart studies, which have identified a wide array of new highland and mare basalt rock types that occur only as clasts within the breccias. These rocks show that the lunar crust is far more complex than suspected previously, and that processes such as magma mixing and wall-rock assimilation were important in its petrogenesis. These studies are based on the implicit assumption that the breccia clasts, which range in size from a few mm to several cm across, are representative of the parent rock from which they were derived. In many cases, the aliquot allocated for analysis may be only a few grain diameters across. While this problem is most acute for coarse-grained highland rocks, it can also cause considerable uncertainty in the analysis of mare basalt clasts. Similar problems arise with small aliquots of individual hand samples. Our study of sample heterogeneity in 9 samples of Apollo 15 olivine normative basalt (ONB) which exhibit a range in average grain size from coarse to fine are reported. Seven of these samples have not been analyzed previously, one has been analyzed by INAA only, and one has been analyzed by XRF+INAA. Our goal is to assess the effects of small aliquot size on the bulk chemistry of large mare basalt samples, and to extend this assessment to analyses of small breccia clasts.
NASA Technical Reports Server (NTRS)
Lindstrom, Marilyn M.; Shervais, John W.; Vetter, Scott K.
1993-01-01
Most of the recent advances in lunar petrology are the direct result of breccia pull-apart studies, which have identified a wide array of new highland and mare basalt rock types that occur only as clasts within the breccias. These rocks show that the lunar crust is far more complex than suspected previously, and that processes such as magma mixing and wall-rock assimilation were important in its petrogenesis. These studies are based on the implicit assumption that the breccia clasts, which range in size from a few mm to several cm across, are representative of the parent rock from which they were derived. In many cases, the aliquot allocated for analysis may be only a few grain diameters across. While this problem is most acute for coarse-grained highland rocks, it can also cause considerable uncertainty in the analysis of mare basalt clasts. Similar problems arise with small aliquots of individual hand samples. Our study of sample heterogeneity in 9 samples of Apollo 15 olivine normative basalt (ONB) which exhibit a range in average grain size from coarse to fine are reported. Seven of these samples have not been analyzed previously, one has been analyzed by INAA only, and one has been analyzed by XRF+INAA. Our goal is to assess the effects of small aliquot size on the bulk chemistry of large mare basalt samples, and to extend this assessment to analyses of small breccia clasts.
Post-igneous redistribution of components in eucrites
NASA Technical Reports Server (NTRS)
Phinney, W. C.; Lindstrom, D. J.; Mittlefehldt, D. W.; Martinez, R. R.
1993-01-01
In our analyses, we utilize a microdrilling technique that removes 40 to 100 micron diameter cores from mineral grains in thin sections analyzed by microprobe. The cores are then analyzed by INAA using the technique of Lindstrom. Three eucrites were selected for application of this analytical technique: monomict breccias Pasamonte and Stannern and unbrecciated EET90020. Pasamonte is among the most unequilibrated of the eucrites on the basis of zoning in pyroxenes and is considered to be an igneous rock not significantly affected by metamorphism. Stannern has igneous texture but its pyroxenes indicate some re-equilibration, although little, if any, recrystallization. EET90020 has a granulite texture and has been substantially recrystallized. Our sample of Pasamonte contains several clasts of different grain sizes ranging from glass to fine grained with diabasic texture containing lathy plagioclase, unexsolved pigeonite, and mesostasis. Cores were taken of the glass and from minerals and mesostases in six lithic clasts which normally allowed sampling of more than one phase per clast. Our sample of Stannern is also a breccia but with little difference in grain size between clasts and matrix. The plagioclase and pigeonite are blocky, twinned, and exsolved and coexist with a bit of mesostasis. Cores were taken of plagioclase and pigeonite with no attempt to distinguish separate clasts. EET90020 is a granular mixture of twinned plagioclase and pigeonite having rather uniform size and many triple junctions. Several cores were taken of both phases. Both clear and cloudy grains of plagioclase and pyroxene were sampled in all three eucrites.
Hammer, J.E.; Cashman, K.V.; Hoblitt, R.P.; Newman, S.
1999-01-01
Dacite tephras produced by the 1991 pre-climactic eruptive sequence at Mt. Pinatubo display extreme heterogeneity in vesicularity, ranging in clast density from 700 to 2580 kg m-3. Observations of the 13 surge-producing blasts that preceded the climactic plinian event include radar-defined estimates of column heights and seismically defined eruptive and intra-eruptive durations. A comparison of the characteristics of erupted material, including microlite textures, chemical compositions, and H2O contents, with eruptive parameters suggests that devolatilization-induced crystallization of the magma occurred to a varying extent prior to at least nine of the explosive events. Although volatile loss progressed to the same approximate level in all of the clasts analyzed (weight percent H2O=1.26-1.73), microlite crystallization was extremely variable (0-22%). We infer that syn-eruptive volatile exsolution from magma in the conduit and intra-eruptive separation of the gas phase was facilitated by the development of permeability within magma residing in the conduit. Correlation of maximum microlite crystallinity with repose interval duration (28-262 min) suggests that crystallization occurred primarily intra-eruptively, in response to the reduction in dissolved H2O content that occurred during the preceding event. Detailed textural characterization, including determination of three-dimensional shapes and crystal size distributions (CSD), was conducted on a subset of clasts in order to determine rates of crystal nucleation and growth using repose interval as the time available for crystallization. Shape and size analysis suggests that crystallization proceeded in response to lessening degrees of feldspar supersaturation as repose interval durations increased. We thus propose that during repose intervals, a plug of highly viscous magma formed due to the collapse of vesicular magma that had exsolved volatiles during the previous explosive event. If plug thickness grew proportionally to the square root of time, and if magma pressurization increased during the eruptive sequence, the frequency of eruptive pulses may have been modulated by degassing of magma within the conduit. Dense clasts in surge deposits probably represent plug material entrained by each subsequent explosive event.
Nilsen, T.H.; Moore, T.E.
1982-01-01
The Upper Devonian and Lower Mississippian(?) Kanayut Conglomerate forms a major stratigraphic unit along the crest of the Brooks Range of northern Alaska. It crops out for an east-west distance of about 900 km and a north-south distance of about 65 km. The Kanayut is wholly allochthonous and has probably been transported northward on a series of thrust plates. The Kanayut is as thick as 2,600 m in the east-central Brooks Range. It thins and fines to the south and west. The Kanayut forms the middle part of the allochthonous sequence of the Endicott Group, an Upper Devonian and Mississippian clastic sequence underlain by platform limestones of the Baird Group and overlain by platform limestone, carbonaceous shale, and black chert of the Lisburne Group. The Kanayut overlies the marine Upper Devonian Noatak Sandstone or, where it is missing, the marine Upper Devonian Hunt Fork Shale. It is overlain by the marine Mississippian Kayak Shale. The Kanayut Conglomerate forms the fluvial part of a large, coarse-grained delta that prograded to the southwest in Late Devonian time and retreated in Early Mississippian time. Four sections of the Kanayut Conglomerate in the central Brooks Range and five in the western Brooks Range were measured in 1981. The sections from the western Brooks Range document the presence of fluvial cycles in the Kanayut as far west as the shores of the Chukchi Sea. The Kanayut in this area is generally finer grained than it is in the central and eastern Brooks Range, having a maximum clast size of 3 cm. It is probably about 300 m thick. The upper and lower contacts of the Kanayut are gradational. The lower Kanayut contains calcareous, marine-influenced sandstone within channel deposits, and the upper Kanayut contains probable marine interdistributary-bay shale sequences. The members of the Kanayut Conglomerate cannot be differentiated in this region. In the central Brooks Range, sections of the Kanayut Conglomerate at Siavlat Mountain and Kakivilak Creek are typically organized into fining-upward fluvial cycles. The maximum clast size is about 3 cm in this area. The Kanayut in this region is 200-500 m thick and can be divided into the Ear Peak, Shainin Lake, and Stuver Members. The upper contact of the Kanayut with the Kayak Shale is very gradational at Kakivilak Creek and very abrupt at Siavlat Mountain. Paleocurrents from fluvial strata of the Kanayut indicate sediment transport toward the west and south in both the western and central Brooks Range. The maximum clast size distribution generally indicates westward fining from the Shainin Lake region.
Eucrite Impact Melt NWA 5218 - Evidence for a Large Crater on Vesta
NASA Technical Reports Server (NTRS)
Wittmann, Axel; Hiroi, Takahiro; Ross, Daniel K.; Herrin, Jason S.; Rumble, Douglas, III; Kring, David A.
2011-01-01
Northwest Africa (NWA) 5218 is a 76 g achondrite that is classified as a eucrite [1]. However, an initial classification [2] describes it as a "eucrite shock-melt breccia...(in which) large, partially melted cumulate basalt clasts are set in a shock melt flow...". We explore the petrology of this clast-bearing impact melt rock (Fig. 1), which could be a characteristic lithology at large impact craters on asteroid Vesta [3]. Methods: Optical microscopy, scanning electronmicroscopy, and Raman spectroscopy were used on a thin section (Fig. 1) for petrographic characterization. The impact melt composition was determined by 20 m diameter defocused-beam analyses with a Cameca SX-100 electron microprobe. The data from 97 spots were corrected for mineral density effects [4]. Constituent mineral phases were analyzed with a focusedbeam. Bidirectonal visible and near-infrared (VNIR) and biconical FT-IR reflectance spectra were measured on the surface of a sample slab on its central melt area and on an eucrite clast, and from 125-500 m and <125 m powders of melt. Results: General petrography: The sample specimen is a coherent, medium dark-grey (N4), melt rock. The thin section captures a central, subophitic-textured melt that contains 1 cm to tens of m-size subangular to rounded, variably-shocked eucrite clasts. Clasts >100 m are coarse-grained with equigranular 1 mm size plagioclase, quartz, and clinopyroxene (Fig. 1). Single crystals of chromite, ilmenite, zircon, Ca-Mg phosphate, Fe-metal, and troilite are embedded in the melt. Polymineralic clasts are mostly compositionally similar to the above mentioned larger clasts but scarce granulitic fragments are observed as well.
Feldspar Variability in Northwest Africa 7034
NASA Technical Reports Server (NTRS)
Santos, A. R.; Lewis, J. A.; Agee, C. B.; Humayun, M.; McCubbin, F. M.; Shearer, C. K.
2017-01-01
The martian meteorite Northwest Africa 7034 (and pairings) is a breccia that provides important information about the rocks and processes of the martian crust (e.g., 1-3). Additional information can be gleaned from the components of the breccia. These components, specifically those designated as clasts, record the history of their parent rock (i.e., the rock that has been physically broken down to produce the clasts). In order to study these parent rocks, we must first determine which clasts within the breccia are de-rived from the same parent. Previous studies have be-gun this process (e.g., 4), but the search for genetic linkages between clasts has not integrated clasts with different grain sizes. We begin to take this approach here, incorporating igneous-textured clasts with both fine and coarse mineral grains. In NWA 7034, almost all materials (clasts and breccia matrix) are composed of the same mineral assemblages (feldspar, pyroxene, Fe-Ti oxides, apatite) with largely the same mineral compositions [1, 4-6]. Bulk breccia Sm-Nd systematics define a single isochron [7]. These observations are consistent with a majority of the components within NWA 7034 originating from the same geochemical source and crystallizing at roughly the same time.
NASA Astrophysics Data System (ADS)
Favaro, Elena A.; Hugenholtz, Christopher H.; Barchyn, Thomas E.
2017-10-01
Aeolian rat-tails (ARTs) are a previously undocumented, regionally-ubiquitous aeolian abrasion feature observed on matrix-supported ignimbrite surfaces in the Puna Plateau of Northwest Argentina. ARTs consist of an abrasion-resistant lithic clast projecting above the surface with a lee tail or 'keel' in the more erodible matrix. Size is controlled by the dimensions of the windward lithic clast, ranging from centimetre to meter scale; spatial density varies with clast content, which may reflect variations in ignimbrite facies. Field observations suggest ARTs follow a definable evolutionary sequence. First, an abrasion-resistant lithic clast contained within the ignimbrite is exposed to abrasion at the surface. Impacts from abrading particles erode the softer ignimbrite matrix adjacent to the clast. The clast shelters the leeward surface under a unimodal abrasion direction, creating a tail that tapers downwind and elongates as the clast emerges. Clasts become dislodged from the matrix as the surrounding surface erodes, ultimately destroying the feature if the clast is small enough to be mobilized directly by wind or impacting particles. This evolutionary sequence explains the morphology of ARTs and the presence of loose clasts on the ignimbrite surface, which contributes to the development of other landforms in the region, such as periodic bedrock ridges, yardangs, and megaripples. Satellite and rover images suggest similar features also exist on Mars. Because the formation and preservation of ARTs is contingent on unimodal abrasion direction, their orientation can be used as an indicator of long-term aeolian sediment transport direction.
Identification of a Common R-Chondrite Impactor on the Ureilite Parent Body
NASA Technical Reports Server (NTRS)
Downes, H.; Mittlefehldt, D. W.
2006-01-01
Polymict ureilites are brecciated ultramafic meteorites that contain a variety of single mineral and lithic clasts. They represent the surface debris from a small, differentiated asteroid. We are continuing a detailed petrological study of several polymict ureilites including EET 87720, EET 83309 and FRO93008 (from Antarctica), North Haig, Nilpena (Australia), DaG 976, DaG 999, DaG 1000 and DaG 1023 (Libya). The latter four stones are probably paired. Clast sizes can be 10 mm in diameter, so a thin-section can consist of a single lithic clast.
NASA Astrophysics Data System (ADS)
Allison, C. M.; Clarke, A. B.; Pioli, L.; Alfano, F.
2011-12-01
Basaltic scoria cone volcanoes are the most abundant volcanic edifice on Earth and occur in all tectonic settings. Basaltic magmas have lower viscosities, higher temperatures, and lower volatile contents than silicic magmas, and therefore generally have a lower potential for explosive activity. However, basaltic eruptions display great variability in eruptive style, from mild lava flows to more energetic explosions with large plumes. The San Francisco Volcanic Field (SFVF) in northern Arizona, active from 6 Ma-present, consists of over 600 volcanoes, mostly alkali basalt scoria cones, and five silicic centers [Wood and Kienle (1990), Cambridge University Press]. The eruption of Sunset Crater in the SFVF during the Holocene was an anomalously large basaltic explosive eruption, consisting of eight tephra-bearing phases and three lava flows [Amos (1986), MS thesis, ASU]. Typical scoria cone-forming eruptions have volumes <0.1km3 DRE, while the Sunset Crater deposit is at least 0.6km3 DRE [Amos (1986)]. The phases vary in size and style; the beginning stages of explosive activity (phases 1-2) were considerably smaller than phases 3-5, classified as subplinian. Due to its young age, the eruptive material is fresh and the deposit is well-preserved. We sampled the first five tephra units at 25 locations, ranging from 6 km to 20 km from the vent, concentrating our efforts in the downwind direction (E and SE of the vent) along the primary dispersal axes of several phases. Notable variations among the first five phases were found from evaluation of juvenile clast componentry, with each phase containing some proportion of red, grey, and glassy to iridescent clasts. The red and grey clasts are sub-rounded to rounded with high sphericity, while the other clasts are highly angular and slightly elongate, with blue-black to gold glassy and iridescent surfaces. The glassy and iridescent clasts likely represent fresh, juvenile ejecta, which were quenched rapidly, whereas the red and grey rounded clasts may be the result of recycling of the cone or vent-fill material. Alternatively, the differences among the populations may represent lateral variations in conduit flow conditions. In general, phases associated with large volumes and large dispersal areas tend to contain larger proportions of the glassy/iridescent clasts. Phase 1 has a large proportion of glassy clasts. Phase 2 has approximately half red and half grey clasts, as well as a small fraction of glassy material. Phase 3, which is the phase with the largest dispersal area, has a similar proportion of glassy clasts as phase 1. Phase 4, the largest by volume at ~0.11km3 DRE [Amos (1986)], has the highest proportion of glassy clasts. Phase 5 is comparable to phase 4 (similar fractions of each clast type), although the glassy surface changes from gold to black as clast size decreases. Each phase is well- to very well-sorted. Future work will include textural analysis of bubbles and crystals to understand the ascent and cooling history of the different clast types, and also to better interpret differences in abundance as related to variations in eruption or vent dynamics.
Carbonate pseudotachylite? from a Miocene extensional detachment, W. Cyclades, Greece.
NASA Astrophysics Data System (ADS)
Rice, A. Hugh N.; Grasemann, Bernhard
2016-04-01
Most pseudotachylites, both impact- and fault-related, occur in silicate-rich rocks, typically with 'granitoid' compositions. Examples of melting in carbonate rocks, excluding magmatic sources, are restricted to impact-events, except for a carbonate pseudotachylite in the Canalone Fault, S. Italy (Viganò et al. 2011). Another potential example of carbonate pseudotachylite, shown here, comes from the Miocene-aged W. Cycladic Detachment System, in Greece. Top-SSE ductile to brittle movement on this detachment, with a maximum displacement estimated at tens of kilometers, exhumed of HP-rocks. The carbonate pseudotachylite occurs within an <200 mm thick zone of cataclasites developed between footwall carbonate ultramylonites, containing thin layers and cm-scale boudins of quartzite, and hanging wall breccias; no contacts with the footwall ultramylonites or hanging wall breccias has been found (yet). The cataclasite zone, which can be traced along-strike for at least 90 m, over ~20 m elevation, comprises several distinct layers. In the sample described, five layers occur. The lowest (A; >43 mm thick), consists of dark (hematitic) red, ultra-fine grained unlayered carbonate with up to 40x10 mm rather rounded clasts of earlier generations of cataclasite, many with a quartzite composition. These clasts are fractured and partially separated, with a fine red carbonate matrix. No layering of the matrix or clasts is apparent. The clasts become finer and more abundant towards the boundary with Layer B. Layers B and D (~57 & ~20 mm thick) dominantly comprises protocataclasite with greyish quartz fragments separated by a carbonate matrix along narrow fractures. Zone C and E (~23 m & >15 mm thick) comprise pale pink carbonate-dominated rocks with abundant <30x5 mm-sized red carbonate clasts (+/- quartz fragments) of earlier cataclasite generations. These elongate clasts lie parallel to the overall banding, which is parallel to the ultramylonitic foliation (detachment surface). Smaller clasts are markedly more rounded and comprise carbonate and quartzite material and may have darker (?reaction) rims. No layering is seen in the pale pink groundmass although this is present in some elongate clasts. All layer boundaries are irregular and no principle slip surfaces have been seen. Injection veins from 1 to 9 mm wide and up to at least 100 mm long derive from the central layer (C), cutting the overall layering at a high angle and branching in several places. These veins contain clasts comparable to those in Layer C. Both thick and thin injection-veins are rimmed by impersistent white calcite suggesting that injection was associated with precipitation of calcite. Whether Layer C (and perhaps E also) is a carbonate pseudotachylite is unknown. Although the injection veins are suggestive of this, these also occur in conjunction with ultracataclasites (Craddock et al. 2012). The irregular boundaries between the layers and the lack of any principal slip surfaces might indicate decarbonation and/or fluidization of gouge layer (Rowe and Griffith, 2015). Finally, abundant tubules, with rounded profiles and mostly sub-circular shapes up to 1.2 mm across, occur in Layers C and E, and less so D; these could be interpreted to reflect vents formed by partial carbonate degassing during melting.
Controls on rind thickness on basaltic andesite clasts weathering in Guadeloupe
Sak, P.B.; Navarre-Sitchler, A. K.; Miller, C.E.; Daniel, C.C.; Gaillardet, J.; Buss, H.L.; Lebedeva, M.I.; Brantley, S.L.
2010-01-01
A clast of low porosity basaltic andesite collected from the B horizon of a soil developed on a late Quaternary volcaniclastic debris flow in the Bras David watershed on Basse-Terre Island, Guadeloupe, exhibits weathering like that observed in many weathered clasts of similar composition in other tropical locations. Specifically, elemental profiles measured across the core-rind interface document that primary minerals and glass weather to Fe oxyhydroxides, gibbsite and minor kaolinite in the rind. The earliest reaction identified in the core is oxidation of Fe in pyroxene but the earliest reaction that creates significant porosity is plagioclase dissolution. Elemental loss varies in the order Ca???Na>K???Mg>Si>Al>Fe???P??Ti, consistent with the relative reactivity of phases in the clast from plagioclase???pyroxene???glass>apatite>ilmenite. The rind surrounds a core of unaltered material that is more spherical than the original clast. The distance from the core-rind boundary to a visually prominent rind layer, L, was measured as a proxy for the rind thickness at 36 locations on a slab cut vertically through the nominal center of the clast. This distance averaged 24.4??3.1mm. Maximum and minimum values for L, 35.8 and 20.6mm, were observed where curvature of the core-rind boundary is greatest (0.12mm-1) and smallest (0.018mm-1) respectively. Extrapolating from other rinds in other locations, the rate of rind formation is estimated to vary by a factor of about 2 (from ~4 to 7??10-14ms-1) from low to high curvature. The observation of a higher rate of rind formation for a higher curvature interface is consistent with a diffusion-limited model for weathering rind formation. The diffusion-limited model predicts that, like rind thickness, values of the thickness of the reaction front (h) for a given reaction, defined as the zone over which a parent mineral such as plagioclase completely weathers to rind material, should also increase with curvature. Values of h were quantified as a function of interface curvature using bulk chemical analysis (500
NASA Astrophysics Data System (ADS)
Behera, Bhuban Mohan; Thirukumaran, V.; Soni, Aishwaraya; Mishra, Prasanta Kumar; Biswal, Tapas Kumar
2017-06-01
Gangavalli (Brittle) Shear Zone (Fault) near Attur, Tamil Nadu exposes nearly 50 km long and 1-3 km wide NNE-SSW trending linear belt of cataclasites and pseudotachylyte produced on charnockites of the Southern Granulite Terrane. Pseudotachylytes, as well as the country rock, bear the evidence of conjugate strike slip shearing along NNE-SSW and NW-SE directions, suggesting an N-S compression. The Gangavalli Shear Zone represents the NNE-SSW fault of the conjugate system along which a right lateral shear has produced seismic slip motion giving rise to cataclasites and pseudotachylytes. Pseudotachylytes occur as veins of varying width extending from hairline fracture fills to tens of meters in length. They carry quartz as well as feldspar clasts with sizes of few mm in diameter; the clast sizes show a modified Power law distribution with finer ones (<1000 {\\upmu }m2) deviating from linearity. The shape of the clasts shows a high degree of roundness (>0.4) due to thermal decrepitation. In a large instance, devitrification has occurred producing albitic microlites that suggest the temperature of the pseudotachylyte melt was >1000^{circ }\\hbox {C}. Thus, pseudotachylyte veins act as a proxy to understand the genetic process involved in the evolution of the shear zone and its tectonic settings.
Adams, N.K.; Houghton, Bruce F.; Hildreth, W.
2006-01-01
Plinian/ignimbrite activity stopped briefly and abruptly 16 and 45 h after commencement of the 1912 Novarupta eruption defining three episodes of explosive volcanism before finally giving way after 60 h to effusion of lava domes. We focus here on the processes leading to the termination of the second and third of these three episodes. Early erupted pumice from both episodes show a very similar range in bulk vesicularity, but the modal values markedly decrease and the vesicularity range widens toward the end of Episode III. Clasts erupted at the end of each episode represent textural extremes; at the end of Episode II, clasts have very thin glass walls and a predominance of large bubbles, whereas at the end of Episode III, clasts have thick interstices and more small bubbles. Quantitatively, all clasts have very similar vesicle size distributions which show a division in the bubble population at 30 ??m vesicle diameter and cumulative number densities ranging from 107-109 cm-3. Patterns seen in histograms of volume fraction and the trends in the vesicle size data can be explained by coalescence signatures superimposed on an interval of prolonged nucleation and free growth of bubbles. Compared to experimental data for bubble growth in silicic melts, the high 1912 number densities suggest homogeneous nucleation was a significant if not dominant mechanism of bubble nucleation in the dacitic magma. The most distinct clast populations occurred toward the end of Plinian activity preceding effusive dome growth. Distributions skewed toward small sizes, thick walls, and teardrop vesicle shapes are indicative of bubble wall collapse marking maturation of the melt and onset of processes of outgassing. The data suggest that the superficially similar pauses in the 1912 eruption which marked the ends of episodes II and III had very different causes. Through Episode III, the trend in vesicle size data reflects a progressive shift in the degassing process from rapid magma ascent and coupled gas exsolution to slower ascent with partial open-system outgassing as a precursor to effusive dome growth. No such trend is visible in the Episode II clast assemblages; we suggest that external changes involving failure of the conduit/vent walls are more likely to have effected the break in explosive activity at 45 h. ?? Springer-Verlag 2006.
NASA Astrophysics Data System (ADS)
Perotti, Elena; Bertok, Carlo; D'Atri, Anna; Martire, Luca; Musso, Alessia; Piana, Fabrizio; Varrone, Dario
2010-05-01
The Ventimiglia Flysch is a Upper Eocene turbidite succession deposited in the SE part of the Eocene Alpine foreland basin, truncated at the top by the basal thrust of the Helminthoides Flysch, a Ligurian tectonic unit that presently covers part of the Dauphinois and Briançonnais successions of Western Ligurian Alps. The Ventimiglia Flysch is made of alternations of sandstones and shales. The upper part is characterized by chaotic deposits. The chaotic deposits are constituted by: - km to hm-sized intrabasinal blocks (Ventimiglia Flysch) and extrabasinal blocks (Cretaceous sediments of Dauphinois Domain, Nummulite Limestone of the Alpine foreland basin and Helminthoides Flysch ); - conglomerates with block-in-matrix fabric interpreted as debris flow deposits. They occur as m-thick beds interbedded with the normal turbidite succession or locally as matrix of the larger blocks. Debris flow clasts show: - different sizes, ranging from metre to centimetre; - different shapes, from rounded to subangular; - different lithologies, such as fine-grained quartz-arenites, marls, dark shales and fine-grained calcisiltites. They may be referred to both coeval, intrabasinal lithologies (Ventimiglia Flysch), and extrabasinal formations (Nummulite Limestone, Globigerina Marl and Helminthoides Flysch). The clasts are disposed randomly into a chaotic matrix that consists of a dark mudstone in which submillimetre- to millimetre-sized lithic grains, with the same compositions of larger clasts, are present. Locally matrix consists of sandstones with quartz and feldspar grains and fragments of nummulitids that suggest reworking of unlithified Eocene sediments. Cathodoluminescence observations allow the distinction of two kinds of clasts: dull clasts that underwent a cementation before the formation of conglomerates, and clasts with the same orange luminescence as the matrix that may be interpreted as soft mud clasts that were cemented together with the matrix. Debris flow deposits are cross-cut by a network of crumpled and broken veins, 10's mm to cm-large, filled with orange luminescing calcite and locally with quartz. Their complex cross-cutting relationships with clasts and matrix show that several systems of veins are present, that may be referred to different fracturing events. Some clasts are crossed or bordered by veins that end at the edge of the clasts. These veins show the same features as those that crosscut the whole rock. This indicates reworking of plastic sediments crossed by calcite-filled veins by mass gravity flows. Polyphase debris flow processes, proceeding along with fluid expulsion and veining, are thus documented. Ellipsoidal, dm-large concretions of cemented pelites also occur. They represent a previous phase of concretionary growth within homogenous pelites subsequently involved in the mass gravity flow. Stable O and C isotope analyses, performed on matrix, clasts, concretions and veins, show: - δ13C close to normal marine values (-3 to 0 δ13C ‰ PDB) - δ18O markedly negative (-9 to -7 δ18O ‰ PDB) that could be related to precipitation from relatively hot waters (60-70 ° C). The block-in-matrix fabric and the variable composition and size of blocks show that these sediments are a sedimentary mélange related to mass wasting processes involving both extrabasinal and intrabasinal sediments. These gravitational movements took place along slopes of submarine tectonic ridges created by transpressional faults (Piana et al., 2009) that juxtaposed tectonic slices of different paleogeographic domains (Dauphinois, Briançonnais, Ligurian Units) in Late Eocene times, and involved both rock fall processes of huge blocks of lithified, older formations, and debris flows of unlithified intrabasinal sediment. Faults also acted as conduits for an upward flow of hot fluids supersaturated in calcium carbonate. These fluids crossed unlithified sediments close to the sea floor resulting in localized concretionary cementation and formation of vein swarms within unlithified sediments prone to subsequent mass wasting.
Alluvial lithofacies recognition in a humid-tropical setting
NASA Astrophysics Data System (ADS)
Darby, Dennis A.; Whittecar, G. Richard; Barringer, Richard A.; Garrett, Jim R.
1990-05-01
Cobble gravel deposits in the Antigua Formation accumulated on a large alluvial fan or braid-plain west of the Cordillera Occidental in southwest Colombia. This formation was probably deposited during the Pleistocene in a very wet tropical climate (> 500 cm/yr rainfall). Fining-upwards sequences of clast-supported, imbricated boulders and cobbles dominate with maximum clast sizes between 30 and 300 cm. The sand matrix in the Antigua gravels and the minor (⩽ 10%) sand facies are weathered to clay at depths of up to 20 m. The sand facies contains abundant drift logs and leaf mats. Except for the absence of debris flows and the very coarse nature of the gravel, the Antigua gravels have lithofacies similar to the glacial outwash braid-plain in the proximal area of the Scott type model. Gravels and sands of the younger Panambi Formation were deposited by a braided stream that was smaller, confined by valley walls, and flowing at a lower gradient than the river that deposited the Antigua gravels. We recognize no sedimentologic characteristics of these deposits as diagnostic of a humid-tropical environment except for textural and compositional changes in matrix sediments caused by deep and rapid chemical weathering.
Vesiculation of rhyolite magma in the IDDP-1 borehole at Krafla, Iceland
NASA Astrophysics Data System (ADS)
Trewick, Laura; Tuffen, Hugh; Owen, Jacqueline; Kennedy, Ben; Eichelberger, John; Zierenberg, Robert
2016-04-01
In 2009 the IDDP-1 borehole at Krafla, Iceland unexpectedly intersected rhyolitic magma at 2.1 km depth [1,2], providing unprecedented opportunities to investigate silicic melt formation and storage, and potential for powerful geothermal energy production. A key objective is to constrain the nature of the rhyolitic melt and its response to drilling. As no intact core was extracted, evidence is fragmental - from glassy rhyolitic clasts retrieved from the cuttings. These exhibit a range of glass colours, vesicularities and phenocryst contents [1,2]. Here we use benchtop infra-red spectroscopy and petrological microscopy to characterise the H2O concentrations and bubble number densities within diverse glassy clasts, complemented by 1 Atm bubble growth experiments with a heated stage to investigate vesicle growth. Juvenile glassy clasts were divided into three categories (brown>banded>very dark glass). H2O concentrations within clasts showed some spatial variability, with enrichment towards bubble-rich areas that may be resorption-related but could not be adequately characterised with a benchtop source. However, mean values ranged from 1.41-1.68 wt %, with no statistically significant difference between clast types. This is broadly consistent with previous studies [1,2]. Bubble growth rates in all clast types were determined during isothermal dwells at 600, 650 and 700 °C, for which bubbles grew at 0.03-0.09, 0.11-0.31, and 0.46-0.82 μm s-1 respectively. The highest growth rates were measured for the most water-rich clast analysed - a banded clast with mean H2O of 1.68 wt %, and initially-larger bubbles also grew more rapidly. Measured bubble number densities (BNDs) range from 10[11.7] m-3 in banded clasts to 10[13.1] m-3 in very dark clasts, corresponding to decompression rates of ~0.1-1 MPa/s [3], although experimentation on IDDP-1 magma is needed to properly calibrate BNDs as a decompression rate meter. Nonetheless, such decompression rates suggest nucleation occurred over tens-hundreds of seconds, as pressure dropped from magmastatic towards lower borehole values. The duration of vesicle growth was roughly estimated from measured bubble sizes, which range from ~5 μm in very dark clasts to ~30 μm in banded clasts, and extrapolated bubble growth rates at magmatic temperature (900 °C) and appropriate pressure. Results suggest only brief pre-quenching growth occurred, over ~seconds. We therefore propose that magma adjacent to the drill head experienced decompression prior to interception, leading to a brief period of bubble nucleation and a briefer period of growth prior to fragmentation and quenching. The high bubble strain, low bubble number density and largest bubble sizes in banded clasts all point towards slower decompression and more protracted viscous flow in this part of the rhyolitic magma. However, better temporal constraints are required on the extraction of distinct clast types to determine how magma response evolved through time, and better piece together this enigmatic magmatic jigsaw. 1. Elders WA et al. 2011 Geology 39, 231-234. 2. Zierenberg RA et al. 2013 Cont. Mineral. Petrol. 165:327-347. 3. Hamada M et al 2010 Bull. Volcanol., 72, 735-746.
Mineralogy and petrology of the Abee enstatite chondrite breccia and its dark inclusions
NASA Technical Reports Server (NTRS)
Rubin, A. E.; Keil, K.
1983-01-01
A model is proposed for the petrogenesis of the Abee E4 enstatite chondrite breccia, which consists of clasts, dark inclusions and matrix, and whose dark inclusions are an unusual kind of enstatite chondritic material. When the maximum metamorphic temperature of the breccia parent material was greater than 840 C, euhedral enstatite crystals in metallic Fe, Ni, and sulfide-rich areas grew into pliable metal and sulfide. Breccia parent material was impact-excavated, admixed with dark inclusions, and rapidly cooled. During this cooling, the clast and matrix material acquired thermal remanent magnetization. A subsequent ambient magnetic field imparted a uniform net magnetic orientation to the matrix and caused the magnetic orientation of the clasts to be less random. The Abee breccia was later consolidated by shock or by shallow burial and long period, low temperature metamorphism.
NASA Technical Reports Server (NTRS)
Rubin, A. E.; Scott, E. R. D.; Keil, K.
1982-01-01
Electron microprobe, scanning electron microscope, and petrographic analyses of the microchondritic clast of the Piancaldoli LL3 chondrite are reported and compared with other type three chondrites. The clast, like other type three chondrites, has a fine-grained Fe-rich opaque silicate matrix, sharply defined chondrules, abundant low-Ca clinopyroxene and minor troilite and Si and Cr-bearing metallic Fe, Ni. However, the very high model matrix abundance, unique characteristics of the chondrules, and absence of microscopically observable olivine indicate that the clast is a new type of type three chondrite. It is concluded that the microchondrules were formed by the same process that formed normal-sized chondrules in type three chondrites: melting of preexisting dustballs. It is suggested that dust grains were mineralogically sorted in the nebula before aggregating into dustballs.
NASA Astrophysics Data System (ADS)
Gihm, Yong Sik; Kwon, Chang Woo
2017-02-01
Multiple exposures of peperite within the Cretaceous Buan Volcanics, southwest Korea, have been examined in order to determine variations in their textural characteristics and to investigate their mode of formation. Along undulating boundaries between rhyolite (lava flow) and deformed host sediment expressed as a series of load and flame structures, exposures commonly contain two distinct types of peperite. Type-1 peperites are composed mostly of rounded juvenile clasts at their base and polyhedral juvenile clasts at their upper levels, interpreted to have formed via a two-stage process. Firstly, abrasion of juvenile clasts occurred after their fragmentation due to shear stress imparted by the overlying and still-moving lava flow, forming rounded juvenile clasts. Subsequent in situ quenching fragmentation of the lava flow produced clasts with platy to polyhedral shapes immediately after emplacement of the lava flow. Type-2 peperites laterally extend into the interior of featureless rhyolite as layers that decrease in thickness with increasing distance away from the flame zone. These layers exhibit horizontal textural variations, ranging from poorly sorted mixtures of ash- to block-sized angular juvenile clasts in the proximal zone, to closely packed polyhedral and tabular juvenile clasts with jigsaw-crack textures in the middle and distal zones. Type-2 peperite are inferred to have formed due to internal steam explosions that resulted from an expansion of heated pore water (leading to an increase in pore fluid pressure) that had been vertically injected into the interior of the rhyolite from the flame zone. The proximal zone, composed mainly of poorly sorted mixtures of juvenile clasts, represents the explosion sites. Juvenile clasts in the middle and distal zones are interpreted to have formed due to three separate processes: the development of fractures in the rhyolite during the internal steam explosions, injection of the host sediment through the fractures, and in situ quenching fragmentation. Deformation of the host sediment exerted an important control on peperite-forming processes, with the internal steam explosions suggested to have formed the closely packed, juvenile clasts with a jigsaw-crack texture rather than the clasts that are widely dispersed.
Klug, C.; Cashman, K.; Bacon, C.
2002-01-01
The vesicularity, permeability, and structure of pumice clasts provide insight into conditions of vesiculation and fragmentation during Plinian fall and pyroclastic flow-producing phases of the ???7,700 cal. year B.P. climactic eruption of Mount Mazama (Crater Lake), Oregon. We show that bulk properties (vesicularity and permeability) can be correlated with internal textures and that the clast structure can be related to inferred changes in eruption conditions. The vesicularity of all pumice clasts is 75-88%, with >90% interconnected pore volume. However, pumice clasts from the Plinian fall deposits exhibit a wider vesicularity range and higher volume percentage of interconnected vesicles than do clasts from pyroclastic-flow deposits. Pumice permeabilities also differ between the two clast types, with pumice from the fall deposit having higher minimum permeabilities (???5??10-13 m2) and a narrower permeability range (5-50??10-13 m2) than clasts from pyroclastic-flow deposits (0.2-330??10-13 m2). The observed permeability can be modeled to estimate average vesicle aperture radii of 1-5 ??m for the fall deposit clasts and 0.25-1 ??m for clasts from the pyroclastic flows. High vesicle number densities (???109 cm-3) in all clasts suggest that bubble nucleation occured rapidly and at high supersaturations. Post-nucleation modifications to bubble populations include both bubble growth and coalescence. A single stage of bubble nucleation and growth can account for 35-60% of the vesicle population in clasts from the fall deposits, and 65-80% in pumice from pyroclastic flows. Large vesicles form a separate population which defines a power law distribution with fractal dimension D=3.3 (range 3.0-3.5). The large D.value, coupled with textural evidence, suggests that the large vesicles formed primarily by coalescence. When viewed together, the bulk properties (vesicularity, permeability) and textural characteristics of all clasts indicate rapid bubble nucleation followed by bubble growth, coalescence and permeability development. This sequence of events is best explained by nucleation in response to a downward-propagating decompression wave, followed by rapid bubble growth and coalescence prior to magma disruption by fragmentation. The heterogeneity of vesicle sizes and shapes, and the absence of differential expansion across individual clasts, suggest that post-fragmentation expansion played a limited role in the development of pumice structure. The higher vesicle number densities and lower permeabilities of pyroclastic-flow clasts indicate limited coalescence and suggest that fragmentation occurred shortly after decompression. Either increased eruption velocities or increased depth of fragmentation accompanying caldera collapse could explain compression of the pre-fragmentation vesiculation interval.
NASA Astrophysics Data System (ADS)
Rath, C. A.; Browne, B. L.
2011-12-01
Augustine Volcano (Alaska) is the most active volcano in the eastern Aleutian Islands, with 6 violent eruptions over the past 200 years and at least 12 catastrophic debris-avalanche deposits over the past ~2,000 years. The frequency and destructive nature of these eruptions combined with the proximity of Augustine Volcano to commercial ports and populated areas represents a significant hazard to the Cook Inlet region of Alaska. The focus of this study examines the relationship between debris-avalanche events and the subsequent emplacement of pyroclastic density currents by comparing the stratigraphic, granulometric, and petrographic characteristics of pyroclastic deposits emplaced following the 1883 A.D. Burr Point debris-avalanche and those emplaced following the ~370 14C yr B.P. West Island debris-avalanche. Data from this study combines grain size and componentry analysis of pyroclastic deposits with density, textural, and compositional analysis of juvenile clasts contained in the pyroclastic deposits. The 1883 A.D. Burr Point pyroclastic unit immediately overlies the 1883 debris avalanche deposit and underlies the 1912 Katmai ash. It ranges in thickness from 4 to 48 cm and consists of fine to medium sand-sized particles and coarser fragments of andesite. In places, this unit is normally graded and exhibits cross-bedding. Many of these samples are fines-enriched, with sorting coefficients ranging from -0.1 to 1.9 and median grain size ranging from 0.1 to 2.4 mm. The ~370 14C yr B.P. West Island pyroclastic unit is sandwiched between the underlying West Island debris-avalanche deposit and the overlying 1912 Katmai Ash deposit, and at times a fine-grained gray ash originating from the 1883 eruption. West Island pyroclastic deposit is sand to coarse-sand-sized and either normally graded or massive with sorting coefficients ranging from 0.9 to 2.8 and median grain sizes ranging from 0.4 to 2.6 mm. Some samples display a bimodal distribution of grain sizes, while most display a fines-depleted distribution. Juvenile andesite clasts exist as either subrounded to subangular fragments with abundant vesicles that range in color from white to brown or dense clasts characterized by their porphyritic and glassy texture. Samples from neither eruption correlate in sorting or grain size with distance from the vent. Stratigraphic and granulometric data suggest differences in the manner in which these two pyroclastic density currents traveled and groundmass textures are interpreted as recording differences in how the two magmas ascended and erupted, whereas juvenile Burr Point clasts resemble other lava flows erupted from Augustine Volcano, vesicular and glassy juvenile West Island clasts bear resemblance to clasts derived from so-called "blast-generated" pyroclastic density deposits at Mt. St. Helens in 1980 and Bezymianny in 1956.
NASA Astrophysics Data System (ADS)
Calder, E. S.; Sparks, R. S. J.; Gardeweg, M. C.
2000-12-01
Investigations have been made on the distribution of pumice and lithic clasts in the lithic rich Soncor ignimbrite (26.5 ka) and the 1993 pumice flow deposits of Lascar Volcano, Chile. The Soncor ignimbrite shows three main lithofacies which grade into one another. Coarse lithic breccias range from matrix poor stratified varieties, irregular shaped sheets and elongate hummocks in proximal environments, to breccia lenses with pumiceous ignimbrite matrix. Massive, lithic rich facies comprise the bulk of the ignimbrite. Pumice rich facies are bimodal with abundant large pumice clasts (often with reverse grading), rare lithic clasts and occur distally and on high ground adjacent to deep proximal valleys. In the 1993 pyroclastic flow deposits lithic rich facies are deposited on slopes up to 14° whereas pumice rich facies are deposited only on slopes <4°. Lithic rich parts show a thin pumice rich corrugated surface which can be traced into the pumice rich facies. The high lithic content in the Soncor ignimbrite is attributed to the destruction of a pre-existing dome complex, deep explosive cratering into the interior of the volcano and erosion during pyroclastic flow emplacement. Lithic clasts incorporated into the flows during erosion of the basement substrate have been distinguished from those derived from the vent. Categorisation of these lithics and knowledge of the local geology allows these clasts to be used as tracers to interpret former flow dynamics. Lithic populations demonstrate local flow paths and show that lithics are picked up preferentially where flows move around or over obstacles, or through constrictions. Eroded lithics can be anomalously large, particularly close to the location of erosion. Observations of both the Soncor ignimbrite and the 1993 deposits show that lithic rich parts of flows were much more erosive than pumice rich parts. Both the Soncor and 1993 deposits are interpreted as resulting from predominantly high concentration granular suspensions where particle-particle interactions played a major role. The concentrated flows segregated from more expanded and turbulent suspension currents within a few kilometres of the source. During emplacement some degree of internal mixing is inferred to have occurred enabling entrained lithics to migrate into flow interiors. The facies variations and distributions and the strong negative correlation between maximum pumice and lithic clast size are interpreted as the consequence of efficient density segregation within the concentrated flows. The frictional resistance of the lithic rich part is greater so that it deposits on steeper slopes and generally closer to the source. The lower density and more mobile pumice rich upper portions continued to flow and sequentially detached from the lithic rich base of the flow. Pumice rich portions moved to the margins and distal parts of the flow so that distal deposits are lithic poor and non-erosive. The flows are therefore envisaged as going though several important transformations. Proximally, dense, granular flow, undercurrents are formed by rapid sedimentation of suspension currents. Medially to distally the undercurrents evolve to flows with significantly different rheology and mobility characteristics as lithic clasts are sedimented out and distal flows become dominated by pumice.
NASA Astrophysics Data System (ADS)
Hiyagon, H.; Sugiura, N.; Kita, N. T.; Kimura, M.; Morishita, Y.; Takehana, Y.
2016-08-01
In order to clarify the origin of the eclogitic clasts found in the NWA801 (CR2) chondrite (Kimura et al., 2013), especially, that of the high pressure and temperature (P-T) condition (∼3 GPa and ∼1000 °C), we conducted ion microprobe analyses of oxygen isotopes and rare earth element (REE) abundances in the clasts. Oxygen isotopic compositions of the graphite-bearing lithology (GBL) and graphite-free lithology (GFL) show a slope ∼0.6 correlation slightly below the CR-CH-CB chondrites field in the O three-isotope-diagram, with a large variation for the former and almost homogeneous composition for the latter. The average REE abundances of the two lithologies show almost unfractionated patterns. Based on these newly obtained data, as well as mineralogical observations, bulk chemistry, and considerations about diffusion timescales for various elements, we discuss in detail the formation history of the clasts. Consistency of the geothermobarometers used by Kimura et al. (2013), suggesting equilibration of various elements among different mineral pairs, provides a strong constraint for the duration of the high P-T condition. We suggest that the high P-T condition lasted 102-103 years. This clearly precludes a shock high pressure (HP) model, and hence, strongly supports a static HP model. A static HP model requires a Moon-sized planetary body of ∼1500 km in radius. Furthermore, it implies two successive violent collisions, first at the formation of the large planetary body, when the clasts were placed its deep interior, and second, at the disruption of the large planetary body, when the clasts were expelled out of the parent body and later on transported to the accretion region of the CR chondrites. We also discuss possible origin of O isotopic variations in GBL, and presence/absence of graphite in GBL/GFL, respectively, in relation to smelting possibly occurred during the igneous process(es) which formed the two lithologies. Finally we present a possible formation scenario of the eclogitic clasts.
Recent storm and tsunami coarse-clast deposit characteristics, southeast Hawai'i
Richmond, B.M.; Watt, Sebastian; Buckley, M.; Jaffe, B.E.; Gelfenbaum, G.; Morton, R.A.
2011-01-01
Deposits formed by extreme waves can be useful in elucidating the type and characteristics of the depositional event. The study area on the southeast coast of the island of Hawaiʻi is characterized by the presence of geologically young basalts of known age that are mantled by recent wave-derived sedimentary deposits. The area has been impacted by large swells, storms and tsunamis over the last century, and in combination with known substrate ages makes this an ideal location to study recent deposits produced by such events. Three distinct coarse-clast deposit assemblages can be recognized based on clast size, composition, angularity, orientation, packing, elevation and inland distance of the deposit. These deposits are characterized as one of three types. 1) Gravel fields of isolated clasts, primarily boulder-size material, and scattered pockets of concentrated sand and gravel in topographic lows. 2) Shore-parallel and cuspate ridges composed mostly of rounded basalt gravel and sand with small amounts of carbonate detritus. The ridges range in height from about 1 to 3 m and are 10s of m wide. 3) Cliff-top deposits of scattered angular and sub-angular clasts along sea cliffs that are generally greater than 5 m elevation. The gravel fields are primarily of tsunami origin from either the 1975 Kalapana event, or a combination of the 1975 tsunami, and 1868 tsunami or earlier events. The ridge deposits are presently active and sediment continues to be added during high wave events. The cliff-top deposits contain evidence of deposition by both tsunami and storm processes and require further investigation.
Aeolian Rat Tails (ARTs): A New Morphological Indicator of Abrasion Direction
NASA Astrophysics Data System (ADS)
Favaro, E. A.; Hugenholtz, C.; Barchyn, T.
2016-12-01
Aeolian rat tails (ARTs) are a previously undocumented aeolian abrasion feature observed on ignimbrite surfaces in the Puna Plateau of Northwest Argentina and bare morphological similarity to small-scale features on Mars. We describe the terrestrial features and present an evolutionary sequence from inception to demise. ARTs are regionally-ubiquitous and characterized by a windward abrasion-resistant lithic clast and a downwind-tapering tail. The size of ARTs is controlled by the diameter of the windward lithic clast, observed on the sub-decimeter to meter scale. Their distribution throughout the Campo de Piedra Pómez, and adjacent regions is determined by the ignimbrite clast content. ARTs develop under a uni-modal abrasion direction when lithic clasts are eroded out of the ignimbrite matrix, protrude from the surface, and shelter material directly behind the clast. As the surrounding material is eroded away, a downwind-tapered tail develops. Continued erosion of the adjacent surface leads to the undercutting of clasts, liberating them from the feature where, if small enough, the clasts can be transported downwind, leading to the destruction of the tail and ultimately the feature. This evolutionary sequence accounts not only for the morphology of the feature, but also the presence of loose clasts on the ignimbrite surface, which plays a role in the development of other enigmatic landforms in the area, such as periodic bedrock ridges, yardangs, and megaripples. The significance of the identification of ARTs is due to the necessity of uni-modal abrasion direction for their development, thereby making their orientation a diagnostic indicator of long-term aeolian abrasion direction. ARTs are likely analogs of features identified by MSL Curiosity Rover on Mars, possibly providing information on past and present wind regimes.
Dickson, M.L.; Broster, B.E.; Parkhill, M.A.
2004-01-01
Striations and dispersal patterns for till clasts and matrix geochemistry are used to define flow directions of glacial transport across an area of about 800km2 in the Charlo-Atholville area of north-central New Brunswick. A total of 170 clast samples and 328 till matrix samples collected for geochemical analysis across the region, were analyzed for a total of 39 elements. Major lithologic contacts used here to delineate till clast provenance were based on recent bedrock mapping. Eleven known mineral occurrences and a gossan are used to define point source targets for matrix geochemical dispersal trains and to estimate probable distance and direction of transport from unknown sources. Clast trains are traceable for distances of approximately 10 km, whereas till geochemical dispersal patterns are commonly lost within 5 km of transport. Most dispersal patterns reflect more than a single direction of glacial transport. These data indicate that a single till sheet, 1-4 m thick, was deposited as the dominant ice-flow direction fluctuated between southeastward, eastward, and northward over the study area. Directions of early flow represent changes in ice sheet dominance, first from the northwest and then from the west. Locally, eastward and northward flow represent the maximum erosive phases. The last directions of flow are likely due to late glacial ice sheet drawdown towards the valley outlet at Baie des Chaleurs.
NASA Astrophysics Data System (ADS)
Garman, K. A.; Swarr, G. J.; Dufek, J.; Harpp, K. S.; Geist, D.
2009-12-01
Clasts within pyroclastic density current deposits (PDCs) record information about the dynamic processes and thermal history of erosion, transportation, and deposition. The August 2006 eruption of Tungurahua produced PDCs with exceptional clast abundances and morphologies. This eruption was of the “boiling over” type, where the PDCs were not accompanied by a high column. Rather, they were fed by strong, low (less than 2 km), and persistent fountaining. Granulometric, clast morphology, and flow dimension data were obtained by detailed study of the four largest PDC deposits produced during this eruption. The individual flow units have ratios of height loss to travel distance (H/L) ranging from 0.38 to 0.51, which lie in the upper range of H/L ratios for pyroclastic density currents, generally typical of small-volume events. The flow deposits are characterized by oblate scoria bombs up to 1.78 m in diameter, and the bombs are best preserved in levees, flow snouts, and the upper parts of some deposits. The interiors of the deposits are all poorly sorted, with particles less than 8 mm in diameter ranging from 0.55 to 0.87 weight percent. Pyroclastic surges originated from PDCs at locations of abrupt topographic steepening and channel curvature. In both of these locations, we observed evidence of bedload deposition and enhanced mobility of surge material. Some of the bombs were solid at the time of their deposition, whereas others deformed plastically after deposition, which constrains their thermal history. Clast size controls the internal forces and thermal evolution of a clast, which are critical in determining its post-fragmentation plastic deformation. Heating experiments on slabs made from the bombs constrain the deformation of the clasts as a function of temperature and torque. We will discuss the thermal history of individual clasts, field observation of individual clast deformation, and the information they provide on the entrainment of the ambient atmosphere.
Silica-rich orthopyroxenite in the Bovedy chondrite
NASA Technical Reports Server (NTRS)
Ruzicka, Alex; Kring, David A.; Hill, Dolores H.; Boynton, William V.; Clayton, Robert N.; Mayeda, Toshiko K.
1995-01-01
A large (greater than 4.5 x 7 x 4 mm), igneous-textured clast in the Bovedy (L3) chondrite is notable for its high bulk SiO2 content (is approximately equal to 57.5 wt%). The clast consists of normally zoned orthopyroxene (83.8 vol%), tridymite (6.2%), an intergrowth of feldspar (5.8%) and sodic glass (3.1%), pigeonite (1.0%), and small amounts of chromite (0.2%), augite, and Fe,Ni-metal; it is best described as a silica-rich orthopyroxenite. The oxygen-isotopic composition of the clast is similar, but not identical, to Bovedy and other ordinary chondrites. The clast has a superchondritic Si/Mg ratio, but has Mg/(Mg + Fe) and Fe/Mn ratios that are similar to ordinary chondrite silicate. The closest chemical analogues to the clast are radial-pyroxene chondrules, diogenites, pyroxene-silica objects in ordinary chondrites, and silicates in the IIE iron meteorite Weekeroo Station. The clast crystallized from a siliceous melt that cooled fast enough to prevent complete attainment of equilibrium but slow enough to allow nearly complete crystallization. The texture, form, size and composition of the clast suggestion that it is an igneous differentiate from an asteroid or planetesimal that formed in the vicinity of ordinary chondrites. The melt probably cooled in the near-surface region of the parent object. It appears that in the source region of the clast, metallic and silicate partial melt were largely-to-completely lost during a relatively low degree of melting, and that during a higher degree of melting, olivine and low-Ca pyroxene separated from the remaining liquid, which ultimately solidified to form the clast. While these fractionation steps could not have all occurred at the same temperature, they could have been accomplished in a single melting episode, possibly as a result of heating by radionuclides or by electromagnetic induction. Fractionated magmas can also account for other Si-rich objects in chondrites.
Sedimentology of Martian Gravels from Mardi Twilight Imaging: Techniques
NASA Technical Reports Server (NTRS)
Garvin, James B.; Malin, Michael C.; Minitti, M. E.
2014-01-01
Quantitative sedimentologic analysis of gravel surfaces dominated by pebble-sized clasts has been employed in an effort to untangle aspects of the provenance of surface sediments on Mars using Curiosity's MARDI nadir-viewing camera operated at twilight Images have been systematically acquired since sol 310 providing a representative sample of gravel-covered surfaces since the rover departed the Shaler region. The MARDI Twilight imaging dataset offers approximately 1 millimeter spatial resolution (slightly out of focus) for patches beneath the rover that cover just under 1 m2 in area, under illumination that makes clast size and inter-clast spacing analysis relatively straightforward using semi- automated codes developed for use with nadir images. Twilight images are utilized for these analyses in order to reduce light scattering off dust deposited on the front MARDI lens element during the terminal stages of Curiosity's entry, descent and landing. Such scattering is worse when imaging bright, directly-illuminated surfaces; twilight imaging times yield diffusely-illuminated surfaces that improve the clarity of the resulting MARDI product. Twilight images are obtained between 10-30 minutes after local sunset, governed by the timing of the end of the no-heat window for the camera. Techniques were also utilized to examine data terrestrial locations (the Kau Desert in Hawaii and near Askja Caldera in Iceland). Methods employed include log hyperbolic size distribution (LHD) analysis and Delauney Triangulation (DT) inter-clast spacing analysis. This work extends the initial results reported in Yingst et al., that covered the initial landing zone, to the Rapid-Transit Route (RTR) towards Mount Sharp.
The grain-size distribution of pyroclasts: Primary fragmentation, conduit sorting or abrasion?
NASA Astrophysics Data System (ADS)
Kueppers, U.; Schauroth, J.; Taddeucci, J.
2013-12-01
Explosive volcanic eruptions expel a mixture of pyroclasts and lithics. Pyroclasts, fragments of the juvenile magma, record the state of the magma at fragmentation in terms of porosity and crystallinity. The grain size distribution of pyroclasts is generally considered to be a direct consequence of the conditions at magma fragmentation that is mainly driven by gas overpressure in bubbles, high shear rates, contact with external water or a combination of these factors. Stress exerted by any of these processes will lead to brittle fragmentation by overcoming the magma's relaxation timescale. As a consequence, most pyroclasts exhibit angular shapes. Upon magma fragmentation, the gas pyroclast mixture is accelerated upwards and eventually ejected from the vent. The total grain size distribution deposited is a function of fragmentation conditions and transport related sorting. Porous pyroclasts are very susceptible to abrasion by particle-particle or particle-conduit wall interaction. Accordingly, pyroclastic fall deposits with angular clasts should proof a low particle abrasion upon contact to other surfaces. In an attempt to constrain the degree of particle interaction during conduit flow, monomodal batches of washed pyroclasts have been accelerated upwards by rapid decompression and subsequently investigated for their grain size distribution. In our set-up, we used a vertical cylindrical tube without surface roughness as conduit. We varied grain size (0.125-0.25; 0.5-1; 1-2 mm), porosity (0; 10; 30 %), gas-particle ratio (10 and 40%), conduit length (10 and 28 cm) and conduit diameter (2.5 and 6 cm). All ejected particles were collected after settling at the base of a 3.3 m high tank and sieved at one sieve size below starting size (half-Φ). Grain size reduction showed a positive correlation with starting grain size, porosity and overpressure at the vent. Although milling in a volcanic conduit may take place, porous pyroclasts are very likely to be a primary product of magma fragmentation at or close to the fragmentation level. Given the high abrasiveness of pumice, hemispherical clasts should be observed if clast break-up followed efficient clast abrasion. As a consequence, finer grained pyroclastic fall deposits do not necessarily proof efficient secondary fragmentation in the conduit but may rather reveal the influence of conduit length on 'What size of pyroclasts can be erupted'?
NASA Astrophysics Data System (ADS)
Rader, E. L.; Heldmann, J. L.
2016-12-01
Spatter is an explosive volcanic product consisting of partially-molten clasts found predominantly in mafic eruptions. Classification of spatter deposits is currently based on qualitative visual identification, and its presence signifies little more than a near-vent environment. However, the variables that effect spatter morphology (density of clasts, aspect ratio of clasts, rind thickness, etc.) are related to heat transfer from the vent via convection and radiation to the atmosphere and conduction through the spatter pile. Subsequently, the heat flux is proportional to the volume and rate of eruption, as faster and more voluminous eruptions result in a higher degree of welding between clasts. With a quantitative classification scheme, spatter deposits may reveal important eruption conditions such as eruption duration, eruption vigor, and fountain height. These factors are particularly important for non-terrestrial volcanoes whose eruptions have never been observed and whose products will likely be sampled on too small of a scale for more detailed chemical and thermal analysis. This study describes physical aspects of multiple spatter deposits at Craters of the Moon National Monument in Idaho, and suggests different eruptions conditions will produce quantitatively unique spatter deposits.
Origin of magnetization in lunar breccias - An example of thermal overprinting
NASA Technical Reports Server (NTRS)
Gose, W. A.; Strangway, D. W.; Pearce, G. W.
1978-01-01
Twenty six samples from seven hand specimens, collected from the station 6 boulder at the Apollo 17 landing site, were studied magnetically. The boulder is a breccia consisting of three lithologic units distinguished by their clast population. The direction of magnetization of samples from unit B which is almost devoid of large clasts cluster fairly well after alternating field demagnetization. Samples from unit C which is characterized by abundant large clasts up to 1 m in size do not contain a uniform direction of magnetization but the distribution is not random. Based on these data we propose that the natural remanent magnetization (NRM) in these breccias is the vector sum of two magnetizations, a pre-impact magnetization and a partial thermoremanence acquired during breccia formation. The relative contribution of the two components is controlled by the thermal history of the ejecta, which in turn is determined by its clast population. Depending on the clast population, the NRM can be a total thermoremanence, a partial thermoremanence plus a pre-impact magnetization, or a pre-impact magnetization. This model of thermal overprinting might be applicable to all lunar breccias of medium and higher metamorphic grade.
NASA Astrophysics Data System (ADS)
Henares, Saturnina; Arribas, Jose; Cultrone, Giuseppe; Viseras, Cesar
2016-06-01
The significance of rip-up clasts as sandstone framework grains is frequently neglected in the literature being considered as accessory components in bulk sandstone composition. However, this study highlights the great value of muddy and dolomitic rip-up clast occurrence as: (a) information source about low preservation potential from floodplain deposits and (b) key element controlling host sandstone diagenetic evolution and thus ultimate reservoir quality. High-resolution petrographic analysis on Triassic fluvial sandstones from Argana Basin (T6 and T7/T8 units) highlights the significance of different types of rip-up clasts as intrabasinal framework components of continental sediments from arid climates. On the basis of their composition and ductility, three main types are distinguished: (a) muddy rip-up clasts, (b) dolomitic muddy rip-up clasts and (c) dolomite crystalline rip-up clasts. Spatial distribution of different types is strongly facies-related according to grain size. Origin of rip-up clasts is related to erosion of coeval phreatic dolocretes, in different development stages, and associated muddy floodplain sediments. Cloudy cores with abundant inclusions and clear outer rims of dolomite crystals suggest a first replacive and a subsequent displacive growth, respectively. Dolomite crystals are almost stoichiometric. This composition is very similar to that of early sandstone dolomite cement, supporting phreatic dolocretes as dolomite origin in both situations. Sandstone diagenesis is dominated by mechanical compaction and dolomite cementation. A direct correlation exists between: (1) muddy rip-up clast abundance and early reduction of primary porosity by compaction with irreversible loss of intergranular volume (IGV); and (2) occurrence of dolomitic rip-up clasts and dolomite cement nucleation in host sandstone, occluding adjacent pores but preserving IGV. Both processes affect reservoir quality by generation of vertical and 3D fluid flow baffles and barriers that compartmentalize the reservoir. These findings may provide quantitative useful data for the better understanding of reservoir quality in analogous hydrocarbon-bearing basins such as the Bay of Fundy, Nova Scotia (Canada).
NASA Technical Reports Server (NTRS)
Kebukawa, Yoko; Ito, Motoo; Zolensky, Michael E.; Rahman, Zia; Suga, Hiroki; Nakato, Aiko; Chan, Queenie H. S.; Fries, Marc; Takeichi, Yasuo; Takahashi, Yoshio;
2018-01-01
The nature and origin of extraterrestrial organic matter are still under debate despite the significant progress in the analyses and experimental approaches in this field over the last five decades. Xenolithic clasts are often found in a wide variety of meteorite groups, some of which contain exotic organic matter (OM). The Zag meteorite is a thermally-metamorphosed H ordinary chondrite. It contains a primitive xenolithic clast that has been proposed to have originated from Ceres, which was accreted to the Zag host asteroid after metamorphism. The cm-sized clast contains abundant large carbon-rich (mostly organic) grains or aggregates up to 20 microns. Such large OM grains are unique among astromaterials with respect to the size. Here we report organic and isotope analyses of a large (approx.10 microns) aggregate of solid OM in the Zag clast. The X-ray micro-spectroscopic technique revealed that the OM has sp2 bonded carbon with no other functional groups nor graphitic feature (1s-sigma exciton), and thus it is distinguished from most of the OM in carbonaceous meteorites. The apparent absence of functional groups in the OM suggests that it is composed of hydrocarbon networks with less heteroatoms, and therefore the OM aggregate is similar to hydrogenated amorphous carbon (HAC). The OM aggregate has high D/H and 15N/14N ratios, suggesting that it originated in a very cold environment such as the interstellar medium or outer region of the solar nebula, while the OM is embedded in carbonate-bearing matrix resulting from aqueous activities. Thus the high D/H ratio must have survived the extensive late-stage aqueous processing. It is not in the case for OM in carbonaceous chondrites of which the D/H ratio was reduced by the alteration via the D-H exchange of water. It indicates that both the OM precursors and the water had high D/H ratios, similar to the water in Enceladus. Our results support the idea that the clast originated from Ceres, or at least, a hydrovolcanically active body similar to Ceres, and further imply that Ceres originally formed in the outer Solar System and migrated to the main belt asteroid region as suggested by the "Grand tack" scenario.
NASA Astrophysics Data System (ADS)
Mele, Daniela; Dioguardi, Fabio
2018-03-01
Acknowledging the grain size dependency of shape is important in volcanology, in particular when dealing with tephra produced and emplaced during and after explosive volcanic eruptions. A systematic measurement of the tridimensional shape of vesicular pyroclasts of Campi Flegrei fallout deposits (Agnano-Monte Spina, Astroni 6 and Averno 2 eruptions) varying in size from 8.00 to 0.016 mm has been carried out by means of X-Ray Microtomography. Data show that particle shape changes with size, especially for juvenile vesicular clasts, since it is dependent on the distribution and size of vesicles that contour the external clast outline. Two drag laws that include sphericity in the formula were used for estimating the dependency of settling velocity on shape. Results demonstrate that it is not appropriate to assume a size-independent shape for vesicular particles, in contrast with the approach commonly employed when simulating the ash dispersion in the atmosphere.
NASA Astrophysics Data System (ADS)
Yang, W.; Liu, D.; Guo, Z.
2015-12-01
Texturally well-preserved volcanic debris flows (also called lahars) are exposed in the Latest Paleozoic Arbasay Formation, Northern Tian Shan. LA-ICP-MS zircon dating of the intercalated fallout tuff sample provided an age of 314.4±3.4 Ma (MSWD=1.6), suggesting they were deposited at Latest Carboniferous. The lahars consist primarily of two lithofacies: massive, poorly lithified diamictites and stratified, moderately lithified gravelly sandstones. The diamictites can be generally divided into two subfacies, i.e., the matrix-supported and the clast-supported diamictites. Most diamictites are structureless and nongraded. They are thick in beds and contain large clasts up to 3 m in dimension. The gravelly sandstones display much finer particle size and have wedge or lenticular geometries. Large clasts are absent within them and the sorting characters are much better than the diamictites. Despite the different size grading, the matrix and the clasts of the two lithofacies appear to be homogeneous. The matrix is generally sandy mudstone. The clasts comprise rhyolites, dacites, andesites, andesitic basalts and basalts, same to the co-existing volcanic rocks, suggesting they originate from the cognate volcanics. The disorganized diamictites are supposed to deposit from a turbulent flood or pyroclastic surge. The gravelly sandstone lithofacies are interpreted as sand-rich flood flows or hyperconcentrated flood flows during the waning stage of a mass-flow event. The overall characteristics of the deposits suggest a mass-flow dominated alluvial fan environment. It's noteable that several syn- sedimentary normal faults occurred within these lahar deposits, indicating that the Southern Junggar Basin was in an extensional regime during the lahars' deposition. Structure is dominated by normal faulting, allowing the existence of relatively small, highly compartmentalized depocenters. This is also supported by geochemistry and detrital zircon studies.
Coarse sediment transport dynamics at three spatial scales of bedrock channel bed complexity
NASA Astrophysics Data System (ADS)
Goode, J. R.; Wohl, E.
2007-12-01
Rivers incised into bedrock in fold-dominated terrain display a complex bed topography that strongly interacts with local hydraulics to produce spatial differences in bed sediment flux. We used painted tracer clasts to investigate how this complex bed topography influences coarse sediment transport at three spatial scales (reach, cross- section and grain). The study was conducted along the Ocoee River gorge, Tennessee between the TVA Ocoee #3 dam and the 1996 Olympic whitewater course. The bed topography consists of undulating bedrock ribs, which are formed at a consistent strike to the bedding and cleavage of the metagreywake and phyllite substrate. Ribs vary in their orientation to flow (from parallel to oblique) and amplitude among three study reaches. These bedrock ribs create a rough bed topography that substantially alters the local flow field and influences reach- scale roughness. In each reach, 300 tracer clasts were randomly selected from the existing bed material. Tracer clasts were surveyed and transport distances were calculated after five scheduled summer releases and a suite of slightly larger but sporadic winter releases. Transport distances were examined as a function of rib orientation and amplitude (reach scale), spatial proximity to bedrock ribs and standard deviation of the bed elevation (cross- section scale), and whether clasts were hydraulically shielded by surrounding clasts, incorporated in the armour layer, imbricated, and/or existed in a pothole, in addition to size and angularity. At the reach scale, where ribs are parallel to flow, lower reach-scale roughness leads to greater sediment transport capacity, sediment flux and transport distances because transport is uninhibited in the downstream direction. Preliminary results indicate that cross section scale characteristics of bed topography exert a greater control on transport distances than grain size.
Chao, E.C.T.
1973-01-01
On the basis of petrographic and laboratory and active seismic data for the Fra Mauro breccias, and by comparison with the nature and distribution of the ejecta from the Ries crater, Germany, some tentative conclusions regarding the geologic significance of the Fra Mauro Formation on the moon can be drawn. The Fra Mauro Formation, as a whole, consists of unwcldcd, porous ejecta, slightly less porous than the regolith. It contains hand-specimen and larger size clasts of strongly annealed complex breccias, partly to slightly annealed breccias, basalts, and perhaps spherule-rich breccias. These clasts are embedded in a matrix of porous aggregate dominated by mineral and breccia fragments and probably largely free of undevitrified glass. All strongly annealed hand-specimen-size breccias are clasts in the Fra Mauro Formation. To account for the porous, unwelded state of the Fra Mauro Formation, the ejecta must have been deposited at a temperature below that required for welding and annealing. Large boulders probably compacted by the Cone crater event occur near the rim of the crater. They probably consist of a similar suite of fragments, but are probably less porous than the formation. The geochronologic clocks of fragments in the Fra Mauro Formation, with textures ranging from unannealed to strongly annealed, were not reset or strongly modified by the Imbrian event. Strongly annealed breccia clasts and basalt clasts are pre-Imbrian, and probably existed as ejecta mixed with basalt flows in the Imbrium Basin prior to the Imbrian event. The Imbrian event probably occurred between 3.90 or 3.88 and 3.65 b.y. ago.
Ormo, J.; Sturkell, E.; Horton, J. Wright; Powars, D.S.; Edwards, L.E.
2009-01-01
Collapse and inward slumping of unconsolidated sedimentary strata expanded the Chesapeake Bay impact structure far beyond its central basement crater. During crater collapse, sediment-loaded water surged back to fill the crater. Here, we analyze clast frequency and granulometry of these resurge deposits in one core hole from the outermost part of the collapsed zone (i.e., Langley) as well as a core hole from the moat of the basement crater (i.e., Eyreville A). Comparisons of clast provenance and flow dynamics show that at both locations, there is a clear change in clast frequency and size between a lower unit, which we interpret to be dominated by slumped material, and an upper, water-transported unit, i.e., resurge deposit. The contribution of material to the resurge deposit was primarily controlled by stripping and erosion. This includes entrainment of fallback ejecta and sediments eroded from the surrounding seafloor, found to be dominant at Langley, and slumped material that covered the annular trough and basement crater, found to be dominant at Eyreville. Eyreville shows a higher content of crystalline clasts than Langley. There is equivocal evidence for an anti-resurge from a collapsing central water plume or, alternatively, a second resurge pulse, as well as a transition into oscillating resurge. The resurge material shows more of a debris-flow-like transport compared to resurge deposits at some other marine target craters, where the ratio of sediment to water has been relatively low. This result is likely a consequence of the combination of easily disaggregated host sediments and a relatively shallow target water depth. ?? 2009 The Geological Society of America.
Origin of accretionary lapilli from the Pompeii and Avellino deposits of Vesuvius
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheridan, M.F.; Wohletz, K.H.
1983-01-01
Accretionary lapilli from the Pompeii and Avellino Plinian ash deposits of Vesuvius consist of centimeter-sized spheroids composed of glass, crystal, and lithic fragments of submillimeter size. The typical structure of the lapilli consists of a central massive core surrounded by concentric layers of fine ash with concentrations of larger clasts and vesicles and a thin outer layer of dust. Clasts within the lapilli larger than 125 ..mu..m are extremely rare. The median grain-size of the fine ash is about 50 ..mu..m and the size-distribution is well sorted. Most constituent particles of accretionary lapilli display blocky shapes characteristic of grains producedmore » by phreatomagmatic hydroexplosions. We have used the scanning electron microscope (SEM) in conjunction with energy dispersive spectral analysis (EDS) to investigate the textural and chemical variation along traverses from the core to the rim of lapilli from Vesuvius.« less
NASA Astrophysics Data System (ADS)
Cornamusini, Gianluca; Talarico, Franco M.
2016-11-01
A detailed study of gravel-size sedimentary clasts in the ANDRILL-2A (AND-2A) drill core reveals distinct changes in provenance and allows reconstructions to be produced of the paleo ice flow in the McMurdo Sound region (Ross Sea) from the Early Miocene to the Holocene. The sedimentary clasts in AND-2A are divided into seven distinct petrofacies. A comparison of these with potential source rocks from the Transantarctic Mountains and the coastal Southern Victoria Land suggests that the majority of the sedimentary clasts were derived from formations within the Devonian-Triassic Beacon Supergroup. The siliciclastic-carbonate petrofacies are similar to the fossiliferous erratics found in the Quaternary Moraine in the southern McMurdo Sound and were probably sourced from Eocene strata that are currently hidden beneath the Ross Ice Shelf. Intraformational clasts were almost certainly reworked from diamictite and mudstone sequences that were originally deposited proximal to the drill site. The distribution of sedimentary gravel clasts in AND-2A suggests that sedimentary sequences in the drill core were deposited under two main glacial scenarios: 1) a highly dynamic ice sheet that did not extend beyond the coastal margin and produced abundant debris-rich icebergs from outlet glaciers in the central Transantarctic Mountains and South Victoria Land; 2) and an ice sheet that extended well beyond the coastal margin and periodically advanced across the Ross Embayment. Glacial scenario 1 dominated the early to mid-Miocene (between ca. 1000 and 225 mbsf in AND-2A) and scenario 2 the early Miocene (between ca. 1138 and 1000 mbsf) and late Neogene to Holocene (above ca. 225 mbsf). This study augments previous research on the clast provenance and highlights the added value that sedimentary clasts offer in terms of reconstructing past glacial conditions from Antarctic drill core records.
Insights into the Martian Regolith from Martian Meteorite Northwest Africa 7034
NASA Technical Reports Server (NTRS)
McCubbin, Francis M.; Boyce, Jeremy W.; Szabo, Timea; Santos, Alison R.; Domokos, Gabor; Vazquez, Jorge; Moser, Desmond E.; Jerolmack, Douglas J.; Keller, Lindsay P.; Tartese, Romain
2015-01-01
Everything we know about sedimentary processes on Mars is gleaned from remote sensing observations. Here we report insights from meteorite Northwest Africa (NWA) 7034, which is a water-rich martian regolith breccia that hosts both igneous and sedimentary clasts. The sedimentary clasts in NWA 7034 are poorly-sorted clastic siltstones that we refer to as protobreccia clasts. These protobreccia clasts record aqueous alteration process that occurred prior to breccia formation. The aqueous alteration appears to have occurred at relatively low Eh, high pH conditions based on the co-precipitation of pyrite and magnetite, and the concomitant loss of SiO2 from the system. To determine the origin of the NWA 7034 breccia, we examined the textures and grain-shape characteristics of NWA 7034 clasts. The shapes of the clasts are consistent with rock fragmentation in the absence of transport. Coupled with the clast size distribution, we interpret the protolith of NWA 7034 to have been deposited by atmospheric rainout resulting from pyroclastic eruptions and/or asteroid impacts. Cross-cutting and inclusion relationships and U-Pb data from zircon, baddelleyite, and apatite indicate NWA 7034 lithification occurred at 1.4-1.5 Ga, during a short-lived hydrothermal event at 600-700 C that was texturally imprinted upon the submicron groundmass. The hydrothermal event caused Pb-loss from apatite and U-rich metamict zircons, and it caused partial transformation of pyrite to submicron mixtures of magnetite and maghemite, indicating the fluid had higher Eh than the fluid that caused pyrite-magnetite precipitation in the protobreccia clasts. NWA 7034 also hosts ancient 4.4 Ga crustal materials in the form of baddelleyites and zircons, providing up to a 2.9 Ga record of martian geologic history. This work demonstrates the incredible value of sedimentary basins as scientific targets for Mars sample return missions, but it also highlights the importance of targeting samples that have not been overprinted by metamorphic processes, which is the case for NWA 7034.
Breccia-Conglomerate Rocks on Lower Mount Sharp, Mars Stereo
2016-08-19
This stereo scene from the Mast Camera (Mastcam) on NASA's Curiosity Mars Rover shows boulders composed, in part, of pebble-size (0.2 to 2.6 inches, or 0.5 to 6.5 centimeters across) and larger rock fragments. The size and shape of the fragments provide clues to the origins of these boulders. This image is an anaglyph that appears three dimensional when viewed through red-blue glasses with the red lens on the left. The separate right-eye and left-eye views combined into the stereo version are Figure 1 and Figure 2. Mastcam's right-eye camera has a telephoto lens, with focal length of 100 millimeters. The left-eye camera provides a wider view, with a 34-millimeter lens. These images were taken on July 22, 2016, during the 1,408th Martian day, or sol, of Curiosity's work on Mars. For scale, the relatively flat rock at left is about 5 feet (1.5 meters) across. The rock in the foreground at right is informally named "Balombo." The group of boulders is at a site called "Bimbe." The Curiosity team chose to drive the rover to Bimbe to further understand patches of boulders first identified from orbit and seen occasionally on the rover's traverse. The boulders at Bimbe consist of multiple rock types. Some include pieces, or "clasts," of smaller, older rock cemented together, called breccias or conglomerates. The shapes of the inclusion clasts -- whether they are rounded or sharp-edged -- may indicate how far the clasts were transported, and by what processes. Breccias have more angular clasts, while conglomerates have more rounded clasts. As is clear by looking at these boulders, they contain both angular and rounded clasts, leading to some uncertainty about how they formed. Conglomerate rocks such as "Hottah" were inspected near Curiosity's landing site and interpreted as part of an ancient streambed. Breccias are generally formed by consolidation of fragments under pressure. On Mars such pressure might come from crater-forming impact, or by deep burial and exhumation. http://photojournal.jpl.nasa.gov/catalog/PIA20836
NASA Technical Reports Server (NTRS)
Ziegler, K.; Zolensky, M.; Young, E. D.; Ivanov, A.
2012-01-01
The Kaidun microbreccia is a unique meteorite due to the diversity of its constituent clasts. Fragments of various types of carbonaceous (CI, CM, CV, CR), enstatite (EH, EL), and ordinary chondrites, basaltic achondrites, and impact melt products have been described, and also several unknown clasts [1, and references therein]. The small mm-sized clasts represent material from different places and times in the early solar system, involving a large variety of parent bodies [2]; meteorites are of key importance to the study of the origin and evolution of the solar system, and Kaidun is a collection of a range of bodies evidently representing samples from across the asteroid belt. The parent-body on which Kaidun was assembled is believed to be a C-type asteroid, and 1-Ceres and the martian moon Phobos have been proposed [1-4]. Both carbonaceous (most oxidized) and enstatite (most reduced) chondrite clasts in Kaidun show signs of aqueous alterations that vary in type and degree and are most likely of pre-Kaidun origin [1, 4].
NASA Astrophysics Data System (ADS)
McMurtry, G. M.; Campbell, J. F.; Fryer, G. J.; Tappin, D. R.; Fietzke, J.
2010-12-01
Sandy, basalt-coral conglomerates associated with both beachrock and coral reefs are found at high elevations on Oahu, Hawaii. They have been attributed to either brief, sea level high-stands or storms. The Kahe Point conglomerates are at 12.5 m elevation, whereas the main stage MIS-5e reef at this location has a maximum elevation of 8.2 m. They are loosely consolidated and poorly cemented, graded, poorly sorted, and with varying amounts of basalt and coral clasts ranging from cobble to boulder size. Coral in these deposits has been U-series dated by us at between 120-125 ka (n=5). Four distinct beds, with a gently seaward tilt, are recognized in a road cut section, with each bed composed of a few cm-thick topset bed of fine-grained, shelly, calcareous sand to silt. Similar high elevation conglomerates and 5e reefs are also described at Mokapu and Kaena Points on Oahu, indicating an island-wide deposit. Older coral clasts, dated at 130 to 142 ka (n=6; oldest by alpha spectrometry) found in association with the stage 5e corals suggest reworking and incorporation of older low-stand reef material. The coarse grain size of the conglomerates indicates deposition from a high-energy event; thus a high-stand source is ruled out. We also consider that the overall lithology and up to 0.5 m bed thickness not to be the result of storms; a series of high frequency storm events is considered unlikely. The weight of the evidence in our opinion clearly indicates deposition by a series of tsunami waves. If correct, this has implications for “probabilistic” models of sea level peaks at least 6.6 m higher than present at stage 5e that use such data in their models (e. g., Kopp et al., 2009), at least for Oahu. Within about 2 km of the Kahe deposit, in a road cut at Ko Olina, there is another markedly similar high-energy, sandy basalt-bearing coral conglomerate sequence at 21 to 25 m elevation. There are at least two distinct beds about one meter in thickness, both gently seaward tilting and with bed layer containing a few cm-thick topset of fine, shelly, calcareous sand to silt. The sediments are loosely consolidated and poorly cemented, graded, moderately sorted, with coral clasts ranging from pebble to boulder size, predominately cobble. Compared to the deposits at Kahe, those at Ko Olina are more heavily dominated by rounded coral clasts that are U-series dated at between 302-363 ka (n=5); broadly correlative with MIS stage 9. Previously described as a high-stand reef deposit, we suggest it is more likely to be a tsunami deposit too; perhaps considering its’ elevation, laid down from a mega-tsunami, if it was deposited prior to the MIS stage 9 high-stand at approximately 325 ka.
NASA Astrophysics Data System (ADS)
Mulchrone, Kieran F.; Meere, Patrick A.
2015-09-01
Shape fabrics of elliptical objects in rocks are usually assumed to develop by passive behavior of inclusions with respect to the surrounding material leading to shape-based strain analysis methods belonging to the Rf/ϕ family. A probability density function is derived for the orientational characteristics of populations of rigid ellipses deforming in a pure shear 2D deformation with both no-slip and slip boundary conditions. Using maximum likelihood a numerical method is developed for estimating finite strain in natural populations deforming for both mechanisms. Application to a natural example indicates the importance of the slip mechanism in explaining clast shape fabrics in deformed sediments.
Jaffe, Bruce E.; Watt, Steve; Buckley, Mark
2012-01-01
Marine overwash from the north a few centuries ago transported hundreds of angular cobbles and boulders tens to hundreds of meters southward from limestone outcrops in the interior of Anegada, 140 km east–northeast of Puerto Rico. We examined two of several cobble and boulder fields as part of an effort to interpret whether the overwash resulted from a tsunami or a storm in a location where both events are known to occur. One of the cobble and boulder field extends 200 m southward from limestone outcrops that are 300 m inland from the island’s north shore. The other field extends 100 m southward from a limestone knoll located 800 m from the nearest shore. In the two fields, we measured the size, orientation, and spatial distribution of a total of 161 clasts and determined their stratigraphic positions with respect to an overwash sand and shell sheet deposit. In both fields, we found the spacing between clasts increased southward and that clast long-axis orientations are consistent with a transport trending north–south. Almost half the clasts are partially buried in a landward thinning and fining overwash sand and none were found embedded in the shelly mud of a pre-overwash marine pond. The two cobble and boulder fields resemble modern tsunami deposits in which dispersed clasts extend inland as a single layer. The fields contrast with coarse clast storm deposits that often form wedge-shaped shore-parallel ridges. These comparisons suggest that the overwash resulted from a tsunami and not from a storm.
NASA Astrophysics Data System (ADS)
Brook, Martin; Winkler, Stefan
2016-04-01
Glaciation on the central North Island of New Zealand is limited to the volcanoes of Tongariro National Park, including Mt Ruapehu, the largest and most active andesitic stratovolcano on the North Island. At 2797 m asl, Mt Ruapehu represents the only peak in the North Island to currently intercept the permanent snowline, with small cirque glaciers descending to an altitude of ~2300 m. During the last glacial maximum (LGM), small ice-caps existed on Mt Ruapehu and the Tongariro Massif (15 km to the NNE of Ruapehu), with a series of small (<10 km-long) valley glaciers radiating out from domes centered on the summit areas to altitudes of ~1200 m. Holocene glacier advances have left smaller deposits inboard of some of the LGM moraines. However, understanding of moraine deposition and reconstructing former glacier extent is limited by: (1) the fragmentary nature of glacier moraines in this high precipitation environment; and (2) the broad range of possible process-origins for unconsolidated debris ridges on active volcanoes. Here, we describe the clast roundness, clast shape and textural characteristics associated with active and former glaciers on Mt Ruaephu and the Tongariro Massif, in order to assist in classifying the process-origin of sediments on glaciated volcanic mountains. Supraglacial inputs include rockfall, tephra, and avalanche material delivered to the surface of glaciers. Basal debris, where observed at the terminus of active cirque glaciers, consists mainly of incorporated fluvial material. Following deposition, reworking is mainly by proglacial streams, debris flows and lahars. Within the vicinity of glaciers, the dominant facies appear to be: (i) bouldery gravel with angular clasts on steep slopes surrounding glaciers, (ii) silty-sandy boulder gravel, with mainly subangular clasts, forming lateral moraines, (iii) boulder/cobble gravel with mainly subrounded clasts and associated laminated sediments representing fluvially-reworked material; and (iv) debris-avalanche deposits including fragmental rock clasts with an unsorted inter-clast matrix. As some of these deposits appear to include unambiguous indicators of glacial transport, interpretation of unconsolidated debris ridges on volcanic mountains should not necessarily exclude the contribution of glacial processes.
Phillips, R.L.; Grantz, A.
2001-01-01
The composition and distribution of ice-rafted glacial erratics in late Quaternary sediments define the major current systems of the Arctic Ocean and identify two distinct continental sources for the erratics. In the southern Amerasia basin up to 70% of the erratics are dolostones and limestones (the Amerasia suite) that originated in the carbonate-rich Paleozoic terranes of the Canadian Arctic Islands. These clasts reached the Arctic Ocean in glaciers and were ice-rafted to the core sites in the clockwise Beaufort Gyre. The concentration of erratics decreases northward by 98% along the trend of the gyre from southeastern Canada basin to Makarov basin. The concentration of erratics then triples across the Makarov basin flank of Lomonosov Ridge and siltstone, sandstone and siliceous clasts become dominant in cores from the ridge and the Eurasia basin (the Eurasia suite). The bedrock source for the siltstone and sandstone clasts is uncertain, but bedrock distribution and the distribution of glaciation in northern Eurasia suggest the Taymyr Peninsula-Kara Sea regions. The pattern of clast distribution in the Arctic Ocean sediments and the sharp northward decrease in concentration of clasts of Canadian Arctic Island provenance in the Amerasia basin support the conclusion that the modem circulation pattern of the Arctic Ocean, with the Beaufort Gyre dominant in the Amerasia basin and the Transpolar drift dominant in the Eurasia basin, has controlled both sea-ice and glacial iceberg drift in the Arctic Ocean during interglacial intervals since at least the late Pleistocene. The abruptness of the change in both clast composition and concentration on the Makarov basin flank of Lomonosov Ridge also suggests that the boundary between the Beaufort Gyre and the Transpolar Drift has been relatively stable during interglacials since that time. Because the Beaufort Gyre is wind-driven our data, in conjunction with the westerly directed orientation of sand dunes that formed during the last glacial maximum on the North Slope of Alaska, suggests that atmospheric circulation in the western Arctic during late Quaternary was similar to that of the present. ?? 2001 Elsevier Science B.V.
Large historical eruptions at subaerial mud volcanoes, Italy
NASA Astrophysics Data System (ADS)
Manga, M.; Bonini, M.
2012-11-01
Active mud volcanoes in the northern Apennines, Italy, currently have gentle eruptions. There are, however, historical accounts of violent eruptions and outbursts. Evidence for large past eruptions is also recorded by large decimeter rock clasts preserved in erupted mud. We measured the rheological properties of mud currently being erupted in order to evaluate the conditions needed to transport such large clasts to the surface. The mud is well-characterized by the Herschel-Bulkley model, with yield stresses between 4 and 8 Pa. Yield stresses of this magnitude can support the weight of particles with diameters up to several mm. At present, particles larger than this size are not being carried to the surface. The transport of larger clasts to the surface requires ascent speeds greater than their settling speed in the mud. We use a model for the settling of particles and rheological parameters from laboratory measurements to show that the eruption of large clasts requires ascent velocities > 1 m s-1, at least three orders of magnitude greater than during the present, comparatively quiescent, activity. After regional earthquakes on 20 May and 29 May 2012, discharge also increased at locations where the stress changes produced by the earthquakes would have unclamped feeder dikes below the mud volcanoes. The magnitude of increased discharge, however, is less than that inferred from the large clasts. Both historical accounts and erupted deposits are consistent in recording episodic large eruptions.
⁵³Mn-⁵³Cr and ²⁶Al-²⁶Mg ages of a feldspathic lithology in polymict ureilites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodrich, Cyrena Anne; Hutcheon, Ian D.; Kita, Noriko T.
2010-07-01
We report 53Mn– 53Cr and 26Al– 26Mg isotopic data, obtained by in-situ SIMS analysis, for feldspathic clasts in polymict ureilites DaG 319 and DaG 165. The analyzed clasts belong to the “albitic lithology,” the most abundant population of indigenous feldspathic materials in polymict ureilites, and are highly fractionated igneous assemblages of albitic plagioclase, Fe-rich pyroxenes, phosphates, ilmenite, silica, and Fe(Mn, K, P, Ti)-enriched glass. Glass in DaG 165 clast 19 has extremely high and variable 55Mn/ 52Cr ratios (500–58,000) and shows correlated 53Cr excesses up to ~ 1500‰, clearly indicating the presence of live 53Mn at the time of formation.more » The slope of the well-correlated isochron defined by glass and pyroxenes from this clast corresponds to ( 53Mn/ 55Mn) = (2.84 ± 0.10) × 10 -6 (2σ). Data for less 55Mn/ 52Cr-enriched glasses from DaG 319 clast B1, as well as phosphates from several other clasts, are consistent with this isochron. The 53Mn/ 55Mn ratio obtained from the isochron implies that these clasts are 0.70 ± 0.18 Ma younger than the D'Orbigny angrite, corresponding to the absolute age of 4563.72 ± 0.22 Ma. Plagioclase in DaG 319 clast B1 has a fairly constant 27Al/ 24Mg ratio of ~ 900 and shows resolvable 26Mg excesses of ~ 2‰. The slope of the isochron defined by pyroxene and plagioclase in this clast is (3.0 ± 1.1) × 10 -7 (2σ), corresponding to a time difference of 5.4 (-0.3/+0.5) Ma after CAI (assuming the canonical initial 26Al/ 27Al ratio of 5 × 10 -5) and an age 0.5 (-0.3/+0.5) Ma younger than D'Orbigny. Its absolute age (relative to D'Orbigny) is 4563.9 (+ 0.4/-0.5) Ma, in agreement with the 53Mn– 53Cr age from clast 19. These data provide the first high-precision age date, ~ 5.4 Ma after CAI, for ureilites, giving a minimum estimate for the age of differentiation of their parent asteroid. Interpretation of this age for the thermal and physical history of that asteroid depends on a number of currently unknown or model-dependent parameters, including its size, bulk composition, and oxidation state, and the petrologic relationship between the feldspathic clasts and main group ureilites.« less
X-Ray Micro-Computed Tomography of Apollo Samples as a Curation Technique Enabling Better Research
NASA Technical Reports Server (NTRS)
Ziegler, R. A.; Almeida, N. V.; Sykes, D.; Smith, C. L.
2014-01-01
X-ray micro-computed tomography (micro-CT) is a technique that has been used to research meteorites for some time and many others], and recently it is becoming a more common tool for the curation of meteorites and Apollo samples. Micro-CT is ideally suited to the characterization of astromaterials in the curation process as it can provide textural and compositional information at a small spatial resolution rapidly, nondestructively, and without compromising the cleanliness of the samples (e.g., samples can be scanned sealed in Teflon bags). This data can then inform scientists and curators when making and processing future sample requests for meteorites and Apollo samples. Here we present some preliminary results on micro-CT scans of four Apollo regolith breccias. Methods: Portions of four Apollo samples were used in this study: 14321, 15205, 15405, and 60639. All samples were 8-10 cm in their longest dimension and approximately equant. These samples were micro-CT scanned on the Nikon HMXST 225 System at the Natural History Museum in London. Scans were made at 205-220 kV, 135-160 microamps beam current, with an effective voxel size of 21-44 microns. Results: Initial examination of the data identify a variety of mineral clasts (including sub-voxel FeNi metal grains) and lithic clasts within the regolith breccias. Textural information within some of the lithic clasts was also discernable. Of particular interest was a large basalt clast (approx.1.3 cc) found within sample 60639, which appears to have a sub-ophitic texture. Additionally, internal void space, e.g., fractures and voids, is readily identifiable. Discussion: It is clear from the preliminary data that micro-CT analyses are able to identify important "new" clasts within the Apollo breccias, and better characterize previously described clasts or igneous samples. For example, the 60639 basalt clast was previously believed to be quite small based on its approx.0.5 sq cm exposure on the surface of the main mass. These scans show the clast to be approx.4.5 g, however (assuming a density of approx.3.5 g/cc). This is large enough for detailed studies including multiple geo-chronometers. This basalt clast is of particular interest as it is the largest Apollo 16 basalt, and it is the only mid-TiO2 basalt in the Apollo sample suite. By identifying the location of interesting clasts or grains within a sample, we will be able to make more informed decisions about where to cut a sample in order to best expose clasts of interest for future study. Moreover, knowing the location of internal defects (e.g., fractures) will allow more precise chipping and extraction of clasts or grains. By combining micro-CT scans with compositional techniques like micro x-ray fluorescence (particularly on sawn slabs), we will be able to provide even more comprehensive information to scientists trying to best select samples that fit their scientific needs.
NASA Astrophysics Data System (ADS)
Goto, Kazuhisa; Sugawara, Daisuke; Ikema, Satoko; Miyagi, Toyohiko
2012-12-01
This paper reports on the sedimentary processes of sand and boulder deposition at Sabusawa Island, Japan as a result of the 2011 Tohoku-oki tsunami. Boulders were composed of tuffaceous rocks and sourced from an earthquake-triggered slope failure as well as concrete fragments of seawall. They were scattered over the ground surface and did not form boulder ridges, although there was some local imbrication. The boulders were deposited on top of a sand layer indicating that the latter, possibly deposited from bed load, covered the ground surface first. This sand layer probably reduced friction allowing boulders to be transported more easily than might be expected across a hard ground with a high bottom friction. Sand deposits showed landward thinning and fining features, while the boulders showed a landward coarsening (tuffaceous boulders) or a landward fining (concrete boulders), indicating that large clasts were not necessarily scattered randomly but rather might have a clast size gradient with distance inland. These features are explained by the local topographic setting that constrained the directions of incoming and returning tsunami flows. Some clasts at the inland extent of the boulder field were covered by an upward fining sand layer. This feature suggests that the boulders were deposited prior to the suspended sands, with the latter subsequently laid down before the water level dropped below the top of the boulders. Such modern investigations of the sedimentary features of various sizes of grains and clasts immediately after a tsunami provide invaluable data for the reconstruction of inundation processes.
Morphology of calcite crystals in clast coatings from four soils in the Mojave desert region
NASA Technical Reports Server (NTRS)
Chadwick, Oliver A.; Sowers, Janet M.; Amundson, Ronald G.
1989-01-01
Pedogenic calcite-crystal coatings on clasts were examined in four soils along an altitudinal gradient on Kyle Canyon alluvium in southern Nevada. Clast coatings were studied rather than matrix carbonate to avoid the effects of soil matrix on crystallization. Six crystal sizes and shapes were recognized and distinguished. Equant micrite was the dominant crystal form with similar abundance at all elevations. The distributions of five categories of spar and microspar appear to be influenced by altitudinally induced changes in effective moisture. In the drier, lower elevation soils, crystals were equant or parallel prismatic with irregular, interlocking boundaries while in the more moist, higher elevation soils they were randomly oriented, euhedral, prismatic, and fibrous. There was little support for the supposition that Mg(+2) substitution or increased (Mg + Ca)/HCO3 ratios in the precipitating solution produced crystal elongation.
Early Cretaceous ice rafting and climate zonation in Australia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frakes, L.A.; Alley, N.F.; Deynoux, M.
1995-07-01
Lower Cretaceous (Valanginian to Albian) strata of the southwestern Eromanga and Carpentaria basins of central and northern Australia, respectively, provide evidence of strongly seasonal climates at high paleolatitudes. These include dispersed clasts (lonestones) in fine sediments and pseudomorphs of calcite after ikaite (glendonites), the latter being known to form only at temperatures below about 7{degrees}C. Rafting is regarded as the transport mechanism for clasts up to boulder size (lonestones) enclosed within dark mudrocks; this interpretation rests on rare occurrences of penetration by clasts into substrate layers. Driftwood and large floating algae are eliminated as possible rafts because fossil wood ismore » found mainly concentrated in nearshore areas of the basins and large algal masses have not been observed. Rafting by icebergs is considered unlikely in view of the global lack of tillites and related glacial deposits of this age. Our interpretation is that seasonal ice, formed in winter along stream courses and strandlines, incorporated clasts which, during the melt season, were dropped into muddy sediments in both basins. Eromanga fine-sediment and concentrations of large clasts and associated sand lenses, both lying above local erosion surfaces. In the Carpentaria Basin, local dumping of sediment from raft surfaces resulted in accumulation of pods of small clasts. Three zones can be identified for the Early Cretaceous climate of eastern Australia: (1) a very cold southern region, at latitudes above about 72{degrees} S, characterized by meteoric waters possibly originating as Antarctic glacial meltwaters; (2) a zone of strongly seasonal climates, with freezing winters and warm summers, between about 72{degrees} and 53{degrees} S.Lat.; and (3) a mid-latitude zone (below about 50{degrees} S. Lat.), where freezing temperatures were not common. 60 refs., 7 figs.« less
NASA Astrophysics Data System (ADS)
Balcanoff, J. R.; Carey, S.; Kelley, K. A.; Boesenberg, J. S.
2016-12-01
Eruptions that produce basaltic balloon products are an uncommon eruption style only observed in five cases during historical times. Basaltic balloon products form in gas rich shallow submarine eruptions, which produce large hollow clasts with sufficient buoyancy to float on seawater. Foerstner submarine volcano, off the coast of Pantelleria (Italy), erupted with this style in 1891 and is the only eruption where the vent site (250 m water depth) has been studied and sampled in detail with remotely operated vehicles (ROVs). Here, we report Fournier Transform Infrared Spectroscopy (FTIR) and electron microprobe (EMP) analyses of major elements and dissolved volatiles in melt inclusions from olivine and plagioclase phenocrysts picked from highly vesicular clasts recovered from the seafloor. The trachybasaltic melt is enriched in alkalis with notably high phosphorus (1.82-2.38 wt%), and melt inclusions show elevated H2O concentrations of 0.17 to 1.2 wt.% and highly elevated CO2 concentrations of 928 to 1864 ppm. Coexisting matrix glass is completely degassed with respect to carbon dioxide but has variable water contents up to 0.19 %. The maximum carbon dioxide value implies saturation at 1.5 kb, or 4.5 km below the volcano. Trends in the CO2 and H2O data are most compatible with calculated open system degassing behavior. This is consistent with a proposed balloon formation mechanism involving a hybrid strombolian eruption style with the potential accumulation of gas-rich pockets below the vent as gas bubbles moved upwards independent of the low viscosity basaltic melt. Discharge of the gas-rich pockets led to the discharge of meter-sized slugs of magma with large internal vesicles (several tens of centimeters). A subset of these clasts had bulk densities that were lower than seawater, allowing them to rise to the sea surface where they either exploded or became water saturated and sank back to the seafloor.
NASA Astrophysics Data System (ADS)
Deardorff, N.; Cashman, K. V.; Chadwick, W. W.; Embley, R. W.
2007-12-01
Strombolian submarine eruptions at 550-560 m water depth were observed in April, 2006 at NW Rota-1 volcano, Mariana arc. During six dives with the Jason II remotely operated vehicle observations made at close range documented a diverse and increasingly energetic range of activity. The initial dives observed lava extrusion followed by small, explosive bursts. Activity steadily increased to produce gas thrust jets, discrete thermals and eventually a sustained plume. Eruption video allowed analysis of submarine plume dynamics and depositional characteristics. Sustained plumes were white, billowy and coherent, measuring ~0.5-0.75m wide at their base and quickly spreading to >2m in diameter within ~2-3m above vent due to rapid seawater entrainment. Sustained, coherent plumes were observed rising >20-30m above the seafloor; the top of the plume was observed at ~490m b.s.l giving a total plume height of ~60-70m above the active vent. The initial ascent (<3-4 m) of plumes generated from explosive bursts was analyzed for ejection velocities (<4m/s), clast settling velocities (~0.38-0.72m/s), and changes in plume height and width. Gas thrust jets were determined to transition from momentum-driven plume rise to buoyancy-driven plumes, both visually and using rise velocities, at ~ 0.5-1 m above the vent. These data contrast with the dynamics of plumes generated in subaerial Strombolian eruptions, which maintain momentum-driven rise to ~ 100 meters (Patrick, 2007) above the vent, and illustrate the strong dampening effect of the overlying seawater. Ash and lapilli were observed falling out of the plume at heights >3-4m after being transported by the convecting plume and are assumed to have wider range of travel, vertically and laterally, and deposition. Most bomb-sized ejecta were carried vertically with the plume for 1-3m before falling out around the vent, indicating that the dense (~1700-2350 kg/m3) clasts were transported primarily within the momentum-driven part of the plume. These bomb-sized ejecta were deposited within ~1-2m from the vent with numerous clasts falling back into the vent. The average maximum bomb size increased over time from <13cm blocks during early phases of the dive sequence to ~30-70cm during the later, most energetic eruptions. The positive correlation of bomb size with mass eruption rate is opposite to that seen for highly explosive (plinian) eruptions and suggests that mass eruption rate at NW Rota-1 is determined primarily by gas flux (that is, the ability of the streaming gas phase to transport pyroclasts).
NASA Astrophysics Data System (ADS)
Prikryl, Richard; Cermak, Martin; Krutilova, Katerina
2014-05-01
This study focuses on the influence of petrographic parameters on technological properties of greywackes. These sedimentary rocks make about 27 % of crushed stone market in the Czech Republic. Mainly in Moravia (eastern part of the Czech Republic), greywackes represent almost exclusive high quality aggregate. The behaviour of greywackes varies, however, from quarry to quarry. In this study, we have selected the most important deposits that cover major lithological variation of local greywackes. Studied greywackes were analysed for their petrographic parameters quantitatively (using image analysis of thin sections). The pore space characteristics were determined by using fluorescent dye - epoxy resin impregnated specimens. The studied rocks are composed of subangular and angular quartz grains, lithoclasts (stable rocks: quartzites, and unstable rocks: phylites, metaphylites, siltstones, slates, greywackes, and less frequently acid eruptive rocks), feldspars (orthoclas, microcline, plagioclase), and detrital micas. Detrital and authigenic chlorite has been found as well. The matrix which represents the largest volume of rock-forming components contains a mixture of sericite, chlorite, clay minerals, cements, and clasts in aleuropelitic size. Based on the microscopic examination, all studied rock types were classified as greywacke with fine- to medium-grained massive rock fabric. Only specimen from Bělkovice has shown partly layered structure. Alteration of feldspars and unstable rock fragments represents common feature. Diagenetic features included pressure dissolution of quartz clasts and formation of siliceous and/or calcite cements. Based on the experimental study of technological performance of studied greywackes and its correlation to petrographic features, the average size of clasts and volume of matrix make the driving factors affecting the LA values. The LA values decrease with the increasing of volume of matrix (R = 0.61) and with decreasing average grain size (R = 0.44). The degree of sorting influences LA values as well; more graded greywackes tend to show higher LA values. Regarding PSV, its values increase with increasing volume of quartz clasts.
NASA Astrophysics Data System (ADS)
Colombier, M.; Gurioli, L.; Druitt, T. H.; Shea, T.; Boivin, P.; Miallier, D.; Cluzel, N.
2017-02-01
Textural parameters such as density, porosity, pore connectivity, permeability, and vesicle size distributions of vesiculated and dense pyroclasts from the 9.4-ka eruption of Kilian Volcano, were quantified to constrain conduit and eruptive processes. The eruption generated a sequence of five vertical explosions of decreasing intensity, producing pyroclastic density currents and tephra fallout. The initial and final phases of the eruption correspond to the fragmentation of a degassed plug, as suggested by the increase of dense juvenile clasts (bimodal density distributions) as well as non-juvenile clasts, resulting from the reaming of a crater. In contrast, the intermediate eruptive phases were the results of more open-conduit conditions (unimodal density distributions, decreases in dense juvenile pyroclasts, and non-juvenile clasts). Vesicles within the pyroclasts are almost fully connected; however, there are a wide range of permeabilities, especially for the dense juvenile clasts. Textural analysis of the juvenile clasts reveals two vesiculation events: (1) an early nucleation event at low decompression rates during slow magma ascent producing a population of large bubbles (>1 mm) and (2) a syn-explosive nucleation event, followed by growth and coalescence of small bubbles controlled by high decompression rates immediately prior to or during explosive fragmentation. The similarities in pyroclast textures between the Kilian explosions and those at Soufrière Hills Volcano on Montserrat, in 1997, imply that eruptive processes in the two systems were rather similar and probably common to vulcanian eruptions in general.
NASA Astrophysics Data System (ADS)
Gupta, Sanjeev; Edgar, Lauren; Williams, Rebecca; Rubin, David; Yingst, Aileen; Lewis, Kevin; Kocurek, Gary; Anderson, Ryan; Dromart, Gilles; Edgett, Ken; Hardgrove, Craig; Kah, Linda; Mangold, Nicolas; Milliken, Ralph; Minitti, Michelle; Palucis, Marisa; Rice, Melissa; Stack, Katie; Sumner, Dawn; Williford, Ken
2014-05-01
Since leaving Yellowknife Bay (summer 2013), Mars Science Laboratory Curiosity has investigated a number of key outcrops as it traverses along the Rapid Transit Route toward the entry point to begin its investigations of the extensive rock outcrops at the base of Mount Sharp. Rover observations are characterizing the variability of lithologies and sedimentary facies along the traverse and establishing stratigraphic relationships with the aim of reconstructing depositional processes and palaeoenvironments. Here, we report on sedimentological and stratigraphic observations based on images from the Mastcam and MAHLI instruments at Shaler and the Darwin waypoint. The informally named Shaler outcrop, which forms part of the Glenelg member of the Yellowknife Bay formation [1] is remarkable for the preservation of a rich suite of sedimentary structures and architecture, and was investigated on sols 120-121 and 309-324. The outcrop forms a pebbly sandstone body that is ~0.7 m thick and extends for up to 20 m. Shaler is largely characterized by pebbly sandstone facies showing well-developed decimeter-scale trough cross-stratification. Bedding geometries indicate sub-critical angles of climb, resulting in preservation of only the lee slope deposits. The grain size, and the presence and scale of cross-stratification imply sediment transport and deposition by unidirectional currents in a fluvial sedimentary environment. Curiosity investigated the informally named Darwin waypoint between sols 390 and 401, making detailed Mastcam and MAHLI observations at two separate locations. The Darwin outcrop comprises light-toned sandstone beds separated by darker pebbly sandstones. MAHLI observations permit differentiation of distinct sedimentary facies. The Altar Mountain facies is a poorly sorted pebbly sandstone that is rich in fine pebbles. Pebbles are sub-angular to sub-rounded in shape and show no preferred orientation or fabric. Pebbles and sand grains show clast-to-clast contacts. The clast-supported nature of the facies, the presence of coarse sand grains to fine pebbles, and the occurrence of some rounding of clasts indicates that these are sedimentary clasts that have been transported by aqueous flows. However, the absence of a well-sorted fabric, size grading of clast, and major rounding of grains suggests that these pebbly sandstones were rapidly deposited rather than built up from sustained fluvial reworking, implying that the deposits may be the result of more ephemeral river flows rather than sustained flow discharges. The Bardin Bluffs facies overlies the Altar Mountain facies and shows a more sand-dominated fabric with a smaller proportion of floating fine pebbles. This facies is also clast-supported but contains fewer pebbles and shows an overall fining-up trend. This facies is also interpreted to represent fluvial deposition albeit with a different grain size distribution than the Altar Mountains facies. We will compare and contrast the varying sedimentary fabrics and facies to develop models for the variety of aqueous fluvial transport processes that have led to the deposition of sedimentary rocks en route to Mount Sharp. The origin of these sedimentary rocks with relation to fluvial fan processes in Gale Crater will be discussed. References: [1] Grotzinger, J.P. et al Science 2013, doi: 10.1126/science.1242777.
NASA Technical Reports Server (NTRS)
Rampino, M. R.; Ernstson, K.; Anguita, F.; Claudin F.
1997-01-01
Proximal ejecta deposits related to three large terrestrial impacts, the 14.8-Ma Ries impact structure in Germany (the Bunte Breccia), the 65-Ma Chicxulub impact structure in the Yucatan (the Albion and Pook's Hill Diamictites in Belize) and the mid-Tertiary Azuara impact structure in Spain (the Pelarda Fm.) occur in the form of widespread debris-flow deposits most likely originating from ballistic processes. These impact-related diamictites typically are poorly sorted, containing grain sizes from clay to large boulders and blocks, and commonly display evidence of mass flow, including preferred orientation of long axes of clasts, class imbrication, flow noses, plugs and pods of coarse debris, and internal shear planes. Clasts of various lithologies show faceting, various degrees of rounding, striations (including nailhead striae), crescentic chattermarks, mirror-like polish, percussion marks, pitting, and penetration features. Considering the impact history of the Earth, it is surprising that so few ballistic ejecta, deposits have been discovered, unless the preservation potential is extremely low, or such materials exist but have been overlooked or misidentified as other types of geologic deposits . Debris-flow diamictites of various kinds have been reported in the geologic record, but these are commonly attributed to glaciation based on the coarse and poorly sorted nature of the deposits and, in many cases, on the presence of clasts showing features considered diagnostic of glacial action, including striations of various kinds, polish, and pitting. These diamictites are the primary evidence for ancient ice ages. We present evidence of the surface features on clasts from known proximal ejecta debris-flow deposits and compare these features with those reported in diamictites. interpreted as ancient glacial deposits (tillites). Our purpose is to document the types of features seen on clasts in diamictites of ejecta origin in order to help in the interpretation of the origin of ancient diamictites. The recognition of characteristic features in clast populations in ancient diamictites may allow identification and discrimination of debris-flow deposits of various origins (e.g., impact glacial, tectonic) and may shed light on some climatic paradoxes, such as inferred Proterozoic glaciations at low paleolatitudes.
NASA Technical Reports Server (NTRS)
Rubin, Alan E.; Trigo-Rodriguez, Josep M.; Kunihiro, Takuya; Kallemeyn, Gregory W.; Wasson, John T.
2006-01-01
Chondritic clast PV1 from the Plainview H-chondrite regolith breccia is a subrounded, 5-mm diameter unequilibrated chondritic fragment that contains 13 wt% C occurring mainly within irregularly shaped 30-400-micron-size opaque patches. The clast formed from H3 chondrite material as indicated by the mean apparent chondrule diameter (310 micron vs. approximately 300 micron in H3 chondrites), the mean Mg-normalized refractory lithophile abundance ratio (1.00 +/- 0.09 XH), the previously determined 0-isotopic composition (Delta O-17 = 0.66% vs. 0.68 +/- 0.04%0 in H3 chondrites and 0.73 +/- 0.09% in H4-6 chondrites), the heterogeneous olivine compositions in grain cores (with a minimum range of Fal-19), and the presence of glass in some chondrules. Although the clast lacks the fine-grained, ferroan silicate matrix material present in type 3 ordinary chondrites, PV1 contains objects that appear to be recrystallized clumps of matrix material. Similarly, the apparent dearth of radial pyroxene and cryptocrystalline chondrules in PV1 is accounted for by the presence of some recrystallized fragments of these chondrule textural types. All of the chondrules in PV1 are interfused indicating that temperatures must have briefly reached approximately 1100C (the approximate solidus temperature of H-chondrite silicate). The most likely source of this heating was by an impact. Some metal was lost during impact heating as indicated by the moderately low abundance of metallic Fe-Ni in PV1 (approximately 14 wt%) compared to that in mean H chondrites (approximately 18 wt%). The carbon enrichment of the clast may have resulted from a second impact event, one involving a cometary projectile, possibly a Jupiter-family comet. As the clast cooled, it experienced hydrothermal alteration at low water/rock ratios as evidenced by the thick rims of ferroan olivine around low-FeO olivine cores. The C-rich chondritic clast was later incorporated into the H-chondrite parent-body regolith and extensively fractured and faulted.
Petrology and Geochemistry of the NWA 3368 Eucrite
NASA Astrophysics Data System (ADS)
Gardner, K. G.; Lauretta, D. S.; Hill, D. H.; Goreva, J. S.; Domanik, K. J.; Franchi, I. A.; Drake, M. J.
2006-03-01
We report the petrology and geochemistry of NWA 3368, a new non-cumulate, monomict eucrite breccia with a variety of clast sizes and a pink-tinted matrix. Analytical techniques include electron microprobe, INAA, and ICP-MS.
NASA Astrophysics Data System (ADS)
Stewart, Craig A.; Miranda, Elena A.
2017-12-01
We investigate how the rheological evolution of shear zone rocks from beneath the brittle-ductile transition (BDT) is affected by coeval ductile shear and pseudotachylyte development associated with seismicity during the earthquake cycle. We focus our study on footwall rocks of the South Mountains core complex, and we use electron backscatter diffraction (EBSD) analyses to examine how strain is localized in granodiorite mylonites both prior to and during pseudotachylyte development beneath the BDT. In mylonites that are host to pseudotachylytes, deformation is partitioned into quartz, where quartz exhibits crystallographic-preferred orientation patterns and microstructures indicative of dynamic recrystallization during dislocation creep. Grain size reduction during dynamic recrystallization led to the onset of grain boundary sliding (GBS) accommodated by fluid-assisted grain size-sensitive (GSS) creep, localizing strain in quartz-rich layers prior to pseudotachylyte development. The foliation-parallel zones of GBS in the host mylonites, and the presence of GBS traits in polycrystalline quartz survivor clasts indicate that GBS zones were the ductile precursors to in situ pseudotachylyte generation. During pseudotachylyte development, strain was partitioned into the melt phase, and GSS deformation in the survivor clasts continued until crystallization of melt impeded flow, inducing pseudotachylyte development in other GBS zones. We interpret the coeval pseudotachylytes with ductile precursors as evidence of seismic events near the BDT. Grain size piezometry yields high differential stresses in both host mylonites ( 160 MPa) and pseudotachylyte survivor clasts (> 200 MPa), consistent with high stresses during interseismic and coseismic phases of the earthquake cycle, respectively.
NASA Astrophysics Data System (ADS)
Axen, G. J.; Luther, A. L.; Selverstone, J.; Mozley, P.
2011-12-01
Unique layered cataclasites (LCs) occur locally along footwall splays, S of the ~N-dipping, top-E WSDF. They are well exposed in a NW-plunging antiform that folds the LCs and their upper and lower bounding faults. Layers range from very fine-grained granular shear zones 1-2 mm thick and cm's to m's long, to medium- to coarse-grained isotropic granular cataclasite with floating clasts up to 4-5 cm diameter in layers up to ~30 cm thick and 3 to >10 m long. The top, N-flank contact is ~5 m structurally below the main WSDF. Maximum thickness of the LCs is ~5 m on the S flank of the antiform, where the upper 10-50 cm of LCs are composed of relatively planar layers that are subparallel to the upper fault, which locally displays ultracataclasite. Deeper layers are folded into open to isoclinal folds and are faulted. Most shear-sense indicators show N-side-to-E or -SE slip, and include: (1) aligned biotite flakes and mm-scale shear bands that locally define a weak foliation dipping ~ESE, (2) sharp to granular shears, many of which merge up or down into fine-grained layers and, in the base of the overlying granodiorite, (3) primary reidel shears and (4) folded pegmatite dikes. Biotite is unaltered and feldspars are weakly to strongly altered to clays and zeolites. Zeolites also grew in pores between clasts. XRF analyses suggest minimal chemical alteration. The upper fault is sharp and relatively planar, carries granular to foliated cataclasitic granodiorite that grades up over ~2-4 m into punky, microcracked but plutonic-textured rock with much of the feldspar alteration seen in LC clasts. Some upper-plate reidels bend into parallelism with the top fault and bound newly formed LC layers. The basal fault truncates contorted layers and lacks evidence of layers being added there. We infer that the deeper, contorted layers are older and that the LC package grew upward by transfer of cataclasized slices from the overlying granodiorite while folding was ongoing. Particle-size distributions reflect constrained comminution and shear localization (slopes of ~3-3.5 on log-log plots of grain size vs. no. of grains > grain size). The LCs require episodic slip events that probably record dozens of seismic cycles. Foliation likely records post- or interseismic creep. Geometric complexities among the WSDF footwall splays presumably caused episodic dilation that allowed accumulation and folding of the LCs. Mechanical processes dominated over chemical processes. A key question is why the LCs apparently were stronger than the overlying granodiorite, leading to formation of new LC layers rather than significant reworking of older layers.
Morton, R.A.; Richmond, B.M.; Jaffe, B.E.; Gelfenbaum, G.
2008-01-01
Coastal gravel-ridge complexes deposited on islands in the Caribbean Sea are recorders of past extreme-wave events that could be associated with either tsunamis or hurricanes. The ridge complexes of Bonaire, Jamaica, Puerto Rico (Isla de Mona), and Guadeloupe consist of polymodal clasts ranging in size from sand to coarse boulders that are derived from the adjacent coral reefs or subjacent rock platforms. Ridge-complex morphologies and crest elevations are largely controlled by availability of sediments, clast sizes, and heights of wave runup. The ridge complexes are internally organized, display textural sorting and a broad range of ages including historical events. Some display seaward-dipping beds and ridge-and-swale topography, and some terminate in fans or steep avalanche slopes. Together, the morphologic, sedimentologic, lithostratigraphic, and chronostratigraphic evidence indicates that shore-parallet ridge complexes composed of gravel and sand that are tens of meters wide and several meters thick are primarily storm-constructed features that have accumulated for a few centuries or millennia as a result of multiple high-frequency intense-wave events. They are not entirely the result of one or a few tsunamis as recently reported. Tsunami deposition may account for some of the lateral ridge-complex accretion or boulder fields and isolated blocks that are associated with the ridge complexes. Copyright ?? 2008, SEPM (Society for Sedimentary Geology).
NASA Astrophysics Data System (ADS)
Hasalova, Pavlina; Hunter, Nicholas James; Weinberg, Roberto; Finch, Melanie
2013-04-01
Ultramylonite formation is integral to understanding the accommodation of high strain in ductile shear zones, mountain building and crustal movement. The El Pichao Shear Zone (PSZ) is 3-7km thick ductile thrust zone in the Sierra de Quilmes, NW Argentina. Sinistral thrusting along the PSZ has placed granulite facies migmatites of the Tolombón Complex on top of amphibolite metasedimentary rocks of the Agua del Sapo Complex, separated by a sheared granitic body intruded by pegmatites. The fabric varies from protomylonite to ultramylonite. Ultramylonites in the core of the shear zone reach ~1km in thickness. Ultramylonites of this thickness are extremely rare, and thus the El Pichao Shear Zone provides a unique opportunity to investigate the origin of such high strain rocks. We used microstructural and quantitative textural analysis, quartz crystallographic preferred orientation (CPO), clast vorticity and geochemical data to investigate the origin of the thick ultramylonites, and variable strain accommodation associated with the mylonitization process. The mylonitic rocks have granitic composition and consist of a matrix of Bt+Qtz+Ms+Pl+Kfs, Qtz ribbons, mica bands and feldspar porphyroclasts. Feldspar clasts have been variably rotated and their deformation behaviour varies between brittle faulting and partial to complete dynamic recrystallisation. In the ultramylonite Qtz ribbons or strong S-C fabrics are lacking and the matrix tends to be homogeneous with only weak foliation defined by the preferred orientation of micas. There is also a systematic decrease in matrix grain size and mica connectivity towards ultramylonite. Quartz CPO suggests changes in deformation mechanisms associated with strain increase. The transition between mylonite and ultramylonite in the PSZ occurred due to a switch from dominant dislocation creep to dominant diffusion creep. Major and trace element data show no geochemical variation between samples, indicating that the mylonite-ultramylonite transition took place in a closed system with fixed P-T conditions. We argue that the formation of thick ultramlyonites can occur where strain is high enough to instigate intense clast rotation. The homogenization of the originally banded mylonite results from continual rotation of clasts, which disaggregated the anisotropic matrix and thus inhibited strain localisation. The relative rotation of clasts in the matrix was a function of their vorticity and geometry, which may have influenced the variable deformation behaviours of feldspars in the mylonites. Strain softening at the clast matrix interface may have also played a role in increasing the vorticity of clasts and promoting rotation-induced strain accomodation. Ultramylonite thickness may be explained, at least in part, by the homogenisation of the matrix by clast rotation, where the loss of effective slip planes resulted in strain being dispersed over larger areas in the ultramylonite.
Cryptoachneliths: Hidden glassy ash in composite spheroidal lapilli
NASA Astrophysics Data System (ADS)
Carracedo Sánchez, M.; Arostegui, J.; Sarrionandia, F.; Larrondo, E.; Gil Ibarguchi, J. I.
2010-09-01
Cryptoachneliths, perceptible by means of electron microscopy but unresolved under the optical microscope, occur unnoticed inside spheroidal lapilli of ultrabasic composition of the Cabezo Segura volcano (Calatrava volcanic province, Spain). The cryptoachneliths are glassy spherical particles that have compositions of Al-rich silicate with minor amounts of Fe, Ca and other elements. The smallest cryptoachneliths of < 1 μm in diameter (nanoachneliths) joined by coalescence to form microspheres > 1 μm (microachneliths) and homogeneous less regular masses of similar composition. Nano and microachneliths welded each other or to other types of volcanic particles (crystals, crystal fragments, spinning droplets, cognate lithic clasts, etc.) to form spheroidal lapilli and even bomb size clasts within proximal fall deposits of the Cabezo Segura volcano. The welding processes took place inside the eruptive column, previous to the fall of the spheroidal lapilli on top of the volcanic cone. The presence of the cryptoachneliths implies that lapilli and even bomb size tephra within deposits formed during explosive eruptions of low-viscosity basic to ultrabasic magmas should be carefully examined in order to establish key parameters of eruption dynamics, like size, amount and distribution of juvenile fine particles.
McCubbin, Francis M.; Boyce, Jeremy W.; Novak-Szabo, Timea; Santos, Alison; Tartese, Romain; Muttik, Nele; Domokos, Gabor; Vazquez, Jorge A.; Keller, Lindsay P.; Moser, Desmond E.; Jerolmack, Douglas J.; Shearer, Charles K.; Steele, Andrew; Elardo, Stephen M.; Rahman, Zia; Anand, Mahesh; Delhaye, Thomas; Agee, Carl B.
2016-01-01
The timing and mode of deposition for Martian regolith breccia Northwest Africa (NWA) 7034 were determined by combining petrography, shape analysis, and thermochronology. NWA 7034 is composed of igneous, impact, and brecciated clasts within a thermally annealed submicron matrix of pulverized crustal rocks and devitrified impact/volcanic glass. The brecciated clasts are likely lithified portions of Martian regolith with some evidence of past hydrothermal activity. Represented lithologies are primarily ancient crustal materials with crystallization ages as old as 4.4 Ga. One ancient zircon was hosted by an alkali-rich basalt clast, confirming that alkalic volcanism occurred on Mars very early. NWA 7034 is composed of fragmented particles that do not exhibit evidence of having undergone bed load transport by wind or water. The clast size distribution is similar to terrestrial pyroclastic deposits. We infer that the clasts were deposited by atmospheric rainout subsequent to a pyroclastic eruption(s) and/or impact event(s), although the ancient ages of igneous components favor mobilization by impact(s). Despite ancient components, the breccia has undergone a single pervasive thermal event at 500–800°C, evident by groundmass texture and concordance of ~1.5 Ga dates for bulk rock K-Ar, U-Pb in apatite, and U-Pb in metamict zircons. The 1.5 Ga age is likely a thermal event that coincides with rainout/breccia lithification. We infer that the episodic process of regolith lithification dominated sedimentary processes during the Amazonian Epoch. The absence of pre-Amazonian high-temperature metamorphic events recorded in ancient zircons indicates source domains of static southern highland crust punctuated by episodic impact modification.
NASA Astrophysics Data System (ADS)
Higgins, Michael D.; Martin, Pierre-Etienne M. C.
2018-01-01
Abee is an enstatite chondrite breccia dominantly composed of kamacite, enstatite, silica, plagioclase, troilite and niningerite. Clasts are up to 220 mm long and vary in shape from angular to rounded. Some clasts are zoned with kamacite-enriched rims that follow the edge of the clast. Spatial compositional variations were examined in a small block to find out more about the petrological processes that produced this rock, particularly the relationship between the clasts, the matrix and the cores/rims of the zoned clasts. Compositional maps produced using a focussed-beam XRF were segmented into clasts and matrix, and rims and cores where possible. Compositions of most clasts, matrix and rim/cores define a simple, linear trend on simple variation diagrams. If it is assumed that all components were derived from an original homogeneous composition then the variation can be explained either by addition of kamacite or by loss of all other phases. Within this overall compositional variation the kamacite content generally increases as follows: matrix < large homogeneous clasts ≈ zoned clast cores < small homogeneous clasts ≈ zoned clast rims. Production of diversity by addition of kamacite to clasts and rim seems to require a complex history as the source cannot have been the current matrix. It is also difficult to produce the observed chemical variations and zoning by partial melting. However, differentiation by removal of all non-metallic phases may result from repeated impacts: Shock waves would deform kamacite whilst fracturing all other phases. The broken grains would then migrate towards the surface of the clasts where they would spall off into the matrix. This process would also lead to the observed rounding of some clasts. We propose that this shock-differentiation process be called 'smithing', as it resembles the ancient process of iron refining.
Alteration of Sedimentary Clasts in Martian Meteorite Northwest Africa 7034
NASA Technical Reports Server (NTRS)
McCubbin, F. M.; Tartese, R.; Santos, A. R.; Domokos, G.; Muttik, N.; Szabo, T.; Vazquez, J.; Boyce, J. W.; Keller, L. P.; Jerolmack, D. J.;
2014-01-01
The martian meteorite Northwest Africa (NWA) 7034 and pairings represent the first brecciated hand sample available for study from the martian surface [1]. Detailed investigations of NWA 7034 have revealed substantial lithologic diversity among the clasts [2-3], making NWA 7034 a polymict breccia. NWA 7034 consists of igneous clasts, impact-melt clasts, and "sedimentary" clasts represented by prior generations of brecciated material. In the present study we conduct a detailed textural and geochemical analysis of the sedimentary clasts.
Leitchenkov, G.L.; Belyatsky, B.V.; Rodionov, N.V.; Sergeev, S.A.
2007-01-01
refrozen from the lake water. This ice layer contains random sediment inclusions, eight of which have been studied using state-of the-art analytical techniques. Six inclusions comprise soft aggregates consisting mainly of clay-mica minerals and micron-sized quartz grains while two others are solid clasts of fine-grained cemented rocks. The largest rock clast consists of poorly-rounded quartz and minor amounts of accessory minerals and is classified as quartzose siltstone. More than twenty grains of zircon and monazite have been identified in this siltstone and dated by SIMS SHRIMP-II. Two age clusters have been recognized for these detrital grains, in the ranges 0.8−1.2 Ga and 1.6−1.8 Ga. The compositions of the rock clasts suggest that the bedrock situated to the west of Lake Vostok is sedimentary. The age data on the detrital accessory minerals suggest that the provenance of these sedimentary rocks − the Gamburtsev Mountains and Vostok Subglacial Highlands, is mainly represented by Paleoproterozoic and MesoproterozoicNeoproterozoic crustal provinces
NASA Technical Reports Server (NTRS)
Cohen, Barbara A.
2012-01-01
The currently operating Dawn mission shows asteroid 4 Vesta to be an extensively cratered body, with craters in a variety of morphologies and preservation states The crater size-frequency distribution for Vesta, modeled using the lunar chronology and scaled to impact frequencies modeled for Vesta, shows that both the north and south pole areas are ancient in age [1]. We have in our meteorite collection products from 4 Vesta in the form of the HED (howardite, eucrite, diogenite) meteorites. The HED parent body globally differentiated and fully crystallized by approx.4.56 Ga; subsequently, the eucrites were brecciated and heated by large impacts into the parent body surface, reflected in their disturbance ages [2, 3]. Dawn images have also shown that Vesta is covered with a well-developed regolith that is spectrally similar to howardite meteorites [4, 5]. Howardites are polymict regolith breccias made up mostly of clasts of eucrites and diogenites, but which also contain clasts formed by impact into the regolith. Impact-melt clast ages from howardites extend our knowledge of the impact history of Vesta, expanding on eucrite disturbance ages and helping give absolute age context to the observed crater-counts on Vesta.
NASA Astrophysics Data System (ADS)
Ashford, J.; Sickman, J. O.; Lucero, D. M.
2014-12-01
Understanding the underlying causes of interannual variation in snowfall and extreme hydrologic events in the Sierra Nevada is hampered by short instrumental records and the difficulties in reconstructing climate using a traditional paleo-record such as tree-rings. New paleo proxies are needed to provide a record of snowpack water content and extreme precipitation events over millennial timescales which can be used to test hypotheses regarding teleconnections between Pacific climate variability and water supply and flood risk in California. In October 2013 we collected sediment cores from Pear Lake (z = 27 m), an alpine lake in Sequoia National Park. The cores were split and characterized by P-wave velocity, magnetic susceptibility and density scanning. Radiocarbon dates indicate that the Pear Lake cores contain a 13.5K yr record of lake sediment. In contrast to other Sierra Nevada lakes previously cored by our group, high-resolution scanning revealed alternating light-dark bands (~1 mm to 5 mm thick) for most of the Pear Lake core length. This pattern was interrupted at intervals by homogenous clasts (up to 75 mm thick) ranging in grain size from sand to gravel up to 1 cm diameter. We hypothesize that the light-dark banding results from the breakdown of persistent hypolimnetic anoxia during spring snowmelt and autumn overturn. We speculate that the thicknesses of the dark bands are controlled by the duration of anoxia which in turn is controlled by the volume and duration of snowmelt. The sand to gravel sized clasts are most likely associated with extreme precipitation events resulting from atmospheric rivers intersecting the southern Sierra Nevada. We hypothesize that centimeter-sized clasts are deposited in large avalanches and that the sands are deposited in large rain events outside of the snow-cover period.
The occurrence of extreme events a tsunami and storm deposit in Chilcatay formation, Ica, Peru.
NASA Astrophysics Data System (ADS)
Poma Porras, O. A.; Cayo, R., Jr.; Casas, N.; Figueroa, F.
2016-12-01
The Chilcatay Formation (Oligocene to middle Miocene) south of Peru is in the Pisco Basin contains a thick sequence of Cenozoic sediments that record at least three marine transgressions characterized by successions of fine sandstones, siltstones, and diatomaceous mudstones. The sequence records certain facies that are typical of high-energy events, including extreme storms, tsunamis and earthquakes. The studied deposit is characterized by the presence of two layers of varying thickness. The lower layer, which is in markedly erosive contact with the underlying layer, is a very coarse-grained sandstone, highly sorted and with subrounded to subangular grains. The thickness varies laterally from one to 50 cm. The top layer, which is 40-60 cm thick and exposed for approximately 200 m, consists of a dense matrix of coarse-grained size fragments of molluscs (oysters), barnacles, and lithoclasts. The biogenic matrix contains many igneous (gabbro, granite) and metamorphic cobbles and boulders, and lithic tuffs, clusters of barnacles, and fragments consisting of vermetid gastropods reefs. The abundant igneous and metamorphic cobbles and boulders are rounded and subrounded, with a larger diameter between 3 and 140 cm, and occurring at a density of 3-8 clasts by square meter. The lithic tuffs are subrounded, have an ovoid morphology and a greater diameter between 1 and 44 cm. All these clasts occur scattered and 'floating' in the bioclastic matrix. The characteristics of the studied layer suggest that it was deposited by an extreme event that eroded the area between shoreface and backshore redepositing the materials and leaving a chaotic facies distribution with cobbles and boulders of different lithology. The large waves caused heavy erosion of the sediments in the shallow seafloor and the basement, mixing the biogenic and lithogenic clasts. The large size of these clasts suggests that such an event may have been a tsunami.
Cordierite-spinel troctolite, a new magnesium-rich lithology from the lunar highlands
NASA Technical Reports Server (NTRS)
Marvin, Ursula B.; Carey, J. William; Lindstrom, Marilyn M.
1989-01-01
A clast of spineltroctolite containing 8 percent cordierite (Mg2,Al4Si5O18) has been identified among the constituents of Apollo 15 regolith breccia 15295. The cordierite and associated anorthite, forsteritic olivine, and pleonaste spinel represent a new, Mg-rich lunar highlands lithology that formed by metamorphism of an igneous spinel cumulate. The cordierite-forsterite pair in the assemblage is stable at a maximum pressure of 2.5 kilobars, equivalent to a depth of 50 kilometers, or 10 kilometers above the lunar crust-mantle boundary. The occurrence of the clast indicates that spinel cumulates are a more important constituent of the lower lunar crust than has been recognized. The rarity of cordierite-spinel troctolite among lunar rock samples suggests that it is excavated only by large impact events, such as the one that formed the adjacent Imbrium Basin.
Cordierite-spinel troctolite, a new magnesium-rich lithology from the lunar highlands.
Marvin, U B; Carey, J W; Lindstrom, M M
1989-02-17
A clast of spinel troctolite containing 8 percent cordierite (Mg(2)Al(4)Si(5)O(18)) has been identified among the constituents of Apollo 15 regolith breccia 15295. The cordierite and associated anorthite, forsteritic olivine, and pleonaste spinel represent a new, Mg-rich lunar highlands lithology that formed by metamorphism of an igneous spinel cumulate. The cordierite-forsterite pair in the assemblage is stable at a maximum pressure of 2.5 kilobars, equivalent to a depth of 50 kilometers, or 10 kilometers above the lunar crust-mantle boundary. The occurrence of the clast indicates that spinel cumulates are a more important constituent of the lower lunar crust than has been recognized. The rarity of cordierite-spinel troctolite among lunar rock samples suggests that it is excavated only by large impact events, such as the one that formed the adjacent Imbrium Basin.
NASA Astrophysics Data System (ADS)
Hiroi, T.; Kaiden, H.; Yamaguchi, A.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.
2016-12-01
Lunar meteorite chip samples recovered by the National Institute of Polar Research (NIPR) have been studied by a UV-visible-near-infrared spectrometer, targeting small areas of about 3 × 2 mm in size. Rock types and approximate mineral compositions of studied meteorites have been identified or obtained through this spectral survey with no sample preparation required. A linear deconvolution method was used to derive end-member mineral spectra from spectra of multiple clasts whenever possible. In addition, the modified Gaussian model was used in an attempt of deriving their major pyroxene compositions. This study demonstrates that a visible-near-infrared spectrometer on a lunar rover would be useful for identifying these kinds of unaltered (non-space-weathered) lunar rocks. In order to prepare for such a future mission, further studies which utilize a smaller spot size are desired for improving the accuracy of identifying the clasts and mineral phases of the rocks.
NASA Astrophysics Data System (ADS)
Helo, Christoph; Clague, David A.; Dingwell, Donald B.; Stix, John
2013-03-01
We present a calorimetric analysis of pyroclastic glasses and glassy sheet lava flow crusts collected on Axial Seamount, Juan de Fuca Ridge, NE Pacific Ocean, at a water depth of about 1400 m. The pyroclastic glasses, subdivided into thin limu o Pele fragments and angular, blocky clasts, were retrieved from various stratigraphic horizons of volcaniclastic deposits on the upper flanks of the volcanic edifice. Each analysed pyroclastic sample consists of a single type of fragment from one individual horizon. The heat capacity (cp) was measured via differential scanning calorimetry (DSC) and analysed using relaxation geospeedometry to obtain the natural cooling rate across the glass transition. The limu o Pele samples (1 mm grain size fraction) and angular fragments (0.5 mm grain size fraction) exhibit cooling rates of 104.3 to 106.0 K s- 1 and 103.9 to 105.1 K s- 1, respectively. A coarser grain size fraction, 2 mm for limu o Pele and 1 mm for the angular clasts yields cooling rates at the order of 103.7 K s- 1. The range of cooling rates determined for the different pyroclastic deposits presumably relates to the size or intensity of the individual eruptions. The outer glassy crusts of the sheet lava flows were naturally quenched at rates between 63 K s- 1 and 103 K s- 1. By comparing our results with published data on the very slow quenching of lava flow crusts, we suggest that (1) fragmentation and cooling appear to be coupled dynamically and (2) ductile deformation upon the onset of cooling is restricted due to the rapid increase in viscosity. Lastly, we suggest that thermally buoyant plumes that may arise from rapid heat transfer efficiently separate clasts based on their capability to rise within the plume and as they subsequently settle from it.
NASA Astrophysics Data System (ADS)
Buckland, Hannah M.; Eychenne, Julia; Rust, Alison C.; Cashman, Katharine V.
2018-01-01
Interactions between clasts in pyroclastic density currents (PDCs) generate volcanic ash that can be dispersed to the atmosphere in co-PDC plumes, and due to its small size, is far-travelled. We designed a series of experiments to determine the effects of pyroclast vesicularity and crystal content on the efficiency and type of ash generated by abrasion. Two different pyroclastic materials were used: (1) basaltic-andesite pyroclasts from Fuego volcano (Guatemala) with 26-46% vesicularity and high groundmass crystallinity and (2) tephri-phonolite Avellino pumice (Vesuvius, Italy) with 55-75% vesicularity and low groundmass crystallinity. When milled, both clast types produced bimodal grain size distributions with fine ash modes between 4 and 5φ (32-63 μm). Although the vesicular Avellino pumice typically generated more ash than the denser Fuego pyroclasts, the ash-generating potential of a single pyroclast was independent of density, and instead governed by heterogeneous crystal and vesicle textures. One consequence of these heterogeneities was to cause the vesicular Avellino clasts to split in addition to abrading, which further enhanced abrasion efficiency. The matrix characteristics also affected ash shape and componentry, which will influence the elutriation and transport properties of ash in the atmosphere. The experimental abrasion successfully replicated some of the characteristics of natural co-PDC ash samples, as shown by similarities in the Adherence Factor, which measures the proportion of attached matrix on phenocrysts, of both the experimentally generated ash and natural co-PDC ash samples. Our results support previous studies, which have shown that abrasion is an effective mechanism for generating fine ash that is similar in size ( 5φ; 30 μm) to that found in co-PDC deposits. We further show that both the abundance and nature (shape, density, components, size distribution) of those ash particles are strongly controlled by the matrix properties of the abraded pyroclasts.
NASA Astrophysics Data System (ADS)
van Kooten, Elishevah M. M. E.; Schiller, Martin; Bizzarro, Martin
2017-07-01
Polymict ureilites are meteoritic breccias that provide insights into the differentiation history of the ureilite parent body. We have sampled a total of 24 clasts from the polymict ureilite Dar al Gani 319, representing a variety of lithologies such as mantle residues, cumulates and crustal fragments that are genetically related to monomict ureilites. In addition, we sampled four non-indigenous dark clasts and two chondrule-containing clasts from the same meteorite. We report on the petrology and the bulk mass-dependent and mass-independent magnesium and chromium isotope systematics of these clasts. The DaG 319 polymict ureilite consists predominantly of clasts related to Main Group ureilite residues (MG clasts) with varying Mg#s (0.74-0.91), as well as a significant fraction of olivine-orthopyroxene clasts related to Hughes Type ureilites (HT clasts) with consistently high Mg#s (∼0.89). In addition, DaG 319 contains less abundant feldspathic clasts that are thought to represent melts derived from the ureilite mantle. A significant mass-dependent Mg-isotope fractionation totaling Δμ25 Mg = ∼450 ppm was found between isotopically light feldspathic clasts (μ25 Mg = -305 ± 25 to 15 ± 12 ppm), MG clasts (μ25 Mg = -23 ± 51 ppm) and HT clasts (μ25 Mg = 157 ± 21 ppm). We suggest that this isotopic offset is the result of equilibrium isotope fractionation during melting in the presence of an isotopically light magnesite component. We propose Mg-carbonates to be stable in the upper ureilite mantle, and pure carbon phases such as graphite to be stable at higher pressures. This is consistent with HT clasts lacking carbon-related phases, whereas MG clasts contain abundant carbon. The timing of differentiation events for the ureilitic clasts are constrained by high precision 53Mn-53Cr systematics and 26Al-26Mg model ages. We show that a dichotomy of ages exist between the differentiation of main group ureilite residues and HT cumulates rapidly after CAI formation and later remelting of cumulates with corresponding feldspathic melts, at 3.8 ± 1.3 Myr after CAI formation. Assuming an initial 26Al/27Al abundance [(26Al/27Al)0 = 1.33-0.18+0.21 × 10-5] similar to the angrite parent body, the early melting event is best explained by heat production from 26Al whereas the late event is more likely caused by a major impact. Variations in 54Cr between MG clasts and HT clasts agree with a carbonaceous chondrite impactor onto the ureilite parent body. This impactor may be represented by abundant dark clasts found in polymict ureilites, which have μ26Mg∗ and μ54 Cr signatures similar to CI chondrites. Similar volatile-rich dark clasts found in other meteorite breccias provide insights into the timing of volatile influx to the accretion region of the terrestrial planets.
CLAST: CUDA implemented large-scale alignment search tool.
Yano, Masahiro; Mori, Hiroshi; Akiyama, Yutaka; Yamada, Takuji; Kurokawa, Ken
2014-12-11
Metagenomics is a powerful methodology to study microbial communities, but it is highly dependent on nucleotide sequence similarity searching against sequence databases. Metagenomic analyses with next-generation sequencing technologies produce enormous numbers of reads from microbial communities, and many reads are derived from microbes whose genomes have not yet been sequenced, limiting the usefulness of existing sequence similarity search tools. Therefore, there is a clear need for a sequence similarity search tool that can rapidly detect weak similarity in large datasets. We developed a tool, which we named CLAST (CUDA implemented large-scale alignment search tool), that enables analyses of millions of reads and thousands of reference genome sequences, and runs on NVIDIA Fermi architecture graphics processing units. CLAST has four main advantages over existing alignment tools. First, CLAST was capable of identifying sequence similarities ~80.8 times faster than BLAST and 9.6 times faster than BLAT. Second, CLAST executes global alignment as the default (local alignment is also an option), enabling CLAST to assign reads to taxonomic and functional groups based on evolutionarily distant nucleotide sequences with high accuracy. Third, CLAST does not need a preprocessed sequence database like Burrows-Wheeler Transform-based tools, and this enables CLAST to incorporate large, frequently updated sequence databases. Fourth, CLAST requires <2 GB of main memory, making it possible to run CLAST on a standard desktop computer or server node. CLAST achieved very high speed (similar to the Burrows-Wheeler Transform-based Bowtie 2 for long reads) and sensitivity (equal to BLAST, BLAT, and FR-HIT) without the need for extensive database preprocessing or a specialized computing platform. Our results demonstrate that CLAST has the potential to be one of the most powerful and realistic approaches to analyze the massive amount of sequence data from next-generation sequencing technologies.
Petrogenesis of Igneous-Textured Clasts in Martian Meteorite Northwest Africa 7034
NASA Technical Reports Server (NTRS)
Santos, A. R.; Agee, C. B.; Humayun, M.; McCubbin, F. M.; Shearer, C. K.
2016-01-01
The martian meteorite Northwest Africa 7034 (and pairings) is a breccia that samples a variety of materials from the martian crust. Several previous studies have identified multiple types of igneous-textured clasts within the breccia [1-3], and these clasts have the potential to provide insight into the igneous evolution of Mars. One challenge presented by studying these small rock fragments is the lack of field context for this breccia (i.e., where on Mars it formed), so we do not know how many sources these small rock fragments are derived from or the exact formation his-tory of these sources (i.e., are the sources mantle de-rived melt or melts contaminated by a meteorite impactor on Mars). Our goal in this study is to examine specific igneous-textured clast groups to determine if they are petrogenetically related (i.e., from the same igneous source) and determine more information about their formation history, then use them to derive new insights about the igneous history of Mars. We will focus on the basalt clasts, FTP clasts (named due to their high concentration of iron, titanium, and phosphorous), and mineral fragments described by [1] (Fig. 1). We will examine these materials for evidence of impactor contamination (as proposed for some materials by [2]) or mantle melt derivation. We will also test the petrogenetic models proposed in [1], which are igneous processes that could have occurred regardless of where the melt parental to the clasts was formed. These models include 1) derivation of the FTP clasts from a basalt clast melt through silicate liquid immiscibility (SLI), 2) derivation of the FTP clasts from a basalt clast melt through fractional crystallization, and 3) a lack of petrogenetic relationship between these clast groups. The relationship between the clast groups and the mineral fragments will also be explored.
Malinconico, M.L.; Sanford, W.E.; Wright, Horton W.J.J.
2009-01-01
Vitrinite reflectance data from the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville deep cores in the centralcrater moat of the Chesapeake Bay impact structure and the Cape Charles test holes on the central uplift show patterns of postimpact maximum-temperature distribution that result from a combination of conductive and advective heat flow. Within the crater-fill sediment-clast breccia sequence at Eyreville, an isoreflectance (-0.44% Ro) section (525-1096 m depth) is higher than modeled background coastal-plain maturity and shows a pattern typical of advective fluid flow. Below an intervening granite slab, a short interval of sediment-clast breccia (1371-1397 m) shows a sharp increase in reflectance (0.47%-0.91% Ro) caused by conductive heat from the underlying suevite (1397-1474 m). Refl ectance data in the uppermost suevite range from 1.2% to 2.1% Ro. However, heat conduction alone is not sufficient to affect the temperature of sediments more than 100 m above the suevite. Thermal modeling of the Eyreville suevite as a 390 ??C cooling sill-like hot rock layer supplemented by compaction- driven vertical fluid flow (0.046 m/a) of cooling suevitic fluids and deeper basement brines (120 ??C) upward through the sediment breccias closely reproduces the measured reflectance data. This scenario would also replace any marine water trapped in the crater fill with more saline brine, similar to that currently in the crater, and it would produce temperatures sufficient to kill microbes in sediment breccias within 450 m above the synimsuevite. A similar downhole maturity pattern is present in the sediment-clast breccia over the central uplift. High-reflectance (5%-9%) black shale and siltstone clasts in the suevite and sediment-clast breccia record a pre-impact (Paleozoic?) metamorphic event. Previously published maturity data in the annular trough indicate no thermal effect there from impact-related processes. ?? 2009 The Geological Society of America.
Freshwater control of ice-rafted debris in the last glacial period at Mono Lake, California, USA
NASA Astrophysics Data System (ADS)
Zimmerman, Susan R. H.; Pearl, Crystal; Hemming, Sidney R.; Tamulonis, Kathryn; Hemming, N. Gary; Searle, Stephanie Y.
2011-09-01
The type section silts of the late Pleistocene Wilson Creek Formation at Mono Lake contain outsized clasts, dominantly well-rounded pebbles and cobbles of Sierran lithologies. Lithic grains > 425 μm show a similar pattern of variability as the > 10 mm clasts visible in the type section, with decreasing absolute abundance in southern and eastern outcrops. The largest concentrations of ice-rafted debris (IRD) occur at 67-57 ka and 46-32 ka, with strong millennial-scale variability, while little IRD is found during the last glacial maximum and deglaciation. Stratigraphic evidence for high lake level during high IRD intervals, and a lack of geomorphic evidence for coincidence of lake and glaciers, strongly suggests that rafting was by shore ice rather than icebergs. Correspondence of carbonate flux and IRD implies that both were mainly controlled by freshwater input, rather than disparate non-climatic controls. Conversely, the lack of IRD during the last glacial maximum and deglacial highstands may relate to secondary controls such as perennial ice cover or sediment supply. High IRD at Mono Lake corresponds to low glacial flour flux in Owens Lake, both correlative to high warm-season insolation. High-resolution, extra-basinal correlation of the millennial peaks awaits greatly improved age models for both records.
New Clues on the Source of the Central Magnetic Anomaly at Haughton Impact Structure, Canada
NASA Astrophysics Data System (ADS)
Quesnel, Y.; Rochette, P.; Gattacceca, J.; Osinski, G. R.
2013-12-01
The 23 km-diameter Haughton impact structure, located on Devon Island, Nunavut, Canada, is one of the best-preserved medium-size complex impact structures on Earth. The impact occurred ~39 Ma ago into a target formation composed of an ~2-km thick sequence of Lower Paleozoic sedimentary rocks of the Arctic Platform overlying Precambrian metamorphic basement of the Canadian Shield (Osinski et al., 2005). Clast-rich carbonate impact melt rocks fill the crater and impact-generated hydrothermal activity took place, but since then no significant geological event has affected the area. A 900 nT-amplitude magnetic anomaly with a wavelength of about 3 km is observed at the center of the crater (Pohl et al., 1988). Using high-resolution ground magnetic survey and magnetic property measurements on rock samples from inside and outside the structure, Quesnel et al. (2013) concluded that the source for this anomaly may correspond to uplifted and hydrothermally-aletered basement rocks. Hydrothermal activity can increase rock magnetization intensity by crystallization of magnetic minerals, such as magnetite and/or pyrrhotite. Here, we present the results of a new ground magnetic survey and electrical resistivity soundings conducted around the maximum of the magnetic anomaly. Drilling, with depths ranging from 5 m to 13 m was also conducted at three locations in the same area to ground truth the interpretation of geophysical data. The maximum of the magnetic anomaly is characterized by a ~50 m2 area of strong vertical magnetic gradient and low electrical resistivity, while the surroundings show weak gradient and large resistivity. Two drill holes into this localized area show about 6 m of sandy material with some more magnetic layers at about 5 m depth overlying a greenish impact melt breccia with very abundant and large clasts. Recovery in the first 9 meters is very poor, but down hole magnetic gradient measurement confirms the near 6 meter magnetic layer. A third hole was drilled outside the local area with strong magnetic gradients and shows, starting at 2 m depth a porous gray clast-rich impact melt rock that is very similar to the impact melt rock extensively cropping out in the crater. Therefore, the three drill holes confirm that the geophysical contrast at the crater center corresponds to a geological contrast and suggest a link with hydrothermal activity. The results of laboratory measurements (magnetic properties in particular) made on the drill cores will also be presented. References : Osinski, G. R. et al. 2005. MPS, 40:1759-1776 ; Pohl, J. et al. 1988. Meteoritics, 23:235-238 ; Quesnel, Y. et al. 2013. EPSL, 367:116-122.
NASA Astrophysics Data System (ADS)
Knight, Jasper
1999-10-01
Glacial outwash, deposited during deglaciation of the late Devensian ice sheet, is present as a flat-topped valley fill in the Tempo Valley on the southern flanks of the Fintona Hills, Northern Ireland. Sedimentologically, the outwash comprises well-sorted and interbedded rippled to massive sands which record distal deposition within a proglacial water body. Beds of ripple-drift cross-laminated sands contain deformed (folded and contorted) soft-sediment clasts which are composed mainly of silt and clay. The soft-sediment clasts were deformed prior to final deposition because clast a- b planes lie conformable to sand laminae which are undeformed. Morphological characteristics of the soft-sediment clasts, and their facies context, provide evidence for transport mechanisms, depositional environment, and processes of clast deformation. The soft-sediment clasts were transported into a proglacial water body by unidirectional water currents (˜1.5-2.5 m s -1). Sediment transport processes include sediment bypassing within the water column, a low bedload component, and grain flow activity during waning flow stages. The overall morphology of soft-sediment clasts records between 1 and 3 distinct phases of hydroplastic deformation prior to emplacement. The deformation phases are recognised on the basis of morphologically `unrolling' the superimposed folds of the soft-sediment clasts. Deformation structures (i.e. fold style) and direction of the principal stress axis relative to clast axes suggest that clasts were reoriented with respect to water flow direction following each deformation phase. Processes of deformation include folding-over of the clast along its b axis into two or more components, crumpling and abrasion of the outer margins of the b plane, and squashing of the clast c axis (some of which may be post-depositional deformation). The presence of silt- and clay-rich soft-sediment clasts within the outwash succession suggests that they were ripped-up from shallow and irregular pools on the glacier forefield, into which fine sediments accumulated after flood or meltwater events, and transported distally into a proglacial water body. These inferences based on facies evidence and styles of hydroplastic deformation impact on reconstructions of local palaeogeography, and the wider interpretation of similar soft-sediment clasts in the geological record.
Identification of New Lithic Clasts in Lunar Breccia 14305 by Micro-CT and Micro-XRF Analysis
NASA Technical Reports Server (NTRS)
Zeigler, Ryan A.; Carpenter, Paul K.; Jolliff, Bradley L.
2014-01-01
From 1969 to 1972, Apollo astronauts collected 382 kg of rocks, soils, and core samples from six locations on the surface of the Moon. The samples were initially characterized, largely by binocular examination, in a custom-built facility at Johnson Space Center (JSC), and the samples have been curated at JSC ever since. Despite over 40 years of study, demand for samples remains high (500 subsamples per year are allocated to scientists around the world), particularly for plutonic (e.g., anorthosites, norites, etc.) and evolved (e.g., granites, KREEP basalts) lithologies. The reason for the prolonged interest is that as new scientists and new techniques examine the samples, our understanding of how the Moon, Earth, and other inner Solar System bodies formed and evolved continues to grow. Scientists continually clamor for new samples to test their emerging hypotheses. Although all of the large Apollo samples that are igneous rocks have been classified, many Apollo samples are complex polymict breccias that have previously yielded large (cm-sized) igneous clasts. In this work we present the initial efforts to use the non-destructive techniques of micro-computed tomography (micro-CT) and micro x-ray fluorescence (micro-XRF) to identify large lithic clasts in Apollo 14 polymict breccia sample 14305. The sample in this study is 14305,483, a 150 g slab of regolith breccia 14305 measuring 10x6x2 cm (Figure 1a). The sample was scanned at the University of Texas High-Resolution X-ray CT Facility on an Xradia MicroXCT scanner. Two adjacent overlapping volumes were acquired at 49.2 micrometer resolution and stitched together, resulting in 1766 slices. Each volume was acquired at 100 kV accelerating voltage and 98 mA beam current with a 1 mm CaF2 filter, with 2161 views gathered over 360deg at 3 seconds acquisition time per view. Micro-XRF analyses were done at Washington University in St. Louis, Missouri on an EDAX Orbis PC micro-XRF instrument. Multiple scans were made at 40 kV accelerating voltage, 800 mA beam current, 30 µm beam diameter, and a beam spacing of 30-120 micrometer. The micro-CT scan of 14305,483 (Figure 2) was able to identify several large lithic clasts (approx. 1 cm) within the interior of the slab. These clasts will be exposed by band-sawing or chipping of the slab, and their composition more fully characterized by subsequent micro-XRF analysis. In addition to lithic clasts, the micro-CT scans identified numerous mineral clasts, including many FeNi metal grains, as well as the prominent fractures within the slab. The micro-XRF analyses (Figure 1b,c) of the slab surfaces revealed the bulk chemical compositions (qualitative) of the different clast types observed. In particular, by looking at the ratios of major elements (e.g. Ca:Mg:Fe), differences among the many observed clast types are readily observed. Moreover, several clasts not apparent to the naked eye were revealed in the K:Al:Si ratio map. The scans are also able to identify small grains of Zr- and P-rich minerals (not shown), which could in turn yield important age dates for the samples.
NASA Astrophysics Data System (ADS)
Lukas, S.; Coray, S.; Graf, A.; Schlüchter, C.
2009-04-01
Clast shape measurements have become a standard tool in the reconstruction of transport histories in a variety of depositional settings (Demir et al., 2009). In glacial environments, the combined use of clast form and roundness has become an established tool in the past 15 years or so, and environments where this tool has been used range from temperate and polythermal to cold-based glaciers. In addition, the method has been transferred to palaeo-environments where the knowledge gained in aforementioned studies has taken the degree of accuracy in sedimentological investigations to a higher level (cf. Lukas et al., 2009, and references therein). All of these studies use the approach originally advocated by Benn and Ballantyne (1994), but perhaps the most notable difference is that some researchers mix different lithologies within their samples of 50 clasts. However, the role of lithology on clast shape in a glacial environment has never been systematically analysed, except for one pilot study (Bennett et al., 1997). Likewise, some previous studies have highlighted the problem of distinguishing between fluvial and subglacially-transported clasts using co-variance plots, and thus, more work is needed in both these respects. We here present a set of clast shape data gathered from the foreland and surrounding slopes of temperate Findelengletscher, Switzerland, to (a) test the versatility of clast shape in distinguishing of populations of clasts transported along different paths and (b) assess the role of lithology on the discriminatory potential of the method, most notably using co-variance plots. The main result of this pilot study is that the sampled lithology has a marked effect on clast shape results within the same control group. This is manifest in an overlap of envelopes in both RA- or RWR-C40-covariance plots. If kept separate, all three lithologies display separate control envelopes, in this case in RWR-C40-co-variance plots, thus keeping their discriminatory power. Therefore, at each locality 50 clasts of the same lithology should be measured to allow a clear distinction of different transport paths. References Benn DI, Ballantyne CK. 1994. Reconstructing the transport history of glacigenic sediments: a new approach based on the co-variance of clast shape indices. Sedimentary Geology 91: 215-227. Bennett MR, Hambrey MJ, Huddart D. 1997. Modification of clast shape in high-arctic glacial environments. Journal of Sedimentary Research 67(3): 550-559. Demir T, Lukas S, Warburton J, Bridgland DR. 2009. A review of clast shape analysis. In: Bridgland DR. (ed). Clast lithological analysis. Technical Guide. Quaternary Research Association: London, in press. Lukas S, Coray S, Graf A, Schlüchter S. 2009. The influence of clast lithology and fluvial reworking on the reliability of clast shape measurements in glacial environments - a case study from a temperate Alpine glacier. In: Bridgland DR. (ed). Clast lithological analysis. Technical Guide. Quaternary Research Association: London, in press.
Hooyer, T.S.; Iverson, N.R.
2000-01-01
Elongate clasts in subglacial till and in fault gouge align during shearing, but the relation between clast-fabric strength and cumulative shear strain for such materials is effectively unknown. This relation was explored in experiments with a large ring-shear device in which a till and a viscous putty that contained isolated clasts were sheared to high strains. As expected, rotation of clasts in the putty is closely approximated by the theory of G.B. Jeffrey, who derived the orbits of rigid ellipsoids in a slowly shearing fluid. Clast rotation in the till, however, is strikingly different. Rather than orbiting through the shear plane as predicted by Jeffery, most clasts rotate into the shear plane and remain there, resulting in strong fabrics regardless of the aspect ratios and initial orientations of clasts. This divergent behavior is likely due to slip of the till matrix along the surfaces of clasts, which is a natural expectation in a granular material but violates the no-slip condition of Jeffery's model. These results do not support the widespread belief that subglacial till deformation results in weak clast fabrics. Thus, many tills with weak fabrics thought to have been sheared subglacially to high strains, like many basal tills of the Laurentide Ice Sheet, may have been sheared only slightly with little effect on either ice-sheet dynamics or sediment transport. In addition, these results indicate that in simple shear the rotation of clasts in till and in fault gouge is best analyzed with the model of A. March, who treated inclusions as passive markers.
A divergent heritage for complex organics in Isheyevo lithic clasts
NASA Astrophysics Data System (ADS)
van Kooten, Elishevah M. M. E.; Nagashima, Kazuhide; Kasama, Takeshi; Wampfler, Susanne F.; Ramsey, Jon P.; Frimann, Søren; Balogh, Zoltan I.; Schiller, Martin; Wielandt, Daniel P.; Franchi, Ian A.; Jørgensen, Jes K.; Krot, Alexander N.; Bizzarro, Martin
2017-05-01
Primitive meteorites are samples of asteroidal bodies that contain a high proportion of chemically complex organic matter (COM) including prebiotic molecules such as amino acids, which are thought to have been delivered to Earth via impacts during the early history of the Solar System. Thus, understanding the origin of COM, including their formation pathway(s) and environment(s), is critical to elucidate the origin of life on Earth as well as assessing the potential habitability of exoplanetary systems. The Isheyevo CH/CBb carbonaceous chondrite contains chondritic lithic clasts with variable enrichments in 15N believed to be of outer Solar System origin. Using transmission electron microscopy (TEM-EELS) and in situ isotope analyses (SIMS and NanoSIMS), we report on the structure of the organic matter as well as the bulk H and N isotope composition of Isheyevo lithic clasts. These data are complemented by electron microprobe analyses of the clast mineral chemistry and bulk Mg and Cr isotopes obtained by inductively coupled plasma and thermal ionization mass spectrometry, respectively (MC-ICPMS and TIMS). Weakly hydrated (A) clasts largely consist of Mg-rich anhydrous silicates with local hydrated veins composed of phyllosilicates, magnetite and globular and diffuse organic matter. Extensively hydrated clasts (H) are thoroughly hydrated and contain Fe-sulfides, sometimes clustered with organic matter, as well as magnetite and carbonates embedded in a phyllosilicate matrix. The A-clasts are characterized by a more 15N-rich bulk nitrogen isotope composition (δ15N = 200-650‰) relative to H-clasts (δ15N = 50-180‰) and contain extremely 15N-rich domains with δ15N < 5000‰. The D/H ratios of the clasts are correlated with the degree of clast hydration and define two distinct populations, which we interpret as reflecting mixing between D-poor fluid(s) and distinct organic endmember components that are variably D-rich. High-resolution N isotope data of 15N-rich domains show that the lithic clast diffuse organic matter is typically more 15N-rich than globular organic matter. The correlated δ15N values and C/N ratios of nanoglobules require the existence of multiple organic components, in agreement with the H isotope data. The combined H and N isotope data suggest that the organic precursors of the lithic clasts are defined by an extremely 15N-poor (similar to solar) and D-rich component for H-clasts, and a moderately 15N-rich and D-rich component for A-clasts. In contrast, the composition of the putative fluids is inferred to include D-poor but moderately to extremely 15N-rich H- and N-bearing components. The variable 15N enrichments in H- and A-clasts are associated with structural differences in the N bonding environments of their diffuse organic matter, which are dominated by amine groups in H-clasts and nitrile functional groups in A-clasts. We suggest that the isotopically divergent organic precursors in Isheyevo clasts may be similar to organic moieties in carbonaceous chondrites (CI, CM, CR) and thermally recalcitrant organic compounds in ordinary chondrites, respectively. The altering fluids, which are inferred to cause the 15N enrichments observed in the clasts, may be the result of accretion of variable abundances of NH3 and HCN ices. Finally, using bulk Mg and Cr isotope composition of clasts, we speculate on the accretion regions of the various primitive chondrites and components and the origin of the Solar System's N and H isotope variability.
NASA Astrophysics Data System (ADS)
Nakashole, Albertina N.; Hodgson, David M.; Chapman, Robert J.; Morgan, Dan J.; Jacob, Roger J.
2018-02-01
Establishing relationships between the long-term landscape evolution of drainage basins and the fill of sedimentary basins benefits from analysis of bedrock river terrace deposits. These fragmented detrital archives help to constrain changes in river system character and provenance during sediment transfer from continents (source) to oceans (sink). Thick diamondiferous gravel terrace deposits along the lower Orange River, southern Namibia, provide a rare opportunity to investigate controls on the incision history of a continental-scale bedrock river. Clast assemblage and heavy mineral data from seven localities permit detailed characterisation of the lower Orange River gravel terrace deposits. Two distinct fining-upward gravel terrace deposits are recognised, primarily based on mapped stratigraphic relationships (cross-cutting relationships) and strath and terrace top elevations, and secondarily on the proportion of exotic clasts, referred to as Proto Orange River deposits and Meso Orange River deposits. The older early to middle Miocene Proto Orange River gravels are thick (up to 50 m) and characterised by a dominance of Karoo Supergroup shale and sandstone clasts, whereas the younger Plio-Pleistocene Meso Orange River gravels (6-23 m thick) are characterised by more banded iron formation clasts. Mapping of the downstepping terraces indicates that the Proto gravels were deposited by a higher sinuosity river, and are strongly discordant to the modern Orange River course, whereas the Meso deposits were deposited by a lower sinuosity river. The heavy minerals present in both units comprise magnetite, garnet, amphibole, epidote and ilmenite, with rare titanite and zircon grains. The concentration of amphibole-epidote in the heavy minerals fraction increases from the Proto to the Meso deposits. The decrease in incision depths, recorded by deposit thicknesses above strath terraces, and the differences in clast character (size and roundness) and type between the two units, are ascribed to a more powerful river system during Proto-Orange River time, rather than reworking of older deposits, changes in provenance or climatic variations. In addition, from Proto- to Meso-Orange River times there was an increase in the proportion of sediments supplied from local bedrock sources, including amphibole-epidote in the heavy mineral assemblages derived from the Namaqua Metamorphic Complex. This integrated study demonstrates that clast assemblages are not a proxy for the character of the matrix, and vice versa, because they are influenced by the interplay of different controls. Therefore, an integrated approach is needed to improve prediction of placer mineral deposits in river gravels, and their distribution in coeval deposits downstream.
Paired lunar meteorites MAC88104 and MAC88105 - A new 'FAN' of lunar petrology
NASA Astrophysics Data System (ADS)
Neal, Clive R.; Taylor, Lawrence A.; Lui, Yun-Gang; Schmitt, Roman A.
1991-11-01
To determine the chemical characteristics of the MAC88104/5 meteorite six thin sections and three bulk samples were analyzed by electron microprobe and instrumental neutron activation. It is concluded that this meteorite is dominated by lithologies of the ferroan anorthosite suite and contains abundant granulitized highland clasts, devitrified glass beads of impact origin, and two small clasts of basaltic origin. It is suggested that one of these basaltic clasts, clast E, is mesostasis material, and clast G is similar to the very low-Ti or low-Ti/high-alumina mare basalts. Impact melt clasts MAC88105, 69, and 72 have major and trace element compositions similar to the bulk meteorite.
NASA Astrophysics Data System (ADS)
Greshake, Ansgar
2014-05-01
Hydrous carbonaceous microclasts are by far the most abundant foreign fragments in stony meteorites and mostly resemble CI1-, CM2-, or CR2-like material. Their occurrence is of great importance for understanding the distribution and migration of water-bearing volatile-rich matter in the solar system. This paper reports the first finding of a strongly hydrated microclast in a Rumuruti chondrite. The R3-6 chondrite Northwest Africa 6828 contains a 420 × 325 μm sized angular foreign fragment exhibiting sharp boundaries to the surrounding R-type matrix. The clast is dominantly composed of magnetite, pyrrhotite, rare Ca-carbonate, and very rare Mg-rich olivine set in an abundant fine-grained phyllosilicate-rich matrix. Phyllosilicates are serpentine and saponite. One region of the clast is dominated by forsteritic olivine (Fa<2) supported by a network of interstitial Ca-carbonate. The clast is crosscut by Ca-carbonate-filled veins and lacks any chondrules, calcium-aluminum-rich inclusions, or their respective pseudomorphs. The hydrous clast contains also a single grain of the very rare phosphide andreyivanovite. Comparison with CI1, CM2, and CR2 chondrites as well as with the ungrouped C2 chondrite Tagish Lake shows no positive match with any of these types of meteorites. The clast may, thus, either represent a fragment of an unsampled lithology of the hydrous carbonaceous chondrite parent asteroids or constitute a sample from an as yet unknown parent body, maybe even a comet. Rumuruti chondrites are a unique group of highly oxidized meteorites that probably accreted at a heliocentric distance >1 AU between the formation regions of ordinary and carbonaceous chondrites. The occurrence of a hydrous microclast in an R chondrite attests to the presence of such material also in this region at least at some point in time and documents the wide distribution of water-bearing (possibly zodiacal cloud) material in the solar system.
Intriguing Dehydrated Phyllosilicates Found in an Unusual Clast in the LL3.15 Chondrite NWS6925
NASA Technical Reports Server (NTRS)
Johnson, Jessica M.; Zolensky, Michael E.; Chan, Queenie; Kring, David A.
2016-01-01
Meteorites provide us with valuable insights into the conditions of the early solar system. Collisions often occur in our solar system that can result in materials accreting to other bodies as foreign clasts. These foreign pieces may have multiple origins that can sometimes be easily identified as a particular type of meteorite. It is important to interpret the origins of these clasts in order to understand dynamics of the solar system, especially throughout its early history. The Nice Model, as modified, proposes a reordering of planetary orbits that is hypothesized to have triggered the Late Heavy Bombardment. Clasts found within meteorites that came from objects in the solar system not commonly associated as an impactor could be indicative of such an event suggested by the Nice Model. Impacts also redistribute material from one region of an asteroid to another, and so clasts are found that reveal portions of the geological history of a body that are not recorded by typical samples. These would be cognate clasts. The goal of this investigation was to examine meteorites that had particularly interesting foreign and cognate clasts enclosed in them. We focus here on an unusual clast located in the ordinary chondrite, NWA 6925. This is one of three clasts analyzed during the LPI summer internship of Jessica Johnson.
Pancam multispectral imaging results from the opportunity Rover at Meridiani Planum
Bell, J.F.; Squyres, S. W.; Arvidson, R. E.; Arneson, H.M.; Bass, D.; Calvin, W.; Farrand, W. H.; Goetz, W.; Golombek, M.; Greeley, R.; Grotzinger, J.; Guinness, E.; Hayes, A.G.; Hubbard, M.Y.H.; Herkenhoff, K. E.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.M.; Lemmon, M.T.; Li, R.; Madsen, M.B.; Maki, J.N.; Malin, M.; McCartney, E.; McLennan, S.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Noe Dobrea, E.Z.; Parker, T.J.; Proton, J.; Rice, J. W.; Seelos, F.; Soderblom, J.M.; Soderblom, L.A.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Weitz, C.M.; Wolff, M.J.
2004-01-01
Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.
Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum.
Bell, J F; Squyres, S W; Arvidson, R E; Arneson, H M; Bass, D; Calvin, W; Farrand, W H; Goetz, W; Golombek, M; Greeley, R; Grotzinger, J; Guinness, E; Hayes, A G; Hubbard, M Y H; Herkenhoff, K E; Johnson, M J; Johnson, J R; Joseph, J; Kinch, K M; Lemmon, M T; Li, R; Madsen, M B; Maki, J N; Malin, M; McCartney, E; McLennan, S; McSween, H Y; Ming, D W; Morris, R V; Dobrea, E Z Noe; Parker, T J; Proton, J; Rice, J W; Seelos, F; Soderblom, J M; Soderblom, L A; Sohl-Dickstein, J N; Sullivan, R J; Weitz, C M; Wolff, M J
2004-12-03
Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.
Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Calvin, W.; Farrand, W. H.; Goetz, W.; Golombek, M.; Greeley, R.;
2004-01-01
Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.
Using volcanic spatter to contain eruptions in Idaho and at the Marius Hills on the Moon
NASA Astrophysics Data System (ADS)
Rader, E. L.; Heldmann, J.; Wysocki, R.; Kobs-Nawotniak, S. E.; Hughes, S. S.; Sehlke, A.; Garry, W. B.
2017-12-01
Natural spatter clasts from Craters of the Moon volcanic field ( 49 wt.% SiO2) exhibit characteristic morphological traits including clast length, width, vesicularity, and degree of fusion between clasts. Experimental spatter clasts created at the Syracuse Lava Project ( 50 wt.% SiO2) mimic these traits, suggesting spatter only forms in a narrow range of thermal and eruptive conditions. The possible identification of spatter cones at the Marius Hills allows for the conditions that form spatter on Earth to be applied (given lunar thermal constants) to the Moon and constrain eruption duration and eruption temperature for these lunar volcanoes. Higher emplacement temperatures of experimental spatter were associated with more fusion between clasts, less void space between clasts, and more elongated clast shape. Natural clasts had, on average, about 15-35% fusion between clasts, which was achieved experimentally with clasts that were emplaced at 800-950oC, had cooling rates between 6-9oC/min, and were above the glass transition temperature (700oC) for between 35-70 minutes. Numerical modeling allowed for the calculation of accumulation rates based on heat loss resulting in the listed conditions above and were found to be 0.5-2 m/h for Craters of the Moon spatter cones. Heat loss on the Moon will be less efficient as clasts travel from the vent to the ground, retaining more heat by the time of emplacement due to the lack of cooling by convection. By adjusting the numerical model to account for heat transfer in a vacuum, cooling rates of 4oC and emplacement temperatures between 850-1000oC allowed for similar time above 700oC with accumulation rates between 1-10 m/h. Given the height of one hypothesized spatter cone in the Marius Hills is about 100 m tall, it would have taken 10-100 eruption hours to build that feature. Further imaging of spatter deposits on the Moon would allow for the direct comparison of ellipticity of clasts as well as fusion and void space between clasts. This would allow for better constrained accumulations rates, emplacement temperatures, and eventually eruption characteristics of lunar volcanism.
Healdsburgite - a New Tektite and Associated Tektite Strewnfield in North Central California
NASA Astrophysics Data System (ADS)
Erickson, R. C.; Deino, A. L.; Norwick, S. A.; Byrd, C.
2012-12-01
Erickson, Rolfe; Norwick, Steven; and Byrd, Caitlin, Sonoma State University; Deino, Alan, Berkeley Geochronology Center. I A Distinctive Glass Clast Population In numerous locations in Sonoma and Solano Counties in north central California, over an area of ~ 200 km2, distinctive ~ 1-5 cm dominantly ovoid glass clasts are found as part of the pebble population in young sediments. They are composed of black massive aphyric nonvesicular glass whose surfaces are totally covered with a texture of adjoining small deep pits and grooves. The pits are hemispherical, 1-10 mm across, and join at sharp edges composed of straight segments. The grooves, where present, are the width and depth of the pits and may be up to several cm long and vermicular. Some clasts have internal layering resembling flow textures. These glass objects were brought to our attention by a local resident, Ms. Diane Moore, about 20 years ago. Four of these glass clasts from widely separated locations in the exposure area have been dated by the laser incremental-heating Ar39/Ar40 method at the Berkeley Geochronology Center, with an age of ~ 2.81 Ma (upper Pliocene). The four samples have mutually overlapping ages at one sigma. Chemical analyses of the 10 major and 50 minor elements, of four widely separated clasts, were obtained at commercial laboratories. The clasts are all rhyolites and cluster tightly on the TAS diagram of Le Maitre et al (2002). All available data show that all these pitted and grooved clasts are part of a single population. II. The Clasts are Tektites We believe these distinctive glass clasts to be tektites for the following reasons: 1. Pits are always present and wholly cover the clast surface. Perhaps half the clasts also have distinctive irregular vermicular grooves superimposed on the pitted surface. This surface pattern is like those on other long-recognized 'classic' tektites, like indochinites. The clasts look like tektites; compare McCall (2001, Figure 2.30) for example. 2. The clasts show no significant weathering. Once cleaned of adhering sediment, they are solid and vitreous. There are also no cases of partial development of the distinctive surface texture, as might be expected if it were a consequence of in situ weathering. 3. The clasts do not have a detrital origin; they are not obsidian pebbles. The pit and groove pattern, which is uniformly well developed on clasts throughout the distribution area, is fragile and could not have survived much transport. 4. The clasts are not volcanic in origin (i.e., 'apache tears'). The pit and groove pattern contrasts with the relatively smooth surface of apache tears, and the clasts bear no resemblance to lapilli. Their distinctive appearance and uniform age and chemistry suggests that these objects are tektites in a strewnfield, only a small part of which has been identified to date. No related impact site has been identified, but clast composition suggests a continental target. We suggest these clasts, heretofore informally called Healdsburg glass, be recognized as tektites and called healdsburgites, in the manner of other tektites. A public domain PDF format copy of this poster will be available for download in the digital archive in the Sonoma State University library.
Smyer H-Chondrite Impact-Melt Breccia and Evidence for Sulfur Vaporization
NASA Technical Reports Server (NTRS)
Rubin, Alan E.
2002-01-01
Smyer is an H-chondrite impact-melt breccia containing approx.20 vol% 0.5- to 13-mm-thick silicate-rich melt veins surrounding unmelted subrounded chondritic clasts up to 7 cm in maximum dimension. At the interface between some of the melt veins and chondritic clasts, there are troilite-rich regions consisting of unmelted. crushed 0.2- to 140-micron-size angular silicate grains and chondrule fragments surrounded by troilite and transected by thin troilite veins. Troilite fills every available fracture in the silicates. including some as thin as 0.1 microns. Little metallic Fe-Ni is present in these regions: the FeS/Fe modal ratio ranges from -25: 1 to approx.500: 1, far higher than the eutectic weight ratio of 7.5: 1. The texture of these regions indicates that the sulfide formed from a fluid of very low viscosity. The moderately high viscosity (0.2 poise) and large surface tension of liquid FeS, its inability to wet silicate grain surfaces at low oxygen fugacities. and the supereutectic FeS/Fe ratios in the troilite-rich regions indicate that the fluid was a vapor. It seems likely that during the shock event that melted Smyer, many silicates adjacent to the melt veins were crushed. Upon release of shock pressure. some of the troilite evaporated and dissociated. Molecules of S2 were transported and condensed into fractures and around tiny silicate grains: there, they combined with Fe from small adjacent metallic Fe-Ni grains to form troilite. The Ni content at the edges of some of these metal grains increased significantly; Co from these Ni-rich grains diffused into nearby kamacite. Impact-induced S volatilization may have played a major role in depleting the surface of 433 Eros (and other chondritic asteroids) in S.
Rare earth and other elements in components of the Abee enstatite chondrite
NASA Technical Reports Server (NTRS)
Frazier, R. M.; Boynton, W. V.
1985-01-01
Radiochemical and instrumental neutron activation analyses of REEs and other elements have been conducted for Abee clast samples, a matrix sample, a dark inclusion, magnetic and nonmagnetic samples, and bulk samples. Correlations of the REEs and oldhamite abundance for both the clasts and dark inclusions indicate that the REEs chiefly occur in oldhamite. The similar REE patterns for clasts and dark inclusions, and the similar mineral composition of oldhamite in clast and dark inclusions, suggest that the oldhamite in both the clasts and dark inclusions is of a common origin.
Velasquez, Eleanor; Bryan, Scott E; Ekins, Merrick; Cook, Alex G; Hurrey, Lucy; Firn, Jennifer
2018-05-01
The theory of island biogeography predicts that area and age explain species richness patterns (or alpha diversity) in insular habitats. Using a unique natural phenomenon, pumice rafting, we measured the influence of area, age, and oceanic climate on patterns of species richness. Pumice rafts are formed simultaneously when submarine volcanoes erupt, the pumice clasts breakup irregularly, forming irregularly shaped pumice stones which while floating through the ocean are colonized by marine biota. We analyze two eruption events and more than 5,000 pumice clasts collected from 29 sites and three climatic zones. Overall, the older and larger pumice clasts held more species. Pumice clasts arriving in tropical and subtropical climates showed this same trend, where in temperate locations species richness (alpha diversity) increased with area but decreased with age. Beta diversity analysis of the communities forming on pumice clasts that arrived in different climatic zones showed that tropical and subtropical clasts transported similar communities, while species composition on temperate clasts differed significantly from both tropical and subtropical arrivals. Using these thousands of insular habitats, we find strong evidence that area and age but also climatic conditions predict the fundamental dynamics of species richness colonizing pumice clasts.
Cyclic Stable-Unstable Slip Preserved along an Appalachian Fault
NASA Astrophysics Data System (ADS)
Wells, R. K.; Newman, J.; Holyoke, C. W., III; Wojtal, S. F.
2017-12-01
The inactive Copper Creek thrust, southern Appalachians, TN, preserves evidence suggesting cyclic aseismic and unstable slip. The Copper Creek thrust is a low-temperature (4-6 km burial depth) foreland thrust with an estimated net slip of 15-20 km. Immediately below the 2 cm thick calcite-shale fault zone, the footwall is composed of shale with cross-cutting calcite veins and is separated from the fault zone by a 300 µm thick layered calcite vein. Optical and electron microscopy indicates that this complex vein layer experienced grain size reduction by plasticity-induced fracturing followed by aseismic diffusion creep. The fault zone calcite exhibits interpenetrating grain boundaries and four-grain junctions suggesting diffusion creep, but also contains nanoscale grains (7 nm), vesicular calcite, and partially-coated clasts indicating unstable, possibly seismic, slip. Well-preserved clasts of deformed calcite vein layer material within the fault zone indicate repeated cycle(s) of aseismic diffusion creep. In addition, nanoscale calcite grains, 30 nm, with straight grain boundaries that form triple junctions, may represent earlier nanoscale grains formed during unstable slip that have experienced grain growth during periods of aseismic creep. Based on the spatial and temporal relations of these preserved microstructures, we propose a sequence of deformation processes consistent with cyclic episodes of unstable slip separated by intervals of aseismic creep. Formation of calcite-filled veins is followed by grain size reduction in vein calcite by plasticity-induced fracturing and aseismic grain-size sensitive diffusion creep deformation in fine-grained calcite. During aseismic creep, the combination of grain growth, resulting in fault strengthening, and an increase in pore fluid pressure, reducing the effective fault strength, leads to new fractures and/or an unstable slip event. During unstable slip, nanograins and vesicular calcite form as a result of thermal decomposition and coated clasts form as a result of fluidization of the fault zone, and are then incorporated within ductilely deforming calcite during a new interval of aseismic creep.
NASA Astrophysics Data System (ADS)
Cleven, Nathan; Lin, Shoufa; Davis, Donald; Xiao, Wenjiao; Guilmette, Carl
2017-04-01
This work expands upon detrital zircon geochronology with a sampling and analysis strategy dating granitoid conglomerate clasts that exhibit differing degrees of internal ductile deformation. As deformation textures within clastic material reflect the variation and history of tectonization in the source region of a deposit, we outline a dating methodology that can provide details of the provenance's tectonomagmatic history from deformation-relative age distributions. The method involves bulk samples of solely granitoid clasts, as they are representative of the magmatic framework within the provenance. The clasts are classified and sorted into three subsets: undeformed, slightly deformed, and deformed. LA-ICPMS U-Pb geochronology is performed on zircon separates of each subset. Our case study, involving the Permian Hongliuhe Formation in the southern Central Asian Orogenic Belt, analyzes each of the three clast subsets, as well as sandstone detrital samples, at three stratigraphic levels to yield a profile of the unroofed provenance. The age spectra of the clast samples exhibit different, wider distributions than sandstone samples, considered an effect of proximity to the respective provenance. Comparisons of clast data to sandstone data, as well as comparisons between stratigraphic levels, yield indications of key tectonic processes, in addition to the typical characteristics provided by detrital geochronology. The clast data indicates a minimal lag time, implying rapid exhumation rates, whereas sandstone data alone would indicate a 90 m.y. lag time. Early Paleozoic arc building episodes appear as Ordovician peaks in sandstone data, and Silurian-Devonian peaks in clast data, indicating a younging of magmatism towards the proximal provenance. A magmatic hiatus starts in the Devonian, correlating with the latest age of deformed clasts, interpreted as timing of collisional tectonics. Provenance interpretation using the correlations seen between the clast and sandstone data proves to be more detailed and more robust than that determined from sandstone samples alone. The variably tectonized clast detrital geochronology method offers a regional reconnaissance tool that can address the practical limits of studying regional granitoid distributions.
NASA Technical Reports Server (NTRS)
Kebukawa, Y.; Ito, M.; Zolensky, M. E.; Rahman, Z.; Kilcoyne, A. L. D.; Nakato, A.; Takeichi, Y.; Suga, H.; Miyamoto, C.; Mase, K.;
2016-01-01
Xenolithic clasts are often found in a wide variety of meteorite groups. Some ordinary chondrite clasts are interesting since these clasts might have originated from Ceres which shares crossing orbits with a possible ordinary chondrite parent body, Hebe. The Zag meteorite contains a dark clast dominated by saponite, serpentine, carbonates, sulfides, magnetite, minor olivine and pyroxene, which is consistent with formation on a large, carbonaceous, aqueously active body, e.g., Ceres. Abundant large C-rich grains up to 20 microns were found in the Zag clast as well. Such large C-rich grains are unique among any other meteorites in our knowledge, and will provide important clues to decipher the origin of the clast and accretion history. C-rich grains were selected in the Zag dark clast using SEM and approximately 100 nm-thick sections were prepared using a focused ion beam (FIB) at NASA-JSC. The sections were analyzed using the scanning transmission X-ray microscope (STXM) on beamline 5.3.2.2 at Advanced Light Source, LBNL, and BL-13A at the Photon Factory, KEK. Subsequently, the FIB section was analyzed for H, C and N isotopic compositions using a CAMECA NanoSIMS 50L ion microprobe at Kochi Institute for Core Sample Research, JAMSTEC
NASA Astrophysics Data System (ADS)
Vinkler, A.; Ort, M. H.; Giordano, G.
2009-12-01
The Villa Senni Eruption Unit (350ka) represents the youngest large caldera-forming eruption of the Colli Albani volcano near Rome (Italy). The Colli Albani magma is marked by very undersaturated chemistry (tephritic to K-foiditic) and low viscosity. The total volume of the Villa Senni Eruption Unit is estimated at > 50 km3 and 30 km3 DRE (Watkins et al., 2002). The unit includes a sequence of a basal fallout/surge deposit, two main ignimbrites emplaced during the same eruptive event, a series of breccia deposits positioned between the two ignimbrites, and a rarely preserved final fallout. The basal surge and fallout sequence may help answer questions regarding the beginning of a large mafic ignimbrite eruption. The entire surge and fallout deposit is 190 cm thick at the caldera wall, consisting of 19 individual, parallel to faintly cross-stratified layers. The deposit distally thins to 25 cm at 18 km east of the caldera and to 2.5 cm at 21 km NW of the caldera. The eruption started with fine ash surges showing cross-stratification at proximal locations and being vesicular distally. The deposit consists mainly of juvenile clasts, which are angular, poorly vesicular, and rich in leucite microlites (~80 µm). Clasts around 100-150 μm show signs of magma-water interaction: quench fracturing: conchoidal and step fractures, smooth surfaces, adhering clasts and melt film. These features are present in several thin alternating surge and fall sequences at the base of the deposit. The lithic clasts in these first deposits are concentrated in layers, indicating pulsatory behavior of the eruption. Upward, the deposit consists of thicker, coarse ash to lapilli fallout layers from more sustained columns. The juvenile clasts in these deposits are more irregular, with higher vesicularity (but less than 50%) and smaller leucite microlites (~60 μm). The uppermost part of the basal fallout/surge deposit shows features transitional to the first large ignimbrite: fallout deposits alternate with poorly sorted flow units, with an increase in free leucite crystals and lithic content, with more abundant deep lithic clasts and a further leucite microlite size decrease (~20 μm) , which could indicate an accelerating magma in the conduit. We think that external factors, such as magma-water interaction and consequent gas explosions, triggered the highly explosive Villa Senni Eruption. Low vesicularity of the early juvenile clasts suggests the magma was relatively low in volatiles at the outset and did not start as a gas-driven eruption. Later in the eruption, the high ascent rate and fast decompression of the magma sustained a large explosive eruption.
Assessing New and Old Methods in Paleomagnetic Paleothermometry: A Test Case at Mt. St. Helens, USA
NASA Astrophysics Data System (ADS)
Bowles, J. A.; Gerzich, D.; Jackson, M. J.
2017-12-01
Paleomagnetic data can be used to estimate deposit temperatures (Tdep) of pyroclastic density currents (PDCs). The typical method is to thermally demagnetize oriented lithic clasts incorporated into the PDC. If Tdep is less than the maximum Curie temperature (Tc), the clast is partially remagnetized in the PDC, and the unblocking temperature (Tub) at which this remagnetization is removed is an estimate of Tdep. In principle, juvenile clasts can also be used, and Tub-max is taken as the minimum Tdep. This all assumes blocking (Tb) and unblocking temperatures are equivalent and that the blocking spectrum remains constant through time. Recent evidence shows that Tc in many titanomagnetites is a strong function of thermal history due to a crystal-chemical reordering process. We therefore undertake a study designed to test some of these assumptions and to assess the extent to which the method may be biased by a Tb spectrum that shifts to higher T during cooling. We also explore a new magnetic technique that relies only on stratigraphic variations in Tc. Samples are from the May 18, 1980 PDCs at Mt. St. Helens, USA. Direct temperature measurements of the deposits were 297 - 367°C. At sites with oriented lithics, standard methods provide a Tdep range that overlaps with measured temperatures, but is systematically higher by a few 10s of °C. By contrast, pumice clasts all give Tdep_min estimates that greatly exceed lithic estimates and measured temperatures. We attribute this overestimate to two causes: 1) Tc and Tub systematically increase with depth as a result of the reordering process. This results in Tdep_min estimates that vary by 50°C and increase with depth. 2) MSH pumice is multi-domain, where Tub > Tb, resulting in a large overestimate in Tdep. At 5 sites, stratigraphic variations in Tc were conservatively interpreted in terms of Tdep as <300°C or >300°C. More sophisticated modeling of the time-temperature-depth evolution of Tc allows us to place tighter constraints on some deposits, and our preliminary interpretation suggests that PDC pulses became successively hotter throughout the day. This new method allows us to evaluate subtle temporal/spatial variabilities that may not be evident from direct measurements made at the surface. It also allows Tdep estimates to be made on PDCs where no lithic clasts are present.
A New Type of Foreign Clast in A Polymict Ureilite: A CAI or AL-Rich Chondrule
NASA Technical Reports Server (NTRS)
Goodrich, C. A.; Ross, D. K.; Treiman, A. H.
2017-01-01
Introduction: Polymict ureilites are breccias interpreted to represent regolith formed on a ureilitic asteroid [1-3]. They consist of approximately 90-95% clasts of various ureilite types (olivine-pyroxene rocks with Fo 75-95), a few % indigenous feldspathic clasts, and a few % foreign clasts [4-20]. The foreign clasts are diverse, including fragments of H, L, LL and R chondrites, angrites, other achondrites, and dark clasts similar to CC [6,7,9-19]. We report a new type of foreign clast in polymict ureilite DaG 999. Methods: Clast 8 in Dar al Gani (DaG) 999/1 (Museum fur Naturkunde) was discovered during a survey of feldspathic clasts in polymict ureilites [19,20]. It was studied by BEI, EMPA, and X-ray mapping on the JEOL 8530F electron microprobe at ARES, JSC. Petrography and Mineral Compositions: Clast 8 is sub-rounded to irregular in shape, approximately 85 micrometers in diameter, and consists of approximately 68% pyroxene and 32% mesostasis (by area). Part of the pyroxene (top half of clast in Fig. 1a and 2) shows a coarse dendritic morphology; the rest appears massive. Mesostasis may be glassy and contains fine needles/grains of pyroxene. The pyroxene has very high CaO (23.5 wt.%) and Al2O3 (19.7 wt.%), with the formula: (Ca(0.91)Mg(0.63)Fe(0.01)Al(sup VI) (0.38)Cr(0.01)Ti(0.05)1.99 Si2O6. The bulk mesostasis also has very high Al2O3 (approximately 26 wt.%). A bulk composition for the clast was obtained by combining modal abundances with phase compositions (Table 1, Fig. 3). Discussion: The pyroxene in clast 8 has a Ca-Al-(Ti)- rich (fassaitic) composition that is clearly distinct from compositions of pyroxenes in main group ureilites [22] or indigenous feldspathic clasts in polymict ureilites [4-8]. It also has significantly higher Al than fassaite in angrites (up to approximately 12 wt.% [23]), which occur as xenoliths in polymict ureilites. Ca-Al-Ti rich pyroxenes are most commonly found in CAIs, Al-rich chondrules and other types of refractory inclusions in chondrites [21,24-31]. However, the clast 8 pyroxene matches only the most Al-Ca-rich of these, e.g., pyroxenes in type B CAIs in CV3 chondrites [25,30,31], a pyroxene-hibonite spherule and a pyroxene-anorthitespinel fragment from unique CC Acfer 094 [29], and one Al-rich chondrule from Chainpur (LL3.4) [21]. The mineralogy of clast 8 is not consistent with the mineral assemblages of any of these objects (since it lacks hibonite, spinel and/or anorthite), which suggests that it is unrepresentatively sectioned or is a fragment of a more mineralogically diverse object. Its bulk composition (Table 1; Fig. 3) is similar to bulk compositions of some Al-rich chondrules, as well as those of Type C CAIs (which plot in the sp+An+L field in Fig. 3), although it is enriched in silica relative to type C CAIs [e.g., 31]. This suggests a more likely affinity to Al-rich chondrules, although most Al-rich chondrules have less Al-Ca-rich pyroxene [21,26,27]. These bulk compositional comparisons may not be definitive, however, if the clast is unrepresentatively sampled. One of eleven Al-rich chondrules from UOCs described by [21] has textural and compositional characteristics that make it a possible progenitor type for clast 8. This chondrule (Chainpur 1251-14-2) is anorthiteporphyritic, with an interstitial dendritic intergrowth of pyroxene (similar in composition to that in clast 8) and plagioclase [21]. Clast 8 is conceivably a fragment from the interstitial area of such an object. The occurrence of glassy mesostasis (in clast 8) rather than plagioclase may not be a significant difference; it could result from a difference only in cooling rate. Al-rich chondrules with glassy mesostasis are rare, and known occurrences are Ca-poor [26], unlike clast 8. Polymict ureilites are known to contain xenoliths of various chondrites (including OC, R and CC) as well as individual ferromagnesian and silica-pyroxene chondrules probably derived from OC or RC [6,9,15,16,18]. This is the first report of an individual chondritic refractory inclusion as a xenolith in a polymict ureilite. An RC-like sample from anomalous polymict ureilite Almahata Sitta contains CAIs, but they are spinel-rich and not similar to clast 8 [13,14]. Further studies of this clast (which, unfortunately, may not be possible), or the discovery of additional (more representative?) materials of this type would be needed to determine the exact nature of this xenolith and the type of chondrite from which it is derived.
Nugget-Navaho-Aztec sandstone: interaction of eolian sand sea with Andean-type volcanic arc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzolf, J.E.
1986-05-01
The Nugget-Navaho-Aztec sand sea was deposited east of an Andean-type volcanic arc. During the early stage of eolian deposition, fluvially transported sand was concentrated in the marine littoral zone and returned inland by onshore winds from the northwest. With progressive development of the arc, the sea withdrew. Wind direction changed from northwest to northeast. Previously deposited eolian sand was transported southwestward into the volcanic arc. Proximity of the arc can be detected with great difficulty by examining eolian and underlying red-bed facies. In southern Nevada, the volcanic arc is undetectable in eolian facies, but thin sandstone beds containing volcanic clastsmore » or weathered feldspar in the finer grained red-bed facies indicate arc volcanism; volcanic clasts are distinct in a basal conglomerate. Westward into California, the sub-Aztec Sandstone contains volcanic pebbles. The upper part of the Aztec Sandstone contains a 1 to 2-m thick volcaniclastic siltstone. Farther west, the Aztec Sandstone is interbedded with volcanic flows, ash flows, and flow breccias. These rocks might easily be mistaken for red beds in well cores or cuttings. Sand in sets of large-scale cross-beds remain virtually identical in composition and texture to sand in eolian facies of the Colorado Plateau. Where sets of eolian cross-beds lie on volcanics, the quartzose sandstone contains pebble to cobble-size volcanic clasts. Locally, cross-bed sets of yellowish-white, quartzose sandstone alternate with purplish-gray cross-bed sets containing numerous pebble to cobble-size volcanic clasts. The ability to recognize volcanic indicators within Nugget-Navaho-Aztec eolian facies is important in delineating the western margin of the back-arc eolian basin.« less
NASA Astrophysics Data System (ADS)
Gomez, C.; Lavigne, F.; Sri Hadmoko, D.; Wassmer, P.
2018-03-01
Semeru Volcano is an active stratovolcano located in East Java (Indonesia), where historic lava flows, occasional pyroclastic flows and vulcanian explosions (on average every 5 min to 15 min) generate a stock of material that is remobilized by lahars, mostly occurring during the rainy season between October and March. Every year, several lahars flow down the Curah Lengkong Valley on the South-east flank of the volcano, where numerous lahar studies have been conducted. In the present contribution, the objective was to study the spatial distribution of boulder-size clasts and try to understand how this distribution relates to the valley morphology and to the dynamic and deposition dynamic of lahars. To achieve this objective, the method relies on a combination of (1) aerial photogrammetry-derived geospatial data on boulders' distribution, (2) ground penetrating radar data collected along a 2 km series of transects and (3) a CFD model of flow to analyse the results from the deposits. Results show that <1 m diameter boulders are evenly distributed along the channel, but that lava flow deposits visible at the surface of the river bed and SABO dams increase the concentration of clasts upstream of their position. Lateral input of boulders from collapsing lava-flow deposits can bring outsized clasts in the system that tend to become trapped at one location. Finally, the comparison between the CFD simulation and previous research using video imagery of lahars put the emphasis the fact that there is no direct link between the sedimentary units observed in the field and the flow that deposited them. Both grain size, flow orientation, matrix characteristics can be very different in a deposit for one single flow, even in confined channels like the Curah Lengkong.
NASA Technical Reports Server (NTRS)
Cartwright, J. A.; Mittlefehldt, D. W.; Hodges, K. V.; Wadhwa, M.
2015-01-01
Howardite meteorites are polymict breccias composed mainly of eucritic and diogenitic material that likely originate from the surface of the Asteroid 4 Vesta. They can be separated into two subtypes: Regolithic, which represent the lithified remains of the active vestan regolith; Fragmental, which represent simpler polymict breccias. Amongst the regolithic features observed in the former, melt clasts are particularly striking for their appearance and compositional variability. They range from glassy spherules to finely crystalline (i.e., devitrified) clasts, and clasts containing only relict mineral grains to those containing only phenocrysts. Glasses can be separated into compositional sub-types including those with low FeO/MgO ratios (less than 5) -low alkali glasses, K-rich (K2O greater than 0.2 wt.%), Na-rich (Na2O greater than 0.6 wt.%) and CaO-rich, and those with high FeO/MgO ratios (greater than 10). There is also a distinction to be made between primary volcanic melt clasts and those produced by impacts. While suggested that a lack of chemical homogeneity among their studied melt clasts ruled out a primary volcanic origin, the low siderophile element contents observed in such clasts suggest less compositional influence from impactors than commonly assumed. Studying the chronology of the impact melt clasts in howardites can help us to better determine the timing of impact events on Vesta and the asteroid belt. In this research, we are launching an investigation into the petrology, composition (major/trace element and noble gas) and chronology of melt clasts in howardites. We have selected a set of howardites known to contain large quantities of melt clasts, and have begun the petrological and compositional studies of these materials. Once the melt clasts have been fully classified, we aim to perform chronological studies of individual clasts using both the Ar-40/Ar-39 and Pb-Pb chronometers, as well as determine the noble gas components present. Of particular note, the study will take advantage of the laser ablation techniques associated with the noble gas facilities at ASU, which will allow high-resolution, in-situ analysis of individual clasts. The broader aim of this work is to ascertain whether the impact flux in the region of the asteroid belt was similar to that on the Moon. Our understanding of impact events in the inner Solar System relies heavily on our analyses of lunar meteorites and returned samples, and there is currently some debate regarding whether there was a "Lunar Cataclysm" event around approx. 3.9 Ga, or the end of an epoch of "Late Heavy Bombardment" (LHB) at this time. New and more comprehensive constraints on howardite melt clast ages may help determine whether the asteroid belt experienced such a cataclysm or LHB.
An Amoeboid Olivine Aggregate in LEW 85300
NASA Technical Reports Server (NTRS)
Komatsu, M. D.; Yamaguchi, A.; Fagan, T. J.; Zolensky, M. E.; Shiran, N.; Mikouchi, T.
2016-01-01
Amoeboid Olivine aggregates (AOAs) are irregularly shaped objects commonly observed in carbonaceous chondrites. Because they are composed of fine-grained olivine and Ca-Al-rich minerals, they are sensitive indicators for nebular process and parent body alteration of their parent bodies. Recently an AOA was found in a carbonaceous clast in polymict eucrite LEW 85300. The bulk major element composition of the clast matrix in LEW 85300 suggests a relation to CM, CO and CV chondrites, whereas bulk clast trace and major element compositions do not match any carbonaceous chondrite, suggesting they have a unique origin. Here we characterize the mineralogy of AOA in LEW 85300 and discuss the origin of the carbonaceous clasts. Results and Discussion: The AOA is located in an impact melt vein. Half of the aggregate shows recrystallization textures (euhedral pyroxene and molten metal/FeS) due to impact melting, but the remaining part preserves the original texture. The AOA is composed of olivine, FeS and Mg,Al-phyllosilicate. Individual olivine grains measure 1-8 microns, with Fe-rich rims, probably due to impact heating. Olivines in the AOA are highly forsteritic (Fo95-99), indicating that the AOA escaped thermal metamorphism [4]. Although no LIME (Low-Fe, Mn-Enriched) olivine is observed, forsterite composition and the coexistence of Mg,Al-phyllosilicate suggest that the AOA is similar to those in the Bali-type oxidized CV (CVoxB) and CR chondrites. However, it should be noted that fayalitic olivine, which commonly occurs in CVoxB AOA, is not observed in this AOA. Also, the smaller grain size (<8 microns) of olivine suggests they may be related to CM or CO chondrites. Therefore, we cannot exclude the possibility that the AOA originated from a unique carbonaceous chondrite.
NASA Astrophysics Data System (ADS)
Shervais, John W.; Vetter, Scott K.
1993-05-01
Many current models for the origin of lunar highland rocks feature as an essential component the assimilation of KREEPy material by primitive magmas parental to the Mg-rich suite and alkali suite plutonic rocks. Similar models have also been proposed for the origin of various mare basalt suites. However, any model which considers assimilation of KREEP an important petrologic process must sooner-or-later deal with the question: what is KREEP? Because pristine KREEP basalts are rare, and most known samples are small (e.g., 15382/15386), the geochemical variability of KREEP basalts is poorly known. Other KREEP compositions which are commonly used in these models include the hypothetical 'high-K KREEP' component of Warren and Wasson, which is derived from Apollo 14 soil data, and the 'superKREEP' quartz-monzodiorite 15405. Lunar breccia 15205 is a polymict regolith breccia that consists of approximately 20% KREEP basalt clasts and 20% quartz-normative basalt clasts in a KREEP-rich matrix. Bulk rock mixing calculations show that this sample comprises about 84% KREEP. The clasts range up to 1 cm in size, but most are considerably smaller. The primary aim is to characterize pristine KREEP basalts petrographically, to establish the range in chemical compositions of KREEP basalts, and to test models that were proposed for their origin. In addition, we may be able to extend the compositional range recognized in the quartz-normative basalt suite and cast some light on its origin as well. Preliminary whole rock geochemical data on the KREEP basalts are presented in a companion paper by M.M. Lindstrom and co-workers. Concentration is on petrography and mineral chemistry of these clasts, and the implications these data have for the origin of the different melt rock suites.
Edwards, L.E.; Powars, D.S.; Gohn, G.S.; Dypvik, H.
2009-01-01
The Eyreville A and B cores, recovered from the "moat" of the Chesapeake Bay impact structure, provide a thick section of sediment-clast breccias and minor stratified sediments from 1095.74 to 443.90 m. This paper discusses the components of these breccias, presents a geologic column and descriptive lithologic framework for them, and formalizes the Exmore Formation. From 1095.74 to ??867 m, the cores consist of nonmarine sediment boulders and sand (rare blocks up to 15.3 m intersected diameter). A sharp contact in both cores at ??867 m marks the lowest clayey, silty, glauconitic quartz sand that constitutes the base of the Exmore Formation and its lower diamicton member. Here, material derived from the upper sediment target layers, as well as some impact ejecta, occurs. The block-dominated member of the Exmore Formation, from ??855-618.23 m, consists of nonmarine sediment blocks and boulders (up to 45.5 m) that are juxtaposed complexly. Blocks of oxidized clay are an important component. Above 618.23 m, which is the base of the informal upper diamicton member of the Exmore Formation, the glauconitic matrix is a consistent component in diamicton layers between nonmarine sediment clasts that decrease in size upward in the section. Crystalline-rock clasts are not randomly distributed but rather form local concentrations. The upper part of the Exmore Formation consists of crudely fining-upward sandy packages capped by laminated silt and clay. The overlap interval of Eyreville A and B (940-??760 m) allows recognition of local similarities and differences in the breccias. ?? 2009 The Geological Society of America.
NASA Technical Reports Server (NTRS)
Shervais, John W.; Vetter, Scott K.
1993-01-01
Many current models for the origin of lunar highland rocks feature as an essential component the assimilation of KREEPy material by primitive magmas parental to the Mg-rich suite and alkali suite plutonic rocks. Similar models have also been proposed for the origin of various mare basalt suites. However, any model which considers assimilation of KREEP an important petrologic process must sooner-or-later deal with the question: what is KREEP? Because pristine KREEP basalts are rare, and most known samples are small (e.g., 15382/15386), the geochemical variability of KREEP basalts is poorly known. Other KREEP compositions which are commonly used in these models include the hypothetical 'high-K KREEP' component of Warren and Wasson, which is derived from Apollo 14 soil data, and the 'superKREEP' quartz-monzodiorite 15405. Lunar breccia 15205 is a polymict regolith breccia that consists of approximately 20% KREEP basalt clasts and 20% quartz-normative basalt clasts in a KREEP-rich matrix. Bulk rock mixing calculations show that this sample comprises about 84% KREEP. The clasts range up to 1 cm in size, but most are considerably smaller. The primary aim is to characterize pristine KREEP basalts petrographically, to establish the range in chemical compositions of KREEP basalts, and to test models that were proposed for their origin. In addition, we may be able to extend the compositional range recognized in the quartz-normative basalt suite and cast some light on its origin as well. Preliminary whole rock geochemical data on the KREEP basalts are presented in a companion paper by M.M. Lindstrom and co-workers. Concentration is on petrography and mineral chemistry of these clasts, and the implications these data have for the origin of the different melt rock suites.
NASA Astrophysics Data System (ADS)
Kebukawa, Yoko; Zolensky, Michael E.; Chan, Queenie H. S.; Nagao, Keisuke; Kilcoyne, A. L. David; Bodnar, Robert J.; Farley, Charles; Rahman, Zia; Le, Loan; Cody, George D.
2017-01-01
Primitive xenolithic clasts, often referred to as ;dark clasts;, are well known in many regolith breccias. The Sharps H3.4 ordinary chondrite contains unusually large dark clasts up to ∼1 cm across. Poorly-graphitized carbon (PGC), with Fe, Ni metal and described as ;carbon-rich aggregates;, has been reported in these clasts (Brearley, 1990). We report detailed analyses of carbonaceous matter in several identical Sharps clasts using FTIR, Raman, C-XANES, and TEM that provide insight on the extent of thermal processing and possible origin of such clasts. We also prepared acid residues of the clasts using the HCl/HF method and conducted mass spectrometric analysis of the entrained noble gases. Carbonaceous matter is often used to infer thermal history due to its sensitivity to thermal processes. The FTIR spectra of the acid residue from the Sharps clast suggest that carbonaceous matter in the clast contains less hydrogen and oxygen compared to acid residues from typical type 3.4 ordinary chondrites. The metamorphic temperatures obtained by Raman spectroscopy ranges between ∼380 °C and ∼490 °C. TEM observations indicate that the clasts experienced a peak temperature of 300 °C to 400 °C, based on the carbon d002 layer lattice spacing of C-rich aggregates. These estimates are consistent with an earlier estimate of 330 ± 50 °C, that is also estimated by the d002 layer lattice spacing (Brearley, 1990). It should be noted that the lattice spacing thermometer is based on terrestrial metamorphose rocks, and thus temperature was probably underestimated. Meanwhile, the C-XANES spectra of the C-rich aggregates show high exciton intensities, indicative of graphene structures that developed at around 700-800 °C following an extensive period of time (millions of years), however, the surrounding matrix areas experienced lower temperatures of less than 300-500 °C. Noble gas analysis of the acid residue from the Sharps clasts shows that the residue is almost identical with some material reported in carbonaceous chondrites, i.e., heavily enriched in the Q-gas component as well as HL-gas from presolar diamonds and Ne-E(H) from presolar SiC. These results indicate that the C-rich aggregates in the Sharps clasts formed under relatively high temperature conditions, up to 800 °C, and were subsequently mixed with lower temperature matrix, probably in a different parent body, before they were incorporated into the final Sharps lithology by collision.
NASA Astrophysics Data System (ADS)
Nyquist, L.; Bogard, D.; Yamaguchi, A.; Shih, C.-Y.; Karouji, Y.; Ebihara, M.; Reese, Y.; Garrison, D.; McKay, G.; Takeda, H.
2006-12-01
Low concentrations of Th and Fe in the Yamato (Y)-86032 bulk meteorite support earlier suggestions that Y-86032 comes from a region of the moon far distant from the Procellarum KREEP Terrain (PKT), probably from the lunar farside. 39Ar- 40Ar, Rb-Sr, Sm-Nd, and Sm-isotopic studies characterize the chronology of Y-86032 and its precursors in the mega regolith. One of the rock types present in a light gray breccia lithology is an anorthosite characterized by plagioclase with An ˜93, i.e., more sodic than lunar FANs, but with very low 87Rb/ 86Sr and 87Sr/ 86Sr similar to those of FANs. (FAN stands for Ferroan Anorthosite). This "An93 anorthosite" has Nd-isotopic systematics similar to those of nearside norites. A FAN-like "An97 anorthosite" is present in a second light-colored feldspathic breccia clast and has a more negative ɛNd value consistent with residence in a LREE-enriched environment as would be provided by an early plagioclase flotation crust on the Lunar Magma Ocean (LMO). This result contrasts with generally positive values of ɛNd for Apollo 16 FANs suggesting the possibility of assymetric development of the LMO. Other possible explanations for the dichotomy in ɛNd values are advanced in the text. The Y-86032 protolith formed at least 4.43 ± 0.03 Ga ago as determined from a Sm-Nd isochron for mineral fragments from the breccia clast composed predominantly of An93 anorthosite and a second clast of more varied composition. We interpret the mineral fragments as being predominatly from a cogenetic rock suite. An 39Ar- 40Ar age of 4.36-4.41 ± 0.035 Ga for a third clast composed predominantly of An97 anorthosite supports an old age for the protolith. Initial 143Nd/ 144Nd in that clast was -0.64 ± 0.13 ɛ-units below 143Nd/ 144Nd in reservoirs having chondritic Sm/Nd ratios, consistent with prior fractionation of mafic cumulates from the LMO. A maximum in the 39Ar- 40Ar age spectrum of 4.23 ± 0.03 Ga for a second sample of the same feldspathic breccia clast probably reflects some diffusive 40Ar loss. Lack of solar wind and lunar atmosphere implanted Ar in the light gray breccia clast allows determination of an 39Ar/ 40Ar age of 4.10 ± 0.02 Ga, which is interpreted as the time of initial brecciation of this litholgy. After correction for implanted lunar atmosphere 40Ar, impact melt and dark regolith clasts give Ar ages of 3.8 ± 0.1 Ga implying melt formation and final breccia assembly ˜3.8 Ga ago. Some breccia lithologies were exposed to thermal neutron fluences of ˜2 × 10 15 n/cm 2, only about 1% of the fluence experienced by some other lunar highlands meteorites. Other lithologies experienced neutron fluences of ˜1 × 10 15 n/cm 2. Thus, Y-86032 spent most of the time following final brecciation deeply buried in the megaregolith. The neutron fluence data are consistent with cosmogenic 38Ar cos cosmic ray exposure ages of ˜10 Ma. Variations among differing lithologies in the amount of several regolith exposure indicators, including cosmogenic noble gas abundances, neutron capture induced variations in Sm isotopic abundances, and Ir contents, are consistent with a period of early (>˜3.8 Ga ago) lunar regolith exposure, subsequent deep burial at >˜5 m depth, and ejection from the moon ˜7-10 Ma ago.
Lunar basalt meteorite EET 87521: Petrology of the clast population
NASA Technical Reports Server (NTRS)
Semenova, A. S.; Nazarov, M. A.; Kononkova, N. N.
1993-01-01
The Elephant Moraine meteorite EET 87521 was classified as a lunar mare basalt breccia which is composed mainly of VLT basalt clasts. Here we report on our petrological study of lithic clasts and monomineralic fragments in the thin sections EET 87521,54 and EET 87521,47,1, which were prepared from the meteorite. The results of the study show that EET 87521 consists mainly of Al-rich ferrobasalt clasts and olivine pyroxenite clasts. The bulk composition of the meteorite can be well modelled by the mixing of these lithic components which appear to be differentiates of the Luna 25 basalt melt. KREEP and Mg-rich gabbro components are minor constituents of EET 87521.
Excess Silica Substitution in Plagioclase Grains in the Pasamonte Eucrite
NASA Technical Reports Server (NTRS)
Mittlefehldt, D. W.; Le, L.; Berger, E. L.
2017-01-01
Pasamonte is a clast-rich polymict basaltic breccia with O- and Cr-isotopic compositions that are resolved from those of most eucrites. It is dominated by two mafic clast types: (i) very-fine- to fine-grained, variolitic, subophitic and ophitic basalts, usually containing zoned pyroxenes; and (ii) fine- to medium grained hypidiomorphic-granular and allotriomorphic-granular microgabbros containing pyroxenes composed of augite lamellae in homogeneous pigeonite hosts. Minor clast types are fine-grained impact-melt, mafic-breccia and mafic-granular clasts; coarse matrix mineral fragments include pyroxene, plagioclase, silica, ferroan olivine and ilmenite. Our petrologic studies include determination of plagioclase compositions for the two major clast types and matrix grains, which we report here.
NASA Astrophysics Data System (ADS)
Beard, A. D.; Downes, H.; Chaussidon, M.
2015-09-01
EET 87720 is a polymict ureilite breccia known to contain numerous nonindigenous fragments. We have discovered a microgranitic clast in an interior chip of Elephant Moraine (EET) 87720. The clast consists of a granophyre-like intergrowth of a pure SiO2 phase (tridymite) and albite, mantling a zoned oligoclase phenocryst. In the intergrowth, the tridymite occurs as thin elongate vermicular blebs within larger albite crystals. The granophyre-like intergrowth and the oligoclase phenocryst share a common margin, suggesting that the clast was originally part of a larger fragment. An estimate of its bulk composition is equivalent to that of granite (77 wt% SiO2). Patches of high-Si K-bearing glass occur interstitially within the clast; they have high concentrations of SO3 (11-12 wt%) and contain Cl (0.6 wt%), suggesting that the clast formed on a volatile-rich parent body perhaps resembling early Mars. The mean oxygen isotope composition of the feldspar and tridymite in the clast is very different from the oxygen isotope compositions of ureilites, and is similar to those of silicate inclusions in IIE and IVA irons. Thus, the clast is not indigenous to the ureilite parent body, but it provides evidence for the formation of evolved melts on an unknown parent body in the early solar system.
Reducing the age range of tsunami deposits by 14C dating of rip-up clasts
NASA Astrophysics Data System (ADS)
Ishizawa, Takashi; Goto, Kazuhisa; Yokoyama, Yusuke; Miyairi, Yosuke; Sawada, Chikako; Takada, Keita
2018-02-01
Erosion by tsunami waves represents an important issue when determining the age of a tsunami deposit, because the age is usually estimated using dating of sediments above and below the deposit. Dating of material within the tsunami deposit, if suitable material is obtainable, can be used to further constrain its age. Eroded sediments are sometimes incorporated within the tsunami deposits as rip-up clasts, which might therefore be used as minimum age dating material. However, the single calibrated 14C age often shows a wide age range because of fluctuations in the calibration curve. Therefore, it remains uncertain whether rip-up clast measurements are useful to constrain the depositional age of tsunami deposits, or not. In this study, we carried out high-resolution 14C dating of tsunami deposits, including rip-up clasts of peat, in Rikuzentakata, northeastern Japan, where numerous rip-up clasts were observed within a tsunami deposit. Sediments above and below the tsunami deposit and a 5 cm large rip-up clast were dated sequentially. Comparison of these dating results with the calibration curve revealed that the clast was inverted. Its age was better constrained based on the stratigraphic order, and we infer that the clast corresponds to approximately 100 years of sedimentation. The oldest age of the clast was consistent with the age of the peat immediately below the tsunami deposit, suggesting that surface sediments probably formed the rip-up clast at the time of the tsunami. Thus, the dating of the rip-up clast was useful to further constrain the depositional age of the tsunami deposit, as we narrowed the tsunami deposit age range by approximately 100 years. Results show that ignoring tsunami-related erosion might lead to overestimation of the tsunami deposit age. For this reason, an appropriate dating site, which is less affected by minor tsunami-related erosion with regards to the paleo-topography, should be explored. We therefore propose a more effective sampling strategy for better age estimation of tsunami deposits.
NASA Astrophysics Data System (ADS)
Lafay, Romain; Baumgartner, Lukas P.; Stephane, Schwartz; Suzanne, Picazo; German, Montes-Hernandez; Torsten, Vennemann
2017-12-01
The Late Jurassic Chenaillet ophiolitic complex (Western Alps) represents parts of an oceanic core-complex of the Liguria-Piemonte domain. A model for the origin and evolution of the Chenaillet ophicalcites based on textural and isotopic characterization is presented. The Chenaillet ophicalcites correspond to brecciated serpentinized peridotites that record seafloor shallow serpentinization at a minimum temperatures of 150 °C followed by authigenic carbonation. Carbonation starts with a network of micrometric to millimetric pre- or syn-clast formation calcite veins accompanied by a pervasive carbonation of residual olivine and serpentine inside the serpentinite mesh core. A matrix of small calcite (< 50 μm, 12 μm in average) cemented clasts after their individualization. Texture of the breccia, grain size distribution within the matrix, and chrysotile clusters support rapid cementation from a strongly oversaturated fluid due most likely to hydrothermal fluid cooling and decompression. Later fluids infiltrated by multiple crack formation and some dolomite locally formed along serpentinite-calcite interfaces. Carbonates have δ13C (VPDB) values that range between - 5‰ and + 0.4‰. The lower values were obtained for calcite within the serpentinite clasts. The δ18O (VSMOW) values have a range between + 11‰ and + 16‰ in carbonated clasts. The δ18O values in the matrix are fairly homogeneous with an average at + 12‰ and the late calcite veins have values between + 12.5 and + 15.5‰. These values suggest a relatively high temperature of formation for all the carbonates. Carbonates within clast are mainly characterized by a formation temperature in the range of 110 °C to 180 °C assuming a δ18O value of seawater of 0‰, the matrix forms at a temperature of ca. 165 °C. Late veins are characterized by a formation temperature ranging between 120and 155 °C. We propose a model where serpentinization is followed by discrete carbonation then brecciation and cementation as a consequence of continuous hydrothermal fluid circulation in the serpentinite basement. This is comparable to observations made in the stockwork of present-day long-lived oceanic hydrothermal systems.
NASA Astrophysics Data System (ADS)
Jarochowska, Emilia; Munnecke, Axel
2015-01-01
Stable carbon isotope curves are used as a precise stratigraphic tool in the Paleozoic, even though they are commonly based on shallow-water carbonate record, characterized by low stratigraphic completeness. Identification of episodes of large-scale redeposition and erosion may improve δ13Ccarb-based correlations. Here, a series of at least three episodes of high-energy onshore redeposition are described from the Makarivka Member (new unit) of the Ustya Formation from the Homerian (middle Silurian) of Podolia, Ukraine. The Makarivka Member is emplaced within a tidal flat succession. Its most prominent part is divided into a lower polymictic conglomerate of sand- to boulder-sized clasts representing a range of subtidal facies, and an upper heterolithic unit composed of grainstone and mudstone laminae. The aim of the study is to identify the mechanism of deposition of the allochthonous conglomeratic material in this Member. Based on analogies with recent tsunami deposits, the conglomerate is interpreted to reflect the strongest landward-directed current in the tsunami run-up phase, and the heterolith - alternating high-density landward currents, stagnant intervals allowing mud and land-derived debris to settle, and backwash flows. The tsunamite was deposited during an interval of decreasing isotopic values of the Mulde excursion, a global δ13C excursion reaching + 5.2‰ in the studied sections. Clast redeposition in an interval characterized by rapidly changing δ13Ccarb offers the opportunity to evaluate the degree of temporal and spatial averaging caused by the tsunami. The clasts in the polymictic conglomerate show scattered δ13Ccarb values (- 0.3‰ to + 2.1‰) compared to homogenous (1.3‰ to 1.6‰) values in the matrix. The presence of clasts characterized by low δ13Ccarb values is explained by their decrease with bathymetry rather than erosion of pre-excursion strata, whereas high values characterize material entrained from the sea-floor and strata directly underlying the tsunamite. Close (1.3‰ and 1.5‰) average δ13Ccarb values suggest that the matrix of the conglomerate is potentially a product of clast grinding.
Crustaceans from bitumen clast in Carboniferous glacial diamictite extend fossil record of copepods.
Selden, Paul A; Huys, Rony; Stephenson, Michael H; Heward, Alan P; Taylor, Paul N
2010-08-10
Copepod crustaceans are extremely abundant but, because of their small size and fragility, they fossilize poorly. Their fossil record consists of one Cretaceous (c. 115 Ma) parasite and a few Miocene (c. 14 Ma) fossils. In this paper, we describe abundant crustacean fragments, including copepods, from a single bitumen clast in a glacial diamictite of late Carboniferous age (c. 303 Ma) from eastern Oman. Geochemistry identifies the source of the bitumen as an oilfield some 100-300 km to the southwest, which is consistent with an ice flow direction from glacial striae. The bitumen likely originated as an oil seep into a subglacial lake. This find extends the fossil record of copepods by some 188 Ma, and of free-living forms by 289 Ma. The copepods include evidence of the extant family Canthocamptidae, believed to have colonized fresh water in Pangaea during Carboniferous times.
Chao, E.C.T.; Minkin, J.A.; Thompson, C.L.
1974-01-01
Preliminary petrographic description and mineral composition of four hand samples (77135, 77115, 77075 and 77215) are presented. 77135, 77115, and 77075 all crystallized from fragment-laden melts; they are similar in textures but differ in grain size. 77135 and 77115 are pigeonite feldspathic basalts. On the basis of geologic and petrographic evidence, 77115 and 77075 are related; they formed, cooled, and consolidated before being engulfed in the vesicular 77135. The impact or igneous origin of the melts from which these rocks crystallized cannot be determined. 77215 is a shocked, strongly sheared and granulated microbreccia consisting of three major lithologies dominated by mineral clasts of orthopyroxene and calcic plagioclase. The orthopyroxene clasts contain coarse exsolved blebs of augite, suggesting a deep-seated origin. The major, minor, and trace element compositions of 77135, 77115, and 77075 are in general similar. They represent a major highland rock type, perhaps more important than anorthosites. ?? 1974.
The pumice raft-forming 2012 Havre submarine eruption was effusive
NASA Astrophysics Data System (ADS)
Manga, Michael; Fauria, Kristen E.; Lin, Christina; Mitchell, Samuel J.; Jones, Meghan; Conway, Chris E.; Degruyter, Wim; Hosseini, Behnaz; Carey, Rebecca; Cahalan, Ryan; Houghton, Bruce F.; White, James D. L.; Jutzeler, Martin; Soule, S. Adam; Tani, Kenichiro
2018-05-01
A long-standing conceptual model for deep submarine eruptions is that high hydrostatic pressure hinders degassing and acceleration, and suppresses magma fragmentation. The 2012 submarine rhyolite eruption of Havre volcano in the Kermadec arc provided constraints on critical parameters to quantitatively test these concepts. This eruption produced a >1 km3 raft of floating pumice and a 0.1 km3 field of giant (>1 m) pumice clasts distributed down-current from the vent. We address the mechanism of creating these clasts using a model for magma ascent in a conduit. We use water ingestion experiments to address why some clasts float and others sink. We show that at the eruption depth of 900 m, the melt retained enough dissolved water, and hence had a low enough viscosity, that strain-rates were too low to cause brittle fragmentation in the conduit, despite mass discharge rates similar to Plinian eruptions on land. There was still, however, enough exsolved vapor at the vent depth to make the magma buoyant relative to seawater. Buoyant magma was thus extruded into the ocean where it rose, quenched, and fragmented to produce clasts up to several meters in diameter. We show that these large clasts would have floated to the sea surface within minutes, where air could enter pore space, and the fate of clasts is then controlled by the ability to trap gas within their pore space. We show that clasts from the raft retain enough gas to remain afloat whereas fragments from giant pumice collected from the seafloor ingest more water and sink. The pumice raft and the giant pumice seafloor deposit were thus produced during a clast-generating effusive submarine eruption, where fragmentation occurred above the vent, and the subsequent fate of clasts was controlled by their ability to ingest water.
A Cabonaceous Chondrite Dominated Lithology from the HED Parent; PRA 04401
NASA Technical Reports Server (NTRS)
Herrin, Jason S.; Zolensky, M. E.; Mittlefehldt, David W.
2010-01-01
The paired howardite breccias Mt. Pratt (PRA) 04401 and PRA 04402 are notable for their high proportion of carbonaceous chondrite clasts [1]. They consist predominantly of coarse (0.1-7 mm) diogenite (orthopyroxene), eucrite (plagioclase + pyroxene), and carbonaceous chondrite clasts set in a finer grained matrix of these same materials. Coarse C-chondrite clasts up to 7 mm are composed mainly of fine-grained phyllosilicates with lesser sulfides and high-mg# anhydrous magnesian silicates. Most of these clasts appear to be texturally consistent with CM2 classification [1] and some contain relict chondrules. The clasts are angular and reaction or alteration textures are not apparent in the surrounding matrix. PRA 04401 contains about 70 modal% C-chondrite clasts while PRA 04402 contains about 7%. Although many howardites are known to contain abundant C-chondrite clasts [2,3,4], PRA 04401 is, to our knowledge, the most chondrite-rich howardite lithology identified to date. Low EPMA totals from CM2-type clasts in other howardites suggest that they frequently contain 10 wt% or more water [2], a figure consistent with their mineralogy. PRA 04401, therefore, demonstrates the potential for hydrous lithologies with greater than 5 wt% water to occur locally within the nominally anhydrous HED parent body. Since the origin of this water is xenogenic, it might therefore be concentrated in portions of the asteroid surface where it would be more readily observable by remote sensing techniques. We plan to further examine C-chondrite clasts in PRA 04401/2 with the intent of establishing firm chemical classification, estimating water content, and evaluating their relationship with the host breccia. To help place them in context of the HED parent, we will also compare these breccias with other howardites to evaluate which lithologies are likely to be more prevalent on the asteroid surface.
The extreme mobility of debris avalanches: A new model of transport mechanism
NASA Astrophysics Data System (ADS)
Perinotto, Hélène; Schneider, Jean-Luc; Bachèlery, Patrick; Le Bourdonnec, François-Xavier; Famin, Vincent; Michon, Laurent
2015-12-01
Large rockslide-debris avalanches, resulting from flank collapses that shape volcanoes and mountains on Earth and other object of the solar system, are rapid and dangerous gravity-driven granular flows that travel abnormal distances. During the last 50 years, numerous physical models have been put forward to explain their extreme mobility. The principal models are based on fluidization, lubrication, or dynamic disintegration. However, these processes remain poorly constrained. To identify precisely the transport mechanisms during debris avalanches, we examined morphometric (fractal dimension and circularity), grain size, and exoscopic characteristics of the various types of particles (clasts and matrix) from volcanic debris avalanche deposits of La Réunion Island (Indian Ocean). From these data we demonstrate for the first time that syn-transport dynamic disintegration continuously operates with the increasing runout distance from the source down to a grinding limit of 500 µm. Below this limit, the particle size reduction exclusively results from their attrition by frictional interactions. Consequently, the exceptional mobility of debris avalanches may be explained by the combined effect of elastic energy release during the dynamic disintegration of the larger clasts and frictional reduction within the matrix due to interactions between the finer particles.
NASA Astrophysics Data System (ADS)
Rhodes, N.; Hurtado, J. M.
2013-05-01
Features such as the Home Plate plateau on Mars, a suspected remnant of a phreatomagmatic eruption, can reveal important information about paleohydrologic conditions. The types and sizes of pyroclastic rocks produced by a phreatomagmatic eruption are indicative of the behavior of the explosion and the characteristics of the groundwater reservoir. Analysis of the pyroclast size distribution can be used to determine magma volatile content. We conduct an analysis of pyroclast size distribution using Ground Penetrating Radar (GPR) to make a quantitative estimate of the presence of past groundwater at Kilbourne Hole, a well-known phreatomagmatic crater located in southern Dona Ana County, New Mexico. As basaltic magma intruded the groundwater reservoir in the mid-Pleistocene, the water vaporized and caused a phreatomagmatic explosion that excavated the 2-km wide and 200-m deep depression. The pyroclastic units produced during a phreatomagmatic explosion are proportional to the size and the duration of the explosion and the size of the groundwater reservoir such that the wetter the eruption, the stronger the explosion. In a violent volcanic eruption, magma changes from a liquid into solid fragments and the explosion releases kinetic energy (Ek) by ejecting liquid water, vapor water (with mass Mw) and solid fragments (with mass Mf) at an ejection velocity (Ve). In order to determine Mw, we must know Ve. The relationship between Ve and the distance from center of the eruption (R) is such that Ve exponentially decreases with time (t) and R. A numerical model relating pyroclast size and Ve for material ejected in Hawaiian and Plinian eruptions shows that clast size also exponentially decreases with decreasing Ve. Based on these relationships, we use GPR to map the ejected clast size distribution as a function of distance from the edge of Kilbourne Hole in an effort to determine Ve and Mw. GPR surveys were performed in January 2012 and January 2013 using a Noggins 250 MHz radar system. We designed the surveys to detect volcanic bombs in the shallow subsurface and to map radial variations in their sizes. Six GPR lines were extended radially in each cardinal direction from the rim of Kilbourne Hole, and, as a control, fifteen short GPR lines were performed along an accessible cliff where visible volcanic bombs and blocks are exposed. We are able to visualize 58 bombs and blocks along one of the six GPR lines within the maximum penetration depth of 2.4-3.2 m. From the resulting GPR profiles, we measured the width and the length of the bombs. The largest dimension of each bomb was plotted against distance from crater rim, and the obtained exponential relationship between bomb size and distance will be applied to a numerical model of ejecta dispersal from transient volcanic explosions to solve for Ve and Mw. This case study at Kilbourne Hole serves as a planetary analog for similar surveys that could be done on Mars and on the Moon.
NASA Technical Reports Server (NTRS)
Treiman, A. H.; Drake, M. J.
1985-01-01
The polymict eucrite meteorite ALHA80102 is an unequilibrated breccia of basaltic and gabbroic clasts in a fragmental matrix. Clasts include basalts of many textural types, cumulate gabbro, black 'glass', and ferroan troctolite (plagioclase, silica, Fe-rich olivine, ilmenite, mesostasis). Ferroan troctolite has not been previously reported from eucrites or howardites; it is interpreted as the end-product of fractional crystallization of eucritic magmas. Bulk and trace element compositions (by electron microprobe and INAA) of clasts and matrix from ALHA80102 are similar to those of other eucrites; the meteorite contains clasts similar to Juvinas and to Stannern. A clast of cumulate eucrite gabbro is enriched in the light rare earths (La/Lu = 2XCI). This clast is interpreted as an unrepresentative sample of metamorphically equilibrated gabbro; LREE-enriched magmas need not be invoked. ALHA80102 is similar to other polymict eucrites from the Allan Hills and may be paired with ALHA76005, ALHA77302, and ALHA78040.
Evidence of an ancient tsunami in a marine cave at Koh Phi Phi islands (Thailand)
NASA Astrophysics Data System (ADS)
Gilli, E.
2009-04-01
The december 26th tsunami in the Indian Ocean has severely damaged the Koh Phi Phi Island (Krabi-Thailand) a place that is famous for its karstic landscapes and diving spots on coral reefs. Enquiries and geomorphological observations indicate that the wave was 5 to 8 meters hight. In the Tonsay area, where the main human settlements are located, the inland penetration of the sea water was up to 300 meters from the seashore. The main morphological effects were : · denudation of the soil substratum, · deposit of unclassified sand, coral clasts and shells, · creation of a small cliff, · important damage to corals at depths down to 20 m, · mobilisation and alignement of important coral blocks in shallow waters. Observations suggest the existence of a previous important tsunami in that area : · the presence of ancient coral clasts in the soil, · in two bore holes, coral clasts are present at a depth of 70 cm · aerial views of the beaches and coral reefs before he tsunami show aligned structures A more precise observation in a marine cave confirms it. Close to Koh Phi Phi, the small island of Phi Phi Ley contains a cave where bird nests are collected by sea Gypsies. The Tham Phaya Nak cave is a large chamber whose entrance is partially closed by large limestone blocks except at its northern part where the sea can reach the interior of the chamber. In that area, no evidence of the 26th december tsunami is noticeable, but a layer of older coral clasts is observable. The size (up to 30 cm) and the position (flattened against stalagmites) of the clasts reveal the existence of a powerfull wave that entered far into the cave. Due to the important population of cave swallows, the soil is covered with guano. The relatively thin layer of guano over the clasts suggest a recent age. Outside the cave the speleothems that are present on the limestone cliffs are frequently broken a few meters above the sea level. This could have also been provoked by powerfull waves. Several historical or acheo-tsunamis are possible candidates to explain the damage, like the 1907 indonesian tsunami (Ms 7.80) or older events (600 yrs ago) whose effects have recently been observed in the coastal sediments of this area in Thaïland and Indonesia by differents teams.
NASA Astrophysics Data System (ADS)
Rahilly, K. E.; Treiman, A. H.
2009-03-01
Many granulite clasts in lunar highland meteorites have Mg* (molar Mg/(Mg + Fe)) between those of ferroan anorthosite (FAN) & magnesian anorthositic granulite (MAG). Compositions of these clasts are inconsistent with simple mixing of MAG and FAN, but require multiple origins.
Nondestructive Analysis of Astromaterials by Micro-CT and Micro-XRF Analysis for PET Examination
NASA Technical Reports Server (NTRS)
Zeigler, R. A.; Righter, K.; Allen, C. C.
2013-01-01
An integral part of any sample return mission is the initial description and classification of returned samples by the preliminary examination team (PET). The goal of the PET is to characterize and classify returned samples and make this information available to the larger research community who then conduct more in-depth studies on the samples. The PET tries to minimize the impact their work has on the sample suite, which has in the past limited the PET work to largely visual, nonquantitative measurements (e.g., optical microscopy). More modern techniques can also be utilized by a PET to nondestructively characterize astromaterials in much more rigorous way. Here we discuss our recent investigations into the applications of micro-CT and micro-XRF analyses with Apollo samples and ANSMET meteorites and assess the usefulness of these techniques in future PET. Results: The application of micro computerized tomography (micro-CT) to astromaterials is not a new concept. The technique involves scanning samples with high-energy x-rays and constructing 3-dimensional images of the density of materials within the sample. The technique can routinely measure large samples (up to approx. 2700 cu cm) with a small individual voxel size (approx. 30 cu m), and has the sensitivity to distinguish the major rock forming minerals and identify clast populations within brecciated samples. We have recently run a test sample of a terrestrial breccia with a carbonate matrix and multiple igneous clast lithologies. The test results are promising and we will soon analyze a approx. 600 g piece of Apollo sample 14321 to map out the clast population within the sample. Benchtop micro x-ray fluorescence (micro-XRF) instruments can rapidly scan large areas (approx. 100 sq cm) with a small pixel size (approx. 25 microns) and measure the (semi) quantitative composition of largely unprepared surfaces for all elements between Be and U, often with sensitivity on the order of a approx. 100 ppm. Our recent testing of meteorite and Apollo samples on micro-XRF instruments has shown that they can easily detect small zircons and phosphates (approx. 10 m), distinguish different clast lithologies within breccias, and identify different lithologies within small rock fragments (2-4 mm soil Apollo soil fragments).
NASA Astrophysics Data System (ADS)
Vaccaro, E.; Nakato, A.; Najorka, J.; Uesugi, K.; Takeuchi, A.; Matsuno, J.; Takayama, A.; Tsuchiyama, A.; Russell, S. S.
2017-07-01
High definition maps of QUE 99177 matrix show the presence of a clast, and CT investigations show a neat boundary in 3D of this. The clast is thought to have been produced by brecciation, and subsequently incorporated into the meteorite parent body.
Mineralogy of dark clasts in primitive versus differentiated meteorites
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Weisberg, M. K.; Barrett, R. A.; Prinz, M.
1993-01-01
The presence of dark lithic clasts within meteorites can provide information concerning asteroidal regolith processes, the extent of interactions between asteroids, and the relationship between meteorite types, micrometeorites, and interplanetary dust particles. Accordingly, we have been seeking and characterizing dark clasts found within carbonaceous chondrites, unequilibrated ordinary chondrites, howardites, and eucrites. We find that unequilibrated chondrites in this study contain fine-grained, anhydrous unequilibrated inclusions, while the howardites often contain inclusions from geochemically processed, hydrous asteroids (type 1 and 2 carbonaceous chondrites). Eucrites and howardities contain unusual clasts, not easily classified.
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Hewins, R. H.; Mittlefehldt, D. W.; Lindstrom, M. M.; Xiao, X.; Lipschutz, M. E.
1992-01-01
We have performed a detailed petrologic and mineralogic study of two chondritic clasts from the polymict eucrite Lewis Cliff (LEW) 85300, and performed chemical analyses by INAA and RNAA on one of these. Petrologically, the clasts are identified and are composed of dispersed aggregates, chondrules, and chondrule fragments supported by matrix. The aggregates and chondrules are composed of olivine, orthopyroxene, plus some diopside. The matrix consists of fine-grained olivine, and lesser orthopyroxene and augite. Fine-grained saponite is common in the matrix. The bulk major composition of the clast studied by INAA and RNAA shows unusual abundance patterns for lithophile, siderophile and chalcophile elements but is basically chondritic. The INAA/RNAA data preclude assignment of the LEW 85300,15 clast to any commonly accepted group of carbonaceous chondrite.
C Chondrite Clasts in H Chondrite Regolith Breccias: Something Different
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Fries, M.; Utas, J.; Chan, Q. H.-S.; Kebukawa, Y.; Steele, A.; Bodnar, R. J.; Ito, M.; Nakashima, D.; Greenwood, R.;
2016-01-01
Zag (H3-6) and Monahans (1998) (H5) are regolith breccias that contain 4.5 GY old halite crystals which in turn contain abundant inclusions of aqueous fluids, solids and organics [1-4]. We have previously proposed that these halites originated on a hydro-volcanically-active C-class asteroid, probably Ceres [3-7]. We have begun a detailed analysis of the included solids and organics and are re-examining the related carbonaceous (C)) chondrite clast we previously reported in Zag [5-7]. These new investigations will potentially reveal the mineralogy of asteroid Ceres. We report here on potentially identical C chondrite clasts in the H chondrite regolith breccias Tsukuba (H5-6) and Carancas (H4-5). The clast in Tsukuba was known before [8], but the Carancas clast is newly recognized.
NASA Astrophysics Data System (ADS)
Dadd, Kelsie; Foley, Kristen
2016-03-01
Sediment cores recovered during IODP Expedition 323 in the Bering Sea, northern Pacific, contained numerous ice-rafted debris (IRD) clasts up to 85 mm in length. The physical properties (including roundness and sphericity) of 136 clasts from the working half of the cores, a subsample of the total clast number, were analysed and their composition determined using standard petrographic techniques. After removal of pumice and possible fall-in derived material from the clast population, a total of 86 clasts from the original collection were considered to be IRD. While roundness and sphericity vary greatly in the clast population, the IRD are predominately discoid in shape with oblate/prolate indices typically between -5 and 5. There are four time periods over the approximately 4.5 Ma sample interval, 0.36-0.67 Ma, 0.82-1.06 Ma 1.54-1.77 Ma and >3.28 Ma, where there are no IRD in the sample set for sites of the Bering slope, suggesting that these times may have been ice-free. Most clasts show some rounding and are likely to have spent time on beaches with wave action. Wave action on beaches suggests periods of no ice or only seasonal sea-ice. The low roundness values of other clasts, however, suggest they underwent little working and, therefore, the presence of glaciers or more permanent sea-ice at times in those locations. The abundance of rounded and unfaceted clasts as IRD suggests a lack of large ice sheets in the area during cool periods. Clast composition of the IRD is divided into four broad groups, basalt and andesite, granite and metamorphic, sedimentary, and felsic volcanic. The granite and metamorphic and more mature sedimentary lithologies are most likely derived from the Alaskan continental margin, while the extrusive igneous clasts could be derived from a variety of volcanic sources surrounding the Bering Sea, both emergent now or emergent at times of lower sea level. There is only a poor correlation with IRD abundance and marine isotope stages (MIS) for the time period <1 Ma. Abundant IRD occurs in MIS 3 and can be correlated with MIS back to 400 kyr but not to older ages. This suggests that the abundance of IRD >2 mm transported by sea-ice may not be a good indicator of past climate conditions.
Buesch, David C.
2014-01-01
The Spanish Canyon Foundation in the Alvord Mountain area, California, varies from about 50 to 120 m thick and records the interstratification of arkosic sandstone and conglomerate with tuffaceous deposits and lava flows. In the lower third of the formation, arkosic sandstone and conglomerate are interstratified with tuffaceous deposits. Some tuffs might have been deposited as primary, nonwelded to partially welded ignimbrites or fallout tephra. Many of the tuffaceous deposits represent redeposited material that formed tuffaceous sandstone, and many of these deposits contain arkosic grains that represent mixing of different source matieral. Arkosic sandstone, and especially conglomerate (some with maximum clast lengths up to 1 m), represent intermittent incursions of coarser plutoniclastic fan deposits into other finer grained and mostly volcaniclastic basin deposits. After deposition of the 18.78 Ma Peach Spring Tuff, the amount of tuffaceous material decreased. The upper two-thirds of the formation has arkosic sandstone and conglomerate interstratified with two olivine basalt lave flows. locally, conglomerate clasts in this part of the section have maximum lengths up to 1 m. Many tuffaceous and arkosic sandstone beds of the Spanish Canyon Formation have tabular to broad (low-relief) lenticular geometry, and locally, some arkosic conglomerate fills channels as much as 1.5 m deep. These bedforms are consistent with deposition in medial to distal alluvial-fan or fluvial environments; some finer-grained deposits might have formed in lacustrine environments.
NASA Astrophysics Data System (ADS)
del Papa, Cecilia E.; Petrinovic, Ivan A.
2017-01-01
The Conglomerado Los Patos is a coarse-grained clastic unit that crops out irregularly in the San Antonio de los Cobres Valley in the Puna, Northwestern Argentina. It covers different units of the Cretaceous-Paleogene Salta Group by means of an angular unconformity and, in turn, is overlaid in angular unconformity by the Viscachayoc Ignimbrite (13 ± 0.3 Ma) or by late Miocene tuffs. Three lithofacies have been identified in the Corte Blanco locality; 1) Bouldery matrix-supported conglomerate (Gmm); 2) Clast-supported conglomerate (Gch) and 3) Imbricated clast-supported conglomerate (Gci). The stratigraphic pattern displays a general fining upward trend. The sedimentary facies association suggests gravitational flow processes and sedimentation in alluvial fan settings, from proximal to medial fan positions, together with a slope decrease upsection. Provenance studies reveal sediments sourced from Precambrian to Ordovician units located to the southwest, except for volcanic clasts in the Gmm facies that shows U/Pb age of 14.5 ± 0.5 Ma. This new age represents the maximum depositional age for the Conglomerado Los Patos, and it documents that deposition took place simultaneously during a period of increased tectonic and volcanic activity in the area. The structural analysis of the San Antonio de los Cobres Valley and the available thermochronological ages, indicate active N-S main thrusts and NW-SE transpressive and locally normal faults during the middle Miocene. In this context, we interpret the Conglomerado Los Patos to represent sedimentation in a small, extensional and short-lived basin associated with the compressional Andean setting.
Stovall, W.K.; Houghton, Bruce F.; Gonnermann, H.; Fagents, S.A.; Swanson, D.A.
2011-01-01
Hawaiian eruptions are characterized by fountains of gas and ejecta, sustained for hours to days that reach tens to hundreds of meters in height. Quantitative analysis of the pyroclastic products from the 1959 eruption of K??lauea Iki, K??lauea volcano, Hawai'i, provides insights into the processes occurring during typical Hawaiian fountaining activity. This short-lived but powerful eruption contained 17 fountaining episodes and produced a cone and tephra blanket as well as a lava lake that interacted with the vent and fountain during all but the first episode of the eruption, the focus of this paper. Microtextural analysis of Hawaiian fountaining products from this opening episode is used to infer vesiculation processes within the fountain and shallow conduit. Vesicle number densities for all clasts are high (106-107 cm-3). Post-fragmentation expansion of bubbles within the thermally-insulated fountain overprints the pre-fragmentation bubble populations, leading to a reduction in vesicle number density and increase in mean vesicle size. However, early quenched rims of some clasts, with vesicle number densities approaching 107 cm-3, are probably a valid approximation to magma conditions near fragmentation. The extent of clast evolution from low vesicle-to-melt ratio and corresponding high vesicle number density to higher vesicle-to-melt ratio and lower vesicle-number density corresponds to the length of residence time within the fountain. ?? 2010 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Giordano, Guido
1998-12-01
The distribution of lithic clasts within two trachytic, small volume, pumiceous ignimbrites are described from the Quaternary `White Trachytic Tuff Cupa' formation of Roccamonfina volcano, Italy. The ignimbrites show a downslope grading of lithics, with a maximum size where there is a major break in the volcano's slope, rather than at proximal locations. This is also the location where ignimbrites are thickest and most massive. The break in slope is interpreted to have reduced flow capacity and velocity, increasing the sedimentation rate, so that massive ignimbrite formed by hindered settling sedimentation. Ignimbrite Cc, exhibits no vertical grading of lithics, though it does show downslope grading with maximum size at the major break in slope and a rapid decrease further downslope. Ignimbrite Cc thins away from the break in slope, and shows an upward fining of the grain size within the topmost few decimeters of the unit. The ignimbrite is stratified proximally, and grades to massive facies at the break in slope, and distally to stratified facies with numerous inverse-graded beds. The simplest mechanism accounting for these downslope variations is progressive aggradation from a quasi-steady, nonuniform pyroclastic density current. The changes in deposit thickness and facies are interpreted to record downcurrent changes in sedimentation rate. The upward fining reflects waning flow. Inversely graded, bedded depositional facies in distal areas is interpreted to reflect flow unsteadiness and a decrease in suspended sediment load. Ignimbrite Cd shows vertical, as well as downslope grading of lithics. This characteristic, coupled with the widespread massive facies of the deposit and the tabular unit geometry are features that can be reconciled with both the debris flow/plug analogy for pyroclastic flows ( Sparks, 1976) and the progressive aggradation model ( Branney and Kokelaar, 1992). However, none of them appears to satisfy completely the field evidences, implying that when dealing with massive ignimbrites, other evidence than lithic grading needs to be presented to better understand the related transport and depositional processes.
U-Th-Pb systematics. [geochemical analysis on lunar rocks
NASA Technical Reports Server (NTRS)
Nunes, P. D.; Tatsumoto, M.
1974-01-01
The following boulder samples are analyzed for U, Th, and Pb concentrations and for Pb isotopic compositions: 72275,53/matrix; 72275,73/matrix; 72275,81/dark rind, clast #1; 72275,117/white interior, clast #1; 72255,49/Civet Cat clast; 72255,54/light gray matrix; and 72255,67/dark gray matrix.
NASA Astrophysics Data System (ADS)
Kueppers, Ulrich; Uhlig, Joan; Carazzo, Guillaume; Kaminski, Edouard; Perugini, Diego; Tait, Steve; Clouard, Valérie
2015-04-01
Mt Pelée on Martinique, French Lesser Indies, is infamous for the last big Pelean (i.e., dome forming) eruption in 1902 AD that destroyed agricultural land and the city of Saint Pierre by pyroclastic density currents. Beside such mostly valley-confined deposits, the geological record shows thick fall deposits of at least three Plinian eruptions during the past 2000 years. In an attempt to describe and understand systematic eruptive behaviours as well as the associated variability of eruptive scenarios of Plinian eruptions in Martinique, we have investigated approx. 50 outcrops belonging to the P1 (1315 AD), P2 (345 AD) and P3 (4 AD) eruptions (Traineau et al., JVGR 1989) and collected bulk samples as well as >100 mm pumiceous clasts. All samples are andesitic, contain plagioclase and pyroxene in a glassy matrix and range in porosity between 55 and 69 vol.% with individual bubbles rarely larger than 1 mm. Our approach was two-fold: 1) Loose bulk samples have been subject to dry mechanical sieving in order to quantively describe the grain-size distribution and the fractal dimension. 2) From large clasts, 60*25 mm cylinders have been drilled for fragmentation experiments following the sudden decompression of gas in the sample's pore space. The used experimental set-up allowed for precisely controllable and repeatable conditions (5, 10 and 15 MPa, 25 °C) and the complete sampling of the generated pyroclasts. These experimentally generated clasts were analysed for their grain-size distribution and fractal dimension. For both natural samples and experimental populations, we find we find that the grain-size distribution follows a power-law, with an exponent between 2,5 and 3,7. Deciphering eruption conditions from deposits alone is challenging because of the complex interplay of dynamic volcanic processes and transport-related sorting. We use the quantified values of fractal dimension for a comparison of the power law exponents among the three eruptions and the laboratory results. This will contribute to an increased interpretability of well-preserved deposits and a critical evaluation of the limits.
Eclogitic breccia from the Monviso ophiolite complex: new field and petrographic data
NASA Astrophysics Data System (ADS)
Locatelli, Michele; Verlaguet, Anne; Federico, Laura; Agard, Philippe
2015-04-01
The Monviso meta-ophiolite complex (Northern Italy, Western Alps) represents a coherent portion of oceanic lithosphere metamorphosed under eclogite facies conditions during the Alpine orogeny (2.6 GPa - 550°C, Lago Superiore Unit, Angiboust et al., 2011), and exhibits from bottom to top a thick serpentinite sole locally capped by metasediments, Mg-Al-rich metagabbros, then Fe-Ti-metagabbros capped by metabasalts. This section is disrupted by three main shear zones. Our study focusses on the Lower Shear Zone (LSZ), situated between the serpentinite sole (to the East) and the Mg-metagabbro bodies (to the West), and composed of blocks of both Fe-Ti and Mg-Al metagabbros embedded in a talc and tremolite-rich serpentinite matrix. Among these blocks, some were described as eclogitic breccias and interpreted as the result of a seismic rupture plane (Angiboust et al., 2012). These breccias correspond to blocks of Fe-Ti-metagabbros that were brecciated in eclogitic facies conditions (as attested by the omphacite + garnet ± lawsonite cement of the breccia) in a fluid-rich environment, as suggested by the abundance of lawsonite in the cement. Here we present new field data on the distribution and petrographic characterization of these eclogitic blocks in the LSZ. The aim of this work is twofold: (I) detailed mapping of the eclogitic block distribution along the LSZ, in order to determine precisely the extent and representativity of the breccias and (II) characterization of the brecciated blocks, at the outcrop scale, to explore the brecciation processes and structures. Between Pian del Re and Colle di Luca localities, the occurrence of eclogite blocks is uniform along the strike of the shear-zone, resulting in a 16 km-long belt of outcropping eclogitic bodies embedded in serpentinite matrix. The shear-zone width, by contrast, varies from 1.3 km to 0.8 km. Three types of eclogitic blocks can be distinguished: (1) intact (i.e., not brecciated) blocks of Fe-Ti-metagabbros restricted to the lower part of the shear zone, close to the serpentinite sole; (2) numerous brecciated Fe-Ti-metagabbros scattered in the intermediate to upper levels of the LSZ; (3) blocks showing compositional variations and complex structures, with boudins of intact Fe-Ti-metagabbros embedded in highly foliated and folded Mg-rich rocks bounded on one side by Fe-Ti-breccia planes. In some cases the full transition from intact to highly brecciated rock is recorded in the same block. Here, the contacts between intact metagabbros and breccia are characterized by about 1m-wide zones of non rotated clasts with diameter up to 80 cm, almost matrix-absent. The amount of matrix vs clast increases, associated with a reduction in the clast size and increasing clast rotation, over a few meters up to the end of the bodies. These particular blocks give us a unique opportunity to better characterize the brecciation processes. Different kinds of measurements were realized on the brecciated blocks: (1) block size, (2) clasts vs. matrix relative volumetric abundances, (3) dimension and shape ratio of clasts, and angle of misorientation between their elongation axis or internal foliations (for five selected blocks). Preliminary results show that the majority (82%) of mapped blocks have a diameter of less than 10 meters, with only 8% being larger than 20 meters. In the brecciated Fe-Ti gabbros the average content of matrix is 28%, while for blocks showing compositional variation it varies from zero to 30%. The angle of misorientation between clasts' foliation shows, instead, a chaotic distribution. Preliminary field data thus demonstrate that breccia blocks have to be considered as a constant feature along the LSZ rather than as an exception, and that further work is needed to determine whether they formed through pervasive brecciation (and potentially multiple events) or through a localized event and were later disrupted by ductile deformation along the LSZ.
40Ar/39Ar Dating of Volcanic Glass
NASA Astrophysics Data System (ADS)
Morgan, L. E.; Renne, P. R.; Watkins, J. M.
2007-12-01
Application of the 40Ar/39Ar method to volcanic glasses has been somewhat stigmatized following several studies demonstrating secondary mobility of K and Ar. Much of the stigma is unwarranted, however, since most studies only impugned the reliability of the K-Ar and 40Ar/39Ar techniques when applied to glass shards rather than obsidian clasts with low surface area to volume ratios. We provide further evidence for problematic K loss and/or 39Ar recoil ejection from glass shards in 40Ar/39Ar step heating results for comagmatic feldspars and shards. In an extreme case, the plateau age of the feldspars (0.17 ± 0.03 Ma at 2σ) is significantly younger than the plateau age of the glass (0.85 ± 0.05 Ma at 2σ). If the feldspar age is reasonably interpreted as the eruption age of the ash, it is likely that the glass shards experienced K and/or 39Ar loss. Electron microprobe analyses of the glass shards have low totals (~93%) and no systematic lateral variability (i.e., diffusion gradients) in K, suggesting that the lengthscale of the glass shards is smaller than the lengthscale of K diffusion. Obsidian clasts should not be as susceptible to K loss since any hydrated (K-depleted) volume represents a small fraction of the total material and can often be physically removed prior to analysis. Samples described here are detrital obsidian clasts from the Afar region of Ethiopia. Evidence from Fourier Transform Infrared Spectroscopy (FTIR), and previous work by Anovitz (1999), confirm that the scale of water and potassium mobility are often small in comparison to the size of obsidian clasts but large enough to effect the bulk composition of glass shards. This expectation is confirmed in another tuff wherein comagmatic obsidian clasts and sanidine phenocrysts yield indistinguishable 40Ar/39Ar ages of 4.4 Ma High abundances of non-radiogenic 40Ar, and kinetic fractionation of Ar isotopes during quenching and/or laboratory degassing resulting in incomplete equilibration between atmospheric and magmatic argon, may also hinder accurate 40Ar/39Ar geochronology of volcanic glasses. Clasts derived from single flows (as determined by extrusion age and trace element geochemistry) display variations as much as 3-4 orders of magnitude in atmospheric 40Ar concentrations. The clasts were likely sourced from different parts of the flows with varying proximity to the surface and thus differing thermal and atmospheric uptake histories. Because radiogenic and non-radiogenic components of 40Ar are energetically indistinct in glass, most samples fail to yield isochrons due to limited range in 40Ar: 39Ar: 36Ar. Most yield plateau ages, whose validity rests on the assumption of atmospheric initial 40Ar/36Ar. Some samples yield inverse isochrons with sub-atmospheric 40Ar/36Ar intercepts; unirradiated subsamples of these same samples also have sub-atmospheric 38Ar/36Ar ratios that are too high to be explained by mass fractionation. While the effects of non-radiogenic 40Ar remain poorly understood, this sample set yielded 32 out of 41 clasts having plateau and isochron ages within 2σ error of each other, and potentially problematic samples are generally identified with non-atmospheric isochron 40Ar/36Ar intercepts.
Atwater, Brian F.; ten Brink, Uri S.; Cescon, Anna Lisa; Feuillet, Nathalie; Fuentes, Zamara; Halley, Robert B.; Nuñez, Carlos; Reinhardt, Eduard G.; Roger, Jean; Sawai, Yuki; Spiske, Michaela; Tuttle, Martitia P.; Wei, Yong; Weil-Accardo, Jennifer
2017-01-01
Extraordinary marine inundation scattered clasts southward on the island of Anegada, 120 km south of the Puerto Rico Trench, sometime between 1200 and 1480 calibrated years (cal yr) CE. Many of these clasts were likely derived from a fringing reef and from the sandy flat that separates the reef from the island’s north shore. The scattered clasts include no fewer than 200 coral boulders, mapped herein for the first time and mainly found hundreds of meters inland. Many of these are complete colonies of the brain coral Diploria strigosa. Other coral species represented include Orbicella (formerly Montastraea) annularis, Porites astreoides, and Acropora palmata. Associated bioclastic carbonate sand locally contains articulated cobble-size valves of the lucine Codakia orbicularis and entire conch shells of Strombus gigas, mollusks that still inhabit the sandy shallows between the island’s north shore and a fringing reef beyond. Imbricated limestone slabs are clustered near some of the coral boulders. In addition, fields of scattered limestone boulders and cobbles near sea level extend mainly southward from limestone sources as much as 1 km inland. Radiocarbon ages have been obtained from 27 coral clasts, 8 lucine valves, and 3 conch shells. All these additional ages predate 1500 cal yr CE, all but 2 are in the range 1000–1500 cal yr CE, and 16 of 22 brain coral ages cluster in the range 1200–1480 cal yr CE. The event marked by these coral and mollusk clasts likely occurred in the last centuries before Columbus (before 1492 CE).The pre-Columbian deposits surpass Anegada’s previously reported evidence for extreme waves in post-Columbian time. The coarsest of the modern storm deposits consist of coral rubble that lines the north shore and sandy fans on the south shore; neither of these storm deposits extends more than 50 m inland. More extensive overwash, perhaps by the 1755 Lisbon tsunami, is marked primarily by a sheet of sand and shells found mainly below sea level beneath the floors of modern salt ponds. This sheet extends more than 1 km southward from the north shore and dates to the interval 1650–1800 cal yr CE. Unlike the pre-Columbian deposits, it lacks coarse clasts from the reef or reef flat; its shell assemblage is instead dominated by cerithid gastropods that were merely stirred up from a marine pond in the island’s interior.In their inland extent and clustered pre-Columbian ages, the coral clasts and associated deposits suggest extreme waves unrivaled in recent millennia at Anegada. Bioclastic sand coats limestone 4 m above sea level in areas 0.7 and 1.3 km from the north shore. A coral boulder of nearly 1 m3 is 3 km from the north shore by way of an unvegetated path near sea level. As currently understood, the extreme flooding evidenced by these and other clasts represents either an extraordinary storm or a tsunami of nearby origin. The storm would need to have produced tsunami-like bores similar to those of 2013 Typhoon Haiyan in the Philippines. Normal faults and a thrust fault provide nearby tsunami sources along the eastern Puerto Rico Trench.
NASA Technical Reports Server (NTRS)
Mcgee, J. J.
1989-01-01
A petrologic study of crystalline lithic clasts from feldspathic breccia 67975, collected on the rim of North Ray crater at the Apollo 16 site, is presented. A light gray group has been identified as granulitic breccias, and a dark gray group has been identified as feldspathic microporphyritic melt breccias. It is suggested that complete homogenization of the minerology of the granulitic breccias may have been prevented by their incorporation into the 67975 fragmental breccia, and that metamorphism of the clasts may have been interrupted by this breccia forming event.
Highly Pristine Organic Matter in a Xenolith Clast in the Zag H Chrondrite
NASA Technical Reports Server (NTRS)
Kebukawa, Y.; Ito, M.; Zolensky, M. E.; Nakato, A.; Suga, H.; Takahashi, Y.; Takeichi, Y.; Mase, K.; Chan, Q.; Fries, M.;
2017-01-01
The Zag meteorite is a halite-bearing H3-6 chondrite [1]. We have been studying a dark Zag clast with abundant organic matter [2,3], which was proposed to be from Ceres [4,5]. Therefore, our systematic research of the Zag clast may provide an important linkage to the recent remote sensing observations obtained by the DAWN mission to Ceres. We prepared a new sub-sample of this clast for coordinated organic analysis by STXM-XANES and NanoSIMS, in order to understand the nature and origin of the organic matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kebukawa, Yoko; Zolensky, Michael E.; Chan, Queenie H. S.
Primitive xenolithic clasts, often referred to as “dark clasts”, are well known in many regolith breccias. The Sharps H3.4 ordinary chondrite contains unusually large dark clasts up to ~1 cm across. Poorly-graphitized carbon (PGC), with Fe, Ni metal and described as “carbon-rich aggregates”, has been found in these clasts (Brearley, 1990). We report detailed analyses of carbonaceous matter in several identical Sharps clasts using FTIR, Raman, C-XANES, and TEM that provide insight on the extent of thermal processing and possible origin of such clasts. We also prepared acid residues of the clasts using the HCl/HF method and conducted mass spectrometric analysismore » of the entrained noble gases. Carbonaceous matter is often used to infer thermal history due to its sensitivity to thermal processes. The FTIR spectra of the acid residue from the Sharps clast suggest that carbonaceous matter in the clast contains less hydrogen and oxygen compared to acid residues from typical type 3.4 ordinary chondrites. The metamorphic temperatures obtained by Raman spectroscopy ranges between ~380 °C and ~490 °C. TEM observations indicate that the clasts experienced a peak temperature of 300 °C to 400 °C, based on the carbon d 002 layer lattice spacing of C-rich aggregates. These estimates are consistent with an earlier estimate of 330 ± 50 °C, that is also estimated by the d 002 layer lattice spacing (Brearley, 1990). It should be noted that the lattice spacing thermometer is based on terrestrial metamorphose rocks, and thus temperature was probably underestimated. Meanwhile, the C-XANES spectra of the C-rich aggregates show high exciton intensities, indicative of graphene structures that developed at around 700–800 °C following an extensive period of time (millions of years), however, the surrounding matrix areas experienced lower temperatures of less than 300–500 °C. Noble gas analysis of the acid residue from the Sharps clasts shows that the residue is almost identical with some material reported in carbonaceous chondrites, i.e., heavily enriched in the Q-gas component as well as HL-gas from presolar diamonds and Ne-E(H) from presolar SiC. These results indicate that the C-rich aggregates in the Sharps clasts formed under relatively high temperature conditions, up to 800 °C, and were subsequently mixed with lower temperature matrix, probably in a different parent body, before they were incorporated into the final Sharps lithology by collision.« less
NASA Astrophysics Data System (ADS)
Houghton, B. F.; Swanson, D. A.; Biass, S.; Fagents, S. A.; Orr, T. R.
2017-05-01
We describe the discrete ballistic and wind-advected products of a small, but exceptionally well-characterized, explosive eruption of wall-rock-derived pyroclasts from Kīlauea volcano on 19 March 2008 and, for the first time, integrate the size distribution of the two subpopulations to reconstruct the true size distribution of a population of pyroclasts as it exited from the vent. Based on thinning and fining relationships, the wind-advected fraction had a mass of 6.1 × 105 kg and a thickness half distance of 110 m, placing it at the bottom end of the magnitude and intensity spectra of pyroclastic falls. The ballistic population was mapped, in the field and by using structure-from-motion techniques, to a diameter of > 10-20 cm over an area of 0.1 km2, with an estimated mass of 1 × 105 kg. Initial ejection velocities of 50-80 m/s were estimated from inversion of isopleths. The total grain size distribution was estimated by using a mass partitioning of 98% of wind-advected material and 2% of ballistics, resulting in median and sorting values of -1.7ϕ and 3.1ϕ. It is markedly broader than those calculated for the products of magmatic explosive eruptions, because the grain size of 19 March 2008 clast population is unrelated to a volcanic fragmentation event and instead was "inherited" from a population of talus clasts that temporary blocked the vent prior to the eruption. Despite a conspicuous near-field presence, the ballistic subpopulation has only a minor influence on the grain size distribution because of its rapid thinning and fining away from source.
Investigating Holocene Glacial and Pluvials Events in the Sierra Nevada of California
NASA Astrophysics Data System (ADS)
Ashford, J.; Sickman, J. O.; Lucero, D. M.; Kirby, M.; Gray, A. B.
2016-12-01
Understanding interannual and decadal variation in snowfall and extreme hydrologic events in the Sierra Nevada is hampered by short instrumental record and uncertainty caused by extrapolating paleoclimate data from lower elevation systems to the alpine snow deposition zone. Longer paleo records from high elevation systems are necessary to provide a more accurate record of snow water content and extreme precipitation events over millennial timescales that can be used to test hypotheses regarding teleconnections between Pacific climate variability and water supply and flood risk in California. In October 2013 we collected sediment cores from Pear Lake, an alpine lake in Sequoia National Park. The cores were split and characterized by P-wave velocity, magnetic susceptibility and density scanning along with grain-size analysis at 1-2 cm increments. Radiocarbon dates indicate that the Pear Lake cores contain a 13.5K year record of lake sediment. In contrast to other Sierra Nevada lakes previously cored by our group, high-resolution scanning revealed alternating fine grained, light-dark bands (1 mm to 5 mm thick) for most of the Pear Lake core length. This pattern was interrupted at intervals by homogenous clasts (up to 75 mm thick) ranging in grain size from sand to gravel up to 1 cm diameter. The sand to gravel sized clasts are most likely associated with extreme precipitation events. Preliminary grain-size analysis results show evidence of isolated extreme hydrologic events and sections of increased event frequency which we hypothesize are the result of atmospheric rivers intersecting the southern Sierra Nevada outside of the snow covered period.
Fragments of ancient lunar crust: Ferroan noritic anorthosites from the descartes region of the Moon
NASA Technical Reports Server (NTRS)
Norman, M. D.; Alibert, C.; Mcculloch, M. T.
1993-01-01
Noritic anorthosite clasts from breccia 67016 have bulk compositions similar to that of the upper crust of the Moon and petrogenetic affinities with pristine ferroan anorthosites. Rb-Sr and Sm-Nd isotopic compositions of mineral separates from one of these clasts suggest very old (greater than or = 4.4 Ga) ages, but interpretation of these data is complicated by the multi-stage history of the clasts which involved magmatic crystallization, brecciation, subsolidus recrystallization, and sulfide metasomatism. These clasts record some of the earliest events on the Moon, including early crust formation, accretionary bombardment, and degassing of the lunar interior. Modal analyses of these clasts show they are now composed of about 70 percent plagioclase, 28 percent pyroxene, 2 percent troilite, and minor amounts of ilmenite and chromite. No metallic iron, phosphates, or other trace phases were observed. Olivine is very rare, occurring only as relicts within secondary troilite+pyroxene intergrowths which may reflect reaction of olivine with sulfurous vapors. PIXE proton microprobe analyses of the sulfides show that the metasomatism was accompanied by enrichments of Cu, Zn, Ni, Se, and Sb. The clasts have been only mildly shocked since the observed texture was established. Major and minor element mineral compositions are very homogeneous and strikingly similar to those of pristine ferroan anorthosites. Pyroxene compositions indicate equilibration temperatures of 850-900 C. Except for the sulfide and chalcophile element metasomatism, these clasts appear to be essentially monomict and probably represent a noritic member of the ferroan anorthosite suite. Their low Ni contents and Ni/Co ratios are consistent with the interpretation of these clasts as igneous rocks which have escaped mixing with meteoritic material.
Kimberlite Wall Rock Fragmentation: Venetia K08 Pipe Development
NASA Astrophysics Data System (ADS)
Barnett, W.; Kurszlaukis, S.; Tait, M.; Dirks, P.
2009-05-01
Volcanic systems impose powerful disrupting forces on the country rock into which they intrude. The nature of the induced brittle deformation or fragmentation can be characteristic of the volcanic processes ongoing within the volcanic system, but are most typically partially removed or obscured by repeated, overprinting volcanic activity in mature pipes. Incompletely evolved pipes may therefore provide important evidence for the types and stages of wall rock fragmentation, and mechanical processes responsible for the fragmentation. Evidence for preserved stages of fragmentation is presented from a detailed study of the K08 pipe within the Cambrian Venetia kimberlite cluster, South Africa. This paper investigates the growth history of the K08 pipe and the mechanics of pipe development based on observations in the pit, drill core and thin sections, from geochemical analyses, particle size distribution analyses, and 3D modeling. Present open pit exposures of the K08 pipe comprise greater than 90% mega-breccia of country rock clasts (gneiss and schist) with <10% intruding, coherent kimberlite. Drill core shows that below about 225 m the CRB includes increasing quantities of kimberlite. The breccia clasts are angular, clast-supported with void or carbonate cement between the clasts. Average clast sizes define sub-horizontal layers tens of metres thick across the pipe. Structural and textural observations indicate the presence of zones of re-fragmentation or zones of brittle shearing. Breccia textural studies and fractal statistics on particle size distributions (PSD) is used to quantify sheared and non- sheared breccia zones. The calculated energy required to form the non-sheared breccia PSD implies an explosive early stage of fragmentation that pre-conditions the rock mass. The pre-conditioning would have been caused by explosions that are either phreatic or phreatomagmatic in nature. The explosions are likely to have been centered on a dyke, or pulses of preceding volatile-fluid phases, which have encountered a local hydrologically active fault. The explosions were inadequate in mechanical energy release (72% of a mine production blast) to eject material from the pipe, and the pipe may not have breached surface. The next stage of fragmentation is interpreted to have been an upward-moving collapse of the pre-conditioned hanging wall of a subterranean volcanic excavation. This would explain the mega-scale layering across the width of the breccia pipe. It must be questioned whether the preserved K08 architecture represents early pipe development in general, or is a special case of a late pipe geometry modification process. Previous literature describes sidewall and hanging wall caving processes elsewhere in the Venetia cluster and other kimberlites world wide. A requirement for emplacement models that include upward pipe growth processes is the availability of space (mass deficit at depth) into which the caving and/or dilating breccia can expand. It is possible that K08 might be connected to adjacent K02 at a depth somewhere below 400m, which would explain the presence of volcaniclastic kimberlite at depth within the K08 pipe. K08 is likely an incomplete ancillary sideward development to K02. The latest stage of brecciation is quantified through an observed evolution in the fractal dimension of the PSD. It is interpreted to be due to complex adjustments in volume in the pipe causing shearing and re-fragmentation of the breccia.
Petrographic and petrological studies of lunar rocks. [from the Apollo 15 mission
NASA Technical Reports Server (NTRS)
Winzer, S. R.
1978-01-01
Thin sections and polished electron probe mounts of Apollo 15 glasscoated breccias 15255, 15286, 15466, and 15505 were examined optically and analyzed by sem/microprobe. Sections from breccias 15465 and 15466 were examined in detail, and chemical and mineralogical analyses of several larger lithic clasts, green glass, and partly crystallized green glass spheres are presented. Area analyses of 33 clasts from the above breccias were also done using the SEM/EDS system. Mineralogical and bulk chemical analyses of clasts from the Apollo 15 glass-coated breccias reveal a diverse set of potential rock types, including plutonic and extrusive igneous rocks and impact melts. Examination of the chemistry of the clasts suggests that many of these clasts, like those found in 61175, are impact melts. Their variability suggests formation by several small local impacts rather than by a large basin-forming event.
ERIC Educational Resources Information Center
Morris, Cathy; Belcher, Marcia J.
In 1990, a study was conducted at Florida's Miami-Dade Community College (MDCC) to identify institutional factors that predict pass rates on the College-Level Academic Skills Test (CLAST). Statewide results of the October 1989 administration of the CLAST were used for the study, including the scores of all students who indicated that they had…
ERIC Educational Resources Information Center
Gabe, LiAnne C.
A study was conducted at Broward Community College (BCC) to compare the performance on the College Level Academic Skills Test (CLAST) of examinees with college preparatory experience to that of examinees without this experience. Data were drawn from CLAST tapes for the 1988-89 academic year and from BCC's admissions file. Passing rates for each…
Petrology of the Indian Eucrite Piplia Kalan
NASA Technical Reports Server (NTRS)
Buchanan, Paul C.; Mittlefehldt, D. W.; Hutchinson, R.; Koeberl, C.; Lindstrom, D. J.; Pandit, M. K.
1999-01-01
Piplia Kalan is an equilibrated eucrite consisting of 60-80 vol.% lithic clasts in a subordinate brecciated matrix. Ophitic/subophitic lithic clasts fall into two groups: finer-grained lithology A and coarser-grained lithology B. Very fine-grained clasts (lithology C) also occur and originally were hypocrystalline in texture. The variety of materials represented in Piplia Kalan suggests cooling histories ranging from quenching or fast crystallization to slower crystallization. Despite textural differences, clasts and matrix have similar mineral and bulk compositions. Thus. Piplia Kalan is probably best classified as a genomict breccia that could represent fragments of a single lava flow or shallow intrusive body, including fine-grained or glassy outer margin and more slowly cooled coarser-grained interior. Piplia Kalan displays evidence of an early shock event, including brecciated matrix and areas of lithic clasts that contain fine-grained, equigranular pyroxene between deformed feldspar laths. The meteorite also displays evidence of at least one episode of thermal metamorphism: hypocrystalline materials are recrystallized to hornfelsic textures and the matrix has a nonporous texture similar to those of eucrites that were affected by post-brecciation heating. Veins of brown glass transect both lithic clasts and brecciated matrix and indicate a second, post-metamorphism shock event.
NASA Astrophysics Data System (ADS)
Benage, M. C.; Dufek, J.; Degruyter, W.
2010-12-01
The thermal history of pyroclastic density currents (PDCs) is critical in determining flow dynamics and deposit characteristics. The thermal history of these flows depends on the particles’ internal rate of heat transfer and heat exchange between discrete particles and a gas phase. We examine the thermal history of a class of dense PDC exemplified by the eruption of Tungurahua (2006) and Cotopaxi (1877) that have abundant breadcrust bombs segregated in levees and in flow snouts. An open question in this type of PDC is the amount of air entrainment (and cooling) during transport. To understand the entrainment and cooling history of these flows we use a multiphase numerical model coupled with a Lagrangian model (Eulerian-Eulerian-Lagrangian [EEL]) that tracks the internal heat transfer and post-eruption bubble evolution in juvenile clasts. We combine the numerical study with the observation of the morphology and vesicularity of breadcrust bombs from dense pyroclastic density currents from Tungurahua and Cotopaxi. Breadcrust bombs are common in many deposits from mafic explosive eruptions, e.g. Montserrat, Cotopaxi, Guagua Pichincha, and Tungurahua volcanoes. At many locations these bombs have likely been transported as ballistics (interacting mostly with ambient air), although several instances of dense scoria bomb flows have been noted (e.g. Cotopaxi and Tungurahua, Ecuador). The dense flow deposits are generally rich in unabraided breadcrust bombs along the flow levee and occasionally along the entire transect of the flow. The breadcrust bombs range in size from tens of centimeters to meters. They can also be found draping around previous deposits suggesting a high temperature of deposition. We discuss the use of clast morphology with other thermal proxies to better understand the thermal evolution of individual PDC and the proportion of time clasts underwent transport in dense flows as compared to ballistic transport.
NASA Astrophysics Data System (ADS)
Ross, Pierre-Simon; White, James D. L.
2012-11-01
Vesicles within juvenile fragments in mafic pyroclastic deposits contain important information about the state of the magma at the time of fragmentation. There have been few vesicle studies of juvenile pyroclasts from mafic phreatomagmatic deposits, however, and none we can find from maar-diatreme volcanoes. In this paper we document the vesicularity and vesicle-population characteristics of juvenile fragments sampled from non-bedded lithified deposits of the Coombs Hills diatreme complex, part of the Ferrar large igneous province, Antarctica. The diatreme-filling pyroclastic deposits, dominated by lapilli tuffs and tuff breccias, contain typically abundant lithic clasts derived mostly from the enclosing sedimentary sequence, and several types of juvenile clasts ranging from blocky to fluidal or "raggy". In the samples measured, 77-80% of the juvenile pyroclasts ranging in size from 0.5 mm to fine lapilli is in the 'non-vesicular' to 'incipiently vesicular' range (< 20% vesicles). Such low vesicularities are expected for pyroclasts from maar-diatreme volcanoes where fragmentation takes place at depth in the diatreme or root zone due to magma-water interaction. A few juvenile clasts, however, are more vesicular, and seven of these were chosen and sectioned for 2D analysis of vesicle shapes and orientation, vesicle number densities (Nv), and vesicle volume distributions. The shapes of the vesicles in the studied sections are mostly elliptical (sometimes polylobate), with mean aspect ratios ranging between 0.67 and 0.72. Circular statistics are used to test for trends in the vesicle long-axis orientation data; non-uniformity of orientations is found in most cases, but the trends are weak. Vesicle volume distributions are often bimodal due to variable coalescence. Total Nv values range from 1.0 × 102 to 5.7 × 103 mm- 3; taking the effects of bubble coalescence into account, these values are similar to those found in pyroclasts from other phreatomagmatic volcanoes, although they also overlap partly with those seen in fire fountain deposits and some basaltic Plinian eruptions. Fluidal- or rag-shaped juvenile clasts, some circular vesicles, and the lack of microlites all suggest that the Coombs Hills magma had a relatively low viscosity prior to fragmentation, despite the basaltic andesite composition. This low viscosity allowed parts of the magma to be fragmented in a non-brittle fashion during phreatomagmatic explosions and to form fluidal clasts. Phreatomagmatic explosions in diatremes can therefore produce diverse types of juvenile clasts simultaneously, and the proportions of each will depend on the explosivity of the magma-water (slurry) interaction and other factors. Recycling of fragments is also thought to be an important factor in generating mixtures of different types of juvenile fragments in diatremes.
Geology and environments of subglacial Lake Vostok.
Leitchenkov, German L; Antonov, Anton V; Luneov, Pavel I; Lipenkov, Vladimir Ya
2016-01-28
The reconstruction of the geological (tectonic) structure and environments of subglacial Lake Vostok is based on geophysical surveys and the study of mineral particles found in cores of accreted ice and frozen lake water (sampled after the lake was unsealed). Seismic reflection and refraction investigations conducted in the southern part of Lake Vostok show very thin (200-300 m) sedimentary cover overlying a crystalline basement. Most of this thin veneer is thought to have been deposited during temperate-glacial conditions in Oligocene to Middle Miocene time (ca 34-14 Ma). The composition of the lake-bottom sediments can be deduced from mineral inclusions found in cores of accreted ice. Inclusions are represented by soft aggregates consisting mainly of clay-mica minerals and micrometre-sized quartz grains. Some of these inclusions contain subangular to semi-rounded rock clasts (siltstones and sandstones) ranging from 0.3 to 8 mm in size. In total, 31 zircon grains have been identified in two rock clasts and dated using SHRIMP-II. The ages of the studied zircons range from 0.6 to 2.0 Ga with two distinct clusters between 0.8 and 1.15 Ga and between 1.6 and 1.8 Ga. Rock clasts obviously came from the western lake shore, which is thus composed of terrigenous strata with an age of not older than 600 Ma. The sedimentary nature of the western lake shore is also confirmed by seismic refraction data showing seismic velocities there of 5.4-5.5 km s(-1) at the bedrock surface. After Lake Vostok was unsealed, its water (frozen and sampled next season) was also studied with scanning electron microscopy and X-ray microprobe analysis. This study showed the existence of calcium carbonate and silica microparticles (10-20 μm across) in frozen water. © 2015 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Floran, R J; Caulfield, J B.D.; Harlow, G E
The Simondium, Pinnaroo, and Hainholz mesosiderites are interpreted to be clast-laden impact melts that crystallized from immiscible silicate, metallic (Fe-FeS) liquids. The existence of silicate melts is shown by intergranular basaltic textures. Metallic melts are inferred on the basis of smooth boundaries between metal and troilite and the occurrence of troilite as anastomosing areas that radiate outward into the silicate fractions. These relations suggest that troilite crystallized after silicates, concentrating as a late-stage residuum. Evidence for impact melting includes: diversity and abundance of clast types (mineral, metal, lithic) in various stages of recrystallization and assimilation; differences in mineral chemistries betweenmore » clasts and igneous-textured matrix silicates; unusual metal plus silicate bulk composition. Silicate clasts consist primarily of orthopyroxene and minor olivine with a range of Fe/Fe + Mg ratios, anorthitic plagioclase, and rare orthopyroxenite (diogenite) fragments. Substantial amounts of Fe-Ni metal were melted during the impact events and minor amounts were incorporated into the melts as clasts. The clast populations suggest that at least four rock types were melted and mixed: (a) diogenite, (b) a plagioclase-rich source, possibly cumulate eucrite, (c) dunite, and (d) metal. Most orthopyroxene appears to have been derived from fragmentation of diogenites. Orthopyroxene (En/sub 82-61/) and olivine (Fo/sub 86-67/) clasts include much material unsampled as individual meteorites and probably represent a variety of source rocks.« less
NASA Technical Reports Server (NTRS)
Nyquist, L. E.; Shih, C.-Y.; Wiesmann, H.; Bansal, B. M.
1994-01-01
Igneous clasts of basaltic eucrites are found in both howardites and polymict eucrites. We have studied the Rb-Sr and Sm-Nd isotopic systematics of a number of such clasts, of metamorphic grades 1-6, using the classification of Takeda and Graham. Here, we report Rb-Sr, (147)Sm-(143)Nd, and (145)Sm-(142)Nd studies of clast, 53 from Antarctic howardite EET87503. Although there is no evidence of disturbance of trace element systematics by Antarctic weathering, the Rb-Sr and conventional Sm-Nd isotopic systematics are severely disturbed, which we ascribe to thermal metamorphism. The Ar-Ar age spectrum shows ages ranging from approximately 3.85-3.55 Ga in an unusual 'down stairstep'. The (146)Sm-(142)Nd systematics, however, show the presence of live (146)Sm(t(sub 1/2) = 103 Ma), with (146)Sm/(144)Sm = 0.0061 +/- 0.0007 at the time of crystallization. This result is very similar to that previously obtained for basaltic clast, 18 from howardite EET87513 (paired with EET87503), which has concordant Rb-Sr and Sm-Nd ages of approximately 4.5 Ga. Thus, the two clasts are nearly the same age, and we conclude further than the EET87503,53 clast crystallized within 33 +/- 19 Ma of the LEW86010 angrite by comparing initial (146)Sm/(144)Sm to that of the angrite. We suggest that disturbances in the isotopic systematics of EET87503,53 are consanguineous with pyroxene homogenization.
U-Th-Pb systematics of selected samples from Apollo 17, Boulder 1, Station 2
Nunes, P.D.; Tatsumoto, M.
1975-01-01
Nine U-Th-Pb whole-rock analyses of selected brecciated materials from sample 72215 and one analysis of a pigeonite basalt clast from 72275 are presented. Both samples are from Boulder 1, Apollo 17. These data supplement previous Boulder 1 U-Th-Pb analyses of samples 72275 and 72255. U and Th concentrations indicate that most of the samples contain a moderate to large KREEP component. Samples containing the least KREEP are a noritic clast (72255,49; Civet Cat clast) and an anorthositic clast (72275,117). Evidence for the migration of Pb from Pb-rich matrix material into relatively Pb-poor clasts is presented for two clasts. Most of the Boulder 1 data define a linear trend that intersects concordia at ??? 3.9 and 4.4 b.y. when plotted on a U-Pb concordia diagram. The presence of one anorthositic clast distinctly off this trend indicates that a simple two-stage U-Pb evolution history is inadequate to explain all the data. Accordingly physical significance is only attached to the lower concordia intercept age of 3.9-4.0 b.y. The older concordia intercept age of ??? 4.4 b.y. is interpreted to reflect an averaging of events both older and younger than 4.4 b.y. The data suggest that significant differentiation and/or metamorphism occurred ??? 4.2 b.y. ago. The age of this event, however, is not accurately defined by these data. ?? 1975 D. Reidel Publishing Company, Dordrecht-Holland.
Lunar "dunite", "pyroxenite" and "anorthosite"
Wilshire, H.G.; Jackson, E.D.
1972-01-01
Monomineralic aggregates of olivine, clinopyroxene, orthopyroxene and plagioclase with granoblastic textures are widespread minor constituents of Apollo 14 breccias. Recrystallization is commonly incomplete within these aggregates, leaving relict material that clearly indicates single-mineral-grain sources for the aggregates. The aggregates are not, therefore, properly characterized by igneous rock names, nor can any conclusions regarding differentiation be drawn from them. Average sizes of the aggregates indicate source rocks with grain sizes mostly larger than 1 to 5 mm, a few clasts of which occur in the breccias; the proportions of the different types of aggregates suggest dominantly feldspathic source rocks. ?? 1972.
Schlunegger, Fritz; Castelltort, Sébastien
2016-01-01
High-resolution 32–20 Ma-old stratigraphic records from the Molasse foreland basin situated north of the Alps, and Gonfolite Lombarda conglomerates deposited on the southern Alpine margin, document two consecutive sedimentary responses - an immediate and delayed response - to slab breakoff beneath the central Alps c. 32–30 Ma ago. The first signal, which occurred due to rebound and surface uplift in the Alps, was a regional and simultaneous switch from basin underfill to overfill at 30 Ma paired with shifts to coarse-grained depositional environments in the foreland basin. The second signal, however, arrived several million years after slab breakoff and was marked by larger contributions of crystalline clasts in the conglomerates, larger clast sizes, larger sediment fluxes and shifts to more proximal facies. We propose that this secondary pulse reflects a delayed whiplash-type erosional response to surface uplift, where erosion and sediment flux became amplified through positive feedbacks once larger erosional thresholds of crystalline bedrock were exceeded. PMID:27510939
Mineralogy of an unusual CM clast in the Kaidun meteorite
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Ivanov, A. V.; Yang, S. V.; Barrett, R. A.; Browning, L.
1994-01-01
Kaidun is breccia of disparate enstatite and carbonaceous chondrite clasts, and continues to provide real surprises. Many Daidun clasts have been intensely altered by an aqueous fluid, as evidenced by the widespread occurrence of ferromagnesian phyllosilicates and presence of carbonate- and phyllosilicate-filled veins. In this report we describe an unusual CM lithology containing beautiful aggregates of jackstraw pyrrhotites, not previously reported from any meteorite.
NASA Astrophysics Data System (ADS)
Crowther, Sarah A.; Filtness, Michal J.; Jones, Rhian H.; Gilmour, Jamie D.
2018-01-01
The Barwell meteorite contains large, abundant clasts that are igneous in nature. We report iodine-xenon ages of five clasts and one sample of host chondrite material. The fragment of host chondrite material yielded the oldest age determined: 4567.8 ± 1.2 Ma. Two clasts produced old, well defined ages of 4564.96 ± 0.33 Ma and 4565.60 ± 0.33 Ma. These, and a third clast having a less precise old age of 4566.0 ± 3.2 Ma, are interpreted as recording the timing of crystallisation of the samples. They were incorporated into the Barwell parent body before it underwent thermal metamorphism, but the I-Xe ages survived secondary processing on the parent body and were not reset by metamorphism, metasomatism or shock. Two further clasts record younger ages of 4560.96 ± 0.45 Ma and 4554.22 ± 0.38 Ma. These samples contain a high abundance of albitic mesostasis, and the most likely explanation of the ages is that they record the timing of metasomatism on the parent body. We also analysed four host chondrite samples that do not give I-Xe ages: in these samples, the system appears to have been disturbed by shock. It has been suggested previously that the igneous clasts are derived from an early generation of partially melted asteroids. We do not have direct evidence that the clasts we examined were necessarily derived from a partially differentiated body, only that they were derived from cooling of a silicate melt; the clasts could thus be the products of any one of several proposed models for chondrule formation. Our results indicate that processes akin to chondrule formation, in that they involve rapid cooling of a silicate melt, were ongoing at the same time as CAI formation, lending support to the suggestion that Al-Mg chondrule ages indicate either heterogeneous distribution of 26Al or resetting of the Al-Mg system after chondrule formation.
Striking Graphite Bearing Clasts Found in Two Ordinary Chondrite Samples; NWA6169 and NWA8330
NASA Technical Reports Server (NTRS)
Johnson, Jessica M.; Zolensky, Michael E.; Chan, Queenie; Kring, David A.
2015-01-01
Meteorites play an integral role in understanding the history of the solar system. Not only can they contain some of the oldest material found in the solar system they also can contain material that is unique. Many lithologies are only found as foreign clasts within distinctly different host meteorites. In this investigation two foreign clasts within the meteorites, NWA6169 and NWA8330 were studied. The purpose of this investigation was to examine the mineralogy and petrography of the clasts within the samples. From there an identification and possible origin were to be inferred. NWA6169 is an unclassified ordinary chondrite that has a presumed petrologic type of L3. NWA8330 is a classified ordinary chondrite that has a petrologic type of LL3. Both meteorites were found to contain clasts that were similar; both modally were comprised of about 5% acicular graphite. Through SEM and Raman Spectroscopy it was found that they contained olivine, pyroxene, plagioclase, Fe-Ni sulfides, graphite, and metals. They were found to portray an igneous texture with relationships that suggest concurrent growth. Analytical microprobe results for NWA6169 revealed mineral compositions of Fa31-34, Fs23-83, and Ab7-85. For NWA8330 these were Fa28-32, Fs10-24, and Ab4-83. Only one similar material has been reported, in the L3 chondrite Krymka (Semenenko & Girich, 1995). The clast they described exhibited similar mineralogies including the unusual graphite. Krymka data displayed compositional values of Fa28.5-35.0 and Fs9-25.9. These ranges are fairly similar to that of NWA6169 and NWA8330. These samples may all be melt clasts, probably of impact origin. Two possibilities are (1) impact of a C-type asteroid onto the L chondrite parent asteroid, and (2) a piece of proto-earth ejected from the moon-forming collision event. These possibilities present abundant questions, and can be tested. The measurement of oxygen isotope compositions from the clasts should reveal the original source of the melt clasts. It may also be possible to perform Ar dating of the plagioclase present. Former analyses are now being performed.
Extreme grain size reduction in dolomite: microstructures and mechanisms.
NASA Astrophysics Data System (ADS)
Kennedy, L.; White, J. C.
2007-12-01
Pure dolomite sample were deformed at room temperature and under a variety of confining pressures (0 - 100MPa) to examine the processes of grain size reduction. The dolomite is composed of > 97 vol. % dolomite with accessory quartz, calcite, tremolite, and muscovite and has been metamorphosed to amphibolite facies and subsequently annealed. At the hand sample scale, the rock is isotropic, except for minor, randomly oriented tremolite porphyroblasts, and weakly aligned muscovite. At the thin section scale, coarser grains have lobate grain boundaries, exhibit minor to no undulose extinction and few deformation twins, although well- developed subgrains are present. Growth twins are common, as is the presence of well developed {1011} cleavage. Mean grain size 476 microns, and porosity is essentially zero (Austin and Kennedy, 2006). Samples contain diagonal to subvertical faults. Fractures are lined with an exceptionally fine-grained, powdered dolomite. Even experiments done at no confining pressure and stopped before sliding on the fracture surfaces occurred had significant powdered gouge developed along the surfaces. In this regard, fracturing of low porosity, pure dolomite, with metamorphic textures (e.g. lobate, interlocking grain boundaries) results in the development of fine-grained gouge. As expected the dolomite exhibited an increase in strength with increasing confining pressure, with a maximum differential stress of ~400MPa at 100 MPa confining pressure. At each chosen confining pressure, two experiments were performed and stopped at different stages along the load-displacement curve: just before yield stress and at peak stress. Microstructures at each stage were observed in order to determine the possible mechanisms for extreme grain size reduction. SEM work shows that in samples with little to no apparent displacement along microfractures, extreme grain size reduction still exists, suggesting that frictional sliding and subsequent cataclasis may not be the mechanism responsible for grain size reduction. Within individual dolomite clasts, apparent Mode I cracks are also lined with powedered gouge. Alternative mechanisms for grain size reduction are explored. Austin et al. 2005, Geological Society, London, Special Publications, 243, 51-66.3.
Porphyritic Olivine-Pyroxene Clast in Kaidun: First Discovery of an Ordinary Chondrite Clast?
NASA Technical Reports Server (NTRS)
Mikouchi, T.; Makishima, J.; Koizumi, E.; Zolensky, M. E.
2005-01-01
Kaidun is an enigmatic meteorite showing a micro-brecciated texture composed of variable kinds of lithic clasts and mineral fragments. The constituent components range from primitive chondritic materials to differentiated achondritic materials, and thus believed to have originated from a large parent body accumulating materials from many different bodies in the asteroid belt. One of the interesting observations is that no ordinary chondrite component has been found yet, although C and E chondrites components are abundant. In this abstract, we report mineralogy of the clast (Kaidun #15415- 01.3.13a) showing a porphyritic olivine-pyroxene chondrule-like texture similar to those found in unequilibrated ordinary chondrites.
Chemical evidence for differentiation, evaporation and recondensation from silicate clasts in Gujba
NASA Astrophysics Data System (ADS)
Oulton, Jonathan; Humayun, Munir; Fedkin, Alexei; Grossman, Lawrence
2016-03-01
The silicate and metal clasts in CB chondrites have been inferred to form as condensates from an impact-generated vapor plume between a metal-rich body and a silicate body. A detailed study of the condensation of impact-generated vapor plumes showed that the range of CB silicate clast compositions could not be successfully explained without invoking a chemically differentiated target. Here, we report the most comprehensive elemental study yet performed on CB silicates with 32 silicate clasts from nine slices of Gujba analyzed by laser ablation inductively coupled plasma mass spectrometry for 53 elements. Like in other studies of CBs, the silicate clasts are either barred olivine (BO) or cryptocrystalline (CC) in texture. In major elements, the Gujba silicate clasts ranged from chondritic to refractory enriched. Refractory element abundances ranged from 2 to 10 × CI, with notable anomalies in Ba, Ce, Eu, and U abundances. The two most refractory-enriched BO clasts exhibited negative Ce anomalies and were depleted in U relative to Th, characteristic of volatilization residues, while other BO clasts and the CC clasts exhibited positive Ce anomalies with excess U (1-3 × CI), and Ba (1-6 × CI) anomalies indicating re-condensation of ultra-refractory element depleted vapor. The Rare Earth Elements (REE) also exhibit light REE (LREE) enrichment or depletion in several clasts with a range of (La/Sm)CI of 0.9-1.8. This variation in the LREE is essentially impossible to accomplish by processes involving vapor-liquid or vapor-solid exchange of REE, and appears to have been inherited from a differentiated target. The most distinctive evidence for inherited chemical differentiation is observed in highly refractory element (Sc, Zr, Nb, Hf, Ta, Th) systematics. The Gujba clasts exhibit fractionations in Nb/Ta that correlate positively with Zr/Hf and span the range known from lunar and Martian basalts, and exceed the range in Zr/Hf variation known from eucrites. Variations of highly incompatible refractory elements (e.g., Th) against less incompatible elements (e.g., Zr, Sr, Sc) are not chondritic, but exhibit distinctly higher Th abundances requiring a differentiated crust to be admixed with depleted mantle in ratios that are biased to higher crust/mantle ratios than in a chondritic body. The possibility that these variations are due to admixture of refractory inclusion-debris into normal chondritic matter is raised but cannot be definitively tested because existing ;bulk; analyses of CAIs carry artifacts of unrepresentative sampling. The inferences drawn from the compositions of Gujba silicate clasts, here, complement what has been inferred from the compositions of metallic clasts, but provide surprisingly detailed insight into the structure of the target. Evidence that metal and silicate in CB chondrites both formed from impact-generated vapor plumes, taken together with recent work on metallic nodules in E chondrites, and on ordinary chondrites, indicates that chondrule formation occurs by this mechanism quite widely. However, the nature of the impact on the CB body is quite different than the popular conceptions of impact of partially or wholly molten chondritic bodies and the younger (5 Ma) age of CB chondrules is consistent with origin in a disk with more evolved targets and impactors gravitationally perturbed by nascent planets.
NASA Astrophysics Data System (ADS)
Valentine, G. A.; Perry, F. V.; WoldeGabriel, G.
2000-12-01
The Oligocene, deeply eroded Summer Coon composite volcano contains mafic andesite deposits that are massive to poorly bedded, have abundant flattened and deformed spatter clasts, have varying proportions of dense lithic clasts, and are supported mostly by a coarse-ash matrix. Although superficially these deposits resemble typical facies from Strombolian eruptions (emplaced ballistically, by fallout, and by rolling and local grain-avalanches down steep cone slopes), there are several lines of evidence that lead to an interpretation that the deposits were emplaced by pyroclastic density currents. These include local coarse-tail grading, deformation of spatter clasts in a down-flow direction, incorporation of matrix ash and lapilli into flattened spatter clasts, imbrication of large clasts, plastering of spatter on stoss sides of large lithic blocks and lenses of lithic-rich material on lee sides, deposition on angles less than the angle of repose, and a paucity of clast shapes associated with Strombolian mechanisms. The deposit characteristics are consistent with rapid sedimentation from a low-particle-concentration, turbulent flow onto an aggrading bed. We infer two potential mechanisms for generating these density currents: (1) explosive magma-water interaction involving lithic debris and relatively unfragmented melt; and (2) collapse of oversteepened upper cone slopes due to rapid accumulation of spatter from voluminous Strombolian eruptions.
NASA Astrophysics Data System (ADS)
Wells, Stephen G.; McFadden, Leslie D.; McDonald, Eric V.; Eppes, Martha C.; Young, Michael H.; Wood, Yvonne A.
2014-05-01
Desert pavements are recognized in arid landscapes around the world, developing via diminution of constructional/depositional landform relief and creating a 1-2 stone thick armor over a "stone free" layer. Surface exposure dating demonstrates that clasts forming the desert pavements are maintained at the land surface over hundreds of thousands of years, as aeolian fines are deposited on the land surface, transported into the underlying parent material and incorporated into accretionary soil horizons (e.g., the stone free or vesicular [Av] horizon). This surface armor provides long-term stability over extensive regions of the landscape. Over shorter time periods and at the landform-element scale, dynamic surficial processes (i.e., weathering, runoff) continue to modify the pavement form. Clast size reduction in comparison to underlying parent material, along with armoring and packing of clasts in pavements contribute to their persistence, and studies of crack orientations in pavement clasts indicate physical weathering and diminution of particle size are driven by diurnal solar insolation. Over geologic time, cracks form and propagate from tensile stresses related to temporal and spatial gradients in temperature that evolve and rotate in alignment with the sun's rays. Observed multimodal nature of crack orientations appear related to seasonally varying, latitude-dependent temperature fields resulting from solar angle and weather conditions. Surface properties and their underlying soil profiles vary across pavement surfaces, forming a landscape mosaic and controlling surface hydrology, ecosystem function and the ultimate life-cycle of arid landscapes. In areas of well-developed pavements, surface infiltration and soluble salt concentrations indicate that saturated hydraulic conductivity of Av horizons decline on progressively older alluvial fan surfaces. Field observations and measurements from well-developed desert pavement surfaces landforms also yield significantly lower infiltration rates, enhanced rates of overland flow characterized by high water:sediment ratios and reduced production of desert ecosystems. Consequently, regionally extensive pavement and significantly decreased infiltration over geologic time have resulted in widespread overland flow, elaborate drainage networks on alluvial and eolian-mantled bedrock landscapes, and channel incision and regional dissection of the pavement-mantled landforms. However, these once stable landscapes become progressively unstable with time, serving as sediment source areas for younger alluvial deposits (i.e., geologic life-cycle). Thus, regional dissection (instability) of these desert landscapes can be influenced by the intrinsic properties of pavement-mantled landscapes and not necessarily to external forces of climate change and tectonics.
NASA Astrophysics Data System (ADS)
Stahr, Donald W.; Law, Richard D.
2014-11-01
We model the development of shape preferred orientation (SPO) of a large population of two- and three-dimensional (2D and 3D) rigid clasts suspended in a linear viscous matrix deformed by superposed steady and continuously non-steady plane strain flows to investigate the sensitivity of clasts to changing boundary conditions during a single or superposed deformation events. Resultant clast SPOs are compared to one developed by an identical initial population that experienced a steady flow history of constant kinematic vorticity and reached an identical finite strain state, allowing examination of SPO sensitivity to deformation path. Rotation paths of individual triaxial inclusions are complex, even for steady plane strain flow histories. It has been suggested that the 3D nature of the system renders predictions based on 2D models inadequate for applied clast-based kinematic vorticity gauges. We demonstrate that for a large population of clasts, simplification to a 2D model does provide a good approximation to the SPO predicted by full 3D analysis for steady and non-steady plane strain deformation paths. Predictions of shape fabric development from 2D models are not only qualitatively similar to the more complex 3D analysis, but they display the same limitations of techniques based on clast SPO commonly used as a quantitative kinematic vorticity gauge. Our model results from steady, superposed, and non-steady flow histories with a significant pure shearing component at a wide range of finite strain resemble predictions for an identical initial population that experienced a single steady simple shearing deformation. We conclude that individual 2D and 3D clasts respond instantaneously to changes in boundary conditions, however, in aggregate, the SPO of a population of rigid inclusions does not reflect the late-stage kinematics of deformation, nor is it an indicator of the unique 'mean' kinematic vorticity experienced by a deformed rock volume.
Kulhanek, D.K.
2007-01-01
Site NBP0602A-9, drilled during the SHALDRIL II cruise of the RV/IB Nathaniel B. Palmer, includes two holes located in the northern James Ross Basin in the western Weddell Sea, very close to the eastern margin of the Antarctic Peninsula. Sediment from both holes consists of very dark grey, pebbly, sandy mud, grading to very dark greenish grey, pebbly, silty mud in the lower 2.5 m of the second hole. In addition to abundant pebbles found throughout the cores, both holes contain numerous sedimentary clasts. Biostratigraphic analysis of diatom assemblages from the glaciomarine muds yields rare to few, poorly preserved diatoms. The mixed assemblage consists mostly of extant species, but also includes reworked taxa that range to the Miocene. The absence of Rouxia spp., however, suggests the sediment is late Pleistocene in age. The sedimentary clasts, on the other hand, are nearly barren of diatoms, but contain rare, moderately to well-preserved calcareous nannofossils. The clasts contain three distinct assemblages. Two clasts are assigned an early Maastrichtian age based on the presence of Biscutum magnum and Nephrolithus corystus, while one clast yields a late Maastrichtian age based on the presence of Nephrolithus frequens. These samples also contain other characteristic Late Cretaceous species, including Biscutum notaculum, Cribrosphaerella daniae, Eiffellithus gorkae, Kamptnerius magnificus, and Prediscosphaera bukryi. Two samples yield an early Paleocene assemblage dominated by Hornibrookina teuriensis. The Maastrichtian assemblages are similar to those found in the López de Bertodano Formation on Seymour and Snow Hill Islands, making it the likely source area for the Cretaceous clast material. Although no calcareous nannofossils have been reported from Paleocene formations on these islands, the occurrence of calcareous foraminifers suggests other calcareous plankton may be present; thus the Paleocene clasts likely also originated from the Seymour Island area.
NASA Astrophysics Data System (ADS)
Mészáros, Marianna; Hofmann, Beda A.; Lanari, Pierre; Korotev, Randy L.; Gnos, Edwin; Greber, Nicolas D.; Leya, Ingo; Greenwood, Richard C.; Jull, A. J. Timothy; Al-Wagdani, Khalid; Mahjoub, Ayman; Al-Solami, Abdulaziz A.; Habibullah, Siddiq N.
2016-10-01
Abar al' Uj (AaU) 012 is a clast-rich, vesicular impact-melt (IM) breccia, composed of lithic and mineral clasts set in a very fine-grained and well-crystallized matrix. It is a typical feldspathic lunar meteorite, most likely originating from the lunar farside. Bulk composition (31.0 wt% Al2O3, 3.85 wt% FeO) is close to the mean of feldspathic lunar meteorites and Apollo FAN-suite rocks. The low concentration of incompatible trace elements (0.39 ppm Th, 0.13 ppm U) reflects the absence of a significant KREEP component. Plagioclase is highly anorthitic with a mean of An96.9Ab3.0Or0.1. Bulk rock Mg# is 63 and molar FeO/MnO is 76. The terrestrial age of the meteorite is 33.4 ± 5.2 kyr. AaU 012 contains a 1.4 × 1.5 mm2 exotic clast different from the lithic clast population which is dominated by clasts of anorthosite breccias. Bulk composition and presence of relatively large vesicles indicate that the clast was most probably formed by an impact into a precursor having nonmare igneous origin most likely related to the rare alkali-suite rocks. The IM clast is mainly composed of clinopyroxenes, contains a significant amount of cristobalite (9.0 vol%), and has a microcrystalline mesostasis. Although the clast shows similarities in texture and modal mineral abundances with some Apollo pigeonite basalts, it has lower FeO and higher SiO2 than any mare basalt. It also has higher FeO and lower Al2O3 than rocks from the FAN- or Mg-suite. Its lower Mg# (59) compared to Mg-suite rocks also excludes a relationship with these types of lunar material.
Volatile loss from melt inclusions in pyroclasts of differing sizes
NASA Astrophysics Data System (ADS)
Lloyd, Alexander S.; Plank, Terry; Ruprecht, Philipp; Hauri, Erik H.; Rose, William
2013-01-01
We have investigated the loss of H2O from olivine-hosted melt inclusions (MIs) by designing an experiment using tephra samples that cooled at different rates owing to their different sizes: ash, lapilli, and bomb samples that were deposited on the same day (10/17/74) of the sub-Plinian eruption of Volcán de Fuego in Guatemala. Ion microprobe, laser ablation-ICPMS, and electron probe analyses show that MIs from ash and lapilli record the highest H2O contents, up to 4.4 wt%. On the other hand, MIs from bombs indicate up to 30 % lower H2O contents (loss of ~1 wt% H2O) and 10 % post-entrapment crystallization of olivine. This evidence is consistent with the longer cooling time available for a bomb-sized clast, up to 10 min for a 3-4-cm radius bomb, assuming conductive cooling and the fastest H diffusivities measured in olivine (D~10-9 to 10-10 m2/s). On the other hand, several lines of evidence point to some water loss prior to eruption, during magma ascent and degassing in the conduit. Thus, results point to both slower post-eruptive cooling and slower magma ascent affecting MIs from bombs, leading to H2O loss over the timescale of minutes to hours. The important implication of this study is that a significant portion of the published data on H2O concentrations in olivine-hosted MIs may reflect unrecognized H2O loss via diffusion. This work highlights the importance of reporting clast and MI sizes in order to assess diffusive effects and the potential benefit of using water loss as a chronometer of magma ascent.
NASA Astrophysics Data System (ADS)
Wright, H. M.; Cashman, K.; Rosi, M.; Cioni, R.
2003-12-01
Vulcanian eruptions are common at many volcanoes around the world. These eruptions occur in energetic pulses and eject relatively small amounts of material. Each blast event (vulcanian eruption) has been inferred to represent a "throat-clearing" process that ejects a conduit plug. As such, we can examine the ejected material to reconstruct the conduit stratigraphy. The recent sequence of vulcanian eruptions at Guagua Pichincha volcano provides an opportunity to learn more about the dynamics of and pressurization conditions preceding vulcanian eruptions. From late 1999 - mid 2000, Pichincha experienced a series of vulcanian eruptions that ejected ballistic bombs, which now cover the surface of the crater. Bomb types range from dense to highly vesicular, with many exhibiting the breadcrusting that is ubiquitous in vulcanian deposits. Clast morphology varies with clast density, with slightly vesicular bombs having thick, glassy crusts and widely spaced cracks, whereas more vesicular bombs have thinner crusts and more closely spaced, regular crack patterns. The wide range of clast types appears to represent the stratigraphy of the conduit prior to each eruptive event, with denser blocks formed from more degassed magma near the top of the pre-eruptive conduit plug and more vesicular blocks representing deeper, less degassed levels in the conduit. This study uses the ballistic bombs, including the abundant breadcrust bombs, to learn more about conduit processes during a typical vulcanian eruption. In particular, we use the rapidly quenched crusts of breadcrust bombs, which preserve pre-eruptive conduit material, to determine gradients in volatile and crystal content in the conduit. The volatile content (both H2O and CO2) of the pre-eruptive melt was determined from FTIR spectroscopic analysis of bomb rind matrix glass. These values reach up to 1.2 wt% water and 10 ppm CO2, equivalent to 15 MPa maximum recorded presusure, or approximately 600 meters maximum depth. Coincident with the volatile gradient, microlite populations in bombs with dense, glassy crusts have uniform tabular shapes, whereas microlites in bombs with vesicular rinds have more variable crystal shapes. Insight into these degassing and crystallization conditions may help us understand pressurization mechanisms for the eruptions. The differences between the ballistic bombs will provide a picture of the conduit prior to eruption.
NASA Astrophysics Data System (ADS)
Hajek, E. A.; Heller, P.
2009-12-01
A primary goal of sedimentary geologists is to interpret past tectonic, climatic, and eustatic conditions from the stratigraphic record. Stratigraphic changes in alluvial-basin fills are routinely interpreted as the result of past tectonic movements or changes in climate or sea level. Recent physical and numerical models have shown that sedimentary systems can exhibit self-organization on basin-filling time scales, suggesting that structured stratigraphic patterns can form spontaneously rather than as the result of changing boundary conditions. The Ferris Formation (Upper Cretaceous/Paleogene, Hanna Basin, Wyoming) exhibits stratigraphic organization where clusters of closely-spaced channel deposits are separated from other clusters by intervals dominated by overbank material. In order to evaluate the role of basinal controls on deposition and ascertain the potential for self-organization in this ancient deposit, the spatial patterns of key channel properties (including sand-body dimensions, paleoflow depth, maximum clast size, paleocurrent direction, and sediment provenance) are analyzed. Overall the study area lacks strong trends sand-body properties through the stratigraphic succession and in cluster groups. Consequently there is no indication that the stratigraphic pattern observed in the Ferris Formation was driven by systematic changes in climate or tectonics.
Sediment motion and velocity in a glacier-fed stream
NASA Astrophysics Data System (ADS)
Mao, L.; Dell'Agnese, A.; Comiti, F.
2017-08-01
Current understanding of coarse sediment transport (e.g. threshold for motion, travel length and virtual velocity) in mountain rivers is still quite limited, and even less is known about glacial streams. However, the hydrological characteristics of these systems (strong daily discharge fluctuations, high water turbidity) pose challenges to the use of tracers to monitor bed sediment dynamics, as tagged clasts are usually located after bedload events when flow stage has receded, e.g. by means of portable antennas in the case of Passive Integrated Transponders (PIT). The use of stationary antennas, still scarcely in use worldwide, to detect PIT-tagged particles has potential advantages in glacier-fed streams. If water discharge is monitored continuously, a stationary antenna provides real time data on the actual discharge at the moment of tracer particles passage. This study focuses on incipient motion and virtual velocity of bed particles measured by a stationary antennas system in a steep mountain channel (Saldur River, drainage area 18.6 km2, Italian Alps) where significant daily discharge fluctuations and bedload transport occur as a result of a nivo-glacial regime. Four stationary antennas were installed 50-m apart in the study reach. A total of 629 PIT-tagged clasts were inserted in the studied reach between 2011 and 2014, ranging in size from 35 mm to 580 mm, with an overall recovery rate of around 44%. Critical discharge for sediment entrainment was obtained by detecting the movement of tracers placed immediately upstream of antennas. Virtual velocity was derived by knowing distances between the antennas and travel time of tracers. Results on initiation of motion show that the relationship between the size of transported tracers and the discharge measured at the time clasts were passing the stationary antenna is very weak. The influence of antecedent flows on incipient motion was thus investigated by dividing the highest discharge recorded between each PIT deployment and the subsequent entrainment by the actual critical discharge at the time of movement (ratio Qmax/Qc). Results show that approximately 50% of tracers moved at Qmax/Qc ≤ 1.2, and that 73% of tracers moved at Qmax/Qc < 1.5. Therefore, about 30% of tracers had to previously experience a discharge substantially greater than the one that actually mobilized them. Also, coarser particles moved at higher Qmax/Qc ratios, suggesting that higher antecedent flows may be needed to destabilize bed clustering. Results on the virtual velocity of the PIT-tagged clasts employed in the field show that the virtual velocity turned out to be highly variable (ranging from 101 to 10- 5 m min- 1) and weakly related to either particle size or flow discharge. However, virtual velocity was well correlated with the highest flow discharge experienced by each tracer normalized by a percentile of the flow duration curve. This evidence further stresses the importance of flow history on sediment entrainment and transport. Finally, the pros and cons of the deployed monitoring technology are discussed.
NASA Technical Reports Server (NTRS)
Labotka, T. C.; Papike, J. J.
1980-01-01
Modal petrographic methods have been applied to the meteorites Frankfort, Pavlovka, Yurtuk, Malvern, and ALHA 77302, to determine some of the characteristics of the regolith of the eucrite parent body. Lithic clasts in the meteorites fall into three major groups: pyroxene + plagioclase rocks, orthopyroxenites, and fused-soil clasts. Lithic clasts make up a small proportion of the soil; mineral clasts from orthopyroxenites dominate the coarse-grained fraction; and the fine-grained fraction contains minerals from both orthopyroxenites and plagioclase + pyroxene rocks. The eucrite regolith appears to have the following characteristics: the source rocks are friable, the soils are immature, comminution is the major soil-forming process, and the soil is well mixed.
Douillet, Guilhem Amin; Tsang-Hin-Sun, Ève; Kueppers, Ulrich; Letort, Jean; Pacheco, Daniel Alejandro; Goldstein, Fabian; Von Aulock, Felix; Lavallée, Yan; Hanson, Jonathan Bruce; Bustillos, Jorge; Robin, Claude; Ramón, Patricio; Hall, Minard; Dingwell, Donald B
The deposits of the pyroclastic density currents from the August 2006 eruption of Tungurahua show three facies associations depending on the topographic setting: the massive, proximal cross-stratified, and distal cross-stratified facies. (1) The massive facies is confined to valleys on the slopes of the volcano. It contains clasts of >1 m diameter to fine ash material, is massive, and interpreted as deposited from dense pyroclastic flows. Its surface can exhibit lobes and levees covered with disk-shaped and vesicular large clasts. These fragile large clasts must have rafted at the surface of the flows all along the path in order to be preserved, and thus imply a sharp density boundary near the surface of these flows. (2) The proximal cross-stratified facies is exposed on valley overbanks on the upper part of the volcano and contains both massive coarse-grained layers and cross-stratified ash and lapilli bedsets. It is interpreted as deposited from (a) dense pyroclastic flows that overflowed the gentle ridges of valleys of the upper part of the volcano and (b) dilute pyroclastic density currents created from the dense flows by the entrainment of air on the steep upper flanks. (3) The distal cross-stratified facies outcrops as spatially limited, isolated, and wedge-shaped bodies of cross-stratified ash deposits located downstream of cliffs on valleys overbanks. It contains numerous aggrading dune bedforms, whose crest orientations reveal parental flow directions. A downstream decrease in the size of the dune bedforms, together with a downstream fining trend in the grain size distribution are observed on a 100-m scale. This facies is interpreted to have been deposited from dilute pyroclastic density currents with basal tractional boundary layers. We suggest that the parental flows were produced from the dense flows by entrainment of air at cliffs, and that these diluted currents might rapidly deposit through "pneumatic jumps". Three modes are present in the grain size distribution of all samples independently of the facies, which further supports the interpretation that all three facies derive from the same initial flows. This study emphasizes the influence of topography on small volume pyroclastic density currents, and the importance of flow transformation and flow-stripping processes.
NASA Astrophysics Data System (ADS)
Snape, Joshua F.; Joy, Katherine H.; Crawford, Ian A.
2011-09-01
Abstract- Lunar meteorite Northeast Africa (NEA) 001 is a feldspathic regolith breccia. This study presents the results of electron microprobe and LA-ICP-MS analyses of a section of NEA 001. We identify a range of lunar lithologies including feldspathic impact melt, ferroan noritic anorthosite and magnesian feldspathic clasts, and several very-low titanium (VLT) basalt clasts. The largest of these basalt clasts has a rare earth element (REE) pattern with light-REE (LREE) depletion and a positive Euanomaly. This clast also exhibits low incompatible trace element (ITE) concentrations (e.g., <0.1 ppm Th, <0.5 ppm Sm), indicating that it has originated from a parent melt that did not assimilate KREEP material. Positive Eu-anomalies and such low-ITE concentrations are uncharacteristic of most basalts returned by the Apollo and Luna missions, and basaltic lunar meteorite samples. We suggest that these features are consistent with the VLT clasts crystallizing from a parent melt which was derived from early mantle cumulates that formed prior to the separation of plagioclase in the lunar magma ocean, as has previously been proposed for some other lunar VLT basalts. Feldspathic impact melts within the sample are found to be more mafic than estimations for the composition of the upper feldspathic lunar crust, suggesting that they may have melted and incorporated material from the lower lunar crust (possibly in large basin-forming events). The generally feldspathic nature of the impact melt clasts, lack of a KREEP component, and the compositions of the basaltic clasts, leads us to suggest that the meteorite has been sourced from the Outer-Feldspathic Highlands Terrane (FHT-O), probably on the lunar farside and within about 1000 km of sources of both Low-Ti and VLT basalts, the latter possibly existing as cryptomaria deposits.
ALHA 81011 -- an eucritic impact melt breccia formed 350 m.y. ago
NASA Astrophysics Data System (ADS)
Metzler, K.; Bobe, K. D.; Kunz, J.; Palme, H.; Spettel, B.; Stoeffler, D.
1994-07-01
The ALHA 81011 meteorite has been described as a eucritic breccia consisting of mineral and lithic clasts embedded in a vesicular, dark glassy matrix. Lithic clasts are equilibrated and dominated by subophitic and granulitic texture, frequently with gradual textural transitions in a given clast. Both mineral and lithic clasts were shocked in excess of approximately 30 GPa, transforming plagioclase into maskelynite, followed by thermally induced recrystallization. The observation that plagioclase fragments are 'swirled' into the dark matrix leaving pyroxene fragments unaffected, indicates that the plagioclase fragments were transformed into maskelynite prior to admixing as well. Scanning Electron Microscopy (SEM) investigations revealed that the dark matrix represents a quenched melt with eutectic fabric consisting of parallel intergrowths of pyroxene and plagioclase crystals, interspersed with small vesicles and larger subangular cavities up to 0.6 cm. One basalt clast with a partly granulitic texture and a portion of the dark crystallized matrix were separated and analyzed by Instrumental Neutron Activation Analysis (INAA). We performed age determinations on the separated lithologies by applying the Ar-40/AR-39 method. ALHA 81011 represents a clast-rich eucritic impact melt breccia not older than 350 Ma. It was either part of a rapidly cooled larger impact melt formation or represents a melt 'bomb' that originates from a suevitic ejecta blanket formed by a large-scale impact on the Howardite Eucritic and Diogenite (HED) parent body surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman-Fahey, J.L.; McMillan, N.J.; Mack, G.H.
Evidence to support Late Cretaceous volcanism in south central New Mexico is restricted to a small area of 75-Ma-old andesitic rocks at Copper Flats near Hillsboro, and volcanic clasts in the McRae (Late Cretaceous/Paleocene ) and Love Ranch (Paleocene/Eocene). Formations located in the Jornada del Muerto basin east and northeast of the Caballo Mountains. Major and trace element data and petrographic analysis of 5 samples from Copper Flats lavas and 40 samples of volcanic clasts from the McRae and Love Ranch conglomerates will be used to reconstruct the Cretaceous volcanic field. The McRae Formation consists of two members: the lowermore » Jose Creek and the upper Hall Lake. The lowermost Love Ranch Formation is unconformable in all places on the Hall Lake Member. Stratigraphic variations in clast composition from volcanic rocks in the lower Love Ranch Formation to Paleozoic and Precambrian clasts in the upper Love Ranch Formation reflect the progressive unroofing of the Laramide Rio Grande Uplift. Volcanic clasts in the McRae and Love Ranch Formations were derived from the west and south of the depositional basin, but the source area for McRae clasts is less well constrained. Stratigraphic, chemical, and petrographic data will be used to reconstruct the volcanic complex and more clearly define magma genesis and metasomatism associated with Laramide deformation.« less
NASA Technical Reports Server (NTRS)
Kebukawa, Y.; Zolensky, M. E.; Fries, M.; Nakato, A.; Kilcoyne, A. L. D.; Takeichi, Y.; Suga, H.; Miyamoto, C.; Rahman, Z.; Kobayashi, K.;
2016-01-01
Zag and Monahans meteorites (H5) contains xenolithic dark clasts and halite (NaCl) crystals [e.g., 1]. The proposed source of the H chondrites is asteroid 6 Hebe [2]. The modern orbits of 1 Ceres and 6 Hebe essentially cross, with aphelion/perihelion of Ceres and Hebe of 2.99/2.55 and 2.91/1.94 AU (Astronomical Units), respectively. Therefore, Ceres might be the source of the clasts and halite in Zag and Monahans meteorites. Recent results from NASA's Dawn mission shows that bright spots in Ceres's crater may be hydrated magnesium sulfate with some water ice, and an average global surface contains ammoniated phyllosilicates that is likely of outer Solar System origin. One dark clast and all halite crystals in Zag and Monahans meteorites contain carbon-rich particles. We report organic analyses of these carbon-rich particles using carbon, nitrogen, and oxygen X-ray absorption near edge structure (C-, N-, and O-XANES), in order to constrain the origin of the clast and halite crystals.
Ordovician "sphinctozoan" sponges from Prince of Wales Island, southeastern Alaska
Rigby, J.K.; Karl, Susan M.; Blodgett, R.B.; Baichtal, J.F.
2005-01-01
A faunule of silicified hypercalcified "sphinctozoan" sponges has been recovered from a clast of Upper Ordovician limestone out of the Early Devonian Karheen Formation on Prince of Wales Island in southeastern Alaska. Included in the faunule are abundant examples of the new genus Girtyocoeliana, represented by Girtyocoeliana epiporata (Rigby and Potter), and Corymbospongia adnata Rigby and Potter, along with rare Corymbospongia amplia n. sp., and Girtyocoelia(?) sp., plus common Amblysiphonella sp. 1 and rare Amblysiphonella(?) sp. 2. The assemblage is similar to that from Ordovician clasts from the eastern Klamath Mountains of northern California. This indicates that the Alexander terrane of southeastern Alaska is related paleogeographically to the lithologically and paleontologically similar terrane of the eastern Klamath Mountains. This lithology and fossil assemblage of the clast cannot be tied to any currently known local rock units on Prince of Wales Island. Other clasts in the conglomerate appear to have been locally derived, so it is inferred that the limestone clasts were also locally derived, indicating the presence of a previously undocumented Ordovician limestone unit on northern Prince of Wales Island.
Martian rampart crater ejecta - Experiments and analysis of melt-water interaction
NASA Astrophysics Data System (ADS)
Wohletz, K. H.; Sheridan, M. F.
1983-10-01
Viking images of Martian craters with rampart-bordered ejecta deposits reveal distinct impact ejecta morphology when compared to that associated with similar-sized craters on the Moon and Mercury. It is suggested that target water explosively vaporized during impact alters initial ballistic trajectories of ejecta and produces surging flow emplacement. The dispersal of particulates during a series of controlled steam explosions generated by interaction of a thermite melt with water has been experimentally modeled. Study of terrestrial, lobate, volcanic ejecta produced by steam-blast explosions reveals that particle size and vapor to clast volume ratio are primary parameters characterizing the emplacement mechanism and deposit morphology.
NASA Astrophysics Data System (ADS)
Lau, A. Y. Annie; Etienne, Samuel; Terry, James P.; Switzer, Adam D.; Sin Lee, Ying
2014-05-01
The history of extreme wave events in the Tuamotu Archipelago of French Polynesia in the central South Pacific remains poorly understood, even though giant wave-deposited coastal boulders were identified in the region decades ago. Numerous large coral boulders deposited on the reef flats of Makemo Atoll (16.56° S, 143.73° W) were investigated in this study in an attempt to understand the characteristics of extreme palaeo-events in the region. The positions, dimensions and orientations of 286 boulders were recorded along over 15 km of the northern coastline of the atoll. The biggest clast measures >130 m3 in size and weighs >340 tonnes. The size-distribution of the Makemo boulders suggests that these huge clasts were transported by extreme storm waves. The long-axes orientations of boulders are mostly aligned parallel to sub-parallel to the shoreline. However, a relationship between boulder size and orientation was not found, suggesting that the orientation of boulders is not representative of transport mode. By using previously developed hydrodynamic equations, it is estimated that a flow velocity of at least 6.6 m/s is needed to slide the largest boulder on a flat surface, while a minimum of 21.5 m/s is required to lift this boulder onto the platform from a lower offshore position. This data set therefore provides clues on the power of unrecorded pre-historical wave events, which should assist in improving hazard assessment for exposed coastlines in the central Pacific Islands.
Felsic maar-diatreme volcanoes: a review
NASA Astrophysics Data System (ADS)
Ross, Pierre-Simon; Carrasco Núñez, Gerardo; Hayman, Patrick
2017-02-01
Felsic maar-diatreme volcanoes host major ore deposits but have been largely ignored in the volcanology literature, especially for the diatreme portion of the system. Here, we use two Mexican tuff rings as analogs for the maar ejecta ring, new observations from one diatreme, and the economic geology literature on four other mineralized felsic maar-diatremes to produce an integrated picture of this type of volcano. The ejecta rings are up to 50 m+ thick and extend laterally up to ˜1.5 km from the crater edge. In two Mexican examples, the lower part of the ejecta ring is dominated by pyroclastic surge deposits with abundant lithic clasts (up to 80% at Hoya de Estrada). These deposits display low-angle cross-bedding, dune bedforms, undulating beds, channels, bomb sags, and accretionary lapilli and are interpreted as phreatomagmatic. Rhyolitic juvenile clasts at Tepexitl have only 0-25% vesicles in this portion of the ring. The upper parts of the ejecta ring sequences in the Mexican examples have a different character: lithic clasts can be less abundant, the grain size is typically coarser, and the juvenile clasts can be different in character (with some more vesicular fragments). Fragmentation was probably shallower at this stage. The post-eruptive maar crater infill is known at Wau and consists of reworked pyroclastic deposits as well as lacustrine and other sediments. Underneath are bedded upper diatreme deposits, interpreted as pyroclastic surge and fall deposits. The upper diatreme and post-eruptive crater deposits have dips larger than 30° at Wau, with approximately centroclinal attitudes. At still lower structural levels, the diatreme pyroclastic infill is largely unbedded; Montana Tunnels and Kelian are good examples of this. At Cerro de Pasco, the pyroclastic infill seems bedded despite about 500 m of post-eruptive erosion relative to the pre-eruptive surface. The contact between the country rocks and the diatreme is sometimes characterized by country rock breccias (Kelian, Mt. Rawdon). Pyroclastic rocks in the diatreme are typically poorly sorted, and ash-rich. They contain a heterolithic mix of juvenile clasts and lithic clasts from various stratigraphic levels. Megablocks derived from the ejecta ring or the country rocks are often found in the diatremes. Evidence for multiple explosions is in the form of steep crosscutting pyroclastic bodies within some diatremes and fragments of pyroclastic rocks within other pyroclastic facies. Pyroclastic rocks are cut by coherent felsic dikes and plugs which may have been feeders to lava domes at the surface. Allowing for the difference in magma composition, felsic maar-diatreme volcanoes have many similarities with their ultramafic to mafic equivalents. Differences include a common association with felsic domes, inside the crater or just outside (Wau), although the domes within the crater may be destroyed during the eruption (Hoya de Estrada, Tepexitl); the dikes and plugs feeding and invading felsic diatremes seem larger; the processes of phreatomagmatic explosions involving felsic magmas may be different.
NASA Astrophysics Data System (ADS)
Tinkler, Keith J.; Parish, John
Cooksville Creek (33 km2) is based in weak Georgian Bay Formation shale and thin limestone and has been gradually urbanized by the City of Mississauga within the last thirty years. These conditions, together with a mean thalweg gradient of about 0.77%, have produced enhanced rates of channel bed erosion along much of the channel (the order of 2 centimetres per year), as revealed by installed engineering works, such as armour stone blocks and gabion baskets. Erosion rates below drop structures are up to an order of magnitude faster. A year-long monitoring program revealed that weathering of the shale bed by wetting and drying cycles was primarily responsible for fragmenting the shale to a size (a few centimetres on the long axis) which could be removed by frequent and moderate high flows with a magnitude much less than the Mean Annual Flood. Channel bed quarrying of shale and limestone slabs, and the transport of larger clasts and meter dimension armour stones toppled from channel structures, require flood flows with a recurrence interval of about the Mean Annual Flood. Such flows are characterized by critical or supercritical flow conditions along the thalweg, and with velocities typically in the range 4 to 6 meters per second, they are well able to quarry the bed, and transport clasts up to metre dimension in size.
The Daskop Granophyre Dyke: Inhomogeneous clast distribution and chemistry
NASA Astrophysics Data System (ADS)
Kovaleva, Elizaveta; Huber, Matthew S.; Somers, Andrew; Bateman, Stuart
2017-04-01
The Vredefort Granophyre is present in the central basement of the Vredefort impact structure as a set of dykes up to 9 km long and up to 65 m wide and is considered to be the remnant of the impact melt sheet (e.g. French et al. 1989; French and Nielsen 1990). The dykes intruded into the floor of the structure's core during the crater modification and settling stages (e.g. Therriault et al. 1996). Granophyre is typically considered a well-homogenized and uniform melt (e.g., Nel 1927; Gibson and Reimold 2008). This study presents new insights into the chemical variety and inhomogeneous clast distribution of the Vredefort granophyre. The Granophyre dyke on the farm Daskop is located in the core of the impact structure and hosted by granitic gneiss of the Archean basement. The clast distribution was mapped in the eastern half of the dyke. Additionally, non-destructive geochemical methods (handheld µXRF and LIBS systems) were used to obtain chemical analysis of the dyke along strike. The map of clast distribution in the granophyre dyke reveals an inhomogeneous content of clasts, with a consistently higher concentration of clasts along the southern contact. This distribution suggests that either 1) the dyke orientation is non-vertical, allowing gravitational settling to affect the distribution of the clasts after the dyke intruded; or 2) that clasts were preferentially entrained along the southern margin of the dyke. Clast frequency also differs along strike. Many elongated clasts are oriented parallel to the dyke walls, indicating flow. We have also documented linear structures resembling flow channels. These structures are strictly parallel to the dyke walls and have a finer texture than the host granophyre. These may represent differentiation of the melt during crystallization. Chemical inhomogeneity of granophyre dyke has also been documented along strike. Such chemical variation may reflect local differences in the relative amounts of target rocks incorporated into the melt (e.g. French and Nielsen 1990). References French B.M., Nielsen R.L. (1990) Vredefort bronzite granophyre: chemical evidence for origin as a meteorite impact melt. Tectonophysics 171:119-138. French B.M., Orth C.J., Quintana L.R. (1989) Iridium in the Vredefort Bronzite Granophyre - Impact melting and limits on a possible extraterrestrial component. Proceedings, 19th Lunar and Planetary Science Conference. pp.733-744. Gibson R.L., Reimold W.U. (2008) Geology of the Vredefort impact structure, a guide to sites of interest. Pretoria: Council for Geoscience. 181 p. Nel L.T. (1927) The geology of the country around Vredefort - An explanation of the geological map. Pretoria: South Africa Geological Survey. 134 p. Therriault A.M., Reimold W.U., Reid A.M. (1996) Field relations and petrography of the Vredefort Granophyre. South African Journal of Geology 99:1-21.
Origin of maar volcanoes: external water, internal volatiles, or both?
NASA Astrophysics Data System (ADS)
Rausch, J.; Schmincke, H.-U.
2012-04-01
The origin of maar volcanoes has been interpreted as due to explosive magma-water interaction for more than 40 years (Fisher and Waters 1970; Lorenz 1973 and Fisher and Schmincke 1984). Earlier suspicions that CO2-degassing plays a role in maar formation (Schmincke 1977) are now followed up by re-examining maar deposits of four different compositions in the maar-type locality (Eifel, Germany). These four compositions comprise: (1) melilite-nephelinites (West Eifel), (2) leucitites/nephelinites (West Eifel), (3) Na-rich basanites (West Eifel), and (4) K-rich basanites (East Eifel). At present, we focus on high-resolution stratigraphy, sedimentology, grain-size distribution, component analysis (accidental vs. juvenile clasts), and morphological and textural particle studies, accompanied by standard glass and bulk chemical and mineralogical analyses. Interestingly, maar deposits of highly silica-undersaturated and - by inference - CO2-rich composition (melilite-nephelinites and leucitites/nephelinites) show features contrasting with the classical catalogue of criteria for hydroclastic fragmentation (Fisher and Schmincke 1984). Their deposits are medium- to coarse-grained (MdØ mainly: 2 - 8 mm), mostly moderate- to well-sorted (σØ mainly: 1 - 2.5) and in some cases juvenile-rich (up to 50-70 wt. %). Transport and depositional mechanisms comprise a mixture of surge and fallout differing from the general assumption that maar deposits are dominated by surges. Additionally, features of juvenile clasts of highly silica-undersaturated composition largely differ from the features of "classic" hydroclastic particles (e.g.: dense, blocky, glassy shards). Juvenile clasts of highly silica-undersaturated composition show: (a) round- to semiround morphologies, (b) slight- to moderate vesicularities, (c) near absence of glassy material, (d) abundance of deep-seated xenoliths (mantle and lower crust), (e) agglutinated lava rinds enveloping the mantle- and crust-xenoliths, and (f) carbonate fragments, most probably of magmatic origin, within the groundmass. In contrast, basanitic maar deposits - by inference with low CO2 concentrations - and particularly their juvenile clasts show more conventional features of hydroclastic fragmentation processes. They are finer-grained, moderate- to poorly-sorted, extremely lithoclast-rich, and the juvenile clasts are generally angular, slightly- to non-vesicular and glassy. Moreover, deep-seated xenoliths and carbonate fragments are lacking. At this stage in our study we postulate that the high CO2 concentrations of highly silica-undersaturated maar volcanoes in the West Eifel could have played a significant role in maar-forming processes. These magmas may have undergone magmatic fragmentation due to rapid CO2-exsolution prior to shallow magma-water interaction resulting in explosive eruptions governed by both, magmatic and phreatomagmatic fragmentation and eruptive processes.
NASA Astrophysics Data System (ADS)
Costantini, L.; Pioli, L.; Bonadonna, C.; Clavero, J.; Longchamp, C.
2011-03-01
Villarrica (Chile) is one of the most active volcanoes in South America having erupted about 60 times in the last 460 years. Although its historical eruptive activity has been mainly effusive and weakly explosive, it had strong explosive behaviour in postglacial times. Chaimilla (< 3.1 ka) is one of the best exposed and widely dispersed pyroclastic deposits, related to both fall and flow activity. The deposit is dispersed over an area of 250 km 2 and consists of 8 units (A-H) which were grouped into four sequences. Stratigraphic data suggest that the eruption had a relatively short duration and evolved from i) an Opening phase, dispersing ash, lapilli clasts, accretionary lapilli, blocks and bombs, to ii) a Pulsatory phase, originating a series of magmatic explosions, to iii) a Collapsing phase, characterised by unstable plumes which emplaced a series of pyroclastic density currents intercalated with thin fallout layers and finally to iv) a Climactic phase forming a more sustained plume which eventually collapsed generating the final pyroclastic density currents. The deposit (fall and flow) has a minimum cumulative volume of 0.6 km 3, with the main sustained phase being associated with a VEI 4 and the flow units having a minimum estimated total volume of 0.04 km 3. The erupted material has a homogenous chemical composition but displays a remarkable variability in both textural and physical properties. The density distribution of juvenile products shows a clear bimodality characterised by two main populations: P1 and P2. Population P1 consists of highly vesicular clasts (modal density around 1000 kg m - 3 ) with mostly sub-spherical bubbles and moderately crystallised groundmass with large-sized microlites. Clasts from population P2 are poorly vesicular (modal density around 1600 kg m - 3 ) with irregular to collapsed bubbles and numerous smaller microlites. The variability of both vesicularity and microlite characteristics suggests the involvement of two magma batches with distinct pre-eruptive degassing and rising histories. Our eruption conceptual model implies the arrival of new magma (represented in the deposit by P1 clasts) into a small, outgassed magma body which was accumulated at shallow level (mainly represented by P2 clasts). A new Chaimilla-type eruption could significantly affect the communities that have recently developed around Villarrica volcano and subsist mainly on tourism and forestry. As a result, a better understanding of the dynamics and evolution of the Chaimilla eruption is necessary for the identification of potential hazard scenarios at Villarrica volcano and, ultimately, for the risk mitigation of this populated area of Southern Chile.
Grossman, J.N.; Rubin, A.E.; MacPherson, G.J.
1988-01-01
Allan Hills 85085 is a unique chondrite with affinities to the Al Rais-Renazzo clan of carbonaceous chondrites. Its constituents are less than 50 ??m in mean size. Chondrules and microchondrules of all textures are present; nonporphyritic chondrules are unusually abundant. The mean compositions of porphyritic, nonporphyritic and barred olivine chondrules resemble those in ordinary chondrites except that they are depleted in volatile elements. Ca-, Al-rich inclusions are abundant and largely free of nebular alteration; they comprise types similar to those in CM and CO chondrites, as well as unique types. Calcium dialuminate occurs in several inclusions. Metal, silicate and sulfide compositions are close to those in CM-CO chondrites and Al Rais and Renazzo. C1-chondrite clasts and metal-rich "reduced" clasts are present, but opaque matrix is absent. Siderophile abundances in ALH85085 are extremely high (e.g., Fe Si = 1.7 ?? solar), and volatiles are depleted (e.g., Na Si = 0.25 ?? solar, S Si = 0.03 ?? solar). Nonvolatile lithophile abundances are similar to those in Al Rais, Renazzo, and CM and CO chondrites. ALH85085 agglomerated when temperatures in the nebula were near 1000 K, in the same region where Renazzo, Al Rais and the CI chondrites formed. Agglomeration of high-temperature material may thus be a mechanism by which the fractionation of refractory lithophiles occurred in the nebula. Chondrule formation must have occurred at high temperatures when clumps of precursors were small. After agglomeration, ALH85085 was annealed and lightly shocked. C1 and other clasts were subsequently incorporated during late-stage brecciation. ?? 1988.
Young Pb-Isotopic Ages of Chondrules in CB Carbonaceous Chondrites
NASA Technical Reports Server (NTRS)
Amelin, Yuri; Krot, Alexander N.
2005-01-01
CB (Bencubbin-type) carbonaceous chondrites differ in many ways from more familiar CV and CO carbonaceous chondrites and from ordinary chondrites. CB chondrites are very rich in Fe-Ni metal (50-70 vol%) and contain magnesian silicates mainly as angular to sub-rounded clasts (or chondrules) with barred olivine (BO) or cryptocrystalline (CC) textures. Both metal and silicates appear to have formed by condensation. The sizes of silicate clasts vary greatly between the two subgroups of CB chondrites: large (up to one cm) in CB(sub a) chondrites, and typically to much much less than 1 mm in CB(sub b) chondrites. The compositional and mineralogical differences between these subgroups and between the CB(sub s) and other types of chondrites suggest different environment and possibly different timing of chondrule formation. In order to constrain the timing of chondrule forming processes in CB(sub s) and understand genetic relationship between their subgroups, we have determined Pb-isotopic ages of silicate material from the CB(sub a) chondrite Gujba and CB(sub b) chondrite Hammadah al Hamra 237 (HH237 hereafter).
A methodology for the semi-automatic digital image analysis of fragmental impactites
NASA Astrophysics Data System (ADS)
Chanou, A.; Osinski, G. R.; Grieve, R. A. F.
2014-04-01
A semi-automated digital image analysis method is developed for the comparative textural study of impact melt-bearing breccias. This method uses the freeware software ImageJ developed by the National Institute of Health (NIH). Digital image analysis is performed on scans of hand samples (10-15 cm across), based on macroscopic interpretations of the rock components. All image processing and segmentation are done semi-automatically, with the least possible manual intervention. The areal fraction of components is estimated and modal abundances can be deduced, where the physical optical properties (e.g., contrast, color) of the samples allow it. Other parameters that can be measured include, for example, clast size, clast-preferred orientations, average box-counting dimension or fragment shape complexity, and nearest neighbor distances (NnD). This semi-automated method allows the analysis of a larger number of samples in a relatively short time. Textures, granulometry, and shape descriptors are of considerable importance in rock characterization. The methodology is used to determine the variations of the physical characteristics of some examples of fragmental impactites.
The Sm-Nd systematics of silicate inclusions in iron meteorites: Results from Caddo (IAB)
NASA Technical Reports Server (NTRS)
Stewart, Brian W.; Papanastassiou, D. A.; Wasserburg, G. J.
1993-01-01
The timing of events leading to the formation of silicate-rich and metal-rich regions in planetesimals remains an important problem in the study of planetary formation and differentiation in the early solar system. The IAB irons are especially important as they are considered to represent a magmatic differentiation series. Iron meteorites present a particular challenge for chronological studies, due to the relative paucity of phases serving as hosts for radioactive parent-daughter nuclides. Recent work using the Re-Os system, following on the pioneering work by Herr et al. and Luck and Allegre, appears promising, but investigators up to now have concentrated on whole rock isochrons. Silicate clasts enclosed within iron meteorites can provide information about the chronology and thermal history of irons. Extensive work on Rb-Sr, K-Ar, and I-Xe has been reported on silicate inclusions in iron meteorites. We report the initial results from our Sm-Nd study of an inclusion with the Caddo IAB iron, the first Sm-Nd isotopic study of a silicate clast embedded within an iron meteorite. Our results include measurements of the standard long-lived Sm-147/Nd-143 (tau = 152 AE) system, as well as the shorter-lived SM-146/Nd-142 (tau = 0.149 AE) system, which has been shown to be very useful in deciphering the history of the early solar system. The Caddo silicate clast was described by Palme et al., who kindly provided us with a major part of the inclusion. The inclusion is coarse-grained consisting predominantly of olivine, clinopyroxene, and plagioclase, with lesser amounts of orthopyroxene, Fe-Ni metal, sulfide, and phosphate. The relatively large grain size (up to 3 mm) and 120 degree grain boundaries suggest extensive metamorphism at high temperatures. Based on study of a thin section, there is evidence for metal invading along grain boundaries in some regions of the inclusion, suggesting that the Fe-Ni metal was molten when the silicate clast was incorporated. Metamorphic recrystallization may have occurred during this event.
Mesosiderite clasts with the most extreme positive europium anomalies among solar system rocks
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.; Rubin, Alan E.; Davis, Andrew M.
1992-01-01
Pigeonite-plagioclase gabbros that occur as clasts in mesosiderites (brecciated stony-iron meteorites) show extreme fractionations of the rare-earth elements (REEs) with larger positive europium anomalies than any previously known for igneous rocks from the earth, moon, or meteorite parent bodies and greater depletions of light REEs relative to heavy REEs than known for comparable cumulate gabbros. The REE pattern for merrillite in one of these clasts is depleted in light REEs and has a large positive europium anomaly as a result of metamorphic equilibration with the silicates. The extreme REE ratios exhibited by the mesosiderite clasts demonstrate that multistage igneous processes must have occurred on some asteroids in the early solar system. Melting of the crust by large-scale impacts or electrical induction from an early T-Tauri-phase sun may be responsible for these processes.
Chronology and petrogenesis of a 1.8 g lunar granitic clast:14321,1062
NASA Technical Reports Server (NTRS)
Shih, C.-Y.; Bansal, B. M.; Wiesmann, H.; Nyquist, L. E.; Bogard, D. D.; Wooden, J. L.
1985-01-01
Geochronological, isotopic, and trace element data for a pristine granite clast from Apollo 14 breccia 14321 obtained using Rb-Sr, Sm-Nd, and (Ar-39)-(Ar-40) methods are presented. Trace element data for a possibly related evolved rock, the quartz-monodiorite clast from breccia 15404 are also presented, and the relationship between these two rock types is discussed. The concordancy of the Rb-Sr and Sm-Nd internal isochron ages and especially the Rb-Sr model age strongly suggest that the granite clast formed 4.1 AE ago. It probably crystallized slowly in the crust and was later excavated and brecciated about 3.88 AE ago, as indicated by the Ar-Ar age. A two-stage model involving crystal fractionation followed by silicate liquid immiscibility is proposed for the lunar granite genesis.
Beyer, Larry A.; McCulloh, Thane H.; Denison, Rodger E.; Morin, Ronald W.; Enrico, Roy J.; Barron, John A.; Fleck, Robert J.
2009-01-01
The right lateral San Gabriel Fault Zone in southern California extends from the northwestern corner of the Ridge Basin southeastward to the eastern end of the San Gabriel Mountains. It bifurcates to the southeast in the northwestern San Gabriel Mountains. The northern and older branch curves eastward in the range interior. The southern younger branch, the Vasquez Creek Fault, curves southeastward to merge with the Sierra Madre Fault Zone, which separates the San Gabriel Mountains from the northern Los Angeles Basin margin. An isolated exposure of partly macrofossiliferous nearshore shallow-marine sandstone, designated the Gold Canyon beds, is part of the southwest wall of the fault zone 5.5 km northwest of the bifurcation. These beds contain multiple subordinate breccia-conglomerate lenses and are overlain unconformably by folded Pliocene-Pleistocene Saugus Formation fanglomerate. The San Gabriel Fault Zone cuts both units. Marine macrofossils from the Gold Canyon beds give an age of 5.2+-0.3 Ma by 87Sr/86Sr analyses. Magnetic polarity stratigraphy dates deposition of the overlying Saugus Formation to between 2.6 Ma and 0.78 Ma. Distinctive metaplutonic rocks of the Mount Lowe intrusive suite in the San Gabriel Range are the source of certain clasts in both the Gold Canyon beds and Saugus Formation. Angular clasts of nondurable Paleocene sandstone also occur in the Gold Canyon beds. The large size and angularity of some of the largest of both clast types in breccia-conglomerate lenses of the beds suggest landslides or debris flows from steep terrain. Sources of Mount Lowe clasts, originally to the north or northeast, are now displaced southeastward by faulting and are located between the San Gabriel and Vasquez Creek faults, indicating as much as 12+-2 km of post-Miocene Vasquez Creek Fault right separation, in accord with some prior estimates. Post-Miocene right slip thus transferred onto the Vasquez Creek Fault southeast of the bifurcation. The right separation on the Vasquez Creek Fault adds to the generally accepted 22-23 km of middle-late Miocene right separation established for the San Gabriel Fault east of the bifurcation, resulting in total right separation of 34-35 km northwest of the bifurcation. Clast sizes and lithologies in Saugus Formation deformed alluvial fan deposits in the Gold and Little Tujunga Canyons area indicate that alluvial stream flow was from the north or north-northeast. The alluvial fan complex is beheaded at the San Gabriel Fault Zone, and no correlative deposits have been found north of the fault zone. Likely sources of several distinctive clast types are east of the bifurcation and north of the Vasquez Creek Fault. Combining these data with right slip caused by the 34 deg +-6 deg of clockwise local block rotation suggests that post-Saugus Formation (<2.6 to 0.78 Ma) right separation along the fault zone is 4+-2 km. The fossils, lithology, and age of the Gold Canyon beds correlate with the basal Pico Formation. The beds presumably connected southward or southwestward to a more open marine setting. A search for correlative strata to the south and southwest found that some strata previously mapped as Towsley Formation correlate with the Modelo Formation. Oyster spat in some Modelo Formation beds are the first recorded fossil occurrences and are especially remarkable because of associations with Miocene bathyal benthic foraminifers, planktonic calcareous nannofossils, and diatoms. Topanga Group basalt resting on basement rocks between Little and Big Tujunga Canyons gives an age of 16.14+-0.05 Ma from 40Ar/39Ar analysis. Improved understanding of the upper Miocene stratigraphy indicates large early movement on the eastern Santa Susana Fault at about 7-6 Ma.
NASA Astrophysics Data System (ADS)
Connor, C.; Connor, L.
2013-05-01
A crucial problem at most volcanoes involves the reconstruction of past eruptions from the geologic record. Rapid erosion of many volcanic terrains means that even geologically recent eruptions can leave a relatively sparse record. Here we consider the tephra-stratigraphic record of the 1913 eruption of Volcan de Colima, a recent but greatly eroded tephra fallout deposit. A total of 37 stratigraphic sections of the 1913 deposit have been analyzed for thickness, granulometry and geochemistry. The 1913 scoria are hornblende and two-pyroxene andesites with approximately 58 wt% SiO2, providing a distinct geochemical and petrographic signature from earlier (1818) and later (1961) tephra fallout deposits. A computer algorithm and code, Tephra2, is used to model the thickness variation of the deposit observed at these 37 localities using the advection-diffusion equation and to model the particle size distribution at each locality. Based on models of the particle size distribution, we estimate a median particle size for the deposit to be approximately -0.15 phi. We find model eruption height of approximately 18 km amsl and total erupted mass of 4-6e7 kg to best fit the observed tephra-stratigraphy. This volume and column height agree well with estimates from integrating the interpolated isopach map and maximum clast analysis. When historical reports of tephra accumulation are included in an alternative model, finer median particle size (2 phi), higher columns (25 km amsl) and greater total eruption mass (1-10e8 kg) are inferred, but with much greater uncertainty. The differences between these models suggest that either significant segregation by particle size as a function of height occurred in the 1913 eruption column, or the distal tephra fallout was associated with co-pyroclastic flow plumes ascending to great height, rather than direct deposition from the eruption column. This analysis highlights potential bias in eruption magnitude estimates from using only proximal deposits, which are the most likely preserved.
Primary and secondary fragmentation of crystal-bearing intermediate magma
NASA Astrophysics Data System (ADS)
Jones, Thomas J.; McNamara, Keri; Eychenne, Julia; Rust, Alison C.; Cashman, Katharine V.; Scheu, Bettina; Edwards, Robyn
2016-11-01
Crystal-rich intermediate magmas are subjected to both primary and secondary fragmentation processes, each of which may produce texturally distinct tephra. Of particular interest for volcanic hazards is the extent to which each process contributes ash to volcanic plumes. One way to address this question is by fragmenting pyroclasts under controlled conditions. We fragmented pumice samples from Soufriere Hills Volcano (SHV), Montserrat, by three methods: rapid decompression in a shock tube-like apparatus, impact by a falling piston, and milling in a ball mill. Grain size distributions of the products reveal that all three mechanisms produce fractal breakage patterns, and that the fractal dimension increases from a minimum of 2.1 for decompression fragmentation (primary fragmentation) to a maximum of 2.7 by repeated impact (secondary fragmentation). To assess the details of the fragmentation process, we quantified the shape, texture and components of constituent ash particles. Ash shape analysis shows that the axial ratio increases during milling and that particle convexity increases with repeated impacts. We also quantify the extent to which the matrix is separated from the crystals, which shows that secondary processes efficiently remove adhering matrix from crystals, particularly during milling (abrasion). Furthermore, measurements of crystal size distributions before (using x-ray computed tomography) and after (by componentry of individual grain size classes) decompression-driven fragmentation show not only that crystals influence particular size fractions across the total grain size distribution, but also that free crystals are smaller in the fragmented material than in the original pumice clast. Taken together, our results confirm previous work showing both the control of initial texture on the primary fragmentation process and the contributions of secondary processes to ash formation. Critically, however, our extension of previous analyses to characterisation of shape, texture and componentry provides new analytical tools that can be used to assess contributions of secondary processes to ash deposits of uncertain or mixed origin. We illustrate this application with examples from SHV deposits.
Seismic properties of Leg 195 serpentinites and their geophysical implications
Courtier, Anna M.; Hart, David J.; Christensen, Nikolas I.; Shinohara, Masanao; Salisbury, Matthew H.; Richter, Carl
2006-01-01
Knowledge of seismic velocities is necessary to constrain the lithologies encountered in seismic studies. We measured the seismic velocities, both compressional and shear wave, of clasts recovered during Ocean Drilling Program Leg 195 from a serpentine mud volcano, the South Chamorro Seamount. The compressional wave velocities of these clasts vary from a lower value of 5.5 km/s to an upper value of 6.1 km/s at a confining stress of 200 MPa. The shear wave velocities vary from a lower value of 2.8 km/s to an upper value of 3.3 km/s at a confining stress of 200 MPa. The densities of the samples vary from 2548 to 2701 kg/m3. These velocities and densities are representative of the highly serpentinized harzburgite and dunite mineralogy of the clasts. Velocities from a seismic study of the Izu-Bonin forearc wedge were used to calculate the degree of serpentinization in the forearc wedge. The seismic velocities of the forearc wedge are higher than the velocities of the clasts recovered from the South Chamorro Seamount, suggesting that the clasts are more serpentinized than the forearc wedge.
Lithologies contributing to the clast population in Apollo 17 LKFM basaltic impact melts
NASA Technical Reports Server (NTRS)
Norman, Marc D.; Taylor, G. Jeffrey; Spudis, Paul; Ryder, Graham
1992-01-01
LKFM basaltic impact melts are abundant among Apollo lunar samples, especially those from Apollo 15, 16, and 17. They are generally basaltic in composition, but are found exclusively as impact melts. They seem to be related to basins and so could represent the composition of the lower lunar crust. They contain lithic clasts that cannot be mixed in any proportion to produce the composition of the melt matrix; components rich in transition elements (Ti, Cr, Sc) and REE are not considered. To search for the mysterious cryptic component, we previously investigated the mineral clast population in two Apollo 14 LKFM basaltic impact melts, 15445 and 15455. The cryptic component was not present in the mineral clast assemblage of these breccias either, but some olivine and pyroxene grains appeared to be from lithologies not represented among identified igneous rocks from the lunar highlands. In addition, none of the mineral clasts could be unambiguously assigned to a ferroan anorthosite source. We have now extended this study to Apollo 17, starting with two LKFM impact melt breccias (76295 and 76315) from the Apollo 17 station 6 boulder. The results from the study are presented.
Consortium study of the unusual H chondrite regolith breccia, Noblesville
NASA Technical Reports Server (NTRS)
Lipschutz, Michael E.; Wolf, Stephen F.; Vogt, Stephan; Michlovich, Edward; Lindstrom, Marilyn M.; Zolensky, Michael E.; Mittlefehldt, David W.; Satterwhite, Cecilia; Schultz, Ludolf; Loeken, Thomas
1993-01-01
The Noblesville meteorite is a genomict, regolith breccia (H6 clasts in H4 matrix). Moessbauer analysis confirms that Noblesville is unusually fresh, not surprising in view of its recovery immediately after its fall. It resembles 'normal' H4-6 chondrites in its chemical composition and induced thermoluminescence (TL) levels. Thus, at least in its contents of volatile trace elements, Noblesville differs from other H chondrite, class A regolith breccias. Noblesville's small pre-atmospheric mass and fall near solar maximum and/or its peculiar orbit (with perihelion less than 0.8 AU as shown by natural TL intensity) may partly explain its levels of cosmogenic radionuclides. Its cosmic ray exposure age of about 44 Ma is long, is equalled or exceeded by less than 3 percent of all H chondrites, and also differs from the 33 +/- 3 Ma mean exposure age peak of other H chondrite regolith breccias. While Noblesville is now among the chondritic regolithic breccias richest in solar gases, elemental ratios indicate some loss, especially of He, perhaps by impacts in the regolith that heated individual grains. While general shock-loading levels in Noblesville did not exceed 4 GPa, individual clasts record shock levels of 5-10 GPa, doubtless acquired prior to lithification of the whole-rock meteoroid.
NASA Technical Reports Server (NTRS)
Komar, Paul D.
1991-01-01
The term mud volcano is applied to a variety of landforms having in common a formation by extrusion of mud from beneath the ground. Although mud is the principal solid material that issues from a mud volcano, there are many examples where clasts up to boulder size are found, sometimes thrown high into the air during an eruption. Other characteristics of mud volcanoes (on Earth) are discussed. The possible presence of mud volcanoes, which are common and widespread on Earth, on Mars is considered.
Bartosova, Katerina; Gier, Susanne; Horton, J. Wright; Koeberl, Christian; Mader, Dieter; Dypvik, Henning
2010-01-01
The ICDP–USGS Eyreville drill cores in the Chesapeake Bay impact structure reached a total depth of 1766 m and comprise (from the bottom upwards) basement-derived schists and granites/pegmatites, impact breccias, mostly poorly lithified gravelly sand and crystalline blocks, a granitic slab, sedimentary breccias, and postimpact sediments. The gravelly sand and crystalline block section forms an approximately 26 m thick interval that includes an amphibolite block and boulders of cataclastic gneiss and suevite. Three gravelly sands (basal, middle, and upper) are distinguished within this interval. The gravelly sands are poorly sorted, clast supported, and generally massive, but crude size-sorting and subtle, discontinuous layers occur locally. Quartz and K-feldspar are the main sand-size minerals and smectite and kaolinite are the principal clay minerals. Other mineral grains occur only in accessory amounts and lithic clasts are sparse (only a few vol%). The gravelly sands are silica rich (~80 wt% SiO2). Trends with depth include a slight decrease in SiO2 and slight increase in Fe2O3. The basal gravelly sand (below the cataclasite boulder) has a lower SiO2 content, less K-feldspar, and more mica than the higher sands, and it contains more lithic clasts and melt particles that are probably reworked from the underlying suevite. The middle gravelly sand (below the amphibolite block) is finer-grained, contains more abundant clay minerals, and displays more variable chemical compositions than upper gravelly sand (above the block). Our mineralogical and geochemical results suggest that the gravelly sands are avalanche deposits derived probably from the nonmarine Potomac Formation in the lower part of the target sediment layer, in contrast to polymict diamictons higher in the core that have been interpreted as ocean-resurge debris flows, which is in agreement with previous interpretations. The mineralogy and geochemistry of the gravelly sands are typical for a passive continental margin source. There is no discernible mixing with marine sediments (no glauconite or Paleogene marine microfossils noted) during the impact remobilization and redeposition. The unshocked amphibolite block and cataclasite boulder might have originated from the outer parts of the transient crater.
The Erevan howardite: Petrology of glassy clasts and mineral chemistry
NASA Technical Reports Server (NTRS)
Nazarov, M. A.; Ariskin, A. A.
1993-01-01
The Erevan howardite is a polymict regolith breccia containing xenoliths of carbonaceous chondrites. In this work, we studied glassy clasts, which could be considered as primary quenched melts, and mineral chemistry of the breccia. The study reveals that the Erevan howardite consists of common rocks of the HED suite. However, unique glassy clasts, which are present in some eucritic melts, were identified. The mineral chemistry and the simulation of crystallization of the melts suggest that the compositions of the melts reflect those of some primary lithologies of EPB.
NASA Astrophysics Data System (ADS)
Spray, John G.; Boonsue, Suporn
2018-01-01
Coesite and stishovite are developed in shock veins within metaquartzites beyond a radius of 30 km from the center of the 2.02 Ga Vredefort impact structure. This work focuses on deploying analytical field emission scanning electron microscopy, electron backscattered diffraction, and Raman spectrometry to better understand the temporal and spatial relations of these silica polymorphs. α-Quartz in the host metaquartzites, away from shock veins, exhibits planar features, Brazil twins, and decorated planar deformation features, indicating a primary (bulk) shock loading of >5 < 35 GPa. Within the shock veins, coesite forms anhedral grains, ranging in size from 0.5 to 4 μm, with an average of 1.25 μm. It occurs in clasts, where it displays a distinct jigsaw texture, indicative of partial reversion to a less dense SiO2 phase, now represented by microcrystalline quartz. It is also developed in the matrix of the shock veins, where it is typically of smaller size (<1 μm). Stishovite occurs as euhedral acicular crystals, typically <0.5 μm wide and up to 15 μm in length, associated with clast-matrix or shock vein margin-matrix interfaces. In this context, the needles occur as radiating or subparallel clusters, which grow into/over both coesite and what is now microcrystalline quartz. Stishovite also occurs as more blebby, subhedral to anhedral grains in the vein matrix (typically <1 μm). We propose a model for the evolution of the veins (1) precursory frictional melting in a microfault ( 1 mm wide) generates a molten matrix containing quartz clasts. This is followed by (2) arrival of the main shock front, which shocks to 35 GPa. This generates coesite in the clasts and in the matrix. (3) On initial shock release, the coesite partly reverts to a less dense SiO2 phase, which is now represented by microcrystalline quartz. (4) With continued release, stishovite forms euhedral needle clusters at solid-liquid interfaces and as anhedral crystals in the matrix. (5) With decreasing pressure-temperature, the matrix completes crystallization to yield a microcrystalline quasi-igneous texture comprising quartz-coesite-stishovite-kyanite-biotite-alkali feldspar and accessory phases. It is possible that the shock vein represents the locus of a thermal spike within the bulk shock, in which case there is no requirement for additional pressure (i.e., the bulk shock was ≃35 GPa). However, if that pressure was not realized from the main shock, then supplementary pressure excursions within the vein would have been required. These could have taken the form of localized reverberations from wave trapping, or implosion processes, including pore collapse, phase change-initiated volume reduction, and melt cavitation.
NASA Astrophysics Data System (ADS)
Cahill, J. T.; Floss, C.; Anand, M.; Taylor, L. A.; Nazarov, M. A.; Cohen, B. A.
2004-04-01
The petrogenesis of four lunar highlands meteorites, Dhofar 025 (Dho 025), Dhofar 081 (Dho 081), Dar al Gani 262 (DaG 262), and Dar al Gani 400 (DaG 400) were studied. For Dho 025, measured oxygen isotopic values and Fe-Mn ratios for mafic minerals provide corroboratory evidence that it originated on the Moon. Similarly, Fe-Mn ratios in the mafic minerals of Dho 081 indicate lunar origin. Lithologies in Dho 025 and Dho 081 include lithic clasts, granulites, and mineral fragments. A large number of lithic clasts have plagioclase AN# and coexisting mafic mineral Mg# that plot within the "gap" separating ferroan anorthosite suite (FAN) and high-magnesium suite (HMS) rocks. This is consistent with whole rock Ti-Sm ratios for Dho 025, Dho 081, and DaG 262, which are also intermediate compared to FAN and HMS lithologies. Although ion microprobe analyses performed on Dho 025, Dho 081, DaG 262, and DaG 400 clasts and minerals show far stronger FAN affinities than whole rock data suggest, most clasts indicate admixture of £12% HMS component based on geochemical modeling. In addition, coexisting plagioclase-pyroxene REE concentration ratios in several clasts were compared to experimentally determined plagioclase-pyroxene REE distribution coefficient ratios. Two Dho 025 clasts have concordant plagioclase-pyroxene profiles, indicating that equilibrium between these minerals has been sustained despite shock metamorphism. One clast has an intermediate FAN-HMS composition. These lunar meteorites appear to represent a type of highland terrain that differs substantially from the KREEP-signatured impact breccias that dominate the lunar database. From remote sensing data, it is inferred that the lunar far side appears to have appropriate geochemical signatures and lithologies to be the source regions for these rocks; although, the near side cannot be completely excluded as a possibility. If these rocks are, indeed, from the far side, their geochemical characteristics may have far-reaching implications for our current scientific understanding of the Moon.
Clast Selection and Metallographic Cooling Rates: Initial Results on Type 1A and 2A Mesosiderites
NASA Technical Reports Server (NTRS)
Baecker, B.; Cohen, B. A.; Rubin, A. E.; Frasl, B.; Corrigan, C. M.
2017-01-01
We initiated a comprehensive study on selected clasts and metal of mesosiderites using SEM, electron microprobe and the complete suite of noble gases. Here we report initial results on the petrography of selected clasts and metallographic cooling rates using the central Ni method used in sev-eral publications. We focus on the approach of selecting grains in least recrystallized mesosiderites. Hence, especially (lithic) clasts in type 1A, 1B, 2A and 2B are the first choice. They provide highest primitive-ness and least annealing/metamorphism. All grains selected should be in close proximity to each other. Lithic clasts in mesosiderites are of high interest be-cause of their igneous texture and similarity to eucrites and howardite petrography. We find pyrox-enes (px) and plagioclase (plag) attached to each other which implies a common formation history. It will be interesting to see differences and similarities in their noble gas inventory (CRE ages, trapped components and closure temperature). In addition, we will investi-gate variations of the lithic clasts toward similar grains in the thick sections which are not igneous. Plag grains are the best bases for noble gas measurements con-cerning He to Ar and Ar-Ar dating since it delivers im-portant target elements. We focus on plag grains in close contact to olivine (olv) / px grains to assess weth-er both grains show noble gas patterns being similar or different. Phosphate grains are suitable for Kr and Xe measurements since they yield REE abundances (tar-get elements).
NASA Technical Reports Server (NTRS)
Takeda, H.; Nagaoka, H.; Ohtake, M.; Kobayashi, S.; Yamaguchi, A.; Morota, T.; Karouji, Y.; Haruyma, J.; Katou, M.; Hiroi, T.;
2012-01-01
Ohtake et al. [1] observed by the Kaguya multiband imager and spectral profiler anorthosites composed of nearly pure anorthite (PAN) at numerous locations in the farside highlands. Based on the Th map made by the GRS group of the Kaguya mission, Kobayashi et al. [2] showed that the lowest Th region in the lunar farside occurs near the equatorial region and noted that the regions well correspond to the lunar highest region and the thickest crust region recently measured by Kaguya mission [3,4]. Such remote sensing data have been interpreted in terms of mineralogical studies of lunar meteorites of the Dhofar 489 group [5,6] (e.g., Dhofar 489, 908, and 307) and Yamato (Y-) 86032 [7], all possibly from the farside highlands. Although the presence of magnesian anorthosites in the Dhofar 489 group has been reported, we have not encountered large clast clearly identifiable as PAN. In this study, we investigated mineralogy and textures of large clasts of nearly pure anorthosites recognized in Dhofar 911 and the d2 clast in Dhofar 489 [8]. The d2 clast is the largest white anorthosite clast in Dhofar 489, but its mineralogy has not been investigated at that time. The low bulk FeO concentrations suggests that the d2 clast may be the pure anorthosite with very low abundance of mafic silicates. In conjunction with all data of the Dhofar 489 group including Dhofar 489, 908, 309 and 307, we propose a model of formation of the farside crust.
Caine, Jonathan S.; Bruhn, R.L.; Forster, C.B.
2010-01-01
Outcrop mapping and fault-rock characterization of the Stillwater normal fault zone in Dixie Valley, Nevada are used to document and interpret ancient hydrothermal fluid flow and its possible relationship to seismic deformation. The fault zone is composed of distinct structural and hydrogeological components. Previous work on the fault rocks is extended to the map scale where a distinctive fault core shows a spectrum of different fault-related breccias. These include predominantly clast-supported breccias with angular clasts that are cut by zones containing breccias with rounded clasts that are also clast supported. These are further cut by breccias that are predominantly matrix supported with angular and rounded clasts. The fault-core breccias are surrounded by a heterogeneously fractured damage zone. Breccias are bounded between major, silicified slip surfaces, forming large pod-like structures, systematically oriented with long axes parallel to slip. Matrix-supported breccias have multiply brecciated, angular and rounded clasts revealing episodic deformation and fluid flow. These breccias have a quartz-rich matrix with microcrystalline anhedral, equant, and pervasively conformable mosaic texture. The breccia pods are interpreted to have formed by decompression boiling and rapid precipitation of hydrothermal fluids whose flow was induced by coseismic, hybrid dilatant-shear deformation and hydraulic connection to a geothermal reservoir. The addition of hydrothermal silica cement localized in the core at the map scale causes fault-zone widening, local sealing, and mechanical heterogeneities that impact the evolution of the fault zone throughout the seismic cycle. ?? 2010.
Eruptive history of the Ubehebe Crater cluster, Death Valley, California
NASA Astrophysics Data System (ADS)
Fierstein, Judy; Hildreth, Wes
2017-04-01
A sequence of late Holocene eruptions from the Ubehebe Crater cluster in Death Valley was short-lived, emplacing several phreatomagmatic and magmatic deposits. Seven craters form the main group, which erupted along a north-south alignment 1.5 km long. At least five more make a 500-m east-west alignment west of the main crater group. One more is an isolated shallow crater 400 m south of that alignment. All erupted through Miocene fanglomerate and sandstone, which are now distributed as comminuted matrix and lithic clasts in all Ubehebe deposits. Stratigraphic evidence showing that all Ubehebe strata were emplaced within a short time interval includes: (1) deposits from the many Ubehebe vents make a multi-package sequence that conformably drapes paleo-basement topography with no erosive gullying between emplacement units; (2) several crater rims that formed early in the eruptive sequence are draped smoothly by subsequent deposits; and (3) tack-welded to agglutinated spatter and bombs that erupted at various times through the sequence remained hot enough to oxidize the overlying youngest emplacement package. In addition, all deposits sufficiently consolidated to be drilled yield reliable paleomagnetic directions, with site mean directions showing no evidence of geomagnetic secular variation. Chemical analyses of juvenile components representing every eruptive package yield a narrow range in major elements [SiO2 (48.65-50.11); MgO (4.98-6.23); K2O (2.24-2.39)] and trace elements [Rb (28-33); Sr (1513-1588); Zr (373-404)]. Despite lithologic similarities, individual fall units can be traced outward from vent by recording layer thicknesses, maximum scoria and lithic sizes, and juvenile clast textural variations. This permits reconstruction of the eruptive sequence, which produced a variety of eruptive styles. The largest and northernmost of the craters, Ubehebe Crater, is the youngest of the group. Its largely phreatomagmatic deposits drape all of the others, thicken in paleogullies and thin over several newly created crater rims. Evidence in-hand virtually requires that the Ubehebe cluster of craters erupted over a brief time interval, not protracted over centuries.
NASA Astrophysics Data System (ADS)
Pálfy, József; Price, Gregory D.; Vörös, Attila; Kovács, Zsófia; Johannson, Gary G.
2017-04-01
Cold seeps, where seepage of methane and/or other hydrocarbon-rich fluids and hydrogen-sulfide occurs in the sea floor, are sites which harbor highly specialized ecosystems associated with distinctive carbonate sediments. Although their Mesozoic record is scarce and patchy, it commonly includes rhynchonellid brachiopods, often of large size. Each new occurrence is valuable in filling gaps and providing additional insight into these peculiar ecosystems. Here we report a monospecific assemblage of Anarhynchia from a boulder-sized limestone clast of Early Pliensbachian (Early Jurassic) age in the Inklin Formation of the Whitehorse Trough in Stikine terrane, recovered from a locality at Copper Island in Atlin Lake, northern British Columbia, Canada. Specimens are of unusually large size, up to 9 cm in length, and their external and internal morphology allows assignment to Anarhynchia but warrants introduction of a new species. Although d13C and d18O values of the shells are close to equilibrium with ancient seawater, early precipitated carbonate cement phases of the enclosing limestone are characterised by highly depleted carbon isotopic composition, indicative of the influence of microbial oxidation of methane derived from a cold seep. Carbonate petrography of the isopachous, banded-fibrous cement supports its origin in a cold seep environment. Volcanogenic detrital grains in the micritic matrix of the limestone clast are indistinguishable from those in the sandstone layers in the siliciclastic sequence, suggesting that the seep carbonate is broadly coeval with the enclosing conglomerate. Previously, Anarhynchia has been known from the Lower Jurassic of California and Oregon, from both cold seep and hydrothermal vent deposits. Our new record extends the geographic range and species-level diversity of the genus, but supports its endemism to the East Pacific and membership in chemosynthesis-based ecosystems.
The Bossons glacier protects Europe's summit from erosion
NASA Astrophysics Data System (ADS)
Godon, C.; Mugnier, J. L.; Fallourd, R.; Paquette, J. L.; Pohl, A.; Buoncristiani, J. F.
2013-08-01
The contrasting efficiency of erosion beneath cold glacier ice, beneath temperate glacier ice, and on ice-free mountain slopes is one of the key parameters in the development of relief during glacial periods. Detrital geochronology has been applied to the subglacial streams of the north face of the Mont-Blanc massif in order to estimate the efficiency of erosional processes there. Lithologically this area is composed of granite intruded at ~303 Ma within an older polymetamorphic complex. We use macroscopic features (on ~10,000 clasts) and U-Pb dating of zircon (~500 grains) to establish the provenance of the sediment transported by the glacier and its subglacial streams. The lithology of sediment collected from the surface and the base of the glacier is compared with the distribution of bedrock sources. The analysis of this distribution takes into account the glacier's surface flow lines, the surface areas beneath temperate and cold ice above and below the Equilibrium Line Altitude (ELA), and the extent of the watersheds of the three subglacial meltwater stream outlets located at altitudes of 2300 m, 1760 m and 1450 m. Comparison of the proportions of granite and metamorphics in these samples indicates that (1) glacial transport does not mix the clasts derived from subglacial erosion with the clasts derived from supraglacial deposition, except in the lower part of the ice tongue where supraglacial streams and moulins transfer the supraglacial load to the base of the glacier; (2) the glacial erosion rate beneath the tongue is lower than the erosion rate in adjacent non-glaciated areas; and (3) glacial erosion beneath cold ice is at least 16 times less efficient than erosion beneath temperate ice. The low rates of subglacial erosion on the north face of the Mont-Blanc massif mean that its glaciers are protecting "the roof of Europe" from erosion. A long-term effect of this might be a rise in the maximum altitude of the Alps.
Modelling fluid flow in clastic eruptions: application to the Lusi mud eruption.
NASA Astrophysics Data System (ADS)
Collignon, Marine; Schmid, Daniel W.; Galerne, Christophe; Lupi, Matteo; Mazzini, Adriano
2017-04-01
Clastic eruptions involve the rapid ascension of clasts together with fluids, gas and/or liquid phases that may deform and brecciate the host rocks. These fluids transport the resulting mixture, called mud breccia, to the surface. Such eruptions are often associated with geological structures such as mud volcanoes, hydrothermal vent complexes and more generally piercement structures. They involve various processes, acting over a wide range of scales which makes them a complex and challenging, multi-phase system to model. Although piercement structures have been widely studied and discussed, only few attempts have been made to model the dynamics of such clastic eruptions. The ongoing Lusi mud eruption, in the East Java back-arc basin, which began in May 2006, is probably the most spectacular clastic eruption. Lusi's eruptive behaviour has been extensively studied over the past decade and thus represents a unique opportunity to better understand the dynamics driving clastic eruptions, including fossil clastic systems. We use both analytical formulations and numerical models to simulate Lusi's eruptive dynamics and to investigate simple relationships between the mud breccia properties (density, viscosity, gas and clast content) and the volumetric flow rate. Our results show that the conduit radius of such piercement system cannot exceeds a few meters at depth, and that clasts, if not densely packed, will not affect the flow rate when they are smaller than a fifth of the conduit size. Using published data for the annual gas fluxes at Lusi, we infer a maximal depth at which exsolution starts. This occurs between 1800 m and 3200 m deep for the methane and between 750 m and 1000 m for the carbon dioxide.
Brezinski, D.K.; Cecil, C.B.; Skema, V.W.; Stamm, R.
2008-01-01
A Late Devonian polymictic diamictite extends for more than 400??km from northeastern Pennsylvania across western Maryland and into east-central West Virginia. The matrix-supported, unbedded, locally sheared diamictite contains subangular to rounded clasts up to 2??m in diameter. The mostly rounded clasts are both locally derived and exotic; some exhibit striations, faceting, and polish. The diamictite commonly is overlain by laminated siltstone/mudstone facies associations (laminites). The laminites contain isolated clasts ranging in size from sand and pebbles to boulders, some of which are striated. The diamictite/laminite sequence is capped by massive, coarse-grained, pebbly sandstone that is trough cross-bedded. A stratigraphic change from red, calcic paleo-Vertisols in strata below the diamictite to non-calcic paleo-Spodosols and coal beds at and above the diamictite interval suggests that the climate became much wetter during deposition of the diamictite. The diamictite deposit is contemporaneous with regressive facies that reflect fluvial incision during the Late Devonian of the Appalachian basin. These deposits record a Late Devonian episode of climatic cooling so extreme that it produced glaciation in the Appalachian basin. Evidence for this episode of climatic cooling is preserved as the interpreted glacial deposits of diamictite, overlain by glaciolacustrine varves containing dropstones, and capped by sandstone interpreted as braided stream outwash. The Appalachian glacigenic deposits are contemporaneous with glacial deposits in South America, and suggest that Late Devonian climatic cooling was global. This period of dramatic global cooling may represent the end of the mid-Paleozoic warm interval that began in the Middle Silurian. ?? 2008 Elsevier B.V. All rights reserved.
Petrology of the Cangas de Onis and nulles regolith breccias Implications for parent body history
NASA Technical Reports Server (NTRS)
Williams, C. V.; Rubin, A. E.; Keil, K.; San Miguel, A.
1985-01-01
The present study of the Cangas de Onis and Nulles H chondrite regolith breccias indicates that the minerals in the matrices and equilibrated clasts have essentially the same compositional distributions, so that much of the material in the castic matrix would have to have been derived from the impact comminution of clats. The apparently exclusive occurrence of H6 clasts in Cangas de Onis, and H4 clasts in Nulles, suggests that, at the locations where these breccias formed, the regolith predominantly consisted of H6 and H4 material, respectively.
NASA Technical Reports Server (NTRS)
Rubin, Alan E.; Zolensky, Michael E.; Bodnar, Robert J.
2002-01-01
Zag and Monahans (1998) are H-chondrite regolith breccias comprised mainly of lightcolored metamorphosed clasts, dark clasts that exhibit extensive silicate darkening, and a halite-bearing clastic matrix. These meteorites reflect a complex set of modification processes that occurred on the H-chondrite parent body. The light-colored clasts are thermally metamorphosed H5 and H6 rocks that were fragmented and deposited in the regolith. The dark clasts formed from light-colored clasts during shock events that melted and mobilized a significant fraction of their metallic Fe-Ni and troilite grains. The clastic matrices of these meteorites are rich in solar-wind gases. Parent-body water was required to cause leaching of chondri tic minerals and chondrule glass; the fluids became enriched in Na, K, CI, Br, AI, Ca, Mg and Fe. Evaporation of the fluids caused them to become brines as halides and alkalies became supersaturated; grains of halite (and, in the case of Monahans (1998), halite with sylvite inclusions) precipitated at low temperatures (less than or equal to 100 C) in the porous regolith. In both meteorites fluid inclusions were trapped inside the halite crystals. Primary fluid inclusions were trapped in the growing crystals; secondary inclusions formed subsequently from fluid trapped within healed fractures.
New thermoluminescence age estimates for the Nyos maar eruption (Cameroon Volcanic Line)
Tchouankoue, Jean Pierre; Nkouamen Nemzoue, Peguy Noel; Ayaba, Félicité; Nformidah-Ndah, Siggy Signe; Nformi Chifu, Emmanuel
2017-01-01
Nyos maar is located in the Cameroon Volcanic Line and generates a multitude of primary and secondary hazards to the local population. For risk assessment and hazard mitigation, the age of the Nyos maar eruption provides some vital information. Since previous dating efforts using a range of techniques resulted in vastly varying eruption ages, we applied thermoluminescence (TL) methods to obtain independent and direct chronological constraints for the time of maar formation. Target minerals were granitic quartz clasts contained in pyroclastic surge deposits. Thermoluminescence plateau results prove that heat and/or pressure during the phreatomagmatic eruption was sufficient to reset the inherited luminescence signal of granitic bedrock quartz. Parallel application of three TL measurement protocols to one of the two samples gave consistent equivalent doses for the quartz ultra-violet emission. Despite the robustness of our dose estimates, the assessment of the dose rate was accompanied by methodological challenges, such as estimation of the original size distribution of quartz grains in the pyroclastic deposits. Considering results from additional laboratory analyses to constrain these uncertainties, we calculate an average maximum TL age of 12.3 ± 1.5 ka for the Nyos maar eruption. Based on these new data, a more solid risk assessment can be envisaged. PMID:28558057
New thermoluminescence age estimates for the Nyos maar eruption (Cameroon Volcanic Line).
Schmidt, Christoph; Tchouankoue, Jean Pierre; Nkouamen Nemzoue, Peguy Noel; Ayaba, Félicité; Nformidah-Ndah, Siggy Signe; Nformi Chifu, Emmanuel
2017-01-01
Nyos maar is located in the Cameroon Volcanic Line and generates a multitude of primary and secondary hazards to the local population. For risk assessment and hazard mitigation, the age of the Nyos maar eruption provides some vital information. Since previous dating efforts using a range of techniques resulted in vastly varying eruption ages, we applied thermoluminescence (TL) methods to obtain independent and direct chronological constraints for the time of maar formation. Target minerals were granitic quartz clasts contained in pyroclastic surge deposits. Thermoluminescence plateau results prove that heat and/or pressure during the phreatomagmatic eruption was sufficient to reset the inherited luminescence signal of granitic bedrock quartz. Parallel application of three TL measurement protocols to one of the two samples gave consistent equivalent doses for the quartz ultra-violet emission. Despite the robustness of our dose estimates, the assessment of the dose rate was accompanied by methodological challenges, such as estimation of the original size distribution of quartz grains in the pyroclastic deposits. Considering results from additional laboratory analyses to constrain these uncertainties, we calculate an average maximum TL age of 12.3 ± 1.5 ka for the Nyos maar eruption. Based on these new data, a more solid risk assessment can be envisaged.
NASA Astrophysics Data System (ADS)
Maloy, A. K.; Treiman, A. H.; Shearer, C. K., Jr.
2004-03-01
The clast’s bulk composition was reconstructed from mineral analyses by EMP and SIMS. The clast is closely related to ferroan anorthosite (FAN), and is similar to compositions suggested as parent magmas for FAN.
The anatomy of a hydrothermal (explosion ) breccia, Abbot Village, central Maine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, D.C.
1993-03-01
An apparently intrusive hydrothermal breccia is exposed in a large outcrop along Kingsbury Stream downstream from the Route 6 bridge in Abbot Village. The breccia intrudes the Siluro-Devonian Madrid Formation which is comprised of thick-bedded metasandstone interbedded with less fine-grained schist and phyllite at regional biotite grade. In the vicinity of the breccia, the bedding attitude in the Madrid is N60E 70SE and the section faces SE. The breccia is a concordant body with respect to bedding and the exposure shows what appears to the SW terminus of the intrusion which extends an unknown distance NE. The main phase ofmore » the breccia consists of randomly oriented and angular clasts'' of Madrid metasandstone and schist that are cemented by a quartz-dominated matrix. The random orientation of the clasts is present this phase were it is in contact with the country rock. The matrix comprises about 15% of the volume of the breccia and, in addition to quartz, contains biotite, galena, chalcopyrite ( ), pyrite, and an iron-carbonate. In some interstitial matrix, apparently late iron-carbonate fills post-quartz vugs that contain quartz-crystal terminations. The wall phase contains a higher proportion of biotite schist clasts that in places are bent around each other and metasandstone clasts. Quartz veins extending into the country rock near the breccia follow prominent regional joint directions and suggest hydrofracturing of the Madrid was the principal mechanism for breccia formation. The breccia is interpreted to be of explosive origin with the main phase of the body representing clasts that fell down within the vent'' following upward transport. The wall phase is taken to have formed due to adhesion to the wall of breccia clasts during the eruptive stage.« less
An apatite-rich, ferroan, mafic lithology from lunar meteorite ALHA81005
NASA Technical Reports Server (NTRS)
Goodrich, C. A.; Taylor, G. J.; Keil, K.
1985-01-01
Antarctic meteorite Allan Hills A81005 is a polymict, anorthositic regolith breccia of lunar origin. Most lithic clasts in the meteorite 81005 are similar to those from other lunar rocks. However, some, such as 'hyperferroan' anorthosites, have not been reported before the discovery of 81005. On the basis of the composition of some granulitic polymict breccia clasts, it appears possible that other new lithologies are present. In the present paper, a description is provided of an unusual, apatite-rich, ferroan, mafic lithology, and its origin is discussed. Three clasts which appeared to contain two minerals were separated as samples ,32 ,28 and ,27. It is found in a study that the clast in ,32 and ,28 is an apatite-rich ferroan anorthositic troctolite which is probably pristine. This rock is unique among lunar samples. On the basis of an evaluation of the significance of the results of the study, it is concluded that complex processes were apparently involved in the evolution of the primitive lunar crust.
Apollo 17 KREEPy basalts - Evidence for nonuniformity of KREEP
NASA Technical Reports Server (NTRS)
Salpas, Peter A.; Taylor, Lawrence A.; Lindstrom, Marilyn M.
1987-01-01
Breccia 72275 contains pristine KREEPy basalt clasts that are not found among other samples collected at Apollo 17. These basalts occur as discrete clasts and as clasts enclosed within basaltic microbreccias. Mineral and whole-rock chemical analyses reveal that the microbreccias are compositionally indistinguishable from the basalt clasts. Samples of the 72275 matrix also have the same compositions as the basalts and the basaltic microbreccias. 72275 was assembled in situ from a single flow or series of closely related flows of Apollo 17 KREEPy basalt before it was transported to the Apollo 17 site. As a rock type, Apollo 17 KREEPy basalts are distinct from Apollo 15 KREEP basalts. The Apollo 17 samples have lower REE concentrations, steeper negative slopes of the HREE, and are less magnesian than the Apollo 15 samples. The two basalt types cannot be related by fractional crystallization, partial melting, or assimilation. This is evidence for the compositional nonuniformity of KREEP as a function of geography.
NASA Technical Reports Server (NTRS)
Chan, Q. H. S.; Zolensky, M. E.; Kebukawa, Y.; Franchi, I.; Wright, I.; Zhao, I.; Rahman, Z.; Utas, J.
2018-01-01
Primitive xenolithic CI-like carbonaceous (C) clasts are sometimes hosted within meteorites of a different origin (ordinary chondrite, ureilite, howardite, and eucrite). These xenoliths contain aggregates of macromolecular carbon (MMC), which are often present as discrete grains and exhibit a wide range of structural order and chemical compositions. The Carancas meteorite is a H4-5 that impacted south of Lake Titicaca, Peru in 2007. While the meteorite exhibits extensive recrystallization of the matrix indicating metamorphism, it contains dark, CI-like clasts that show no evidence of heating. Similar to other xenolithic clasts, the examined C clast of Carancas contains MMC, which however exists in the form of a vein-like structure dissimilar to the typical occurrence of MMC in meteorites. We investigated the organic and isotopic compositions of the organic-rich vein with C,N,O-X-ray absorption near-edge structure (XANES), Raman spectroscopy, and NanoSIMS, in order to constrain its possible origin.
NASA Technical Reports Server (NTRS)
Brearley, Adrian J.; Prinz, Martin
1992-01-01
Petrographic studies of Nilpena polymict ureilite have revealed the presence of small quantities of carbonaceous chondrite matrix clasts. Detailed electron microprobe and TEM studies show that the chemistry and fine-scale mineralogy of one of these clasts is consistent with CI carbonaceous chondrite matrix. Compared to Orgeuil, the phyllosilicate, sulfide, and oxide mineralogy suggests that the Nilpena clasts may represent a less altered type of CI matrix. It is suggested that increased oxidation and aqueous alteration of Nilpena-type materials could result in the formation of the type of mineral assemblage observed in Orgueil. Increased alteration produces progressive more Mg-rich phyllosilicates and more Fe(3+)-rich iron oxides, such as ferrihydrite. As a function of increased alteration, Ca is also progressively leached from the matrix material to form carbonate veins. The depletion of Ca in CI chondrite matrices suggests the Ivuna and Alais may be intermediate in their degree of alteration to Nilpena and Orgueil.
Magombedze - A new H-chondrite with light-dark structure
NASA Technical Reports Server (NTRS)
Macpherson, Glenn J.; Jarosewich, Eugene; Lowenstein, Peter
1993-01-01
Magombedze is a light-dark structured H-chondrite breccia that fell in Zimbabwe on July 2, 1990 at 15:30 GMT. White clasts are moderately shocked and have equilibrated mafic silicates (pyroxene Fs(16-18), olivine Fa(18-19)) together with clear optically-recognizable plagioclase of variable composition (An(9-13) found); chondrules are distinct but contain no trace of preserved glass. The darker surrounding material contains a higher proportion of fine-grained metal and sulfide than the white clasts, and many of its constituent grains show little evidence of shock. Mafic silicates in the dark lithology are distinctly less-equilibrated (pyroxene Fs(5-21), olivine Fa(11-20)) than those in the white clasts, and many chondrules preserve brown devitrified glass; some metamorphic plagioclase of variable composition (An(11-22) found) is present. Some monoclinic pyroxene occurs in both fractions, but it is relatively common in the dark fraction. The white clasts are classified as H5, and the enclosing dark material is H3-5.
NASA Technical Reports Server (NTRS)
Shervais, John W.; Vetter, Scott K.
1993-01-01
Studies of lithic components in lunar breccias have documented a wide variety of rock types and magma suites which are not found among large, discrete lunar samples. Rock types found exclusively or dominantly as clasts in breccias include KREEP basalts, VHK mare basalts, high-alumina mare basalts, olivine vitrophyres, alkali anorthosites, and magnesian anorthosites and troctolites. These miniature samples are crucial in petrogenetic studies of ancient mare basalts and the highlands crust of the western nearside, both of which have been battered by basin-forming impacts and no longer exist as distinct rock units.
Apollo 16 rocks - Petrology and classification.
NASA Technical Reports Server (NTRS)
Wilshire, H. G.; Stuart-Alexander, D. E.; Jackson, E. D.
1973-01-01
The Apollo 16 rocks are classified in three broad intergradational groups: (1) crystalline rocks, subdivided into igneous rocks and metaclastic rocks, (2) glass, and (3) breccias, which are subdivided into five groups on the basis of clast and matrix colors. Most of the rocks were derived by impact brecciation of an anorthosite-norite suite but may represent ejecta from more than one major basin. First-cycle breccias are believed to have consisted of clasts of crushed anorthosite-norite in a fine-grained partly fused matrix with a chemical composition similar to that of the clasts. Most of the other recognized breccia types could have been produced by rebrecciation of first-cycle breccias.
NASA Astrophysics Data System (ADS)
Tripsanas, E. K.; Bryant, W. R.; Prior, D. B.
2003-04-01
A large number of Jumbo Piston cores (up to 20 m long), acquired from the continental slope and rise of the Northwest Gulf of Mexico (Bryant Canyon area and eastern Sigsbee Escarpment), have recovered various mass-transport deposits. The main cause of slope instabilities over these areas is oversteepening of the slopes due to the seaward mobilization of the underlying allochthonous salt masses. Cohesive flow deposits were the most common recoveries in the sediment cores. Four types of cohesive flow deposits have been recognized: a) fluid debris flow, b) mud flow, c) mud-matrix dominated debris flow, and d) clast-dominated debris flow deposits. The first type is characterized by its relatively small thickness (less than 1 m), a mud matrix with small (less than 0.5 cm) and soft mud-clasts, and a faint layering. The mud-clasts reveal a normal grading and become more abundant towards the base of each layer. That reveals that their deposition resulted by several successive surges/pulses, developed in the main flow, than the sudden “freezing” of the whole flow. The main difference between mud flow and mud-matrix dominated debris flow deposits is the presence of small to large mud-clasts in the later. Both deposits consist of a chaotic mud-matrix, and a basal shear laminated zone, where the strongest shearing of the flow was exhibited. Convolute laminations, fault-like surfaces, thrust faults, and microfaults are interpreted as occurring during the “freezing” of the flows and/or by adjustments of the rested deposits. Clast-dominated debris flow deposits consist of three zones: a) an upper plug-zone, characterized by large interlocked clasts, b) a mid-zone, of higher reworked, inversely graded clasts, floating in a mud-matrix, and c) a lower shear laminated zone. The structure of the last three cohesive flow deposits indicate that they represent deposition of typical Bingham flows, consisting of an upper plug-zone in which the yield stress is not exceeded and an underlain shearing zone, where the shear stress exceeded the yield strength of the sediments. Mud-matrix, and clast-dominated debris flow deposits are the pervasive ones. Intensely sheared thin layers (5- to 20 cm) with sharp bases, displayed as successive layers at the base of mud/debris flow deposits, or as isolated depositional units interbedded in hemipelagic sediments, are as interesting, as enigmatic. They are interpreted as basal self-lubricating layers, of having high shear stress and pore pressures, over which the mud/debris flows were able to travel for very long distances.
NASA Astrophysics Data System (ADS)
Kahl, Wolf-Achim; Jöns, Niels; Bach, Wolfgang; Klein, Frieder; Alt, Jeffrey C.
2015-06-01
Serpentine seamounts located on the outer half of the pervasively fractured Mariana forearc provide an excellent window into the forearc devolatilization processes, which can strongly influence the cycling of volatiles and trace elements in subduction zones. Serpentinized ultramafic clasts recovered from an active mud volcano in the Mariana forearc reveal microstructures, mineral assemblages and compositions that are indicative of a complex polyphase alteration history. Petrologic phase relations and oxygen isotopes suggest that ultramafic clasts were serpentinized at temperatures below 200 °C. Several successive serpentinization events represented by different vein generations with distinct trace element contents can be recognized. Measured in situ Rb/Cs ratios are fairly uniform ranging between 1 and 10, which is consistent with Cs mobilization from sediments at lower temperatures and lends further credence to the low-temperature conditions proposed in models of the thermal structure in forearc settings. Late veins show lower fluid mobile element (FME) concentrations than early veins, suggesting a decreasing influence of fluid discharge from the subducting slab on the composition of the serpentinizing fluids. The continuous microfabric and mineral chemical evolution observed in the ultramafic clasts may have implications as to the origin and nature of the serpentinizing fluids. We hypothesize that opal and smectite dehydration produce quartz-saturated fluids with high FME contents and Rb/Cs between 1 and 4 that cause the early pervasive serpentinization. The partially serpentinized material may then be eroded from the basal plane of the suprasubduction mantle wedge. Serpentinization continued but the interacting fluids did not carry a pronounced sedimentary signature, either because FMEs were no longer released from the slab, or due to an en route loss of FMEs. Late chrysotile veins that document the increased access of fluids in a now fluid-dominated regime are characterized by reduced trace element contents with a slightly increased Rb/Cs ratio near 10. This lack of sediment-dominated geochemical signatures consistently displayed in all late serpentinization stages may indicate that the sediment-derived fluids have been completely reset (i.e. the FME excesses were removed) by continued water-rock reaction within the subduction channel. The final stage of buoyant rise of matrix and clasts in the conduits is characterized by brucite-dominated alteration of the clasts from the clast rim inward (independent of the intra-clast fabric relations), which corresponds to re-equilibration with alkaline, low-silica activity fluids in the rising mud.
Using paleomagnetism to uncover long-runout pyroclastic flows
NASA Astrophysics Data System (ADS)
Lerner, G. A.; Cronin, S. J.; Turner, G. M.
2017-12-01
Understanding the conditions under which volcanic deposits were emplaced is vital to better preparing for hazards at an active stratovolcano. The coherence of paleomagnetic directions in different parts of the blocking temperature spectrum between the clasts of mass flow deposits has proven to be a useful tool for ascertaining emplacement temperatures. These temperature estimates can help in distinguishing between hot pyroclastic density currents (PDCs) and cold lahars. In the case of more clast-poor distal deposits, however, it can be difficult to obtain sufficient clast material for effective paleomagnetic study. In this study, the problem was remedied by using oriented and strengthened samples of matrix material from mass flow deposits in the 11,500 BP Warea Formation from Mt. Taranaki, New Zealand. Paleomagnetic data from matrix samples was used to supplement the limited data obtained from the traditional clast analysis in order to determine the emplacement temperature of the deposits. Comparison of paleomagnetic directions obtained from matrix samples at several sites within the Warea Formation revealed it as a PDC with matrix temperatures over 200°C and clasts reaching temperatures of up to 410°C at the time of deposition. This discovery of hot PDC deposits at distances >20 km from the summit of the volcano extends their known range at this volcano by 5 km. These findings will significantly change the hazard mapping and emergency planning for this region.
NASA Astrophysics Data System (ADS)
Mandeville, Charles W.; Carey, Steven; Sigurdsson, Haraldur; King, John
1994-05-01
The paroxysmal 1883 eruption of Krakatau volcano in Indonesia discharge at least 6.5 cu km (dense rock equivalent) of pyroclastic material into the shallow waters of the Sunda Straits within a 15-km radius of the volcano. Progressive thermal demagnetization studies of individually oriented pumice clasts from a core sample of the submarine pyroclastic deposits show that 41 out of 47 clasts exhibit single-component remanence with mean inclination of -24 deg. The partial thermoremanent magnetization components of both pumice and lithic clasts are well grouped in orientation, indicating that substantial cooling of clasts must have occurred following deposition. Estimated subaqueous emplacement temperature for such clasts is greater than 500 C. Rare two-component lithic fragments exhibit inflection points on vector endpoint diagrams that mark the temperature below which the fragments acquired magnetization of similar orientation. These inflection points range from 350 to 550 C, indicating a minimum subaqueous emplacement temperature of 350 C. Paleomagnetic evidence for high-emplacement temperature supports the hypothesis that proximal 1883 submarine pyroclastic deposits resulted from entrance of hot, subaerially generated pyroclastic flows into the sea. Similar deposits have been interpreted from the geologic record, but this is the first documented example of submarine pyroclastic flows from a historic eruption. The Kratatau deposits thus serve as an important modern analog for the study of pyroclastic flow/seawater interactions.
NASA Astrophysics Data System (ADS)
Gattacceca, Jérome; Krzesińska, Agata M.; Marrocchi, Yves; Meier, Matthias M. M.; Bourot-Denise, Michèle; Lenssen, Rob
2017-11-01
Polymict chondritic breccias—rocks composed of fragments originating from different chondritic parent bodies—are of particular interest because they give insights into the mixing of asteroids in the main asteroid belt (occurrence, encounter velocity, transfer time). We describe Northwest Africa (NWA) 5764, a brecciated LL6 chondrite that contains a >16 cm3 L4 clast. The L clast was incorporated in the breccia through a nondestructive, low-velocity impact. Identical cosmic-ray exposure ages of the L clast and the LL host (36.6 ± 5.8 Myr), suggest a short transfer time of the L meteoroid to the LL parent body of 0.1 ± 8.1 Myr, if that meteoroid was no larger than a few meters. NWA 5764 (together with St. Mesmin, Dimmitt, and Glanerbrug) shows that effective mixing is possible between ordinary chondrite parent bodies. In NWA 5764 this mixing occurred after the peak of thermal metamorphism on the LL parent body, i.e., at least several tens of Myr after the formation of the solar system. The U,Th-He ages of the L clast and LL host, identical at about 2.9 Ga, might date the final assembly of the breccia, indicating relatively young mixing in the main asteroid belt as previously evidenced in St. Mesmin.
Dating Howardite Melt Clasts: Evidence for an Extended Vestan Bombardment?
NASA Technical Reports Server (NTRS)
Cartwright, J. A.; Hodges, K. V.; Wadhwa, M.; Mittlefehldt, D. W.
2016-01-01
Howardites are polymict breccias that, together with eucrites and diogenites (HED), likely originate from the vestan surface (regolith/ megaregolith), and display a heterogeneous distribution of eucritic and diogenitic material. Melt clasts are also present alongside other regolithic features within howardites, and are noteworthy for their compositional variability and appearance. Melt clasts formed by impact events provide a snapshot of the timings and conditions of surface gardening and bombardment on the vestan surface. By dating such clasts, we aim to better constrain the timings of impact events on Vesta, and to establish whether the impact flux in the asteroid belt was similar to that on the Moon. As the Moon is used as the basis for characterising impact models of the inner solar system, it is necessary to verify that apparent wide-scale events are seen in other planetary bodies. In particular, the observed clustering of Apollo melt clast ages between 3.8-4.0 Ga has led to two hypotheses: 1) The Moon was subjected to a sudden event - 'Lunar Cataclysm' or period of 'Late Heavy Bombardment' (LHB), 2) The age cluster represents the end of an epoch of declining bombardment or 'Heavy Bombardment. No consensus has emerged regarding one or other hypothesis. We are testing these hypotheses by seeking evidence for such events in materials other than those derived from the Moon.
NASA Astrophysics Data System (ADS)
Greshake, A.; Krot, A. N.; Meibom, A.; Weisberg, M. K.; Zolensky, M. E.; Keil, K.
2002-02-01
Fine-grained, heavily-hydrated lithic clasts in the metal-rich (CB) chondrites Queen Alexandra Range (QUE) 94411 and Hammadah al Hamra 237 and CH chondrites, such as Patuxent Range (PAT) 91546 and Allan Hills (ALH) 85085, are mineralogically similar suggesting genetic relationship between these meteorites. These clasts contain no anhydrous silicates and consist of framboidal and platelet magnetite, prismatic sulfides (pentlandite and pyrrhotite), and Fe-Mn-Mg-bearing Ca-carbonates set in a phyllosilicate-rich matrix. Two types of phyllosilicates were identified: serpentine, with basal spacing of ?0.73 nm, and saponite, with basal spacings of about 1.1-1.2 nm. Chondrules and FeNi-metal grains in CB and CH chondrites are believed to have formed at high temperature (>1300 K) by condensation in a solar nebula region that experienced complete vaporization. The absence of aqueous alteration of chondrules and metal grains in CB and CH chondrites indicates that the clasts experienced hydration in an asteroidal setting prior to incorporation into the CH and CB parent bodies. The hydrated clasts were either incorporated during regolith gardening or accreted together with chondrules and FeNi-metal grains after these high-temperature components had been transported from their hot formation region to a much colder region of the solar nebula.
NASA Astrophysics Data System (ADS)
Kati, M.; Magganas, A.; Melfos, V.; Voudouris, P.
2009-04-01
The ophicalcite breccias in the Larissa area, Central Greece, comprise part of the Eohellenic nappe that overthrusts the Pelagonian Zone and which represents a Mesozoic continental fragment of Gondwana. They are enveloped by imbricated serpentinites that overlie amphibolite and greenschists and structurally underlie crystalline limestones of the Upper Cretaceous age. Although these breccias have suffered hydrothermal and/or low grade metamorphism, most of their original sedimentary structures have been remarkably preserved, thus providing valuable information about their depositional conditions and mechanisms. The ophicalcite breccias consist primarily of serpentinite and secondarily carbonate clasts. Some of various dispersed clasts, which are composed of gneissic rocks, granite together with a few fossiliferous carbonates, are considered as belonging to the Pelagonian continental basement. The matrix percentage ranges widely resulting in the development from grain-supported fabrics with clasts cemented by sparry calcite to matrix-supported fabrics, where the clasts are embedded in a light green to brownish/red matrix made of serpentinite, calcite and some iron oxides. Though the ophicalcite breccias give the overall appearance of being structureless and disordered, nevertheless, the local presence of particular primary and diagenetic structures combined with essential changes in the distribution of the components throughout the formation have led to the identification of three distinctive units showing evidence of deposition by different gravity-induced mass flow processes. Accordingly, in the lower unit observation has been made of repeated alternations of finer- and coarser-grained beds with thickening- and coarsening-upward organization and clear reverse grading of their constituents in the latter, indicating that they were deposited by sediment gravity flow processes and specifically grain flows. In the intermediate unit comprising the major part of the breccias, the chaotic aspect in association with the extremely poor sorting and the almost exclusive predominance of clast-supported fabrics together with the presence of some non-oriented geopetal structures lend support to their characterization as rockfalls. The few very large white marble blocks located in this unit are interpreted as single olistoliths. On the other hand, the occurrence of a very small quantity of cobble-sized bioclastic carbonate clasts is notable since they obviously originate from the margin of the Pelagonian platform, as indicated by their large benthonic skeletal fragments. Additionally, this unit is characterized by the extensive development of a variety of fractures and fissures, from very thin and simple to thick and composite, as well as common intergranular cavities. All these are filled with calcite and/or early diagenetic and often laminated internal sediment comprising alternations of carbonate and serpentinite material. The upper unit, which contains a significant amount of reworked clasts derived from the underlying unit, comprises debris flow deposits judging from the great amount of matrix, the typical absence of internal organization, the poor sorting and their intense erosional lower surface. Finally, the ophicalcite breccias under study show a highly complicated tectono-sedimentary origin as is documented in particular by the polygenetic nature of the many fracture fillings and the repetition of the resedimentation processes, while the hydrothermal activity seems to have enhanced their lithification from the very earliest diagenetic stages. Furthermore, the predominance of the primary two types of resedimented deposits is indirect evidence of the occurrence of a steep slope as well as a short distance of transportation of their component from the source. Overall, it could be deduced that the Larissa ophicalcite breccias formed atop an exhumed lithospheric mantle in a rift-related ocean-continent transition zone between the eastern continental Pelagonian margin and the Vardar Ocean, probably taking place during the Jurassic.
NASA Astrophysics Data System (ADS)
Brooker, L. M.; Balme, M. R.; Conway, S. J.; Hagermann, A.; Barrett, A. M.; Collins, G. S.; Soare, R. J.
2018-03-01
Polygonal networks of patterned ground are a common feature in cold-climate environments. They can form through the thermal contraction of ice-cemented sediment (i.e. formed from fractures), or the freezing and thawing of ground ice (i.e. formed by patterns of clasts, or ground deformation). The characteristics of these landforms provide information about environmental conditions. Analogous polygonal forms have been observed on Mars leading to inferences about environmental conditions. We have identified clastic polygonal features located around Lyot crater, Mars (50°N, 30°E). These polygons are unusually large (>100 m diameter) compared to terrestrial clastic polygons, and contain very large clasts, some of which are up to 15 metres in diameter. The polygons are distributed in a wide arc around the eastern side of Lyot crater, at a consistent distance from the crater rim. Using high-resolution imaging data, we digitised these features to extract morphological information. These data are compared to existing terrestrial and Martian polygon data to look for similarities and differences and to inform hypotheses concerning possible formation mechanisms. Our results show the clastic polygons do not have any morphometric features that indicate they are similar to terrestrial sorted, clastic polygons formed by freeze-thaw processes. They are too large, do not show the expected variation in form with slope, and have clasts that do not scale in size with polygon diameter. However, the clastic networks are similar in network morphology to thermal contraction cracks, and there is a potential direct Martian analogue in a sub-type of thermal contraction polygons located in Utopia Planitia. Based upon our observations, we reject the hypothesis that polygons located around Lyot formed as freeze-thaw polygons and instead an alternative mechanism is put forward: they result from the infilling of earlier thermal contraction cracks by wind-blown material, which then became compressed and/or cemented resulting in a resistant fill. Erosion then leads to preservation of these polygons in positive relief, while later weathering results in the fracturing of the fill material to form angular clasts. These results suggest that there was an extensive area of ice-rich terrain, the extent of which is linked to ejecta from Lyot crater.
NASA Astrophysics Data System (ADS)
Tofelde, S.; Düsing, W.; Schildgen, T. F.; Wittmann, H.; Alonso, R. N.; Strecker, M. R.
2017-12-01
In tectonically active mountain belts positive correlations between denudation rates and hillslope angles are commonly observed, supporting the notion that landscape morphology may reflect tectonic forcing. However, this relationship generally breaks down at 30°, when hillslopes reach threshold angles. Beyond this threshold, faster denudation may occur by an increased contribution from mass-wasting processes. We test this idea in the 4000 km2 Toro Basin, a fault-bounded basin in the Eastern Cordillera of the southern Central Andes. This N-S oriented basin is located between low-relief, arid conditions in the orogen interior (N) and a high-relief, humid setting at its fluvial outlet (S). We measured in-situ produced 10Be concentration in fluvial sediments, which can be converted into basin-mean denudation rates, assuming a spatially uniform contribution of sediment from the catchment. However, in landslide-influenced areas, this assumption is often violated. Previous studies have suggested that clast-size material is mainly contributed by mass-wasting processes, whereas sand is derived from a broad range of erosional processes. Hence, a combination of clast and sand samples can reveal information about the basin-mean denudation rate as well as the contribution of mass-wasting processes. We sampled 13 pebble (1-3 cm) and sand (250-500 µm) pairs across the basin. The sand-derived denudation rates increase from N to S, ranging from 0.010 mm/yr to 1.337 mm/yr, and reveal a non-linear positive correlation with median basin slope. The clast/sand ratios also increase from N to S, indicating amplified mass-wasting processes with increasing slopes. To test if our ratios represent a real shift in erosional processes, we mapped different erosional processes in the study area (e.g. deep-seated landslides, scree erosion,.., diffusion). We assume that today's distribution of processes has not changed over the integration time of 10Be derived denudation rates. This detailed erosion inventory indicates a shift in the dominant erosional processes with increasing clast/sand ratios and thus with increasing slopes. We provide empirical data supporting the hypothesis that higher denudation rates can be achieved by an increased contribution of mass-wasting processes after threshold slopes have been reached.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Floran, R. J
1978-04-01
Results are reported from a petrographic study of 20 mesosiderites that reveals that most contain a complex assemblage of mineral, lithic, and metal clasts. Mineral fragments dominate the clast population and consist primarily of orthopyroxene, plagioclase, and olivine.
Delineation of gravel-bed clusters via factorial kriging
NASA Astrophysics Data System (ADS)
Wu, Fu-Chun; Wang, Chi-Kuei; Huang, Guo-Hao
2018-05-01
Gravel-bed clusters are the most prevalent microforms that affect local flows and sediment transport. A growing consensus is that the practice of cluster delineation should be based primarily on bed topography rather than grain sizes. Here we present a novel approach for cluster delineation using patch-scale high-resolution digital elevation models (DEMs). We use a geostatistical interpolation method, i.e., factorial kriging, to decompose the short- and long-range (grain- and microform-scale) DEMs. The required parameters are determined directly from the scales of the nested variograms. The short-range DEM exhibits a flat bed topography, yet individual grains are sharply outlined, making the short-range DEM a useful aid for grain segmentation. The long-range DEM exhibits a smoother topography than the original full DEM, yet groupings of particles emerge as small-scale bedforms, making the contour percentile levels of the long-range DEM a useful tool for cluster identification. Individual clusters are delineated using the segmented grains and identified clusters via a range of contour percentile levels. Our results reveal that the density and total area of delineated clusters decrease with increasing contour percentile level, while the mean grain size of clusters and average size of anchor clast (i.e., the largest particle in a cluster) increase with the contour percentile level. These results support the interpretation that larger particles group as clusters and protrude higher above the bed than other smaller grains. A striking feature of the delineated clusters is that anchor clasts are invariably greater than the D90 of the grain sizes even though a threshold anchor size was not adopted herein. The average areal fractal dimensions (Hausdorff-Besicovich dimensions of the projected areas) of individual clusters, however, demonstrate that clusters delineated with different contour percentile levels exhibit similar planform morphologies. Comparisons with a compilation of existing field data show consistency with the cluster properties documented in a wide variety of settings. This study thus points toward a promising, alternative DEM-based approach to characterizing sediment structures in gravel-bed rivers.
Ni, Jun; Liu, Dong-Yang; Hu, Bei; Li, Chen; Jiang, Ji; Wang, Han-Ping; Zhang, Li
2015-09-01
The current study was conducted to explore the relationship between icotinib hydrochloride exposure and therapeutic effects in Chinese patients with advanced non-small cell lung cancer (NSCLC) who were treated with icotinib hydrochloride. A total of 30 patients with NSCLC who were treated with icotinib hydrochloride were chosen from a single-center, open-label, phase 1 dose escalation clinical trial. Different doses of icotinib hydrochloride were administered orally for 28 consecutive days in different groups until disease progression or unacceptable toxicities occurred. Blood samples were collected during the first treatment cycle (day 1-28) for the pharmacokinetic analysis. Tumor responses were assessed according to the Response Evaluation Criteria in Solid Tumors (RECIST). The plasma concentrations of icotinib hydrochloride were assessed by liquid chromatography-mass spectrometry. Thirty patients with a median age of 56 years old (50% of whom were female) were enrolled. For single-dose treatment, the plasma pharmacokinetics demonstrated a median time to maximum concentration of 0.5 to 4 hours and a mean terminal elimination half-life of 6.21±3.44 hours at the 150-mg dose and 10.1±12.18 hours at the 200-mg dose. For multiple-dose treatment, the last measurable concentration (Clast ) was 708±368.67 ng/mL at the 150-mg every 12 hours, 782.73±618.18 ng/mL at the 200-mg every 12 hours, and 1162±658.44 ng/mL at the 125-mg every 8 hours; the under the concentration curve from time 0 to Clast was 14.5±2.43 hour*mg/mL, 13.2±2.5 hour*mg/mL, and 12.19±2.47 hour*mg/mL, respectively. At the dose of 150 mg every 12 hours, 1 patient with an epidermal growth factor receptor (EGFR) exon 19 deletion achieved a complete response for 10 months; another patient who carried the EGFR exon 19 deletion achieved stable disease for 6 months. Univariate analysis demonstrated that the time to maximum plasma concentration (Tmax ) after a single dose of icotinib hydrochloride was significantly correlated with the overall survival (OS) (Spearman correlation coefficient, 0.441; P = .012). The disease control rate was correlated with Tmax after a single dose (Spearman correlation coefficient, 0.518; P = .011). Multivariate analysis demonstrated that the area under the concentration-time curve from 0 to last determination time and the area under the curve from 0 to infinite time after a single dose of icotinib hydrochloride were correlated with OS (P = .037 and .042, respectively). The Clast was found to affect progression-free survival (P = .016). Stratification of these patients according to smoking status indicated significant correlation between OS and the area under the concentration-time curve from 0 to last determination time (Spearman correlation coefficient, -0.709; P = .015). Patients with a longer Tmax and higher exposure might experience longer OS and a higher disease control rate. In addition, the increased Clast might prolong the progressive-free survival of patients. However, the relationships between EGFR mutation, pharmacokinetics, and clinical outcomes require further research. © 2015 American Cancer Society.
NASA Astrophysics Data System (ADS)
D'Oriano, Claudia; Pompilio, Massimo; Bertagnini, Antonella; Cioni, Raffaello; Pichavant, Michel
2010-05-01
Direct observations of mid-intensity eruptions, in which a huge amount of ash is generated, indicate that ash recycling is quite common. The recognition of juvenile vs. recycled fragments is not straightforward, and no unequivocal, widely accepted criteria exist to support this. The presence of recycled glassy fragments can hide primary magmatic information, introducing bias in the interpretations of the ongoing magmatic and volcanic activity. High temperature experiments were performed at atmospheric pressure on natural samples to investigate the effects of reheating on morphology, texture and composition of volcanic ash. Experiments simulate the transformation of juvenile glassy fragments that, falling into the crater or in the upper part of the conduit, are recycled by following explosions. Textural and compositional modifications obtained in laboratory are compared with similar features observed in natural samples in order to identify some main general criteria to be used for the discrimination of recycled material. Experiments were carried out on tephra produced during Strombolian activity, fire fountains and continuous ash emission at Etna, Stromboli and Vesuvius. Coarse glassy clasts were crushed in a nylon mortar in order to create an artificial ash, and then sieved to select the size interval of 1-0.71 mm. Ash shards were put in a sealed or open quartz tube, in order to prevent or to reproduce effects of air oxidation. The tube was suspended in a HT furnace at INGV-Pisa and kept at different temperatures (up to to 1110°C) for increasing time (0.5-12 hours). Preliminary experiments were also performed under gas flux conditions. Optical and electron microscope observations indicate that high temperature and exposure to the air induce large modifications on clast surface, ranging from change in color, to incipient plastic deformation till complete sintering. Significant change in color of clasts is strictly related to the presence of air, irrespective of temperature while sintering is favored by the high temperature and low fO2. Re-heating promotes nucleation and growth of crystals in the groundmass and associated change of glass composition, sometimes accompanied by growth and coalescence of vesicles in the size of 10-50 µm and cracking of the external surface.
The non-layering of gravel streambeds under ephemeral flood regimes
NASA Astrophysics Data System (ADS)
Laronne, Jonathan B.; Reid, Ian; Yitshak, Yitshak; Frostick, Lynne E.
1994-07-01
The two-layer format common to perennial streambeds, in which a relatively coarse armour overlies a finer subarmour, develops as a function of both the ingress and subsequent near-surface winnowing of interstitial material and the selective non-entrainment or slower transport velocity of coarse clasts. Ephemeral streams appear to lack such vertical layering or are characterized by weak layer development. Some of this may be due to the degree of mixing associated with the scour-and-fill process. However, continuous monitoring of bedload discharge in the Nahal Yatir in the northern Negev Desert reveals that sediment transport rates are extremely high so that the chance of armour layer development through selective non-entrainment is much reduced. Indeed, a comparison of the bedload and bed material size-distributions confirms a high degree of similarity and hints at equal mobility regardless of clast size. The monitoring programme also indicates that the bed becomes highly mobile at comparatively modest fluid shear, so that practically all floods are associated with high transport rates. Consequently, the winnowing that might be brought about by low transport-rate events does not occur. Even within a single event, winnowing is precluded by the rapid nature of flow recession that is so characteristic of flash-floods. The high degree of bed material mobility is attributable, in part, to the lack of strength that would otherwise be a corollary of armour development. However, it also highlights the divergent nature of the feedback loops that govern the relationship between flow and channel deposit in ephemeral and perennial systems.
NASA Technical Reports Server (NTRS)
Goodrich, C. A.; Treiman, A. H.; Zolensky, M.; Kita, N. T.; Defouilloy, C.; Fioretti, A. M.; O'Brien, D. P.; Jenniskens, P.; Shaddad, M. H.
2016-01-01
Almahata Sitta (AhS) is the first meteorite to originate from an asteroid (2008 TC3) that had been studied in space before it hit Earth [1,2]. It is also unique because the fallen fragments comprise a variety of types: approximately 69% ureilites (achondrites) and 31% chondrites [3]. Two models have been proposed for the origin 2008 TC3: 1) an accretionary model [3,4]; or 2) a regolith model [5,6]. Typical polymict ureilites are interpreted to represent regolith, and contain a few % foreign clasts [7,8]. The most common are dark (CC matrix-like) clasts similar to those in many meteoritic breccias [9]. A variety of other chondrites, as well as achondrites (angrites), have also been reported [7,9,10]. We have been working to determine the full diversity of these clasts [10-13] for comparison with AhS. We discuss implications for mixing of materials in the early solar system and the origin of 2008 TC3.
In Vitro Comparison of a Novel Single Probe Dual-Energy Lithotripter to Current Devices.
Carlos, Evan C; Wollin, Daniel A; Winship, Brenton B; Jiang, Ruiyang; Radvak, Daniela; Chew, Ben H; Gustafson, Michael R; Simmons, W Neal; Zhong, Pei; Preminger, Glenn M; Lipkin, Michael E
2018-06-01
The LithoClast Trilogy is a novel single probe, dual-energy lithotripter with ultrasonic (US) vibration and electromagnetic impact forces. ShockPulse and LithoClast Select are existing lithotripters that also use a combination of US and mechanical impact energies. We compared the efficacy and tip motion of these devices in an in vitro setting. Begostones, in the ratio 15:3, were used in all trials. Test groups were Trilogy, ShockPulse, Select ultrasound (US) only, and Select ultrasound with pneumatic (USP). For clearance testing, a single investigator facile with each lithotripter fragmented 10 stones per device. For drill testing, a hands-free apparatus with a submerged balance was used to apply 1 or 2 lbs of pressure on a stone in contact with the device tip. High-speed photography was used to assess Trilogy and ShockPulse's probe tip motion. Select-USP was slowest and Trilogy fastest on clearance testing (p < 0.01). On 1 lbs drill testing, Select-US was slowest (p = 0.001). At 2 lbs, ShockPulse was faster than Select US (p = 0.027), but did not significantly outpace Trilogy nor Select-USP. At either weight, there was no significant difference between Trilogy and ShockPulse. During its US function, Trilogy's maximum downward tip displacement was 0.041 mm relative to 0.0025 mm with ShockPulse. Trilogy had 0.25 mm of maximum downward displacement during its impactor function while ShockPulse had 0.01 mm. Single probe dual-energy devices, such as Trilogy and ShockPulse, represent the next generation of lithotripters. Trilogy more efficiently cleared stone than currently available devices, which could be explained by its larger probe diameter and greater downward tip displacement during both US and impactor functions.
Zebra stripes in the Atacama Desert: Fossil evidence of overland flow
NASA Astrophysics Data System (ADS)
Owen, Justine J.; Dietrich, William E.; Nishiizumi, Kuni; Chong, Guillermo; Amundson, Ronald
2013-01-01
Some hillslopes in the hyperarid region of the Atacama Desert in northern Chile have surface clasts organized into distinct, contour-parallel bands separated by bare soil. We call the bands "zebra stripes" due to the contrast between the darkly varnished clasts and the light-colored, salt-rich soil. Gravel that comprises the zebra stripes is sorted such that the coarsest clasts are at the downslope front and fine progressively upslope. How and when the zebra stripes formed are perplexing questions, particularly in a region experiencing prolonged hyperaridity. Using GoogleEarth, satellite imagery, and field observations, we report the first quantitative and qualitative observations of zebra stripes in order to test hypotheses of the mechanisms and timing of their formation. We consider soil shrink-swell, seismic shaking, and overland flow as possible formation mechanisms, and find that overland flow is the most likely. Based on cosmogenic 10Be concentrations in surface clasts, salt deposition rates from the atmosphere, and content in the soils, we propose that the salt-rich soils began accumulating ~ 106 y ago and the zebra stripes formed 103-104 y at the latest. The zebra stripe pattern has been preserved due to the self-stabilization of the clasts within the stripes and the continued absence of life (which would disturb the surface, as seen at a wetter site to the south). We conclude that the occurrence of zebra stripes is diagnostic of a set of distinct characteristics of local and/or regional precipitation, soil, hillslope form, and bedrock type.
Acoustic and Cavitation Fields of Shock Wave Therapy Devices
NASA Astrophysics Data System (ADS)
Chitnis, Parag V.; Cleveland, Robin O.
2006-05-01
Extracorporeal shock wave therapy (ESWT) is considered a viable treatment modality for orthopedic ailments. Despite increasing clinical use, the mechanisms by which ESWT devices generate a therapeutic effect are not yet understood. The mechanistic differences in various devices and their efficacies might be dependent on their acoustic and cavitation outputs. We report acoustic and cavitation measurements of a number of different shock wave therapy devices. Two devices were electrohydraulic: one had a large reflector (HMT Ossatron) and the other was a hand-held source (HMT Evotron); the other device was a pneumatically driven device (EMS Swiss DolorClast Vet). Acoustic measurements were made using a fiber-optic probe hydrophone and a PVDF hydrophone. A dual passive cavitation detection system was used to monitor cavitation activity. Qualitative differences between these devices were also highlighted using a high-speed camera. We found that the Ossatron generated focused shock waves with a peak positive pressure around 40 MPa. The Evotron produced peak positive pressure around 20 MPa, however, its acoustic output appeared to be independent of the power setting of the device. The peak positive pressure from the DolorClast was about 5 MPa without a clear shock front. The DolorClast did not generate a focused acoustic field. Shadowgraph images show that the wave propagating from the DolorClast is planar and not focused in the vicinity of the hand-piece. All three devices produced measurable cavitation with a characteristic time (cavitation inception to bubble collapse) that varied between 95 and 209 μs for the Ossatron, between 59 and 283 μs for the Evotron, and between 195 and 431 μs for the DolorClast. The high-speed camera images show that the cavitation activity for the DolorClast is primarily restricted to the contact surface of the hand-piece. These data indicate that the devices studied here vary in acoustic and cavitation output, which may imply that the mechanisms by which they generate therapeutic effects are different.
Research core drilling in the Manson impact structure, Iowa
NASA Technical Reports Server (NTRS)
Anderson, R. R.; Hartung, J. B.; Roddy, D. J.; Shoemaker, E. M.
1992-01-01
The Manson impact structure (MIS) has a diameter of 35 km and is the largest confirmed impact structure in the United States. The MIS has yielded a Ar-40/Ar-39 age of 65.7 Ma on microcline from its central peak, an age that is indistinguishable from the age of the Cretaceous-Tertiary boundary. In the summer of 1991 the Iowa Geological Survey Bureau and U.S. Geological Survey initiated a research core drilling project on the MIS. The first core was beneath 55 m of glacial drift. The core penetrated a 6-m layered sequence of shale and siltstone and 42 m of Cretaceous shale-dominated sedimentary clast breccia. Below this breccia, the core encountered two crystalline rock clast breccia units. The upper unit is 53 m thick, with a glassy matrix displaying various degrees of devitrification. The upper half of this unit is dominated by the glassy matrix, with shock-deformed mineral grains (especially quartz) the most common clast. The glassy-matrix unit grades downward into the basal unit in the core, a crystalline rock breccia with a sandy matrix, the matrix dominated by igneous and metamorphic rock fragments or disaggregated grains from those rocks. The unit is about 45 m thick, and grains display abundant shock deformation features. Preliminary interpretations suggest that the crystalline rock breccias are the transient crater floor, lifted up with the central peak. The sedimentary clast breccia probably represents a postimpact debris flow from the crater rim, and the uppermost layered unit probably represents a large block associated with the flow. The second core (M-2) was drilled near the center of the crater moat in an area where an early crater model suggested the presence of postimpact lake sediments. The core encountered 39 m of sedimentary clast breccia, similar to that in the M-1 core. Beneath the breccia, 120 m of poorly consolidated, mildly deformed, and sheared siltstone, shale, and sandstone was encountered. The basal unit in the core was another sequence of sedimentary clast breccia. The two sedimentary clast units, like the lithologically similar unit in the M-1 core, probably formed as debris flows from the crater rim. The middle, nonbrecciated interval is probably a large, intact block of Upper Cretaceous strata transported from the crater rim with the debris flow. Alternatively, the sequence may represent the elusive postimpact lake sequence.
Reaction of Rhyolitic Magma to its Interception by the IDDP-1 Well, Krafla, 2009
NASA Astrophysics Data System (ADS)
Saubin, É.; Kennedy, B.; Tuffen, H.; Villeneuve, M.; Watson, T.; Nichols, A. R.; Schipper, I.; Cole, J. W.; Mortensen, A. K.; Zierenberg, R. A.
2017-12-01
The unexpected encounter of rhyolitic magma during IDDP-1 geothermal borehole drilling at Krafla, Iceland in 2009, temporarily created the world's hottest geothermal well. This allowed new questions to be addressed. i) How does magma react to drilling? ii) Are the margins of a magma chamber suitable for long-term extraction of supercritical fluids? To investigate these questions, we aim to reconstruct the degassing and deformation behaviour of the enigmatic magma by looking for correlations between textures in rhyolitic material retrieved from the borehole and the recorded drilling data. During drilling, difficulties were encountered in two zones, at 2070 m and below 2093 m depth. Drilling parameters are consistent with the drill bit encountering a high permeability zone and the contact zone of a magma chamber, respectively. Magma was intercepted three times between 2101-2104.4 m depth, which culminated in an increase in standpipe pressure followed by a decrease in weight on bit interpreted as representing the ascent of magma within the borehole. Circulation returned one hour after the last interception, carrying cuttings of glassy particles, felsite with granophyre and contaminant clasts from drilling, which were sampled as a time-series for the following 9 hours. The nature of glassy particles in this time-series varied through time, with a decrease in the proportion of vesicular clasts and a commensurate increase in dense glassy clasts, transitioning from initially colourless to brown glass. Componentry data show a sporadic decrease in felsite (from 34 wt. %), an increase in glassy particles during the first two hours (from 63 wt. % to 94 wt. %) and an increase in contaminant clasts towards the end of the cutting retrieval period. These temporal variations are probably related to the magma body architecture and interactions with the borehole. Transition from vesicular to dense clasts suggests a change in the degassing process that could be related to an early degassing phase caused by drilling-induced decompressions followed by a fast ascent after the last magma interception. Additional data in terms of shape of clasts, vesicularity, density and water content within glassy particles will link textural data to drilling history in order to investigate degassing history, origin of clasts and quenching pressure.
Pseudotachylitic breccia in mafic and felsic rocks
NASA Astrophysics Data System (ADS)
Kovaleva, Elizaveta; Huber, Matthew S.
2017-04-01
Impact-produced pseudotachylitic breccia (PTB) is abundant in the core of the Vredefort impact structure and was found in many pre-impact lithologies (e.g., Reimold and Colliston, 1994; Gibson et al., 1997). The mechanisms involved in the process of forming this rock remain highly debated, and various authors have discussed many possible models. We investigate PTB from two different rock types: meta-granite and meta-gabbro and test how lithology controls the development of PTB. We also report on clast transport between different lithologies. In the core of the Vredefort impact structure, meta-granite and meta-gabbro are observed in contact with each other, with an extensive set of PTB veins cutting through both lithologies. Microstructural analyses of the PTB veins in thin sections reveals differences between PTBs in meta-granite and meta-gabbro. In granitic samples, PTB often develops along contacts of material with different physical properties, such as a contact with a migmatite or pegmatite vein. Nucleation sites of PTB have features consistent with ductile deformation and shearing, such as sigmoudal-shaped clasts and dragged edges of the veins. Preferential melting of mafic and hydrous minerals takes place (e.g., Reimold and Colliston, 1994; Gibson et al., 2002). Refractory phases remain in the melt as clasts and form reaction rims. In contrast, PTB in meta-gabbro develop in zones with brittle deformation, and do not exploit existing physical contacts. Cataclastic zones develop along the faults and progressively produce ultracataclasites and melt. Thus, PTB veins in meta-gabbro contain fewer clasts. Clasts usually represent multi-phase fragments of host rock and not specific phases. Such fragments often originate from the material trapped between two parallel or horse-tail faults. The lithological control on the development of PTB does not imply that PTB develops independently in different lithologies. We have observed granitic clasts within PTB veins in meta-gabbro, demonstrating clast transport between lithologies. PT melt in meta-gabbro has a two-phase structure: a phase free of granitic clasts, and a phase that contains granitic clasts. This also indicates that melt in both rock types was mobile during the same period of time, and that physical mixing and chemical exchange occurred between the two melts. Thus, PTB cuts across the contact between granite and gabbro, and is not restricted by the contact (e.g., Reimold and Colliston, 1994). These differences in nucleation and propagation of PTB based on rock type must be considered when discussing the formation mechanisms of impact-generated PTB. References: Gibson R.L., Reimold W.U., Ashley A.J., Koeberl C. (2002) Metamorphism of the Moon: A terrestrial analogue in the Vredefort dome, South Africa? Geology 30:475-478. Gibson R.L., Reimold W.U., Wallmach T. (1997) Origin of pseudotachylite in the lower Witwatersrand Supergroup, Vredefort Dome (South Africa): constraints from metamorphic studies. Tectonophysics 283:241-262. Reimold W.U., Colliston W.P. (1994) Pseudotachylites of the Vredefort Dome and the surrounding Witwatersrand Basin, South Africa. Geological Society of America Special Papers 293:177-196.
Volcanology of Tuzo pipe (Gahcho Kué cluster) — Root-diatreme processes re-interpreted
NASA Astrophysics Data System (ADS)
Seghedi, I.; Maicher, D.; Kurszlaukis, S.
2009-11-01
The Middle Cambrian (~ 540 Ma) Gahcho Kué Kimberlite Field is situated about 275 km ENE of Yellowknife, NWT, Canada. The kimberlites were emplaced into 2.6 Ga Archean granitic rocks of the Yellowknife Supergroup. Four larger kimberlite bodies (5034, Tesla, Tuzo, and Hearne) as well as a number of smaller pipes and associated sheets occur in the field. In plan view, the Tuzo pipe has a circular outline at the surface, and it widens towards deeper levels. The pipe infill consists of several types of coherent and fragmental kimberlite facies. Coherent or apparent coherent (possibly welded) kimberlite facies dominate at depth, but also occur at shallow levels, as dikes intruded late in the eruptive sequence or individual coherent kimberlite clasts. The central and shallower portions of the pipe consist of several fragmental kimberlite varieties that are texturally classified as Tuffisitic Kimberlites. The definition, geometry and extent of the geological units are complex and zones controlled by vertical elements are most significant. The fluidal outlines of some of the coherent kimberlite clasts suggest that at least some are the product of disruption of magma that was in a semi-plastic state or even of welded material. Ragged clasts at low levels are inferred to form part of a complex peperite-like system that intrudes the base of the root zone. A variable, often high abundance of local wall-rock xenoliths between and within the kimberlite phases is observed, varying in size from sub-millimeter to several tens of meters. Wall-rock fragments are common at all locations within the pipe but are especially frequent in a domain with a belt-like geometry between 120 and 200 m depth in the pipe. Steeply outward-dipping bedded deposits made up of wall-rock fragments occur in deep levels of the pipe and are especially common under the downward-widening roof segments. The gradational contact relationships of these deposits with the surrounding kimberlite-bearing rocks as well as their location suggest that they formed more-or-less in situ. Different breccia facies inside the pipe suggest an origin by slumping, grain flows, rock fall or pyroclastic deposition. The shape and facies architecture of the Tuzo pipe suggests that the studied section of the pipe lies at a root zone-diatreme transitional structural level. Composite coherent kimberlite clasts imply that recycling processes were active over time, while reworked wall-rock rich deposits and ductily-deformed clasts of welded kimberlite point to the presence of temporary cavities in the root zone. The emplacement of the Tuzo pipe did not occur in a single, violent explosion, but involved repetitive volcanic explosions alternating with periods of relative quiescence. The observed features are typical of phreatomagmatic processes, which may include phases of less-explosive magmatic activity.
The Structure and Evolution of a CM2 Regolith: A Three-dimensional Study of Cold Bokkeveld
NASA Astrophysics Data System (ADS)
Greenwood, R. C.; Hutchison, R.; Jones, C. G.
1993-07-01
The matrices of CM2 chondrites are a complex assemblage of high- and low-temperature components, some of which may have formed in a nebular environment, others by reprocessing in an asteroidal regolith. A necessary first step in identifying the primitive components is to understand the processes by which they were modified following incorporation into their parent bodies. Here we report the results of a textural investigation of Cold Bokkeveld. This work follows an earlier study [1] that had identified a planar fabric within Cold Bokkeveld, defined by the alignment of the long axes of various macroscopic objects. However, on sectioning the meteorite it was realized that it is composed of a more diverse range of lithic material than had been previously recognized. The nature and origin of these lithic fragments have therefore been examined in some detail. Method: To study the structure and fabric of Cold Bokkeveld a single fusion-crusted stone (maximum diameter 8cm) was cut along three directions at right angles and a series of slices removed. The stone was photographed before and after cutting to record the relationships between the slices and to document the major structural features. A polished section from each of the orthogonal cuts was prepared (total area 9 cm^2) and these were photographed using a Hitachi S2500 SEM. Montages of back- scattered electron images (x30 magnification), covering the full area of each section, were assembled. Results: Cold Bokkeveld is an inhomogeneous breccia comprising lithic fragments enclosed in a matrix of comminuted clastic material. Two end-member lithic fragment-types are present, fine- grained dark clasts and lighter-colored, coarse-grained fragments. Dark clasts are up to 1.2 cm diameter and consist predominantly of fine-grained Mg-phyllosilicate-rich material with a variable Fe-Ni sulphide content; coarser-grained, anhedral olivine grains (Fo(sub)98.1-99.5) are sometimes present. Raster- beam analysis of the four largest dark clasts examined indicates that they have a major element composition similar to dust mantles [2]. Light-colored, coarse-grained lithic fragments are up to 1.3 cm diameter, consist of abundant high-temperature objects (chondrules, etc.) enclosed by dust mantles. Features present on cut surfaces and on back-scattered montages demonstrate clearly that Cold Bokkeveld possesses a weakly- developed planar fabric defined by the alignment of the long axes of most components. Dark clasts are generally more deformed than light-colored fragments, a feature that presumably reflects the higher phyllosilicate content of dark clasts. In general the fabric within individual lithic fragments is parallel to that in the meteorite as a whole, however, in a few cases foliations are present, which show a marked discordance to that in the host. Discussion: The results of this and previous studies [2] indicate that clastic matrix in CM2 chondrites is produced within a parent body regolith by disaggregation of lithic fragments. Since it has been shown that clastic matrix in Cold Bokkeveld and Murchison is the host to interstellar silicon carbide [3] it is clearly important to identify the full range of lithic material that contributed to its formation. It remains a possibility that presolar grains may be present in one lithic component and not others. It has been proposed by [2] that clastic matrix in CM2s was formed from only a single lithic component termed by them 'primary accretionary rock' and equivalent to the light-colored lithic fragments described here. However, our evidence suggests that at least two lithic components are required to produce clastic matrix, namely i) fine-grained phyllosilicate dark clasts and ii) coarse-grained light colored fragments. References: [1] Greenwood R. C. et al. (1991) Meteoritics, 26, 340. [2] Metzler K. et al. (1992) GCA, 56, 2873-2897. [3] Alexander C. M. O'D. et al. (1990) Nature, 348, 715-717.
NASA Astrophysics Data System (ADS)
Takeda, H.; Nyquist, L. E.; Kojima, H.
2002-03-01
We performed a mineralogical study of a large gray clast (Y86032,83-1). Comparing our data and an Ar-Ar age of 4.49 Ga and negative epsilonNd data (Nyquist et al.), we propose that the original anorthosite is an important FAN of the farside highland.
Brachinite-Like Clast in the Kaidun Meteorite: First Report of Primitive Achondrite Material
NASA Technical Reports Server (NTRS)
Higashi, K.; Hasegawa, H.; Mikouchi, T.; Zolensky, M. E.
2017-01-01
Kaidun is a brecciated meteorite containing many different types of meteorites. It is composed of carbonaceous, enstatite, ordinary and R chondrites with smaller amounts of basaltic achondrites, impact melt products and unknown [1, 2]. Because of the multiple components and high abundance of carbonaceous chondrites, the Kaidun parent body was probably a large C-type asteroid in order to have accumulated clasts of many unrelated asteroids, and thus Kaidun contains previously unknown materials[1]. It has been suggested that the Kaidun parent body trawled through different regions of the solar system [3], but the formation of Kaidun meteorite is still uncertain. In this abstract, we report the first discovery of a brachinite-like clast in Kaidun.
Litho-kinematic facies model for large landslide deposits in arid settings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarnold, J.C.; Lombard, J.P.
1989-04-01
Reconnaissance field studies of six large landslide deposits in the S. Basin and Range suggest that a set of characteristic features is common to the deposits of large landslides in an arid setting. These include a coarse boulder cap, an upper massive zone, a lower disrupted zone, and a mixed zone overlying disturbed substrate. The upper massive zone is dominated by crackel breccia. This grades downward into a lower disrupted zone composed of a more matrix-rich breccia that is internally sheared, intruded by clastic dikes, and often contains a cataclasite layer at its base. An underlying discontinuous mixed zone ismore » composed of material from the overlying breccia mixed with material entrained from the underlying substrate. Bedding in the substrate sometimes displays folding and contortion that die out downward. The authors work suggests a spatial zonation of these characteristic features within many landslide deposits. In general, clastic dikes, the basal cataclasite, and folding in the substrate are observed mainly in distal parts of landslides. In most cases, total thickness, thickness of the basal disturbed and mixed zones, and the degree of internal shearing increase distally, whereas maximum clast size commonly decreases distally. Zonation of these features is interpreted to result from kinematics of emplacement that cause generally increased deformation in the distal regions of the landslide.« less
Microstructures and rheology of a calcite-shale thrust fault
NASA Astrophysics Data System (ADS)
Wells, Rachel K.; Newman, Julie; Wojtal, Steven
2014-08-01
A thin (˜2 cm) layer of extensively sheared fault rock decorates the ˜15 km displacement Copper Creek thrust at an exposure near Knoxville, TN (USA). In these ultrafine-grained (<0.3 μm) fault rocks, interpenetrating calcite grains form an interconnected network around shale clasts. One cm below the fault rock layer, sedimentary laminations in non-penetratively deformed footwall shale are cut by calcite veins, small faults, and stylolites. A 350 μm thick calcite vein separates the fault rocks and footwall shale. The vein is composed of layers of (1) coarse calcite grains (>5 μm) that exhibit a lattice preferred orientation (LPO) with pores at twin-twin and twin-grain boundary intersections, and (2) ultrafine-grained (0.3 μm) calcite that exhibits interpenetrating grain boundaries, four-grain junctions and lacks a LPO. Coarse calcite layers crosscut ultrafine-grained layers indicating intermittent vein formation during shearing. Calcite in the fault rock layer is derived from vein calcite and grain-size reduction of calcite took place by plasticity-induced fracture. The ultrafine-grained calcite deformed primarily by diffusion-accommodated grain boundary sliding and formed an interconnected network around shale clasts within the shear zone. The interconnected network of ultrafine-grained calcite indicates that calcite, not shale, was the weak phase in this fault zone.
Peng, Sheng; Hu, Qinhong; Ewing, Robert P; Liu, Chongxuan; Zachara, John M
2012-02-21
Laser ablation with inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to measure elemental concentrations at the 100-μm scale in a 3-dimensional manner within a basaltic clast sample collected from the Hanford 300 Area in south-central Washington State, United States. A calibration method was developed to quantify the LA-ICP-MS signal response using a constant-sum mass fraction of eight major elements; the method produced reasonable concentration measurements for both major and trace elements when compared to a standard basalt sample with known concentrations. 3-Dimensional maps (stacked 2-D contour layers, each representing 2100 μm × 2100 μm) show relatively uniform concentration with depth for intrinsic elements such as Si, Na, and Sr. However, U and Cu accumulation were observed near the sample surface, consistent with the site's release history of these contaminants. U and Cu show substantial heterogeneity in their concentration distributions within horizontal slices, while the intrinsic elements are essentially uniformly distributed. From these measured U concentrations and published grain size distributions, gravel and cobbles were estimated to contain about 1% of the contaminant U, implicating the coarse fraction as a long-term release source.
Facies mosaic in a fiord: Carboniferous-Permian Talchir Formation, India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, P.K.; Mukhopadhyay, G.; Bhattacharya, H.N.
1988-01-01
Facies analysis of the basal 37m of the Carboniferous-Permian Talchir Formation is a glacier-fed bedrock trough in Dudhi nala, Bihar, India, provides insight into the pattern of sedimentation of course gravels in a fiord. Rapid transitions between 11 recognized facies, together with their complex organization, random variability in bed thickness, and differences in clast, shape, size, and composition indicate coalescence of fans developed from numerous point sources bordering the elongated trough. Converging slide masses and lodgment tillites on the slopes flanking the trough give way to sediment gravity flow deposits composed of an array of conglomerates (matrix and clast supportedmore » with normal, inverse of absence of grading), attendant turbidite sands, and prodelta mud. The rheology of the in-trough flows ranged from plastic laminar to fluidal turbulent in response to flow from slope to floor of the trough. Rapid calving of icebergs during the onset of deglaciation established a wave regime at the mouth of the trough and deposited cross-stratified sandstone replete with dripstones. The impact of large dripstones landing triggered turbidity currents. Continued rise in water level led to eventual preservation of the fan complex under onlapping wave-built shoal facies that grade into a sequence of upward-thinning hummocky cross-stratified sandstone beds virtually devoid of dripstones.« less
Mesosiderites on Vesta: A Hyperspectral VIS-NIR Investigation
NASA Technical Reports Server (NTRS)
Palomba, E.; Longobardo, A.; DeSanctis, M. C.; Mittlefehldt, D. W.; Ammannito, E.; Capaccioni, F.; Capria, M. T.; Frigeri, A.; Tosi, F.; Zambon, F.;
2013-01-01
The discussion about the mesosiderite origin is an open issue since several years. Mesosiderites are mixtures of silicate mineral fragments or clasts, embedded in a FeNi metal matrix. Silicates are very similar in mineralogy and texture to howardites [1]. This led some scientists to conclude that mesosiderites could come from the same parent parent asteroid of the howardite, eucrite and diogenite (HED) meteorites [2, 3]. Other studies found a number of differences between HEDs and mesosiderite silicates that could be explained only by separate parent asteroids [4]. Recently, high precision oxygen isotope measurements of m esosiderites silicate fraction were found to be isotopically identical to the HEDs, requiring common parent body, i.e. 4 Vesta [5]. Another important element in favor of a common origin was given by the identification of a centimeter-sized mesosiderite clast in a howardite (Dar al Gani 779): a metal-rich inclusion with fragments of olivine, anorthite, and orthopyroxene plus minor amounts of chromite, tridymite, and troilite [6]. The Dawn mission with its instruments, the Infrared Mapping Spectrometer (VIR) [7], the Framing Camera [8] and the Gamma-Ray and Neutron Detector (GRaND) [9] confirmed that Vesta has a composition fully compatible with HED meteorites [10]. We investigate here the possibility to discern mesosiderite rich locations on the surface of Vesta by means of hyperspectral IR images.
NASA Astrophysics Data System (ADS)
Lang, Jörg; Lauer, Tobias; Winsemann, Jutta
2018-01-01
A comprehensive palaeogeographic reconstruction of ice sheets and related proglacial lake systems for the older Saalian glaciation in northern central Europe is presented, which is based on the integration of palaeo-ice flow data, till provenance, facies analysis, geomorphology and new luminescence ages of ice-marginal deposits. Three major ice advances with different ice-advance directions and source areas are indicated by palaeo-ice flow directions and till provenance. The first ice advance was characterised by a southwards directed ice flow and a dominance of clasts derived from southern Sweden. The second ice advance was initially characterised by an ice flow towards the southwest. Clasts are mainly derived from southern and central Sweden. The latest stage in the study area (third ice advance) was characterised by ice streaming (Hondsrug ice stream) in the west and a re-advance in the east. Clasts of this stage are mainly derived from eastern Fennoscandia. Numerical ages for the first ice advance are sparse, but may indicate a correlation with MIS 8 or early MIS 6. New pIRIR290 luminescence ages of ice-marginal deposits attributed to the second ice advance range from 175 ± 10 to 156 ± 24 ka and correlate with MIS 6. The ice sheets repeatedly blocked the main river-drainage pathways and led to the formation of extensive ice-dammed lakes. The formation of proglacial lakes was mainly controlled by ice-damming of river valleys and major bedrock spillways; therefore the lake levels and extends were very similar throughout the repeated ice advances. During deglaciation the lakes commonly increased in size and eventually drained successively towards the west and northwest into the Lower Rhine Embayment and the North Sea. Catastrophic lake-drainage events occurred when large overspill channels were suddenly opened. Ice-streaming at the end of the older Saalian glaciation was probably triggered by major lake-drainage events.
NASA Astrophysics Data System (ADS)
Valentine, Greg A.; van Wyk de Vries, Benjamin
2014-03-01
A Miocene age volcanic-hypabyssal structure comprising volcaniclastic deposits and mafic intrusions is exposed with vertical relief of ˜110 m on the side of Gergovie Plateau (Auvergne, France). Three main volcaniclastic facies are: (1) Fluidal tuff breccia composed of juvenile basalt and sediment clasts with dominantly fluidal shapes, with several combinations of basalt and sediment within individual clasts. (2) Thickly bedded lapilli tuff composed of varying proportions of fine-grained sediment derived from Oligocene-Miocene lacustrine marls and mudstones and basaltic lapilli, blocks, and bombs. (3) Planar-bedded tuff forming thin beds of fine to coarse ash-size sedimentary material and basalt clasts. Intrusive bodies in the thickly bedded lapilli tuff range from irregularly shaped and anastomosing dikes and sills of meters to tens of meters in length, to a main feeder dike that is up to ˜20 m wide, and that flares into a spoon-shaped sill at ˜100 m in diameter and 10-20 m thick in the eastern part of the structure. Volcaniclastic deposits and structural features suggest that ascending magma entrained soft, saturated sediment host material into the feeder dike and erupted fluidal magma and wet sediment via weak, Strombolian-like explosions. Host sediment and erupted material subsided to replace the extracted sediments, producing the growth subsidence structure that is similar to upper diatreme facies in typical maar diatremes but lacks evidence for explosive disruption of diatreme fill. Irregularly shaped small intrusions extended from the main feeder dike into the diatreme, and many were disaggregated due to shifting and subsidence of diatreme fill and recycled via eruption. The Mardoux structure is an "unconventional" maar diatreme in that it was produced mainly by weak explosive activity rather than by violent phreatomagmatic explosions and is an example of complex coupling between soft sediment and ascending magma.
NASA Astrophysics Data System (ADS)
Davis, Joshua R.; Giorgis, Scott
2014-11-01
We describe a three-part approach for modeling shape preferred orientation (SPO) data of spheroidal clasts. The first part consists of criteria to determine whether a given SPO and clast shape are compatible. The second part is an algorithm for randomly generating spheroid populations that match a prescribed SPO and clast shape. In the third part, numerical optimization software is used to infer deformation from spheroid populations, by finding the deformation that returns a set of post-deformation spheroids to a minimally anisotropic initial configuration. Two numerical experiments explore the strengths and weaknesses of this approach, while giving information about the sensitivity of the model to noise in data. In monoclinic transpression of oblate rigid spheroids, the model is found to constrain the shortening component but not the simple shear component. This modeling approach is applied to previously published SPO data from the western Idaho shear zone, a monoclinic transpressional zone that deformed a feldspar megacrystic gneiss. Results suggest at most 5 km of shortening, as well as pre-deformation SPO fabric. The shortening estimate is corroborated by a second model that assumes no pre-deformation fabric.
NASA Technical Reports Server (NTRS)
Carpenter, P. K.; Hahn, T. M.; Korotev, R. L.; Ziegler, R. A.; Jolliff, B. L.
2017-01-01
We present the first fully quantitative compositional maps of lunar meteorite NWA 2995 using electron microprobe stage mapping, and compare selected clast mineralogy and chemistry. NWA 2995 is a feldspathic fragmental breccia containing numerous highland fine grained lithologies, including anorthosite, norite, olivine basalt, subophitic basalt, gabbro, KREEP-like basalt, granulitic and glassy impact melts, coarse-grained mineral fragments, Fe-Ni metal, and glassy matrix [1]. Chips of NWA 2995, representing these diverse materials, were analyzed by INAA and fused-bead electron-probe microanalysis (EPMA); comparison of analytical data suggests grouping of lunar meteorites NWA 2995, 2996, 3190, 4503, 5151, and 5152. The mean composition of NWA 2995 corresponds to a 2:1 mixture of feldspathic and mare material, with approximately 5% KREEP component [2]. Clast mineral chemistry and petrologic interpretation of paired stone NWA 2996 has been reported by Mercer et al. [3], and Gross et al. [4]. This study combines advances in quantitative EPMA compositional mapping and data analysis, as applied to selected mafic clasts in a polished section of NWA 2995, to investigate the origin of mafic lithic components and to demonstrate a procedural framework for petrologic analysis.
Delimitation of terrestrial impact craters by way of pseudotachylytic rock distribution
NASA Technical Reports Server (NTRS)
Spray, John G.
1993-01-01
The determination of the shape and size of terrestrial impact craters is problematic, yet is critical to understanding cratering mechanics and for scaling bolide mass, volume, and impact velocity with crater size and target response. The problem is particularly difficult in older geological terrains (e.g. Precambrian) which are more likely to have suffered post-impact deformation and hence distortion of the original structure and/or where weathering may have partly removed or obscured its original shape. Traditionally, a number of features are used to assist us in determining the shape and size of an impact structure. These include the following: (1) the occurrence of faults, especially those disposed concentrically relative to the crater--the outermost ring faults being interpreted as indicating a viable minimum diameter; and (2) the development of so-called breccias, some of which are also associated with faults (e.g. the Sudbury Breccia developed within the target rocks of the Sudbury Structure of Onta rio, Canada). 'Breccia' is not a satisfactory term because a number of breccia-types exist at impact sites (e.g. fall-back breccias and in-situ brecciated target material). Of relevance to crater diameter determination is the recognition of discrete zones and fault- and shock-related pseudotachylyte. Pseudotachylyte is a rock type comprising a fine-grained, usually dark matrix containing clasts of minerals and/or rock derived from the country rock target material. It origin is normally attributed to high-speed slip (including vibration) along a slip surface (i.e. fault) or to the passage of a shock wave through the host material. The clasts can occur as angular fragments (i.e. like a breccia), but are more commonly developed as rounded to sub-rounded fragments. Significantly, the scale of these pseudotachylytes can range from sub-millimeter thick veinlets to dyke-like bodies up to 1 km or more thick. It is the latter, larger occurrence which has been referred to as 'breccia.' The smaller-sized occurrence is generally not recognized in the field, nor is it traditionally associated with its larger counterpart.
Craddock, J.P.; McGillion, M.S.; Webers, G.F.
2007-01-01
Cambrian carbonates in the Heritage Range of the Ellsworth Mountains, West Antarctica host a series of carbonate-rich breccia bodies that formed contemporaneously with the Permian Gondwanide orogen. The breccia bodies had a three-stage genesis, with the older breccias containing Cambrian limestone (and marble) clasts supported by calcite, whereas the younger breccias are nearly clast-free and composed entirely of matrix calcite. Breccia clasts, calcite matrix and detrital matrix samples were analyzed using x-ray fluorescence (major and trace elements), x-ray diffraction, and stable isotopes (C, O) and suggest that the breccias formed as part of a closed geochemical system, at considerable depth, within the Cambrian limestone host as the Ellsworth Mountains deformed into a fold-and-thrust belt along the margin of Gondwana
Northwest Africa 1401: A Polymict Cumulate Eucrite with a Unique Ferroan Heteradcumulate Mafic Clast
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.; Killgore, Marvin
2003-01-01
The howardite, eucrite and diogenite (HED) clan is the largest suite of achondrites available for study. The suite gives us a unique view of the magmatism that affected some asteroids early in solar system history. One problem with mining the HED clan for petrogenetic information is that there is only limited petrologic diversity among the rock types. Thus, discovering unusual HED materials holds the potential for revealing new insights into the petrologic evolution of the HED parent asteroid. Here we report on petrologic study of an unusual, 27 gram polymict eucrite, Northwest Africa (NWA) 1401. The thin section studied (approx. 20 x 10 mm) contains one large, ferroan clast described separately. The remainder of the rock, including mineral fragments and other, smaller lithic clasts, forms the host breccia.
Unravelling the depositional origins and diagenetic alteration of carbonate breccias
NASA Astrophysics Data System (ADS)
Madden, Robert H. C.; Wilson, Moyra E. J.; Mihaljević, Morana; Pandolfi, John M.; Welsh, Kevin
2017-07-01
Carbonate breccias dissociated from their platform top counterparts are little studied despite their potential to reveal the nature of past shallow-water carbonate systems and the sequential alteration of such systems. A petrographic and stable isotopic study allowed evaluation of the sedimentological and diagenetic variability of the Cenozoic Batu Gading Limestone breccia of Borneo. Sixteen lithofacies representing six facies groups have been identified mainly from the breccia clasts on the basis of shared textural and compositional features. Clasts of the breccia are representative of shallow carbonate platform top and associated flank to basinal deposits. Dominant inputs are from rocky (karstic) shorelines or localised seagrass environments, coral patch reef and larger foraminiferal-rich deposits. Early, pre-brecciation alteration (including micritisation, rare dissolution of bioclasts, minor syntaxial overgrowth cementation, pervasive neomorphism and calcitisation of bioclasts and matrix) was mainly associated with marine fluids in a near surface to shallow burial environment. The final stages of pre-brecciation diagenesis include mechanical compaction and cementation of open porosity in a shallow to moderate depth burial environment. Post-brecciation diagenesis took place at increasingly moderate to deep burial depths under the influence of dominantly marine burial fluids. Extensive compaction, circum-clast dissolution seams and stylolites have resulted in a tightly fitted breccia fabric, with some development of fractures and calcite cements. A degree of facies-specific controls are evident for the pre-brecciation diagenesis. Pervasive mineralogical stabilisation and cementation have, however, led to a broad similarity of diagenetic features in the breccia clasts thereby effectively preserving depositional features of near-original platform top and margin environments. There is little intra-clast alteration overprint associated with subsequent clast reworking and post-brecciation diagenesis. The diagenetic-, and to an extent depositional- and clast-characteristics of the Batu Gading deposits are diagnostic of breccia origins. The predominance of: early and pervasive stabilisation of calcitic components, pervasive compaction resulting in a fitted texture, and paucity of meteoric dissolution or cementation effects are collectively all indicators of slope deposition and lithification. These features are comparable with other regional and global examples of submarine slope breccias, and in particular those also from syntectonic settings (Wannier, 2009). The results of this study, along with regional analogues, suggest the potential for reworked carbonate debris in slope settings to be a viable way of investigating carbonate platform variability and their subsequent alteration in the absence of preserved platform top or margin deposits.
Towards a Regolith Maturity Index for Howardites
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.; Cartwright, J. A.; Herrin, J. S.; Johnson, K. N.
2011-01-01
The Dawn spacecraft has just arrived at asteroid 4 Vesta, parent of the howardite, eucrite and diogenite (HED) meteorites [1], to begin a yearlong surface study from orbit [2]. As Dawn will view a debris-covered surface, understanding the formation and mixing processes for the debris layer will strongly aid surface data interpretations. Howardites are polymict breccias mainly composed of clasts derived from basaltic (eucritic) and orthopy-roxenitic (diogenitic) parent materials [3]. Some howardites are poorly reworked (fragmental howardites) whilst others have been extensively gardened in an active regolith (regolithic howardites) [4]. The latter may represent an ancient, well-mixed regolith, whilst the former may be from more recent ejecta deposits [4]. Due to environmental differences, regolith development on Vesta differs in detail from that on the Moon [4-6]. We have been developing petrological criteria to apply to howardite thin sections to determine their relative regolithic maturity, which we are fine-tuning with comparison to noble gas data [7, 8]. Whilst we previously emphasized the abundance of reworked clasts (fragmental and impact-melt breccia clasts), this is an imperfect criterion: one howardite with abundant re-worked clasts (EET 99408) shows no evidence of solar wind Ne (SW-Ne), yet, two of our alleged fragmental howardites have clear SW-Ne signatures (LEW 85313, MET 00423) [7, 8]. We are now investigating the diversity in minor and trace element contents of low-Ca pyroxene clasts in howardites as a measure of regolith grade, and will begin analyses of such grains within reworked clasts. Our hypothesis is that regolithic howardites (and the breccia clasts they contain) will show greater diversity because they sampled more diverse diogenitic plutons than fragmental howardites, which formed from ejecta from only a few impacts [e.g. 4]. Our initial LA-ICP-MS work showed ranges in trace element diversity in low-Ca pyroxenes (estimated from the standard error of the mean of analyses), where those howardites considered of medium to high regolithic grade showed greater diversity [9]. Our EMPA results (from a larger howardite suite) show an overall greater diversity in our putative medium to high regolithic grade howardites, though there are exceptions. The greatest diversity is found for paired howardites GRO 95574 and GRO 95581, which were not considered regolithic in our initial study. We will continue investigating avenues to determine regolith maturity in thin section, factoring in bulk rock compositional data, and will coordinate these studies with noble gas results.
NASA Astrophysics Data System (ADS)
Schulte, P.; Stinnesbeck, W.; Kontny, A.; Stüben, D.; Kramar, U.; Harting, M.
2002-12-01
Proximal ejecta deposits in sections from NE Mexico (Rancho Nuevo, La Sierrita, El Peñon, El Mimbral) have been investigated by backscattered electron imaging, wave-length dispersive electron microprobe analyses, and cathodoluminiscence, in order to characterize target lithologies, and ejecta mixing, fractionation, and distribution mechanisms. Additional investigations included magnetic properties (Kontny et al, this meeting) and trace element analyses (Harting et al, this meeting). Petrological features of these ejecta deposits are extraordinarily well preserved. They consist of mm-cm sized vesiculated spherical to drop-shaped spherules and angular to filamentous (ejecta-) fragments, as well as carbonate clasts, marl clasts, and rare benthic foraminifera floating in a carbonaceous matrix. Occasionally, spherules and fragments show welding-amalgamation features and enclose other components, thus resulting in a foam-like texture. An origin from the Chicxulub impact is suggested by geographical proximity and morphologically similarity to spherules found in other K-T sites in North to Central America and the Atlantic. The far distribution of such coarse-grained, foamy, and fragile ejecta-clasts as well as welding features suggest ignimbrite-like transport mechanisms or nearby secondary impacts. Several silicic ejecta phases have been observed that occur as distinct phases, even within one ejecta particle with textures indicative of liquid immiscibility: (1) Fe- (25-35 wt%), Mg- (10-15 wt%) rich phases with <25 wt% SiO2, altered to chlorite, (2) K- (5-8 wt.%) and Al- (25-30 wt%) rich hydrated glass with 45-50 wt% SiO2, and (3) rare SiO2- (>60 wt%) rich andesitic glasses. In addition to these silicic phases, abundant carbonate characterizes all studied ejecta deposits. It occurs within spherules and fragments and as clasts and globules, and shows textures indicative of either liquid immiscibility and/or quenching (`feathery calcite'). Quenched carbonates are enriched in Fe and Mg (up to one wt%) and are characterized by dark red-brown luminescence, in contrast to the carbonaceous matrix, which shows bright luminescence colors. Within all phases, but mainly in (1), various inclusions have been observed: (a) Globules enriched in Fe and Mg, (b) schlieren, rich in Ti, K, Fe, (c) garland-shaped Ti-rich lamellae, (d) dendritic and skeletal crystals of Ti-Fe oxides, (e) hematite crystals with a Ni-content up to 0.4 wt%, as well as goethite and rutile crystals, (f) rare μm-sized Co-, Ni-, Fe-rich metallic or sulfidic particles. These compositional phases are present in all studied outcrops, but their individual amount varies with prevailing Fe-rich phases at Rancho Nuevo and La Sierrita and Fe-, K-rich and silicic phases at El Peñon and El Mimbral. These characteristics imply an origin of the ejecta from mafic lithologies and carbonaceous sediments, in addition to contribution from felsic rocks. The occurrence of different compositional phases in single ejecta layers and even within individual ejecta particles suggests strong fractionation effects and/or negligible mixing of different melt phases. The presence of metallic Fe, Ni and Co may indicate that additional contamination by meteoritic material occurred.
Evidence for Seismic and Aseismic Slip along a Foreland Thrust Fault, Southern Appalachians
NASA Astrophysics Data System (ADS)
Newman, J.; Wells, R. K.; Holyoke, C. W.; Wojtal, S. F.
2013-12-01
Studies of deformation along ancient thrust faults form the basis for much of our fundamental understanding of fault and shear zone processes. These classic studies interpreted meso- and microstructures as formed during aseismic creep. Recent experimental studies, and studies of naturally deformed rocks in seismically active regions, reveal similar microstructures to those observed locally in a carbonate foreland thrust from the southern Appalachians, suggesting that this thrust fault preserves evidence of both seismic and aseismic deformation. The Copper Creek thrust, TN, accommodated 15-20 km displacement, at depths of 4-6 km, as estimated from balanced cross-sections. At the Diggs Gap exposure of the Copper Creek thrust, an approximately 2 cm thick, vein-like shear zone separates shale layers in the hanging wall and footwall. The shear zone is composed of anastomosing layers of ultrafine-grained calcite and/or shale as well as aggregate clasts of ultrafine-grained calcite or shale. The boundary between the shear zone and the hanging wall is sharp, with slickensides along the boundary, parallel to the shear zone movement direction. A 350 μm-thick layer of ultrafine-grained calcite separates the shear zone and the footwall. Fault parallel and perpendicular calcite veins are common in the footwall and increase in density towards the shear zone. Microstructures within the vein-like shear zone that are similar to those observed in experimental studies of unstable slip include: ultrafine-grained calcite (~0.34 μm), nano-aggregate clasts (100-300 nm), injection structures, and vein-wrapped and matrix-wrapped clasts. Not all structures within the shear zone and ultrafine-grained calcite layer suggest seismic slip. Within the footwall veins and calcite aggregate clasts within the shear zone, pores at twin-twin intersections suggest plasticity-induced fracturing as the main mechanism for grain size reduction. Interpenetrating grain boundaries in ultrafine-grained calcite and a lack of a lattice preferred orientation suggest ultrafine-grained calcite deformed by diffusion creep accommodated grain boundary sliding. These structures suggest a strain-rate between 10-15 - 10-11 s-1, using calcite flow laws at temperatures 150-250 °C. Microstructures suggest both seismic and aseismic slip along this ancient fault zone. During periods of aseismic slip, deformation is accommodated by plasticity-induced fracturing and diffusion creep. Calcite veins suggest an increase in pore-fluid pressure, contributing to fluidized and unstable flow, but also providing the calcite that deformed by diffusion creep during aseismic creep.
NASA Astrophysics Data System (ADS)
Trofimovs, J.; Cas, R. A. F.; Davis, B. K.
2004-11-01
The Boorara Domain of the Kalgoorlie Terrane, Eastern Goldfields Superterrane, western Australia contains excellent exposure of Archaean felsic and ultramafic breccias characterised by facies associations interpreted to reflect a volcanic debris avalanche mode of deposition. Such Archaean volcanic deposits are typically difficult to identify due to poor preservation and exposure. However, primary volcanological and sedimentological features are preserved within the relatively low strain and low metamorphic grade (up to lower greenschist facies) Boorara Domain that allow accurate facies reconstruction. The breccia deposit is characterised by two clast populations. A 'block facies' comprised of metre- to decimetre-scale megablocks of dacite, basalt and komatiite is preserved within a 'mixed' matrix breccia facies of angular, coarse sand- to boulder-sized clasts. The megablocks preserve original stratigraphy and show fracturing and jigsaw-fit textures within the poorly sorted, unstratified, genetically related matrix. Overlying the volcanic debris avalanche deposit, are a series of stratified horizons. These deposits show evidence of hydraulic sorting within bedforms exhibiting normal grain-size grading and tractional scour and fill structures along their basal contacts. The stratified facies is interpreted to have been deposited by high concentration, high competency turbidity currents, triggered by slope stabilization slides in the source region. Primary contacts and volcanic textures preserved in decimetre-scale volcanic blocks allow reconstruction of the pre-collapse palaeovolcanological history of the source region. The volcanic debris avalanche deposit, together with the associated stratified sedimentary horizons, were produced by sector collapse of a submarine, dacitic volcanic dome. Contemporaneous komatiite intrusion into the dacite dome may have caused dome flank instability. However, the volcanic debris avalanche trigger is interpreted to be a post-lithification tectonic influence.
NASA Astrophysics Data System (ADS)
Dadd, K. A.; Clift, P. D.; Hyun, S.; Jiang, T.; Liu, Z.
2014-12-01
International Ocean Discovery Program (IODP) Expedition 349 Site U1431 is located near the relict spreading ridge in the East Subbasin of the South China Sea. Holes at this site were drilled close to seamounts and intersected the volcaniclastic apron. Volcaniclastic breccia and sandstone at Site U1431 are dated as late middle Miocene to early late Miocene (~8-13 Ma), suggesting a 5 m.y. duration of seamount volcanism. The apron is approximately 200 m thick and is sandwiched between non-volcaniclastic units that represent the background sedimentation. These comprise dark greenish gray clay, silt, and nannofossil ooze interpreted as turbidite and hemipelagic deposits that accumulated at abyssal water depths. At its base, the seamount sequence begins with dark greenish gray sandstone, siltstone, and claystone in upward fining sequences interpreted as turbidites intercalated with minor intervals of volcaniclastic breccia. Upsection the number and thickness of breccia layers increases with some beds up to 4.8 m and possibly 14.5 m thick. The breccia is typically massive, ungraded, and poorly sorted with angular to subangular basaltic clasts, as well as minor reworked subrounded calcareous mudstone, mudstone, and sandstone clasts. Basaltic clasts include nonvesicular aphyric basalt, sparsely vesicular aphyric basalt, highly vesicular aphyric basalt, and nonvesicular glassy basalt. Mudstone clasts are clay rich and contain foraminifer fossils. The matrix comprises up to 40% of the breccia beds and is a mix of clay, finer grained altered basalt clasts, and mafic vitroclasts with rare foraminifer fossils. Some layers have calcite cement between clasts. Volcaniclastic sandstone and claystone cycles interbedded with the breccia layers have current ripples and parallel laminations indicative of high-energy flow conditions during sedimentation. The breccia beds were most likely deposited as a series of debris flows or grain flows. This interpretation is supported by their massive structure, poor sorting, and reverse-graded bases. The upper part of the apron grades back into the background clay, silt and nannofossil ooze sedimentation with minor volcaniclastic sand and silt.
Mineralogy and Ar-39 - Ar-40 of an old pristine basalt: Thermal history of the HED parent body
NASA Technical Reports Server (NTRS)
Takeda, Hiroshi; Mori, Hiroshi; Bogard, Donald D.
1994-01-01
Previous investigations of mineral chemistry and Rb-Sr and Sm-Nd ages indicated that clast,84 from eucrite Yamato 75011 had preserved the pristine nature of its initial crystallization during an early stage of the HED parent body. Microscale mineralogy and Ar-39-Ar-40 ages of this clast, however, revealed local disturbance of microtextures and partially reset ages. This evidence suggests that, in addition to initial crystallization and rapid cooling, the Y75011,84 clast experienced shock deformation, reheating of short duration at higher temperature, and brecciation. These characteristics suggest two or more impact events. Fe-rich olivine filling fractures in pyroxene may have been introduced during the accompanying shock fracturing. The inferred Ar-39-Ar-40 degassing ages for Y75011 matrix and clast, 84 are 3.94 +/- 0.04 Ga and 3.98 +/- 0.03 Ga, respectively. The suggested degassing age for a clast from Y790020, believed to be paired with Y75011, is approximately 4.03 Ga, but could be younger. We consider it likely that all three samples experienced a common degassing event 3.95 +/- 0.05 Ga ago, but we cannot rule out two or more events spaced over a approximately 0.1 Ga interval. Higher temperature extractions of the two clast samples show significantly older apparent ages up to approximately 4.5 Ga and suggest that the time/temperature regime of this event was not sufficient to degas Ar totally. Most likely, the K-Ar ages were reset by thermal metamorphism associated with one or more impact events associated with shock fracturing, formation of Fe-rich olivine veins, and/or meteorite brecciation. The pyroxene annealing that commonly occurs in many eucrites is likely to be a much earlier process than the impact-produced textural changes and reset K-Ar ages observed in these meteorites. The existence of mineralogical and chronological evidence for metamorphism in an otherwise pristine eucrite suggests that the HED parent body experienced an extensive degree of early cratering.
NASA Technical Reports Server (NTRS)
Brearley, Adrian J.
1993-01-01
Rare, ultrafine-grained Ti oxides (Ti3O5 and the Magneli phases, Ti5O9 and Ti8O15) have been identified by TEM in the CM2 carbonaceous chondrite, Bells, and a carbonaceous chondrite matrix clast from the Nilpena polymict ureilite. In both meteorites the Ti oxides occur in the matrix as isolated grains and clusters of two or more grains. They are euhedral in shape and have grain sizes of 0.05-0.3 micron. Magneli phases have been recently shown to be a common component in some interplanetary dust particles, but this is the first reported occurrence in a meteorite. The morphological properties and grain size of the Ti oxides are consistent with formation by vapor phase condensation either within the solar nebula or possibly in a presolar environment.
Recent research on the Chesapeake Bay impact structure, USA - Impact debris and reworked ejecta
Horton, J. Wright; Aleinikoff, John N.; Kunk, Michael J.; Gohn, Gregory S.; Edwards, Lucy E.; Self-Trail, Jean M.; Powars, David S.; Izett, Glen A.
2005-01-01
Four new coreholes in the western annular trough of the buried, late Eocene Chesapeake Bay impact structure provide samples of shocked minerals, cataclastic rocks, possible impact melt, mixed sediments, and damaged microfossils. Parautochthonous Cretaceous sediments show an upward increase in collapse, sand fluidization, and mixed sediment injections. These impact-modified sediments are scoured and covered by the upper Eocene Exmore beds, which consist of highly mixed Cretaceous to Eocene sediment clasts and minor crystalline-rock clasts in a muddy quartz-glauconite sand matrix. The Exmore beds are interpreted as seawater-resurge debris flows. Shocked quartz is found as sparse grains and in rock fragments at all four sites in the Exmore, where these fallback remnants are mixed into the resurge deposit. Crystalline-rock clasts that exhibit shocked quartz or cataclastic fabrics include felsites, granitoids, and other plutonic rocks. Felsite from a monomict cataclasite boulder has a sensitive high-resolution ion microprobe U-Pb zircon age of 613 ± 4 Ma. Leucogranite from a polymict cataclasite boulder has a similar Neoproterozoic age based on muscovite 40Ar/39Ar data. Potassium-feldspar 40Ar/39Ar ages from this leucogranite show cooling through closure (∼150 °C) at ca. 261 Ma without discernible impact heating. Spherulitic felsite is under investigation as a possible impact melt. Types of crystalline clasts, and exotic sediment clasts and grains, in the Exmore vary according to location, which suggests different provenances across the structure. Fractured calcareous nannofossils and fused, bubbled, and curled dinoflagellate cysts coexist with shocked quartz in the Exmore, and this damage may record conditions of heat, pressure, and abrasion due to impact in a shallow-marine environment.
Roedder, E.; Weiblen, P.W.
1972-01-01
Many isolated grains of a reddish pleonaste-type spinel occur in fines and metabreccia samples, particularly 14 319. Electron microprobe analyses (104) of spinels and their associated phases include 58 of pleonaste which show Mg/(Mg + Fe) 0.44-0.62 and Cr/(Cr + Al) 0.017-0.134 (atomic), plus minor amounts of other ions, and differ greatly from almost all previously recorded lunar spinels; almost no spinels of intermediate composition were found. Two types of compositional zoning exist: a diffuse primary one with cores lower in Ti, and a narrow secondary one from reaction with matrix yielding rims higher in Cr, Ti, and Mn. At contacts with breccia matrix there is a narrow corona of almost pure plagioclase (An80-An94), free of opaque minerals and pyroxene. Two types of solid inclusions found in the pleonaste are calcic plagioclase, and tiny spherical masses of nickel-rich sulfide. Similar pleonaste occurs in crystalline rock clasts, mainly with plagioclase; one clast (A) consists only of coarse olivine, plagioclase, and pleonaste, with granulated grain boundaries suggestive of deformation. From composition and texture, this clast is one possible candidate for the mafic cumulate counterpart of the "anorthositic" crust. Another clast (B), also made solely of olivine, plagioclase and pleonaste, is itself a breccia. These data suggest a two-stage brecciation process: 1) disruption (probably pre-Imbrian) of a deep-seated pleonaste-bearing source rock like A and reconsolidation to form a breccia without addition of pyroxene, ilmenite or other minerals; and 2) disruption of this breccia to yield breccia clast B which was then incorporated into the Fra Mauro formation. ?? 1972.
Sm-Nd and Ar-Ar Studies of DHO 908 and 489: Implications for Lunar Crustal History
NASA Technical Reports Server (NTRS)
Nyquist, L. E.; Shih, C. Y.; Reese, Y. D.; Park, J.; Bogard, D. D.; Garrison, D. H.; Yamaguchi, A.
2011-01-01
It is widely assumed that ferroan anorthosites (FANs) formed as flotation cumulates on a global lunar magma ocean (LMO). A corollary is that all FANs are approximately contemporaneous and formed with the same initial Nd-143/Nd-144 ratio. Indeed, a whole rock isochron for selected FANs (and An93 anorthosite) yields an isochron age of 4.42 +/- 0.13 Ga and initial Nd-143/Nd-144, expressed in epsilon-units, of epsilon(sub Nd,CHUR) = 0.3+/-0.3 relative to the CHondritic Uniform Reservoir , or epsilon(sub Nd,HEDPB)=-0.6+/-0.3 relative to the HED Parent Body. These values are in good agreement with the age (T) = 4.47+/-0.07 Ga, and epsilon(sub Nd,HEDPB) =-0.6 +/- 0.5 for FAN 67075. We also have studied anorthositic clasts in the Dhofar 908 and 489 lunar highland meteorites containing clasts of magnesian anorthosites (MAN) with Mg# approximately 75. Because of their relatively high Mg#, magnesian anorthosites should have preceded most FANs in crystallization from the LMO if both are LMO products. Thus, it is important to determine whether the Nd-isotopic data of MAN and FAN are consistent with a co-magmatic origin. We previously reported Sm-Nd data for white clast Dho 908 WC. Mafic minerals in this clast were too small to be physically separated for an isochron. However, we estimated initial Nd-143/Nd-144 for the clast by combining its bulk ("whole rock") Sm-Nd data with an Ar-39-Ar-40 age of 4.42+/-.04 Ga. Here we report additional Sm-Nd data for bulk samples of Dho 908 and its pair Dho 489.
NASA Astrophysics Data System (ADS)
Hosseini, B.; Fauria, K.; Manga, M.; Carey, R.; Soule, S. A.
2016-12-01
During the 2015 MESH (Mapping, Exploration, and Sampling at Havre) expedition to the submarine Havre caldera volcano, we collected pumice from the 2012 eruption. Here, we report pumice volume, porosity, and floatation time from measurements on 32 clasts (0.2-16 g) that provide insight into the eruption dynamics and mechanisms that deposited these clasts on the seafloor. We measured pumice volume using photogrammetry, capturing 100-180 images per sample. We used a series of open-source software—VisualSFM and MeshLab—to process the images and construct volume models. Combined with measurements of mass, we can determine pumice porosity. We calculated a mean porosity of 0.86+/-0.03 for the 32 samples. The lowest measured porosity of 0.78 was from a fragment of a giant 1.5-m diameter pumice clast. In addition to quantifying pumice volume and porosity, we conducted floatation experiments in which we cleaned, dried, and set the 32 samples on water and measured the time required for each clast to sink. Pumice floatation times varied from 0.8-226 days. We found that pumice floatation time scales with both pumice volume and porosity. These trends are consistent with a gas trapping mechanism for cold pumice floatation and suggest that pumice porosity, in addition to pumice volume, exerts an important control on the floatation time and fate of floating pumice. Despite the wide range of floatation times for these clasts, the proximal to vent collection suggests that these pumice (with the possible exception of the giant pumice fragment) were deposited on the seafloor soon after the 2012 eruption and never reached the ocean surface.
Erosion of an ancient mountain range, the Great Smoky Mountains, North Carolina and Tennessee
Matmon, A.; Bierman, P.R.; Larsen, J.; Southworth, S.; Pavich, M.; Finkel, R.; Caffee, M.
2003-01-01
Analysis of 10Be and 26Al in bedrock (n=10), colluvium (n=5 including grain size splits), and alluvial sediments (n=59 including grain size splits), coupled with field observations and GIS analysis, suggest that erosion rates in the Great Smoky Mountains are controlled by subsurface bedrock erosion and diffusive slope processes. The results indicate rapid alluvial transport, minimal alluvial storage, and suggest that most of the cosmogenic nuclide inventory in sediments is accumulated while they are eroding from bedrock and traveling down hill slopes. Spatially homogeneous erosion rates of 25 - 30 mm Ky-1 are calculated throughout the Great Smoky Mountains using measured concentrations of cosmogenic 10Be and 26Al in quartz separated from alluvial sediment. 10Be and 26Al concentrations in sediments collected from headwater tributaries that have no upstream samples (n=18) are consistent with an average erosion rate of 28 ?? 8 mm Ky-1, similar to that of the outlet rivers (n=16, 24 ?? 6 mm Ky-1), which carry most of the sediment out of the mountain range. Grain-size-specific analysis of 6 alluvial sediment samples shows higher nuclide concentrations in smaller grain sizes than in larger ones. The difference in concentrations arises from the large elevation distribution of the source of the smaller grains compared with the narrow and relatively low source elevation of the large grains. Large sandstone clasts disaggregate into sand-size grains rapidly during weathering and downslope transport; thus, only clasts from the lower parts of slopes reach the streams. 26Al/10Be ratios do not suggest significant burial periods for our samples. However, alluvial samples have lower 26Al/10Be ratios than bedrock and colluvial samples, a trend consistent with a longer integrated cosmic ray exposure history that includes periods of burial during down-slope transport. The results confirm some of the basic ideas embedded in Davis' geographic cycle model, such as the reduction of relief through slope processes, and of Hack's dynamic equilibrium model such as the similarity of erosion rates across different lithologies. Comparing cosmogenic nuclide data with other measured and calculated erosion rates for the Appalachians, we conclude that rates of erosion, integrated over varying time periods from decades to a hundred million years are similar, the result of equilibrium between erosion and isostatic uplift in the southern Appalachian Mountains.
NASA Technical Reports Server (NTRS)
Okada, Akihiko; Keil, Klaus; Taylor, G. Jeffrey; Newsom, Horton
1988-01-01
Numerous specimens of the Norton County enstatite achondrite (aubrite) were studied by optical microscopy, electron microprobe, and neutron-activation analysis. Norton County is found to be a fragmental impact breccia, consisting of a clastic matrix made mostly of crushed enstatite, into which are embedded a variety of mineral and lithic clasts of both igneous and impact melt origin. The Norton County precursor materials were igneous rocks, mostly plutonic orthopyroxenites, not grains formed by condensation from the solar nebula. The Mg-silicate-rich aubrite parent body experienced extensive melting and igneous differentiation, causing formation of diverse lithologies including dunites, plutonic orthopyroxenites, plutonic pyroxenites, and plagioclase-silica rocks. The presence of impact melt breccias (the microporphyritic clasts and the diopside-plagioclase-silica clast) of still different compositions further attests to the lithologic diversity of the aubrite parent body.
A Comparison of Anorthositic Lunar Lithologies: Variation on the FAN Theme
NASA Technical Reports Server (NTRS)
Nyquist, L. E.; Shih, C-Y.; Yamaguchi, A.; Mittlefehldt, D. W.; Peng, Z. X.; Park, J.; Herzog, G. F.; Shirai, N.
2014-01-01
Certain anorthositic rocks that are rare in the returned lunar samples have been identified among lunar meteorites. The variety of anorthosites in the Apollo collection also is more varied than is widely recognized. James eta. identified three lithologies in a composite clast o ferroan anorthosite (FAN)-suite rocks in lunar breccia 64435. They further divided all FANs into four subgroups: anorthositic ferroan (AF), mafic magnesian (MM), mafic ferroan (MF), and anorthositic sodic (AS, absent in the 64435 clast). Here we report Sm-Nd isotopic studies of the lithologies present in the 64435 composite clast and compare the new data to our previous data for lunar anorthosites incuding lunar anorthositic meteorites. Mineralogy-petrography, in situ trace element studies, Sr-isotope studies, and Ar-Ar chronology are included, but only the Nd-isotopic studies are currently complete.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nance, M.A.
1993-04-01
Detailed mapping, stratigraphic structural analysis in the Mountain Pass area has resulted in a reinterpretation of Mesozoic and Cenozoic tectonic events in the area. Mesozoic events are characterized by north vergent folds and thrust faults followed by east vergent thrusting. Folding created two synclines and an anticline which were than cut at different stratigraphic levels by subsequent thrust faults. Thrusting created composite tectono-stratigraphic sections containing autochthonous, para-autothonous, and allochthonous sections. Normal faults cutting these composite sections including North, Kokoweef, White Line, and Piute fault must be post-thrusting, not pre-thrusting as in previous interpretations. Detailed study of these faults results inmore » differentiation of at least three orders of faults and suggest they represent Cenozoic extension correlated with regional extensional events between 11 and 19 my. Mesozoic stratigraphy reflects regional orogenic uplift, magmatic activity, and thrusting. Inclusion of Kaibab clasts in the Chinle, Kaibab and Chinle clasts in the Aztec, and Chinle, Aztec, and previously deposited Delfonte Volcanics clasts in the younger members of the Delfonte Volcanics suggest regional uplift prior to the thrusting of Cambrian Bonanza King over Delfonte Volcanics by the Mescal Thrust fault. The absence of clasts younger than Kaibab argues against pre-thrusting activity for the Kokoweef fault.« less
Diverse Metals and Sulfides in Polymict Ureilites EET 83309 and EET 87720
NASA Technical Reports Server (NTRS)
Herrin, J. S.; Mittlefehldt, D. W.; Downes, H.; Humayun, M.
2007-01-01
Ureilites are a group of carbon-bearing ultramafic achondrites. The majority of samples are monomict with major and trace element compositions consistent with a restitic origin after extensive loss of basaltic melts and significant loss of their metallic component during anatexis. Monomict ureilites are thought to represent largely intact samples of the ureilite parent body (UPB) mantle. Polymict ureilites, by contrast, are fragmental breccias consisting of welded lithic clasts and isolated mineral fragments thought to be regolith that assembled after major disruption fragmented large portions of the UPB mantle. In most polymict ureilites, the majority of clasts consist of material similar to monomict ureilites gardened from the UPB mantle but other materials, both endogenic and xenogenic to the UPB are also found in polymict ureilites, including clasts texturally and compositionally similar to known chondrite types as well as feldspathic melt rocks and clasts of Ca-Al-Ti-rich assemblages. In this study, we demonstrate that polymict ureilites also contain a variety of metal and sulfide compositions of diverse origins. They offer insight into the final equilibrium conditions of disrupted portions of the UPB mantle and the diversity of materials locally available for regolith formation, and provide evidence for only limited post-regolith formation thermal metamorphism.
NASA Astrophysics Data System (ADS)
Novak, Andrej; Šmuc, Andrej
2016-04-01
The Planica-Tamar valley is located in the Julian Alps in north-west Slovenia. The Planica-Tamar valley represents typical mountain glacial valley bounded by steep, mainly carbonate cliffs with some glacial deposits still preserved. The valley is currently being filled with numerous Holocene sediments deposited by rock falls, landslides, mass gravity flows and fluvial flows. These deposits are forming active or inactive interfingering talus slopes, alluvial and debris-flow fans, all of them with a complex history of sedimentation and erosion forming unconformity bounded sedimentary units. In order to make a thorough analysis of these deposits a detailed geomorphological map in a scale of 1:10 000 has been made. Six different types of sedimentary deposits were defined and mapped. These are moraines, lacustrine sediments, fluvio-glacial deposits, talus slopes, debris fans and alluvial fans. Other mapped features also include shape of ravines, their depths, ridges and direction of sedimentary flow. Additionally areas of active, semi-active and inactive sedimentation were marked. Moraines forms a ridge in the bottom of the valleys and are composed of unconsolidated, poorly sorted, subangular grains ranging from clay size to a few cubic meters big blocks. Lacustrine sediments are represented by laminated well sorted sand and silt, while fluvio-glacial deposits are composed of washed out subrounded sands and gravels. Talus slope deposits are characterised by clast-supported poorly sorted very angular gravel. Debris flow fans are represented by extremely poorly sorted matrix-supported gravels with grain size ranging from clay to few cubic meters big blocks. Alluvial fans are composed by variety of sedimentary textures. Sediments at the fan apex are clast-supported poorly sorted very angular gravels with up to a few cubic meters big block. In the middle part of the fan the sieve deposits are common, while in the distal parts a few centimeters thick layers of sand and moderately sorted clast or sandy matrix-supported angular gravels occur. In cross-sections of alluvial fans distinct palaeosoil horizons are present indicating longer inactivity of that part of the fan. The geomorphological map forms a base for further research and thorough analysis of Quaternary deposits in order to reconstruct the Holocene dynamic of triggering and sedimentation of different types of slope deposits and relate them to base rock geology, tectonic and local/regional climate events. Key words: geomorphological mapping, Holocene slope deposits, alluvial fans, debris fans, Alpine geomorphology.
Casas, D.; Ercilla, G.; Estrada, F.; Alonso, B.; Baraza, J.; Lee, H.; Kayen, R.; Chiocci, F.
2004-01-01
Our investigation is centred on the continental slope of the Antarctic Peninsula and adjacent basin. Type of sediments, sedimentary stratigraphy, and physical and geotechnical characterization of the sediments have been integrated. Four different types of sediments have been defined: diamictons, silty and muddy turbidites, muddy, silty and muddy matrix embedded clast contourites. There is a close correspondence between the physical properties (density, magnetic susceptibility and p-wave velocity) and the texture and/or fabric as laminations and stratification. From a quantitative point of view, only a few statistical correlations between textural and physical properties have been found. Within the geotechnical properties, only water content is most influenced by texture. This slope, with a maximum gradient observed (20??), is stable, according to the stability under gravitational loading concepts, and the maximum stable slope that would range from 22?? to 29??. Nevertheless, different instability features have been observed. Volcanic activity, bottom currents, glacial loading-unloading or earthquakes can be considered as potential mechanisms to induce instability in this area. Copyright ?? Taylor & Francis Inc.
Implications for Lunar Crustal Evolution from Y-86032 and Dho 908
NASA Technical Reports Server (NTRS)
Nyquist, L. E.; Shih, C. -Y.; Reese, Y. D.; Park, J.; Bogard, D. D.; Garrison, D. H.; Yamaguchi, A.; Joy, K. H.
2010-01-01
We have studied anorthositic clasts in the Y-86032 and Dhofar 908 meteorites by the Rb-Sr, Sm-Nd, and Ar-39-Ar-40 techniques combining isotopic studies with mineralogical/petrological studies of the same clasts. As a result of these studies, we conclude that the lunar crust is composed of a variety of anorthosites, at least some of which must have formed as plutons in the earliest formed ferroan anorthosite crust.
NASA Technical Reports Server (NTRS)
Lindgren, P.; Lee, M. R.; Sofe, M.; Zolensky, M. E.
2011-01-01
Xenoliths are foreign clasts that oc-cur in various classes of meteorites, e.g. [1,2,3]. A re-cent study reveals the presence of several distinct classes of xenoliths in regolith-bearing meteorites, in-cluding in over 20 different carbonaceous chondrites [4]. The most common types of xenoliths are fine-grained hydrous clasts, often referred to as C1 or CI clasts in the literature, although their mineralogy is actually more similar to hydrous micrometeorites [5,6]. Xenoliths in meteorites present an opportunity to study material not yet classified or available as separate meteorites, and can provide additional information on processes in the dynamic early history of the Solar Sys-tem. Here we have performed chemical and mineralogi-cal analyses of xenoliths in the CM2 carbonaceous chondrite LON 94101, using scanning electron micro-scopy (SEM) and transmission electron microscopy (TEM).
Wright, Heather M.; Folkes, Christopher B.; Cas, Ray A.F.; Cashman, Katharine V.
2011-01-01
Triggering mechanisms of large silicic eruptions remain a critical unsolved problem. We address this question for the ~2.08-Ma caldera-forming eruption of Cerro Galán volcano, Argentina, which produced distinct pumice populations of two colors: grey (5%) and white (95%) that we believe may hold clues to the onset of eruptive activity. We demonstrate that the color variations correspond to both textural and compositional variations between the clast types. Both pumice types have bulk compositions of high-K, high-silica dacite to low-silica rhyolite, but there are sufficient compositional differences (e.g., ~150 ppm lower Ba at equivalent SiO2 content and 0.03 wt.% higher TiO2 in white pumice than grey) to suggest that the two pumice populations are not related by simple fractionation. Trace element concentrations in crystals mimic bulk variations between clast types, with grey pumice containing elevated Ba, Cu, Pb, and Zn concentrations in both bulk samples (average Cu, Pb, and Zn concentrations are 27, 35, and 82 in grey pumice vs. 11, 19, and 60 in white pumice) and biotite phenocrysts and white pumice showing elevated Li concentrations in biotite and plagioclase phenocrysts. White and grey clasts are also texturally distinct: White pumice clasts contain abundant phenocrysts (44–57%), lack microlites, and have highly evolved groundmass glass compositions (76.4–79.6 wt.% SiO2), whereas grey pumice clasts contain a lower percentage of phenocrysts/microphenocrysts (35–49%), have abundant microlites, and have less evolved groundmass glass compositions (69.4–73.8 wt.% SiO2). There is also evidence for crystal transfer between magma producing white and grey pumice. Thin highly evolved melt rims surround some fragmental crystals in grey pumice clasts and appear to have come from magma that produced white pumice. Furthermore, based on crystal compositions, white bands within banded pumice contain crystals originating in grey magma. Finally, only grey pumice clasts form breadcrusted surface textures. We interpret these compositional and textural variations to indicate distinct magma batches, where grey pumice originated from an originally deeper, more volatile-rich dacite recharge magma that ascended through and mingled with the volumetrically dominant, more highly crystalline chamber that produced white pumice. Shortly before eruption, the grey pumice magma stalled within shallow fractures, forming a vanguard magma phase whose ascent may have provided a trigger for eruption of the highly crystalline rhyodacite magma. We suggest that in the case of the Cerro Galán eruption, grey pumice provides evidence not only for cryptic silicic recharge in a large caldera system but also a probable trigger for the eruption.
NASA Astrophysics Data System (ADS)
Wright, Heather M. N.; Folkes, Chris B.; Cas, Raymond A. F.; Cashman, Katharine V.
2011-12-01
Triggering mechanisms of large silicic eruptions remain a critical unsolved problem. We address this question for the ~2.08-Ma caldera-forming eruption of Cerro Galán volcano, Argentina, which produced distinct pumice populations of two colors: grey (5%) and white (95%) that we believe may hold clues to the onset of eruptive activity. We demonstrate that the color variations correspond to both textural and compositional variations between the clast types. Both pumice types have bulk compositions of high-K, high-silica dacite to low-silica rhyolite, but there are sufficient compositional differences (e.g., ~150 ppm lower Ba at equivalent SiO2 content and 0.03 wt.% higher TiO2 in white pumice than grey) to suggest that the two pumice populations are not related by simple fractionation. Trace element concentrations in crystals mimic bulk variations between clast types, with grey pumice containing elevated Ba, Cu, Pb, and Zn concentrations in both bulk samples (average Cu, Pb, and Zn concentrations are 27, 35, and 82 in grey pumice vs. 11, 19, and 60 in white pumice) and biotite phenocrysts and white pumice showing elevated Li concentrations in biotite and plagioclase phenocrysts. White and grey clasts are also texturally distinct: White pumice clasts contain abundant phenocrysts (44-57%), lack microlites, and have highly evolved groundmass glass compositions (76.4-79.6 wt.% SiO2), whereas grey pumice clasts contain a lower percentage of phenocrysts/microphenocrysts (35-49%), have abundant microlites, and have less evolved groundmass glass compositions (69.4-73.8 wt.% SiO2). There is also evidence for crystal transfer between magma producing white and grey pumice. Thin highly evolved melt rims surround some fragmental crystals in grey pumice clasts and appear to have come from magma that produced white pumice. Furthermore, based on crystal compositions, white bands within banded pumice contain crystals originating in grey magma. Finally, only grey pumice clasts form breadcrusted surface textures. We interpret these compositional and textural variations to indicate distinct magma batches, where grey pumice originated from an originally deeper, more volatile-rich dacite recharge magma that ascended through and mingled with the volumetrically dominant, more highly crystalline chamber that produced white pumice. Shortly before eruption, the grey pumice magma stalled within shallow fractures, forming a vanguard magma phase whose ascent may have provided a trigger for eruption of the highly crystalline rhyodacite magma. We suggest that in the case of the Cerro Galán eruption, grey pumice provides evidence not only for cryptic silicic recharge in a large caldera system but also a probable trigger for the eruption.
NASA Astrophysics Data System (ADS)
Liu, Yang; Ma, Chi; Beckett, John R.; Chen, Yang; Guan, Yunbin
2016-10-01
Paired martian breccia meteorites, Northwest Africa (NWA) 7034 and 7533, are the first martian rocks found to contain rare-earth-element (REE) phosphates and silicates. The most common occurrence is as clusters of anhedral monazite-(Ce) inclusions in apatite. Occasionally, zoned, irregular merrillite inclusions are also present in apatite. Monazite-bearing apatite is sometimes associated with alkali-feldspar and Fe-oxide. Apatite near merrillite and monazite generally contains more F and OH (F-rich region) than the main chlorapatite host and forms irregular boundaries with the main host. Locally, the composition of F-rich regions can reach pure fluorapatite. The chlorapatite hosts are similar in composition to isolated apatite without monazite inclusions, and to euhedral apatite in lithic clasts. The U-Th-total Pb ages of monazite in three apatite are 1.0 ± 0.4Ga (2σ), 1.1 ± 0.5Ga (2σ), and 2.8 ± 0.7Ga (2σ), confirming a martian origin. The texture and composition of monazite inclusions are mostly consistent with their formation by the dissolution of apatite and/or merrillite by fluid at elevated temperatures (>100 °C). In NWA 7034, we observed a monazite-chevkinite-perrierite-bearing benmoreite or trachyandesite clast. Anhedral monazite and chevkinite-perrierite grains occur in a matrix of sub-micrometer REE-phases and silicates inside the clast. Monazite-(Ce) and -(Nd) and chevkinite-perrierite-(Ce) and -(Nd) display unusual La and Ce depletion relative to Sm and Nd. In addition, one xenotime-(Y)-bearing pyrite-ilmenite-zircon clast with small amounts of feldspar and augite occurs in NWA 7034. One xenotime crystal was observed at the edge of an altered zircon grain, and a cluster of xenotime crystals resides in a mixture of alteration materials. Pyrite, ilmenite, and zircon in this clast are all highly altered, zircon being the most likely source of Y and HREE now present in xenotime. The association of xenotime with zircon, low U and Th contents, and the low Yb content relative to Gd and Dy in xenotime suggest the possible formation of xenotime as a byproduct of fluid-zircon reactions. On the basis of relatively fresh apatite grains and lithic clasts in the same samples, we propose that the fluid-rock/mineral reactions occurred in the source rocks before their inclusion in NWA 7034 and 7533. Additionally, monazite-bearing apatite and REE-mineral-bearing clasts are possibly derived from different crustal origins. Thus, our results imply the wide-occurrence of hydrothermal fluids in the martian crust at 1 Ga or older, which were probably induced by impacts or large igneous intrusions.
Volatile Concentrations in Pyroclastic Obsidian: Two Case Studies
NASA Astrophysics Data System (ADS)
Wearn, K. M.; Cashman, K. V.; Wallace, P. J.
2002-12-01
Pyroclastic obsidian is abundant in fall deposits associated with Mt. Mazama's Cleetwood eruption and South Sister's Rock Mesa eruption. Measured concentrations of H2Ototal and CO2 in >300 obsidian samples from these two eruptions provide important information about both the style of degassing (open- vs. closed-system) and changes in eruptive conditions through the course of both eruptions. Obsidian clasts preserve a range of total H2O contents, with samples from lower stratigraphic levels displaying a wider range of water concentrations than those from the uppermost tephra layer sampled. All samples from the Cleetwood section contain <=1 wt% water, with those from the top of that deposit containing <0.4 wt%. Obsidian from the basal ash layer of the subsequent climactic eruption contains 0.1 - 0.8 wt% water. Obsidian fragments from the Rock Mesa eruption show a broader range in H2Ototal contents (from 0.1 to >3 wt%) than those from the Cleetwood eruption. At Rock Mesa, maximum total water contents generally decrease with increased stratigraphic height. However, this decrease is not strictly monotonic: fluctuations in maximum total water contents correspond to stratigraphic unit boundaries. In addition, the Rock Mesa event produced abundant obsidian with very low H2Ototal concentrations throughout the eruption. Dissolved molecular CO2 levels are below the detection limit in all of the Cleetwood and Mazama samples. This is not surprising, given the low initial CO2 measured in Cleetwood and Mazama melt inclusions by Bacon et al. (1992). CO2 concentrations in the Rock Mesa clasts range from <5 ppm to ~44 ppm, and are positively correlated with H2Ototal concentrations. Fluorine concentrations in Cleetwood and Mazama climactic obsidian clasts vary between ~510 and ~695 ppm, with climactic samples averaging slightly lower concentrations than Cleetwood samples. Fluorine concentrations in Rock Mesa obsidians are uniformly low (~300 to ~510 ppm). Chlorine contents of Cleetwood and Mazama climactic samples range from ~1400 ppm to ~1610 ppm. The Rock Mesa samples all contain less chlorine (~510 to ~1120 ppm) than the Cleetwood and climactic samples, and in the Rock Mesa obsidian, chlorine and total water are positively correlated. Stratigraphic variations in the volatile contents of pyroclastic obsidian support previous work suggesting that obsidian forms along the margins of the volcanic conduit and is eroded from the conduit walls by fragmenting magma. Both the Cleetwood and the Rock Mesa deposits indicate initial evacuation of shallow vanguard magma followed by a rapid increase in fragmentation depth. Both deposits also show a gradual decrease in the fragmentation depth through time, consistent with subsequent effusive activity in both cases. More puzzling is the apparent closed-system degassing trend defined by the H2O-CO2-Cl relations in the Rock Mesa obsidian samples, despite the loss of volatiles required for obsidian formation. This suggests that volatile data may also provide information on the relative time scales of volatile exsolution and loss and obsidian formation.
Geological and Geomorphological Impacts of Two Large Typhoons from the Central Coast Of Vietnam
NASA Astrophysics Data System (ADS)
Switzer, A. D.; Gouramanis, C.; Dura, T.; Lam, D. D.; Hoang, L. V.; Sloss, C. R.; Hoang, Q. D.; Lee, Y. S.; Chan, M. M.; Pham, D. T.
2011-12-01
Typhoons Xangsane (2006) and Ketsana (2009) left behind geological and geomorphic evidence of their landfall in central Vietnam. In both instances, the events caused the evacuation of several hundred thousand people, considerable deaths (at least 70 and 160, respectively) and damages to infrastructure of more than US$600 million each time. Storm surges and waves associated with both events left sandsheet deposits and scattered cobble to boulder size clasts on the coastal landscape. This study details the first investigation of multiple storm deposits from the Vietnamese coast. These deposits provide modern analogues for the study of past events regionally and globally. In each situation, the deposits show characteristics unique to their setting. In one location, Canh Duong Village, at the northern end of Chan May embayment, the Xangsane event deposited well-defined populations of cobbles (rock) and soil clasts that allows the identification of the sediment source. In a second location, several hundred meters west of Chan May Port and at the southern end of the embayment, the presence of a large tree stump with encrusting intertidal bivalve molluscs and tube worms provides a minimum transport distance for the Ketsana event. When combined with generic information on the extent, height above sea level and sedimentary properties of the storm-deposited sandsheets, the unique qualities of the different deposits allow an accurate reconstruction of the inundation characteristics of these recent storms.
NASA Astrophysics Data System (ADS)
Trolese, Matteo; Giordano, Guido; Cifelli, Francesca; Winkler, Aldo; Mattei, Massimo
2017-11-01
Few studies have detailed the thermal architecture of large-volume pyroclastic density current deposits, although such work has a clear importance for understanding the dynamics of eruptions of this magnitude. Here we examine the temperature of emplacement of large-volume caldera-forming ignimbrites related to magmatic and phreatomagmatic eruptions at the Colli Albani volcano, Italy, by using thermal remanent magnetization analysis on both lithic and juvenile clasts. Results show that all the magmatic ignimbrites were deposited at high temperature, between the maximum blocking temperature of the magnetic carrier (600-630 °C) and the glass transition temperature (about 710 °C). Temperature estimations for the phreatomagmatic ignimbrite range between 200 and 400 °C, with most of the clasts emplaced between 200 and 320 °C. Because all the investigated ignimbrites, magmatic and phreatomagmatic, share similar magma composition, volume and mobility, we attribute the temperature difference to magma-water interaction, highlighting its pronounced impact on thermal dissipation, even in large-volume eruptions. The homogeneity of the deposit temperature of each ignimbrite across its areal extent, which is maintained across topographic barriers, suggests that these systems are thermodynamically isolated from the external environment for several tens of kilometers. Based on these findings, we propose that these large-volume ignimbrites are dominated by the mass flux, which forces the lateral transport of mass, momentum, and thermal energy for distances up to tens of kilometers away from the vent. We conclude that spatial variation of the emplacement temperature can be used as a proxy for determining the degree of forced-convection flow.
NASA Astrophysics Data System (ADS)
Rust, A. C.; Cashman, K. V.
2007-07-01
The pyroclastic deposits of the 1300 B.P. eruption of Newberry Volcano, OR, USA, contain minor amounts of obsidian (1-6 wt.%). The volatile (H2O and CO2) contents and textures of these clasts vary considerably. FTIR measurements of H2O in obsidian pyroclasts range from 0.1 to 1.5 wt.% indicating equilibration pressures ≤20 MPa. CO2 contents are low (<10 ppm) except in clasts that also contain xenolith powder that provided a local CO2 source. Obsidian clasts exhibit a range of color and textural types that changed in relative proportion as the eruption progressed. Together these data indicate that there were multiple origins of obsidian and that the dominant source changed during the eruption. Early in the eruption, obsidian was almost entirely black or grey (microlite-bearing) and probably derived from dikes or wall rock fractures filled with vanguard magma or tuffisite that, together with wall rocks, were eroded and incorporated into the eruption column as the vent widened. Later in the eruption, following a brief cessation of activity, the proportion of obsidian to wallrock lithic clasts increased and new types of obsidian dominated, types that represent remnants of a shallow conduit plug, welded fallback material from within the conduit, and sheared and degassed magma from near the conduit walls. Analysis of bubble shapes preserved within obsidian indicates that shear stresses and shear rates varied by over two orders of magnitude, with maxima of 88 kPa and 10-2.3 s-1, respectively, based on an assumed magma temperature of 850°C. Furthermore, the highest shear rates and stresses, and the shortest flow times (10-20 min), are preserved in clasts that also contain wall rock. The longest deformation times (5 and 8 h) correspond to two microlite-rich clasts, suggesting that the higher microlite content results from slower ascent rates and/or longer magma residence times at shallow levels. Differences between obsidian pyroclasts from the Newberry eruption and those of the Mono Craters may relate to the nature of the conduit feeding the two events. From this comparison, we conclude that obsidian can provide information on time scales and mechanisms of pre-fragmentation magma ascent.
NASA Astrophysics Data System (ADS)
Zou, Zongxing; Tang, Huiming; Xiong, Chengren; Su, Aijun; Criss, Robert E.
2017-10-01
The Jiweishan rockslide of June 5, 2009 in China provides an important opportunity to elucidate the kinetic characteristics of high-speed, long-runout debris flows. A 2D discrete element model whose mechanical parameters were calibrated using basic field data was used to simulate the kinetic behavior of this catastrophic landslide. The model output shows that the Jiweishan debris flow lasted about 3 min, released a gravitational potential energy of about 6 × 10^13 J with collisions and friction dissipating approximately equal amounts of energy, and had a maximum fragment velocity of 60-70 m/s, almost twice the highest velocity of the overall slide mass (35 m/s). Notable simulated characteristics include the high velocity and energy of the slide material, the preservation of the original positional order of the slide blocks, the inverse vertical grading of blocks, and the downslope sorting of the slide deposits. Field observations that verify these features include uprooted trees in the frontal collision area of the air-blast wave, downslope reduction of average clast size, and undamaged plants atop huge blocks that prove their lack of downslope tumbling. The secondary acceleration effect and force chains derived from the numerical model help explain these deposit features and the long-distance transport. Our back-analyzed frictions of the motion path in the PFC model provide a reference for analyzing and predicting the motion of similar geological hazards.
Genesis of highland basalt breccias - A view from 66095
NASA Technical Reports Server (NTRS)
Garrison, J. R., Jr.; Taylor, L. A.
1980-01-01
Electron microprobe and defocused beam analyses of the lunar highland breccia sample 66095 show it consists of a fine-grained subophitic matrix containing a variety of mineral and lithic clasts, such as intergranular and cataclastic ANT, shocked and unshocked plagioclase, and basalts. Consideration of the chemistries of both matrix and clasts provides a basis for a qualitative three-component mixing model consisting of an ANT plutonic complex, a Fra Mauro basalt, and minor meteoric material.
Carbonaceous Chondrite-Rich Howardites; The Potential for Hydrous Lithologies on the HED Parent
NASA Technical Reports Server (NTRS)
Herrin, J. S.; Zolensky, M. E.; Cartwright, J. A.; Mittlefehldt, D. W.; Ross, D. K.
2011-01-01
Howardites, eucrites, and diogenites, collectively referred to as the "HED's", are a clan of meteorites thought to represent three different lithologies from a common parent body. Collectively they are the most abundant type of achondrites in terrestrial collections. Eucrites are crustal basalts and gabbros, diogenites are mostly orthopyroxenites and are taken to represent lower crust or upper mantle materials, and howardites are mixed breccias containing both lithologies and are generally regarded as derived from the regolith or near-surface. The presence of exogenous chondritic material in howardite breccias has long been recognized. As a group, howardites exhibit divergence in bulk chemistry from what would be produced by mixing of diogenite and eucrite end-members exclusively, a phenomenon most evident in elevated concentrations of siderophile elements. Despite this chemical evidence for chondritic input in howardite breccias, chondritic clasts have only been identified in a minority of samples, and typically at levels of only a few percent. Three recent Antarctic howardite finds, the paired Mt. Pratt (PRA) 04401 and PRA 04402 and Scott Glacier (SCO) 06040, are notable for their high proportion of carbonaceous chondrite clasts. PRA 04401 is particularly well-endowed, with large chondritic clasts occupying more than half of the modal area of the sections we examined. Previously only a few percent chondritic clasts had been observed to occur in howardites. PRA 04401 is the most chondrite-rich howardite known
The Chicxulub crater - impact metamorphism of sulfate and carbonate lithologies
NASA Astrophysics Data System (ADS)
Deutsch, A.; Langenhorst, F.; Hornemann, U.; Ivanov, B. A.
2003-04-01
It is discussed whether in the aftermath of the Chicxulub event, impact-released CO_2 and SO_x have changed the Earth's climate, acting also as lethal thread for life. Undoubtedly, vaporization of carbonates and sulfates, which are major target lithologies at the Chicxulub impact site, occurred in the footprint of the projectile. What happened to these lithologies outside this very restricted zone was so far unconstrained. Petrologic observations on PEMEX and UNAM as well as on the CSDP cores allow to set up a general classification for shock-related pro-grade effects on sulfate and carbonate sedimentary rocks. Shock effects in lithic breccias are restricted to brecciation and formation of twins in calcite. Suevites mostly lack melted carbonate clasts; annealing effects in anhydrite fragments are absent. The underlying melt breccias contain anhydrite fragments still displaying a sedimentary texture, and limestone clasts, whose texture reflect crystallization from melt. Impact melt breccias from deeper levels frequently contain partially resorbed anhydrite clasts and a melt matrix with the Ca-rich mineral assemblage quartz + plagioclase + clinopyroxene; this mineral assemblage provides evidence for partial dissociation of CaSO_4. Large clasts of anhydrite consist of equant crystals with 120^o triple junctions, a feature indicative for re-crystallization in the solid state. Tagamites (impact melt rocks) are virtually free of clasts from sedimentary lithologies. These rocks have an extremely high formation temperature, which caused total dissociation of CaSO_4 and CaCO_3. Finally, up to 100 μm wide veins of anhydrite + calcite + quartz cut the matrix of all lithologies except the tagamites. They probably represent "degassing vents". The given scheme is in qualitative accordance with data of shock recovery and annealing experiments as well as with modeling results. In addition, it substantiates that annealing plays a fundamental role in the impact metamorphism of sedimentary rocks.
Horton, J. Wright; Kunk, Michael J.; Belkin, Harvey E.; Aleinikoff, John N.; Jackson, John C.; Chou, I.-Ming
2009-01-01
The 1766-m-deep Eyreville B core from the late Eocene Chesapeake Bay impact structure includes, in ascending order, a lower basement-derived section of schist and pegmatitic granite with impact breccia dikes, polymict impact breccias, and cataclas tic gneiss blocks overlain by suevites and clast-rich impact melt rocks, sand with an amphibolite block and lithic boulders, and a 275-m-thick granite slab overlain by crater-fill sediments and postimpact strata. Graphite-rich cataclasite marks a detachment fault atop the lower basement-derived section. Overlying impactites consist mainly of basement-derived clasts and impact melt particles, and coastal-plain sediment clasts are underrepresented. Shocked quartz is common, and coesite and reidite are confirmed by Raman spectra. Silicate glasses have textures indicating immiscible melts at quench, and they are partly altered to smectite. Chrome spinel, baddeleyite, and corundum in silicate glass indicate high-temperature crystallization under silica undersaturation. Clast-rich impact melt rocks contain α-cristobalite and monoclinic tridymite. The impactites record an upward transition from slumped ground surge to melt-rich fallback from the ejecta plume. Basement-derived rocks include amphibolite-facies schists, greenschist(?)-facies quartz-feldspar gneiss blocks and subgreenschist-facies shale and siltstone clasts in polymict impact breccias, the amphibolite block, and the granite slab. The granite slab, underlying sand, and amphibolite block represent rock avalanches from inward collapse of unshocked bedrock around the transient crater rim. Gneissic and massive granites in the slab yield U-Pb sensitive high-resolution ion microprobe (SHRIMP) zircon dates of 615 ± 7 Ma and 254 ± 3 Ma, respectively. Postimpact heating was <~350 °C in the lower basement-derived section based on undisturbed 40Ar/39Ar plateau ages of muscovite and <~150 °C in sand above the suevite based on 40Ar/39Ar age spectra of detrital microcline.
Gohn, G.S.; Powars, D.S.; Dypvik, H.; Edwards, L.E.
2009-01-01
An unusually thick section of sedimentary breccias dominated by target-sediment clasts is a distinctive feature of the late Eocene Chesapeake Bay impact structure. A cored 1766-m-deep section recovered from the central part of this marine-target structure by the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) drilling project contains 678 m of these breccias and associated sediments and an intervening 275-m-thick granite slab. Two sedimentary breccia units consist almost entirely of Cretaceous nonmarine sediments derived from the lower part of the target sediment layer. These sediments are present as coherent clasts and as autoclastic matrix between the clasts. Primary (Cretaceous) sedimentary structures are well preserved in some clasts, and liquefaction and fluidization structures produced at the site of deposition occur in the clasts and matrix. These sedimentary breccias are interpreted as one or more rock avalanches from the upper part of the transient-cavity wall. The little-deformed, unshocked granite slab probably was transported as part of an extremely large slide or avalanche. Water-saturated Cretaceous quartz sand below the slab was transported into the seafloor crater prior to, or concurrently with, the granite slab. Two sedimentary breccia units consist of polymict diamictons that contain cobbles, boulders, and blocks of Cretaceous nonmarine target sediments and less common shocked-rock and melt ejecta in an unsorted, unstratified, muddy, fossiliferous, glauconitic quartz matrix. Much of the matrix material was derived from Upper Cretaceous and Paleogene marine target sediments. These units are interpreted as the deposits of debris flows initiated by the resurge of ocean water into the seafloor crater. Interlayering of avalanche and debris-flow units indicates a partial temporal overlap of the earlier avalanche and later resurge processes. A thin unit of stratified turbidite deposits and overlying laminated fine-grained deposits at the top of the section represents the transition to normal shelf sedimentation. ?? 2009 The Geological Society of America.
Bohor, B.F.
1990-01-01
The event terminating the Cretaceous period and the Mesozoic era caused massive extinctions of flora and fauna worldwide. Theories of the nature of this event can be classed as endogenic (volcanic, climatic, etc.) or exogenic (extraterrestrial causes). Mineralogical evidence from the boundary clays and claystones strongly favor the impact of an extraterrestrial body as the cause of this event. Nonmarine KT boundary claystones are comprised of two separate layers-an upper layer composed of high-angle ejecta material (shocked quartz, altered glass and spinel) and a basal kaolinitic layer containing spherules, clasts, and altered glass, together with some shocked grains. Recognition of this dual-layered nature of the boundary clay is important for the determination of the timing and processes involved in the impact event and in the assignment and interpretation of geochemical signatures. Multiple sets of shock-induced microdeformations (planar features) in quartz grains separated from KT boundary clays provide compelling evidence of an impact event. This mineralogical manifestation of shock metamorphism is associated worldwide with a large positive anomaly of iridium in these boundary clays, which has also been considered indicative of the impact of a large extraterrestrial body. Global distributions of maximum sizes of shocked quartz grains from the boundary clays and the mineralogy of the ejecta components favor an impact on or near the North American continent. Spinel crystals (magnesioferrite) occur in the boundary clays as micrometer-sized octahedra or skeletal forms. Their composition differs from that of spinels found in terrestrial oceanic basalts. Magnesioferrite crystals are restricted to the high-angle ejecta layer of the boundary clays and their small size and skeletal morphology suggest that they are condensation products of a vaporized bolide. Hollow spherules ranging up to 1 mm in size are ubiquitously associated with the boundary clays. In nonmarine sections, where a high-angle ejecta layer and an underlying kaolinitic layer can be distinguished, the spherules are found only in the kaolinitic layer. The morphologies and surface features of these spherules suggest that they are original forms, and not secondary growths or algal bodies. These impact spherules closely resemble microtektites in size and shape. All of these features of the boundary clay are uniquely associated with impact, and cannot have been formed by volcanic or other terrestrial processes. ?? 1990.
Mafic and felsic igneous rocks at Gale crater
NASA Astrophysics Data System (ADS)
Sautter, Violaine; Cousin, Agnès; Mangold, Nicolas; Toplis, Michael; Fabre, Cécile; Forni, Olivier; Payré, Valérie; Gasnault, Olivier; Ollila, Anne; Rapin, William; Fisk, Martin; Meslin, Pierre-Yves; Wiens, Roger; Maurice, Sylvestre; Lasue, Jérémie; Newsom, Horton; Lanza, Nina
2015-04-01
The Curiosity rover landed at Gale, an early Hesperian age crater formed within Noachian terrains on Mars. The rover encountered a great variety of igneous rocks to the west of the Yellow Knife Bay sedimentary unit (from sol 13 to 800) which are float rocks or clasts in conglomerates. Textural and compositional analyses using MastCam and ChemCam Remote micro Imager (RMI) and Laser Induced Breakdown Spectroscopy (LIBS) with a ˜300-500 µm laser spot lead to the recognition of 53 massive (non layered) igneous targets, both intrusive and effusive, ranging from mafic rocks where feldspars form less than 50% of the rock to felsic samples where feldspar is the dominant mineral. From morphology, color, grain size, patina and chemistry, at least 5 different groups of rocks have been identified: (1) a basaltic class with shiny aspect, conchoidal frature, no visible grains (less than 0.2mm) in a dark matrix with a few mm sized light-toned crystals (21 targets) (2) a porphyritic trachyandesite class with light-toned, bladed and polygonal crystals 1-20 mm in length set in a dark gray mesostasis (11 targets); (3) light toned trachytes with no visible grains sometimes vesiculated or forming flat targets (6 targets); (4) microgabbro-norite (grain size < 1mm) and gabbro-norite (grain size >1 mm) showing dark and light toned crystals in similar proportion ( 8 targets); (5) light-toned diorite/granodiorite showing coarse granular (>4 mm) texture either pristine or blocky, strongly weathered rocks (9 rock targets). Overall, these rocks comprise 2 distinct geochemical series: (i) an alkali-suite: basanite, gabbro trachy-andesite and trachyte) including porphyritic and aphyric members; (ii) quartz-normative intrusives close to granodioritic composition. The former looks like felsic clasts recently described in two SNC meteorites (NWA 7034 and 7533), the first Noachian breccia sampling the martian regolith. It is geochemically consistent with differentiation of liquids produced by low degrees of partial melting of the primitive martian mantle. The latter rock-type is unlike anything proposed in the literature for Mars but resembles Archean TTG's encountered on Earth related to the building of continental crust. This work thus provides the first in-situ detection of low density leucocratic igneous rocks on Mars in the southern highlands.
NASA Technical Reports Server (NTRS)
Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Kebukawa, Y.
2015-01-01
Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using micro-Raman spectroscopy.
NASA Technical Reports Server (NTRS)
Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Kebukawa, Y.
2015-01-01
Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade [1-3]. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using µ-Raman spectroscopy.
NASA Astrophysics Data System (ADS)
Ma, L.; Chabaux, F. J.; Pelt, E.; Granet, M.; Sak, P. B.; Gaillardet, J.; Brantley, S. L.
2010-12-01
Weathering of basaltic rocks plays an important role in many Earth surface processes. It is thus of great interest to quantify their weathering rates. Because of their well-documented behaviors during water-rock interaction, U-series isotopes have been shown to have utility as a potential chronometer to constrain the formation rates of weathering rinds developed on fresh basaltic rocks. In this study, U-series isotopes and trace element concentrations were analyzed in a basaltic andesite weathering rind collected from the Bras David watershed, Guadeloupe. From the clast, core and rind samples were obtained by drilling along a 63.8 mm linear profile across a low curvature segment of the core-rind boundary. Trace element concentrations reveal: significant loss of REE, Y, Rb, Sr, and Ba in the weathering rind; conservative behaviors of Ti and Th; and external addition of U into the rind during clast weathering. Measured (234U/238U) activity ratios of the rind samples are much higher than the core samples and show excess 234U. Measured (238U/232Th) and (230Th/232Th) activity ratios of the core and rind samples increase gradually from the core into the weathering rind. The observed depletion profiles for the trace elements in the clast suggest that the earliest chemical reaction that creates significant porosity is dissolution of plagioclase, consistent with the previous study [Sak et al., 2010, CG, in press]. The porosity growth within the rind allows for an influx of soil solution that carries dissolved U with (234U/238U) activity ratios >1 into the clast. The deposition of U in the rind is most likely associated with precipication of secondary minerals during clast weathering. Such a continuous U addition is responsible for the observed gradual increase of (238U/232Th) activity ratios in the rind. Subsequent production of 230Th in the rind over time from the decay of excess 234U accounts for the observed continuous increase of (230Th/232Th) activity ratios. The U-series activity ratios in the clast were modeled with a weathering advance rate of ~0.3 mm kyr-1. This represents the rind advance rate at the low curvature segment of the core-rind boundary under tropical climate. This rate is consistent with the previously estimated formation rates of basaltic rinds under similar tropic conditions in Costa Rica [Sak et al., 2004, GCA 68, 1453; Pelt et al., 2008, EPSL 276, 98]. This rate is about one order of magnitude greater than those in temperate regions, documenting the important control of temperature on basalt weathering. This work illustrates that the weathering advance rates of rinds can be successfully estimated by U-series isotopes, demonstrating their great potential as dating tools for Earth surface processes. Furthermore, U-series chronometry provides a suitable method for independently testing the hypothesis that rind advance rates around an individual clast increase with increasing interfacial curvature.
NASA Astrophysics Data System (ADS)
Stump, Edmund; Miller, Julia M. G.; Korsch, Russell J.; Edgerton, David G.
1988-03-01
Late Proterozoic glacial deposits have been found on all continents except Antarctica. Here we describe four units of Late Proterozoic diamictite, with a total thickness of about 10m, from Panorama Point, Nimrod Glacier area, Antarctica, which have characteristics compatible with glaciogenic origin. The diamictite occurs within the Goldie Formation, a sequence of marine turbidites, and is associated with a unit of mafic pillow lavas. The diamictite is commonly structureless and in places laminated. Coarse clasts occur as scattered pebbles and cobbles and as pebbly pods and beds. No striated or faceted clasts were found. A few pebbles may pierce the laminae, but a drop-stone origin is uncertain. Deformation and metamorphism have obscured subtleties of original sedimentary structure. Outsize clasts in laminated sandy siltstone (now schistose) suggest a glaciogenic origin for these diamictites, but deposition by mass-flow processes cannot be ruled out. The discovery in Antarctica of possible Late Proterozoic glaciogenic deposits extends their geographic distribution to all of the major continental masses.
The regolith history of 14307. [lunar breccia
NASA Technical Reports Server (NTRS)
Bernatowicz, T.; Hohenberg, C. M.; Morgan, C. J.; Podosek, F. A.; Drozd, R. J.; Lugmair, G.
1977-01-01
Noble gas and trace element analyses of matrix and a clast from breccia 14307 are reported. This sample was exposed to a large neutron fluence, as seen by an elevated Sm-150/Sm-149 ratio and by noble gases, particularly Xe-136 from neutron fission of U-235. Strong constraints on the exposure history result from combined consideration of Sm-150, Xe-136, and spallation noble gases. Both clast and matrix were irradiated for about 1 AE under substantial shielding beginning at least 2 AE ago, probably more than 3 AE ago. The manifestations of soil exposure seen in the matrix - solar wind gases, glass formation, etc. - thus must have been acquired in an ancient epoch. The matrix has had a longer exposure to cosmic rays than the clast, presumably during its prebrecciation history as a soil. Brecciation probably occurred more than 1 AE ago, perhaps more than 3 AE ago, but at least 0.4 AE after the formation of the matrix constituents.
"Virtual shear box" experiments of stress and slip cycling within a subduction interface mélange
NASA Astrophysics Data System (ADS)
Webber, Sam; Ellis, Susan; Fagereng, Åke
2018-04-01
What role does the progressive geometric evolution of subduction-related mélange shear zones play in the development of strain transients? We use a "virtual shear box" experiment, based on outcrop-scale observations from an ancient exhumed subduction interface - the Chrystalls Beach Complex (CBC), New Zealand - to constrain numerical models of slip processes within a meters-thick shear zone. The CBC is dominated by large, competent clasts surrounded by interconnected weak matrix. Under constant slip velocity boundary conditions, models of the CBC produce stress cycling behavior, accompanied by mixed brittle-viscous deformation. This occurs as a consequence of the reorganization of competent clasts, and the progressive development and breakdown of stress bridges as clasts mutually obstruct one another. Under constant shear stress boundary conditions, the models show periods of relative inactivity punctuated by aseismic episodic slip at rapid rates (meters per year). Such a process may contribute to the development of strain transients such as slow slip.
NASA Technical Reports Server (NTRS)
Anderson, R. R.; Witzke, B. J.; Hartung, J. B.; Shoemaker, E. M.; Roddy, D. J.
1993-01-01
A core drilling program initiated by the Iowa Geological Survey Bureau and U.S. Geological Survey in 1991 and 1992 collected 12 cores totalling over 1200 m from the Manson Impact Structure, a probable K-T boundary structure located in north-central Iowa. Cores were recovered from each of the major structural terranes, with 2 cores (M-3 and M-4) from the Terrace Terrane, 4 cores (M-2, M-2A, M-6, and M-9) from the Crater Moat, and 6 cores (M-1, M-5, M-7, M-8, M-10, and M-11) from the Central Peak. These supplemented 2 central peak cores (1-A and 2-A) drilled in 1953. The cores penetrated five major impact lithologies: (1) sedimentary clast breccia; (2) impact ejecta; (3) central peak crystallite rocks; (4) crystalline clast breccia with sandy matrix; and (5) crystallite clast breccia with a melt matrix. Descriptions and preliminary interpretations of these cores are presented.
Petrographic and petrological studies of lunar rocks. [Apollo 15 breccias and Russian tektites
NASA Technical Reports Server (NTRS)
Winzer, S. R.
1978-01-01
Clasts, rind glass, matrix glass, and matrix minerals from five Apollo 15 glass-coated breccias (15255, 15286, 15465, 15466, and 15505) were studied optically and with the SEM/microprobe. Rind glass compositions differ from sample to sample, but are identical, or nearly so, to the local soil, suggesting their origin by fusion of that soil. Most breccia samples contain green or colorless glass spheres identical to the Apollo 15 green glasses. These glasses, along with other glass shards and fragments, indicate a large soil component is present in the breccias. Clast populations include basalts and gabbros containing phases highly enriched in iron, indicative of extreme differentiation or fractional crystallization. Impact melts, anorthosites, and minor amounts of ANT suite material are also present among the clasts. Tektite glasses, impact melts, and breccias from the Zhamanshin structure, USSR, were also studied. Basic tektite glasses were found to be identical in composition to impact melts from the structure, but no satisfactory parent material has been identified in the limited suite of samples available.
NASA Astrophysics Data System (ADS)
Bryan, S. E.; Cas, R. A. F.; Martí, J.
2000-12-01
The Granadilla Member is one of the most widely dispersed and largest volume pyroclastic units at Tenerife (Canary Islands) and represents the culminating eruption to a second cycle of explosive volcanism of the Las Cañadas edifice. The member, dated at 0.57 Ma, comprises a plinian fall deposit, the Granadilla pumice, which is overlain by ignimbrite up to 30 m thick. The Granadilla pumice is up to 9 m thick approximately 10 km from source (Pyle bt value is 5.35 km), and is subdivided into four fall units. Unit 1 is up to 1.2 m thick and is further divisible into another four pumice fall subunits, based on bedding and grainsize differences. Unit 2 is a thin but distinctive ash layer (˜2 cm thick), and its wide dispersal (>550 km2), constant thickness, planar laminations and ash aggregate textures collectively indicate a phreatoplinian fall origin. The lithic-rich nature and abundance of unaltered lithic fragments reflect magma interaction with aquifer-derived water at depth. Unit 3 (≤1.8 m thick), records a reversal to dry plinian eruptive activity. Unit 4, the thickest of the fall units (up to 6.3 m thick), records the maximum dispersal and intensity of the eruption (Pyle bt and bc values are 5.7 and 6.3 km, respectively), best illustrated by the presence of large pumice bombs up to 30 cm diameter (at distances up to 20 km from vent), and reverse grading of lithic and pumice clasts. The widespread (>500 km2), nonwelded and pumice-rich Granadilla ignimbrite (unit 5) records the collapse of the plinian eruption column. The ignimbrite has a simple sheet-like geometry, but exhibits a complex internal stratigraphy. The base of the ignimbrite locally cuts down through the underlying Granadilla pumice removing it entirely, indicating up to 9 m of erosion by the pyroclastic flows. A coarse, vent-derived lithic breccia horizon towards the top of the ignimbrite is interpreted to record the onset of caldera collapse late in the eruption. Minimum volume estimates for the Granadilla pumice and ignimbrite are 5.2 and 5 km3, respectively. The dispersal area, deposit characteristics, and exponential thickness and clast size decay relationships with (isopach area)1/2 are consistent with dispersal and fallout from the umbrella region of a moderately high (˜17 to ≥25 km) plinian column. We propose that the eruption involved two vents, probably aligned along a NE-SW fissure within the Las Cañadas caldera.
Can Wet Rocky Granular Flows Become Debris Flows Due to Fine Sediment Production by Abrasion?
NASA Astrophysics Data System (ADS)
Arabnia, O.; Sklar, L. S.; Bianchi, G.; Mclaughlin, M. K.
2015-12-01
Debris flows are rapid mass movements in which elevated pore pressures are sustained by a viscous fluid matrix with high concentrations of fine sediments. Debris flows may form from coarse-grained wet granular flows as fine sediments are entrained from hillslope and channel material. Here we investigate whether abrasion of the rocks within a granular flow can produce sufficient fine sediments to create debris flows. To test this hypothesis experimentally, we used a set of 4 rotating drums ranging from 0.2 to 4.0 m diameter. Each drum has vanes along the boundary ensure shearing within the flow. Shear rate was varied by changing drum rotational velocity to maintain a constant Froude Number across drums. Initial runs used angular clasts of granodiorite with a tensile strength of 7.6 MPa, with well-sorted coarse particle size distributions linearly scaled with drum radius. The fluid was initially clear water, which rapidly acquired fine-grained wear products. After each 250 m tangential distance, we measured the particle size distributions, and then returned all water and sediment to the drums for subsequent runs. We calculate particle wear rates using statistics of size and mass distributions, and by fitting the Sternberg equation to the rate of mass loss from the size fraction > 2mm. Abundant fine sediments were produced in the experiments, but very little change in the median grain size was detected. This appears to be due to clast rounding, as evidenced by a decrease in the number of stable equilibrium resting points. We find that the growth in the fine sediment concentration in the fluid scales with unit drum power. This relationship can be used to estimate fine sediment production rates in the field. We explore this approach at Inyo Creek, a steep catchment in the Sierra Nevada, California. There, a significant debris flow occurred in July 2013, which originated as a coarse-grained wet granular flow. We use surveys to estimate flow depth and velocity where super-elevation occurred, to calculate a unit power of 4.5 KW/m2. From this we predict that 14% of the coarse mass is converted to fine sediment by abrasion per km. At that rate, the increase in fines concentration may have been sufficient to cause a wet granular flow to evolve into a debris flow within the first 1 km of its > 4km travel distance.
Diffusive loss of argon in response to melt vein formation in polygenetic impact melt breccias
NASA Astrophysics Data System (ADS)
Mercer, Cameron M.; Hodges, Kip V.
2017-08-01
Many planetary surfaces in the solar system have experienced prolonged bombardment. With each impact, new rocks can be assembled that incorporate freshly generated impact melts with fragments of older rocks. Some breccias can become polygenetic, containing multiple generations of impact melt products, and can potentially provide important insights into the extensive bombardment history of a region. However, the amount of chronological information that can be extracted from such samples depends on how well the mineral isotopic systems of geochronometers can preserve the ages of individual melt generations without being disturbed by younger events. We model the thermal evolution of impact melt veins and the resulting loss of Ar from K-bearing phases common in impact melt breccias to assess the potential for preserving the 40Ar/39Ar ages of individual melt generations. Our model results demonstrate that millimeter-scale, clast-free melt veins cause significant heating of adjacent host rock minerals and can cause detectable Ar loss in contact zones that are generally thinner than, and at most about the same thickness as, the vein width. The incorporation of cold clasts in melt veins reduces the magnitudes of heating and Ar loss in the host rocks, and Ar loss can be virtually undetectable for sufficiently clast-rich veins. Quantitative evidence of the timing of impacts, as measured with the 40Ar/39Ar method, can be preserved in polygenetic impact melt breccias, particularly for those containing millimeter-scale bodies of clast-bearing melt products.
NASA Astrophysics Data System (ADS)
Kahl, Wolf-Achim; Jöns, Niels; Bach, Wolfgang; Klein, Frieder
2013-04-01
In the forearc of the Mariana subduction zone system, a number of seamounts form from extrusion of blueschist and serpentine mud. Ocean Drilling Program Leg 195 drilled the South Chamorro seamount, where ultramafic clasts occur within the mud matrix. These clasts show a complex serpentinization history, which bears the potential for tracking the alteration history during uplift and cooling of mantle wedge rocks to the seafloor. Moreover, the microfabrics of the highly serpentinized harzburgite and dunite clasts exhibit evidence for multiple fracturing events in the forearc mantle. These, in turn, lead to fluid influx and varied styles of serpentinization of harzburgite and dunite. The serpentinized ultramafic clasts exhibit a variety of microfabrics that range from virtually undeformed to strongly deformed samples. Pervasively serpentinized harzburgites feature either an equigranular fabric of serpentinized olivine and orthopyroxene crystals, or different vein generations related to multiple stages of serpentinization. Several types of fluid pathways in harzburgites are present: (i) veins containing brucite and iron oxides, developed linearly without marked conformance with the rock fabric. In places, these veins developed mm-cm wide halos with finger-shaped serpentinization fronts. Veins of type (i) are either developed as syntaxial veins from a single crack-seal event with large magnetite crystals growing from one wall to the other (as confirmed with high-resolution X-ray microtomography), or formed by multiple fluid events. (ii) serpentine veins that encompass regions of marginally serpentinized, microgranular olivine and large orthopyroxene crystals. (iii) extensional serpentine veins (known as "Frankenstein" type). In the clasts studied, their occurrence is restricted to the halo region of type (i) veins. (iv) as a late-stage feature, extensional veins documenting multiple crack-seal events can be present in the serpentinites (either in undeformed regions with preserved equigranular fabric, or in serpentinites of type (i) and (ii) where they crosscut and offset earlier vein generations). In addition, serpentinized dunites can host syntaxial serpentine veins (ribbons). The ribbons separate regions, where recrystallization of serpentine and brucite can be observed. Presumably the lack of orthopyroxene locally influences the rheology and thus enable ribbon formation. The serpentine and/or brucite assemblages formed during these different stages show distinct trace element patterns suggesting a diminished influence of slab-related fluids during later stages of serpentinization. Ongoing work is aimed at reconciling textural and geochemical co-evolution during serpentinization of the mantle wedge. In particular, deciphering deformation-related pathways for serpentinizing fluids and identifying their geochemical signatures may foster our understanding of shallow subduction-related mass transfer in supra-subduction zones.
NASA Astrophysics Data System (ADS)
Melosh, Ben L.; Rowe, Christie D.; Smit, Louis; Groenewald, Conrad; Lambert, Christopher W.; Macey, Paul
2014-10-01
Off-fault dynamic tensile cracks form behind an earthquake rupture front with distinct orientation and spacing. These cracks explode the wall rock and create breccias, which we hypothesize will preserve a unique fingerprint of dynamic rupture. Identification of these characteristic breccias may enable a new tool for identifying paleoseismic slip surfaces in the rock record. Using previous experimental and theoretical predictions, we develop a field-based model of dynamic dilational breccia formation. Experimental studies find that secondary tensile fracture networks comprise closely spaced fractures at angles of 70-90° from a slip surface, as well as fractures that branch at angles of ∼ 30 ° from a primary mode I fracture. The Pofadder Shear Zone, in Namibia and South Africa, preserves breccias formed in the brittle-ductile transition zone displaying fracture patterns consistent with those described above. Fracture spacing is approximately two orders of magnitude less than predicted by quasi-static models. Breccias are clast-supported, monomict and can display an abrupt transition from fracture network crackle breccia to mosaic breccia textures. Brecciation occurs by the intersection of off-fault dynamic fractures and wall rock fabric; this is in contrast to previous models of fluid pressure gradient-driven failure ;implosion breccias;. This mechanism tends to form many similar sized clasts with particle size distributions that may not display self-similarity; where self-similarity is observed the distributions have relatively low D-values of 1.47 ± 0.37, similar to other studies of dynamic processes. We measure slip distances at dilational breccia stepovers, estimating earthquake magnitudes between Mw 2.8-5.8 and associated rupture lengths of 0.023-3.3 km. The small calculated rupture dimensions, in combination with our geologic observations, suggest that some earthquakes nucleated within the quartz-plastic transitional zone and potentially record deep seismic slip.
Lower Cretaceous smarl turbidites of the Argo Abyssal Plain, Indian Ocean
Dumoulin, Julie A.; Stewart, Sondra K.; Kennett, Diana; Mazzullo, Elsa K.
1992-01-01
Sediments recovered during Ocean Drilling Program (ODP) Leg 123 from the Argo Abyssal Plain (AAP) consist largely of turbidites derived from the adjacent Australian continental margin. The oldest abundant turbidites are Valanginian-Aptian in age and have a mixed (smarl) composition; they contain subequal amounts of calcareous and siliceous biogenic components, as well as clay and lesser quartz. Most are thin-bedded, fine sand to mud-sized, and best described by Stow and Piper's model (1984) for fine-grained biogenic turbidites. Thicker (to 3 m), coarser-grained (medium-to-coarse sand-sized) turbidites fit Bouma's model (1962) for sandy turbidites; these generally are base-cut-out (BCDE, BDE) sequences, with B-division parallel lamination as the dominant structure. Parallel laminae most commonly concentrate quartz and/or calcispheres vs. lithic clasts or clay, but distinctive millimeter to centimeter-thick, radiolarian-rich laminae occur in both fine and coarse-grained Valanginian-Hauterivian turbidites.AAP turbidites were derived from relatively deep parts of the continental margin (outer shelf, slope, or rise) that lay below the photic zone, but above the calcite compensation depth (CCD). Biogenic components are largely pelagic (calcispheres, foraminifers, radiolarians, nannofossils); lesser benthic foraminifers are characteristic of deep-water (abyssal to bathyal) environments. Abundant nonbiogenic components are mostly clay and clay clasts; smectite is the dominant clay species, and indicates a volcanogenic provenance, most likely the Triassic-Jurassic volcanic suite exposed along the northern Exmouth Plateau.Lower Cretaceous smarl turbidites were generated during eustatic lowstands and may have reached the abyssal plain via Swan Canyon, a submarine canyon thought to have formed during the Late Jurassic. In contrast to younger AAP turbidites, however, Lower Cretaceous turbidites are relatively fine-grained and do not contain notably older reworked fossils. Early in its history, the northwest Australian margin provided mainly contemporaneous slope sediment to the AAP; marginal basins adjacent to the continent trapped most terrigenous detritus, and pronounced canyon incisement did not occur until Late Cretaceous and, especially, Cenozoic time.
Maldonado, Florian; Kelley, Shari A.
2009-01-01
Stratigraphic studies and geologic mapping on the Abiquiu 7.5-min quadrangle have led to revision of the stratigraphic nomenclature for the Oligocene to Miocene Abiquiu Formation in north-central New Mexico. The Abiquiu Formation had previously been defined to include informal upper, middle (Pedernal chert member), and lower members. The basement-derived conglomeratic lower member in the northern Jemez Mountains and Abiquiu embayment is here redefined. We propose removing the "lower member" from the Abiquiu Formation because provenance of these coarse sediments is dramatically different than the volcaniclastic strata of the "upper member." Furthermore, we propose that the term "lower member of the Abiquiu Formation" be replaced with an existing unit name, the Ritito Conglomerate of Barker (1958), and that the name Abiquiu Formation be restricted to the volcaniclastic succession. The lower part of the Ritito Conglomerate in Arroyo del Cobre on the Abiquiu quadrangle is 47 m (155 ft) thick and is composed of arkosic conglomeratic beds interbedded with arkosic sands and siltstones. Clasts include, in descending order of abundance, Proterozoic quartzite, granite, metavolcanic rocks, quartz, schist, and gneiss and a trace of Mesozoic sandstone and Paleozoic chert. Clasts are predominantly of pebble and cobble size but range from granule to boulder size. Paleocurrent data collected in the Arroyo del Cobre area indicate that the Ritito Conglomerate was deposited by a south-flowing river system during the Oligocene, eroding Laramide highlands such as the Tusas Mountains to the northeast, which contain predominantly Proterozoic rocks. This depositional setting has also been suggested by previous workers. The middle member or Pedernal chert member is present both at the top of the Ritito Conglomerate and as lenses within the lower part of the Abiquiu Formation. This post-depositional diagenetic chert remains an informal unit called the Pedernal chert.
NASA Astrophysics Data System (ADS)
Bentley, M. J.; Hein, A. S.; Sugden, D. E.; Whitehouse, P. L.; Shanks, R.; Xu, S.; Freeman, S. P. H. T.
2017-02-01
The retreat history of the Antarctic Ice Sheet is important for understanding rapid deglaciation, as well as to constrain numerical ice sheet models and ice loading models required for glacial isostatic adjustment modelling. There is particular debate about the extent of grounded ice in the Weddell Sea embayment at the Last Glacial Maximum, and its subsequent deglacial history. Here we provide a new dataset of geomorphological observations and cosmogenic nuclide surface exposure ages of erratic samples that constrain the deglacial history of the Pensacola Mountains, adjacent to the present day Foundation Ice Stream and Academy Glacier in the southern Weddell Sea embayment. We show there is evidence of at least two glaciations, the first of which was relatively old and warm-based, and a more recent cold-based glaciation. During the most recent glaciation ice thickened by at least 450 m in the Williams Hills and at least 380 m on Mt Bragg. Progressive thinning from these sites was well underway by 10 ka BP and ice reached present levels by 2.5 ka BP, and is broadly similar to the relatively modest thinning histories in the southern Ellsworth Mountains. The thinning history is consistent with, but does not mandate, a Late Holocene retreat of the grounding line to a smaller-than-present configuration, as has been recently hypothesized based on ice sheet and glacial isostatic modelling. The data also show that clasts with complex exposure histories are pervasive and that clast recycling is highly site-dependent. These new data provide constraints on a reconstruction of the retreat history of the formerly-expanded Foundation Ice Stream, derived using a numerical flowband model.
NASA Astrophysics Data System (ADS)
Blisniuk, K.; Sharp, W. D.
2015-12-01
To assess the reliability of Quaternary age determinations of alluvial and fluvial deposits across the Sonoran Desert (Coachella Valley and Anza Borrego) in southern California, we applied both 10Be exposure age dating of surface clasts and U-series dating of pedogenic carbonate from subsurface clast-coatings to the same deposits. We consider agreement between dates from the two techniques to indicate reliable age estimates because each technique is subject to distinct assumptions and therefore their systematic uncertainties are largely independent. 10Be exposure dates should yield maximum ages when no correction is made for inheritance and post-depositional erosion is negligible. U-series dating, in contrast, provides minimum dates because pedogenic carbonate forms after deposition. Our results show that: (1) For deposits ca. 70 ka or younger, 10Be and U-series dates were generally concordant. We note, however, that in most cases U-series soil dates exceed 10Be exposure dates that are corrected for inheritance when using 10Be in modern alluvium. This suggests that 10Be concentrations of modern alluvium may exceed the 10Be acquired by late Pleistocene deposits during fluvial transport and hillslope residence (i.e., Pleistocene inherited 10Be). (2) For deposits older than ~70 ka, U-series dates are significantly younger than the 10Be dates. This implies that U-series dates in this region may significantly underestimate the depositional age of older alluvium, probably because of delayed onset of deposition, slow accumulation, or poor preservation of secondary carbonate in response to climatic controls. Thus, whenever possible, multiple dating methods should be applied to obtain reliable ages for late Quaternary deposits.
Differentiation of debris-flow and flash-flood deposits: implications for paleoflood investigations
Waythomas, Christopher F.; Jarrett, Robert D.; ,
1993-01-01
Debris flows and flash floods are common geomorphic processes in the Colorado Rocky Mountain Front Range and foothills. Usually, debris flows and flash floods are associated with excess summer rainfall or snowmelt, in areas were unconsolidated surficial deposits are relatively thick and slopes are steep. In the Front Range and foothills, flash flooding is limited to areas below about 2300m whereas, debris flow activity is common throughout the foothill and alpine zones and is not necessarily elevation limited. Because flash floods and debris flows transport large quantities of bouldery sediment, the resulting deposits appear somewhat similar even though such deposits were produced by different processes. Discharge estimates based on debris-flow deposits interpreted as flash-flood deposits have large errors because techniques for discharge retrodiction were developed for water floods with negligible sediment concentrations. Criteria for differentiating between debris-flow and flash-flood deposits are most useful for deposits that are fresh and well-exposed. However, with the passage of time, both debris-flow and flash-flood deposits become modified by the combined effects of weathering, colluviation, changes in surface morphology, and in some instances removal of interstitial sediment. As a result, some of the physical characteristics of the deposits become more alike. Criteria especially applicable to older deposits are needed. We differentiate flash-flood from debris-flow and other deposits using clast fabric measurements and other morphologic and sedimentologic techniques (e.g., deposit morphology, clast lithology, particle size and shape, geomorphic setting).
Terminal zone glacial sediment transfer at a temperate overdeepened glacier system
NASA Astrophysics Data System (ADS)
Swift, D. A.; Cook, S. J.; Graham, D. J.; Midgley, N. G.; Fallick, A. E.; Storrar, R.; Toubes Rodrigo, M.; Evans, D. J. A.
2018-01-01
Continuity of sediment transfer through glacial systems is essential to maintain subglacial bedrock erosion, yet transfer at temperate glaciers with overdeepened beds, where subglacial fluvial sediment transport should be greatly limited by adverse slopes, remains poorly understood. Complex multiple transfer processes in temperate overdeepened systems has been indicated by the presence of large frontal moraine systems, supraglacial debris of mixed transport origin, thick basal ice sequences, and englacial thrusts and eskers. At Svínafellsjökull, thrusts comprising decimetre-thick debris-rich bands of stratified facies ice of basal origin, with a coarser size distribution and higher clast content than that observed in basal ice layers, contribute substantially to the transfer of subglacial material in the terminal zone. Entrainment and transfer of material occurs by simple shear along the upper surface of bands and by strain-induced deformation of stratified and firnified glacier ice below. Thrust material includes rounded and well-rounded clasts that are also striated, indicating that fluvial bedload is deposited as subglacial channels approach the overdeepening and then entrained along thrusts. Substantial transfer also occurs within basal ice, with facies type and debris content dependent on the hydrological connectedness of the adverse slope. A process model of transfer at glaciers with terminal overdeepenings is proposed, in which the geometry of the overdeepening influences spatial patterns of ice deformation, hydrology, and basal ice formation. We conclude that the significance of thrusting in maintaining sediment transfer continuity has likely been overlooked by glacier sediment budgets and glacial landscape evolution studies.
New petrofacies in upper Cretaceous section of southern California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colburn, I.P.; Oliver, D.
1986-04-01
A distinctive sandstone-conglomerate petrofacies is recognized throughout the Late Cretaceous (Maestrichtian-late Campanian) Chatsworth Formation in the Simi Hills. It is named the Woolsey Canyon petrofacies after the district where it was first recognized. The petrofacies is also recognized in the Late Cretaceous (late Campanian and possibly early Maestrichtian) Tuna Canyon Formation of the central Santa Monica Mountains. The conglomerates in the petrofacies are composed predominantly of angular pebble-size clasts of argillite, quartz-rich rocks (orthoquartzarenite, metaorthoquartzarenite, mice quartz schist) and leucocratic plutoniate (granite-granodiorite). The conglomerate texture and composition are mirrored in the sandstone. The uniformly angular character of the conglomerate clastsmore » and the survival of argillite clasts indicate that the detritus underwent no more than 5 mi of subaerial transport before it entered the deep marine realm. Foraminifers collected from mudstones interbedded with the conglomerates indicate upper bathyal water depth at the site of deposition. A source terrane of low to moderate relief is indicated by the absence of cobbles and boulders. Bed forms, sedimentary structures, and textural features indicate the detritus moved north from its source terrane to be deposited by turbidity currents, debris flows, and grain flows on the Chatsworth Submarine Fan. The detritus of the Woolsey Canyon petrofacies was derived from basement rocks, now largely buried beneath the Los Angeles basin, that were being eroded during the formation of the Cretaceous Los Angeles erosion surface. The detritus came from the Los Angeles arch of that surface.« less
NASA Astrophysics Data System (ADS)
Gihm, Yong Sik; Kwon, Chang Woo
2017-04-01
In the Cretaceous Buan Volcanics (SW Korea), blocky and fluidal peperites are hosted in a massive pumiceous lapilli tuff intruded by intermediate dikes. Blocky peperites, the most abundant species, are characterized by polyhedral or platy juvenile clasts and a jigsaw-crack texture. Fluidal peperites occur only along dike margins, where the host sediments are composed of well sorted, fine to very fine ash (fine-grained zone), and are characterized by fluidal or globular juvenile clasts with irregular or ragged margins. The fine-grained zone is interpreted to form by grain size segregation caused by upward moving pore water (fluidization) that has resulted from heat transfer from intruding magma toward waterlogged host sediments during intrusion. With the release of pore water and the selective entrainment of fine-grained ash, fine-grained zones formed within the host sediments. Subsequent interactions between the fine-grained zone and the intruding magma resulted in ductile deformation of the magma before fragmentation, which generated fluidal peperites. Outside the fine-grained zone, intruding magma fragmented in a brittle manner because of the relative deficiency of both pore water and fine-grained ash, resulting in the formation of blocky peperites. The results of this study suggest that redistribution of constituent particles (ash) and interstitial fluids during fluidization resulted in heterogeneous physical conditions of the host sediments, which influenced peperite-forming processes, as reflected by the different peperite textures.
Spinel cataclasites in 15445 and 72435 - Petrology and criteria for equilibrium
NASA Technical Reports Server (NTRS)
Baker, M. B.; Herzberg, C. T.
1980-01-01
The problem of establishing the existence of equilibrium among the coexisting phases in the rock is addressed by presenting petrographic and mineral chemistry data on a new spinel cataclasite from 15445 (clast H) and data more extensive than those previously available on two clasts in 72435. Criteria useful in reconstructing the original petrology of these and other spinel cataclasites are analyzed by considering equilibrium among the different phases, that is, the mono- or polymict nature of these cataclasized samples. Finally, the role of impact processes in disturbing the equilibria is discussed.
Creeping Guanxian-Anxian Fault ruptured in the 2008 Mw 7.9 Wenchuan earthquake
NASA Astrophysics Data System (ADS)
He, X.; Li, H.; Wang, H.; Zhang, L.; Si, J.
2017-12-01
Crustal active faults can slide either steadily by aseismic creep, or abruptly by earthquake rupture. Creep can relax continuously the stress and reduce the occurrence of large earthquakes. Identifying the behaviors of active faults plays a crucial role in predicting and preventing earthquake disasters. Based on multi-scale structural analyses for fault rocks from the GAF surface rupture zone and the Wenchuan Earthquake Fault Zone Science Drilling borehole 3P, we detect the analogous "mylonite structures" develop pervasively in GAF fault rocks. Such specious "ductile deformations", showing intensive foliation, spindly clasts, tailing structure, "boudin structure", "augen structure" and S-C fabrics, are actually formed in brittle faulting, which indicates the creeping behavior of the GAF. Furthermore, some special structures hint the creeping mechanism. The cracks and veins developed in fractured clasts imply pressure and fluid control in the faulting. Under the effect of fluid, clasts are dissolved in pressing direction, and solutions are transferred to stress vacancy area at both ends of clasts and deposit to regenerate clay minerals. The clasts thus present spindly shape and are surrounded by orientational clay minerals constituting continuous foliation structure. The clay minerals are dominated by phyllosilicates that can weaken faults and promote pressure solution. Therefore, pressure solution creep and phyllosilicates weakening reasonably interpret the creeping of GAF. Additionally, GPS velocity data show slip rates of the GAF are respectively 1.5 and 12 mm/yr during 1998-2008 and 2009-2011, which also indicate the GAF is in creeping during interseismic period. According to analysis on aftershocks distribution and P-wave velocity with depth and geological section in the Longmenshan thrust belt, we suggest the GAF is creeping in shallow (<10 km) and locked in deep (10-20 km). Comprehensive research shows stress propagated from the west was concentrated near the Yingxiu-Beichuan Fault (YBF) and GAF zones. As stress accumulation reached the limit, the YBF and GAF zones were simultaneously ruptured in 2008 Mw 7.9 Wenchuan earthquake, but the rupture area of the GAF was relatively small due to the presence of shallow creep that relaxed the partial stress.
NASA Astrophysics Data System (ADS)
Shane, P. A.; Storm, S.; Schmitt, A. K.; Lindsay, J.
2011-12-01
In Quaternary magmatic systems that have not undergone extensive uplift that would expose their intrusive roots, co-magmatic (and xenolithic) plutonic clasts entrained in eruptive deposits are an important source of information on the temporal relationship between plutonism and volcanism. Granitoid clasts in pyroclastic deposits of the 0.7 ka (Kaharoa) eruption from the Tarawera volcano of the Okataina Volcanic Centre (OVC), New Zealand, provide a rare insight to the plutonic processes beneath one of the most productive Quaternary rhyolite centers on Earth. SIMS U-Th and U-Pb data on 79 granitoid zircon crystals from six clasts reveal a unimodal age spectrum yielding a weighted average model age of 211 ± 4 ka (MSWD = 1.1). This crystallization event coincides with relative quiescence in OVC volcanism. A few outlier antecrysts date back to ~700 ka, a period significantly longer than the known volcanic record at OVC (probably ~330 ka). In contrast, zircon crystallization in co-erupted pumice and lava of the 0.7 ka Kaharoa event, and that of the three preceding rhyolite eruptions, occurred mostly during 0-50 ka. Thus, the granitoid clasts represent part of the system immediately beneath the volcano that survived assimilation and/or destruction in subsequent eruption and caldera collapse episodes. Brittle deformation features, incipient alteration and low-d18O whole-rock compositions (+3%) are consistent with a shallow solid carapace that has interacted with hydrothermal fluids. However, d18O SIMS analyses of zircons (+5.4 ± 0.2 %; n = 11) are consistent with magmatic compositions, and thus meteoric interaction occurred post-emplacement. The Kaharoa granitoids contrast with those ejected in the ~60 ka caldera-forming Rotoiti event, that were partly molten and display zircon age spectra indistinguishable from that in co-erupted pumices, suggesting the latter were derived from contemporaneous crystal mush. The 0.7 ka Kaharoa case shows that, over time, eruptible parts of a magmatic reservoir can become armored by a solidified intrusive carapace that minimizes interaction with other parts of the magmatic system and the surrounding wall-rocks. Thus, plutonic and volcanic evolution can diverge even in close proximity of the same magmatic system.
NASA Astrophysics Data System (ADS)
Olianti, Camille A. E.; Harris, Chris
2018-02-01
The Cretaceous Koegel Fontein igneous complex is situated on the west coast of South Africa, and has a high proportion of rocks with abnormally low δ18O values. The rocks with the lowest δ18O values (- 5.2‰) belong to intrusive matrix-supported breccia pipes and dykes, containing a variety of clast types. The breccia rocks range in SiO2 from 44 to 68 wt% and their whole-rock δ18O values vary between - 5.2‰ and + 1.8‰. The major and trace element composition of the breccia rocks is consistent with them containing variable proportions of clasts of Cretaceous intrusive rocks and basement gneiss and the matrix being fluidized material derived from the same source as the clasts. Based on the nature of the clasts contained in the breccia, it was emplaced just prior to intrusion of the main Rietpoort Granite at 134 Ma. All components of the breccia have low δ18O value and, at least in the case of the gneiss clasts, this predates incorporation in the fluidized material. Although the early Cretaceous appears to have been a period of cold climate, it is unlikely that the δ18O values of ambient precipitation ( - 10‰) would have been low enough to have generated the required 18O-depletion. The basement gneiss was probably 2-3 km below the Cretaceous surface, minimizing the possibility of interaction with isotopically unmodified meteoric water, and there is no evidence for foundered blocks of cover rocks in the breccia. There is, therefore, no evidence for downwards movement of material. We favour a model where basement gneiss interacted with extremely 18O-depleted fluid during crustal reworking at 547 Ma, a time of global glaciation. Low-δ18O metamorphic fluids produced by dehydration melting of 18O-depleted gneiss became trapped and, as the fluid pressure increased, failure of the seal resulted in explosive upwards movement of fluidized breccia. Migration was along pre-existing dykes, incorporating fragments of these dykes, as well as the country rock gneiss.
Constraining the thermal structure beneath Lusi: insights from temperature record in erupted clasts
NASA Astrophysics Data System (ADS)
Malvoisin, Benjamin; Mazzini, Adriano; Miller, Stephen
2016-04-01
Sedimentary units beneath Lusi from surface to depth are the Pucangan formation, the Upper Kalibeng formation where shales and then volcanoclastic clasts are found, the Kujung-Propuh-Tuban formation composed of carbonates and the Ngimbang formation composed of shales. Water and gas geochemistry as well as surface deformation indicate that Lusi is a hydrothermal system rooted at >4 km depth. However, the thermal structure beneath Lusi is still poorly constrained whereas it has first-order impacts on the physical and chemical processes observed during the eruption. In the framework of the Lusi Lab project (ERC grant n° 308126) and of a project of the Swiss National Science Foundation (n°160050) we studied erupted clasts collected at the crater site to determine their source and temperature record. Three types of clasts were studied based on morphological and mineralogical basis. The first type is limestones mainly composed of Ca- and Fe-bearing carbonates. The clasts of the second type are light grey shales (LGS) containing carbonaceous matter, illite/smectite mixture, plagioclase and quartz. The third type is also a shale with a black colour containing hydrocarbons (black shales, BS) and with the additional presence of Na-rich plagioclase, biotite and chlorite. The presence of these latter minerals indicates hydrothermal activity at relatively high temperature. Better constraints on temperature were obtained by using both Raman spectroscopic carbonaceous material thermometry (RSCM) and chlorite geothermometry. Temperatures below 200°C were determined for the LGS with RSCM. BS recorded two temperatures. The first one, around 170°C, is rather consistent with an extrapolation of the geothermal gradient measured before the eruption up to 4,000 m depth. Combined with mineralogical observations, this suggests that BS originate from the Ngimbang formation. The second recorded higher temperature around 250°C indicates heating, probably through interaction with high temperature hydrothermal fluids. Calculations performed for such a heating indicate that associated clay dehydration is sufficient to provide the water released during the eruption and that heating-induced overpressure could favor fluid ascent. These results confirm the hydrothermal scenario in which Lusi eruption is fed by high temperature fluid circulation from the neighboring Arjuno-Welirang volcanic complex.
NASA Technical Reports Server (NTRS)
Downes, Hilary; Mittlefehldt, David W.; Kita, Noriko T.; Valley, John W.
2008-01-01
Ureilites are ultramafic achondrite meteorites that have experienced igneous processing whilst retaining heterogeneity in mg# and oxygen isotope ratios. Polymict ureilites represent material derived from the surface of the ureilite parent asteroid(s). Electron microprobe analysis of more than 500 olivine and pyroxene clasts in six polymict ureilites reveals that they cover a statistically identical range of compositions to that shown by all known monomict ureilites. This is considered to be convincing evidence for derivation from a single parent asteroid. Many of the polymict ureilites also contain clasts that have identical compositions to the anomalously high Mn/Mg olivines and pyroxenes from the Hughes 009 monomict ureilite (here termed the Hughes cluster ). Four of the six samples also contain distinctive ferroan lithic clasts that have been derived from oxidized impactors. The presence of several common distinctive lithologies within the polymict ureilites is additional evidence that the ureilites were derived from a single parent asteroid. Olivine in a large lithic clast of augite-bearing ureilitic has an mg# of 97, extending the compositional range of known ureilite material. Our study confirms that ureilitic olivine clasts with mg#s < 85 are much more common than those with mg# > 85, which also show more variable Mn contents, including the melt-inclusion bearing "Hughes cluster" ureilites. We interpret this to indicate that the parent ureilite asteroid was disrupted by a major impact at a time when melt was still present in regions with a bulk mg# > 85, giving rise to the two types of ureilites: common ferroan ones that were already residual after melting and less common magnesian ones that were still partially molten when disruption occurred, some of which are the result of interaction of melts with residual mantle during disruption. A single daughter asteroid re-accreted from the disrupted remnants of the mantle of the proto-ureilite asteroid, giving rise to a "rubble-pile" body that had material of a wide variety of compositions and shock states present on its surface. The analysed polymict ureilite meteorites represent regolith that subsequently formed on this asteroidal surface, including impact-derived material from at least six different meteoritic sources.
Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarre-Sitchler, A.; Steefel, C.I.; Yang, L.
Weathering of rocks as a result of exposure to water and the atmosphere can cause significant changes in their chemistry and porosity. In low-porosity rocks, such as basalts, changes in porosity, resulting from chemical weathering, are likely to modify the rock's effective diffusivity and permeability, affecting the rate of solute transport and thus potentially the rate of overall weathering to the extent that transport is the rate limiting step. Changes in total porosity as a result of mineral dissolution and precipitation have typically been used to calculate effective diffusion coefficients through Archie's law for reactive transport simulations of chemical weathering,more » but this approach fails to account for unconnected porosity that does not contribute to transport. In this study, we combine synchrotron X-ray microcomputed tomography ({mu}CT) and laboratory and numerical diffusion experiments to examine changes in both total and effective porosity and effective diffusion coefficients across a weathering interface in a weathered basalt clast from Costa Rica. The {mu}CT data indicate that below a critical value of {approx}9%, the porosity is largely unconnected in the basalt clast. The {mu}CT data were further used to construct a numerical pore network model to determine upscaled, effective diffusivities as a function of total porosity (ranging from 3 to 30%) for comparison with diffusivities determined in laboratory tracer experiments. By using effective porosity as the scaling parameter and accounting for critical porosity, a model is developed that accurately predicts continuum-scale effective diffusivities across the weathering interface of the basalt clast.« less
Petrogenesis of melt rocks, Manicouagan impact structure, Quebec
NASA Technical Reports Server (NTRS)
Simonds, C. H.; Floran, R. J.; Mcgee, P. E.; Phinney, W. C.; Warner, J. L.
1978-01-01
It is suggested, on the basis of previous theoretical studies of shock waves, that the Manicouagan melt formed in 1 or 2 s in a 5-km-radius hemisphere near the point of impact. The melt and the less shocked debris surrounding it flowed downward and outward for a few minutes until the melt formed a lining of a 5- to 8-km deep, 15- to 22-km-radius cavity. Extremely turbulent flow thoroughly homogenized the melt and promoted the incorporation and progressive digestion of debris that had been finely fragmented (but not melted) to grain sizes of less than one mm by the passage of the shock waves. The equilibration of clasts and melt, plagioclase nucleation, and readjustment of the crater floor are discussed.
Manicouagan impact melt, Quebec. I - Stratigraphy, petrology, and chemistry
NASA Technical Reports Server (NTRS)
Floran, R. J.; Grieve, R. A. F.; Dence, M. R.; Phinney, W. C.; Warner, J. L.; Blanchard, D. P.; Simonds, C. H.
1978-01-01
A sheet of clast-laden impact melt 230 m thick and 55 km in diameter forms an annular plateau surrounding an uplift of shocked anorthosite within the moderately eroded Manicouagan structure. Three gradational units of the melt sheet are characterized with respect to grain size, inclusions, texture, and mineralogy. The melt rocks as a group are chemically homogeneous with a bulk composition similar to that of latite and with no statistically significant regional chemical variations. The melt is not completely chemically homogeneous as a local mafic variant represented by two samples with poikilitic texture was found. These poikilitic rocks texturally resemble some Apollo 17 impact melt rocks and are inferred to have had a similar origin and thermal history.
Diverse dinosaur-dominated ichnofaunas from the Potomac Group (Lower Cretaceous) Maryland
Stanford, Ray; Lockley, Martin G.; Weems, Robert E.
2007-01-01
Until recently fossil footprints were virtually unknown from the Cretaceous of the eastern United States. The discovery of about 300 footprints in iron-rich siliciclastic facies of the Patuxent Formation (Potomac Group) of Aptian age is undoubtedly one of the most significant Early Cretaceous track discoveries since the Paluxy track discoveries in Texas in the 1930s. The Patuxent tracks include theropod, sauropod, ankylosaur and ornithopod dinosaur footprints, pterosaur tracks, and miscellaneous mammal and other vertebrate ichnites that collectively suggest a diversity of about 14 morphotypes. This is about twice the previous maximum estimate for any known Early Cretaceous vertebrate ichnofauna. Among the more distinctive forms are excellent examples of hypsilophodontid tracks and a surprisingly large mammal footprint. A remarkable feature of the Patuxent track assemblage is the high proportion of small tracks indicative of hatchlings, independently verified by the discovery of a hatchling-sized dinosaur. Such evidence suggests the proximity of nest sites. The preservation of such small tracks is very rare in the Cretaceous track record, and indeed throughout most of the Mesozoic.This unusual preservation not only provides us with a window into a diverse Early Cretaceous ecosystem, but it also suggests the potential of such facies to provide ichnological bonanzas. A remarkable feature of the assemblage is that it consists largely of reworked nodules and clasts that may have previously been reworked within the Patuxent Formation. Such unusual contexts of preservation should provide intriguing research opportunities for sedimentologists interested in the diagenesis and taphonomy of a unique track-bearing facies.
Monoclinic tridymite in clast-rich impact melt rock from the Chesapeake Bay impact structure
Jackson, John C.; Horton, J. Wright; Chou, I-Ming; Belkin, Harvey E.
2011-01-01
X-ray diffraction and Raman spectroscopy confirm a rare terrestrial occurrence of monoclinic tridymite in clast-rich impact melt rock from the Eyreville B drill core in the Chesapeake Bay impact structure. The monoclinic tridymite occurs with quartz paramorphs after tridymite and K-feldspar in a microcrystalline groundmass of devitrified glass and Fe-rich smectite. Electron-microprobe analyses revealed that the tridymite and quartz paramorphs after tridymite contain different amounts of chemical impurities. Inspection by SEM showed that the tridymite crystal surfaces are smooth, whereas the quartz paramorphs contain irregular tabular voids. These voids may represent microporosity formed by volume decrease in the presence of fluid during transformation from tridymite to quartz, or skeletal growth in the original tridymite. Cristobalite locally rims spherulites within the same drill core interval. The occurrences of tridymite and cristobalite appear to be restricted to the thickest clast-rich impact melt body in the core at 1402.02–1407.49 m depth. Their formation and preservation in an alkali-rich, high-silica melt rock suggest initially high temperatures followed by rapid cooling.
Origin and history of chondrite regolith, fragmental and impact-melt breccias from Spain
NASA Technical Reports Server (NTRS)
Casanova, I.; Keil, K.; Wieler, R.; San Miguel, A.; King, E. A.
1990-01-01
Six ordinary chondrite breccias from the Museo Nacional de Ciencias Naturales, Madrid (Spain), are described and classified as follows: the solar gas-rich regolith breccia Oviedo (H5); the premetamorphic fragmental breccias Cabezo de Mayo (type 6, L-LL), and Sevilla (LL4); the fragmental breccias Canellas (H4) and Gerona (H5); and the impact melt breccia, Madrid (L6). It is confirmed that chondrites with typical light-dark structures and petrographic properties typical of regolith breccias may (Oviedo) or may not (Canellas) be solar gas-rich. Cabezo de Mayo and Sevilla show convincing evidence that they were assembled prior to peak metamorphism and were equilibrated during subsequent reheating. Compositions of olivine and low-Ca pyroxene in host chondrite and breccia clasts in Cabezo de Mayo are transitional between groups L and LL. It is suggested, based on mineralogic and oxygen isotopic compositions of host and clasts, that the rock formed on the L parent body by mixing, prior to peak metamorphism. This was followed by partial equilibrium of two different materials: the indigenous L chondrite host and exotic LL melt rock clasts.
Origin and history of chondrite regolith, fragmental and impact-melt breccias from Spain
NASA Astrophysics Data System (ADS)
Casanova, I.; Keil, K.; Wieler, R.; San Miguel, A.; King, E. A.
1990-06-01
Six ordinary chondrite breccias from the Museo Nacional de Ciencias Naturales, Madrid (Spain), are described and classified as follows: the solar gas-rich regolith breccia Oviedo (H5); the premetamorphic fragmental breccias Cabezo de Mayo (type 6, L-LL), and Sevilla (LL4); the fragmental breccias Canellas (H4) and Gerona (H5); and the impact melt breccia, Madrid (L6). It is confirmed that chondrites with typical light-dark structures and petrographic properties typical of regolith breccias may (Oviedo) or may not (Canellas) be solar gas-rich. Cabezo de Mayo and Sevilla show convincing evidence that they were assembled prior to peak metamorphism and were equilibrated during subsequent reheating. Compositions of olivine and low-Ca pyroxene in host chondrite and breccia clasts in Cabezo de Mayo are transitional between groups L and LL. It is suggested, based on mineralogic and oxygen isotopic compositions of host and clasts, that the rock formed on the L parent body by mixing, prior to peak metamorphism. This was followed by partial equilibrium of two different materials: the indigenous L chondrite host and exotic LL melt rock clasts.
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Simon, J. I.; Mills, R. D.; Ross, D. K.; Tappa, M.
2015-01-01
Lunar granitoid lithologies have long been of interest for the information they provide on processes leading to silicic melt compositions on the Moon. The extraction of such melts over time affects the distribution and budget of incompatible materials (i.e., radiogenic heat producing elements and volatiles) of the lunar interior. We have recently shown that in addition to their high concentrations of incompatible lithophile elements, some granitoid clasts in lunar breccias have significant indigenous water contents in their alkali feldspars. This raises the importance of lunar granitoid materials in the expanding search for mineralogic/petrologic hosts of indigenous lunar water-related species. We are undertaking a detailed survey of the petrologic/mineralogical relations of granitoid clasts in lunar breccias to achieve a better understanding of the potential of these diverse assemblages as hosts for volatiles, and as candidates for additional isotope chronology studies. Our preliminary results reported here based on high-resolution field-emission SEM, EPMA and TEM studies uncover immense complexity in these materials at the micrometer to sub-micrometer scale that heretofore have not been fully documented.
"Solar-Wind-Rich" Howardite: True Regolith vs. CM-Implanted Components
NASA Technical Reports Server (NTRS)
Cartwright, Julia A.; Mittlefehldt, D. W.; Herrin, J. S.; Hermann, S.; Ott, U.
2011-01-01
Howardite, eucrite and diogenite meteorites (collectively HED) likely originate from asteroid 4-Vesta [1], one of two asteroids targeted by NASA s Dawn mission. Many howardites (polymict breccias of E and D material) contain "regolithic" features, including impact-melt clasts, fragmental breccia clasts, and carbonaceous chondrite fragments. True regolithic nature can be determined through noble gas analysis, as Solar Wind (SW) is implanted into the upper-most surfaces of solar system bodies. Whilst previous work [2] suggested that high siderophile element contents (e.g. Ni of 300-1200 g/g) were regolith indicators, we found no obvious correlation between SW and these indicators in our initial howardite noble gas analyses [3]. We observed CM-like fragments in a number of our howardites, whose textures suggest late addition to the breccia assemblage [4]. As typical CMs contain mixtures of SW (in matrix) and planetary (in clasts) components [5], we investigate the dominance of such components in SW-rich howardites. This will help deter-mine the extent of implanted SW in HED grains vs. SW and planetary gases from CM fragments, and allow better understanding of regolith processes
Petrographic and petrological study of lunar rock materials
NASA Technical Reports Server (NTRS)
Winzer, S. R.
1976-01-01
Samples returned from Apollo 14 (14171, 14305, 14319), Apollo 15 (15255), Apollo 16 (61175, 67455), and Apollo 17 (77215) were studied optically and selected polished sections by SEM/Microprobe. Splits and separates from 77215, 67455, 61175 and 15255 were prepared; 77215 and 67455 were analyzed for major, minor and LIL trace elements. The data indicate that 77215, a noritic breccia clast found in the Station7 boulder, is a norite cumulate similar to and probably derived from the same body as 78235. The Apollo 17 boulders are found to be part of the same melt sheet, which was formed by a major impact event, possibly Serenitatis, about 4 B. Y. ago. The Apollo 14 and 16 breccias are polymict, their clast populations indicating quite different provenance. The Apollo 14 breccias are possibly the result of multiple impacts, while the other breccias studied appear to have been formed by single impacts. ANT suite clasts included in 61175 are, for the most part, granulites resulting from subsolidus recrystallization of norites, anorthosites or gabbros. This metamorphism appears to have occurred prior to the impact event forming 61175.
England, A.W.
1976-01-01
The microwave emissivity of relatively low-loss media such as snow, ice, frozen ground, and lunar soil is strongly influenced by fine-scale layering and by internal scattering. Radiometric data, however, are commonly interpreted using a model of emission from a homogeneous, dielectric halfspace whose emissivity derives exclusively from dielectric properties. Conclusions based upon these simple interpretations can be erroneous. Examples are presented showing that the emission from fresh or hardpacked snow over either frozen or moist soil is governed dominantly by the size distribution of ice grains in the snowpack. Similarly, the thickness of seasonally frozen soil and the concentration of rock clasts in lunar soil noticeably affect, respectively, the emissivities of northern latitude soils in winter and of the lunar regolith. Petrophysical data accumulated in support of the geophysical interpretation of microwave data must include measurements of not only dielectric properties, but also of geometric factors such as finescale layering and size distributions of grains, inclusions, and voids. ?? 1976 Birkha??user Verlag.
Extra-terrestrial igneous granites and related rocks: A review of their occurrence and petrogenesis
NASA Astrophysics Data System (ADS)
Bonin, Bernard
2012-11-01
The telluric planets and the asteroid belt display the same internal structure with a metallic inner core and a silicate outer shell. Experimental data and petrological evidence in silicate systems show that granite can be produced by extreme igneous differentiation through various types of igneous processes. On Moon, 4.4-3.9 Ga granite clasts display dry mineral assemblages. They correspond to at least 8 discrete intrusive events. Large K/Ca enrichment and low REE abundances in granite relative to KREEP are consistent with silicate liquid immiscibility, a process observed in melt inclusions within olivine of lunar basalts and in lunar meteorites. Steep-sided domes identified by remote sensing can represent intrusive or extrusive felsic formations. On Mars, black-and-white rhythmic layers observed on the Tharsis rise along the flanks of the peripheral scarps of the Tharsis Montes giant volcanoes suggest the possible eruption of felsic pyroclastites. Though no true granites were found so far in the Martian SNC meteorites, felsic glasses and mesostases were identified and a component close to terrestrial continental (granitic) crust is inferred from trace element and isotope systematics. Venus has suffered extensive volcanic resurfacing, whereas folded and faulted areas resemble terrestrial continents. Near large shield volcanoes, with dominant basaltic compositions, steep-sided domes have been interpreted as non-degassed silicic extrusions. The hypothesis of a granitic component is "tantalising". Extra-terrestrial granite is frequently found as clasts and mesostases in asteroidal meteorites. Porphyritic textures, with alkali feldspar crystals up to several centimetres in size, were observed in silicate enclaves within iron meteorites. In the chondrite clan, polymict breccias can contain granitic clasts, whose provenance is debated. One clast from the Adzhi-Bogdo meteorite yields a 4.53 ± 0.03 Ga Pb-Pb age, making it the oldest known granite in the solar system. The vast majority of granitic materials recognised so far in the extra-terrestrial record are characterised by ferroan A-type compositions, characterised by high to very high K2O and medium CaO contents, sodic varieties being exceedingly rare. Textural evidence of graphic quartz-alkali feldspar intergrowths within crystallised products suggests that they are igneous in origin and crystallised quickly from a liquid. In water-depleted to water-free environments, fluorine and chlorine can play significant roles, as their effects on liquidus temperatures and crystallising assemblages are nearly identical to those of water. The distribution of alkalis and alkaline earths cannot be related only to extensive crystal fractionation, but is likely induced by supplementary silicate liquid immiscibility. Medium-temperature silicate liquid immiscibility is well known as a mode of differentiation in experimental petrology studies at very low pressures on systems dominated by Fe, Ti, K, and P as major elements. The ultimate question is, therefore, not whether granite (s.l.) occurs in any given planetary body, but if sufficient volumes of granitic materials could have been produced to constitute stable continental nuclei.
NASA Astrophysics Data System (ADS)
Guilmette, C.; Hebert, R.; Wang, C.; Indares, A. D.; Ullrich, T. D.; Dostal, J.; Bedard, E.
2007-12-01
Metre to decameter-size clasts of amphibolite are found embedded in ophiolitic melanges underlying the Yarlung Zangbo Suture Zone Ophiolites, South Tibet, China. These ophiolites and melanges occur at the limit between Indian and Tibetan-derived rocks and represent remnants of an Early Cretaceous intraoceanic supra-subduction zone domain, the Neo-Tethys. In the Saga-Dazuka segment (500 km along-strike), we discovered new occurrences of strongly foliated amphibolites found as clasts in the ophiolitic melange. In garnet-free samples, hornblende is green-blue magnesio-hornblende and cpx is low-Al diopside. In garnet- bearing samples, garnet is almandine with a strong pyrope component (up to 30 mol%) whereas coexisting hornblende is brown Ti-rich tschermakite and clinopyroxene is Al-diopside. Plagioclase composition was ubiquitously shifted to albite during a late metasomatic event. Geochemistry of these rocks indicates that their igneous protoliths crystallized from a slightly differentiated tholeiitic basaltic liquid that did not undergo major fractionation. Trace element patterns reveal geochemical characteristics identical to those of the overlying ophiolitic crust. These are 1) trace element abundances similar to that of N-MORBs or BABBs, 2) a slight depletion of LREE and 3) a moderate to strong Ta-Nb negative anomaly and a slight Ti anomaly. Such characteristics suggest genesis over a spreading center close to a subduction zone, possibly a back-arc basin. Step-heating Ar/Ar plateau ages were obtained from hornblende separates. All ages fall in the range of 123-128 Ma, overlapping the crystallization ages from the overlying ophiolite (126-131 Ma). Pseudosections were built with the THERMOCALC software in the system NCFMASH. Results indicate that the observed assemblage Hb+Pl+Gt+Cpx is stable over a wide range of P-T conditions, between 10-18 kbars and at more than 800°C. Measured mineral modes and solid solution compositions were successfully modeled, indicating equilibrium between 11-13 kbars and 825-850°C, corresponding to high-P granulite facies conditions. In a general way, the geochemistry of the strongly foliated amphibolite clasts suggests that their igneous protolith probably crystallized within the same supra-subduction zone as the crustal rocks from the overlying ophiolite. Then some of these rocks were entrained to mantle depth and were rapidly exhumed, most likely along a lithospheric scale thrust fault underneath the ophiolite. This event corresponds with the end of magmatic activity within the ophiolitic crust and mantle and could be regarded as the inception of a subduction plane at the spreading ridge of a back-arc basin. The whole package was later on obducted over the Indian passive margin, at about 70 Ma. Such a model suggests that closure of the oceanic domain separating India from Eurasia implied disruption of at least one arc-back-arc system, thus requiring at least one early intraoceanic collision or major plate movement reorganization prior to the Late Cretaceous obduction.
Hereford, Richard; Beard, Sue; Dickinson, William R.; Karlstrom, Karl E.; Heizler, Matthew T.; Crossey, Laura J.; Amoroso, Lee; House, P. Kyle; Pecha, Mark
2016-01-01
Essential features of the previously named and described Miocene Crooked Ridge River in northeastern Arizona (USA) are reexamined using new geologic and geochronologic data. Previously it was proposed that Cenozoic alluvium at Crooked Ridge and southern White Mesa was pre–early Miocene, the product of a large, vigorous late Paleogene river draining the 35–23 Ma San Juan Mountains volcanic field of southwestern Colorado. The paleoriver probably breeched the Kaibab uplift and was considered important in the early evolution of the Colorado River and Grand Canyon. In this paper, we reexamine the character and age of these Cenozoic deposits. The alluvial record originally used to propose the hypothetical paleoriver is best exposed on White Mesa, providing the informal name White Mesa alluvium. The alluvium is 20–50 m thick and is in the bedrock-bound White Mesa paleovalley system, which comprises 5 tributary paleochannels. Gravel composition, detrital zircon data, and paleochannel orientation indicate that sediment originated mainly from local Cretaceous bedrock north, northeast, and south of White Mesa. Sedimentologic and fossil evidence imply alluviation in a low-energy suspended sediment fluvial system with abundant fine-grained overbank deposits, indicating a local channel system rather than a vigorous braided river with distant headwaters. The alluvium contains exotic gravel clasts of Proterozoic basement and rare Oligocene volcanic clasts as well as Oligocene–Miocene detrital sanidine related to multiple caldera eruptions of the San Juan Mountains and elsewhere. These exotic clasts and sanidine likely came from ancient rivers draining the San Juan Mountains. However, in this paper we show that the White Mesa alluvium is early Pleistocene (ca. 2 Ma) rather than pre–early Miocene. Combined 40Ar/39Ar dating of an interbedded tuff and detrital sanidine ages show that the basal White Mesa alluvium was deposited at 1.993 ± 0.002 Ma, consistent with a detrital sanidine maximum depositional age of 2.02 ± 0.02 Ma. Geomorphic relations show that the White Mesa alluvium is older than inset gravels that are interbedded with 1.2–0.8 Ma Bishop–Glass Mountain tuff. The new ca. 2 Ma age for the White Mesa alluvium refutes the hypothesis of a large regional Miocene(?) Crooked Ridge paleoriver that predated carving of the Grand Canyon. Instead, White Mesa paleodrainage was the northernmost extension of the ancestral Little Colorado River drainage basin. This finding is important for understanding Colorado River evolution because it provides a datum for quantifying rapid post–2 Ma regional denudation of the Grand Canyon region.
Flohr, M.J.K.; Huebner, J.S.
1992-01-01
Laminated to massive rhodochrosite, hausmannite, and Mn-silicates from the Smith prospect and Manga-Chrome mine, Sierra Nevada, California were deposited as ocean floor sediments associated with chert and shale. The principal lithologies at Smith are chert, argillite, rhodochrosite-, hausmannite- and chlorite-rich layers, and relatively uncommon layers of jacobsite. The Manga-Chrome mine also contains layers rich in manganoan calcite and caryopilite. Tephroite, rhodonite, spessartine, and accessory alleghanyite and sonolite formed during metamorphism. Volcaniclastic components are present at Manga-Chrome as metavolcanic clasts and as Mn-poor, red, garnet- and hematite-rich layers. There is no evidence, such as relict lithologies, that Mn was introduced into Mn-poor lithologies such as chert, limestone or mudstone. Replacement of Mn-poor phases by Mn-rich phases is observed only in the groundmass of volcanic clasts that appear to have fallen into soft Mn-rich mud. Manganiferous samples from the Smith prospect and Manga-Chrome mine have high Mn Fe and low concentrations of Ni, Cu, Zn, Co, U, Th and the rare-earth elements that are similar to concentrations reported from other ancient Mn deposits found in chert-greenstone complexes and from manganiferous sediments and crusts that are forming near modern sea floor vents. The Sierra Nevada deposits formed as precipitates of Mn-rich sediments on the sea floor, probably from mixtures of circulating hydrothermal fluids and seawater. The composition of a metabasalt from the Smith prospect is consistent with those of island-arc tholeiites. Metavolcanic clasts from the Manga-Chrome mine are compositionally distinct from the Smith metabasalt and have alkaline to calc-alkaline affinities. A back-arc basin is considered to be the most likely paleoenvironment for the formation of the Mn-rich lenses at the Manga-Chrome mine and, by association, the Smith prospect. Layers of rhodochrosite, hausmannite and chert preserve the composition and some textures of the sedimentary protoliths at both Sierra Nevada deposits. Jacobsite-rich layers probably represent a Fe-rich protolith. Caryopilite and manganoan calcite represent additional protoliths at the Manga-Chrome mine. The metamorphic assemblage prehnite-chlorite-epidote-calcite in a metabasalt from the Smith prospect constrains regional metamorphic conditions to a maximum temperature of 325??C and a pressure of 2 kbar. Slightly higher temperatures are indicated by the presence of actinolite in another metabasalt. Compositions of Mn-rich minerals in Smith samples are consistent with these metamorphic conditions. ?? 1992.
Preliminary data on boulders at station 6, Apollo 17 landing site
NASA Technical Reports Server (NTRS)
Heiken, G. H.; Butler, P., Jr.; Simonds, C. H.; Phinney, W. C.; Warner, J.; Schmitt, H. H.; Bogard, D. D.; Pearce, W. G.
1973-01-01
A cluster of boulders at Station 6 (Apollo 17 landing site) consists of breccias derived from the North Massif. Three preliminary lithologic units were established, on the basis of photogeologic interpretations; all lithologies identified photogeologically were sampled. Breccia clasts and matrices studied petrographically and chemically fall into two groups by modal mineralogy: (1) low-K Fra Mauro or high basalt composition, consisting of 50-60% modal feldspar, approximately 45% orthopyroxene and 1-7% Fe-Ti oxide; (2) clasts consisting of highland basalt composition, consisting of 70% feldspar, 30% orthopyroxene and olivine and a trace of Fe-Ti oxide.
Particle shape analysis of volcanic clast samples with the Matlab tool MORPHEO
NASA Astrophysics Data System (ADS)
Charpentier, Isabelle; Sarocchi, Damiano; Rodriguez Sedano, Luis Angel
2013-02-01
This paper presents a modular Matlab tool, namely MORPHEO, devoted to the study of particle morphology by Fourier analysis. A benchmark made of four sample images with different features (digitized coins, a pebble chart, gears, digitized volcanic clasts) is then proposed to assess the abilities of the software. Attention is brought to the Weibull distribution introduced to enhance fine variations of particle morphology. Finally, as an example, samples pertaining to a lahar deposit located in La Lumbre ravine (Colima Volcano, Mexico) are analysed. MORPHEO and the benchmark are freely available for research purposes.
Late Oligocene to Recent Landscape Evolution in Atacama Desert: a Case for Episodic Pluvial Activity
NASA Astrophysics Data System (ADS)
Dunai, T. J.
2005-12-01
Depositional surfaces of early Miocene sediments are preserved in the Coastal Cordillera, Atacama Desert, northern Chile (Dunai et al. 2005). Measurement of cosmogenic 21Ne in clasts from erosion-sensitive sediment surfaces show that these surfaces have been barely affected by erosion since 25 Ma. Predominantly hyperarid conditions since 25 Ma are required to create and preserve these oldest continuously exposed surfaces on Earth (ibid). The next oldest continuously exposed surfaces, in the Dry Valleys region, Antarctica, have about half this age (e.g. Schafer et al. 1999); van der Wateren et al. 1999). Eighty additional vein-quartz clasts were collected from the surface studied earlier (Dunai et al. 2005). These clasts were shed onto the surface from surrounding hill slopes after deposition of the main sedimentary body (22-25 Ma, references: ibid). The clasts were collected at the inlet of the first in a series of salt carst depressions at the bottom of a wide `valley' on the sediment surface(ibid). The 21Ne ages of these clasts show distinct clusters at 3.5-4 Ma, 8-10 Ma, 13-15 Ma, 17-18 Ma, ~24 Ma and 33-35 Ma. The ages that are younger than the deposition age give the timing of pluvial phases, in which the runoff was strong enough to incise hardrock channels into the surrounding hill slopes, and deposit material onto the sediment surface that had little to no pre-exposure to cosmic rays. Ages concordant to the deposition age probably represent laterally dislocated material of the original sediment surface. Ages greater than the deposition age indicate that portions of the local source region of the clasts were very slowly eroding/stable prior to the pluvial episode that eroded and transported them onto the sediment surface. The inferred pluvial phases are age-concordant with episodes of supergene enrichment in porphyry copper deposits of the Pre-Cordillera and the Andes to the east of the study area (e.g. Quang et el. 2005, Sillitoe and McKee 1996). Every Stage in the landform chronology of the region (Tosdal 1984; as revised by Quang et al. 2005) has its counterpart in the inferred pluvial phases in the Coastal Cordillera. The timing of all inferred pluvial phases is age-concordant with periods global and/or regional climate change (global cooling, regional wet-phases; Zachos 2001, Vasconcelos et al. 1994). It is therefore indicated that episodic pluvial activity, rather than episodic tectonic uplift (Quang et al. 2005), is responsible for the episodic changes in the Antacama section of the western flank of the Andes.
Textural evidence for jamming and dewatering of a sub-surface, fluid-saturated granular flow
NASA Astrophysics Data System (ADS)
Sherry, T. J.; Rowe, C. D.; Kirkpatrick, J. D.; Brodsky, E. E.
2011-12-01
Sand injectites are spectacular examples of large-scale granular flows involving migration of hundreds of cubic meters of sand slurry over hundreds of meters to kilometers in the sub-surface. By studying the macro- and microstructural textures of a kilometer-scale sand injectite, we interpret the fluid flow regimes during emplacement and define the timing of formation of specific textures in the injected material. Fluidized sand sourced from the Santa Margarita Fm., was injected upward into the Santa Cruz Mudstone, Santa Cruz County, California. The sand injectite exposed at Yellow Bank Beach records emplacement of both hydrocarbon and aqueous sand slurries. Elongate, angular mudstone clasts were ripped from the wall rock during sand migration, providing evidence for high velocity, turbid flow. However, clast long axis orientations are consistently sub-horizontal suggesting the slurry transitioned to a laminar flow as the flow velocity decreased in the sill-like intrusion. Millimeter to centimeter scale laminations are ubiquitous throughout the sand body and are locally parallel to the mudstone clast long axes. The laminations are distinct in exposure because alternating layers are preferentially cemented with limonite sourced from later groundwater infiltration. Quantitative microstructural analyses show that the laminations are defined by subtle oscillations in grain alignment between limonite and non-limonite stained layers. Grain packing, size and shape distributions do not vary. The presence of limonite in alternating layers results from differential infiltration of groundwater, indicating permeability changes between the layers despite minimal grain scale differences. Convolute dewatering structures deform the laminations. Dolomite-cemented sand, a signature of hydrocarbon saturation, forms irregular bodies that cross-cut the laminations and dewatering structures. Laminations are not formed in the dolomite-cemented sand. The relative viscosity difference between the hydrocarbon and aqueous sand slurries controls the the critical radius of the contacts between dolomite cemented and limonite cemented sand bodies. The cross-cutting relationships established in the field show that the laminations formed at the jamming transition in the aqueous sand slurry. We interpret the laminations as preserving evidence for dynamic permeability instabilities in the dewatering slurry. Relatively high permeability channels formed as pore fluid flow rearranged grains during initial dewatering. Once initiated, the flow localized further into the higher permeability channels resulting in a feedback that caused the permeability in the channels to increase.
NASA Astrophysics Data System (ADS)
Xie, Y.; Dilek, Y.
2016-12-01
The Liuqu Conglomerate (LQC) along the Yarlung-Zangbo suture zone (YZSZ) in Southern Tibet is a terrestrial deposit that provides significant spatial and temporal constraints for the timing and nature of collisional events in the tectonic evolution of the Tibetan-Himalayan orogenic belt. The 10-km-wide (N-S) LQC is exposed discontinuously for more than 1000 km in an E-W direction, and is tectonically overlain to the north by the Cretaceous Neotethyan oceanic lithosphere along a S-vergent thrust fault system and to the south by Triassic-Jurassic metamorphosed sedimentary-volcanic rocks of the Tethyan Himalaya along N-vergent reverse-thrust faults. The major facies of the LQC are the matrix-supported to clast-supported conglomerates. The matrix is poorly to moderate sorted red quartz sandstone, mudstone and sub-rounded pebble to cobble-sized clasts. The clast lithology present in central and southern parts includes dark red sandstone, siltstone and mudstone greyish-green shale, grey phyllite and slate with their provenance in the Triassic Tethyan Himalaya to the south. The clastic material making up its stratigraphy in the northern part of the LQC includes quartz sandstone, radiolarian chert, minor dolerite, gabbro and peridotite derived from the Cretaceous ophiolite. Here we report in-situ detrital zircon U-Pb age analysis of sandstone from the LQC near Liuqu area. 163 concordant U-Pb ages obtained from sample 22-LQ-15, 27-LQ-15 and 35-LQ-15 show the youngest age is 307±13 Ma with discordance of -17.02%, and the oldest zircon grain is 3362 ±51 Ma with discordance of 2.63%. Statistically, the age spectrum of these zircons from the three sandstone samples display a prominent peak centred in 935 Ma, a large peak around 516 Ma, and two small clusters around 2429 Ma and 2772 Ma. The zircon U-Pb results provide evidence of age clusters of the sandstone in LQC are consistent with the detrital U-Pb age signature of the sandstone in Tethyan Himalaya. Thus, the sediments in the LQC could be derived from the northern edge of the Indian margin and a late Jurassic-Cretaceous intra-oceanic island arc that lay within Thethys and developed prior to the final collision between India and Eurasia plates.
Non-nebular Origin of Dark Mantles Around Chondrules and Inclusions in CM Chondrites
NASA Technical Reports Server (NTRS)
Trigo-Rodriquez, Josep M.; Rubin, Alan E.; Wasson, John T.
2006-01-01
Our examination of nine CM chondrites that span the aqueous alteration sequence leads us to conclude that compact dark fine mantles surrounding chondrules and inclusions in CM chondrites are not discrete fine-grained rims acquired in the solar nebula as modeled by Metzler et al. [Accretionary dust mantles in CM chondrites: evidence for solar nebula processes. Geochim. Cosmochim. Acta 56, 1992, 2873-28971. Nebular processes that lead to agglomeration produce materials with porosities far higher than those in the dark mantles. We infer that the mantles were produced from porous nebular materials on the CM parent asteroid by impact-compaction (a process that produces the lowest porosity adjacent to chondrules and inclusions). Compaction was followed by aqueous alteration that formed tochilinite, serpentine, Ni-bearing sulfide, and other secondary products in voids in the interchondrule regions. Metzler et al. reported a correlation between mantle thickness and the radius of the enclosed object. In Yamato 791 198 we find no correlation when all sizes of central objects and dark lumps are included but a significant correlation (r(sup 2) = 0.44) if we limit consideration to central objects with radii >35 microns; a moderate correlation is also found in QUE 97990. We suggest that impact-induced shear of a plum-pudding-like precursor produced the observed "mantles"; these were shielded from comminution during impact events by the adjacent stronger chondrules and inclusions. Some mantles in CM chondrites with low degrees of alteration show distinct layers that may largely reflect differences in porosity. Typically, a gray, uniform inner layer is surrounded by an outer layer consisting of darker silicates with BSE-bright speckles. The CM-chondrite objects characterized as "primary accretionary rocks" by Metzler et al. did not form in the nebula, but rather on the parent body. The absence of solar-flare particle tracks and solar-wind-implanted rare gases in these clasts reflect their lithified nature and low surface/volume ratios during the period when they resided in the regolith and were subject to irradiation by solar particles. The clasts are analogous to the light-colored metamorphosed clasts in ordinary-chondrite regolith breccias (which also lack solar-flare particle tracks and solar-wind gas).
NASA Astrophysics Data System (ADS)
Mangano, J.; O'Connor, J. E.; Jones, K. L.; Wallick, R.
2011-12-01
Many topographic, hydrologic, and land use variables affect the supply and transport of bed-material in rivers, but the underlying geology is a key factor controlling both the volume of introduced material and the attrition of bed-material as it moves downstream. Recent and ongoing USGS river studies in Western Oregon document strong links between geologic province and bed-material transport. Rivers originating in the Mesozoic metamorphic and intrusive igneous rocks of the Klamath terranes of southwestern Oregon have the greatest gravel transport rates (and channel and valley-bottom morphologies reflecting high bed-material fluxes), whereas the generally lesser amounts of gravel in streams that drain Oregon's Coast Range and western Cascade Range owes in large part to Tertiary sedimentary and volcanic units underlying most of these basins. Aspects of these differences are controlled by supply as well as clast attrition. Here we aim to quantify bed-material attrition rates associated with the five main geologic provinces of Western Oregon: the Klamath terranes, Western Cascades, High Cascades, Coast Range sedimentary rocks, and Coast Range volcanic rocks. Bed-material samples were collected throughout the region from streams that drain a single geologic province and tumbled with a lapidary tumbler to determine relative attrition rates. Two kilograms of each sample were sorted into an initial distribution of clast sizes (from 16 to 64mm) and tumbled, with periodic breaks to reweigh and sieve the sample. Results show marked differences in attrition rates, with the sedimentary rocks of the Coast Range having weight loss coefficients between 1.206 and 0.211/km, orders of magnitude greater than all of the other sampled provinces. For comparison, bed material from the Klamath terranes have weight loss coefficients ranging from 0.013 to 0.005/km, and a control sample of quartzite clasts (from the Klamath terranes) has a weight loss coefficient of 0.001/km. These results confirm that bed-material attrition is an important process affecting bed-material supply and transport, and will allow for more complete development of regional bed-material sediment budgets in ongoing efforts to understand patterns of gravel abundance and channel morphology in rivers of Western Oregon.
Lindsey, D.A.; Langer, W.H.; Van Gosen, B. S.
2007-01-01
Clast populations in piedmont fluvial systems are products of complex histories that complicate provenance interpretation. Although pebble counts of lithology are widely used, the information provided by a pebble count has been filtered by a potentially large number of processes and circumstances. Counts of pebble lithology and roundness together offer more power than lithology alone for the interpretation of provenance. In this study we analyze pebble counts of lithology and roundness in two contrasting fluvial systems of Pleistocene age to see how provenance varies with drainage size. The two systems are 1) a group of small high-gradient incised streams that formed alluvial fans and terraces and 2) a piedmont river that formed terraces in response to climate-driven cycles of aggradation and incision. We first analyze the data from these systems within their geographic and geologic context. After this is done, we employ contingency table analysis to complete the interpretation of pebble provenance. Small tributary streams that drain rugged mountains on both sides of the Santa Cruz River, southeast Arizona, deposited gravel in fan and terrace deposits of Pleistocene age. Volcanic, plutonic and, to a lesser extent, sedimentary rocks are the predominant pebble lithologies. Large contrasts in gravel lithology are evident among adjacent fans. Subangular to subrounded pebbles predominate. Contingency table analysis shows that hard volcanic rocks tend to remain angular and, even though transport distances have been short, soft tuff and sedimentary rocks tend to become rounded. The Wind River, a major piedmont stream in Wyoming, drains rugged mountains surrounding the northwest part of the Wind River basin. Under the influence of climate change and glaciation during the Pleistocene, the river deposited an extensive series of terrace gravels. In contrast to Santa Cruz tributary gravel, most of the Wind River gravel is relatively homogenous in lithology and is rounded to well-rounded. Detailed analysis reveals a multitude of sources in the headwaters and the basin itself, but lithologies from these sources are combined downstream. Well-rounded volcanic and recycled quartzite clasts were derived from the headwaters. Precambrian igneous and metamorphic clasts were brought down tributary valleys to the Wind River by glaciers, and sandstone was added where the river enters the Wind River structural basin.
Tephra Blanket Record of a Violent Strombolian Eruption, Sunset Crater, Arizona
NASA Astrophysics Data System (ADS)
Wagner, K. D.; Ort, M. H.
2015-12-01
New fieldwork provides a detailed description of the widespread tephra of the ~1085 CE Sunset Crater eruption in the San Francisco Volcanic Field, Arizona, and refines interpretation of the eruptive sequence. The basal fine-lapilli tephra-fall-units I-IV are considered in detail. Units I and II are massive, with Unit I composed of angular to spiny clasts and II composed of more equant, oxidized clasts. Units III and IV have inversely graded bases and massive tops and are composed of angular to spiny iridescent and mixed iridescent and oxidized angular clasts, respectively. Xenoliths are rare in all units (<0.1%): sedimentary xenoliths are consistent with the known shallow country rock (Moenkopi and Kaibab Fms); magmatic xenoliths are pumiceous rhyolite mingled with basalt. Unit II is less sideromelane rich (20%) than Units I, III, and IV (60-80%). Above these units are at least two more coarse tephra-fall units. Variably preserved ash and fine-lapilli laminae cap the tephra blanket. This deposit is highly susceptible to reworking, and likely experienced both syn- and post-eruptive aeolian redistribution. It appears as either well sorted, alternating planar-parallel beds of ash and fine lapilli with rare wavy beds, or as cross- or planar-bedded ash. The tephra blanket as a whole is stratigraphically underlain by a fissure-fed lava flow and lapilli-fall units are intercalated with two larger flows. Mean grain size is coarsest in Unit I but coarsens in Units II-IV. Units I, III, and IV are moderately to poorly sorted with no skew. Unit II is better sorted and more coarse-skewed. Units I and III are slightly more platykurtic than II and IV. Without considering possible spatial effects introduced by dispersion patterns, bootstrap ANOVA confidence intervals suggest at least Unit II sorting and skewness are from distinct populations. Isopachs indicate Units I and II were associated with a 10-km-long fissure source. After or during Unit II's deposition, activity localized to Sunset Crater. Units III and IV were emplaced with waxing to sustained activity, and followed by at least two more sustained episodes. Two lava flows began effusing from the cone during this period and remained active after explosive activity ceased. Primary tephra deposition ended with a period of small discrete explosions.
Origin of Cretaceous phosphorites from the onshore of Tamil Nadu, India
NASA Astrophysics Data System (ADS)
Purnachandra Rao, V.; Kessarkar, Pratima M.; Nagendra, R.; Babu, E. V. S. S. K.
2007-12-01
Cretaceous phosphorites from the onshore of Tamil Nadu have been investigated for their origin and compared with those in the offshore. Cretaceous phosphorites occur as light brown to yellowish brown or white nodules in Karai Shale of the Uttatur Group in the onshore Cauvery basin. Nodules exhibit phosphatic nucleus encrusted by a chalky shell of carbonate. The nucleus of the nodules consists of light and dark coloured laminae, phosphate peloids/coated grains and detrital particles interspersed between the laminae. Scanning electron microscope (SEM) studies reveal trapping and binding activity of microbial filaments. A mat structure with linearly arranged microbial filaments and hollow, cell-based coccoid cyanobacterial mat are present. Nodules contain abundant carbonate fluorapatite, followed by minor calcite, quartz and feldspar. The P2O5 content of the phosphorites ranges from 18 to 26%. The CaO/P2O5, Sr and F contents are higher than that of pure carbonate fluorapatite. Concentrations of Si, Al, K, Fe, and Ti are low. We suggest that the nuclei of the nodules represent phosphate clasts related to phosphate stromatolites formed at intertidal conditions. At high energy levels the microbial mats were disintegrated into phosphate clasts, coated with carbonate and then reworked into Karai Shale. On the other hand, Quaternary phosphorites occur as irregular to rounded, grey coloured phosphate clasts at water depths between 180 and 320m on the continental shelf of Tamil Nadu. They exhibit grain-supported texture. Despite Quaternary in age, they also resemble phosphate stromatolites of intertidal origin and reworked as phosphate clasts onto the shelf margin depressions. Benthic microbial mats probably supplied high phosphorus to the sediments. Availability of excess phosphorus seems to be a pre-requisite for the formation of phosphate stromatolites.
Clumped Isotope Records of Environmental Change and Diagenesis at the Onset of the Cryogenian
NASA Astrophysics Data System (ADS)
Mackey, T.; Bergmann, K.; Jost, A. B.; Cantine, M.; Wilcots, J.
2017-12-01
Carbonate strata from NE Spitsbergen and W Nordaustlandet, Svalbard, provide a window into changing depositional environments and sediment diagenesis through the Neoproterozoic. Our data bracket climate perturbations including the Sturtian and Marinoan Snowball Earth, and these sections have also experienced a range of burial and alteration histories. Comparison of clumped isotope values (Δ47) in specific petrographic textures and mineralogies provides a test for post-depositional alteration. Specifically, we focus on strata across globally correlated carbon isotope excursions (CIE) and within carbonate conglomerates to constrain changes in Δ47 through time. Calcites across sections from the onset of the Cryogenian typically record higher temperatures than co-occurring dolomites, consistent with calcite and dolomite reordering kinetics. In the most extreme cases, both depositional and burial calcites record equilibration above the closure temperature for calcites, but dolomite temperatures calculated from Δ47 values indicate that they have not been fully reordered. For example, stratigraphic variation in Δ47 values exceeds 40°C ( 60-100°C) from the pre-Sturtian Russøya Member of the Elbobreen Formation. Such variability could reflect preferential alteration of specific textures or changes in temperature associated with dolomite precipitation. Carbonate strata have also been resedimented as clasts in overriding Sturtian diamictites, and comparison of clasts to underlying stratigraphy and carbonate matrix provide a test for the source and timing of stratigraphic variations in Δ47 values. In a single location dolomite clasts record temperatures varying by >20°C ( 60-80°C), and clast-associated dolomicrite matrix records temperatures as low as 20-30°C. Together, these data indicate that at least some component of the Δ47 signal reflects differences in attributes of the dolomites prior to the Sturtian glaciation.
Lithic breccia and ignimbrite erupted during the collapse of Crater Lake Caldera, Oregon
Druitt, T.H.; Bacon, C.R.
1986-01-01
The climactic eruption of Mount Mazama (6845 y.B.P.) vented a total of ???50 km3 of compositionally zoned rhyodacitic to basaltic magma from: (a) a single vent as a Plinian pumice fall deposit and the overlying Wineglass Welded Tuff, and (b) ring vents as ignimbrite and coignimbrite lithic breccia accompanying the collapse of Crater Lake caldera. New field and grain-size data for the ring-vent products are presented in this report. The coarse-grained, poorly bedded, clast-supported lithic breccia extends as far as 18 km from the caldera center. Like the associated ignimbrite, the breccia is compositionally zoned both radially and vertically, and silicic, mixed, and mafic types can be recognized, based on the proportion of rhyodacitic pumice. Matrix fractions in silicic breccias are depleted of fines and are lithic- and crystal-enriched relative to silicic ignimbrite due to vigorous gas sorting during emplacement. Ignimbrite occurs as a proximal veneer deposit overlying the breccia, a medial (??? 8 to ??? 25 km from the caldera center), compositionally zoned valley fill as much as > 110 m thick, and an unzoned distal ({slanted equal to or greater-than} 20 km) facies which extends as far as 55 km from the caldera. Breccia within ??? 9 km of the caldera center is interpreted as a coignimbrite lag breccia formed within the deflation zone of the collapsing ring-vent eruption columns. Expanded pyroclastic flows of the deflation zone were probably vertically graded in both size and concentration of blocks, as recently postulated for some turbidity currents. An inflection in the rate of falloff of lithic-clast size within the lithic breccia at ??? 9 km may mark the outer edge of the deflation zone or may be an artifact of incomplete exposure. The onset of ring-vent activity at Mt. Mazama was accompanied by a marked increase in eruptive discharge. Pyroclastic flows were emplaced as a semicontinuous stream, as few ignimbrite flow-unit boundaries are evident. As eruption from the ring vents progressed, flow-runout distance and the extent of breccia deposition decreased due to (a) greater internal flow friction, and (b) decreasing eruption column heights. Effect (b) probably resulted from a progressive decrease in magmatic gas content and discharge rate. Waning discharge may have been promoted by the tapping of more viscous, crystal-rich magma, collapse of conduit walls, and declining caldera collapse rate. ?? 1986.
Characterization of lunar ilmenite resources
NASA Astrophysics Data System (ADS)
Heiken, G. H.; Vaniman, D. T.
Ilmenite will be an important lunar resource, to be used mainly for oxygen production but also as a source of iron. Ilmenite abundances in high-Ti basaltic lavas are higher (9-19 vol pct) than in high-Ti mare soils (mostly less than 10 vol pct). This factor alone may make crushed high-Ti basaltic lavas most attractive as a target for ilmenite extraction. Concentration of ilmenite from either a crushed basalt or regolith requires size sorting to avoid polycrystalline fragments. In coarse-grained high-Ti basaltic lavas, about 60-80 percent of the ilmenite will consist of relatively 'clean' single crystals if the rocks are crushed to a size of 0.2 mm. Fine-grained high-Ti basalts, with thin skeletal or hopper-shaped ilmentes, would produce essentially no free or 'clean' ilmenite grains even if crushed to 0.15 mm and only about 7 percent free ilmenite if crushed to 0.05 mm. Data from the 2.8-m-thick regolith sampled by coring at the Apollo 17 site show that in even the most basalt-clast-rich and least mature stratigraphic intervals, free ilmenite grains make up less than 2 percent of the 0.02- to 0.2-mm size fraction and a mere 0.3 percent of the 0.2- to 2-mm size fraction.
NASA Astrophysics Data System (ADS)
Barth, A. P.; Brandl, P. A.; Li, H.; Hickey-Vargas, R.; Jiang, F.; Kanayama, K.; Kusano, Y.; Marsaglia, K. M.; McCarthy, A.; Meffre, S.; Savov, I. P.; Tepley, F. J., III; Yogodzinski, G. M.
2014-12-01
The destruction of lithospheric plates by subduction is a fundamentally important process leading to arc magmatism and the creation of continental crust, yet subduction initiation and early magmatic arc evolution remain poorly understood. For many arc systems, onset of arc volcanism and early evolution are obscured by metamorphism or the record is deeply buried; however, initial products of arc systems may be preserved in forearc and backarc sedimentary records. IODP Expedition 351 recovered this history from the dispersed ash and pyroclast record in the proximal rear-arc of the northern IBM system west of the Kyushu-Palau Ridge. Drilling at Site U1438 in the Amami Sankaku Basin recovered a thick volcaniclastic record of subduction initiation and the early evolution of the Izu-Bonin Arc. A 160-m thick section of Neogene sediment overlies 1.3 kilometers of Paleogene volcaniclastic rocks with andesitic average composition; this volcaniclastic section was deposited on mafic volcanic basement rocks. The thin upper sediment layer is primarily terrigenous, biogenic and volcaniclastic mud and ooze with interspersed ash layers. The underlying Eocene to Oligocene volcaniclastic rocks are 33% tuffaceous mudstone, 61% tuffaceous sandstone, and 6% conglomerate with volcanic and rare sedimentary clasts commonly up to pebble and rarely to cobble size. The clastic section is characterized by repetitive conglomerate and sandstone-dominated intervals with intervening mudstone-dominated intervals, reflecting waxing and waning of coarse arc-derived sediment inputs through time. Volcanic lithic clasts in sandstones and conglomerates range from basalt to rhyolite in composition and include well-preserved pumice, reflecting a lithologically diverse and compositionally variable arc volcanic source.
Geology of the Gusec cratered plains from the Spirit rover transverse
NASA Technical Reports Server (NTRS)
Golombek, M. P.; Crumpler, L. S.; Grant, J. A.; Greely, R.; Cabrol, N. A.; Parker, T. J.; Rice, J. W., Jr.; Ward, J. G.; Arvidson, R. E.; Moersch, J. E.;
2006-01-01
The cratered plains of Gusev traversed by Spirit are generally low-relief rocky plains dominated by impact and eolian processes. Ubiquitous shallow, soil-filled, circular depressions, called hollows, are modified impact craters. Rocks are dark, fine-grained basalts, and the upper 10 m of the cratered plains appears to be an impact-generated regolith developed over intact basalt flows. Systematic field observations across the cratered plains identified vesicular clasts and rare scoria similar to original lava flow tops, consistent with an upper inflated surface of lava flows with adjacent collapse depressions. Crater and hollow morphometry are consistent with most being secondaries. The size frequency distribution of rocks >0.1 m diameter generally follows exponential functions similar to other landing sites for total rock abundances of 5-35%. Systematic clast counts show that areas with higher rock abundance and more large rocks have higher thermal inertia. Plains with lower thermal inertia have fewer rocks and substantially more pebbles that are well sorted and evenly spaced, similar to a desert pavement or lag. Eolian bed forms (ripples and wind tails) have coarse surface lags, and many are dust covered and thus likely inactive. Deflation of the surface _5-25 cm likely exposed two-toned rocks and elevated ventifacts and transported fines into craters creating the hollows. This observed redistribution yields extremely slow average erosion rates of _0.03 nm/yr and argues for very little long-term net change of the surface and a dry and desiccating environment similar to today's since the Hesperian (or _3 Ga).
NASA Astrophysics Data System (ADS)
Kwon, Chang Woo; Gihm, Yong Sik
2017-07-01
In the Cretaceous Buan Volcanics (SW Korea), blocky and fluidal peperites are developed in a bed of poorly sorted, massive pumiceous lapilli tuff (hot sediments) as a result of the vertical to subvertical intrusion of the trachyandesitic dikes into the bed. Blocky peperites are composed of polyhedral or platy juvenile clasts with a jigsaw-crack texture. Fluidal peperites are characterized by fluidal or globular juvenile clasts with irregular or ragged margins. The blocky peperites are ubiquitous in the host sediments, whereas the fluidal peperites only occur in fine-grained zone (well sorted fine to very fine ash) that are aligned parallel to the dike margin. The development of the fine-grained zone within the poorly sorted host sediments is interpreted to form by grain size segregation caused by upward moving pore water (fluidization) that has resulted from heat transfer from intruding magma toward the waterlogged host sediments during intrusion. With the release of pore water and the selective entrainment of fine-grained ash, the fine-grained zone formed within the host sediments. Subsequent interactions between the fine-grained zone and the intruding magma resulted in ductile deformation of the magma, which generated fluidal peperites. Outside the fine-grained zone, because of the relative deficiency of both pore water and fine-grained ash, intruding magma fragmented in a brittle manner, resulting in the formation of blocky peperites. The results of this study suggest that redistribution of constituent particles (ash) and interstitial fluids during fluidization resulted in heterogeneous physical conditions of the host sediments, which influenced peperite-forming processes.
Carey, Rebecca J.; Manga, Michael; Degruyter, Wim; Swanson, Donald; Houghton, Bruce F.; Orr, Tim R.; Patrick, Matthew R.
2012-01-01
From October 2008 until present, dozens of small impulsive explosive eruptions occurred from the Overlook vent on the southeast side of Halema‘uma‘u Crater, at Kīlauea volcano, USA. These eruptions were triggered by rockfalls from the walls of the volcanic vent and conduit onto the top of the lava column. Here we use microtextural observations and data from clasts erupted during the well-characterized 12 October 2008 explosive eruption at Halema‘uma‘u to extend existing models of eruption triggering. We present a potential mechanism for this eruption by combining microtextural observations with existing geophysical and visual data sets. We measure the size and number density of bubbles preserved in juvenile ejecta using 2D images and X-ray microtomography. Our data suggest that accumulations of large bubbles with diameters of >50μm to at least millimeters existed at shallow levels within the conduit prior to the 12 October 2008 explosion. Furthermore, a high number density of small bubbles <50 μm is measured in the clasts, implying very rapid nucleation of bubbles. Visual observations, combined with preexisting geophysical data, suggest that the impact of rockfalls onto the magma free surface induces pressure changes over short timescales that (1) nucleated new additional bubbles in the shallow conduit leading to high number densities of small bubbles and (2) expanded the preexisting bubbles driving upward acceleration. The trigger of eruption and bubble nucleation is thus external to the degassing system.
Soil grain analyses at Meridiani Planum, Mars
Weitz, C.M.; Anderson, R.C.; Bell, J.F.; Farrand, W. H.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.L.; Morris, R.V.; Squyres, S. W.; Sullivan, R.J.
2006-01-01
Grain-size analyses of the soils at Meridiani Planum have been used to identify rock souces for the grains and provide information about depositional processes under past and current conditions. Basaltic sand, dust, millimeter-size hematite-rich spherules interpreted as concretions, spherule fragments, coated partially buried spherules, basalt fragments, sedimentary outcrop fragments, and centimeter-size cobbles are concentrated on the upper surfaces of the soils as a lag deposit, while finer basaltic sands and dust dominate the underlying soils. There is a bimodal distribution of soil grain sizes with one population representing grains <125 ??m and the other falling between 1-4.5 mm. Soils within craters like Eagle and Endurance show a much greater diversity of grain morphologies compared to the plains. The spherules found in the plains soils are approximately 1-2 mm smaller in size than those seen embedded in the outcrop rocks of Eagle and Endurance craters. The average major axis for all unfractured spherules measured in the soils and outcrop rocks is 2.87 ?? 1.18 mm, with a trend toward decreasing spherule sizes in both the soils and outcrop rocks as the rover drove southward. Wind ripples seen across the plains of Meridiani are dominated by similar size (1.3-1.7 mm) hematite-rich grains, and they match in size the larger grains on plains ripples at Gusev Crater. Larger clasts and centimeter-size cobbles that are scattered on the soils have several spectral and compositional types, reflecting multiple origins. The cobbles tend to concentrate within ripple troughs along the plains and in association with outcrop exposures. Copyright 2006 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Bose, Narayan; Dutta, Dripta; Mukherjee, Soumyajit
2018-07-01
Brittle Y- and P-planes exist in an exposure of greywacke in the Garhwal Lesser Himalaya, India. Although, Y-planes are well developed throughout, the P-planes are prominent only in some parts (domain-A), and not elsewhere (domain-B). To investigate why the P-planes developed selectively, the following studies were undertaken: 1. Clay-separated XRD analyses: clinochlore and illite are present in both the domains. 2. Strain analyses by Rf-φ method: it deduces strain magnitudes of ∼1.8 for the ductile deformed quartz grains from both the domains A and B. 3. Grain size analyses of quartz clasts: domain-A is mostly composed of finer grains (area up to 40,000 μm2), whereas domain-B consists of a population of coarser grains (area >45,000 μm2). A 2D finite element modeling of linear elastic material was performed using COMSOL software to investigate the control of grain-size variation on the generation brittle shear planes. The results of numerical modeling corroborate the known fact that an increase in grain-size reduces the elastic strain energy density. A broader grain-size distribution increases the effects of diffusion creep and resists the onset of dislocation creep. Thus, rocks with coarser grain population (domain B) tend to resist the generation of shear fractures, unlike their fine-grained counterpart (domain A).
Modal petrology of six soils from Apollo 16 double drive tube core 64002
NASA Technical Reports Server (NTRS)
Houck, K. J.
1982-01-01
Petrographic data form six size fractions for six samples of Apollo 16 drive tube section 64002 show source rocks similar to those of core 60009. Analysis of modal data from the 64002 core show that the upper three and lowest core soils are mature and have similar maturation histories, while the two middle soils are submature and have histories that are similar to each other but unlike those from the aforementioned soils. In all of these soils, mixing has dominated over reworking, and appears to involve two mature soils distinguished by differing source rocks and an immature, plagioclase-rich soil which is correlated with larger clasts of chalky, friable breccia. These breccias and the plagioclase-rich soil are tentatively associated with the Descartes Formation.
NASA Technical Reports Server (NTRS)
Winzer, S. R.; Meyerhoff, M.; Nava, D. F.; Schuhmann, S.; Philpotts, J. A.; Lindstrom, D. J.; Lum, R. K. L.; Lindstrom, M. M.; Schuhmann, P.
1977-01-01
The matrix and 58 clasts from breccia 61175 were analyzed for major, minor, and trace elements. The matrix is anorthositic and has lithophile trace element abundances 20 to 40 times chondrite. Clasts comprise impact melt rocks, xenocryst and xenolith-free very high aluminum (VHA) and anorthositic basalts, anorthosite, anorthosite-norite-troctolite granulites, and hornfelses. The VHA and anorthositic basalts are considered to be impact melts, and the hornfelses were probably formed by incorporation of breccias or preexisting melt rocks into a melt sheet prior to cooling. The range of melt-rock lithophile trace element abundances might indicate more than one melt sheet.
NASA Astrophysics Data System (ADS)
Eriksson, P. G.
A widely developed, thin, coarse-matrix conglomerate occurs within early Proterozoic lacustrine mudrocks in the Transvaal Sequence, South Africa. The poorly sorted tabular chert clasts, alternation of a planar clast fabric with disorientated zones, plus normal and inverse grading in the former rock type suggest deposition by density-modified grain-flow and high density turbidity currents. The lower fan-delta slope palæenvironment inferred for the conglomerate is consistent with the lacustrine interpretation for the enclosing mudrock facies. This intracratonic setting contrasts with the marine environment generally associated with density-modified grain-flow deposits.
Jelly Bean conglomerate (lower Permian): record of a forebulge in southeastern Arizona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armin, R.
The most incongruous stratigraphic unit the Earp Formation (Pennsylvanian-Permian) is the Jelly Bean conglomerate (JBC), a unit rarely more than 5 m thick, but occurring over 15,000 km/sup 2/. The JBC consists mostly of clast-supported chert-pebble and limestone-clast conglomerate, litharenite, and pebbly sandstone, whereas most of the Earp Formation is marine limestone, siltstone, and shale. The JCB lies on eroded siltstone or limestone, and is capped conformably by siltstone. The JBC is probably a braided-stream deposit as indicated by presence of fluvial dunes and ripples, amalgamated bar and channel conglomerates, imbricated clasts, channeled underbeds, and lack of point bars. Paleocurrentsmore » were generally southward. The thinness and widespread occurrence of the JBC suggest a uniform, gentle paleoslope down which the streams flowed. Deposition of the JBC occurred at about the climax of the Marathon phase of the Ouachita orogeny in west Texas and northern Mexico. The age and location of the JBC, which fringes cratonic North America, indicate that it was related to the late Paleozoic convergence of North and South America, and may have resulted from flexural forebulging caused by thrusting in the Marathon orogene and associated sedimentation in a foredeep.« less
NASA Technical Reports Server (NTRS)
Taylor, G. J.
1991-01-01
The MAC88105 lunar meteorite, as represented by thin section 78, contains three major types of impact melt breccias. The most abundant type is clast-laden, fine-grained, and rich in Al2O3 (28 wt pct); these clasts constitute most of the meteorite. Their abundance and aluminous nature indicate that the MAC88105 source area was very aluminous. This is consistent with formation of the primordial lunar crust from a global magma ocean. The second type of impact melt is represented by only one clast in 78. It has a basaltic bulk composition similar to many other lunar impact melts, but is significantly richer in P2O5 than most and has a much lower MgO/(MgO + FeO). The third impact-melt type resembles a prominent melt group at Apollo 16, but has lower MgO/(MgO + FeO). These data show that basaltic impact melts are compositionally diverse. Dating samples of the Al-rich impact melts and the new types of basaltic impact melts from this meteorite can test the idea that the Moon suffered a terminal cataclysm 3.9 Ga ago.
Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data.
Kim, Sehwi; Jung, Inkyung
2017-01-01
The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns.
Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data
Kim, Sehwi
2017-01-01
The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns. PMID:28753674
Curtis L. VanderSchaaf; Harold E. Burkhart
2010-01-01
Maximum size-density relationships (MSDR) provide natural resource managers useful information about the relationship between tree density and average tree size. Obtaining a valid estimate of how maximum tree density changes as average tree size changes is necessary to accurately describe these relationships. This paper examines three methods to estimate the slope of...
O'Neill, Tanya A; Balks, Megan R; López-Martínez, Jerónimo; McWhirter, Judi L
2012-12-15
With increasing visitor numbers an understanding of the impacts of human activities in Antarctic terrestrial environments has become important. The objective of this study was to develop a means for assessing recovery of the ground surface desert pavement following physical disturbance. A set of 11 criteria were identified to assess desert pavement recovery. Assessed criteria were: embeddedness of surface clasts; impressions of removed clasts; degree of clast surface weathering; % overturned clasts; salt on underside of clasts; development of salt coatings; armouring per m(2); colour contrast; evidence of subsidence/melt out; accumulation of salt on cut surfaces; and evidence of patterned ground development. Recovery criteria were assigned a severity/extent rating on a scale from zero to four, zero being highly disturbed, and four being undisturbed. A relative % recovery for each criteria was calculated for each site by comparison with a nearby undisturbed control area, and an overall Mean Recovery Index (MRI) was assigned to each pavement surface. To test the method, 54 sites in the Ross Sea region of Antarctica were investigated including areas disturbed by: bulldozer scraping for road-fill, contouring for infrastructure, geotechnical investigations, and experimental treading trial sites. Disturbances had occurred at timescales ranging from one week to 50 years prior to assessment. The extent of desert pavement recovery at the sites investigated in this study was higher than anticipated. Fifty of the 54 sites investigated were in an intermediate, or higher, stage of desert pavement recovery, 30 sites were in an advanced stage of recovery, and four sites were indistinguishable from adjacent control sites (MRI = 100%). It was found that active surfaces, such as the gravel beach deposits at the Greenpeace World Park Base site at Cape Evans, the aeolian sand deposits at Bull Pass, and the alluvial fan deposits of the Loop Moraine field campsite, recovered relatively quickly, whereas less active sites, such as the bulldozed tracks at Marble Point, and Williams Field to McMurdo Station pipeline site on Ross Island, showed only intermediate recovery 20-30 years after disturbance. The slabby grano-diorite surface material at the former Vanda Station site, meant that the impacts that had occurred were hard to detect following decommissioning of the station and site remediation. Desert pavements disturbed by randomly dispersed footprints, temporary field campsites at the Loop Moraine and VXE6 Pond in the Wright Valley, recovered to be undetectable (MRI = 100%) within five years, whereas track formation from repeated trampling, particularly the concentration of larger clasts along the margin of a confined track, persisted for over 15 years (MRI = 82%). The recovery assessment method developed in this study has environmental management applications and potential to advance our ability to predict the recovery of desert pavement following human impacts from activities in Antarctica. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Bombardment History of 4 Vesta as Told by Sample Geochronology
NASA Technical Reports Server (NTRS)
Cohen, B. A.
2014-01-01
The Dawn mission showed asteroid 4 Vesta to be an extensively cratered body, ancient in age, with craters in a variety of morphologies and preservation states [1-3]. Tying Vesta's relative crater ages to an absolute impact history can be accomplished through investigations of the HED (howardite, eucrite, diogenite) meteorites. Eucrites are crustal basalts and gabbros, diogenites are mostly orthopyroxenites representing lower crust or upper mantle materials, and howardites are mixed breccias containing both lithologies. Eucrite 53Mn-53Cr systematics show that the HED parent body globally differentiated by 4.56 Ga and fully crystallized soon afterwards [4]. Much later, many eucrites were brecciated and heated by large impacts into the parent body surface. Disturbance ages in eucrites show that multiple large impacts occurred within 1 Gyr after crystallization, showing a history that largely resembles that of the Moon [5-7]. Dawn images also showed that Vesta is covered with a well-developed regolith that is spectrally similar to howardite meteorites [8]. Howardites are polymict regolith breccias made up mostly of clasts of eucrites and diogenites, but which also contain clasts formed by melting of the regolith by relatively large, energetic impact events. Impact-melt clast ages from howardites extend our knowledge of the impact history of Vesta, expanding on eucrite disturbance ages and helping give absolute age context to the observed crater-counts produced using Dawn data. The distribution of 40Ar-39Ar ages of impact-melt clasts in howardites shows that they formed within the time period 3.3-3.8 Ga [9]. These, and other impact-melted HED materials, have distinct age and compositional characteristics that suggest they formed in discrete impact events. In order to create these crystalline impact-melt products on the surface of Vesta, the impacts during this time period must have had velocities much higher than 5 km/s, the main belt average [10]. This is inconsistent with formation by a normal distribution of impact velocities and points instead to a unique period where high-velocity collisions were more frequent than currently observed. Until now, impact-reset ages in the HED meteorites have been be interpreted under the umbrella of the canonical lunar cataclysm where an increase in the absolute number of bombarding objects is responsible for creating larger absolute amounts of impact-affected and impact-melted rocks, statistically increasing their chances of being found on Earth and dated. However, the distribution of age among the howardite impact-melt clasts may not necessarily result from an increased number of impacts, but rather result from impacts of higher velocity. The changeover from a typical main belt velocity profile to this regime of increased velocity population at Vesta occurs contemporaneously with a similar transition at the Moon, indicating that howardite impact-melt clast ages reinforce the notion of a dynamically unusual episode of bombardment in the inner solar system beginning at around 4.0 Ga.
NASA Astrophysics Data System (ADS)
Husch, J.; Cole, S. B.; Karunatillake, S.; Weindl, T.
2012-12-01
Glaciolacustrine environments, such as temporally persistent ice-covered lakes, have been proposed for several locations on Mars, including Gusev Crater[1], Greg Crater[2], and Gorgonum Chaos[3]. Morphologic features consistent with the Hesperian-age lava flows dammed by hundred-meter thick ice-rich deposits within Gusev Crater have also been described[4]. However, neither in-situ nor remote-sensing observations have provided unequivocal evidence for the existence of glaciolacustrine environments. In this context, targeted observations by in-situ missions (i.e., MER and MSL rovers) of coarse clasts embedded within, but compositionally distinct from, finer-grained layered deposits holds the potential for unambiguously distinguishing glaciolacustrine settings from volcaniclastic[5] alternatives. We use the single clast found at the Home Plate deposit in the Columbia Hills of Gusev Crater as a test case to develop a comprehensive strategy for identifying dropstones, also applicable with upcoming data from the Curiosity Rover within Gale Crater. A dropstone, consistent with glaciolacustrine origin, can be identified from 3 key indicators: (1) compositional distinctness from the surrounding sedimentary host; (2) smaller clast populations than would be expected for volcaniclastic bomb sags; (3) little, if any, disruption in bed continuity, particularly in the layers above a clast, relative to bomb sag occurrences. Although terrestrial dropstones commonly associate with fine-grained marine sediments and bomb sags with coarser sediments indicative of high-energy eruptive settings, the distinctions may fade at glaciolacustrine volcanic environments[6]. Spectrally coded MER Panoramic camera images show a common bluish tinge for the Home Plate clast and neighboring sediment layers, suggesting compositional similarity. Alternatively, the apparent similar mineralogy may be from surface alteration, while the interiors may be compositionally distinct; desert varnish analogs have been identified elsewhere on Mars[7]. Our preliminary assessment of the Home Plate clast, together with the proposed near-neutral pH alteration environments at the Comanche and related outcrops[8], provides tentative evidence for the existence of an ancient ice-covered lake within Gusev Crater, potentially reaching depths comparable to the ~100 m height of Columbia Hills. Greater depths are possible, given evidence for an eroded summit above the Tennessee Valley area[9]. Furthermore, these seemingly contradictory initial morphologic and geochemical results may be consistent with an environment where glaciolacustrine, volcaniclastic, and hydrothermal processes were active simultaneously. References [1] Grin, E. Icarus 130, 461-474 (1997) [2] Kargel, J. S. & Furfaro, R. A LPSC 43, 2629 (2012) [3] Howard, A. D. & Moore, J. M. Geophys. Res. Lett. 31, L01702 (2004) [4] Gregg, T. K. P. et al. Icarus 192, 348-360 (2007) [5] Lewis, K. W. et al. J. Geophys. Res. 113 E12S36 (2008) [6] Cousins, C. R. & Crawford, I. A. Astrobiology 11, 695-710 (2011) [7] Knoll, A. H. et al. J. Geophys. Res. 113, E06S16 (2008) [8] Ruff, S. W. LPSC 43, 2898 (2012) [9] Cole, S. B. et al. LPSC 43, 1134 (2012)
Debris-covered glaciers during the LGM and Lateglacial at the eastern margin of the Alps
NASA Astrophysics Data System (ADS)
Seidl, Sabrina; Reitner, Jürgen M.; Wagreich, Michael
2013-04-01
We present the reconstruction of paleo-glaciers in the easternmost part of the Alps (Schneeberg mountain) with the main focus on sedimentology, chronology and glacial dynamics. The area is dominantly made up of limestone bedrock and hence characterized by steep slopes and cirques. Two juvenile moraine-systems can be deciphered based on geological mapping. The major system is characterized by an up to 60 m high latero-frontal dump moraine with a prominent breach-lobe moraine in a lateral position. It is regarded to represent the Last Glacial Maximum (LGM; Würm Pleniglacial). The other system is much smaller and was formed most probably during the Würm Lateglacial. The angular to subangular shape of the clasts and the abundant boulders on top of the ridges indicate a high portion of passive (Boulton, 1978) i.e. supraglacial and englacial transport of debris before deposition.Thus the model of a debris-covered glacier is favored to explain both landforms and as well the corresponding sediment facies. For the pleniglacial moraine such an assumption is backed by a low accumulation/ablation area ratio (AAR) of around 1:1 based on the reconstruction of the equilibrium line altitude (ELA) using the maximum elevation of lateral moraines (MELM; Lichtenecker, 1938). Furthermore as there is no indication of a former glacier snout glacio-fluvial processes should have played a limited role in sediment transport into the forefield. Such setting pinpoints to very cold-arid conditions, which are as well found in paleo-climate reconstructions of the eastern foreland (Frenzel et al. 1992). Boulton, G.S., 1978: Boulder shapes and grain-size distribution of debris as indicators of transport paths through a glacier and till genesis.- Sedimentology, 25, 773-799. Lichtenecker, N.,1938. Die gegenwärtige und die eiszeitliche Schneegrenze in den Ostalpen. In: Verhandlungen der III. Internationalen Quartär - Konferenz, Vienna, 1936, 141-147. Frenzel, B., Pecsi, M. & Velichko, A. A., 1992. Atlas of Paleoclimate and Paleoenvironments of the Northern Hemisphere: Late Pleistocene - Holocene. Geogr. Res. Institute, G. Fischer Verlag, Budapest-Stuttgart.
Micro- and Nanostructures of SAFOD Core Samples - First Results
NASA Astrophysics Data System (ADS)
Janssen, C.; Wirth, R.; Rybacki, E.; Naumann, R.; Kemnitz, H.; Wenk, H.; Dresen, G. H.
2009-12-01
Microstructures and chemical composition of ultra-cataclastic rocks from the San Andreas Fault drill hole (SAFOD) were examined using TEM, SEM and XRD analyses. The ultra-cataclasites are mainly composed of quartz, clay minerals (illite/smectite, chlorite), feldspar (plagioclase) and calcite with grain sizes between 200 nm and 500 μm. In particular we found: (1) amorphous materials, identified by transmission electron microscopy. Chemical analyses suggest that all amorphous material was formed by comminution (crush-origin) of fragments rather than by melting (melt-origin) and that the observed amorphous phases may act as hydrodynamic lubricating layers that reduce friction in the San Andreas Fault. (2) Pressure solution seams and localized precipitation of hydrous mixed-layered clay minerals suggest intensive dissolution-precipitation processes. These may lead to a thin film covering slip surfaces. (3) Authigenic clay minerals forming a flocculated fabric. (4) The fine-grained (< 1μm) gouge matrix contains clasts (feldspar, quartz) and is frequently cut by fault-related veins. The veins are filled with calcite or quartz. Observed micorstructures in the fine-grained matrix suggest comminution and sliding of the nanoscale grains. Open pore spaces up to 2.25 μm3 have been formed during and after deformation within the gouge matrix. These were possibly filled with hydrothermal fluids at elevated pore fluid pressure preventing closure. (5) Detrital quartz and feldspar grains are partly dissolved and replaced by authigenic illite-smectite (I-S) mixed-layer clay minerals. TEM imaging of these grains reveal that initial alteration processes started within pores and small fissures of grains. The crystallographic-preferred orientation of illite and I/S grains is rather weak with a maximum m.r.d. (multiples of random orientation) of 2.3. (6) Some older fault-related vein-calcites show evidence for intense intracrystalline plasticity (deformation twins and dislocation creep). Dislocation densities in calcite grains indicate a local maximum stress of about 40 MPa. The younger fault-related vein-calcite generation with elongated to fibrous habit suggests slow opening by aseismic slip. These crystals are not fractured or twinned (or only less); indicating that healing processes (cementation) outlasted deformation.
Cataclastic flow kinematics inferred from magnetic fabrics at the Heart Mountain Detachment, Wyoming
NASA Astrophysics Data System (ADS)
Heij, G. W.; Ferre, E. C.; Friedman, S. A.
2013-12-01
The Heart Mountain Detachment (HMD) constitutes one of the largest known rock slides (3400 km2) on Earth. This detachment occurred along the stratigraphic boundary between the Big Horn Dolomite at the hanging-wall and the Snowy Range Formation at the footwall. The bedding plane contact between these two carbonate formations dipped >2 deg. at the time of slide. The slide resulted in the formation of an up to 3 m-thick carbonate ultracataclasite (CUC) at the base of the slide. The origin of the CUC and the nature of the triggering mechanism responsible for the initiation of the catastrophic movement have long been a subject of controversy. Absoroka volcanics could have provided the trigger for the catastrophic slide. Here we present a proof of concept study addressing the question of the consistent magnetic fabrics observed in the CUC as well as new observations indicating presence of volcanic solid material within the CUC. The magnetic susceptibility (Klf) ranges narrowly from 1062. [10]^(-6) to 1115 . [10]^(-6) [SI]. Thermomagnetic investigations revealed a Curie temperature of 525C which suggests that magnetite is most likely the dominant magnetic carrier mineral. Energy Dispersive Spectroscopy analyses confirm that this magnetite has a relatively low Ti content. The CUC magnetic hysteresis properties point to an average pseudo-single domain magnetic grain size or, alternatively, a mixture of single domain and multi-domain grains. The average degree of magnetic anisotropy (P' = 1.062) is relatively high and is consistent with a magnetostatic origin for the AMS. The shape parameter T is mostly oblate (average T=0.175). The anisotropy of magnetic susceptibility (AMS) directional data is surprisingly consistent within each specimen and between specimens collected within a few tens of meters of each other with an overall NNE-SSW. The consistency of this magnetic fabric suggests that cataclastic flow corresponded to a dominantly simple shear regime. Generally, cataclastic processes do not result in shape-preferred orientation (SPO) of clasts or matrix however; preliminary data indicates that the HMD ultracataclasite has a consistent magnetic fabric carried by magnetite. The acquisition of an AMS fabric carried by magnetite in the HMD carbonate ultracataclasite could result from one or more processes: (1) A synkinematic plastic deformation of magnetite where magnetite grains are active structural markers being deformed by progressive plastic shear, a process requiring either slow strain rates or high temperature during deformation; (2) A synkinematic rigid rotation of magnetite grains where magnetite grains are passive structural markers being rotated during shear; (3) A synkinematic transgranular cataclastic flow of magnetite grains where magnetite fractures across grains with the resultant magnetite clasts being passively rotated during shear (the resultant magnetite clasts retain the necessary proximity to one another to display distribution anisotropy); (4) A post-kinematic magnetite growth where magnetite precipitates along Riedel fractures. AMS coupled with SPO analysis effectively constrains which deformation mechanism(s) are responsible for the consistent magnetic fabric present in the ultracataclasite. Finally, the presence of magmatic olivine clasts in the CUC strongly support the volcanic blast hypothesis as a triggering mechanism.
NASA Astrophysics Data System (ADS)
Hawemann, Friedrich; Mancktelow, Neil; Wex, Sebastian; Camacho, Alfredo; Pennacchioni, Giorgio
2015-04-01
Current models and extrapolated laboratory data generally predict viscous flow in the lower continental crust and any localized brittle deformation at these depths has been proposed to reflect downward propagation of the frictional-viscous transition zone during short-term seismic events and related high strain rates. Better natural constraints on this proposed rheological behaviour can be obtained directly from currently exposed lower crust that has not been strongly overprinted during its exhumation. One of the largest and best preserved lower crustal sections is located in the Musgrave Ranges, Central Australia. The Petermann Orogeny (550 Ma) in this area is characterized by the development of localized shear zones on a wide range of scales, overprinting water-deficient granulites of Musgravian age (1.2 Ga) as well as younger granites and gabbros. Shearing is rarely localized on lithological inhomogeneities, but rather on precursor fractures and on commonly associated pseudotachylytes. The only exception is that older dolerite dykes are often exploited, possibly because they are planar layers of markedly smaller grain size. Sheared pseudotachylyte often appears caramel-coloured in the field and has a fine grained assemblage of Grt+Cpx+Fsp. Multiple generations of pseudotachylyte formed broadly coeval with shearing are indicated by clasts of sheared pseudotachylyte within pseudotachylyte veins that then themselves subsequently sheared. The ductile shear zones formed under sub-eclogitic conditions of ca. 650°C and 1.2 GPa, generally typical of the lower continental crust. However, the P-T conditions during pseudotachylyte formation cannot be readily determined using classical geothermobarometry, because of the fine grain sizes and possible disequilibrium. The software "Xmaptools" (by Pierre Lanari) allows the quantification of X-ray maps produced by EDS or WDS. It provides both very precise definition of local mineral compositions for exchange geothermobarometry on a statistical basis, and an estimate of the bulk pseudotachylyte composition for small areas, avoiding clasts and heterogeneous composition of the former melt. The combination with thermodynamic modelling using PerpleX is used to test the results from geothermobarometry. The estimated conditions are similar to the ductile shear zones and support evidence for synchronous action of brittle faulting and viscous shearing in the lower crust.
Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington
Glicken, Harry
1996-01-01
This report provides a detailed picture of the rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens volcano. It provides a characterization of the deposit, a reinterpretation of the details of the first minutes of the eruption of May 18, and insight into the transport mechanism of the mass movement. Details of the rockslide event, as revealed by eyewitness photographs, are correlated with features of the deposit. The photographs show three slide blocks in the rockslide movement. Slide block I was triggered by a magnitude 5.1 earthquake at 8:32 a.m. Pacific Daylight Time (P.D.T.). An exploding cryptodome burst through slide block II to produce the 'blast surge.' Slide block III consisted of many discrete failures that were carried out in continuing pyroclastic currents generated from the exploding cryptodome. The cryptodome continued to depressurize after slide block III, producing a blast deposit that rests on top of the debris-avalanche deposit. The hummocky 2.5 cubic kilometer debris-avalanche deposit consists of block facies (pieces of the pre-eruption Mount St. Helens transported relatively intact) and matrix facies (a mixture of rocks from the old mountain and cryptodome dacite). Block facies is divided into five lithologic units. Matrix facies was derived from the explosively generated current of slide block III as well as from disaggregation and mixing of debris-avalanche blocks. The mean density of the old cone was measured to be abut 20 percent greater than the mean density of the avalanche deposit. Density in the deposit does not decrease with distance which suggests that debris-avalanche blocks were dilated at the mountain, rather than during transport. Various grain-size parameters that show that clast size converges about a mean with distance suggest mixing during transport. The debris-avalanche flow can be considered a grain flow, where particles -- either debris-avalanche blocks or the clasts within the blocks -- collided and created dispersive stress normal to the movement of material. The dispersive stress preserved the dilation of the material and allowed it to flow.
The lasting effects of tank maneuvers on desert soils and intershrub flora
Prose, Douglas V.; Wilshire, Howard G.
2000-01-01
Mojave Desert soils and intershrub flora sustained lasting disturbances during military training maneuvers initiated by General George Patton, Jr. in the 1940s, and during Operation Desert Strike in 1964. At six sites, mean desert pavement clast size was significantly smaller by 15% to 50% in single tank tracks compared to undisturbed surfaces. The finer-grained tracks yielded significantly higher surface reflectance values at two of three sites. At one site, Patton era tank tracks cross centuries-old "intaglios" and there was no significant difference in clast size between the disturbances. Full recovery of pavement surfaces may require a change in climate since pavements formed in Pleistocene times under climatic conditions that no longer exist. Tank tracks of both ages exhibited significant levels of soil compaction, as indicated by penetrometer resistance values that were 51% to 120% greater than those in undisturbed soils to 0.3 m depth. Soil bulk density in tracks was 4% to 6% higher than in undisturbed soils. Soil compaction lowered infiltration rates in tank tracks by 24% to 55% in comparison to undisturbed soils. Compaction has prevented the intershrub flora from recovering in tank tracks. Annual and herbaceous perennial plant density was higher by 13% to 56% in tank tracks than in undisturbed soils, but compaction has restricted the growth of individual plants. This was reflected in plant cover values, which were 3% to 16% lower in tank tracks than in undisturbed soils. Soil compaction also altered the species composition. Species with long taproots, such as Chaenactis fremontii, were reduced in density and cover in tank tracks, whereas grass species with shallow, fibrous root systems had large density increases in tracks. Another important element of the intershrub flora, cryptobiotic crust, exhibited a low rate of recovery from the impact of tank travel at one site. The cover of the most well-developed component of the crusts, growing on delicate soil pedicels in undisturbed soils, was reduced by 50% in tank tracks because of destruction and compaction of the uppermost soil layers.
Metal-rich meteorites from the aubrite parent body
NASA Technical Reports Server (NTRS)
Casanova, I.; Mccoy, T. J.; Keil, K.
1993-01-01
Three metal-rich meteorites - Mt. Egerton, Horse Creek, and LEW 88055 - were studied and it is suggested that they formed in the aubrite parent body. LEW 85369 and 88631 may also have a common origin, but these rocks have not yet been studied in detail. This body was probably heated to about 1600 C by a very strong heat source. While molten, metal agglomerated into sizeable nodules which never segregated efficiently to form a core, but were trapped in the silicate mantle. Different clasts and lithologies in aubrites solidified and cooled under local equilibrium conditions of oxygen fugacity, and with different thermal histories. Impacts mixed clasts from throughout the parent body, creating the typical aubrite breccias.
NASA Technical Reports Server (NTRS)
Vetter, Scott K.; Shervais, John W.
1993-01-01
KREEP basalts are a major component of soils and regolith at the Apollo 15 site. Their origin is controversial: both endogenous (volcanic) and exogenous (impact melt) processes have been proposed, but it is now generally agreed that KREEP basalts are volcanic rocks derived from the nearby Apennine Bench formation. Because most pristine KREEP basalts are found only as small clasts in polymict lunar breccias, reliable chemical data are scarce. The primary aim of this study is to characterize the range in chemical composition of pristine KREEP basalt, and to use these data to decipher the petrogenesis of these unique volcanic rocks.
The ancient lunar crust, Apollo 17 region
NASA Technical Reports Server (NTRS)
James, O. B.
1992-01-01
The Apollo 17 highland collection is dominated by fragment-laden melt rocks, generally thought to represent impact melt from the Serenitatis basin-forming impact. Fortunately for our understanding of the lunar crust, the melt rocks contain unmelted clasts of preexisting rocks. Similar ancient rocks are also found in the regolith; most are probably clasts eroded out of melt rocks. The ancient rocks can be divided into groups by age, composition, and history. Oldest are plutonic igneous rocks, representing the magmatic components of the ancient crust. The younger are granulitic breccias, which are thoroughly recrystallized rocks of diverse parentages. The youngest are KREEPy basalts and felsites, products of relatively evolved magmas. Some characteristics of each group are given.
Coesite in suevites from the Chesapeake Bay impact structure
Jackson, John C.; Horton, J. Wright; Chou, I-Ming; Belkin, Harvey E.
2016-01-01
The occurrence of coesite in suevites from the Chesapeake Bay impact structure is confirmed within a variety of textural domains in situ by Raman spectroscopy for the first time and in mechanically separated grains by X-ray diffraction. Microtextures of coesite identified in situ investigated under transmitted light and by scanning electron microscope reveal coesite as micrometer-sized grains (1–3 μm) within amorphous silica of impact-melt clasts and as submicrometer-sized grains and polycrystalline aggregates within shocked quartz grains. Coesite-bearing quartz grains are present both idiomorphically with original grain margins intact and as highly strained grains that underwent shock-produced plastic deformation. Coesite commonly occurs in plastically deformed quartz grains within domains that appear brown (toasted) in transmitted light and rarely within quartz of spheroidal texture. The coesite likely developed by a mechanism of solid-state transformation from precursor quartz. Raman spectroscopy also showed a series of unidentified peaks associated with shocked quartz grains that likely represent unidentified silica phases, possibly including a moganite-like phase that has not previously been associated with coesite.
NASA Astrophysics Data System (ADS)
Ford, Murray R.
2014-06-01
Passive integrated transponder (PIT) tags are a radio-frequency identification device widely used as a machine-readable identification tool in fisheries research. PIT tags have also been employed, to a lesser extent, to track the movement of gravel-sized clasts within fluvial and coastal systems. In this study, PIT tags were inserted into detrital coral fragments and used to establish source-sink transport pathways on a fringing reef on Majuro Atoll in the Marshall Islands. Results suggest the transport of gravel-sized material on the inter-tidal reef flat is exclusively across-reef towards the lagoon. Considerable variation in the distance travelled by fragments was observed. Fragments were largely intact and visually recognisable after almost 5 months on the reef flat. However, the branches of some recovered fragments had broken off and corallite abrasion was observed in recovered fragments. This study indicates that PIT tags are an inexpensive and powerful new addition to the suite of sediment transport and taphonomic tools for researchers working within coral reef systems.
Bedload component of glacially discharged sediment: Insights from the Matanuska Glacier, Alaska
Pearce, J.T.; Pazzaglia, F.J.; Evenson, E.B.; Lawson, D.E.; Alley, R.B.; Germanoski, D.; Denner, J.D.
2003-01-01
The flux of glacially derived bedload and the proportions of the suspended and bedload components carried by proglacial streams are highly debated. Published data indicate a large range-from 75%-in the bedload percentage of the total load. Two "vents," where supercooled subglacial meltwater and sediment are discharged, were sampled over the course of an entire melt season in order to quantify the flux of glacially delivered bedload at the Matanuska Glacier, Alaska. The bedload component contributed by these vents, for the one melt season monitored, is negligible. Furthermore, the bedload fluxes appear to be strongly supply limited, as shown by the poorly correlated discharge, bedload-flux magnitude, and grain-size caliber. Thus, in this case, any attempt to employ a predictive quantitative expression for coarse-sediment production based on discharge alone would be inaccurate. A nonglaciated basin proximal to the Matanuska Glacier terminus yielded higher bedload sediment fluxes and larger clast sizes than delivered by the two monitored vents. Such nonglaciated basins should not be overlooked as potentially major sources of coarse bedload that is reworked and incorporated into valley outwash.
NASA Astrophysics Data System (ADS)
Zapata Henao, S.; Cardona, A.; Montes, C.; Valencia, V.; Vervoort, J. D.; Reiners, P. W.
2012-12-01
Middle to upper Eocene fluvial strata in the island of Bonaire contains detrital components that were tracked to the basement massifs of the Guajira Peninsula in northern Colombia. These detrital components confirm previous hypothesis that the Guajira-Bonaire pair constitute a tectonic piercing point along the southern Caribbean plate margin that was right-laterally displaced approximately 300 km after middle Eocene times. Other possible sources, the nearby Curacao and the far away Santa Marta massif, did not pass statistical similarity and overlap tests. U-Pb LA-ICP-MS from the metamorphic boulders of the Soebi Blanco Formation in Bonaire yield Grenvillian ages (1084 Ma, 1130 Ma and 1184 Ma), while the detrital zircons recovered from the sandy matrix of the conglomerates contains populations with peaks of 1000 Ma - 1200 Ma, 750 Ma - 950 Ma, and 200 Ma - 300 Ma. Overlap and Similarity tests run between these populations and published data from Guajira yield values of 0.750 and 0.680, which are significantly higher than the same comparison against the Santa Marta Massif (0.637 and 0.522), and the Curacao island (0.629 and 0.467). Thermochronological results from the metamorphic clasts yield Paleocene-middle Eocene ages (65 - 50 Ma) that confirm not only a regional-scale cooling event in this time period, but also help constrain the maximum depositional age (50 Ma) of the poorly dated Soebi Blanco Formation. Figure 6. U-Pb results from analyzed samples and other Caribbean provinces. (A), Detrital zircons from Soebi Blanco conglomerate matrix; (B), Zircon ages from metamorphic clasts (C), detrital zircons from late Cretaceous Etpana Formation in Guajira Peninsula (Weber et al., 2010); (D), detrital zircons from late Cretaceous Santa Marta San Lorenzo schists (Cardona et al., 2010a); (E), detrital zircons from late Cretaceous Knip Group (Wrigth and Wyld, 2010); (F), overlap and similarity values.
NASA Astrophysics Data System (ADS)
Tatu, M.
2009-04-01
Important segment of the Carpathian chain, the East Carpathians consists of several tectonic units build up during the Mesozoic and Cenozoic closure of the Tethyan Ocean. These tectonic units are composed by crystalline basements and sedimentary covers, or only by sedimentary piles and they represent a result of two compressional phases of Alpine orogenesis: one during Late Cretaceous that was responsible for thrusting of Central East Carpathian Nappes and Outher Dacian Nappes, and a second phase during Early and Middle Miocene interval that involved the Moldavian Nappes as the external nappes (Sandulescu, 1988). The Moldavian Nappes consist of cover nappes tectonically detached from the basement upon which it was deposited. From inside towards outside several units occur: Convolute Flysch Nappe, Macla Nappe, Audia Nappe, Tarcau Nappe, Marginal Folds Nappe and Subcarpathian Nappe (Sãndulescu et al., 1981). If the internal units (up to Audia Nappe) are represented by the Cretaceous sediment piles, in the external units, especially in the Tarcau Nappe and also in the Marginal Folds Nappe the lithology is dominated by the Paleogene deposits, especially by the Oligocene formations. The most particular for these units are the presence of heterogeneous composition induced by the wildflysch type sedimentation. Previous researchers have considered the piles of the both units as flyschoid deposits, and for a minor central part (Slon Facies) they accepted a wildflysch scenario. Based on our field studies between Prahova valley (Romania) and Tisa upper stream basin (Ukraine), the different sedimentary strata (the Oligocene Tarcau, Fusaru, Kliwa sandstones, dysodilic and menilitic rocks, polymictic conglomerates, marls and argillaceous deposits together with Upper Cretaceous polymictic conglomerates and green-reddish argillaceous deposits) are tectonically mixed during the late-Oligocene - Middle Miocene events. The mechanism of sedimentary mélange is supposed to be related to submarine landslide initiated by huge earthquake activity. In this way the velocity of landslide sedimentation was high and as result the spatial distribution of different rock types is inhomogeneous. On the other hand, high velocity of syn-sedimentary deformation generates synchronous shear zones. The stress field in this environment is influenced by the lithological amalgamation and local discontinuities. After sedimentary deposition and syn - deformation processes in all the area, suborizontal shear zones (SSZ) are formed along the borders of sandstone olistoliths embedded in fine-grained sand-argillaceous sediments; they are related to the Miocene tectogenesis. Taking into account that are not lithological differences in the Tarcau and the Marginal Folds units, the contact between them as all major SSZ represent the intra-formational thrusts (Sandulescu, 1984). An important characteristic of the Moldavian Nappes is the presence of the exotic rocks as clasts in conglomerates that are very different in nature (igneous, metamorphic and sedimentary), volume and size and generally green in colour. Many authors who studied this lithological aspect have suggested that a Cumanian ridge was their source. The ridge was active since Upper Creataceous till Miocene widespread from Central Dobrogea to Poland and mainly composed by "dobrogean green schist" rocks. This ridge was placed between Audia and Macla sedimentation areas, or between Audia and Tarcau sedimentation areas. According to our studies, the green clasts from various conglomerates with igneous (intrusive and extrusive aspects), metamorphic (medium to low grade) and sedimentary nature present a variable participation. The green clasts are apparently similar with the central dobrogean green schist rocks and are less than 10% in participation in all Moldavian units. For this reason we suggest that the Central Dobrogean domain wasn't the source area for the discussed clasts. After Oszczypko (2006), in the Polish Carpathians, between the Magura and Silesian basins during the Upper Cretaceous - Miocene interval the Silesian Ridge was active. Probably, the same structure was active from Polish Carpathians to the south-western end of Romanian East Carpathians also responsible for the presence of the exotic pebbles from external units of East Carpathians. Isotopic ages of exotic clasts from Polish Carpathian Flysch display the values characteristics for the late Neoproterozoic-Cambrian and the late Carboniferous - Permian intervals (Poprawa et al., 2004) which may suggests that the active ridge was a part of the Tornquist - Teisseyre Zone exhumation. Refernces Oszczypko N. 2006. Geol. Quart., 50 (1): 169-194. Poprawa P., Malata T., Pécskay Z., Bana? M., Skulich J., Paszkowski M., Kusiak M. 2004. Min. Soc. Pol. - Spec. Papers, 24: 329-332. Sandulescu M. 1984. Ed. Tehnica, Bucuresti, 336 Sandulescu, M. 1988. AAPG Memoir, vol. 45, pp. 17- 25.
Geochemistry and petrology of basaltic rocks from the Marshall Islands
Davis, Alice S.; Schwab, William C.; Haggerty, Janet A.
1986-01-01
A variety of volcanic rock was recovered from the flanks of seamounts, guyots, atolls, and islands in the Ratak chain of the Marshall Islands on the U.S. Geological Survey cruise L9-84-CP. The main objective of this cruise was to study the distribution and composition of ferromanganese oxide crusts. Preliminary results of managanese crust composition are reported by Schwab et al. (1985) and detailed studies are in preparation (Schwab et al., 1986). A total of seven seafloor edifices were studied using 12 khz, 3.5 khz and air gun seismic reflection, chain dredge and box corer. Bathymetry and ship track lines are presented by Schwab and Bailey (1985). Of the seven edifices surveyed two support atolls (Majuro and Taongi) and one is a tiny island (Jemo). Dredge locations and water depths are given in Table 1 and dredge locations are shown in Figure 1. Due to equipment failures depths of dredge hauls were limited to shallow depth for all except the first two sites occupied. Recovery consisted mostly of young, poorly-consolidated limestone of fore-reef slope deposit and minor volcanogenic breccia and loose talus. The breccia and pieces of talus are thickly encrusted with ferromanganese oxide, whereas the young limestone is only coated by a thin layer. Four of the seven sites surveyed yielded volcanic rock. The volcanic rock, volumetrically a minor part of each dredge haul, consists mostly of lapilli and cobble-size clasts in a calcareous matrix or as loose talus. Most clasts show evidence of reworking, being sub- to well rounded, sometimes with a thin ferromanganese crust of their own. This paper reports preliminary findings on the petrology and geochemistry of volcanic rock recovered.
Aspects of the history of 66095 based on trace elements in clasts and whole rock
NASA Technical Reports Server (NTRS)
Jovanovic, S.; Reed, G. W., Jr.
1982-01-01
Halogens, P, U and Na are reported in anorthositic and basaltic clasts and matrix from rusty rock 66095. Large fractions of Cl and Br associated with the separated phases from 66095 are soluble in H2O. Up to two orders of magnitude variation in concentrations of these elements in the breccia components and varying H2O-soluble Cl/Br ratios indicate different sources of volatiles. An approximately constant ratio of the H2O- to 0.1 M HNO3-soluble Br in the various components suggests no appreciable alteration in the original distributions of this element in the breccia forming processes. Up to 50% or more of the phosphorus and of the non-H2O-soluble Cl was dissolved from most of the breccia components by 0.1 M HNO3. Clast and matrix residues from the leaching steps contain, in most cases, the Cl/P2O5 ratio found in 66095 whole rock and in a number of other Apollo 16 samples. Evidence that phosphates are the major P-phases in the breccia is based on the 0.1 M acid solubility of Cl and P in the matrix sample and on elemental concentrations which are consistent with those of KREEP.
Two-polarity magnetization in the Manson impact breccia
NASA Technical Reports Server (NTRS)
Steiner, M. B.; Shoemaker, E. M.
1993-01-01
A preliminary paleomagnetic study of the impact breccia matrix and clasts has produced surprising results--nearly antipodal normal and reversed polarity magnetic vectors are observed in different portions of the core. Near-antipodal magnetizations within a segment of matrix and within individual samples rule out core inversion as the explanation of the dual polarity. In both the dense and the sandy matrix breccias, the magnetizations of clasts and matrix within the same core segment are identical; this negative 'conglomerate test' indicates that magnetization originated after impact. Paleomagnetic study of the Manson Impact Structure is an attempt to refine the Ar-40/Ar-39 age (65.7 +/- 1 m.y.) that suggests Manson to be a Cretaceous-Tertiary boundary impact. Refinement is possible because the boundary occurs within a reversed polarity interval (29R) of only 0.5 m.y. duration. The two breccia types in the Manson structure were both examined: one of a very dense matrix and apparently partially melted, and the breccia stratigraphically below it of granular or 'sandy' chloritic matrix. Samples were taken from the matrixes and a wide variety of clast compositions, including granite, diabase, gneiss, amphibolite, and melted granite. Currently, measurements have been made on 22 samples, using 30-35 steps of either alternating field (AF) or thermal demagnetization.
39 CFR 3010.28 - Maximum size of unused rate adjustment authority rate adjustments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 39 Postal Service 1 2010-07-01 2010-07-01 false Maximum size of unused rate adjustment authority rate adjustments. 3010.28 Section 3010.28 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL REGULATION OF RATES FOR MARKET DOMINANT PRODUCTS Rules for Applying the Price Cap § 3010.28 Maximum size of...
Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong
2016-01-01
Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set-proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters.
Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong
2016-01-01
Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set–proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters. PMID:26820646
Accretion and exhumation at a Variscan active margin, recorded in the Saxothuringian flysch
NASA Astrophysics Data System (ADS)
Schäfer, J.; Neuroth, H.; Ahrendt, H.; Dörr, W.; Franke, W.
The Saxothuringian flysch basin, on the north flank of the Central European Variscides, was fed and eventually overthrust by the northwestern, active margin of the Tepla-Barrandian terrane. Clast spectra, mineral composition and isotopic ages of detrital mica and zircon have been analyzed in order to constrain accretion and exhumation of rocks in the orogenic wedge. The earliest clastic sediments preserved are of early Famennian age (ca. 370Ma). They are exposed immediately to the NW of the suture, and belong to the par-autochthon of the foreland. Besides ultramafic (?ophiolite) material, these rocks contain clasts derived from Early Paleozoic continental slope sediments, originally deposited at the NW margin of the Saxothuringian basin. These findings, together with the paleogeographic position of the Famennian clastics debris on the northwestern passive margin, indicate that the Saxothuringian narrow ocean had been closed by that time. Microprobe analyses of detrital hornblendes suggest derivation from the ``Randamphibolit'' unit, now present in the middle part of the Saxothuringian allochthon (Münchberg nappes). Detrital zircons of metamorphic rocks formed a little earlier (ca. 380Ma) indicate rapid recycling at the tectonic front. The middle part of the flysch sequence (ca. early to middle Viséan), both in the par-autochthon and in the allochthon, contains abundant clasts of Paleozoic rocks derived from the northwestern slope and rise, together with debris of Cadomian basement, 500-Ma granitoids and 380Ma (early Variscan) crystalline rocks. All of these source rocks were still available in the youngest part of the flysch (c. middle to late Viséan), but some clasts record, in addition, accretion of the northwestern shelf. Our findings permit deduction of minimum rates of tectonic shortening well in excess of 10-30mm per year, and rates of exhumation of ca. 3mm/a, and possibly more.
NASA Astrophysics Data System (ADS)
Vera-Sanchez, P.; Rebolledo-Vieyra, M.; Perez-Cruz, L.; Urrutia-Fucugauchi, J.
2008-05-01
The tectonic and petrologic nature of the basement of the Yucatan Block is studied from analyses of basement clasts present in the impact suevitic breccias of Chicxulub crater. The impact breccias have been sampled as part of the drilling projects conducted in the Yucatan peninsula by Petroleos Mexicanos, the National University of Mexico and the Chicxulub Scientific Drilling Project. Samples analyzed come mainly from the Yaxcopoil-1, Tekax, and Santa Elena boreholes, and partly from Pemex boreholes. In this study we concentrate on clasts of the granites, granodiorites and quartzmonzonites in the impact breccias. We report major and trace element geochemical and petrological data, which are compared with data from the granitic and volcanic rocks from the Maya Mountains in Belize and from the Swannee terrane in Florida. Basement granitic clasts analyzed present intermediate to acidic sub-alkaline compositions. Plots of major oxides (e.g., Al2O3, Fe2O3, TiO2 and CaO) and trace elements (e.g., Th, Y, Hf, Nb and Zr) versus silica allow separation of samples into two major groups, which can be compared to units in the Maya Mountains and in Florida basement. The impact suevitic breccia samples have been affected by alteration likely related to the hydrothermal processes associated with the crater melt sheet. Cloritization, seritization and fenitization alterations are recognized, due to the long term hydrothermalism. Krogh et al. (1993) reported U-Pb dates on zircons from the suevitic breccias, which gave dates of 545 +/- 5 Ma and 418 +/- 6 Ma, which were interpreted in terms of the deep granitic metamorphic Yucatan basement. The younger date correlates with the age for the Osceola Granite and the St. Lucie metamorphic complex of the Swannee terrane in the Florida peninsula. The intrusive rocks in the Yucatan basement may be related to approx. 418 Ma ago collisional event in the Late Silurian.
NASA Technical Reports Server (NTRS)
Zeigler, R. A.
2015-01-01
From 1969-1972 the Apollo missions collected 382 kg of lunar samples from six distinct locations on the Moon. Studies of the Apollo sample suite have shaped our understanding of the formation and early evolution of the Earth-Moon system, and have had important implications for studies of the other terrestrial planets (e.g., through the calibration of the crater counting record) and even the outer planets (e.g., the Nice model of the dynamical evolution of the Solar System). Despite nearly 50 years of detailed research on Apollo samples, scientists are still developing new theories about the origin and evolution of the Moon. Three areas of active research are: (1) the abundance of water (and other volatiles) in the lunar mantle, (2) the timing of the formation of the Moon and the duration of lunar magma ocean crystallization, (3) the formation of evolved lunar lithologies (e.g., granites) and implications for tertiary crustal processes on the Moon. In order to fully understand these (and many other) theories about the Moon, scientists need access to "new" lunar samples, particularly new plutonic samples. Over 100 lunar meteorites have been identified over the past 30 years, and the study of these samples has greatly aided in our understanding of the Moon. However, terrestrial alteration and the lack of geologic context limit what can be learned from the lunar meteorites. Although no "new" large plutonic samples (i.e., hand-samples) remain to be discovered in the Apollo sample collection, there are many large polymict breccias in the Apollo collection containing relatively large (approximately 1 cm or larger) previously identified plutonic clasts, as well as a large number of unclassified lithic clasts. In addition, new, previously unidentified plutonic clasts are potentially discoverable within these breccias. The question becomes how to non-destructively locate and identify new lithic clasts of interest while minimizing the contamination and physical degradation of the samples.
NASA Astrophysics Data System (ADS)
Allen, W. K.; Dunn, C. A.; Enkelmann, E.; Ridgway, K.; Colliver, L.
2015-12-01
Provenance analysis of Neogene sand and diamict beds from marine boreholes drilled by the IODP Expedition 341 provides a marine sedimentary record of the interactions between tectonics, climate and sediment deposition along a glaciated convergent margin. The 341 boreholes represent a cross-margin transect that sampled the continental shelf, slope, and deep sea Surveyor Fan of the Gulf of Alaska. Our dataset currently consists of ~ 650 detrital zircons selected for double dating method utilizing both detrital zircon fission track (FT) and U-Pb analysis from sand and diamict beds, as well as zircon U-Pb geochronology and apatite FT from igneous and gneissic clasts. Detrital zircon U-Pb geochronology of sand records dominant peak ages of 53, 62, 70, and 98 Ma with minor populations of 117, 154, and 170 Ma. Most of these ages can be correlated to primary igneous sources in the Coast Plutonic Complex, the Chugach Metamorphic Complex, the plutonic rocks of Wrangellia, and the Sanak-Baranoff plutonic belt. All samples analyzed to date, covering a 10 Myr range, share nearly identical detrital zircon populations suggesting similar primary sediment sources and reworking of sediment in thrust belts and accretionary prisms along this convergent margin. Plutonic and gneissic clasts collected from the boreholes on the shelf have already been double dated. These clasts have general U-Pb zircon crystallization ages of 52-54 Ma and apatite fission track cooling ages of 10-12 Ma. These results, along with previous published studies, indicate that these clasts were derived from the Chugach Metamorphic Complex and were eroded and transported by the Bagley Ice Field and Bering Glacier. Future results using this approach should allow us to pinpoint which parts of the exhumed onshore ranges and which glacial systems provided sediment to marine environments in the Gulf of Alaska.
Are the Clast Lithologies Contained in Lunar Breccia 64435 Mixtures of Anorthositic Magmas
NASA Technical Reports Server (NTRS)
Simon, J. I.; Mittlefehldt, D. W.; Peng, Z. X.; Nyquist, L. E.; Shih, C.-Y.; Yamaguchi, A.
2015-01-01
The anorthositic crust of the Moon is often used as the archtypical example of a primary planetary crust. The abundance and purity of anorthosite in the Apollo sample collection and remote sensing data are generally attributed to an early global magma ocean which produced widespread floating plagioclase cumulates (the ferroan anorthosites; FANs. Recent geochronology studies report evidence of young (less than 4.4 Ga) FAN ages, which suggest that either some may not be directly produced from the magma ocean or that the final solidification age of the magma ocean was younger than previous estimates. A greater diversity of anorthositic rocks have been identified among lunar meteorites as compared to returned lunar samples. Granted that these lithologies are often based on small clasts in lunar breccias and therefore may not represent their actual whole rock composition. Nevertheless, as suggested by the abundance of anorthositic clasts with Mg# [Mg/(Mg+Fe)] less than 0.80 and the difficulty of producing the extremely high plagioclase contents observed in Apollo samples and the remote sensing data, modification of the standard Lunar Magma Ocean (LMO) model may be in order. To ground truth mission science and to further test the LMO and other hypotheses for the formation of the lunar crust, additional coordinated petrology and geochronology studies of lunar anorthosites would be informative. Here we report new mineral chemistry and trace element geochemistry studies of thick sections of a composite of FAN-suite igneous clasts contained in the lunar breccia 64435 in order to assess the significance of this type of sample for petrogenetic studies of the Moon. This work follows recent isotopic studies of the lithologies in 64435 focusing on the same sample materials and expands on previous petrology studies who identified three lithologies in this sample and worked on thin sections.
NASA Astrophysics Data System (ADS)
Stünitz, Holger; Keulen, Nynke; Hirose, Takehiro; Heilbronner, Renée
2010-01-01
Microstructures and grain size distribution from high velocity friction experiments are compared with those of slow deformation experiments of Keulen et al. (2007, 2008) for the same material (Verzasca granitoid). The mechanical behavior of granitoid gouge in fast velocity friction experiments at slip rates of 0.65 and 1.28 m/s and normal stresses of 0.4-0.9 MPa is characterized by slip weakening in a typical exponential friction coefficient vs displacement relationship. The grain size distributions yield similar D-values (slope of frequency versus grain size curve = 2.2-2.3) as those of slow deformation experiments (D = 2.0-2.3) for grain sizes larger than 1 μm. These values are independent of the total displacement above a shear strain of about γ = 20. The D-values are also independent of the displacement rates in the range of ˜1 μm/s to ˜1.3 m/s and do not vary in the normal stress range between 0.5 MPa and 500 MPa. With increasing displacement, grain shapes evolve towards more rounded and less serrated grains. While the grain size distribution remains constant, the progressive grain shape evolution suggests that grain comminution takes place by attrition at clast boundaries. Attrition produces a range of very small grain sizes by crushing with a D <-value = 1. The results of the study demonstrate that most cataclastic and gouge fault zones may have resulted from seismic deformation but the distinction of seismic and aseismic deformation cannot be made on the basis of grain size distribution.
NASA Astrophysics Data System (ADS)
Scarsi, Marco; Crispini, Laura; Garofalo, Paolo; Capponi, Giovanni
2016-04-01
Shallow crustal processes occurring during seismic slips and generating fracture networks are of great interest due to their complex interplay with a spectrum of other geological processes . Our study focuses on faults with peculiar core textures, similar to those of "cockade breccia" (Genna et al., 1996) and "clast cortex grains" (Rempe et al., 2014), and on their relation with syntectonic hydrothermal alteration linked with Au bearing-quartz and chalcedony veins. Our work aims to study the enviromental conditions for the formation of such peculiar texture, their relation with the hydrothermal vein system and their potential as shallow seismic indicators. We present field, microstructural and petrochemical data of a peculiar damage zone of fault rocks located in carbonated peridotites and serpentinites of the Ligurian Alps (Voltri Massif, Italy). These are mainly reverse faults, which are coeval with syntectonic Au-bearing quartz veins and chalcedony veins (Giorza et al., 2010), in which lherzolites occupy the hangingwall of the faults and serpentinites the footwall. The fault rocks show evidence for carbonation, as olivine and serpentine are clearly transformed into an assemblage made of magnesite, dolomite and minor ankerite. The damage zones of the faults are serpentinite-rich and about 10 m in thickness, while the cataclasite cores are carbonate-rich and ca. 1 m thick. The top of the fault core shows the occurrence of a chalcedony shear veins with chatter marks and slikenlines on the surface. The "cockade breccia" is made of spherical aggregates of Fe-Mg carbonates and are 1 mm to 3 cm in size. These aggregates show cores of microcrystalline Fe-Mg carbonates, and concentric outer layers of relatively coarser Fe-Mg carbonates with radial or laminated texture. In some cases, these aggregates show evidence for rotation along secondary slip zones. We interpret all these features as the products of chemical interaction between the olivine and serpentine initially present within the fault rocks and the hydrothermal fluid that flowed within these faults. These interactions were probably similar to those occurring within the coeval Au- and chalcedony veins. Field evidence and theoretical considerations indicate that the reverse faults could have experienced stages of fault-valve behaviour (Sibson et al., 1998), which consisted in cycles of fluid pressure build-ups, fault opening, fluid flushing, and mineral precipitation during the seismic failure of the faults. These cycles varied transiently fault permeabilities. During the fluid pressure build up stage the radial coarse grains developed, while during the fluid flushing stage the clast cortex grains developed their laminated texture. The Au-quartz and chalcedony veins could have formed during the stages of fluid pressure drops following fault slip (Sibson et al., 1998, 2004). References Capponi G. & Crispini L., 1997, Progressive shear deformation in the metasediments of the Voltri Group (Ligurian Alps, Italy): occurence of structure recording extension parallel to the regional foliation, Boll. Soc. Geol. It., 116, 267-277. Genna A., Jébrack M., Marcoux E., Milési J.P., 1996, Genesis of cockade breccias in the tectonic evolution of the Cirotan epithermal gold system, West Java, Can. Journ. of Earth Sci., 33, 93-102. Giorza A., 2010, Late to post-metamorphic hydrotermalism in the Voltri Unit (Lavagnina Lakes Area, NW Alps). Structural-Petrological-Geochemical approach, PhD Thesis, University of Turin. Rempe M., Smith S. A. F., Ferri F., Mitchell T. M., 2014, Clast-cortex aggregates in experimental and natural calcite-bearing fault zones, Journ. Of Struct. Geol., 68, 142-157. Sibson R. H., 2004, Controls of maximum fluid overpressure defining conditions for mesozonal mineralization, Journ. of Struct. Geol., 26, 6-7, 1127-1136. Sibson R. H., Robert F., Poulsen H., 1998, High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits, Geology, 16, 551-555. Spagnolo C., 2006, Late orogenic tectonics in the eastern sector of the Ligurian Alps, PhD Thesis, Univesity of Genoa.
NASA Astrophysics Data System (ADS)
Matti, J. C.; Morton, D. M.; Cox, B. F.; Landis, G. P.; Langenheim, V. E.; Premo, W. R.; Kistler, R.; Budahn, J. R.
2006-12-01
In the Santa Rosa Mountains (SRM) on the W side of the Salton Trough, a late Neogene sedimentary sequence (Zosel sequence, ZS) in the hanging wall of the E-dipping Zosel normal fault (ZFHW) has implications for the geologic history of the southern San Andreas Fault (SAF) system. The upper conglomeratic part of the ZS records the culmination of slip on the ZF, which preceded strike-slip faulting on the right-lateral San Jacinto Fault (SJF) a few km to the W. The conglomerate is an alluvial-fan complex of fluvial, debris-flow, and rock-avalanche deposits that prograded NE over underlying paralic and marine deposits. Clasts are ?10m, and fluvial imbrications indicate mean streamflow trending ~N30E; paleocurrent indicators and clast compositions suggest sediment was derived mainly from granitoid terrains SW of the SRM. Deposition appears to have ceased by early Quaternary time: cosmogenic analysis of boulders from the eroded upper surface of the ZS indicates min and max exposure ages of 500Ka and 1.3Ma (Ne in qtz), 514Ka to 1.17Ma (Ne in hbl), and 647Ka to 1.158Ma (He). Granitoid clasts include distinctive texturally massive hbl- bio tonalite unlike any basement rock exposed in the SRM or in other footwall crystalline terranes directly to the W. The tonalite clasts are similar to bedrock in the White Wash (WW) area 24 km to the NW on the W side of the Clark strand of the SJF (SJFC). Initial Sr ratios for WW samples range from 0.70622 to 0.70631; ZS clasts range from 0.70615 to 0.70638. One sample from ZS and WW have identical light REE patterns that appear to be unique in the Peninsular Ranges batholith. U/Pb zircon ages for WW samples range from 96.6 to 98.2Ma while ZS clasts range from 95.8 to 98.7Ma. Based on these data, tonalite clasts in the ZS match tonalite now exposed in the WW area. We propose the following reconstruction: (1) From 6Ma to 1.2Ma, Zosel sediment is deposited near sea level as an alluvial-fan and fan-delta complex interfingering NE-ward with paralic and marine sediment. Deposition occurs on the ZFHW as it drops relative to footwall rocks, including the WW tonalite terrane. (2) ZS deposition ceases by1.2Ma, as right slip on SJFC succeeds detachment-style normal slip on the ZF. (3) Subsequently, complex en-echelon fault relations within the evolving SJF zone produce large vertical and horizontal displacements in the SRM region. Extensional collapse of the WW terrane and neighboring areas occurs between the right-stepping Coyote Creek strand and SJFC, while contraction across a regional left step between the San Andreas and San Jacinto faults simultaneously uplifts the main body of the SRM, including marine ZS now situated 600m above sea level. This implies that the ZF hanging wall rose more than 600m relative to sea level, apparently buoyed up together with underlying footwall crystalline rocks. (4) Relative vertical displacement between the SRM core and its downdropped W flanks was accommodated by down-to-the-SW slip on the Santa Rosa Fault and associated listric mega-landslide blocks N and NW of Clark Lake Valley (CLV). These events downdropped CLV and produced the high-relief W face of the SRM. (5) The unique WW tonalite terrane is displaced dextrally ~24km, leaving behind a cross-fault counterpart presumably concealed deep beneath NW CLV. This apparently represents total displacement on all strands of the SJF zone since ~1.2Ma, implying a minimum slip rate of about 20mm/yr.
Code of Federal Regulations, 2012 CFR
2012-10-01
... vent, maximum trap size, and ghost panel requirements. 697.21 Section 697.21 Wildlife and Fisheries... identification and marking, escape vent, maximum trap size, and ghost panel requirements. (a) Gear identification... Administrator finds to be consistent with paragraph (c) of this section. (d) Ghost panel. (1) Lobster traps not...
Code of Federal Regulations, 2013 CFR
2013-10-01
... vent, maximum trap size, and ghost panel requirements. 697.21 Section 697.21 Wildlife and Fisheries... identification and marking, escape vent, maximum trap size, and ghost panel requirements. (a) Gear identification... Administrator finds to be consistent with paragraph (c) of this section. (d) Ghost panel. (1) Lobster traps not...
Code of Federal Regulations, 2014 CFR
2014-10-01
... vent, maximum trap size, and ghost panel requirements. 697.21 Section 697.21 Wildlife and Fisheries... identification and marking, escape vent, maximum trap size, and ghost panel requirements. (a) Gear identification... Administrator finds to be consistent with paragraph (c) of this section. (d) Ghost panel. (1) Lobster traps not...
Caldera formation at Volcán Colima, Mexico, by a large large holocene volcanic debris avalanche
NASA Astrophysics Data System (ADS)
Luhr, James F.; Prestegaard, Karen L.
1988-12-01
About 4,300 years ago, 10 km 3 of the upper cone of ancestral Volcán Colima collapsed to the southwest leaving a horseshoe-shaped caldera 4 km in diameter. The collapse produced a massive volcanic debris avalanche deposit covering over 1550 km 2 on the southern flanks of the volcano and extending at least 70 km from the former summit. The avalanche followed a steep topographic gradient unobstructed by barriers, resulting in an unusually high area/volume ratio for the Colima deposit. The apparent coefficient of friction (fall height/distance traveled) for the Colima avalanche is 0.06, a low value similar to those of other large-volume deposits. The debris avalanche deposit contains 40-75% angular volcanic clasts from the ancestral cone, a small proportion of vesicular blocks that may be juvenile, and in distal exposures, rare carbonate clasts plucked from the underlying surface by the moving avalanche. Clasts range in size to over 20 m in diameter and are brecciated to different degrees, pulverized, and surrounded by a rock-flour matrix. The upper surface of the deposit shows prominent hummocky topography with closed depressions and surface boulders. A thick, coarse-grained, compositionally zoned scoria-fall layer on the upper northeastern slope of the volcano may have erupted at the time of collapse. A fine-grained surge layer is present beneath the avalanche deposit at one locality, apparently representing an initial blast event. Most of the missing volume of the ancestral volcano has since been restored at an average rate of 0.002 km 3/yr through repeated eruptions from the post-caldera cone. As a result, the southern slope of Volcán Colima may again be susceptible to collapse. Over 200,000 people are now living on primary or secondary deposits of the debris avalanche, and a repetition of this event would constitute a volcanic disaster of great magnitude. Ancestral Volcán Colima grew on the southern, trenchward flank of the earlier and larger volcano Nevado de Colima. Trenchward collapse was favored by the buttressing effect of Nevado, the rapid elevation drop to the south, and the intrusion of magma into the southern flank of the ancestral volcano. Other such trenchward-younging, paired volcanoes are known from Mexico, Guatemala, El Salvador, Chile, and Japan. The trenchward slopes of the younger cones are common sites for cone collapse to form avalanche deposits, as occurred at Colima and Popocatepetl in Mexico and at San Pedro Volcano in Chile.
Ichikawa, Kei; Tanaka, Yoshiki; Kato, Yukihito; Horai, Rie; Tamaoki, Akeno; Ichikawa, Kazuo
2017-01-01
The current study reports comparing the postoperative mechanical properties of the anterior capsule between femtosecond laser capsulotomy (FLC) and continuous curvilinear capsulorhexis (CCC) of variable size and shape in porcine eyes. All CCCs were created using capsule forceps. Irregular or eccentric CCCs were also created to simulate real cataract surgery. For FLC, capsulotomies 5.3 mm in diameter were created using the LenSx® (Alcon) platform. Fresh porcine eyes were used in all experiments. The edges of the capsule openings were pulled at a constant speed using two L-shaped jigs. Stretch force and distance were recorded over time, and the maximum values in this regard were defined as those that were recorded when the capsule broke. There was no difference in maximum stretch force between CCC and FLC. There were no differences in circularity between FLC and same-sized CCC. However, same-sized CCC did show significantly higher maximum stretch forces than FLC. Teardrop-shaped CCC showed lower maximum stretch forces than same-sized CCC and FLC. Heart-shaped CCC showed lower maximum stretch forces than same-sized CCC. Conclusively, while capsule edge strength after CCC varied depending on size or irregularities, FLC had the advantage of stable maximum stretch forces. PMID:28210504
Takagi, Mari; Kojima, Takashi; Ichikawa, Kei; Tanaka, Yoshiki; Kato, Yukihito; Horai, Rie; Tamaoki, Akeno; Ichikawa, Kazuo
2017-01-01
The current study reports comparing the postoperative mechanical properties of the anterior capsule between femtosecond laser capsulotomy (FLC) and continuous curvilinear capsulorhexis (CCC) of variable size and shape in porcine eyes. All CCCs were created using capsule forceps. Irregular or eccentric CCCs were also created to simulate real cataract surgery. For FLC, capsulotomies 5.3 mm in diameter were created using the LenSx® (Alcon) platform. Fresh porcine eyes were used in all experiments. The edges of the capsule openings were pulled at a constant speed using two L-shaped jigs. Stretch force and distance were recorded over time, and the maximum values in this regard were defined as those that were recorded when the capsule broke. There was no difference in maximum stretch force between CCC and FLC. There were no differences in circularity between FLC and same-sized CCC. However, same-sized CCC did show significantly higher maximum stretch forces than FLC. Teardrop-shaped CCC showed lower maximum stretch forces than same-sized CCC and FLC. Heart-shaped CCC showed lower maximum stretch forces than same-sized CCC. Conclusively, while capsule edge strength after CCC varied depending on size or irregularities, FLC had the advantage of stable maximum stretch forces.
Qal'eh Hasan Ali maars, central Iran.
Milton, D.J.
1976-01-01
This group of some 15 Late Quaternary explosion craters are typical maars, with rims of bedded pyroclastics. In all but the largest crater, the deposits consist entirely of clasts of country rock (granodiorite and Eocene volcanics). The maars were formed by phreatomagmatic explosions, possibly caused by groundwater originating from a major river. The deposits of the largest maar contain up to 20% juvenile fragments of two types. Tephrite clasts have phenocrysts of phlogopite, clinopyroxene, olivine and anorthoclase; the presence of hauyne as a groundmass phase is notable. Cumulate blocks of phlogopite-clinopyroxene rock also occur. The maar field is part of a distinct province of Quaternary alkaline volcanism, related to a major crustal fracture - the N-S-trending Nayband fault.-R.J.S.
Major and trace element chemistry of Boulder 1 at Station 2, Apollo 17
NASA Technical Reports Server (NTRS)
Blanchard, D. P.; Haskin, L. A.; Jacobs, J. W.; Brannon, J. C.; Korotev, R. L.
1975-01-01
Twenty-seven samples from Boulder 1 at Station 2 are analyzed for major and trace elements by atomic absorption spectrophotometry and neutron activation analysis. Two types of matrix and several types of clast materials are characterized on the basis of their chemistry. It is shown that one matrix type is a common material at the Apollo 17 site, while the other is probably exotic to that site. The most unusual clast materials found are coarse norite (an old rock no longer found in millimeter fragments at the site) and pigeonite basalt (possibly a highland volcanic rock). It is concluded that the boulder-forming process combined materials from at least two different localities or vertical strata.
NASA Astrophysics Data System (ADS)
Polito, P. J.; Sklar, L. S.
2006-12-01
River bed sediments commonly fine downstream due to a combination of particle abrasion, selective transport of finer grains, and fining of the local sediment supply from hillslopes and tributaries. Particle abrasion rates can be directly measured in the laboratory using tumbling barrels and annular flumes, however, scaling experimental particle abrasion rates to the field has proven difficult due to the confounding effects of selective transport and local supply variations. Here we attempt to correlate laboratory and field rates of particle abrasion in a field setting where these confounding effects can be controlled. The Rio Medio, which flows westward from the crest of the Sangre de Cristo Mountains in north central New Mexico, is one of several streams studied by John P. Miller in the early 1960's. Several kilometers downstream of its headwaters, the river crosses the Picuris-Pecos fault. Upstream of the fault the river receives quartzite, sandstone and shale clasts from the Ortega Formation, while downstream sediments are supplied by the Embudo Granite. Because the upstream lithologies are not resupplied downstream of the fault, any observed fining of these clasts should be due only to abrasion and selective transport. We hypothesize that we can account for the effects of selective transport by comparing relative fining rates for the different upstream lithologies from both the field and a laboratory tumbler. By correlating laboratory abrasion rates with rock strength, we can predict the relative fining rates due solely to abrasion expected in the field; differences between the predicted and observed fining rates could then be attributed to selective transport. We used point counts to measure bed surface sediment grain size distributions at 15 locations along a 25 kilometer reach of the Rio Medio, beginning just downstream of the fault and ending upstream of a developed area with disturbed channel conditions. We recorded intermediate particle diameter as well as lithologic composition for 100 clasts at each location. To better characterize the size distribution of poorly represented lithologies we also measured every grain we could find of these minority lithologies within a one square meter area on adjacent bar top surfaces. At each sampling site we also measured channel gradient, and bank-full width and depth. We collected gravel samples for laboratory tumbling experiments and larger bedrock blocks from which we extracted cores for the Brazilian tensile splitting strength test. Preliminary results show very rapid fining of the weak sedimentary rocks downstream of the fault, much less rapid fining of the quartzite and a net downstream coarsening of the granitic sediments, which dominate the bed in the downstream end of the study reach. This enigmatic downstream coarsening may be a legacy of Pliestocene glaciation, which is evident in the landscape upstream of the fault. Outburst floods or debris flows from upstream moraines may have delivered large quantities of coarse sediments to downstream reaches, which are now relatively immobile. Despite these complications, the Rio Medio site may yet provide sufficient information to test our proposed method for scaling laboratory particle abrasion rates to the field.
Clast comminution during pyroclastic density current transport: Mt St Helens
NASA Astrophysics Data System (ADS)
Dawson, B.; Brand, B. D.; Dufek, J.
2011-12-01
Volcanic clasts within pyroclastic density currents (PDCs) tend to be more rounded than those in fall deposits. This rounding reflects degrees of comminution during transport, which produces an increase in fine-grained ash with distance from source (Manga, M., Patel, A., Dufek., J. 2011. Bull Volcanol 73: 321-333). The amount of ash produced due to comminution can potentially affect runout distance, deposit sorting, the volume of ash lofted into the upper atmosphere, and increase internal pore pressure (e.g., Wohletz, K., Sheridan, M. F., Brown, W.K. 1989. J Geophy Res, 94, 15703-15721). For example, increased pore pressure has been shown to produce longer runout distances than non-comminuted PDC flows (e.g., Dufek, J., and M. Manga, 2008. J. Geophy Res, 113). We build on the work of Manga et al., (2011) by completing a pumice abrasion study for two well-exposed flow units from the May 18th, 1980 eruption of Mt St Helens (MSH). To quantify differences in comminution from source, sampling and the image analysis technique developed in Manga et al., 2010 was completed at distances proximal, medial, and distal from source. Within the units observed, data was taken from the base, middle, and pumice lobes within the outcrops. Our study is unique in that in addition to quantifying the degree of pumice rounding with distance from source, we also determine the possible range of ash sizes produced during comminution by analyzing bubble wall thickness of the pumice through petrographic and SEM analysis. The proportion of this ash size is then measured relative to the grain size of larger ash with distance from source. This allows us to correlate ash production with degree of rounding with distance from source, and determine the fraction of the fine ash produced due to comminution versus vent-fragmentation mechanisms. In addition we test the error in 2D analysis by completing a 3D image analysis of selected pumice samples using a Camsizer. We find that the roundness of PDC pumice at MSH increases with distance from source, as does the quantity of fine-grained ash. In addition, we have made the first steps towards determining the proportion of fine ash produced by comminution with distance from source. These results are being tested by numerical methods to understand the effect of an increase in fine ash on overall flow dynamics of the PDCs in which they were produced.
Sedimentary deposits of the 26 December 2004 tsunami on the northwest coast of Aceh, Indonesia
Moore, A.; Nishimura, Y.; Gelfenbaum, G.; Kamataki, T.; Triyono, R.
2006-01-01
The 2004 Sumatra-Andaman tsunami flooded coastal northern Sumatra to a depth of over 20 m, deposited a discontinuous sheet of sand up to 80 cm thick, and left mud up to 5 km inland. In most places the sand sheet is normally graded, and in some it contains complex internal stratigraphy. Structures within the sand sheet may record the passage of up to 3 individual waves. We studied the 2004 tsunami deposits in detail along a flow-parallel transect about 400 m long, 16 km southwest of Banda Aceh. Near the shore along this transect, the deposit is thin or absent. Between 50 and 400 m inland it ranges in thickness from 5 to 20 cm. The main trend in thickness is a tendency to thicken by filling low spots, most dramatically at pre-existing stream channels. Deposition generally attended inundation - along the transect, the tsunami deposited sand to within about 40 m of the inundation limit. Although the tsunami deposit contains primarily material indistinguishable from material found on the beach one month after the event, it also contains grain sizes and compositions unavailable on the current beach. Along the transect we studied, these grains become increasingly dominant both landward and upward in the deposit; possibly some landward source of sediment was exposed and exploited by the passage of the waves. The deposit also contains the unabraded shells of subtidal marine organisms, suggesting that at least part of the deposit came from offshore. Grain sizes within the deposit tend to fine upward and landward, although individual units within the deposit appear massive, or show reverse grading. Sorting becomes better landward, although the most landward sites generally become poorly sorted from the inclusion of soil clasts. These sites commonly show interlayering of sandy units and soil clast units. Deposits from the 2004 tsunami in Sumatra demonstrate the complex nature of the deposits of large tsunamis. Unlike the deposits of smaller tsunamis, internal stratigraphy is complex, and will require some effort to understand. The Sumatra deposits also show the contribution of multiple sediment sources, each of which has its own composition and grain size. Such complexity may allow more accurate modeling of flow depth and flow velocity for paleotsunamis, if an understanding of how tsunami hydraulics affect sedimentation can be established. Copyright ?? The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB.
Eychenne, Julia; Houghton, Bruce F.; Swanson, Don; Carey, Rebecca; Swavely, Lauren
2015-01-01
On March 19, 2008 a small explosive event accompanied the opening of a 35-m-wide vent (Overlook vent) on the southeast wall of Halema‘uma‘u Crater in Kīlauea Caldera, initiating an eruptive period that extends to the time of writing. The peak of activity, in 2008, consisted of alternating background open-system outgassing and spattering punctuated by sudden, short-lived weak explosions, triggered by collapses of the walls of the vent and conduit. Near-daily sampling of the tephra from this open system, along with exceptionally detailed observations, allow us to study the dynamics of the activity during two eruptive sequences in late 2008. Each sequence includes background activity preceding and following one or more explosions in September and October 2008 respectively. Componentry analyses were performed for daily samples to characterise the diversity of the ejecta. Nine categories of pyroclasts were identified in all the samples, including wall-rock fragments. The six categories of juvenile clasts can be grouped in three classes based on vesicularity: (1) poorly, (2) uniformly highly to extremely, and (3) heterogeneously highly vesicular. The wall-rock and juvenile clasts show dissimilar grainsize distributions, reflecting different fragmentation mechanisms. The wall-rock particles formed by failure of the vent and conduit walls above the magma free surface and were then passively entrained in the eruptive plume. The juvenile componentry reveals consistent contrasts in degassing and fragmentation processes before, during and after the explosive events. We infer a crude ‘layering’ developed in the shallow melt, in terms of both rheology and bubble and volatile contents, beneath a convecting free surface during background activity. A tens-of-centimetres thick viscoelastic surface layer was effectively outgassed and relatively cool, while at depths of less than 100 m, the melt remained slightly supersaturated in volatiles and actively vesiculating. Decoupled metre-sized bubbles rising through the column burst through the free surface frequently, ejecting fragments of the outgassed upper layer. When the surface was abruptly perturbed by the rock-falls, existing mm-sized bubbles expanded, leading to the acceleration of adjacent melt upward and consecutive explosions, while renewed nucleation created a minor population of 10-micron-sized bubbles. After each explosive event in September–October 2008, this layering was re-established but with decreasing vigour, suggesting that the magma batch as a whole was becoming progressively depleted in dissolved volatiles.
On the Importance of Cycle Minimum in Sunspot Cycle Prediction
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.; Reichmann, Edwin J.
1996-01-01
The characteristics of the minima between sunspot cycles are found to provide important information for predicting the amplitude and timing of the following cycle. For example, the time of the occurrence of sunspot minimum sets the length of the previous cycle, which is correlated by the amplitude-period effect to the amplitude of the next cycle, with cycles of shorter (longer) than average length usually being followed by cycles of larger (smaller) than average size (true for 16 of 21 sunspot cycles). Likewise, the size of the minimum at cycle onset is correlated with the size of the cycle's maximum amplitude, with cycles of larger (smaller) than average size minima usually being associated with larger (smaller) than average size maxima (true for 16 of 22 sunspot cycles). Also, it was found that the size of the previous cycle's minimum and maximum relates to the size of the following cycle's minimum and maximum with an even-odd cycle number dependency. The latter effect suggests that cycle 23 will have a minimum and maximum amplitude probably larger than average in size (in particular, minimum smoothed sunspot number Rm = 12.3 +/- 7.5 and maximum smoothed sunspot number RM = 198.8 +/- 36.5, at the 95-percent level of confidence), further suggesting (by the Waldmeier effect) that it will have a faster than average rise to maximum (fast-rising cycles have ascent durations of about 41 +/- 7 months). Thus, if, as expected, onset for cycle 23 will be December 1996 +/- 3 months, based on smoothed sunspot number, then the length of cycle 22 will be about 123 +/- 3 months, inferring that it is a short-period cycle and that cycle 23 maximum amplitude probably will be larger than average in size (from the amplitude-period effect), having an RM of about 133 +/- 39 (based on the usual +/- 30 percent spread that has been seen between observed and predicted values), with maximum amplitude occurrence likely sometime between July 1999 and October 2000.
Textural variations and impact history of the Millbillillie eucrite
NASA Technical Reports Server (NTRS)
Yamaguchi, Akira; Takeda, Hiroshi; Bogard, Donald D.; Garrison, Daniel
1994-01-01
We have investigated 10 new specimens of the Millbillillie eucrite to study its textures and mineral compositions by electron probe microanalyser and scanning electron microscope. Although originally described as having fine-grained texture, the new specimens show diversity of texture. The compositions (Mg/Fe ratios) of the host pigeonites and augite lamellae are homogeneous, respectively, in spite of the textural variation. In addition to their chemical homogeneity, pyroxenes in coarse and fine-grained clasts are partly inverted to orthopyroxene. Chemical zoning of plagioclase during crystal growth is preserved. This eucrite includes areas of granulitic breccias and impact melts. Large scale textures show a subparallel layering suggesting incomplete mixing and deposition of impact melt and lithic fragments. An Ar-39-Ar-40 age determination for a coarse-grained clast indicates a strong degassing event at 3.55 +/- 0.02 Ga. We conclude that Millbillillie is among the most equilibriated eucrites produced by thermal annealing after impact brecciation. According to the classificcation of impact breccias, Millbillillie can be classified as a mixture of granulitic breccias and impact melts. The last significant thermal event is characterized by network-like glassy veins that run through clasts and matrices. Consideration of textual observations and requirements for Ar-degassing suggests that the Ar-39-Ar-40 age could in principle date either the earlier brecciation and annealing event or the event which produced the veins.
NASA Technical Reports Server (NTRS)
Agrinier, P.; Martinez, I.; Javoy, M.; Schaerer, U.
1992-01-01
It is known that the release of volatiles on impact is an important controlling factor in cratering processes in carbonate terranes and in the mobility of chemical elements. In order to assess the nature and the role of carbon- and oxygen-bearing volatiles during impact-induced metamorphism of sedimentary rocks, the C-13/C-12 and O-18/O-16 ratios and carbonate contents were determined for 30 shocked clasts from the Haughton Crater polymict breccia as well as for some unshocked carbonates from the sedimentary cover adjacent to the crater. Shock-induced CO2 loss during decarbonation of calcite is known to be a function of peak pressure and ambient partial pressure of the volatile species. In our clast samples, shocked from 20 to 60 GPa, we expect about 20 to 100 percent CO2 loss and preferential depletion in C-13 and O-18 in the residual carbonate. Rayleigh model (progressive loss of CO2) and batch model (single-step loss of CO2) curves for this depletion are shown. The magnitudes of the C-13 and O-18 depletions increase with the increase of the CO2 loss. In addition, the isotopic depletions should be correlated with an enrichment in CaO and MgO in the residual solid.
Growth and Maximum Size of Tiger Sharks (Galeocerdo cuvier) in Hawaii
Meyer, Carl G.; O'Malley, Joseph M.; Papastamatiou, Yannis P.; Dale, Jonathan J.; Hutchinson, Melanie R.; Anderson, James M.; Royer, Mark A.; Holland, Kim N.
2014-01-01
Tiger sharks (Galecerdo cuvier) are apex predators characterized by their broad diet, large size and rapid growth. Tiger shark maximum size is typically between 380 & 450 cm Total Length (TL), with a few individuals reaching 550 cm TL, but the maximum size of tiger sharks in Hawaii waters remains uncertain. A previous study suggested tiger sharks grow rather slowly in Hawaii compared to other regions, but this may have been an artifact of the method used to estimate growth (unvalidated vertebral ring counts) compounded by small sample size and narrow size range. Since 1993, the University of Hawaii has conducted a research program aimed at elucidating tiger shark biology, and to date 420 tiger sharks have been tagged and 50 recaptured. All recaptures were from Hawaii except a single shark recaptured off Isla Jacques Cousteau (24°13′17″N 109°52′14″W), in the southern Gulf of California (minimum distance between tag and recapture sites = approximately 5,000 km), after 366 days at liberty (DAL). We used these empirical mark-recapture data to estimate growth rates and maximum size for tiger sharks in Hawaii. We found that tiger sharks in Hawaii grow twice as fast as previously thought, on average reaching 340 cm TL by age 5, and attaining a maximum size of 403 cm TL. Our model indicates the fastest growing individuals attain 400 cm TL by age 5, and the largest reach a maximum size of 444 cm TL. The largest shark captured during our study was 464 cm TL but individuals >450 cm TL were extremely rare (0.005% of sharks captured). We conclude that tiger shark growth rates and maximum sizes in Hawaii are generally consistent with those in other regions, and hypothesize that a broad diet may help them to achieve this rapid growth by maximizing prey consumption rates. PMID:24416287
Growth and maximum size of tiger sharks (Galeocerdo cuvier) in Hawaii.
Meyer, Carl G; O'Malley, Joseph M; Papastamatiou, Yannis P; Dale, Jonathan J; Hutchinson, Melanie R; Anderson, James M; Royer, Mark A; Holland, Kim N
2014-01-01
Tiger sharks (Galecerdo cuvier) are apex predators characterized by their broad diet, large size and rapid growth. Tiger shark maximum size is typically between 380 & 450 cm Total Length (TL), with a few individuals reaching 550 cm TL, but the maximum size of tiger sharks in Hawaii waters remains uncertain. A previous study suggested tiger sharks grow rather slowly in Hawaii compared to other regions, but this may have been an artifact of the method used to estimate growth (unvalidated vertebral ring counts) compounded by small sample size and narrow size range. Since 1993, the University of Hawaii has conducted a research program aimed at elucidating tiger shark biology, and to date 420 tiger sharks have been tagged and 50 recaptured. All recaptures were from Hawaii except a single shark recaptured off Isla Jacques Cousteau (24°13'17″N 109°52'14″W), in the southern Gulf of California (minimum distance between tag and recapture sites = approximately 5,000 km), after 366 days at liberty (DAL). We used these empirical mark-recapture data to estimate growth rates and maximum size for tiger sharks in Hawaii. We found that tiger sharks in Hawaii grow twice as fast as previously thought, on average reaching 340 cm TL by age 5, and attaining a maximum size of 403 cm TL. Our model indicates the fastest growing individuals attain 400 cm TL by age 5, and the largest reach a maximum size of 444 cm TL. The largest shark captured during our study was 464 cm TL but individuals >450 cm TL were extremely rare (0.005% of sharks captured). We conclude that tiger shark growth rates and maximum sizes in Hawaii are generally consistent with those in other regions, and hypothesize that a broad diet may help them to achieve this rapid growth by maximizing prey consumption rates.
Miniplates and mini-implants: bone remodeling as their biological foundation1
Consolaro, Alberto
2015-01-01
Abstract The tridimensional network formed by osteocytes controls bone design by coordinating cell activity on trabecular and cortical bone surfaces, especially osteoblasts and clasts. Miniplates and mini-implants provide anchorage, allowing all other orthodontic and orthopedic components, albeit afar, to deform and stimulate the network of osteocytes to command bone design remodeling upon "functional demand" established by force and its vectors. By means of transmission of forces, whether near or distant, based on anchorage provided by miniplates, it is possible to change the position, shape and size as well as the relationship established between the bones of the jaws. Understanding bone biology and the continuous remodeling of the skeleton allows the clinician to perform safe and accurate rehabilitation treatment of patients, thus increasing the possibilities and types of intervention procedures to be applied in order to restore patient's esthetics and function. PMID:26691966
The Apollo 17 samples: The Massifs and landslide
NASA Technical Reports Server (NTRS)
Ryder, Graham
1992-01-01
More than 50 kg of rock and regolith samples, a little less than half the total Apollo 17 sample mass, was collected from the highland stations at Taurus-Littrow. Twice as much material was collected from the North Massif as from the South Massif and its landslide (the apparent disproportionate collecting at the mare sites is mainly a reflection of the large size of a few individual basalt samples). Descriptions of the collection, documentation, and nature of the samples are given. A comprehensive catalog is currently being produced. Many of the samples have been intensely studied over the last 20 years and some of the rocks have become very familiar and depicted in popular works, particularly the dunite clast (72415), the troctolite sample (76535), and the station 6 boulder samples. Most of the boulder samples have been studied in Consortium mode, and many of the rake samples have received a basic petrological/geochemical characterization.
The largest deep-ocean silicic volcanic eruption of the past century.
Carey, Rebecca; Soule, S Adam; Manga, Michael; White, James; McPhie, Jocelyn; Wysoczanski, Richard; Jutzeler, Martin; Tani, Kenichiro; Yoerger, Dana; Fornari, Daniel; Caratori-Tontini, Fabio; Houghton, Bruce; Mitchell, Samuel; Ikegami, Fumihiko; Conway, Chris; Murch, Arran; Fauria, Kristen; Jones, Meghan; Cahalan, Ryan; McKenzie, Warren
2018-01-01
The 2012 submarine eruption of Havre volcano in the Kermadec arc, New Zealand, is the largest deep-ocean eruption in history and one of very few recorded submarine eruptions involving rhyolite magma. It was recognized from a gigantic 400-km 2 pumice raft seen in satellite imagery, but the complexity of this event was concealed beneath the sea surface. Mapping, observations, and sampling by submersibles have provided an exceptionally high fidelity record of the seafloor products, which included lava sourced from 14 vents at water depths of 900 to 1220 m, and fragmental deposits including giant pumice clasts up to 9 m in diameter. Most (>75%) of the total erupted volume was partitioned into the pumice raft and transported far from the volcano. The geological record on submarine volcanic edifices in volcanic arcs does not faithfully archive eruption size or magma production.
The largest deep-ocean silicic volcanic eruption of the past century
Carey, Rebecca; Soule, S. Adam; Manga, Michael; White, James D. L.; McPhie, Jocelyn; Wysoczanski, Richard; Jutzeler, Martin; Tani, Kenichiro; Yoerger, Dana; Fornari, Daniel; Caratori-Tontini, Fabio; Houghton, Bruce; Mitchell, Samuel; Ikegami, Fumihiko; Conway, Chris; Murch, Arran; Fauria, Kristen; Jones, Meghan; Cahalan, Ryan; McKenzie, Warren
2018-01-01
The 2012 submarine eruption of Havre volcano in the Kermadec arc, New Zealand, is the largest deep-ocean eruption in history and one of very few recorded submarine eruptions involving rhyolite magma. It was recognized from a gigantic 400-km2 pumice raft seen in satellite imagery, but the complexity of this event was concealed beneath the sea surface. Mapping, observations, and sampling by submersibles have provided an exceptionally high fidelity record of the seafloor products, which included lava sourced from 14 vents at water depths of 900 to 1220 m, and fragmental deposits including giant pumice clasts up to 9 m in diameter. Most (>75%) of the total erupted volume was partitioned into the pumice raft and transported far from the volcano. The geological record on submarine volcanic edifices in volcanic arcs does not faithfully archive eruption size or magma production. PMID:29326974
A TEM Investigation of the Fine-Grained Matrix of the Martian Basaltic Breccia NWA 7034
NASA Technical Reports Server (NTRS)
Muttik, N.; Keller, L. P.; Agee, C. B.; McCubbin, F. M.; Santos, A. R.; Rahman, Z.
2014-01-01
The martian basaltic breccia NWA 7034 is characterized by fine-grained groundmass containing several different types of mineral grains and lithologic clasts. The matrix composition closely resembles Martian crustal rock and soil composition measured by recent rover and orbiter missions. The first results of NWA 7034 suggest that the brecciation of this martian meteorite may have formed due to eruptive volcanic processes; however, impact related brecciation processes have been proposed for paired meteorites NWA 7533 and NWA 7475]. Due to the very fine grain size of matrix, its textural details are difficult to resolve by optical and microprobe observations. In order to examine the potential nature of brecciation, transmission electron microscopy (TEM) studies combined with focused ion-beam technique (FIB) has been undertaken. Here we present the preliminary observations of fine-grained groundmass of NWA 7034 from different matrix areas by describing its textural and mineralogical variations and micro-structural characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polacci, M.; Baker, D.R.; Bai, L.
Volcanic degassing is directly linked to magma dynamics and controls the style of eruptive activity. To better understand how gas is transported within basaltic magma we perform a 3D investigation of vesicles preserved in scoria from the 2005 activity at Stromboli volcano (Italy). We find that clasts are characterized by the ubiquitous occurrence of one to a few large vesicles, exhibiting mostly irregular, tortuous, channel-like textures, orders of magnitude greater in volume than all the other vesicles in the sample. We compare observations on natural samples with results from numerical simulations and experimental investigations of vesicle size distributions and demonstratemore » that this type of vesicle invariably forms in magmas with vesicularities > 0.30 (and possibly > 0.10). We suggest that large vesicles represent pathways used by gas to flow non-explosively to the surface and that they indicate the development of an efficient system that sustains persistent degassing in basaltic systems.« less
Smaller predator-prey body size ratios in longer food chains.
Jennings, Simon; Warr, Karema J
2003-01-01
Maximum food-chain length has been correlated with resource availability, ecosystem size, environmental stability and colonization history. Some of these correlations may result from environmental effects on predator-prey body size ratios. We investigate relationships between maximum food-chain length, predator-prey mass ratios, primary production and environmental stability in marine food webs with a natural history of community assembly. Our analyses provide empirical evidence that smaller mean predator-prey body size ratios are characteristic of more stable environments and that food chains are longer when mean predator-prey body size ratios are small. We conclude that environmental effects on predator-prey body size ratios contribute to observed differences in maximum food-chain length. PMID:12965034
Ages of pristine noritic clasts from lunar breccias 15445 and 15455
NASA Technical Reports Server (NTRS)
Shih, C.-Y.; Nyquist, L. E.; Dasch, E. J.; Bogard, D. D.; Bansal, B. M.; Wiesmann, H.
1993-01-01
The Rb-Sr and Sm-Nd isotopic ages were determined for two Apollo 15 pristine lunar breccias, 15445 and 15455, collected near Spur Crater on the Apennine Front. The analyses of mineral separates from two norite samples in breccia 15445 showed that the Sm-Nd isotopic system for both norites from the large Clast B of 15445 was well defined, yielding precise ages of 4.28 +/- 0.03 Ga and 4.46 +/- 0.07 Ga, suggesting that the Cast B is a mixture of two or more lithologies. The overall age results indicate that some Mg-suite rocks are as old as ferroan-anorthosite-suite rocks. Moreover, age data of three major crustal rocks (a Mg suite, a ferroan-anorthosite suite, and an evolved suite) show that they all have variable ages.
The apollo 15 lunar samples: A preliminary description
Gast, P.W.; Phinney, W.C.; Duke, M.B.; Silver, L.T.; Hubbard, N.J.; Heiken, G.H.; Butler, P.; McKay, D.S.; Warner, J.L.; Morrison, D.A.; Horz, F.; Head, J.; Lofgren, G.E.; Ridley, W.I.; Reid, A.M.; Wilshire, H.; Lindsay, J.F.; Carrier, W.D.; Jakes, P.; Bass, M.N.; Brett, P.R.; Jackson, E.D.; Rhodes, J.M.; Bansal, B.M.; Wainwright, J.E.; Parker, K.A.; Rodgers, K.V.; Keith, J.E.; Clark, R.S.; Schonfeld, E.; Bennett, L.; Robbins, Martha M.; Portenier, W.; Bogard, D.D.; Hart, W.R.; Hirsch, W.C.; Wilkin, R.B.; Gibson, E.K.; Moore, C.B.; Lewis, C.F.
1972-01-01
Samples returned from the Apollo 15 site consist of mare basalts and breccias with a variety of premare igneous rocks. The mare basalts are from at least two different lava flows. The bulk chemical compositions and textures of these rocks confirm the previous conclusion that the lunar maria consist of a series of extrusive volcanic rocks that are rich in iron and poor in sodium. The breccias contain abundant clasts of anorthositic fragments along with clasts of basaltic rocks much richer in plagioclase than the mare basalts. These two rock types also occur as common components in soil samples from this site. The rocks and soils from both the front and mare region exhibit a variety of shock characteristics that can best be ascribed to ray material from the craters Aristillus or Autolycus.
Olivines and olivine coronas in mesosiderites
NASA Technical Reports Server (NTRS)
Nehru, C. E.; Zucker, S. M.; Harlow, G. E.; Prinz, M.
1980-01-01
The paper presents a study of olivines and their surrounding coronas in mesosiderites texturally and compositionally using optical and microprobe methods. Olivine composition ranges from Fo(58-92) and shows no consistent pattern of distribution within and between mesosiderites; olivine occurs as large single crystals or as partially recrystallized mineral clasts, except for two lithic clasts. These are Emery and Vaca Muerta, and both are shock-modified olivine orthopyroxenites. Fine-grained coronas surround olivine, except for those in impact-melt group mesosiderites and those without tridymite in their matrices. Coronas consist largely of orthopyroxene, plagioclase, clinopyroxene, chromite, merillite, and ilmenite, and are similar to the matrix, but lack metal and tridymite. Texturally the innermost parts of the corona can be divided into three stages of development: (1) radiating acicular, (2) intermediate, and (3) granular.
AR-40 AR-39 Age of an Impact-Melt Lithology in DHOFAR 961
NASA Technical Reports Server (NTRS)
Frasl, B.; Cohen, B. A.; Li, Z.-H.; Jolliff, B.; Korotev, R.; Zeigler, R.
2016-01-01
The South Pole-Aitken (SPA) basin is the stratigraphically oldest identifiable lunar basin and is therefore one of the most important targets for absolute age-dating to help understand whether ancient lunar bombardment history smoothly declined or was punctuated by a cataclysm. The SPA basin also has another convenient property, a geochemically distinct interior, unobscured by extensive mare basalt fill. A case has been made for the possible origin of the Dhofar 961 lunar meteorite in the South Pole-Aitken (SPA) basin, based on comparing its composition with Lunar Prospector gamma-ray data for the interior of the SPA basin. Dhofar 961 contains several different impact-melt (IM) lithologies. Jolliff et al. described two classes of mafic impact-melt lithologies, one dominated by olivine (Lithology A) and the other by plagioclase (An 95-96.5) (Lithology B). Broad-beam analyses of these lithologies yielded (is) approximately 14.0 wt% FeO, 11.7 wt% MgO, and 15.4 wt% Al2O3. Lithologies A and B differ by approximately 2.5% Al2O3, 1.5% FeO and 1.5% MgO, consistent with the occurrence of olivine phenocrysts in A and plagioclase clasts in B. Both lithologies are considerably more mafic than the Apollo mafic impact-melt breccias, corresponding to olivine gabbronorite. Joy et al. used U-Pb dating to investigate phosphate fragments in the Dhofar 961 matrix and impact-melt clasts. Matrix phosphates have 4.34 to 4 Ga ages, consistent with ancient KREEP-driven magmatic episodes and Pre-Nectarian ((is) greater than 3.92 Ga). Phosphates found within Dhofar 961 crystalline impact melt breccia clasts range from 4.26 to 3.89 Ga, potentially recording events throughout the basin forming epoch of lunar history. The youngest reset ages in the Dhofar 961 sample represent an upper limit for the time of formation of the meteorite. Joy et al suggested this age represents the final impact that mixed and consolidated several generations of precursor rocks into the Dhofar meteorite group, although they note that further age dating of all the stones is required to test this hypothesis. We received a split of Dhofar 961 from R. Zeigler consisting of a large clast of IM Lithology B, with some light-colored, friable matrix clinging to the external margins of the impact-melt clast. This lithology was not present in the samples investigated by Joy et al. and thus does not have corresponding U-Pb ages on it. We created multiple subsplits of both the IM and matrix lithologies, each weighing several tens of micrograms. We conducted Ar-40 Ar-39 dating of this candidate SPA material by high-resolution step heating and comparing it with the regolith that surrounds it.
NASA Astrophysics Data System (ADS)
Belousova, M.; Belousov, A.; Patia, H.; Hoblitt, R. P.
2011-12-01
We present the results of a detailed reinvestigation of deposits of the famous 1951 eruption of Mount Lamington which was originally studied by T. Taylor (1958). We found that the climactic phase of the eruption was triggered by a relatively small gravitational collapse of the old intracrater lava dome (debris avalanche V=0.02-0.04 cub. km; L=8.5 km; H/L=0.14). The collapse was followed by vertical explosive fountain which was not buoyant and formed a pyroclastic density current (PDC). This PDC completely devastated an area of 230 sq. km, traveling maximum distance of 15 km in N direction; 3500 people were killed by the eruption. The PDC deposit, which is still well-preserved, was studied in 2 profiles, which are parallel to the longest axis of the surge propagation. The deposit consists of mostly juvenile rock fragments (80-85%) represented by poorly vesicular (4 - 40%) highly crystalline dacite; bombs with poorly developed bread crust surfaces are common in proximal areas. The deposit is in general normally graded and consists of lapilli and coarse ash fining upward into fine ash. The base of the deposit is mixed with soil in proximal areas. Stratigraphic characteristics of the deposit demonstrate strong local fluctuations, but have clear trends with distance from the volcano. At distances from 3 to 12 km from the volcano the maximum deposit thickness decreases from 55 to 5 cm, and the average size of the 10 largest clasts decreases from 4.5 cm to 0.5 cm; Md diameter decreases from -1.5 to 4.5 phi; sorting improves from 3 to 0.7 phi. The surge produced spectacular tree blow-down in the devastated area. Aerial photographs taken one month after eruption show that the PDC was strongly channelized even by small (tens meters) topographic features; the front of the moving PDC was frequently split into multiple small tongues which were variously deflected by topography. The deposit and the tree blow-down features demonstrate many similarities with those of blast-generated PDCs of Bezymianny in 1956 and Mount St. Helens in 1980. A notable difference however is that although some layering similar to the classic A, B, C stratigraphy is present in the proximal deposits of Lamington, the layers are not so clearly distinguished by grain size characteristics and lack the sharp contacts that are common in classic blast deposits. We attribute this difference to the fact that, unlike the St. Helens and Bezymianny examples, the Lamington blast cloud first ascended vertically before collapsing and producing a PDC. Consequently the Lamington PDC ingested more air and was more dilute than those at St. Helens and Bezymianny.
Investigating the explosivity of shallow sub-aqueous basaltic eruptions
NASA Astrophysics Data System (ADS)
Murtagh, R.; White, J. D. L.
2009-04-01
Volcanic eruptions produce pyroclasts containing vesicles, clearly implying exsolution of volatiles from the magma has occurred. Our aim is to understand the textural characteristics of vesiculated clasts as a quantitative indicator of the eruptive behaviour of a volcano. Assessing water's role in volatile degassing and outgassing has been and is being well documented for terrestrial eruptions; the same cannot be said, however, for their shallow subaqueous counterparts. The eruptive behaviour of Surtseyan volcanoes, which include both subaqueous and subaerial phases (for example, the type-location Surtsey, Iceland in 1963) is under investigation here and for good reason. Volcanic eruptions during which water and basaltic magma come into contact appear to ignite violent eruptions of many of the small "monogenetic" volcanoes so abundant on Earth. A key problem remains that detailed conditions of water-magma interactions are not yet fully understood. Field samples obtained from exposed sequences deposited originally in a subaqueous environment allow for the necessary analysis of lapilli. With the aid of experimental data, mathematical modelling and terrestrial analogues the ambition is to unravel volatile degassing, ascent histories and fragmentation processes, allowing us ultimately to identify both the role water plays in the explosivity of shallow subaqueous eruptions, and the rise history of magma to the point of interaction. The first site, Pahvant Butte is located in southwest Utah, U.S. It is a well preserved tuff cone overlying a subaqueously deposited mound of glassy ash composed of sideromelane and tachylite. It was erupted under ~85m of water into Lake Bonneville approximately 15,300 years ago. Our focus is on samples collected from a well-bedded, broadly scoured coarse ash and lapilli lithofacies on the eastern flank of the edifice. Vesicularity indices span from 52.6% - 60.8%, with very broad vesicularity ranges, 20.6% - 81.0% for one extreme sample. The diverse nature of the vesicularity is reflected also in SEM images. Dense clasts display textures with isolated, tiny, serrate-edged bubbles, while mean- and high-vesicularity clasts display more numerous, medium-sized, rounded bubbles. Based on these observations, fragmentation at various stages of a complex vesiculation history is suggested. The second site, Black Point, is situated in eastern California, U.S. Another emergent volcano, it was erupted into Lake Russell ~13,000 years ago. Similar to Pahvant Butte, its unconsolidated mound consists of glassy ash and lapilli and is topped by indurated, palagonitized tuff ring/cone deposits. A well exposed quarry section on the southeast slopes of the edifice is considered here. Sub-horizontal beds display pinch and swell structures and some cross-stratification. Vesicularity indices extend from 58.7% - 66.6% while vesicularity ranges are broad, 27.8% - 79.7% for example. The higher overall vesicularity implies higher rates of ascent and eruption discharge, a conclusion supported by textural features of bubbles in this section such as a population of uniformly sized small vesicles. Bubble nucleation and growth in an ascending parcel of magma is controlled both by decompression and diffusion of oversaturated volatiles as the magma rises. Bubble growth plays a major role in controlling eruption behaviour and we can obtain useful quantitative records of vesicle size data through thin section imaging and analysis. Vesicle size data can be expressed as number per area (NA), number per volume (NV), cumulative number density (N(>L)), volume fraction, cumulative volume fraction and vesicle size distribution (VSD). Not only can the trends and patterns of bubble size reveal insights into eruptive styles, intensity; bubble nucleation, growth, coalescence and deformation, they can also be analysed with other information to infer volatile content and degassing record. High vesicle number densities have been interpreted as being the result of rapid bubble nucleation at high supersaturations. Homogenous bubble nucleation is symptomatic of large supersaturations and high decompression values, whereas heterogeneous bubble nucleation on pre-existing microlites may occur at much lower saturation and decompression values. The spatial density of bubble nuclei controls the rate of diffusion-limited bubble growth and growth of volatile depletion shells around bubbles. Results thus far are restricted to the Pahvant Butte sample suite and indicate low bubble number densities, which could be reflecting a high connectivity of bubbles; polymodal volume fraction distributions, indicating bubble coalescence and multiple stages of bubble nucleation; VSD plots display curved trends further supporting the theory that bubble coalescence and other ripening processes have occurred. These vesicle-population characteristics are most similar to those reported from Stromboli. Despite this similarity, eruption style, energetics and dispersal are unique to subaqueous eruptions, and are inferred to be equivalent to those that formed the subaqueous base of Surtsey volcano.
NASA Astrophysics Data System (ADS)
Dos Santos, Thisiane; Kneller, Benjamin; Morton, Andrew; Armelenti, Garibaldi; Pantopoulos, George; De Ros, Luiz Fernando
2017-04-01
The Rosario Formation forms part of the Peninsular Ranges forearc basin complex, which crops out discontinuously along the Pacific coast of the Baja California Peninsula, Mexico. This study concerns the upper, deep marine part of the Rosario Formation , which includes several slope channel systems, one of these, the San Fernando channel systems consists of five channel complex sets (CCS1 to CCS5), each characterized by three filling stages. Stage I consists of predominantly clast and matrix-supported conglomerates, with subordinate medium to coarse grained sandstones. Stage II consists of units of clast-supported conglomerates with subordinate medium to coarse-grained sandstones, separated by mainly thinly-bedded turbidites (intercalation of thin beds of fine-grained sandstones and mudstones). Stage III consists mainly of hemipelagic mudstones. The main objective of this research is to determine source area and to compare the coarse fraction and finer fraction (fragments <2 cm) from conglomerates of each channel set, combining provenance methodology such as heavy minerals, clast counting, geochemistry, bulk petrography and U/Pb in detrital zircons by LA-ICPMS and SHRIMP. The heavy minerals assembly identified were Ca amphibole, epidote, clinozoisite, titanite, garnet, tourmaline, apatite, rutile and zircon, among them amphiboles are by far the most abundant detrital mineral. Clast counting and petrographic characterization showed that the pebble fraction of the conglomerates is constituted at least 18 different, and the majority being composed by pyroclastic, porphyritic volcanic and sandstone rocks. Bulk quantification indicates that the main provenance tectonic mode of the fine fraction of the conglomerates can be interpreted as dissected magmatic arc, with subordinate uplifted basement and recycled orogenic contributions. The preliminary conclusion is that the sedimentary supply to the Rosario Formation was mostly derived from volcanic and plutonic rocks of the Upper Peninsular Ranges Arc complex known as the Alisitos Arc, which follows the western margin of the Peninsular Ranges batholith, as well as from older magmatic arc, and from recycling of sedimentary/metasedimentary terrains.
Episodic Deep Fluid Expulsion at Mud Volcanoes in the Kumano Forearc Basin, SE Offshore Japan
NASA Astrophysics Data System (ADS)
Hammerschmidt, S.; Kopf, A.
2014-12-01
Compressional forces at convergent margins govern a variety of processes, most prominently earthquakes, landslides and mud volcanoes in the forearc. Although all seem related to fluid pressure changes, mud volcanoes are not only characterized by expulsion of fluids, but also fluidized mud and clasts that got ripped-up during mud ascension. They hence provide information regarding mobilization depth, diagenetic overprint, and geodynamic pathways. At the Nankai Trough subduction zone, SE offshore Japan, mud volcanism id common and supposed to be related to seismogenic processes. During MARUM Expedition SO-222 with R/V SONNE, mud volcanoes in the Kumano forearc basin were mapped, cored and sampled. By extending the Integrated Ocean Drilling Program (IODP) Kumano transect landwards, 5 new mud volcanoes were identified by multibeam mapping. Cores revealed mud breccia with semi-consolidated silt- to claystone clasts and gaseous fluid escape structures, while the hemipelagic background sediments are characterized by intercalations of turbidites, ash layers and calcareous fossils. Clasts were subject to thin-section analyses, and the cores were sampled for XRD analyses and radiocarbon dating. Clasts showed prominent deformation structures, neomorphism and pores and fractures filled with polycrystalline quartz and/or calcite cement, probably formed during deep burial and early metamorphosis. Illite crystallinity based on XRD measurements varies between 0.24 and 0.38, which implies that the material originates from the Anchizone at depths ≥ 4 km. Radiocarbon dating revealed ages between 4450 and 30300 yr cal. BP, with age reversals occurring not earlier than 17000 yr cal. BP. Radiocarbon dating beneath turbidites and ash layers found at mud volcano #9 points to an episodic occurrence of these earthquake-related features in intervals of ca. 620 yr, while the mud volcano itself remained inactive. In summary, the preliminary results suggest that the mud volcanoes are nurtured from a reservoir within the older part of the accretionary prism, but that mud volcanic activity is less frequent than major earthquakes. Future models will focus on source depth and temperature, and might elucidate the prerequisites for fluid migration and its role in seismogenesis at the Nankai Trough subduction zone.
NASA Astrophysics Data System (ADS)
Spiske, M.
2016-12-01
Three kinds of extreme waves are evidenced geologically on Anegada, a low-lying island 120 km south of the Puerto Rico Trench: (1) Modern and historical storms: A coral-rubble ridge lining the island's north shore was refreshed by modern storms and was probably emplaced by historical hurricanes. A category 4 storm in 2010 aggraded sandy fans within 50 m of the south shore and stirred up microbial debris in interior salt ponds. (2) Unusual flooding between 1650 and 1800 CE which may resemble the 1755 Lisbon tsunami: A sand-and-shell sheet extends as much as 1.5 km inland. Its shells were derived from an interior marine pond, not from the reef flat. (3) Catastrophic overwash before 1500 CE: Coral clasts, limestone boulders, and carbonate sand were deposited hundreds of meters inland from the north shore. Many of the coral clasts are complete colonies of the brain coral Diploria strigosa on the order of at least 1 m in diameter. The limestone clasts were derived from cemented Pleistocene deposits. Some form elongate fields pendant to likely sources to their north, and others are imbricated slabs that dip to the north. The carbonate sand locally contains articulated valves of the lucine Codakia orbicularis and the conch Lobatus gigas, which today inhabit the sandy shallows between the island's north shore and the fringing reef. All the dated coral clasts, lucines, and conches are older than 1500 CE, and most are in the range 1200-1480 CE. The extreme waves of type (3) were previously ascribed to a tsunami from faulting along the Puerto Rico Trench. We are also evaluating an alternative explanation - a tsunami-like bore from infragravity waves similar to those produced in the Philippines by 2013 Typhoon Haiyan. This abstract was adapted, with permission, from a journal manuscript by B.F. Atwater, U.S. ten Brink, A.L. Cescon, N. Feuillet, Z. Fuentes, R.B., Halley, C. Nuñez, E.G. Reinhardt, J.H. Roger, Y. Sawai, M. Spiske, M.P., Tuttle, Y. Wei, and J. Weil Accardo.
NASA Astrophysics Data System (ADS)
Beckert, Julia; Vandeginste, Veerle; John, Cédric M.
2016-08-01
Large breccia fabrics associated with karst constitute an important structure in massive limestone successions. The dimensions and shapes of breccia structures are controlled by the initial fracture pattern of the limestone and preferential pathways of the karstifying fluids, but subsequently breccia fabrics can also govern the migration of later fluids. Therefore, breccias are highly relevant features to capture for reservoir characterisation. Outcrop analogues for Lower Khuff units in the Middle East present in the Central Oman Mountains reveal brecciated fabrics up to 10s of metres in diameter. These brecciated units are closely associated with dolomite bodies of late diagenetic origin. Based on an integrated set of data, the breccias are interpreted as collapsed karst cavities either formed by meteoric or hypogenic fluids. The exact origin of the fluids could not be constrained due to an overprint by later dolomitizing fluids. Based on the composition of the clasts and matrix in the breccias, two dolomitization events are interpreted to have affected the succession, one prior to (early diagenetic [ED] dolomite) and one after brecciation (late diagenetic [DT2] dolomite). Dolomite of shallow burial origin (ED dolomite) was only observed as clasts within breccia and is much more frequent than late diagenetic (medium to deep burial) dolomite clasts. Thus, the timing of the brecciation and collapse is assumed to postdate shallow burial early diagenetic dolomitization. Late diagenetic replacive dolomite (DT2 dolomite) forms 90% of the matrix in the breccia fabrics with the exception of a small area that was not affected by dolomitization, but is rarely present as clasts. Stable isotope measurements [δ18O: - 2.5‰ to - 6‰ VPDB and δ13C: 2.9‰ to 4.8‰ VPDB] suggest a burial origin for the late diagenetic dolomite potentially with the participation of hydrothermal fluids. The dolomitized matrix indicates a migration of late dolomitizing fluids subsequent to or postdating the collapse of the karstic cavities. Thus, early karstification processes seem to have played a big role in controlling subsequent loci of late dolomitization in the Oman Mountains, and potentially in other similar settings elsewhere.
Geochemical Comparison of Four Cores from the Manson Impact Structure
NASA Technical Reports Server (NTRS)
Korotev, Randy L.; Rockow, Kaylynn M.; Jolliff, Bradley L.; Haskin, Larry A.; McCarville, Peter; Crossey, Laura J.
1996-01-01
Concentrations of 33 elements were determined in relatively unaltered, matrix-rich samples of impact breccia at approximately 3-m-depth intervals in the M-1 core from the Manson impact structure, Iowa. In addition, 46 matrix-rich samples from visibly altered regions of the M-7, M-8, and M-10 cores were studied, along with 42 small clasts from all four cores. Major element compositions were determined for a subset of impact breccias from the M-1 core, including matrix-rich impact-melt breccia. Major- and trace-element compositions were also determined for a suite of likely target rocks. In the M-1 core, different breccia units identified from lithologic examination of cores are compositionally distinct. There is a sharp compositional discontinuity at the boundary between the Keweenawan-shale-clast breccia and the underlying unit of impact-melt breccia (IMB) for most elements, suggesting minimal physical mixing between the two units during emplacement. Samples from the 40-m-thick IMB (M-1) are all similar to each other in composition, although there are slight increases in concentration with depth for those elements that have high concentrations in the underlying fragmental-matrix suevite breccia (SB) (e.g., Na, Ca, Fe, Sc), presumably as a result of greater clast proportions at the bottom margin of the unit of impact-melt breccia. The high degree of compositional similarity we observe in the impact-melt breccias supports the interpretation that the matrix of this unit represents impact melt. That our analyses show such compositional similarity results in part from our technique for sampling these breccias: for each sample we analyzed a few small fragments (total mass: approximately 200 mg) selected to be relatively free of large clasts and visible signs of alteration instead of subsamples of powders prepared from a large mass of breccia. The mean composition of the matrix-rich part of impact-melt breccia from the M-1 core can be modeled as a mixture of approximately 35% shale and siltstone (Proterozoic "Red Clastics"), 23% granite, 40% hornblende-biotite gneiss, and a small component (less than 2%) of mafic-dike rocks.
Apparent Brecciation Gradient, Mount Desert Island, Maine
NASA Astrophysics Data System (ADS)
Hawkins, A. T.; Johnson, S. E.
2004-05-01
Mount Desert Island, Maine, comprises a shallow level, Siluro-Devonian igneous complex surrounded by a distinctive breccia zone ("shatter zone" of Gilman and Chapman, 1988). The zone is very well exposed on the southern and eastern shores of the island and provides a unique opportunity to examine subvolcanic processes. The breccia of the Shatter Zone shows wide variation in percent matrix and clast, and may represent a spatial and temporal gradient in breccia formation due to a single eruptive or other catastrophic volcanic event. The shatter zone was divided into five developmental stages based on the extent of brecciation: Bar Harbor Formation, Sols Cliffs breccia, Seeley Road breccia, Dubois breccia, and Great Head breccia. A digital camera was employed to capture scale images of representative outcrops using a 0.5 m square Plexiglas frame. Individual images were joined in Adobe Photoshop to create a composite image of each outcrop. The composite photo was then exported to Adobe Illustrator, which was used to outline the clasts and produce a digital map of the outcrop for analysis. The fractal dimension (Fd) of each clast was calculated using NIH Image and a Euclidean distance mapping method described by Bérubé and Jébrak (1999) to quantify the morphology of the fragments, or the complexity of the outline. The more complex the fragment outline, the higher the fractal dimension, indicating that the fragment is less "mature" or has had less exposure to erosional processes, such as the injection of an igneous matrix. Sols Cliffs breccia has an average Fd of 1.125, whereas Great Head breccia has an average Fd of 1.040, with the stages between having intermediate values. The more complex clasts of the Sols Cliffs breccia with a small amount (26.38%) of matrix material suggests that it is the first stage in a sequence of brecciation ending at the more mature, matrix-supported (71.37%) breccia of Great Head. The results of this study will be used to guide isotopic and geochemical analysis of the matrix igneous material in the attempt to better understand the dynamic processes that occur in subvolcanic environments and the mechanisms involved in breccia formation.
The influence of maximum running speed on eye size: a test of Leuckart's Law in mammals.
Heard-Booth, Amber N; Kirk, E Christopher
2012-06-01
Vertebrate eye size is influenced by many factors, including body or head size, diet, and activity pattern. Locomotor speed has also been suggested to influence eye size in a relationship known as Leuckart's Law. Leuckart's Law proposes that animals capable of achieving fast locomotor speeds require large eyes to enhance visual acuity and avoid collisions with environmental obstacles. The selective influence of rapid flight has been invoked to explain the relatively large eyes of birds, but Leuckart's Law remains untested in nonavian vertebrates. This study investigates the relationship between eye size and maximum running speed in a diverse sample of mammals. Measures of axial eye diameter, maximum running speed, and body mass were collected from the published literature for 50 species from 10 mammalian orders. This analysis reveals that absolute eye size is significantly positively correlated with maximum running speed in mammals. Moreover, the relationship between eye size and running speed remains significant when the potentially confounding effects of body mass and phylogeny are statistically controlled. The results of this analysis are therefore consistent with the expectations of Leuckart's Law and demonstrate that faster-moving mammals have larger eyes than their slower-moving close relatives. Accordingly, we conclude that maximum running speed is one of several key selective factors that have influenced the evolution of eye size in mammals. Copyright © 2012 Wiley Periodicals, Inc.
Hydromagmatic and peperitic interactions: A new experimental approach.
NASA Astrophysics Data System (ADS)
Downey, W. S.; Spieler, O.; Kunzmann, T.; Mastin, L.; Dingwell, D. B.; Shaw, C. J.
2007-12-01
Hydromagmatic interactions in general and the formation of peperites in particular, are poorly understood. We have designed and tested a new series of experiments to analyze the formation of fine hydromagmatic basaltic ash, and the processes occurring during magma/wet-sediment interaction. This study evaluates the mechanism of "turbulent shedding", (Mastin, 2007) where fine hydromagmatic ash is produced by the removal of quenched glassy rinds on clast surfaces that are rapidly deforming within turbulent transport. During magma/wet-sediment interactions the rapid heat transfer rate can lead to oscillations in the vapor film, and its possible collapse to generate a vapor explosion, between the two media producing either fluidal or brecciated textures of the silicate. In these experiment 0.5 kg of basaltic melt is generated in an internally heated autoclave at temperatures of up to 1300 (º)C and ejected via gas pressure into a low pressure tank. The autoclave can be pressurized to 50 MPa and is designed to eject the melt directly into water, wet sediments or water spray. The later technique is commonly used by powder metallurgists to produce micron-sized fragments of metallic glass, and is the desired technique to aid in the production of fine-ash via "turbulent shedding". Two molybdenum wound furnaces are used to produce the melt while a third Kanthal-wound furnace is used to control the temperature at the ejection orifice. Six thermocouples are used to control the furnaces and to record the thermal gradient throughout the setup. Pressure transducers in the high and low pressure section record the expansion volume due thermal interaction. The autoclave is separated from the low pressure tank with a diaphragm to prevent water from entering the high temperature zone. The goal of these experiments is to give insight into the role of hydrodynamic process during magma/water interaction and in the generation of peperites. The first experiments have resulted in the formation of Pelee's hairs and tears reflecting the high strain rates accompanying melt ejection. Post-experiment, grain size and surface area analysis of the hydromagmatic clasts is in progress to quantify the thermal interaction area, the influence of the turbulence and the heat transfer rate on magma-water mixing. The sediments will be impregnated with epoxy to yield textural insights for comparison with field descriptions of peperites.
Variations in clast morphology for different till fractions: implementation of digital imagery
NASA Astrophysics Data System (ADS)
Dominiczak, Aleksander
2014-05-01
The form of clastic particles provides information about debris history including abrasion and transportation which are vital to geomorphological research because of its usefulness for differentiating subglacial debris form englacialy, supraglacialy and fluvially transported sediments, and for understanding subglacial processes. There are numerous attempts to clastic particles form assessment, both qualitative and quantitative and advance in technology enables the use of digital imaging and image processing in order to calculate the precise indicators of shape and roundness (small-scale surface features superimposed on shape and roundness are not a subject of this study). Computer calculations are fast, reliable and objective and its use decrease probability of errors. They are applicable to till deposits analysis and may help in understanding the processes of glacial deposition. Till deposits consist of a mixture of various fractions of sediment, where coarser and thinner grains are together activated, entrained in ice, transported, deposited and post-depositional transformed together in the same time and conditions. That implies similarity of processes acting on the particles, but not necessarily theirs effects. Physical properties of grain are of great significance for its vulnerability to acting forces. An important feature of the tills is grain size, which has a high volatility in a sample. The hypothesis of this issue suggests it is possible that different fractions of till sediment have significantly different form characteristics. Verification of the thesis is important because standardly only one fraction is selected to analysis and to draw conclusions from. Main objective is to test differences in clast morphology for different till fraction. In order to answer the research problem, the author has examined samples from a contemporary glaciated region, Nordenskiöld glacier foreland in central Spitsbergen. During the field work samples were collected from surface sediments, cobbles axes were measured, their roundness was evaluated with comparison charts and additionally photographs of debris from a bird's eye were taken. Further analyzes were performed in the laboratory using automated imaging for fractions less than 2 mm and digital photography for gravels. All the information, describing in detail the shape of the particles in the different fractions of tills, allowed to verify of the existence of statistically significant differences between the deposits of different sizes. The study was funded by the National Science Centre as granted by decision number DEC-2011/01/D/ST10/06494
Variability of the occurrence frequency of solar flares as a function of peak hard X-ray rate
NASA Technical Reports Server (NTRS)
Bai, T.
1993-01-01
We study the occurrence frequency of solar flares as a function of the hard X-ray peak count rate, using observations of the Solar Maximum Mission. The size distributions are well represented by power-law distributions with negative indices. As a better alternative to the conventional method, we devise a maximum likelihood method of determining the power-law index of the size distribution. We find that the power-law index of the size distribution changes with time and with the phase of the 154-day periodicity. The size distribution is steeper during the maximum years of solar cycle 21 (1980 and 1981) than during the declining phase (1982-1984). The size distribution, however, is flatter during the maximum phase of the 154-day periodicity than during the minimum phase. The implications of these findings are discussed.
NASA Astrophysics Data System (ADS)
Lamp, J. L.; Marchant, D. R.; Mackay, S. L.; Head, J. W.
2012-12-01
Mechanical weathering at high latitudes is largely accomplished through the freeze and thaw of water and ice. However, in upland regions of the ice-free McMurdo Dry Valleys (MDV), Antarctica, the extreme hyper-arid conditions limit the role of water in landscape change. In these regions, secondary weathering processes, such as thermal fatigue, may take on relatively significant roles in mechanical weathering and landscape evolution. Here, we examine morphological changes at the surface of dolerite cobbles along a multi-million year soil chronosequence in Mullins and Beacon Valleys, Antarctica (78°S, 160°E). The data show that dolerite clasts with exposure histories >45,000 years exhibit disintegration via flaking of mm-scale surface fragments (altered crusts) at a rate of ~4 cm/Ma. To assess the likelihood of thermal fatigue in this process, we collected high-frequency (15-second interval) temperature data at the surface and at depth on multiple dolerite clasts. Allied meteorological data, also collected at these sites, include atmospheric temperature and relative humidity, wind-speed and direction, and solar intensity. Temperatures at the top and bottom of flakes change rapidly due to solar heating and convective cooling by wind. Vertical temperature gradients across the 1-to-2-mm thick flakes surpassed 8°C during the 28-day study interval (11/2010-12/2010) and maximum rates of surface temperature change exceeded 5°C/min. The latter value greatly exceeds the accepted value for producing thermal fracture in igneous rocks (Richter and Simmons, 1974). The field data are used as input to a 1-D thermal stress model which shows that stresses in the outer few millimeters of the rock approach the tensile strength of dolerite. In addition, the production of altered rinds in the upper millimeters of rock surfaces (Salvatore et al., in review) may modify thermal properties and help facilitate fracture at the interface between altered and unaltered material. Visual inspection of sediment surrounding weathered cobbles show that the detached flakes add to the surrounding regolith, increasing in abundance with inferred soil age. This process thus modifies clast shape and promotes self-burial, which in turn reduces the overall surface area exposed to solar radiation and provides a negative feedback to further erosion by this process. Our measurements imply that the detachment of altered material in the area represents a dynamic equilibrium process that may have important implications for rates of landscape evolution in the MDV. In addition, the findings can be applied toward the study of cosmogenic nuclide dating in the MDV. Assuming a typical, total weathering rate of ~15 cm/Ma for the region (Summerfield et al., 1999), our study suggests that as much as 30% of total rock degradation may be accomplished through thermal fatigue in extremely dry, upland regions of the MDV.
Updates to concepts on phreatomagmatic maar-diatremes and their pyroclastic deposits
NASA Astrophysics Data System (ADS)
Valentine, Greg A.; White, James D. L.; Ross, Pierre-Simon; Graettinger, Alison H.; Sonder, Ingo
2017-08-01
Recent work is changing our understanding of phreatomagmatic maar-diatreme eruptions and resulting deposits. In previous models, explosions were often inferred to take place only at the base of a diatreme, with progressive downward migration due to a cone of depression in the host aquifer. However, diatremes themselves contain much water that is heterogeneously distributed, and field evidence supports the existence of explosion sites at many vertical and lateral locations within them. Crater sizes have been used to estimate explosion energies, but this only works for single-explosion craters where the depth of explosion is independently known, and has limited value for multi-explosion maar-diatremes. Deep-seated lithic clasts in tephra ring beds have been taken to indicate the depth of the explosion that produced that bed. However, only relatively shallow explosions actually vent to the surface, and deep-seated lithics are gradually brought to shallow depths through step-wise mixing of multiple subsurface explosions. Grain-size of tephra-ring deposits is often inferred to indicate fragmentation efficiency. However, other factors strongly influence deposit grain size, including the scaled depth of an explosion and the interaction of an erupting jet with topography around a vent (e.g., crater), along with long recognized effects of mechanical properties of host rocks and recycling within the vent/diatreme. These insights provide a foundation for future research into this important volcano type.
Atwater, Brian F.; Cisternas, Marco; Yulianto, E.; Prendergast, A.; Jankaew, K.; Eipert, A.; Fernando, Warnakulasuriya; Tejakusuma, Iwan; Schiappacasse, Ignacio; Sawai, Yuki
2013-01-01
The Chilean tsunami of 22 May 1960 reamed out a breach and built up a fan as it flowed across a sparsely inhabited beach-ridge plain near Maullín, midway along the length of the tsunami source. Eyewitnesses to the flooding, interviewed mainly in 1988 and 1989, identified levels that the tsunami had reached on high ground, trees, and build- ings. The maximum levels fell, from about 10 m to 2 m, between the mouth of the tidal Río Maullín and an inundation limit nearly 5 km inland across the plain. Along this profile at Caulle, where the maximum flow depth was a few meters deep, airphotos taken in 1961 show breaches across a road on a sandy beach ridge. Inland from one of these breaches is a fan with branched distributaries. Today its breach holds a pond that has been changing into a marsh. The 1960 fan deposits, as much as 60 cm thick, are traceable inland for 120 m from the breach. They rest on a pasture soil above two additional sand bodies, each atop its own buried soil. The earlier of the pre-1960 sand bodies probably dates to AD 1270-1400, in which case its age is not statistically different from that of a sand sheet previously dated elsewhere near Maullín. The breach likely originated then and has been freshened twice. Evidence that the breach was freshened in 1960 includes a near-basal interval of cobble-size clasts of sediment and soil, most of them probably derived from the organic fill of pre-1960 breach. The cobbly interval is overlain by sand with ripple-drift laminae that record landward flow. The fan of another breach near Maullín, at Chanhué, also provides stratigraphic evidence for recurrent tsunamis, though not necessarily for the repeated use of the breach. These findings were anticipated a half century ago by descrip- tion of paired breaches and fans that the 1960 Chilean tsunami produced in Japan. Breaches and their fans may provide lasting evidence for tsunami inundation of beach-ridge plains. The breaches might be detectable by remote sensing, and the thickness of the fan deposits might help them outlast an ordinary tsunami sand sheet. Keywords: Tsunami, Erosion, Deposition, Hazard, Chile.
NASA Astrophysics Data System (ADS)
Lipschutz, Michael E.; Verkouteren, R. Michael; Sears, Derek W. G.; Hasan, Fouad A.; Prinz, Martin.; Weisberg, M. K.; Nehru, Cherukupalli E.; Delaney, Jeremy S.; Grossman, Lawrence; Boily, Michel
1988-07-01
The contents of Ag, Au, Bi, Cd, Co, Cs, Ga, In, Rb, Sb, Se, Te, Tl, U, and Zn in large chondritic clasts from the Cumbersand Falls aubrite were determined by radiochemical neutron activation analysis, and the results, together with the results of a mineralogical investigation, were compared with respective data obtained for three primitive inclusions from the ALH A78113 aubrite. The results indicated that the clasts from both aubrite sources constitute a single chondritic suite. The analyses data, together with the results of thermoluminescence data for Cumberland Falls chondritic inclusions and achondritic host, indicate that inclusions in Cumberland Falls and in ALH A78113 aubrite represent a primitive chondrite sample suite whose properties were established during primary nebular accretion and condensation over a broad redox range.
NASA Technical Reports Server (NTRS)
Nunes, P. D.; Tatsumoto, M.; Unruh, D. M.
1974-01-01
Portions of highland breccia boulder 7 collected during the Apollo 17 mission were studied using U-Th-Pb and Rb-Sr systematics. A Rb-Sr internal isochron age of 3.89 plus or minus 0.08 b.y. with an initial Sr-87/Sr-86 of 0.69926 plus or minus 0.00008 was obtained for clast 1 (77135,57) (a troctolitic microbreccia). A troctolitic portion of microbreccia clast 77215,37 yielded a U-Pb internal isochron of 3.8 plus or minus 0.2 b.y. and an initial Pb-206/Pb-207 of 0.69. These internal isochron ages are interpreted as reflecting metamorphic events, probably related to impacts, which reset Rb-Sr and U-Pb mineral systems of older rocks.
Magnesian anorthosites and a deep crustal rock from the farside crust of the moon
NASA Astrophysics Data System (ADS)
Takeda, Hiroshi; Yamaguchi, A.; Bogard, D. D.; Karouji, Y.; Ebihara, M.; Ohtake, M.; Saiki, K.; Arai, T.
2006-07-01
Among over thirty lunar meteorites recovered from the hot deserts and Antarctica, Dhofar 489 is the most depleted in thorium (0.05 ppm), FeO, and rare earth elements (REE). Dhofar 489 is a crystalline matrix anorthositic breccia and includes clasts of magnesian anorthosites and a spinel troctolite. The Mg / (Mg + Fe) mol% (Mg numbers = 75-85) of olivine and pyroxene grains in this meteorite are higher than those of the Apollo ferroan anorthosites. Such materials were not recovered by the Apollo and Luna missions. However, remote sensing data suggest that the estimated concentrations of Th and FeO are consistent with the presence of such samples on the farside of the Moon. The differentiation trend deduced from the mineralogy of the anorthositic clasts define a magnesian extension of the ferroan anorthosite (FAN) trend constructed from the Apollo samples. The presence of magnesian anorthositic clasts in Dhofar 489 still offers a possibility that the farside trend with magnesian compositions is more primitive than the FAN trend, and may require a revision of this classical differentiation trend. The Ar-Ar age of Dhofar 489 is 4.23 ± 0.034 Gyr, which is older than most Ar ages reported for highland rocks returned by Apollo. The old Ar-Ar age of impact formation of this breccia and the presence of a fragment of spinel troctolite of deep crustal origin suggest that a basin forming event on the farside excavated the deep crust and magnesian anorthosites before formation of Imbrium.
Elephant Moraine 87521: The first lunar meteorite composed of predominantly mare material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, P.H.; Kallemeyn, G.W.
1989-12-01
The trace-element chemistry and detailed petrography of brecciated Antarctic meteorite EET87521 reveal that it is not, as originally classified, a eucrite. Its Fe/Mn ratio and bulk Co content are fair higher than expected for a eucrite. Only one known type of extraterrestrial material resembles EET87521 in all important respects for which constraints exist: very-low-Ti (VLT) lunar mare basalts. Even compared to VLT basalts, EET87521 is enriched in REE. However, other varieties of high-alumina, low-Ti mare basalt are known that contain REE at even higher concentrations than EET87521. Several clasts in EET87521 preserve clear vestiges of coarse-grained igneous, possibly orthocumulate, textures.more » Mineralogically, these coarse-grained clasts are diverse; e.g., olivine ranges from Fo{sub 15} in one to Fo{sub 67} in another. One clast with an anomalously fine-grained texture is anorthositic and contains exceptionally Mg-rich pyroxene and Na-poor plagioclase, along with the only FeNi-metal in the thin section. Its FeNi-metals have compositions typical of metals incorporated into lunar soils and polymict breccias as debris from metal-rich meteorites. However, the low Ni and Ir contents of our bulk-rock analysis imply that the proportion of impact-projectile matter in our chip sample is probably small. The moderate degree of lithologic diversity among the lithic lasts and the bulk composition in general indicate that EET87521 is dominated by a single rock type: VLT mare basalt.« less
NASA Astrophysics Data System (ADS)
Edgar, C. J.; Cas, R. A. F.; Olin, P. H.; Wolff, J. A.; Martí, J.; Simmons, J. M.
2017-10-01
The 312 ka Fasnia eruption from the Las Cañadas Caldera on Tenerife, Canary Islands, Spain, produced a complex sequence of twenty-two intercalated units, including 7 pumice fall, 7 ignimbrite and 8 ash surge and fall deposits that define two distinct eruption sequences (Lower and Upper Fasnia sequences). The fallout units themselves are internally complex, reflecting waxing and waning of the eruption column, while many of the ignimbrites reflect multiple intra-plinian partial column collapse events associated with the injection of lithic clasts into the eruption column. The Lower and Upper Fasnia eruption phases were each terminated by caldera collapse and complete column collapse events. Probable blockage of the conduit and vent system during Lower Fasnia caldera collapse event briefly terminated the eruption, resulting in a short-lived period of erosion and sedimentation prior to the onset of the Upper Fasnia phase. The transition to the Upper Fasnia eruption phase coincided with the eruption of more geochemically homogeneous pyroclasts. In total, 62 km3 of tephra were erupted, including 49 km3 of juvenile clasts and > 12 km3 of lithic clasts. The DRE volume of magma erupted was 13 km3 (Lower Fasnia > 5 km3, Upper Fasnia > 8 km3), two thirds of which ( 9-10 km3) was deposited purely by fallout. The Fasnia Member is one of the most complex plinian sequences known.
Gauging the Nearness and Size of Cycle Maximum
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
2003-01-01
A simple method for monitoring the nearness and size of conventional cycle maximum for an ongoing sunspot cycle is examined. The method uses the observed maximum daily value and the maximum monthly mean value of international sunspot number and the maximum value of the 2-mo moving average of monthly mean sunspot number to effect the estimation. For cycle 23, a maximum daily value of 246, a maximum monthly mean of 170.1, and a maximum 2-mo moving average of 148.9 were each observed in July 2000. Taken together, these values strongly suggest that conventional maximum amplitude for cycle 23 would be approx. 124.5, occurring near July 2002 +/-5 mo, very close to the now well-established conventional maximum amplitude and occurrence date for cycle 23-120.8 in April 2000.
An improved maximum power point tracking method for a photovoltaic system
NASA Astrophysics Data System (ADS)
Ouoba, David; Fakkar, Abderrahim; El Kouari, Youssef; Dkhichi, Fayrouz; Oukarfi, Benyounes
2016-06-01
In this paper, an improved auto-scaling variable step-size Maximum Power Point Tracking (MPPT) method for photovoltaic (PV) system was proposed. To achieve simultaneously a fast dynamic response and stable steady-state power, a first improvement was made on the step-size scaling function of the duty cycle that controls the converter. An algorithm was secondly proposed to address wrong decision that may be made at an abrupt change of the irradiation. The proposed auto-scaling variable step-size approach was compared to some various other approaches from the literature such as: classical fixed step-size, variable step-size and a recent auto-scaling variable step-size maximum power point tracking approaches. The simulation results obtained by MATLAB/SIMULINK were given and discussed for validation.
NASA Astrophysics Data System (ADS)
Willcock, M. A. W.; Bargossi, G. M.; Weinberg, R. F.; Gasparotto, G.; Cas, R. A. F.; Giordano, G.; Marocchi, M.
2015-11-01
Intra-caldera settings record a wealth of information on caldera-forming processes, yet field study is rarely possible due to lack of access and exposure. The Permian Ora Formation, Italy, preserves > 1000 m of vertical section through its intra-caldera succession. This provides an excellent opportunity to detail its mineralogical and geochemical architecture and gain understanding of the eruption evolution and insight into the pre-eruptive magma system. Detailed juvenile clast phenocryst and matrix crystal fragment point count and image analysis data, coupled with bulk-rock chemistry and single mineral compositional data, show that the Ora ignimbrite succession is rhyolitic (72.5-77.7% SiO2), crystal-rich (~ 25-57%; average 43%) and has a constant main mineral population (volcanic quartz + sanidine + plagioclase + biotite). Although a seemingly homogeneous ignimbrite succession, important subtle but detectable lateral and vertical variations in modal mineralogy and bulk-rock major and trace elements are identified here. The Ora Formation is comprised of multiple lithofacies, dominated by four densely welded ignimbrite lithofacies. They are crystal-rich, typically lithic-poor (< 2%), and juvenile clast-bearing (average 20%). The ignimbrite lithofacies are distinguished by variation in crystal fragment size and abundance and total lithic content. The intra-caldera stratigraphic architecture shows both localised and some large-scale lithofacies correlation, however, it does not conform to a 'layer-cake' stratigraphy. The intra-caldera succession is divided into two depo-centres: Southern and Northern, with proximal extra-caldera deposits preserved to the south and north of the system. The Southern and Northern intra-caldera ignimbrite successions are discriminated by variations in total biotite crystal abundance. Detailed mineralogical and chemical data records decreases across the caldera system from south to north in biotite phenocrysts in the groundmass of juvenile clasts (average 12-2%), matrix biotite (average 7.5-2%) and plagioclase crystal fragments (average 18-6%), and total crystal fragment abundance in the matrix (average 47-37%); a biotite compositional change to iron-rich (0.57-0.78 Fe); and bulk-rock element decreases in Fe2O3, MgO, P2O5, Ce, Hf, V, La and Zr, and increases in SiO2, Y and Nb, with TiO2. Together, the changes enable subtle distinction of the Southern and Northern successions, indicating that the Northern deposits are more evolved. Furthermore, the data reveals discrimination within the Northern succession, with the northwestern extra-caldera fine-crystal-rich lithofacies, having a distinct texture, componentry and composition. The componentry variation, mineralogical and chemical ranges identified here are consistent with an eruption from a heterogeneous magma system. Our results suggest that the Ora magma was likely stored in multiple chambers within a genetically related magma reservoir network. The mineralogical and chemical architecture together with stratigraphic relationships, enable interpretation of eruption sequence. Caldera eruption is proposed to have commenced in the south and progressed to the north, forming the two pene-contemporaneous caldera depressions. Moreover, this data illustrates heterogeneity and local zonation from base-to-top of the main intra-caldera and extra-caldera successions. These variations together with crystal fragment size variations between ignimbrite lithofacies support the hypothesis of a multi-vent eruption process, incremental caldera in-filling by subtly compositionally different pyroclastic flow pulses, and a lower intensity eruption style (Willcock et al., 2013, 2014).
Mclean, Elizabeth L; Forrester, Graham E
2018-04-01
We tested whether fishers' local ecological knowledge (LEK) of two fish life-history parameters, size at maturity (SAM) at maximum body size (MS), was comparable to scientific estimates (SEK) of the same parameters, and whether LEK influenced fishers' perceptions of sustainability. Local ecological knowledge was documented for 82 fishers from a small-scale fishery in Samaná Bay, Dominican Republic, whereas SEK was compiled from the scientific literature. Size at maturity estimates derived from LEK and SEK overlapped for most of the 15 commonly harvested species (10 of 15). In contrast, fishers' maximum size estimates were usually lower than (eight species), or overlapped with (five species) scientific estimates. Fishers' size-based estimates of catch composition indicate greater potential for overfishing than estimates based on SEK. Fishers' estimates of size at capture relative to size at maturity suggest routine inclusion of juveniles in the catch (9 of 15 species), and fishers' estimates suggest that harvested fish are substantially smaller than maximum body size for most species (11 of 15 species). Scientific estimates also suggest that harvested fish are generally smaller than maximum body size (13 of 15), but suggest that the catch is dominated by adults for most species (9 of 15 species), and that juveniles are present in the catch for fewer species (6 of 15). Most Samaná fishers characterized the current state of their fishery as poor (73%) and as having changed for the worse over the past 20 yr (60%). Fishers stated that concern about overfishing, catching small fish, and catching immature fish contributed to these perceptions, indicating a possible influence of catch-size composition on their perceptions. Future work should test this link more explicitly because we found no evidence that the minority of fishers with more positive perceptions of their fishery reported systematically different estimates of catch-size composition than those with the more negative majority view. Although fishers' and scientific estimates of size at maturity and maximum size parameters sometimes differed, the fact that fishers make routine quantitative assessments of maturity and body size suggests potential for future collaborative monitoring efforts to generate estimates usable by scientists and meaningful to fishers. © 2017 by the Ecological Society of America.
A fossil venting system in the Feragen Ultramafic Body, Norway?
NASA Astrophysics Data System (ADS)
Dunkel, Kristina G.; Jamtveit, Bjørn; Austrheim, Håkon
2017-04-01
Carbonation of ultramafic rocks in ophiolites and on the seafloor has recently been the focus of extensive research, as this alteration reaction not only influences the carbon flux between hydro- and lithosphere, but also provides natural analogues for industrial CO2 sequestration. It is a significant part of the hydrothermal circulation in the oceanic crust, as demonstrated by carbonate precipitation at hydrothermal vents. We provide microstructural and geochemical data from a previously little known ophicarbonate occurrence in the Feragen Ultramafic Body, Sør-Trøndelag, Norway. Along the northern edge of the Feragen Ultramafic Body, strongly serpentinised peridotites are carbonated. In places, the carbonation took place pervasively, leading to the formation of soapstones consisting mainly of talc and magnesite. More common is the carbonation of serpentinite breccias. Within the clasts, some of the serpentine mesh centres are replaced by magnesite, and, subordinately, dolomite or calcium carbonate. Four types of matrix have been identified in different localities: fine-grained magnesite, coarse-grained calcium carbonate, brucite occurring in large fans (up to 1 mm in diameter), and dolomite. Inclusion trails in the coarse-grained calcium carbonates record botryoidal growth, indicating crystallisation from a fluid in open space, and a hexagonal precursor phase, suggesting that aragonite was replaced by calcite. Brucite-cemented serpentinite breccias occur very locally in two outcrops with a size less than 10 m2. Many of the brucite fans have a similar arrangement of inclusions, with an area rich in dolomite inclusions in the centre of the brucite crystals, and magnetite inclusions concentrated in the tips. Dolomite as a matrix phase often grows inwards from hexagonal, rectangular, rhomboidal, or irregular pores. Many dolomite grains are probably cast pseudomorphs after (calcitised) aragonite. Some carbonate crystals are crosscut or replaced by serpentine. The carbonated serpentinites are discordantly overlain by carbonate-cemented ultramafic conglomerates. The clasts comprise variably serpentinised and carbonated peridotites as well as some fine-grained magnesite. The matrix phase is dominantly dolomite. Oxygen isotopes ratios record significantly lower temperatures for the cementation of the conglomerates than for the underlying in situ carbonated serpentinites and the carbonated ultramafic clasts in the conglomerate. The ophicarbonates in the Feragen Ultramafic Body record strong variations in fluid chemistry and/or pressure and temperature conditions, both spatially and temporally. The occurrence of different carbonate minerals in close proximity indicates heterogeneous alteration conditions and focussed fluid flow. Inclusions and replacement reactions record fluctuating alteration conditions. While the formation of magnesite is consistent with a fluid influenced by the dissolution of serpentinite, the growth of calcium carbonate and particularly of brucite may indicate a special fluid formed by the mixing of serpentinising fluids and seawater, as observed at hydrothermal venting systems.
NASA Astrophysics Data System (ADS)
Wacey, David; Saunders, Martin; Kong, Charlie
2018-04-01
The ∼3430 Ma Strelley Pool Formation (SPF), Pilbara, Western Australia contains some of the most diverse microfossil evidence for early life on Earth. Here we report an assemblage of tephra (scoria, tubular pumice, plus vesicular and non-vesicular volcanic glass shards) from two stratigraphic levels in the SPF, including morphotypes that closely resemble previously described microfossils from this unit and elsewhere. Clasts of scoria are characterised by numerous spheroidal vesicles, with subordinate eye- and lens-shaped morphotypes, commonly lined with anatase (TiO2) and small amounts of organic material. Their diameters range from 5-180 μm with 80% in the 10-50 μm range. Fragments of tubular pumice are also lined with anatase + / - carbon and have tube diameters of 5-15 μm. Other volcanic ejecta particles include a multitude of sub-angular shard particles with or without vesicles, plus more rounded vase-shaped, eye-shaped, and hair-like morphologies; once again, most of these are coated by anatase + / - carbon and are several tens of micrometres in size. Many of the tephra fragments are now entirely silicified with no compositional difference between the former volcanic glass, the vesicle infill and the clast matrix. However, some examples retain a partial aluminosilicate composition, either as a vesicle infilling phase or as isolated lath-like grains within the formerly glassy groundmass. Isolated occurrences of some of these tephra morphotypes strongly resemble simple microbial morphologies including pairs and clusters of cells (cf. scoria), filamentous microbes (cf. tubular pumice) and larger sheaths/cysts (cf. sub-rounded glass shards). Furthermore, some tephra-containing clasts occur in a SPF sandstone unit that hosts previously described microfossils, while others are interbedded with chert layers from which microfossils have also been described. In light of our new volcanogenic data, we evaluate the robustness of previous microfossil evidence from the SPF in the East Strelley greenstone belt. We find that the majority of previously illustrated microfossils from this greenstone belt possess multiple features that are consistent with a biological interpretation and are unlikely to be volcanogenic, but at least one previously illustrated specimen is here reinterpreted as volcanic in origin. The importance of this work is that it serves to highlight the common occurrence of volcanogenic microstructures resembling biological fossils (i.e. pseudo-fossils) in Archean environments that are habitable for life. Such structures have until now been largely overlooked in the assessment of putative Precambrian microfossils. Our data show that tephra-derived microstructures should be considered as a null hypothesis in future evaluations of potential signs of life on the early Earth, or on other planets.
NASA Astrophysics Data System (ADS)
Callot, Pierre; Odonne, Francis; Sempere, Thierry
2008-12-01
In the back-arc basin of southern Peru, the bulk of the mid-Cretaceous carbonate platform collapsed near the Turonian-Coniacian boundary (~ 90-89 Ma), due to slope creation and resulting oversteepening. The resulting mass-wasting deposits, namely the Ayabacas Formation, consist of a megabreccia which is organised from NE to SW in relation with two major fault systems. Facies of sediment reworking (such as brecciation, liquification, sedimentary dykes and soft-sediment deformation) are described and four types of resedimentation facies are define. In the northeastern part of the study area, deposits mainly consist of a mixture of very heterometric clasts and blocks (millimetric to kilometric in size), mainly carbonate but also sandy-marly in nature, floating in sandy-marly matrix that exhibits features of liquification (sedimentary dykes and flows) and plastic deformation. Here, resedimentation facies are characterized by deformations and a brecciated facies at each observation scale (from aerial photographs to thin sections) and are therefore defined as fractal or multi-scale breccias. Some clasts and large amounts of the matrix were derived from the underlying clay-rich sandstones of the Murco Formation. These materials were prone to liquification and plastic deformation, allowing them to act as a sliding sole that facilitated the slides and the downslope movement of large limestone rafts. In the southwestern part of the study area, only limestone breccias are observed, in alternation with well-stratified levels. The sliding sole of plastically deformable siliciclastic sediments that previously acted as a lubricating layer was not present here, as materials were more deeply buried. Variations in the degree of sediment lithification from northeast to southwest are inferred to have existed before the collapse and also within the sedimentary succession in the northeastern part. In particular, limestones were well-cemented at the base of the carbonate succession and formed a cap that prevented water to escape from the underlying siliciclastic materials. Such a succession allowed the formation of limestone clasts and of a slide sole constituted by water-saturated siliciclastic materials. In the southern part of the study area, the slide surface was located within the Murco Formation in the upper part of the collapse and just above the Murco Formation downslope. The collapse was frontally confined as it was blocked downslope by a topographic high that folded the whole limestone succession. In the northern part of the study area, the slide surface was also within the Murco Formation in the upper part, but occurs within the limestone succession downslope, due to higher subsidence that buried the sediments more deeply. The compressional structures affecting the limestone succession in the south are not observed there, suggesting that the toe of the collapse was not blocked here.
Two coarse pyroclastic flow deposits, northern Mono-Inyo Craters, CA
NASA Astrophysics Data System (ADS)
Dennen, R. L.; Bursik, M. I.; Stokes, P. J.; Lagamba, M.; Fontanella, N.; Hintz, A. R.; Jayko, A. S.
2010-12-01
The ~1350 A.D., rhyolitic North Mono eruption, Mono-Inyo Craters, CA, included the extrusion and destruction of Panum Dome and associated clastic deposits. Overlying the tephras of the North Mono sequence, the Panum deposits include a block-and-ash flow (BAF) deposit, covering ~3.5 km2. Blocks within the deposit are typically lithic rhyolite and banded gray micro-vesicular glass, showing white, almost powdery marks ranging from circular to linear in shape. These marks are interpreted as friction marks resulting from collisions between clasts. The deposit also contains bread-crusted obsidians with pressed-in clasts as well as reticulite with a bread-crusted surface texture. Near the centerline of the deposit is a ridge-topping train of jigsaw fractured blocks, often with reddish-orange alteration. One house sized jigsaw block sits upstream of a long, thinning pile of reddish orange debris; this “flow shadow” indicates that the block remained relatively stationary while the block and ash flow continued to propagate around it. The bread-crusted reticulite is most common at proximal localities. It is proposed that the dome destruction included a debris avalanche emplacing the train of jigsaw fractured blocks and creating a topographic high, the block-and-ash flow (the farthest reaching deposit from this event) which flowed around the debris avalanche deposits, and a final “lateral expansion” of a magma foam, creating the reticulite seen concentrated at proximal locations. Another coarse pyroclastic flow (here termed the “lower blast deposit”) underlies the North Mono tephra. It is more obsidian rich and finer grained than the Panum BAF. The lower blast deposit may have originated from Pumice Pit vent, which is now capped with an older dome ~0.5 km southeast of Panum. The lower blast deposit extends farther from the Panum vent than does the Panum BAF deposit, and apparently was mistaken for the Panum BAF deposit by previous workers. Hence the run-out distance of the Panum BAF is smaller than previously reported. Thus, there are multiple, coarse pyroclastic flow-like deposits at the northern end of the Mono-Inyo Craters, reflecting multiple phases of dome destruction. The lower blast deposit is proposed to be a blast event predating the Panum eruption, possibly originating from Pumice Pit. The Panum BAF consists of three main facies, formed by three separate, sequential events. A debris avalanche deposited a train of jigsaw clasts along a narrow path, followed by a block and ash flow that spread material over a wider region. Finally, molten rhyolite was exposed by the earlier events, resulting in rapid foam expansion and creation of a bread crusted reticulite-bearing facies.
Is There a Maximum Size of Water Drops in Nature?
ERIC Educational Resources Information Center
Vollmer, Michael; Mollmann, Klaus-Peter
2013-01-01
In nature, water drops can have a large variety of sizes and shapes. Small droplets with diameters of the order of 5 to 10 µm are present in fog and clouds. This is not sufficiently large for gravity to dominate their behavior. In contrast, raindrops typically have sizes of the order of 1 mm, with observed maximum sizes in nature of around 5 mm in…
NASA Astrophysics Data System (ADS)
Farrand, William H.; Bell, James F.; Johnson, Jeffrey R.; Rice, Melissa S.; Hurowitz, Joel A.
2013-07-01
From its arrival at the portion of the rim of Endeavour crater known informally as Cape York, the Mars Exploration Rover Opportunity has made numerous visible and near infrared (VNIR) multispectral observations of rock surfaces. This paper describes multispectral observations from Opportunity's arrival at Cape York to its winter-over location at Greeley Haven. Averages of pixels from the Pancam's left and right eyes were joined to form 11 point spectra from numerous observations and were examined via a number of techniques. These included principal components analysis, a sequential maximum angle convex cone approach, examination of spectral parameters, and a hierarchical clustering approach. The end result of these analyses was the determination of six primary spectral (PS) classes describing spectrally unique materials observed on Cape York. These classes consisted of a "standard" outcrop spectrum that was observed on the clasts and matrix comprising the upper unit of the Shoemaker formation, a class representing rock surfaces exposed around Odyssey crater and typified by the rocks of the Tisdale series, pebbles occurring in and weathered out of the upper unit of the Shoemaker formation that appear red in 1009, 904, 754 nm color composites, patches on Tisdale rocks exhibiting a 864 nm band minimum that were spectrally anomalous in root mean square error images derived from spectral mixture analyses, clasts with a high 904 nm band depth occurring in the Greeley Haven location, and gypsum veins typified by the vein Homestake. Comparisons of three of these classes that had well defined band minima between 800 and 1009 nm with spectral library spectra of ferrous silicates and ferric oxide, oxyhydroxide and ferric sulfate minerals indicated tentative matches of the "red" pebbles with orthopyroxenes, of the spectrally anomalous 864 nm band minimum material with hematite or ferric sulfates, and of the high 904 nm band depth material with an orthopyroxene-clinopyroxene mixture. The spectral properties of rock surfaces on Cape York are distinct from those of Burns Formation outcrops observed on the Meridiani Plains. The Cape York outcrop is Noachian in age and study of these materials provides insight into less acidic environmental conditions extant before the formation of the Burns Formation.
First assembly times and equilibration in stochastic coagulation-fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Orsogna, Maria R.; Department of Mathematics, CSUN, Los Angeles, California 91330-8313; Lei, Qi
2015-07-07
We develop a fully stochastic theory for coagulation and fragmentation (CF) in a finite system with a maximum cluster size constraint. The process is modeled using a high-dimensional master equation for the probabilities of cluster configurations. For certain realizations of total mass and maximum cluster sizes, we find exact analytical results for the expected equilibrium cluster distributions. If coagulation is fast relative to fragmentation and if the total system mass is indivisible by the mass of the largest allowed cluster, we find a mean cluster-size distribution that is strikingly broader than that predicted by the corresponding mass-action equations. Combinations ofmore » total mass and maximum cluster size under which equilibration is accelerated, eluding late-stage coarsening, are also delineated. Finally, we compute the mean time it takes particles to first assemble into a maximum-sized cluster. Through careful state-space enumeration, the scaling of mean assembly times is derived for all combinations of total mass and maximum cluster size. We find that CF accelerates assembly relative to monomer kinetic only in special cases. All of our results hold in the infinite system limit and can be only derived from a high-dimensional discrete stochastic model, highlighting how classical mass-action models of self-assembly can fail.« less
From the Cover: Environmental and biotic controls on the evolutionary history of insect body size
NASA Astrophysics Data System (ADS)
Clapham, Matthew E.; Karr, Jered A.
2012-07-01
Giant insects, with wingspans as large as 70 cm, ruled the Carboniferous and Permian skies. Gigantism has been linked to hyperoxic conditions because oxygen concentration is a key physiological control on body size, particularly in groups like flying insects that have high metabolic oxygen demands. Here we show, using a dataset of more than 10,500 fossil insect wing lengths, that size tracked atmospheric oxygen concentrations only for the first 150 Myr of insect evolution. The data are best explained by a model relating maximum size to atmospheric environmental oxygen concentration (pO2) until the end of the Jurassic, and then at constant sizes, independent of oxygen fluctuations, during the Cretaceous and, at a smaller size, the Cenozoic. Maximum insect size decreased even as atmospheric pO2 rose in the Early Cretaceous following the evolution and radiation of early birds, particularly as birds acquired adaptations that allowed more agile flight. A further decrease in maximum size during the Cenozoic may relate to the evolution of bats, the Cretaceous mass extinction, or further specialization of flying birds. The decoupling of insect size and atmospheric pO2 coincident with the radiation of birds suggests that biotic interactions, such as predation and competition, superseded oxygen as the most important constraint on maximum body size of the largest insects.
NASA Astrophysics Data System (ADS)
Zhu, Tingbing; Zhang, Lihong; Zhang, Tanglin; Wang, Yaping; Hu, Wei; Olsen, Rolf Eric; Zhu, Zuoyan
2017-10-01
The present study preliminarily examined the differences in maximum handling size, prey size and species selectivity of growth hormone transgenic and non-transgenic common carp Cyprinus carpio when foraging on four gastropods species (Bellamya aeruginosa, Radix auricularia, Parafossarulus sinensis and Alocinma longicornis) under laboratory conditions. In the maximum handling size trial, five fish from each age group (1-year-old and 2-year-old) and each genotype (transgenic and non-transgenic) of common carp were individually allowed to feed on B. aeruginosa with wide shell height range. The results showed that maximum handling size increased linearly with fish length, and there was no significant difference in maximum handling size between the two genotypes. In the size selection trial, three pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on three size groups of B. aeruginosa. The results show that the two genotypes of C. carpio favored the small-sized group over the large-sized group. In the species selection trial, three pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on thin-shelled B. aeruginosa and thick-shelled R. auricularia, and five pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on two gastropods species (P. sinensis and A. longicornis) with similar size and shell strength. The results showed that both genotypes preferred thin-shelled Radix auricularia rather than thick-shelled B. aeruginosa, but there were no significant difference in selectivity between the two genotypes when fed on P. sinensis and A. longicornis. The present study indicates that transgenic and non-transgenic C. carpio show similar selectivity of predation on the size- and species-limited gastropods. While this information may be useful for assessing the environmental risk of transgenic carp, it does not necessarily demonstrate that transgenic common carp might have lesser environmental impacts than non-transgenic carp.
Chicxulub ejecta at the Cretaceous-Paleogene (K-P) boundary in Northeastern Mexico
NASA Astrophysics Data System (ADS)
Schulte, Peter; Kontny, Agnes
2005-04-01
The combined petrological and rock magnetic study of the Cretaceous-Paleogene (K-P) boundary in northeastern Mexico revealed compositionally and texturally complex Chicxulub ejecta deposits. The predominant silicic ejecta components are Fe-Mg-rich chlorite and Si-Al-K-rich glass spherules with carbonate inclusions and schlieren. Besides these silica phases, the most prominent ejecta component is carbonate. Carbonate occurs as lithic clasts, accretionary lapilli, melt globules (often with quench textures), and as microspar. The composition of the spherules provides evidence for a range of target rocks of mafic to intermediate composition, presumably situated in the northwestern sector of the Chicxulub impact structure. The abundance of carbonate ejecta suggests that this area received ejecta mainly from shallow, carbonate-rich lithologies. Rare µm-sized metallic and sulfidic Ni-Co-rich inclusions in the spherules indicate a possible contamination by meteoritic material. This complex composition underlines the similarities of ejecta in NE Mexico to Chicxulub ejecta from K-P sections worldwide. Although the ejecta display a great variability, the magnetic susceptibility, remanence, and hysteresis properties of the ejecta deposits are fairly homogeneous, with dominantly paramagnetic susceptibilities and a weak ferromagnetic contribution from hematite and goethite. The absence of spinels and the ubiquitous presence of hematite and goethite points to high oxygen fugacity during the impact process. The microfacies and internal texture of the ejecta deposits show welding and fusing of components, as well as evidence for liquid immiscibility between silicic and carbonate melts. No evidence for binary mixing of ejecta phases was found. Therefore, Chicxulub ejecta in NE Mexico probably derived from less energetic parts of the ejecta curtain. However, welding features of ejecta particles and enclosed marl clasts and/or benthic foraminifera from a siliciclastic environment suggest interaction of the - still hot - ! ejecta curtain with northern Mexican shelf sediments. In addition, an initial ground surge-like ejecta-dispersion mode seems possible.
NASA Astrophysics Data System (ADS)
Pati, J. K.; Reimold, W. U.; Greshake, A.; Schmitt, R. T.; Koeberl, C.; Pati, P.; Prakash, K.
2015-05-01
Pseudotachylitic breccia (PTB) occurs in a drill core from the crater floor of the 11 km diameter, Proterozoic Dhala impact structure, India. PTBs were intersected in late Archean granitoids between 348.15 m and 502.55 m depth in the MCB-10 drill core from the center of the Dhala structure. The breccias comprise both cataclastic-matrix as well as melt breccias. The presence of microlites and vesicles in the groundmass and a widely observed flow fabric in the PTB support the presence of melt in the groundmass of some samples. Clasts in PTB are derived from the Archean granitoid basement. PTB matrix, the matrix of impact melt breccia also occurring between 256.50 m and 502.55 m depth, and the target granitoids vary in terms of silica, total alkali, magnesium and iron oxide contents. Chondrite-normalized REE patterns of PTB and target granitoids are similar, but the elemental abundances in the PTB are lower. The restricted size of PTB as veins and pods of up to 2.5 cm width, their occurrence at varied depths over a core length of 150 m, the clast population, and the chemical relationships between PTB and their host rocks all suggest the derivation of these breccias locally from the fractured basement granitoids involving in-situ melting. We favor that this took place due to rapid decompression during the collapse and modification stage of impact cratering, with, locally, additional energy input from frictional heating. Locally, amphibolite and dioritic mylonite occur in the host granitoids and their admixture could have contributed to the comparatively more mafic composition of PTB. Alteration of these crater floor rocks could have involved preferential reduction of silica and alkali element abundances, possibly due to impact-induced hydrothermal activity at crater floor level. This process, too, could have resulted in more mafic compositions.
Ar-Ar dating techniques for terrestrial meteorite impacts
NASA Astrophysics Data System (ADS)
Kelley, S. P.
2003-04-01
The ages of the largest (>100 km) known impacts on Earth are now well characterised. However the ages of many intermediate sized craters (20-100 km) are still poorly known, often the only constraints are stratigraphic - the difference between the target rock age and the age of crater filling sediments. The largest impacts result in significant melt bodies which cool to form igneous rocks and can be dated using conventional radiometric techniques. Smaller impacts give rise to thin bands of melted rock or melt clasts intimately mixed with country rock clasts in breccia deposits, and present much more of a challenge to dating. The Ar-Ar dating technique can address a wide variety of complex and heterogeneous samples associated with meteorite impacts and obtain reasonable ages. Ar-Ar results will be presented from a series of terrestrial meteorite impact craters including Boltysh (65.17±0.64 Ma, Strangways (646±42 Ma), and St Martin (220±32 Ma) and a Late Triassic spherule bed, possibly representing distal deposits from Manicouagan (214±1 Ma) crater. Samples from the Boltysh and Strangways craters demonstrate the importance of rapid cooling upon the retention of old ages in glassy impact rocks. A Late Triassic spherule bed in SW England is cemented by both carbonate and K-feldspar cements allowing Ar-Ar dating of fine grained cement to place a mimimum age upon the age of the associated impact. An age of 214.7±2.5 Ma places the deposit with errors of the age of the Manicouagan impact, raising the possibility that it may represent a distal deposit (the deposit lay around 2000 km away from the site of the Manicouagan crater during the Late Triassic). Finally the limits of the technique will be demonstrated using an attempt to date melt rocks from the St Martin Crater in Canada.
NASA Astrophysics Data System (ADS)
Gaudin, D.; Taddeucci, J.; Scarlato, P.; Del Bello, E.; Houghton, B. F.; Orr, T. R.; Andronico, D.; Kueppers, U.
2015-12-01
Large juvenile bombs and lithic clasts, produced and ejected during explosive volcanic eruptions, follow ballistic trajectories. Of particular interest are: 1) the determination of ejection velocity and launch angle, which give insights into shallow conduit conditions and geometry; 2) particle trajectories, with an eye on trajectory evolution caused by collisions between bombs, as well as the interaction between bombs and ash/gas plumes; and 3) the computation of the final emplacement of bomb-sized clasts, which is important for hazard assessment and risk management. Ground-based imagery from a single camera only allows the reconstruction of bomb trajectories in a plan perpendicular to the line of sight, which may lead to underestimation of bomb velocities and does not allow the directionality of the ejections to be studied. To overcome this limitation, we adapted photogrammetry techniques to reconstruct 3D bomb trajectories from two or three synchronized high-speed video cameras. In particular, we modified existing algorithms to consider the errors that may arise from the very high velocity of the particles and the impossibility of measuring tie points close to the scene. Our method was tested during two field campaigns at Stromboli. In 2014, two high-speed cameras with a 500 Hz frame rate and a ~2 cm resolution were set up ~350m from the crater, 10° apart and synchronized. The experiment was repeated with similar parameters in 2015, but using three high-speed cameras in order to significantly reduce uncertainties and allow their estimation. Trajectory analyses for tens of bombs at various times allowed for the identification of shifts in the mean directivity and dispersal angle of the jets during the explosions. These time evolutions are also visible on the permanent video-camera monitoring system, demonstrating the applicability of our method to all kinds of explosive volcanoes.
NASA Astrophysics Data System (ADS)
Chen, Liuqin; Steel, Ronald J.; Guo, Fusheng; Olariu, Cornel; Gong, Chenglin
2017-02-01
Late Cretaceous continental redbeds, the Guifeng Group of the Yongchong Basin in SE China have been investigated to conduct detailed fan facies description and interpretation. Tectonic activities determined the alluvial fan development along the basin margin, but the alluvial facies was linked with paleoclimate changes. The Guifeng Group is divided into the Hekou, Tangbian and Lianhe formations in ascending order. The Hekou conglomerates are typically polymict, moderately sorted with erosional bases, cut-and-fill features, normal grading and sieve deposits, representing dominant stream-flows on alluvial fans during the initial opening stage of the basin infill. The Tangbian Formation, however, is characterized by structureless fine-grained sediments with dispersed coarse clasts, and couplets of conglomerate and sandstone or siltstone and mudstone, recording a change to a playa and ephemeral lake environments with occasional stream flooding, thus indicating a basin expanding stage. The hallmark of the Lianhe Formation is disorganized, poorly sorted conglomerates lack of erosional bases, and a wide particle-size range from clay to boulders together reflect mud-rich debris-flows accumulating on fans, likely related to reactivation of faulting along the northwestern mountain fronts during a post-rift stage. The depositional system changes from stream-flows up through playa with ephemeral streams to debris-flows during the accumulation of the three formations are thus attributed to different source rocks and climatic conditions. Therefore, the fluvial-dominated fans of the Hekou Formation recorded a subhumid paleoclimate (Coniacian-Santonian Age). The dominant semiarid climate during the Campanian Age produced abundant fine-grained sediments in the playa and ephemeral lake environments of the Tangbian Formation. A climatic change towards more humidity during the late stage of the Guifeng Group (Maastrichtian Age) probably yielded high deposition rate of coarse clasts in debris-flow dominated fans of the Lianhe Formation. Thus the Late Cretaceous climate changes are inferred to have influenced and preserved signals in the alluvial stratigraphy of the Yongchong Basin.
NASA Astrophysics Data System (ADS)
Woodget, A.; Fyffe, C. L.; Kirkbride, M. P.; Deline, P.; Westoby, M.; Brock, B. W.
2017-12-01
Dirty ice areas (where debris cover is discontinuous) are often found on debris-covered glaciers above the limit of continuous debris and are important because they are areas of high melt and have been recognized as the locus of the identified upglacier increase in debris cover. The modelling of glacial ablation in areas of dirty ice is in its infancy and is currently restricted to theoretical studies. Glacial ablation is traditionally determined at point locations using stakes drilled into the ice. However, in areas of dirty ice, ablation is highly spatially variable, since debris a few centimetres thick is near the threshold between enhancing and reducing ablation. As a result, it is very difficult to ascertain if point ablation measurements are representative of ablation of the area surrounding the stake - making these measurements unsuitable for the validation of models of dirty ice ablation. This paper aims to quantify distributed ablation and its relationship to essential dirty ice characteristics with a view to informing the construction of dirty ice melt models. A novel approach to determine distributed ablation is presented which uses repeat aerial imagery acquired from a UAV (Unmanned Aerial Vehicle), processed using SfM (Structure from Motion) techniques, on an area of dirty ice on Miage Glacier, Italian Alps. A spatially continuous ablation map is presented, along with a correlation to the local debris characteristics. Furthermore, methods are developed which link ground truth data on the percentage debris cover, albedo and clast depth to the UAV imagery, allowing these characteristics to be determined for the entire study area, and used as model inputs. For example, debris thickness is determined through a field relationship with clast size, which is then correlated with image texture and point cloud roughness metrics derived from the UAV imagery. Finally, we evaluate the potential of our novel approach to lead to improved modelling of dirty ice ablation.
Massive units deposited by bedload transport in sheet flow mode
NASA Astrophysics Data System (ADS)
Viparelli, E.; Hernandez Moreira, R. R.; Jafarinik, S.; Sanders, S.; Huffman, B.; Parker, G.; Kendall, C.
2017-12-01
A sandy massive (structureless) unit overlying a basal erosional surface and underlying a parallel or cross-laminated unit often characterizes turbidity current and coastal storm deposits. The basal massive units are thought to be the result of relatively rapid deposition of suspended sediment. However, suspension-based models fail to explain how basal massive units can be emplaced for long distances, far away from the source and can contain gravel particles as floating clasts. Here we present experimental results that can significantly change the understanding of the processes forming turbidity current and coastal storm deposits. The experiments were performed in open channel flow mode in the Hydraulics Laboratory at the University of South Carolina. The sediment was a mixture of sand size particles with a geometric mean diameter of 0.95 mm and a geometric standard deviation of 1.65. Five experiments were performed with a flow rate of 30 l/s and sediment feed rates varying between 1.5 kg/min and 20 kg/min. Each experiment was characterized by two phases, 1) the equilibration phase, in which we waited for the system to reach equilibrium condition, and 2) the aggradation phase, in which we slowly raised the water surface base level to induce channel bed aggradation under the same transport conditions observed over the equilibrium bed. Our experiments show that sandy massive units can be the result of deposition from a thick bedload layer of colliding grains, the sheet flow layer. The presence of this sheet flow layer explains how a strong, sustained current can emplace extensive massive units containing gravel clasts. Although our experiments were conducted in open-channel mode, observations of bedload driven by density underflows suggest that our results are directly applicable to sheet flows driven by deep-sea turbidity currents. More specifically, we believe that this mechanism offers an explanation for massive turbidites that heretofore have been identified as the deposits of "high density" turbidity currents.
An online detection system for aggregate sizes and shapes based on digital image processing
NASA Astrophysics Data System (ADS)
Yang, Jianhong; Chen, Sijia
2017-02-01
Traditional aggregate size measuring methods are time-consuming, taxing, and do not deliver online measurements. A new online detection system for determining aggregate size and shape based on a digital camera with a charge-coupled device, and subsequent digital image processing, have been developed to overcome these problems. The system captures images of aggregates while falling and flat lying. Using these data, the particle size and shape distribution can be obtained in real time. Here, we calibrate this method using standard globules. Our experiments show that the maximum particle size distribution error was only 3 wt%, while the maximum particle shape distribution error was only 2 wt% for data derived from falling aggregates, having good dispersion. In contrast, the data for flat-lying aggregates had a maximum particle size distribution error of 12 wt%, and a maximum particle shape distribution error of 10 wt%; their accuracy was clearly lower than for falling aggregates. However, they performed well for single-graded aggregates, and did not require a dispersion device. Our system is low-cost and easy to install. It can successfully achieve online detection of aggregate size and shape with good reliability, and it has great potential for aggregate quality assurance.
Foley, Nora K.; Hofstra, Albert H.; Lindsey, David A.; Seal, Robert R.; Jaskula, Brian W.; Piatak, Nadine M.
2012-01-01
Current global and domestic mineral resources of beryllium (Be) for industrial uses are dominated by ores produced from deposits of the volcanogenic Be type. Beryllium deposits of this type can form where hydrothermal fluids interact with fluorine and lithophile-element (uranium, thorium, rubidium, lithium, beryllium, cesium, tantalum, rare earth elements, and tin) enriched volcanic rocks that contain a highly reactive lithic component, such as carbonate clasts. Volcanic and hypabyssal high-silica biotite-bearing topaz rhyolite constitutes the most well-recognized igneous suite associated with such Be deposits. The exemplar setting is an extensional tectonic environment, such as that characterized by the Basin and Range Province, where younger topaz-bearing igneous rock sequences overlie older dolomite, quartzite, shale, and limestone sequences. Mined deposits and related mineralized rocks at Spor Mountain, Utah, make up a unique economic deposit of volcanogenic Be having extensive production and proven and probable reserves. Proven reserves in Utah, as reported by the U.S. Geological Survey National Mineral Information Center, total about 15,900 tons of Be that are present in the mineral bertrandite (Be4Si2O7(OH)2). At the type locality for volcanogenic Be, Spor Mountain, the tuffaceous breccias and stratified tuffs that host the Be ore formed as a result of explosive volcanism that brought carbonate and other lithic fragments to the surface through vent structures that cut the underlying dolomitic Paleozoic sedimentary rock sequences. The tuffaceous sediments and lithic clasts are thought to make up phreatomagmatic base surge deposits. Hydrothermal fluids leached Be from volcanic glass in the tuff and redeposited the Be as bertrandite upon reaction of the hydrothermal fluid with carbonate clasts in lithic-rich sections of tuff. The localization of the deposits in tuff above fluorite-mineralized faults in carbonate rocks, together with isotopic evidence for the involvement of magmatic water in an otherwise meteoric water-dominated hydrothermal system, indicate that magmatic volatiles contributed to mineralization. At the type locality, hydrothermal alteration of dolomite clasts formed layered nodules of calcite, opal, fluorite, and bertrandite, the latter occurring finely intergrown with fluorite. Alteration assemblages and elemental enrichments in the tuff and surrounding volcanic rocks include regional diagenetic clays and potassium feldspar and distinctive hydrothermal halos of anomalous fluorine, lithium, molybdenum, niobium, tin, and tantalum, and intense potassium feldspathization with sericite and lithium-smectite in the immediate vicinity of Be ore. Formation of volcanogenic Be deposits is due to the coincidence of multiple factors that include an appropriate Be-bearing source rock, a subjacent pluton that supplied volatiles and heat to drive convection of meteoric groundwater, a depositional site characterized by the intersection of normal faults with permeable tuff below a less permeable cap rock, a fluorine-rich ore fluid that facilitated Be transport (for example, BeF42- complex), and the existence of a chemical trap that caused fluorite and bertrandite to precipitate at the former site of carbonate lithic clasts in the tuff.
NASA Technical Reports Server (NTRS)
Dalrymple, G. Brent; Ryder, Graham
1996-01-01
We have obtained high-resolution (21-63 steps) Ar-40/Ar-39 age spectra using a continuous laser system on 19 submilligram samples of melt rocks and clasts from Apollo 17 samples collected from the pre-Imbrian highlands in the easternmost part of the Serenitatis basin. The samples include poikilitic melt rocks inferred to have been formed in the Serenitatis basin-forming impact, aphanitic melt rock whose compositions vary and whose provenance is uncertain, and granulite, gabbro, and melt clasts. Three of the poikilitic melts have similar age spectrum plateau ages (72395,96, 3893 +/- 16 Ma (2sigma); 72535,7, 3887 +/- 16 Ma; 76315,150, 3900 +/- 16 Ma) with a weighted mean age of 3893 +/- 9 Ma, which we interpret as the best age for the Serenitatis basin- forming impact. Published Ar-40/Ar-39 age spectrum ages of Apollo 17 poikilitic melts are consistent with our new age but are much less precise. Two poikilitic melts did not give plateaus and the maxima in their age spectra indicate ages of greater than or equal to 3869 Ma (72558,7) and greater than or equal to 3743 Ma (77135,178). Plateau ages of two poikilitic melts and two gabbro clasts from 73155 range from 3854 +/- 16 Ma to 3937 +/- 16 Ma and have probably been affected by the ubiquitous (older?) clasts and by post- formation heating (impact) events. Plateau ages from two of the aphanitic melt 'blobs' and two granulites in sample 72255 fall in the narrow range of 3850 q 16 Ma to 3869 q 16 Ma with a weighted mean of 3862 +/- 8 Ma. Two of the aphanitic melt blobs from 72255 have ages of 3883 +/- 16 Ma and greater than or equal to 3894 Ma, whereas a poikilitic melt clast (of different composition from the 'Serenitatis' melts) has an age of 3835 +/- 16 Ma, which is the upper limit for the accretion of 72255. These data suggest that either the aphanitic melts vary in age, as is also suggested by their varying chemical compositions, or they formed in the 72255 accretionary event about 3.84-3.85 Ga and older relict material is responsible for the dispersion of ages. In any case the aphanitic melts do not appear to be Serenitatis products. Our age for the Serenitatis impact shows, on the basis of the isotopic age evidence alone, that Serenitatis is greater than 20-25 Ma and probably greatr than 55-60 Ma older than Imbrium (less than or equal to 3870 Ma and probably less than or equal to 3836 Ma (Dalrymple and Ryder, 19931). Noritic granulite sample 78527 has a plateau age of 4146 +/- 17 Ma, representing a minimum age for cooling of this sample in the early lunar crust. So far there is no convincing evidence in the lunar melt rock record for basin-forming impacts significantly older than 3.9 Ga.
Re-examining Distal Facies of the Grand Bay Ignimbrite at Fond St. Jean, Dominica
NASA Astrophysics Data System (ADS)
Ebner, N.; Frey, H. M.; Wirth, K. R.; Waters, L. E.; Manon, M. R. F.
2017-12-01
The Grand Bay ignimbrite in southern Dominica is a relatively young (43 ± 13 ka by U-Th of zircon), voluminous (0-.5-1 km3 on-land) and laterally extensive pyroclastic flow deposit spanning over 20 km2 that has been associated with the Micotrin volcanic center or Plat Pays complex. The Grand Bay ignimbrite typically occurs as a massive valley fill facies, approximately 9-14 meters thick, exposed on the southern coastal road, rich in white-light gray, relatively crystal rich (25-31%) andesitic (62-63.5 wt% SiO2, 16.7 wt% Al2O3, 6.5 wt % Fe2O3) pumice, whose mineral assemblage is dominated by plagioclase (22-25%), orthopyroxene (3-4%), and clinopyroxene (1-1.5%), in an unconsolidated gray ashy matrix. In the literature, distal facies of the Grand Bay ignimbrite have been proposed at Fond St. Jean (FSJ), but this supposition has recently been called into question. The 9 m thick stratified Fond St. Jean ignimbrite, (38,890 k.a. ± 600 B.P. by14C), is weathered yellow orange and overlies a 4 m thick lithified beach deposit on a sharp contact. Andesitic pumice clasts (60.5-64.5 wt% SiO2, 18 wt% Al2O3, 5.5 wt % Fe2O3) from the base of the FSJ ignimbrite contain similar mineral assemblages to Grand Bay clasts, however, FSJ pumices are relatively less crystal-rich (16-19%), contain significantly less plagioclase (13-16%), opx (1.0-1.5%), cpx (0.1 - 0.6%), and, most strikingly, up to 1% hornblende, which was not present in any Grand Bay samples. The lowermost three meters of the FSJ ignimbrite sequence is composed of meter thick sections of clast (5-7 cm pumice and ≤1 cm lithics) supported beds (70 cm), grading upwards into 30 cm of ash laminations and small pumice clasts (1-3 cm). Following a 40 cm bed of massive ash containing 1-3 cm clasts of pumice, the initial sequence repeats itself for 5 meters, with 30-40 cm lithic blocks in the uppermost unit. In addition to the stark stratigraphic and petrographic differences from the Grand Bay Beach exposure, Fe-Ti oxide geothermometry reveals eruption temperature of 820 + 7°C at Grand Bay Beach (ΔNNO - 0.16) and 864 ± 33 °C (ΔNNO - 0.25) at Fond St. Jean. Plagioclase composition ranges from An51-88 at Grand Bay and An57-75 at Fond St. Jean respectively. Furthermore, plagioclase hygrometry shows a range of 7.8 to 7.3 wt% H2O at Grand Bay, with slightly drier conditions of 7.3 to 7.1 wt% H2O at Fond St. Jean.
Circuit-level optimisation of a:Si TFT-based AMOLED pixel circuits for maximum hold current
NASA Astrophysics Data System (ADS)
Foroughi, Aidin; Mehrpoo, Mohammadreza; Ashtiani, Shahin J.
2013-11-01
Design of AMOLED pixel circuits has manifold constraints and trade-offs which provides incentive for circuit designers to seek optimal solutions for different objectives. In this article, we present a discussion on the viability of an optimal solution to achieve the maximum hold current. A compact formula for component sizing in a conventional 2T1C pixel is, therefore, derived. Compared to SPICE simulation results, for several pixel sizes, our predicted optimum sizing yields maximum currents with errors less than 0.4%.
Mineralogy and Petrology of ``New'' Lunar Meteorite Dhofar 025
NASA Astrophysics Data System (ADS)
Cahill, J. T.; Cohen, B. A.; Taylor, L. A.; Nazarov, M. A.
2001-03-01
Dh25 is an anorthositic regolith breccia. The mineral chemistry of most rock and melt clasts have compositions intermediate between FAN and HMS fields, indicative of a non-Apollo, FAN-rich locale, possibly the lunar farside.