King, Gary M; Weber, Carolyn F; Nanba, Kenji; Sato, Yoshinori; Ohta, Hiroyuki
2008-01-01
We have assayed rates of atmospheric CO and hydrogen uptake, maximum potential CO uptake and the major phylogenetic composition of CO-oxidizing bacterial communities for a variety of volcanic deposits on Miyake-jima, Japan. These deposits represented different ages and stages of plant succession, ranging from unvegetated scoria deposited in 1983 to forest soils on deposits >800 yr old. Atmospheric CO and hydrogen uptake rates varied from -2.0±1.8-6.3±0.1 mg CO m(-2) d(-1) and 0.0±0.4-2.0±0.2 mg H(2) m(-2) d(-1), respectively, and were similar to or greater than values reported for sites on Kilauea volcano, Hawaii, USA. At one of the forested sites, CO was emitted to the atmosphere, while two vegetated sites did not consume atmospheric hydrogen, an unusual observation. Although maximum potential CO uptake rates were also comparable to values for Kilauea, the relationship between these rates and organic carbon contents of scoria or soil indicated that CO oxidizers were relatively more abundant in Miyake-jima deposits. Phylogenetic analyses based on the large sub-unit gene for carbon monoxide dehydrogenase (coxL) indicated that many novel lineages were present on Miyake-jima, that CO-oxidizing Proteobacteria were prevalent in vegetated sites and that community structure appeared to vary more than composition among sites.
Martin, C E; Adams, W W
1987-01-01
After 23 days without water in a greenhouse, rates of nocturnal CO2 uptake in Tillandsia schiedeana decreased substantially and maximum rates occurred later in the dark period eventually coinciding with the onset of illumination. Nocturnal CO2 uptake accounted for less than half the total nighttime increase in acidity measured in well-watered plants. With increased tissue desiccation, only 11-12% of measured acid accumulation was attributable to atmospheric CO2 uptake. Plants desiccated for 30 days regained initial levels of nocturnal acid accumulation and CO2 uptake after rehydration for 10h. These results stress the importance of CO2 recycling via CAM in this epiphytic bromeliad, especially during droughts.
NASA Astrophysics Data System (ADS)
McMurtrie, R. E.; Norby, R. J.; Näsholm, T.; Iversen, C.; Dewar, R. C.; Medlyn, B. E.
2011-12-01
Forest free-air CO2 enrichment (FACE) experiments have shown that annual nitrogen (N) uptake increases when trees are grown at elevated CO2 (eCO2) and that increased N uptake is critical for a sustained growth response to eCO2. Processes contributing to increased N uptake at eCO2 may include: accelerated decomposition of soil organic matter due to enhanced root carbon (C) exudation (so-called rhizosphere priming); increased C allocation to fine roots and increased root production at depth, both of which enhance N acquisition; differences in soil N availability with depth; changes in the abundance of N in chemical forms with differing mobility in soil; and reduced N concentrations, reduced maintenance respiration rates, and increased longevities of deeper roots. These processes have been synthesised in a model of annual N uptake in relation to the spatial distribution of roots. We hypothesise that fine roots are distributed spatially in order to maximise annual N uptake. The optimisation hypothesis leads to equations for the optimal vertical distribution of root biomass in relation to the distribution of available soil N and for maximum annual N uptake. We show how maximum N uptake and rooting depth are related to total root mass, and compare the optimal solution with an empirical function that has been fitted to root-distribution data from all terrestrial biomes. Finally, the model is used to explore the consequences of rhizosphere priming at eCO2 as observed at the Duke forest FACE experiment (Drake et al. 2011, Ecology Letters 14: 349-357) and of increasing N limitation over time as observed at the Oak Ridge FACE experiment (Norby et al. 2010, Proc. Nat. Acad. Sci. USA 107: 19368-19373).
NASA Technical Reports Server (NTRS)
Whiting, Gary J.
1994-01-01
Net ecosystem CO2 exchange was measured during the 1990 growing season (June to August) along a transect starting 10 km inland from James Bay and extending 100 km interior to Kinosheo Lake, Ontario. Sites were chosen in three distinct areas: a coastal fen, an interior fen, and a bog. For the most productive sites in the bog, net daily uptake rates reached a maximum of 2.5 g C-CO2 m(exp -2)/d with an area-weighted exchange of 0.3 g C-CO2 m(exp -2)/d near midsummer. This site was estimated to be a net carbon source of 9 g C-CO2 m(exp -2) to the atmosphere over a 153-day growing season. The interior fen was less productive on a daily basis with a net maximum uptake of 0.5 g C-CO2 m(exp -2)/d and with corresponding area-weighted uptake of 0.1 g C-CO2 m(exp -2)/d during midsummer. Early and late season release of carbon to the atmosphere resulted in a net loss of 21 g C-CO2 m(exp -2) over the growing season from this site. The coastal fen was the most productive site with uptake rates peaking near 1.7 g C-CO2 m(exp -2)/d which corresponded to an area-weighted uptake of 0.8 g C-CO2 m(exp -2)/d during midsummer and an estimated net uptake of 6 g C-CO2 m(exp -2) for the growing season. Associated with net CO2 exchange measurements, multispectral reflectance properties of the sites were measured over the growing season using portable radiometers. These properties were related to exchange rates with the goal of examining the potential for satellite remote sensing to monitor biosphere/atmosphere CO2 exchange in this biome. The normalized difference vegetation index (NDVI) computed from surface reflectance was correlated with net CO2 exchange for all sites with the exception of areas with large proportions of Sphagnum moss cover. These mosses have greater near-infrared reflectance than typical surrounding vegetation and may require special adjustment for regional exchange/remote sensing applications.
King, Gary M; Weber, Carolyn F
2008-02-01
Patterns of microbial colonization and interactions between microbial processes and vascular plants on volcanic deposits have received little attention. Previous reports have shown that atmospheric CO and hydrogen contribute significantly to microbial metabolism on Kilauea volcano (Hawaii) deposits with varied ages and successional development. Relationships between CO oxidation and plant communities were not clear, however, since deposit age and vegetation status covaried. To determine plant-microbe interactions in deposits of uniform ages, CO and hydrogen dynamics have been assayed for unvegetated tephra on a 1959 deposit at Pu'u Puai (PP-bare), at the edge of tree 'islands' within the PP deposit (PP-edge) and within PP tree islands (PP-canopy). Similar assays have been conducted for vegetated and unvegetated sites on a 1969 Mauna Ulu (MU) lava flow. Net in situ atmospheric CO uptake was highest at PP-edge and PP-bare sites (2.2+/-0.5 and 1.3+/-0.1 mg CO m(-2) day(-1), respectively), and least for PP-canopy (-3.2+/-0.9 mg CO m(-2) day(-1), net emission). Respiration rates, microbial biomass and maximum CO uptake potential showed an opposing pattern. Comparisons of atmospheric CO uptake and CO(2) production rates indicate that CO contributes significantly to microbial metabolism in PP-bare and MU-unvegetated sites, but negligibly where vegetation is well developed. Nonetheless, maximum potential CO uptake rates indicate that CO oxidizer populations increase with increasing plant biomass and consume CO actively. Some of these CO oxidizers may contribute to elevated nitrogen fixation rates (acetylene reduction) measured within tree islands, and thus, support plant successional development.
Effect of increasing CO2 on the terrestrial carbon cycle
Schimel, David; Fisher, Joshua B.
2015-01-01
Feedbacks from the terrestrial carbon cycle significantly affect future climate change. The CO2 concentration dependence of global terrestrial carbon storage is one of the largest and most uncertain feedbacks. Theory predicts the CO2 effect should have a tropical maximum, but a large terrestrial sink has been contradicted by analyses of atmospheric CO2 that do not show large tropical uptake. Our results, however, show significant tropical uptake and, combining tropical and extratropical fluxes, suggest that up to 60% of the present-day terrestrial sink is caused by increasing atmospheric CO2. This conclusion is consistent with a validated subset of atmospheric analyses, but uncertainty remains. Improved model diagnostics and new space-based observations can reduce the uncertainty of tropical and temperate zone carbon flux estimates. This analysis supports a significant feedback to future atmospheric CO2 concentrations from carbon uptake in terrestrial ecosystems caused by rising atmospheric CO2 concentrations. This feedback will have substantial tropical contributions, but the magnitude of future carbon uptake by tropical forests also depends on how they respond to climate change and requires their protection from deforestation. PMID:25548156
Calculating CO2 uptake for existing concrete structures during and after service life.
Andersson, Ronny; Fridh, Katja; Stripple, Håkan; Häglund, Martin
2013-10-15
This paper presents a model that can calculate the uptake of CO2 in all existing concrete structures, including its uptake after service life. This is important for the calculation of the total CO2 uptake in the society and its time dependence. The model uses the well-documented cement use and knowledge of how the investments are distributed throughout the building sector to estimate the stock of concrete applications in a country. The depth of carbonation of these applications is estimated using two models, one theoretical and one based on field measurements. The maximum theoretical uptake potential is defined as the amount of CO2 that is emitted during calcination at the production of Portland cement, but the model can also, with some adjustments, be used for the other cement types. The model has been applied on data from Sweden and the results show a CO2 uptake in 2011 in all existing structures of about 300,000 tonnes, which corresponds to about 17% of the total emissions (calcination and fuel) from the production of new cement for use in Sweden in the same year. The study also shows that in the years 2030 and 2050, an increase in the uptake in crushed concrete, from 12,000 tonnes today to 200,000 and 500,000 tonnes of CO2, respectively, could be possible if the waste handling is redesigned.
Panek, Jeanne A
2004-03-01
This paper describes 3 years of physiological measurements on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growing along an ozone concentration gradient in the Sierra Nevada, California, including variables necessary to parameterize, validate and modify photosynthesis and stomatal conductance algorithms used to estimate ozone uptake. At all sites, gas exchange was under tight stomatal control during the growing season. Stomatal conductance was strongly correlated with leaf water potential (R2=0.82), which decreased over the growing season with decreasing soil water content (R2=0.60). Ozone uptake, carbon uptake, and transpirational water loss closely followed the dynamics of stomatal conductance. Peak ozone and CO2 uptake occurred in early summer and declined progressively thereafter. As a result, periods of maximum ozone uptake did not correspond to periods of peak ozone concentration, underscoring the inappropriateness of using current metrics based on concentration (e.g., SUM0, W126 and AOT40) for assessing ozone exposure risk to plants in this climate region. Both Jmax (maximum CO2-saturated photosynthetic rate, limited by electron transport) and Vcmax (maximum rate of Rubisco-limited carboxylation) increased toward the middle of the growing season, then decreased in September. Intrinsic water-use efficiency rose with increasing drought stress, as expected. The ratio of Jmax to Vcmax was similar to literature values of 2.0. Nighttime respiration followed a Q10 of 2.0, but was significantly higher at the high-ozone site. Respiration rates decreased by the end of the summer as a result of decreased metabolic activity and carbon stores.
Sabbioni, Enrico; Fortaner, Salvador; Farina, Massimo; Del Torchio, Riccardo; Petrarca, Claudia; Bernardini, Giovanni; Mariani-Costantini, Renato; Perconti, Silvia; Di Giampaolo, Luca; Gornati, Rosalba; Di Gioacchino, Mario
2014-02-01
The mechanistic understanding of nanotoxicity requires the physico-chemical characterisation of nanoparticles (NP), and their comparative investigation relative to the corresponding ions and microparticles (MP). Following this approach, the authors studied the dissolution, interaction with medium components, bioavailability in culture medium, uptake and intracellular distribution of radiolabelled Co forms (CoNP, CoMP and Co(2+)) in Balb/3T3 mouse fibroblasts. Co(2+) first saturates the binding sites of molecules in the extracellular milieu (e.g., albumin and histidine) and on the cell surface. Only after saturation, Co(2+) is actively uptaken. CoNP, instead, are predicted to be internalised by endocytosis. Dissolution of Co particles allows the formation of Co compounds (CoNP-rel), whose mechanism of cellular internalisation is unknown. Co uptake (ranking CoMP > CoNP > Co(2+)) reached maximum at 4 h. Once inside the cell, CoNP spread into the cytosol and organelles. Consequently, massive amounts of Co ions and CoNP-rel can reach subcellular compartments normally unexposed to Co(2+). This could explain the fact that the nuclear and mitochondrial Co concentrations resulted significantly higher than those obtained with Co(2+).
López-Moreno, Martha L; Avilés, Leany Lugo; Pérez, Nitza Guzmán; Irizarry, Bianca Álamo; Perales, Oscar; Cedeno-Mattei, Yarilyn; Román, Félix
2016-04-15
Nanoparticles (NPs) have been synthetized and studied to be incorporated in many industrial and medical applications in recent decades. Due to their different physical and chemical properties compared with bulk materials, researchers are focused to understand their interactions with the surroundings. Living organisms such as plants are exposed to these materials and they are able to tolerate different concentrations and types of NPs. Cobalt ferrite (CoFe2O4) NPs are being studied for their application in medical sciences because of their high coercivity, anisotropy, and large magnetostriction. These properties are desirable in magnetic resonance imaging, drug delivery, and cell labeling. This study is aimed to explore the tolerance of Solanum lycopersicum L. (tomato) plants to CoFe2O4 NPs. Tomato plants were grown in hydroponic media amended with CoFe2O4 nanoparticles in a range from 0 to 1000mgL(-1). Exposure to CoFe2O4 NPs did not affect germination and growth of plants. Uptake of Fe and Co inside plant tissues increased as CoFe2O4 nanoparticle concentration was increased in the media. Mg uptake in plant leaves reached its maximum level of 4.9mgg(-1) DW (dry weight) at 125mgL(-1) of CoFe2O4 NPs exposure and decreased at high CoFe2O4 NPs concentrations. Similar pattern was observed for Ca uptake in leaves where the maximum concentration found was 10mgg(-1) DW at 125mgL(-1) of CoFe2O4 NPs exposure. Mn uptake in plant leaves was higher at 62.5mgL(-1) of CoFe2O4 NPs compared with 125 and 250mgL(-1) treatments. Catalase activity in tomato roots and leaves decreased in plants exposed to CoFe2O4 NPs. Tomato plants were able to tolerate CoFe2O4 NPs concentrations up to 1000mgL(-1) without visible toxicity symptoms. Macronutrient uptake in plants was affected when plants were exposed to 250, 500 and 1000mgL(-1) of CoFe2O4 NPs. Published by Elsevier B.V.
Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex
NASA Astrophysics Data System (ADS)
Bubier, Jill L.; Crill, Patrick M.; Moore, Tim R.; Savage, Kathleen; Varner, Ruth K.
1998-12-01
We measured seasonal patterns of net ecosystem exchange (NEE) of CO2 in a diverse peatland complex underlain by discontinuous permafrost in northern Manitoba, Canada, as part of the Boreal Ecosystems Atmosphere Study (BOREAS). Study sites spanned the full range of peatland trophic and moisture gradients found in boreal environments from bog (pH 3.9) to rich fen (pH 7.2). During midseason (July-August, 1996), highest rates of NEE and respiration followed the trophic sequence of bog (5.4 to -3.9 μmol CO2 m-2 s-1) < poor fen (6.3 to -6.5 μmol CO2 m-2 s-1) < intermediate fen (10.5 to -7.8 μmol CO2 m-2 s-1) < rich fen (14.9 to -8.7 μmol CO2m-2 s-1). The sequence changed during spring (May-June) and fall (September-October) when ericaceous shrub (e.g., Chamaedaphne calyculata) bogs and sedge (Carex spp.) communities in poor to intermediate fens had higher maximum CO2 fixation rates than deciduous shrub-dominated (Salix spp. and Betula spp.) rich fens. Timing of snowmelt and differential rates of peat surface thaw in microtopographic hummocks and hollows controlled the onset of carbon uptake in spring. Maximum photosynthesis and respiration were closely correlated throughout the growing season with a ratio of approximately 1/3 ecosystem respiration to maximum carbon uptake at all sites across the trophic gradient. Soil temperatures above the water table and timing of surface thaw and freeze-up in the spring and fall were more important to net CO2 exchange than deep soil warming. This close coupling of maximum CO2 uptake and respiration to easily measurable variables, such as trophic status, peat temperature, and water table, will improve models of wetland carbon exchange. Although trophic status, aboveground net primary productivity, and surface temperatures were more important than water level in predicting respiration on a daily basis, the mean position of the water table was a good predictor (r2 = 0.63) of mean respiration rates across the range of plant community and moisture gradients. Q10 values ranged from 3.0 to 4.1 from bog to rich fen, but when normalized by above ground vascular plant biomass, the Q10 for all sites was 3.3.
Alexandre, Ana; Silva, João; Buapet, Pimchanok; Björk, Mats; Santos, Rui
2012-10-01
Seagrass ecosystems are expected to benefit from the global increase in CO(2) in the ocean because the photosynthetic rate of these plants may be C(i)-limited at the current CO(2) level. As well, it is expected that lower external pH will facilitate the nitrate uptake of seagrasses if nitrate is cotransported with H(+) across the membrane as in terrestrial plants. Here, we investigate the effects of CO(2) enrichment on both carbon and nitrogen metabolism of the seagrass Zostera noltii in a mesocosm experiment where plants were exposed for 5 months to two experimental CO(2) concentrations (360 and 700 ppm). Both the maximum photosynthetic rate (P(m)) and photosynthetic efficiency (α) were higher (1.3- and 4.1-fold, respectively) in plants exposed to CO(2)-enriched conditions. On the other hand, no significant effects of CO(2) enrichment on leaf growth rates were observed, probably due to nitrogen limitation as revealed by the low nitrogen content of leaves. The leaf ammonium uptake rate and glutamine synthetase activity were not significantly affected by increased CO(2) concentrations. On the other hand, the leaf nitrate uptake rate of plants exposed to CO(2)-enriched conditions was fourfold lower than the uptake of plants exposed to current CO(2) level, suggesting that in the seagrass Z. noltii nitrate is not cotransported with H(+) as in terrestrial plants. In contrast, the activity of nitrate reductase was threefold higher in plant leaves grown at high-CO(2) concentrations. Our results suggest that the global effects of CO(2) on seagrass production may be spatially heterogeneous and depend on the specific nitrogen availability of each system. Under a CO(2) increase scenario, the natural levels of nutrients will probably become limiting for Z. noltii. This potential limitation becomes more relevant because the expected positive effect of CO(2) increase on nitrate uptake rate was not confirmed.
Alexandre, Ana; Silva, João; Buapet, Pimchanok; Björk, Mats; Santos, Rui
2012-01-01
Seagrass ecosystems are expected to benefit from the global increase in CO2 in the ocean because the photosynthetic rate of these plants may be Ci-limited at the current CO2 level. As well, it is expected that lower external pH will facilitate the nitrate uptake of seagrasses if nitrate is cotransported with H+ across the membrane as in terrestrial plants. Here, we investigate the effects of CO2 enrichment on both carbon and nitrogen metabolism of the seagrass Zostera noltii in a mesocosm experiment where plants were exposed for 5 months to two experimental CO2 concentrations (360 and 700 ppm). Both the maximum photosynthetic rate (Pm) and photosynthetic efficiency (α) were higher (1.3- and 4.1-fold, respectively) in plants exposed to CO2-enriched conditions. On the other hand, no significant effects of CO2 enrichment on leaf growth rates were observed, probably due to nitrogen limitation as revealed by the low nitrogen content of leaves. The leaf ammonium uptake rate and glutamine synthetase activity were not significantly affected by increased CO2 concentrations. On the other hand, the leaf nitrate uptake rate of plants exposed to CO2-enriched conditions was fourfold lower than the uptake of plants exposed to current CO2 level, suggesting that in the seagrass Z. noltii nitrate is not cotransported with H+ as in terrestrial plants. In contrast, the activity of nitrate reductase was threefold higher in plant leaves grown at high-CO2 concentrations. Our results suggest that the global effects of CO2 on seagrass production may be spatially heterogeneous and depend on the specific nitrogen availability of each system. Under a CO2 increase scenario, the natural levels of nutrients will probably become limiting for Z. noltii. This potential limitation becomes more relevant because the expected positive effect of CO2 increase on nitrate uptake rate was not confirmed. PMID:23145346
NASA Astrophysics Data System (ADS)
Williams, Richard; Roussenov, Vassil; Goodwin, Philip; Resplandy, Laure; Bopp, Laurent
2017-04-01
Insight into how to avoid dangerous climate may be obtained from Earth system model projections, which reveal a near-linear dependence of global-mean surface warming on cumulative carbon emissions. This dependence of surface warming on carbon emissions is interpreted in terms of a product of three terms: the dependence of surface warming on radiative forcing, the fractional radiative forcing contribution from atmospheric CO2 and the dependence of radiative forcing from atmospheric CO2 on cumulative carbon emissions. Mechanistically each of these dependences varies, respectively, with ocean heat uptake, the CO2 and non-CO2 radiative forcing, and the ocean and terrestrial uptake of carbon. An ensemble of 9 Earth System models forced by up to 4 Representative Concentration Pathways are diagnosed. In all cases, the dependence of surface warming on carbon emissions evolves primarily due to competing effects of heat and carbon uptake over the upper ocean: there is a reduced effect of radiative forcing from CO2 due to ocean carbon uptake, which is partly compensated by enhanced surface warming due to a reduced effect of ocean heat uptake. There is a wide spread in the dependence of surface warming on carbon emissions, undermining the ability to identify the maximum permitted carbon emission to avoid dangerous climate. Our framework reveals how uncertainty in the future warming trend is high over the next few decades due to relatively high uncertainties in ocean heat uptake, non-CO2 radiative forcing and the undersaturation of carbon in the ocean.
Micrometeorological measurements of CH4 and CO2 exchange between the atmosphere and subarctic tundra
NASA Technical Reports Server (NTRS)
Fan, S. M.; Wofsy, S. C.; Bakwin, P. S.; Jacob, D. J.; Anderson, S. M.; Kebabian, P. L.; Mcmanus, J. B.; Kolb, C. E.; Fitzjarrald, D. R.
1992-01-01
Eddy correlation flux measurements and concentration profiles of total hydrocarbons (THC) and CO2 were combined to provide a comprehensive record of atmosphere-biosphere exchange for these gases over a 30-day period in July-August 1988 in the Yukon-Kuskokwin River Delta of Alaska. Over 90 percent of net ecosystem exchanges of THC were due to methane. Lakes and wet meadow tundra provided the major sources of methane. The average fluxes from lake, dry tundra, and wet tundra were 11 +/- 3, 29 +/- 3, and 57 +/- 6 mg CH4/sq m/d, respectively. The mean remission rate for the site was 25 mg/sq m/d. Maximum uptake of CO2 by the tundra was 1.4 gC/sq m/d between 1000 and 1500 hrs, and nocturnal respiration averaged 0.73 gC/sq m/d. Net uptake of CO2 was 0.30 gC/sq m/d for the 30 days of measurement; methane flux accounted for 6 percent of CO2 net uptake.
Reactivity of alkaline lignite fly ashes towards CO{sub 2} in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin Back; Michael Kuehn; Helge Stanjek
2008-06-15
The reaction kinetics between alkaline lignite fly ashes and CO{sub 2} (pCO{sub 2} = 0.01-0.03 MPa) were studied in a laboratory CO{sub 2} flow-through reactor at 25-75{sup o}C. The reaction is characterized by three phases that can be separated according to the predominating buffering systems and the rates of CO{sub 2} uptake. Phase I (pH > 12, < 30 min) is characterized by the dissolution of lime, the onset of calcite precipitation and a maximum uptake, the rate of which seems to be limited by dissolution of CO{sub 2}. Phase II (pH < 10.5, 10-60 min) is dominated by themore » carbonation reaction. CO{sub 2} uptake in phase III (pH < 8.3) is controlled by the dissolution of periclase (MgO) leading to the formation of dissolved magnesium-bicarbonate. Phase I could be significantly extended by increasing the solid-liquid ratios and temperature, respectively. At 75{sup o}C the rate of calcite precipitation was doubled leading to the neutralization of approximately 0.23 kg CO{sub 2} per kg fly ash within 4.5 h, which corresponds to nearly 90% of the total acid neutralizing capacity. 21 refs., 5 figs., 1 tab.« less
Lenzewski, Nikola; Mueller, Peter; Meier, Robert Johannes; Liebsch, Gregor; Jensen, Kai; Koop-Jakobsen, Ketil
2018-04-01
Root-mediated CO 2 uptake, O 2 release and their effects on O 2 and CO 2 dynamics in the rhizosphere of Lobelia dortmanna were investigated. Novel planar optode technology, imaging CO 2 and O 2 distribution around single roots, provided insights into the spatiotemporal patterns of gas exchange between roots, sediment and microbial community. In light, O 2 release and CO 2 uptake were pronounced, resulting in a distinct oxygenated zone (radius: c. 3 mm) and a CO 2 -depleted zone (radius: c. 2 mm) around roots. Simultaneously, however, microbial CO 2 production was stimulated within a larger zone around the roots (radius: c. 10 mm). This gave rise to a distinct pattern with a CO 2 minimum at the root surface and a CO 2 maximum c. 2 mm away from the root. In darkness, CO 2 uptake ceased, and the CO 2 -depleted zone disappeared within 2 h. By contrast, the oxygenated root zone remained even after 8 h, but diminished markedly over time. A tight coupling between photosynthetic processes and the spatiotemporal dynamics of O 2 and CO 2 in the rhizosphere of Lobelia was demonstrated, and we suggest that O 2 -induced stimulation of the microbial community in the sediment increases the supply of inorganic carbon for photosynthesis by building up a CO 2 reservoir in the rhizosphere. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Physical Activation of Oil Palm Empty Fruit Bunch via CO2 Activation Gas for CO2 Adsorption
NASA Astrophysics Data System (ADS)
Joseph, C. G.; Quek, K. S.; Daud, W. M. A. W.; Moh, P. Y.
2017-06-01
In this study, different parameters for the preparation of activated carbon were investigated for their yield and CO2 capture capabilities. The activated carbon was prepared from Oil Palm Empty Fruit Bunch (OPEFB) via a 2-step physical activation process. The OPEFB was pyrolyzed under inert conditions at 500 °C and activated via CO2. A 2-factorial design was employed and the effects of activation temperature, activation dwell time and gas flow rate on yield and CO2 capture capabilities were compared and studied. The yield obtained ranged from between 20 - 26, whereby the temperature was determined to be the most significant factor in influencing CO2 uptake. The CO2 capture capacity was determined using Temperature Programmed Desorption (TPD) technique. The CO2 uptake of EFB activated carbon achieved was between 1.85 - 2.09 mmol/g. TPD analysis has shown that the surface of AC were of basic nature. AC was found to be able to withhold the CO2 up to 663°C before maximum desorption occurs. The surface area and pore size of OPEFB obtained from BET analysis is 2.17 m2 g-1 and 0.01 cm3 g-1. After activation, both surface area and pore size increased with a maximum observed surface area and pore size of 548.07 m2 g-1 and 0.26 cm3 g-1. Surface morphology, functional groups, pore size and surface area were analyzed using SEM, FT-IR, TPD and BET.
NASA Astrophysics Data System (ADS)
Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K.
2018-05-01
High surface area nitrogen enriched carbon adsorbents were prepared from a low cost and widely available urea-formaldehyde resin using a standard chemical activation with KOH and characterized using different characterization techniques for their porous structure and surface functional groups. Maximum surface area and total pore volume of 4547 m2 g-1 and 4.50 cm3 g-1 were found by controlling the activation conditions. Nitrogen content of this sample was found to be 5.62%. Adsorption of CO2 uptake for the prepared carbon adsorbents was studied using a dynamic fixed bed adsorption system at different adsorption temperatures (30-100 °C) and at different CO2 concentrations (5-12.5%), relevant from the flue gas point application. Maximum CO2 uptake of 1.40 mmol g-1 for UFA-3-700 at 30 °C under 12.5% CO2 flow was obtained. Complete regenerability of the adsorbents over multiple adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description over all adsorption temperatures and CO2 concentrations. Heterogeneity of the adsorbent surface was confirmed from Temkin adsorption isotherm model fit and isosteric heat of adsorption values. Negative value of ΔG° and ΔH° confirms spontaneous, feasible nature and exothermic nature of adsorption process. Overall, very high surface area of carbon adsorbent makes this adsorbent a new promising carbon material for CO2 capture from power plant flue gas and for other relevant applications.
Thin-film versus slurry-phase carbonation of steel slag: CO₂ uptake and effects on mineralogy.
Baciocchi, R; Costa, G; Di Gianfilippo, M; Polettini, A; Pomi, R; Stramazzo, A
2015-01-01
The results of direct aqueous accelerated carbonation of three types of steel manufacturing residues, including an electric arc furnace (EAF) slag and two basic oxygen furnace (BOF) slags, are reported. Batch accelerated carbonation tests were conducted at different temperatures and CO2 pressures applying the thin-film route (liquid to solid, L/S, ratio=0.3L/kg) or the slurry-phase route (L/S ratio=5L/kg). The CO2 uptake strongly depended on both the slag characteristics and the process route; maximum yields of 280 (EAF), 325 (BOF1) and 403 (BOF2) gCO2/kg slag were achieved in slurry phase at T=100°C and pCO2=10 bar. Differently from previous studies, additional carbonates (other than Ca-based phases) were retrieved in the carbonated BOF slags, indicating that also Mg-, Fe- and Mn-containing phases partially reacted with CO2 under the tested conditions. The results hence show that the effects of accelerated carbonation in terms of CO2 uptake capacity, yield of mineral conversion into carbonates and mineralogy of the treated product, strongly rely on several factors. These include, above all, the mineralogy of the original material and the operating conditions adopted, which thus need specific case-by-case optimization to maximize the CO2 sequestration yield. Copyright © 2014 Elsevier B.V. All rights reserved.
Xu, Haomiao; Yuan, Yong; Liao, Yong; Xie, Jiangkun; Qu, Zan; Shangguan, Wenfeng; Yan, Naiqiang
2017-09-05
[MoS 4 ] 2- clusters were bridged between CoFe layered double hydroxide (LDH) layers using the ion-exchange method. [MoS 4 ] 2- /CoFe-LDH showed excellent Hg 0 removal performance under low and high concentrations of SO 2 , highlighting the potential for such material in S-Hg mixed flue gas purification. The maximum mercury capacity was as high as 16.39 mg/g. The structure and physical-chemical properties of [MoS 4 ] 2- /CoFe-LDH composites were characterized with FT-IR, XRD, TEM&SEM, XPS, and H 2 -TPR. [MoS 4 ] 2- clusters intercalated into the CoFe-LDH layered sheets; then, we enlarged the layer-to-layer spacing (from 0.622 to 0.880 nm) and enlarged the surface area (from 41.4 m 2 /g to 112.1 m 2 /g) of the composite. During the adsorption process, the interlayer [MoS 4 ] 2- cluster was the primary active site for mercury uptake. The adsorbed mercury existed as HgS on the material surface. The absence of active oxygen results in a composite with high sulfur resistance. Due to its high efficiency and SO 2 resistance, [MoS 4 ] 2- /CoFe-LDH is a promising adsorbent for mercury uptake from S-Hg mixed flue gas.
NASA Astrophysics Data System (ADS)
Tanner, E. L.; Mulhearn, P. J.; Eyre, B. D.
2017-06-01
The Sydney Harbour Estuary is a large drowned river valley adjacent to Sydney, a large urban metropolis on track to become a megacity; estimated to reach a population of 10 million by 2100. Monthly underway surveys of surface water pCO2 were undertaken along the main channel and tributaries, from January to December 2013. pCO2 showed substantial spatio-temporal variability in the narrow high residence time upper and mid sections of the estuary, with values reaching a maximum of 5650 μatm in the upper reaches and as low as 173 μatm in the mid estuary section, dominated by respiration and photosynthesis respectively. The large lower estuary displayed less variability in pCO2 with values ranging from 343 to 544 μatm controlled mainly by tidal pumping and temperature. Air-water CO2 emissions reached a maximum of 181 mmol C m-2 d-1 during spring in the eutrophic upper estuary. After a summer high rainfall event nutrient-stimulated biological pumping promoted a large uptake of CO2 transitioning the Sydney Harbour Estuary into a CO2 sink with a maximum uptake of rate of -10.6 mmol C m-2 d-1 in the mid-section of the estuary. Annually the Sydney Harbour Estuary was heterotrophic and a weak source of CO2 with an air-water emission rate of 1.2-5 mmol C m-2 d-1 (0.4-1.8 mol C m-2 y-1) resulting in a total carbon emission of around 930 tonnes per annum. CO2 emissions (weighted m3 s-1 of discharge per km2 of estuary surface area) from Sydney Harbour were an order of magnitude lower than other temperate large tectonic deltas, lagoons and engineered systems of China, India, Taiwan and Europe but were similar to other natural drowned river valley systems in the USA. Discharge per unit area appears to be a good predictor of CO2 emissions from estuaries of a similar climate and geomorphic class.
Carbonyl sulfide exchange in a temperate loblolly pine forest grown under ambient and elevated CO2
NASA Astrophysics Data System (ADS)
White, M. L.; Zhou, Y.; Russo, R. S.; Mao, H.; Talbot, R.; Varner, R. K.; Sive, B. C.
2009-08-01
Vegetation, soil and ecosystem level carbonyl sulfide (COS) exchange was observed at Duke Forest, a temperate loblolly pine forest, grown under ambient (Ring 1, R1) and elevated (Ring 2, R2) carbon dioxide (CO2). During calm meteorological conditions, ambient COS mixing ratios at the top of the forest canopy followed a distinct diurnal pattern in both CO2 growth regimes, with maximum COS mixing ratios during the day (R1=380±4 pptv and R2=373±3 pptv, daytime mean ±standard error) and minimums at night (R1=340±6 pptv and R2=346±5 pptv, nighttime mean ±standard error) reflecting a significant nighttime sink. Nocturnal vegetative uptake (-11 to -21 pmol m-2 s-1, negative values indicate uptake from the atmosphere) dominated nighttime net ecosystem COS flux estimates (-10 to -30 pmol m-2 s-1) in both CO2 regimes. In comparison, soil uptake (-0.8 to -1.7 pmol m-2 s-1) was a minor component of net ecosystem COS flux. In both CO2 regimes, loblolly pine trees exhibited substantial COS consumption overnight (50% of daytime rates) that was independent of CO2 assimilation. This suggests current estimates of the global vegetative COS sink, which assume that COS and CO2 are consumed simultaneously, may need to be reevaluated. Ambient COS mixing ratios, species specific diurnal patterns of stomatal conductance, temperature and canopy position were the major factors influencing the vegetative COS flux at the branch level. While variability in branch level vegetative COS consumption measurements in ambient and enhanced CO2 environments could not be attributed to CO2 enrichment effects, estimates of net ecosystem COS flux based on ambient canopy mixing ratio measurements suggest less nighttime uptake of COS in R2, the CO2 enriched environment.
Carbonyl sulfide exchange in a temperate loblolly pine forest grown under ambient and elevated CO2
NASA Astrophysics Data System (ADS)
White, M. L.; Zhou, Y.; Russo, R. S.; Mao, H.; Talbot, R.; Varner, R. K.; Sive, B. C.
2010-01-01
Vegetation, soil and ecosystem level carbonyl sulfide (COS) exchange was observed at Duke Forest, a temperate loblolly pine forest, grown under ambient (Ring 1, R1) and elevated (Ring 2, R2) CO2. During calm meteorological conditions, ambient COS mixing ratios at the top of the forest canopy followed a distinct diurnal pattern in both CO2 growth regimes, with maximum COS mixing ratios during the day (R1=380±4 pptv and R2=373±3 pptv, daytime mean ± standard error) and minimums at night (R1=340±6 pptv and R2=346±5 pptv, nighttime mean ± standard error) reflecting a significant nighttime sink. Nocturnal vegetative uptake (-11 to -21 pmol m-2s-1, negative values indicate uptake from the atmosphere) dominated nighttime net ecosystem COS flux estimates (-10 to -30 pmol m-2s-1) in both CO2 regimes. In comparison, soil uptake (-0.8 to -1.7 pmol m-2 s-1) was a minor component of net ecosystem COS flux. In both CO2 regimes, loblolly pine trees exhibited substantial COS consumption overnight (50% of daytime rates) that was independent of CO2 assimilation. This suggests current estimates of the global vegetative COS sink, which assume that COS and CO2 are consumed simultaneously, may need to be reevaluated. Ambient COS mixing ratios, species specific diurnal patterns of stomatal conductance, temperature and canopy position were the major factors influencing the vegetative COS flux at the branch level. While variability in branch level vegetative COS consumption measurements in ambient and enhanced CO2 environments could not be attributed to CO2 enrichment effects, estimates of net ecosystem COS flux based on ambient canopy mixing ratio measurements suggest less nighttime uptake of COS in R2, the CO2 enriched environment.
Burnell, Owen W.; Connell, Sean D.; Irving, Andrew D.; Watling, Jennifer R.; Russell, Bayden D.
2014-01-01
Rising atmospheric CO2 is increasing the availability of dissolved CO2 in the ocean relative to HCO3−. Currently, many marine primary producers use HCO3− for photosynthesis, but this is energetically costly. Increasing passive CO2 uptake relative to HCO3− pathways could provide energy savings, leading to increased productivity and growth of marine plants. Inorganic carbon-uptake mechanisms in the seagrass Amphibolis antarctica were determined using the carbonic anhydrase inhibitor acetazolamide (AZ) and the buffer tris(hydroxymethyl)aminomethane (TRIS). Amphibolis antarctica seedlings were also maintained in current and forecasted CO2 concentrations to measure their physiology and growth. Photosynthesis of A. antarctica was significantly reduced by AZ and TRIS, indicating utilization of HCO3−-uptake mechanisms. When acclimated plants were switched between CO2 treatments, the photosynthetic rate was dependent on measurement conditions but not growth conditions, indicating a dynamic response to changes in dissolved CO2 concentration, rather than lasting effects of acclimation. At forecast CO2 concentrations, seedlings had a greater maximum electron transport rate (1.4-fold), photosynthesis (2.1-fold), below-ground biomass (1.7-fold) and increase in leaf number (2-fold) relative to plants in the current CO2 concentration. The greater increase in photosynthesis (measured as O2 production) compared with the electron transport rate at forecasted CO2 concentration suggests that photosynthetic efficiency increased, possibly due to a decrease in photorespiration. Thus, it appears that the photosynthesis and growth of seagrasses reliant on energetically costly HCO3− acquisition, such as A. antarctica, might increase at forecasted CO2 concentrations. Greater growth might enhance the future prosperity and rehabilitation of these important habitat-forming plants, which have experienced declines of global significance. PMID:27293673
Burnell, Owen W; Connell, Sean D; Irving, Andrew D; Watling, Jennifer R; Russell, Bayden D
2014-01-01
Rising atmospheric CO2 is increasing the availability of dissolved CO2 in the ocean relative to HCO3 (-). Currently, many marine primary producers use HCO3 (-) for photosynthesis, but this is energetically costly. Increasing passive CO2 uptake relative to HCO3 (-) pathways could provide energy savings, leading to increased productivity and growth of marine plants. Inorganic carbon-uptake mechanisms in the seagrass Amphibolis antarctica were determined using the carbonic anhydrase inhibitor acetazolamide (AZ) and the buffer tris(hydroxymethyl)aminomethane (TRIS). Amphibolis antarctica seedlings were also maintained in current and forecasted CO2 concentrations to measure their physiology and growth. Photosynthesis of A. antarctica was significantly reduced by AZ and TRIS, indicating utilization of HCO3 (-)-uptake mechanisms. When acclimated plants were switched between CO2 treatments, the photosynthetic rate was dependent on measurement conditions but not growth conditions, indicating a dynamic response to changes in dissolved CO2 concentration, rather than lasting effects of acclimation. At forecast CO2 concentrations, seedlings had a greater maximum electron transport rate (1.4-fold), photosynthesis (2.1-fold), below-ground biomass (1.7-fold) and increase in leaf number (2-fold) relative to plants in the current CO2 concentration. The greater increase in photosynthesis (measured as O2 production) compared with the electron transport rate at forecasted CO2 concentration suggests that photosynthetic efficiency increased, possibly due to a decrease in photorespiration. Thus, it appears that the photosynthesis and growth of seagrasses reliant on energetically costly HCO3 (-) acquisition, such as A. antarctica, might increase at forecasted CO2 concentrations. Greater growth might enhance the future prosperity and rehabilitation of these important habitat-forming plants, which have experienced declines of global significance.
Carbon dioxide budget in a temperature grassland ecosystem
NASA Technical Reports Server (NTRS)
Kim, Joon; Verma, Shashi B.; Clement, Robert J.
1992-01-01
Eddy correlation measurements of CO2 flux made during May-October 1987 and June-August 1989 were employed, in conjunction with simulated data, to examine the net exchange of CO2 in a temperature grassland ecosystem. Simulated estimates of CO2 uptake were used when flux measurements were not available. These estimates were based on daily intercepted photosynthetically active radiation, air temperature, and extractable soil water. Soil CO2 flux and dark respiration of the aerial part of plants were estimated using the relationships developed by Norman et al. (1992) and Polley et al. (1992) at the study site. The results indicate that the CO2 exchange between this ecosystem and the atmosphere is highly variable. The net ecosystem CO2 exchange reached its peak value (12-18 g/sq m d) during the period when the leaf area index was maximum. Drought, a frequent occurrence in this region, can change this ecosystem from a sink to a source for atmospheric CO2. Comparison with data on dry matter indicated that the aboveground biomass accounted for about 45-70 percent of the net carbon uptake, suggesting the importance of the below ground biomass in estimating net primary productivity in this ecosystem.
Heterotrophic Potential for Amino Acid Uptake in a Naturally Eutrophic Lake1
Burnison, B. Kent; Morita, Richard Y.
1974-01-01
The uptake of sixteen 14C-labeled amino acids by the indigenous heterotrophic microflora of Upper Klamath Lake, Oregon, was measured using the kinetic approach. The year-long study showed a seasonal variation in the maximum uptake velocity, Vmax, of all the amino acids which was proportional to temperature. The maximum total flux of amino acids by the heterotrophic microflora ranged from 1.2 to 11.9 μmol of C per liter per day (spring to summer). Glutamate, asparagine, aspartate, and serine had the highest Vmax values and were respired to the greatest extent. The percentages of the gross (net + respired) uptake of the amino acids which were respired to CO2 ranged from 2% for leucine to 63% for glutamate. Serine, lysine, and glycine were the most abundant amino acids found in Upper Klamath Lake surface water; at intermediate concentrations were alanine, aspartate, and threonine; and the remaining amino acids were always below 7.5 × 10-8 M (10 μg/liter). The amino acid concentrations determined chemically appear to be the sum of free and adsorbed amino acids, since the values obtained were usually greater than the (Kt + Sn) values obtained by the heterotrophic uptake experiments. PMID:4207581
NASA Astrophysics Data System (ADS)
Tucker, C.; Reed, S.; Howell, A.
2017-12-01
Carbon cycling associated with biological soil crusts, which occur in interspaces between vascular plants in drylands globally, may be an important part of the coupled climate-carbon cycle of the Earth system. A major challenge to understanding CO2 fluxes in these systems is that much of the biotic and biogeochemical activity occurs in the upper few mm of the soil surface layer (i.e., the `mantle of fertility'), which exhibits highly dynamic and difficult to measure temperature and moisture fluctuations. Here, we report data collected in a cool desert ecosystem over one year using a multi-sensor approach to simultaneously measuring temperature and moisture of the biocrust surface layer (0-2 mm), and the deeper soil profile (5-20 cm), concurrent with automated measurement of surface soil CO2 effluxes. Our results illuminate robust relationships between microclimate and field CO2 pulses that have previously been difficult to detect and explain. The temperature of the biocrust surface layer was highly variable, ranging from minimum of -9 °C in winter to maximum of 77 °C in summer with a maximum diurnal range of 61 °C. Temperature cycles were muted deeper in the soil profile. During summer, biocrust and soils were usually hot and dry and CO2 fluxes were tightly coupled to pulse wetting events experienced at the biocrust surface, which consistently resulted in net CO2 efflux (i.e., respiration). In contrast, during the winter, biocrust and soils were usually cold and moist, and there was sustained net CO2 uptake via photosynthesis by biocrust organisms, although during cold dry periods CO2 fluxes were minimal. During the milder spring and fall seasons, short wetting events drove CO2 loss, while sustained wetting events resulted in net CO2 uptake. Thus, the upper and lower bounds of net CO2 exchange at a point in time were functions of the seasonal temperature regime, while the actual flux within those bounds was determined by the magnitude and duration of biocrust and soil wetting events. These patterns reflect both the low temperature sensitivity and slow initiation in response to wetting of photosynthesis compared to respiration by biocrust organisms. Our study highlights the importance of cool and cold periods for C uptake in biocrusted soils of the Colorado Plateau.
NASA Astrophysics Data System (ADS)
Harazono, Y.; Ueyama, M.; Miyata, A.
2005-12-01
Carbon dioxide (CO2) and methane (CH4) fluxes were measured at a black spruce forest over discontinuous permafrost in central Alaska since November 2002. CO2 flux was measured by open-path eddy correlation system and CH4 flux was measured by gradient method continuously. CO2 uptake was observed during daytime after DOY 60 when the forest floor was snow-covered with low temperature (<-10 °C). At the moment, CH4 flux was negative (uptake) during daytime and nearing to zero at night, which varied with surface temperature. During snow melt and following permafrost thawing periods (around DOY 110-140, 2003), nocturnal CO2 efflux was larger than daytime uptake resulted in a daily CO2 source, and CH4 flux became small positive in daytime and nearing zero at night resulted in a weak daily CH4 source. After DOY 140 in 2003, CO2 flux was strong uptake and the maximum level was 1.0 g m-2 h-1 in late July around 10:30h when 3 hr earlier than solar noon. During mid summer (DOY 180-230, 2003), daytime CH4 uptake was weak and was near zero at night resulted in a weak daily CH4 sink. 2004 was low snow fall and draught summer, the seasonal patterns of CO2 and CH4 fluxes shifted more than 3-weeks earlier than that in 2003, resulted in high CO2 and CH4 emissions in early summer. Daily amount of CH4 flux in mid summer 2003 and 2004 were 1.2 and 0.5 mg CH4 m-2 d-1, respectively. Sum of observed NEE and CO2 storage term within the canopy, NEP were -482 and -366.6 gCO2 m-2 y-1 in 2003 and 2004. However, application of u* filtering correction made NEP reduce to the ranges between -434.8 and -315.9 gCO2 m-2 y-1 (under u<0.05 ms-1 and u<0.2 ms-1) in 2003 and to -282.5 and -215.9 gCO2 m-2 y-1 in 2004. The low NEP in 2004 was caused by high temperature and low precipitation during growing season. CH4 emission was also higher in 2004. CO2 and CH4 exchanges at sub-arctic forest were quite sensitive to draught and summer temperature.
NASA Astrophysics Data System (ADS)
kumar, K. Selva; Rajendran, S.; Prabhu, M. Ramesh
2017-10-01
The present work describes the sulfonated Titania directly blended with Poly (Vinylidene fluoride-co-hexafluoropropylene) as a host polymer by solvent casting technique for PEM fuel cell application. Characterization studies such as FT-IR, SEM, EDX, AFM, Proton conductivity, contact angle measurement, IEC, TG, water uptake, tensile strength were performed by for synthesized proton conducting polymer electrolytes. The maximum proton conductivity value was found to be 3.6 × 10-3S/cm for 25 wt% sulfonated Titania based system at 80 °C. The temperature dependent proton conductivity of the polymer electrolyte follows an Arrhenius relationship. Surface morphology of the composite membranes was investigated by tapping mode. Thermal stability of the system was studied by TG analysis. The fabricated composite membranes with high proton conductivity, good water uptake and IEC parameters exhibited a maximum fuel cell power density of 85 Mw/cm2for PEM fuel cell application.
NASA Astrophysics Data System (ADS)
Wang, Jinsong; Quan, Quan; Sun, Jian; Niu, Shuli
2017-04-01
Rapid climate change and intensified human activities on the Tibetan Plateau may alter the magnitude and direction of greenhouse gas (GHG) emissions, affecting the climate change impact on these fragile ecosystems. We conducted a controlled experiment to investigate the effects of warming and mowing (simulation of grazing) on soil CO2, CH4 and N2O fluxes in an alpine meadow in eastern Tibetan Plateau between August 2015 and July 2016. Three levels of temperature (C, ambient temperature; W1, < 2 °C warming at 5 cm soil depth by infrared heaters; and W2, > 2 °C warming) were combined with two levels of mowing treatment (UM, un-mowing; and M, mowing). GHG fluxes were measured once an hour using static chamber. Both CO2 emission and CH4 uptake rates showed a seasonal fluctuation, with the maximum value occurred in late summer and the minimum in winter. However, N2O flux did not show a strong seasonal pattern. High level of warming (W2) regardless of mowing significantly increased CO2 emission and CH4 uptake by 15.4 % and 38.2 % averaged over the year, compared with no-warming (C). Moderate warming (W1) did not have significant effects on either CO2 or CH4 fluxes. N2O flux was reduced by 54.1% by W2 and 15.7% by W1 warming. Mowing alone increased CH4 uptake and N2O emission by 18.0 % and 12.7%, respectively, but had no significant effect on CO2 flux. The interactions between warming and mowing were detected in CO2 and CH4 fluxes. Among all treatments, W2UM in general had the highest rates of CO2 emission and CH4 uptake but the lowest rate of N2O flux, while CUM and CM showed the opposite. In addition, warming induced increase in CH4 uptake and decline in N2O release had very limited ability to offset the enhanced CO2 emission, resulting in a net positive feedback of the three GHGs to climate warming. Furthermore, daily CO2 flux increased exponentially with soil temperature at 5 cm. CH4 flux correlated negatively with soil temperature but positively with soil moisture.
Hanson, Paul J.; Gill, Allison; Xu, Xiaofeng; ...
2016-08-20
Peatland measurements of CO 2 and CH 4 flux were obtained at scales appropriate to the in situ biological community below the tree layer to demonstrate representativeness of the spruce and peatland responses under climatic and environmental change (SPRUCE) experiment. Surface flux measurements were made using dual open-path analyzers over an area of 1.13 m 2 in daylight and dark conditions along with associated peat temperatures, water table height, hummock moisture, atmospheric pressure and incident radiation data. Observations from August 2011 through December 2014 demonstrated seasonal trends correlated with temperature as the dominant apparent driving variable. The S1-Bog for themore » SPRUCE study was found to be representative of temperate peatlands in terms of CO 2 and CH 4 flux. Maximum net CO 2 flux in midsummer showed similar rates of C uptake and loss: daytime surface uptake was -5 to -6 µmol m -2 s -1 and dark period loss rates were 4–5 µmol m -2 s -1 (positive values are carbon lost to the atmosphere). Maximum midsummer CH4-C flux ranged from 0.4 to 0.5 µmol m -2 s -1 and was a factor of 10 lower than dark CO 2–C efflux rates. Midwinter conditions produced near-zero flux for both CO 2 and CH 4 with frozen surfaces. Integrating temperature-dependent models across annual periods showed dark CO 2–C and CH 4–C flux to be 894 ± 34 and 16 ± 2 gC m -2 y -1, respectively. Net ecosystem exchange of carbon from the shrub-forb-Sphagnum-microbial community (excluding tree contributions) ranged from -3.1 gCO2–C m -2 y -1 in 2013, to C losses from 21 to 65 gCO 2–C m -2 y -1 for the other years.« less
Bryan, C G; Davis-Belmar, C S; van Wyk, N; Fraser, M K; Dew, D; Rautenbach, G F; Harrison, S T L
2012-07-01
Understanding how bioleaching systems respond to the availability of CO(2) is essential to developing operating conditions that select for optimum microbial performance. Therefore, the effect of inlet gas and associated dissolved CO(2) concentration on the growth, iron oxidation and CO(2) -fixation rates of pure cultures of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum was investigated in a batch stirred tank system. The minimum inlet CO(2) concentrations required to promote the growth of At. ferrooxidans and L. ferriphilum were 25 and 70 ppm, respectively, and corresponded to dissolved CO(2) concentrations of 0.71 and 1.57 µM (at 30°C and 37°C, respectively). An actively growing culture of L. ferriphilum was able to maintain growth at inlet CO(2) concentrations less than 30 ppm (0.31-0.45 µM in solution). The highest total new cell production and maximum specific growth rates from the stationary phase inocula were observed with CO(2) inlet concentrations less than that of air. In contrast, the amount of CO(2) fixed per new cell produced increased with increasing inlet CO(2) concentrations above 100 ppm. Where inlet gas CO(2) concentrations were increased above that of air the additional CO(2) was consumed by the organisms but did not lead to increased cell production or significantly increase performance in terms of iron oxidation. It is proposed that At. ferrooxidans has two CO(2) uptake mechanisms, a high affinity system operating at low available CO(2) concentrations, which is subject to substrate inhibition and a low affinity system operating at higher available CO(2) concentrations. L. ferriphilum has a single uptake system characterised by a moderate CO(2) affinity. At. ferrooxidans performed better than L. ferriphilum at lower CO(2) availabilities, and was less affected by CO(2) starvation. Finally, the results demonstrate the limitations of using CO(2) uptake or ferrous iron oxidation data as indirect measures of cell growth and performance across varying physiological conditions. Copyright © 2012 Wiley Periodicals, Inc.
Carbon sequestration via reaction with basaltic rocks: geochemical modeling and experimental results
Rosenbauer, Robert J.; Thomas, Burt; Bischoff, James L.; Palandri, James
2012-01-01
Basaltic rocks are potential repositories for sequestering carbon dioxide (CO2) because of their capacity for trapping CO2 in carbonate minerals. We carried out a series of thermodynamic equilibrium models and high pressure experiments, reacting basalt with CO2-charged fluids over a range of conditions from 50 to 200 °C at 300 bar. Results indicate basalt has a high reactivity to CO2 acidified brine. Carbon dioxide is taken up from solution at all temperatures from 50 to 200 °C, 300 bar, but the maximum extent and rate of reaction occurs at 100 °C, 300 bar. Reaction path simulations utilizing the geochemical modeling program CHILLER predicted an equilibrium carbonate alteration assemblage of calcite, magnesite, and siderite, but the only secondary carbonate identified in the experiments was a ferroan magnesite. The amount of uptake at 100 °C, 300 bar ranged from 8% by weight for a typical tholeite to 26% for a picrite. The actual amount of CO2 uptake and extent of rock alteration coincides directly with the magnesium content of the rock suggesting that overall reaction extent is controlled by bulk basalt Mg content. In terms of sequestering CO2, an average basaltic MgO content of 8% is equivalent to 2.6 × 108 metric ton CO2/km3 basalt.
Osborne, C. P.; Drake, B. G.; LaRoche, J.; Long, S. P.
1997-05-01
As the partial pressure of CO2 (pCO2) in the atmosphere rises, photorespiratory loss of carbon in C3 photosynthesis will diminish and the net efficiency of light-limited photosynthetic carbon uptake should rise. We tested this expectation for Indiana strawberry (Duchesnea indica) growing on a Maryland forest floor. Open-top chambers were used to elevate the pCO2 of a forest floor habitat to 67 Pa and were paired with control chambers providing an ambient pCO2 of 38 Pa. After 3.5 years, D. indica leaves grown and measured in the elevated pCO2 showed a significantly greater maximum quantum efficiency of net photosynthesis (by 22%) and a lower light compensation point (by 42%) than leaves grown and measured in the control chambers. The quantum efficiency to minimize photorespiration, measured in 1% O2, was the same for controls and plants grown at elevated pCO2. This showed that the maximum efficiency of light-energy transduction into assimilated carbon was not altered by acclimation and that the increase in light-limited photosynthesis at elevated pCO2 was simply a function of the decrease in photorespiration. Acclimation did decrease the ribulose-1,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll protein content of the leaf by more than 30%. These changes were associated with a decreased capacity for light-saturated, but not light-limited, photosynthesis. Even so, leaves of D. indica grown and measured at elevated pCO2 showed greater light-saturated photosynthetic rates than leaves grown and measured at the current atmospheric pCO2. In situ measurements under natural forest floor lighting showed large increases in leaf photosynthesis at elevated pCO2, relative to controls, in both summer and fall. The increase in efficiency of light-limited photosynthesis with elevated pCO2 allowed positive net photosynthetic carbon uptake on days and at locations on the forest floor that light fluxes were insufficient for positive net photosynthesis in the current atmospheric pCO2.
Enhanced practical photosynthetic CO2 mitigation
Bayless, David J.; Vis-Chiasson, Morgan L.; Kremer, Gregory G.
2003-12-23
This process is unique in photosynthetic carbon sequestration. An on-site biological sequestration system directly decreases the concentration of carbon-containing compounds in the emissions of fossil generation units. In this process, photosynthetic microbes are attached to a growth surface arranged in a containment chamber that is lit by solar photons. A harvesting system ensures maximum organism growth and rate of CO.sub.2 uptake. Soluble carbon and nitrogen concentrations delivered to the cyanobacteria are enhanced, further increasing growth rate and carbon utilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborne, C.P.; Long, S.P.; Drake, B.G.
1997-05-01
As the partial pressure of CO{sub 2} (pCO{sub 2}) in the atmosphere rises, photorespiratory loss of carbon in C, photosynthesis will diminish and the net efficiency of light-limited photosynthetic carbon uptake should rise. Indiana strawberry (Duchesnea indica) growing on a Maryland forest floor was tested. Open-top chambers were used to elevate the pCO{sub 2} of a forest floor habitat to 67 Pa and were paired with control chambers with an ambient pCO{sub 2} of 38 Pa. After 3.5 years, D. indica leaves in the elevated pCO{sub 2} showed a significantly greater maximum quantum efficiency of net photosynthesis (by 22%) andmore » a lower light compensation point (by 42%) than leaves in the control chambers. The quantum efficiency to minimize photorespiration was the same for controls and plants grown at elevated pCO{sub 2}, showing the maximum efficiency of light-energy transduction into assimilated carbon was not altered by acclimation and the increase in light-limited photosynthesis at elevated pCO{sub 2} was a function of the decrease in photorespiration. Acclimation did decrease the ribulose-1,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll protein content of the leaf by more than 30%. These changes were associated with a decreased capacity for light-saturated, but not light-limited, photosynthesis. Leaves of D. indica grown and measured at elevated pCO{sub 2} showed greater light-saturated photosynthetic rates than leaves grown and measured at the current atmospheric pCO{sub 2}. In situ measurements under natural lighting showed large increases in leaf photosynthesis at elevated pCO{sub 2}, relative to controls, in both summer and fall. The increase in efficiency of light-limited photosynthesis with elevated pCO{sub 2} allowed positive net photosynthetic carbon uptake on days and at locations on the forest floor that light fluxes were insufficient for positive net photosynthesis in the current atmospheric pCO{sub 2}. 33 refs., 3 figs., 3 tabs.« less
The rate of nitrite reduction in leaves as indicated by O2 and CO2 exchange during photosynthesis
Eichelmann, H.; Oja, V.; Peterson, R.B.; Laisk, A.
2011-01-01
Light response (at 300 ppm CO2 and 10–50 ppm O2 in N2) and CO2 response curves [at absorbed photon fluence rate (PAD) of 550 μmol m−2 s−1] of O2 evolution and CO2 uptake were measured in tobacco (Nicotiana tabacum L.) leaves grown on either NO3− or NH4+ as N source and in potato (Solanum tuberosum L.), sorghum (Sorghum bicolor L. Moench), and amaranth (Amaranthus cruentus L.) leaves grown on NH4NO3. Photosynthetic O2 evolution in excess of CO2 uptake was measured with a stabilized zirconia O2 electrode and an infrared CO2 analyser, respectively, and the difference assumed to represent the rate of electron flow to acceptors alternative to CO2, mainly NO2−, SO42−, and oxaloacetate. In NO3−-grown tobacco, as well as in sorghum, amaranth, and young potato, the photosynthetic O2–CO2 flux difference rapidly increased to about 1 μmol m−2 s−1 at very low PADs and the process was saturated at 50 μmol quanta m−2 s−1. At higher PADs the O2–CO2 flux difference continued to increase proportionally with the photosynthetic rate to a maximum of about 2 μmol m−2 s−1. In NH4+-grown tobacco, as well as in potato during tuber filling, the low-PAD component of surplus O2 evolution was virtually absent. The low-PAD phase was ascribed to photoreduction of NO2− which successfully competes with CO2 reduction and saturates at a rate of about 1 μmol O2 m−2 s−1 (9% of the maximum O2 evolution rate). The high-PAD component of about 1 μmol O2 m−2 s−1, superimposed on NO2− reduction, may represent oxaloacetate reduction. The roles of NO2−, oxaloacetate, and O2 reduction in the regulation of ATP/NADPH balance are discussed. PMID:21239375
Boyd, Eric S.; Leavitt, William D.; Geesey, Gill G.
2009-01-01
Carbon fixation at temperatures above 73°C, the upper limit for photosynthesis, is carried out by chemosynthetic thermophiles. Yellowstone National Park (YNP), Wyoming possesses many thermal features that, while too hot for photosynthesis, presumably support chemosynthetic-based carbon fixation. To our knowledge, in situ rates of chemosynthetic reactions at these high temperatures in YNP or other high-temperature terrestrial geothermal springs have not yet been reported. A microbial community attached to precipitated elemental sulfur (So floc) at the source of Dragon Spring (73°C, pH 3.1) in Norris Geyser Basin, YNP, exhibited a maximum rate of CO2 uptake of 21.3 ± 11.9 μg of C 107 cells−1 h−1. When extrapolated over the estimated total quantity of So floc at the spring's source, the So floc-associated microbial community accounted for the uptake of 121 mg of C h−1 at this site. On a per-cell basis, the rate was higher than that calculated for a photosynthetic mat microbial community dominated by Synechococcus spp. in alkaline springs at comparable temperatures. A portion of the carbon taken up as CO2 by the So floc-associated biomass was recovered in the cellular nucleic acid pool, demonstrating that uptake was coupled to fixation. The most abundant sequences in a 16S rRNA clone library of the So floc-associated community were related to chemolithoautotrophic Hydrogenobaculum strains previously isolated from springs in the Norris Geyser Basin. These microorganisms likely contributed to the uptake and fixation of CO2 in this geothermal habitat. PMID:19429558
Winter, K; Osmond, C B; Hubick, K T
1986-01-01
Crassulacean acid metabolism (CAM) was studied in a tropical epiphytic fern, Pyrrosia longifolia, from a fully sun-exposed and from a very shaded site in Northern Queensland, Australia. Measurements of instantaneous net CO 2 exchange showed carbon gain via CO 2 dark fixation with some net CO 2 uptake also occuring during late afternoon, in both sun and shade fronds. Maximum rates of net CO 2 uptake and the nocturnal increase in titratable acidity were lower in shade than in sun fronds. δ 13 C values of sun and shade fronds were not significantly different, and ranged between-14 and-15‰ suggesting that, in the long term, carbon gain was mainly via CO 2 dark fixation. Sun fronds had a higher light compensation point of photosynthesis than shade fronds but the same quantum yield. Yet there was no acclimation of photosynthetic O 2 evolution, (measured at 5% CO 2 ) in sun and shade fronds and photosynthesis saturated at between 200 and 400 μmol quanta m -2 s -1 . Use of higher light intensities for photosynthesis of sun fronds was probably precluded by low nutrient availability. Total nitrogen was less than 1% of dry weight in fully expanded sun and shade fronds. Exposure of shade fronds to full sunlight for 6 h led to a 60% decline in the quantum yield of photosynthesis and to a decline in variable fluorescence measured at room temperature. Photoinhibition by high light was also observed in Hoya nicholsoniae, a rainforest climber growing in deep shade. This species also exhibited CAM as demonstrated by nocturnal net CO 2 uptake, nocturnal acidification and a δ 13 C value of-14‰. Photosynthetic O 2 evolution in this species was saturated at 2.5% of full sunlight. Two species of Dendrobium (Orchidaceae) from sun-exposed sites, one species exhibiting CAM and the other one exhibiting net CO 2 uptake exclusively during daytime via conventional C 3 photosynthesis, showed similar light response curves and the same quantum yield for photosynthetic O 2 evolution.
NASA Astrophysics Data System (ADS)
Odalen, M.; Nycander, J.; Oliver, K. I. C.; Nilsson, J.; Brodeau, L.; Ridgwell, A.
2016-02-01
During glacials, atmospheric CO2 is significantly lowered; the decrease is about 1/3 or 90 ppm during the last four glacial cycles. Since the ocean reservoir of carbon, and hence the ocean capacity for storing carbon, is substantially larger than the atmospheric and terrestrial counterparts, it is likely that this lowering was caused by ocean processes, drawing the CO2 into the deep ocean. The Southern Ocean circulation and biological efficiency are widely accepted as having played an important part in this CO2 drawdown. However, the relative effects of different processes contributing to this oceanic uptake have not yet been well constrained. In this work, we focus on better constraining two of these processes; 1) the effect of increased efficiency of the biological carbon uptake, and 2) the effect of changes in global mean ocean temperature on the abiotic ocean-atmosphere CO2 equilibrium. By performing ensemble runs using an Earth System Model of Intermediate Complexity (EMIC) we examine the changes in atmospheric pCO2 achieved by 100% nutrient utilization efficiency of biology. The simulations display different ocean circulation patterns and hence different global ocean mean temperatures. By restoring the atmospheric pCO2 to a target value during the spin-up phase, the total carbon content differs between each of the ensemble members. The difference is due to circulation having direct effects on biology, but also on global ocean mean temperature, changing the solubility of CO2. This study reveals the relative importance of of the processes 1 and 2 (mentioned above) for atmospheric pCO2 in a changed climate. The results of this study also show that a difference in carbon content after spin-up can have a significant effect on the drawdown potential of a maximised biological efficiency. Thus, the choice of spin-up characteristics in a model study of climate change CO2 dynamics may significantly affect the outcome of the study.
Martin, C E; Siedow, J N
1981-08-01
Patterns of CO(2) exchange in Spanish moss under various experimental conditions were measured using an infrared gas analysis system. Plants were collected from a study site in North Carolina and placed in a gas exchange chamber for several days of continuous measurements. No substantial seasonal effects on CO(2) exchange were observed. High rates of nocturnal CO(2) uptake were observed under day/night temperature regimes of 25/10, 25/15, 25/20, 30/20, and 35/20 C; however, daytime temperatures of 40 C eliminated nighttime CO(2) uptake and a nighttime temperature of 5 C eliminated nocturnal CO(2) uptake, regardless of day temperature. Constant chamber conditions also inhibited nocturnal CO(2) uptake. Constant high relative humidity (RH) slightly stimulated CO(2) uptake while low nighttime RH reduced nocturnal CO(2) uptake.Reductions in daytime irradiance to approximately 25% full sunlight had no effect on CO(2) exchange. Continuous darkness resulted in continuous CO(2) loss by the plants, but a CO(2) exchange pattern similar to normal day/night conditions was observed under constant illumination. High tissue water content inhibited CO(2) uptake. Wetting of the tissue at any time of day or night resulted in net CO(2) loss. Abrupt increases in temperature or decreases in RH resulted in sharp decreases in net CO(2) uptake.The results indicate that Spanish moss is tolerant of a wide range of temperatures, irradiances, and water contents. They also indicate that high nighttime RH is a prerequisite for high rates of CO(2) uptake.
Satellite Evidence that
NASA Astrophysics Data System (ADS)
Kondrik, D. V.; Pozdnyakov, D. V.; Johannessen, O. M.
2018-01-01
Phytoplankton blooms of the coccolithophore
A prototype gas exchange monitor for exercise stress testing aboard NASA Space Station
NASA Technical Reports Server (NTRS)
Orr, Joseph A.; Westenskow, Dwayne R.; Bauer, Anne
1989-01-01
This paper describes an easy-to-use monitor developed to track the weightlessness deconditioning aboard the NASA Space Station, together with the results of testing of a prototype instrument. The monitor measures the O2 uptake and CO2 production, and calculates the maximum O2 uptake and anaerobic threshold during an exercise stress test. The system uses two flowmeters in series to achieve a completely automatic calibration, and uses breath-by-breath compensation for sample line-transport delay. The monitor was evaluated using two laboratory methods and was shown to be accurate. The system's block diagram and the bench test setup diagram are included.
Crassulacean Acid Metabolism in the Epiphyte Tillandsia usneoides L. (Spanish Moss) 1
Martin, Craig E.; Siedow, James N.
1981-01-01
Patterns of CO2 exchange in Spanish moss under various experimental conditions were measured using an infrared gas analysis system. Plants were collected from a study site in North Carolina and placed in a gas exchange chamber for several days of continuous measurements. No substantial seasonal effects on CO2 exchange were observed. High rates of nocturnal CO2 uptake were observed under day/night temperature regimes of 25/10, 25/15, 25/20, 30/20, and 35/20 C; however, daytime temperatures of 40 C eliminated nighttime CO2 uptake and a nighttime temperature of 5 C eliminated nocturnal CO2 uptake, regardless of day temperature. Constant chamber conditions also inhibited nocturnal CO2 uptake. Constant high relative humidity (RH) slightly stimulated CO2 uptake while low nighttime RH reduced nocturnal CO2 uptake. Reductions in daytime irradiance to approximately 25% full sunlight had no effect on CO2 exchange. Continuous darkness resulted in continuous CO2 loss by the plants, but a CO2 exchange pattern similar to normal day/night conditions was observed under constant illumination. High tissue water content inhibited CO2 uptake. Wetting of the tissue at any time of day or night resulted in net CO2 loss. Abrupt increases in temperature or decreases in RH resulted in sharp decreases in net CO2 uptake. The results indicate that Spanish moss is tolerant of a wide range of temperatures, irradiances, and water contents. They also indicate that high nighttime RH is a prerequisite for high rates of CO2 uptake. PMID:16661912
Can chilling tolerance of C4 photosynthesis in Miscanthus be transferred to sugarcane?
USDA-ARS?s Scientific Manuscript database
The goal of this study was to investigate if chilling tolerance of C4 photosynthesis in Miscanthus can be transferred to sugarcane. Net leaf CO2 uptake (Asat) and the maximum operating efficiency of photosystem II ('PSII) were measured in warm conditions (25 °C/20 °C), and then during and following ...
Independent Colimitation for Carbon Dioxide and Inorganic Phosphorus
Spijkerman, Elly; de Castro, Francisco; Gaedke, Ursula
2011-01-01
Simultaneous limitation of plant growth by two or more nutrients is increasingly acknowledged as a common phenomenon in nature, but its cellular mechanisms are far from understood. We investigated the uptake kinetics of CO2 and phosphorus of the algae Chlamydomonas acidophila in response to growth at limiting conditions of CO2 and phosphorus. In addition, we fitted the data to four different Monod-type models: one assuming Liebigs Law of the minimum, one assuming that the affinity for the uptake of one nutrient is not influenced by the supply of the other (independent colimitation) and two where the uptake affinity for one nutrient depends on the supply of the other (dependent colimitation). In addition we asked whether the physiological response under colimitation differs from that under single nutrient limitation. We found no negative correlation between the affinities for uptake of the two nutrients, thereby rejecting a dependent colimitation. Kinetic data were supported by a better model fit assuming independent uptake of colimiting nutrients than when assuming Liebigs Law of the minimum or a dependent colimitation. Results show that cell nutrient homeostasis regulated nutrient acquisition which resulted in a trade-off in the maximum uptake rates of CO2 and phosphorus, possibly driven by space limitation on the cell membrane for porters for the different nutrients. Hence, the response to colimitation deviated from that to a single nutrient limitation. In conclusion, responses to single nutrient limitation cannot be extrapolated to situations where multiple nutrients are limiting, which calls for colimitation experiments and models to properly predict growth responses to a changing natural environment. These deviations from single nutrient limitation response under colimiting conditions and independent colimitation may also hold for other nutrients in algae and in higher plants. PMID:22145031
Hauck, J; Völker, C
2015-01-01
The Southern Ocean is a key region for global carbon uptake and is characterized by a strong seasonality with the annual CO2 uptake being mediated by biological carbon drawdown in summer. Here we show that the contribution of biology to CO2 uptake will become even more important until 2100. This is the case even if biological production remains unaltered and can be explained by the decreasing buffer capacity of the ocean as its carbon content increases. The same amount of biological carbon drawdown leads to a more than twice as large reduction in CO2(aq) concentration and hence to a larger CO2 gradient between ocean and atmosphere that drives the gas exchange. While the winter uptake south of 44°S changes little, the summer uptake increases largely and is responsible for the annual mean response. The combination of decreasing buffer capacity and strong seasonality of biological carbon drawdown introduces a strong and increasing seasonality in the anthropogenic carbon uptake. Key Points Decrease of buffer capacity leads to stronger summer CO2 uptake in the future Biology will contribute more to future CO2 uptake in Southern Ocean Seasonality affects anthropogenic carbon uptake strongly PMID:26074650
Wang, Bin; Jin, Haiyan; Li, Qi; Chen, Dongdong; Zhao, Liang; Tang, Yanhong; Kato, Tomomichi; Gu, Song
2017-01-01
Carbon dioxide (CO2) exchange between the atmosphere and grassland ecosystems is very important for the global carbon balance. To assess the CO2 flux and its relationship to environmental factors, the eddy covariance method was used to evaluate the diurnal cycle and seasonal pattern of the net ecosystem CO2 exchange (NEE) of a cultivated pasture in the Three-River Source Region (TRSR) on the Qinghai−Tibetan Plateau from January 1 to December 31, 2008. The diurnal variations in the NEE and ecosystem respiration (Re) during the growing season exhibited single-peak patterns, the maximum and minimum CO2 uptake observed during the noon hours and night; and the maximum and minimum Re took place in the afternoon and early morning, respectively. The minimum hourly NEE rate and the maximum hourly Re rate were −7.89 and 5.03 μmol CO2 m−2 s−1, respectively. The NEE and Re showed clear seasonal variations, with lower values in winter and higher values in the peak growth period. The highest daily values for C uptake and Re were observed on August 12 (−2.91 g C m−2 d−1) and July 28 (5.04 g C m−2 day−1), respectively. The annual total NEE and Re were −140.01 and 403.57 g C m−2 year−1, respectively. The apparent quantum yield (α) was −0.0275 μmol μmol−1 for the entire growing period, and the α values for the pasture’s light response curve varied with the leaf area index (LAI), air temperature (Ta), soil water content (SWC) and vapor pressure deficit (VPD). Piecewise regression results indicated that the optimum Ta and VPD for the daytime NEE were 14.1°C and 0.65 kPa, respectively. The daytime NEE decreased with increasing SWC, and the temperature sensitivity of respiration (Q10) was 3.0 during the growing season, which was controlled by the SWC conditions. Path analysis suggested that the soil temperature at a depth of 5 cm (Tsoil) was the most important environmental factor affecting daily variations in NEE during the growing season, and the photosynthetic photon flux density (PPFD) was the major limiting factor for this cultivated pasture. PMID:28129406
Pignon, Charles P.; Jaiswal, Deepak; McGrath, Justin M.
2017-01-01
Abstract The wild progenitors of major C4 crops grew as individuals subjected to little shading. Today they are grown in dense stands where most leaves are shaded. Do they maintain photosynthetic efficiency in these low light conditions produced by modern cultivation? The apparent maximum quantum yield of CO2 assimilation (ΦCO2max,app), a key determinant of light-limited photosynthesis, has not been systematically studied in field stands of C4 crops. ΦCO2max,app was derived from the initial slope of the response of leaf CO2 uptake (A) to photon flux (Q). Leaf fractional light absorptance (α) was measured to determine the absolute maximum quantum yield of CO2 assimilation on an absorbed light basis (ΦCO2max,abs). Light response curves were determined on sun and shade leaves of 49 field plants of Miscanthus × giganteus and Zea mays following canopy closure. ΦCO2max,app and ΦCO2max,abs declined significantly by 15–27% (P<0.05) with canopy depth. Experimentally, leaf age was shown unlikely to cause this loss. Modeling canopy CO2 assimilation over diurnal courses suggested that the observed decline in ΦCO2max,app with canopy depth costs 10% of potential carbon gain. Overcoming this limitation could substantially increase the productivity of major C4 crops. PMID:28110277
Saleh, Muhammad; Chandra, Vimlesh; Kemp, K Christian; Kim, Kwang S
2013-06-28
A polyindole-reduced graphene oxide (PIG) hybrid was synthesized by reducing graphene oxide sheets in the presence of polyindole. We have shown PIG as a material for capturing carbon dioxide (CO2). The PIG hybrid was chemically activated at temperatures of 400-800 °C, which resulted in nitrogen (N)-doped graphene sheets. The N-doped graphene sheets are microporous with an adsorption pore size of 0.6 nm for CO2 and show a maximum (Brunauer, Emmet and Teller) surface area of 936 m(2) g(-1). The hybrid activated at 600 °C (PIG6) possesses a surface area of 534 m(2) g(-1) and a micropore volume of 0.29 cm(3) g(-1). PIG6 shows a maximum CO2 adsorption capacity of 3.0 mmol g(-1) at 25 °C and 1 atm. This high CO2 uptake is due to the highly microporous character of the material and its N content. The material retains its original adsorption capacity on recycling even after 10 cycles (within experimental error). PIG6 also shows high adsorption selectivity ratios for CO2 over N2, CH4 and H2 of 23, 4 and 85 at 25 °C, respectively.
Leaf and Stem CO2 Uptake in the Three Subfamilies of the Cactaceae 1
Nobel, Park S.; Hartsock, Terry L.
1986-01-01
Net CO2 uptake over 24-hour periods was examined for the leaves and for the stems of 11 species of cacti representing all three subfamilies. For Pereskia aculeata, Pereskia grandifolia, and Maihuenia poeppigii (subfamily Pereskioideae), all the net shoot CO2 uptake was by the leaves and during the daytime. In contrast, for the leafless species Carnegiea gigantea, Ferocactus acanthodes, Coryphantha vivipara, and Mammillaria dioica (subfamily Cactoideae), all the shoot net CO2 uptake was by the stems and at night. Similarly, for leafless Opuntia ficus-indica (subfamily Opuntioideae), all net CO2 uptake occurred at night. For leafy members of the Opuntioideae (Pereskiopsis porteri, Quiabentia chacoensis, Austrocylindropuntia subulata), at least 88% of the shoot CO2 uptake over 24 hours was by the leaves and some CO2 uptake occurred at night. Leaves responded to the instantaneous level of photosynthetically active radiation (PAR) during the daytime, as occurs for C3 plants, whereas nocturnal CO2 uptake by stems of O. ficus-indica and F. acanthodes responded to the total daily PAR, as occurs for Crassulacean acid metabolism (CAM) plants. Thus, under the well-watered conditions employed, the Pereskioideae behaved as C3 plants, the Cactoideae behaved as CAM plants, and the Opuntioideae exhibited characteristics of both pathways. PMID:16664741
Precipitation of CaCO3 due to the Uptake of CO2 in Aqueous Solutions - Mechanisms and Rates
NASA Astrophysics Data System (ADS)
Dietzel, M.; Purgstaller, B.; Rinder, T.; Niedermayr, A.
2012-12-01
In natural and man-made environments the exchange of CO2 between aqueous solutions and the atmosphere frequently induces precipitation of CaCO3 polymorphs. Liberation of gaseous CO2 is well known to induce carbonate formation and extensively studied. In contrast significant gaps of knowledge exist with respect to the combined CO2 uptake and CaCO3 formation, although it is known to be highly valid for many natural and man-made surroundings causing e.g. travertine and scaling in analogy to CO2 liberation. Recently CO2 uptake is also discussed for biomineralization issues and debated for CO2 sequestration by using alkaline residue materials. In the present study CO2 uptake and CaCO3 precipitation mechanisms and rates were experimentally studied by diffusion of CO2 through a polyethylene membrane from an inner to an outer solution containing carbonic acid and CaCl2 (10 mM), respectively. The pH of the outer solution was kept constant between 8.3 and 11.5 by pH stat. technique (25°C). At a critical Ion Activity Product (IAP) CaCO3 is formed in the outer solution. The NaOH titration curve and Ca2+ concentrations reflect CO2 uptake and CaCO3 precipitation rates. To discover the impact of a drift in pH due to CO2 uptake on CaCO3 precipitation hydrogeochemical modeling was applied. XRD, (micro)Raman pattern and SEM imaging reveal the formation of calcite and vaterite at pH 8.3 and 9, whereas at pH > 10 vaterite is additionally formed. However at a given pH the formation of individual CaCO3 polymorphs strongly depends on the CO2 uptake rate (adjusted by membrane thickness), which controls carbonate accumulation in the solution. At elevated pH of the outer solution the uptake rate of CO2 is significantly higher and less time for nucleation of CaCO3 is required compared to lower pH. Surprisingly at the total experimental time of ≈ 20 h the amount of precipitated CaCO3 is similar for all experiments. This can be explained by significant higher CaCO3 precipitation rates at low versus high pH if once a critical IAP is reached. If a drift in pH is permitted the internal Pco2 value can be used as a reliable proxy to evaluate whether uptake of CO2 results in an increase or decrease of IAP with a threshold value of 10-6.15 atm at 25°C (pH ≈ 11). The obtained relationships for CaCO3 formation through CO2 uptake are discussed for selected alkaline environments.
NASA Astrophysics Data System (ADS)
Meng, Huijuan; Xia, Yunfeng; Chen, Hong
Potential remediation of surface water contaminated with linear alkylbenzene sulfonates (LAS) and zinc (Zn (II)) by sorption on Spirulina platensis was studied using batch techniques. Results show that LAS can be biodegraded by Spirulina platensis, and its biodegradation rate after 5 days was 87%, 80%, and 70.5% when its initial concentration was 0.5, 1, and 2 mg/L, respectively. The maximum Zn (II) uptake capacity of Spirulina platensis was found to be 30.96 mg/g. LAS may enhance the maximum Zn (II) uptake capacity of Spirulina platensis, which can be attributed to an increase in bioavailability due to the presence of LAS. The biodegradation rates of LAS by Spirulina platensis increased with Zn (II) and reached the maximum when Zn (II) was 4 mg/L. The joint toxicity test showed that the combined effect of LAS and Zn (II) was Synergistic. LAS can enhance the biosorption of Zn (II), and reciprocally, Zn (II) can enhance LAS biodegradation.
Drier summers cancel out the CO2 uptake enhancement induced by warmer springs.
Angert, A; Biraud, S; Bonfils, C; Henning, C C; Buermann, W; Pinzon, J; Tucker, C J; Fung, I
2005-08-02
An increase in photosynthetic activity of the northern hemisphere terrestrial vegetation, as derived from satellite observations, has been reported in previous studies. The amplitude of the seasonal cycle of the annually detrended atmospheric CO(2) in the northern hemisphere (an indicator of biospheric activity) also increased during that period. We found, by analyzing the annually detrended CO(2) record by season, that early summer (June) CO(2) concentrations indeed decreased from 1985 to 1991, and they have continued to decrease from 1994 up to 2002. This decrease indicates accelerating springtime net CO(2) uptake. However, the CO(2) minimum concentration in late summer (an indicator of net growing-season uptake) showed no positive trend since 1994, indicating that lower net CO(2) uptake during summer cancelled out the enhanced uptake during spring. Using a recent satellite normalized difference vegetation index data set and climate data, we show that this lower summer uptake is probably the result of hotter and drier summers in both mid and high latitudes, demonstrating that a warming climate does not necessarily lead to higher CO(2) growing-season uptake, even in high-latitude ecosystems that are considered to be temperature limited.
The Dynamics of Energy and CO2 Transport above a Subtropical Rice Paddy
NASA Astrophysics Data System (ADS)
Hsieh, C.; Huang, C.; Cheng, S.
2013-12-01
An eddy-covariance system was established to understand the dynamics of turbulent transport of sensible heat, water vapor, and CO2 above a subtropical rice paddy in north Taiwan (24°48'07.958'N, 121°47'58.665'E). The results showed that, during crop season, about 25% of net radiation was used for latent heat flux, 10% for sensible heat flux, and the rest (65%) was absorbed by the water and soil in the rice paddy. However, during fallow period, where there was no rice in the paddy, both water vapor and sensible heat fluxes occupied about 18% of the net radiation. Also, Penman-Monteith equation was found to reproduce the water vapor flux well with surface resistance close to 190 s m-1. We also found that, under small Bowen ratio (< 0.2) conditions, water vapor and CO2 were transported more efficiently than heat. However, when Bowen ration was large (> 0.5), sensible heat was transported about 10% more efficiently than both water vapor and CO2. During crop season the maximum CO2 uptake was about 22 micro mol m-2 s-1. In fallow period, the maximum CO2 emission rate from the soil-water surface was around 5 micro mol m-2 s-1, which was about the same as the growing season.
Madrigal-Carballo, Sergio; Haas, Linda; Vestling, Martha; Krueger, Christian G; Reed, Jess D
2016-12-01
In this work we characterize the interaction of pomegranate hydrolyzable tannins (HT) with hen egg-white lysozyme (HEL) and determine the effects of non-covalent tannin-protein complexes on macrophage endocytosis, processing and presentation of antigen. We isolated HT from pomegranate and complex to HEL, the resulting non-covalent tannin-protein complex was characterized by gel electrophoresis and MALDI-TOF MS. Finally, cell culture studies and confocal microscopy imaging were conducted on the non-covalent pomegranate HT-HEL protein complexes to evaluate its effect on macrophage antigen uptake, processing and presentation to T-cell hybridomas. Our results indicate that non-covalent pomegranate HT-HEL protein complexes modulate uptake, processing and antigen presentation by mouse peritoneal macrophages. After 4 h of pre-incubation, only trace amounts of IL-2 were detected in the co-cultures treated with HEL alone, whereas a non-covalent pomegranate HT-HEL complex had already reached maximum IL-2 expression. Pomegranate HT may increase rate of endocytose of HEL and subsequent expression of IL-2 by the T-cell hybridomas.
Vats, Kusum; Satpati, Drishty; Sharma, Rohit; Sarma, Haladhar D; Banerjee, Sharmila
2017-03-01
This work aimed at studying the effect of insertion of medium PEG (PEG 7 ) on the pharmacokinetic behavior of cRGDfK peptide in comparison with the non-PEGylated analogue. The cRGDfK peptide has thus been derivatized at ε-amino group of lysine by conjugation with N 3 -PEG 7 -COOH/N 3 -CH 2 -COOH to prepare a PEGylated and a non-PEGylated analogue of cRGDfK. A tridentate chelator was then incorporated by click chemistry conjugation of the two peptide azides for radiolabeling with [ 99m Tc(CO) 3 (H 2 O) 3 ] + precursor. Comparative in vivo evaluation of the two 99m Tc(CO) 3 -labeled radiotracers, 99m Tc(CO) 3 -Pra-Tz-CH 2 -cRGDfK 5 and 99m Tc(CO) 3 -Pra-Tz-PEG 7 -cRGDfK 6, was carried out in C57BL/6 mice bearing α v β 3 -positive melanoma tumors to determine their potential toward targeting integrin α v β 3 receptors. The radiotracers exhibited excellent stability in saline as well as in serum. Maximum tumor uptake for the two radiotracers was observed at 30 min p.i. (5: 3.0 ± 0.7% ID/g; 6: 4.1 ± 0.5% ID/g). The two neutral 99m Tc(CO) 3 radiotracers prepared exhibited receptor-mediated uptake in melanoma tumor. The increase in the tumor uptake on introduction of PEG 7 unit was accompanied by slower clearance from other organs which resulted in decreased target-to-background ratios. The in vivo kinetics of 99m Tc(CO) 3 -labeled radiotracer, 99m Tc(CO) 3 -Pra-Tz-CH 2 -cRGDfK 5 with only methylene unit as the spacer, was found to be more favorable due to higher tumor/blood, tumor/liver, tumor/kidney, and tumor/lung ratios. © 2016 John Wiley & Sons A/S.
Plant Regrowth as a Driver of Recent Enhancement of Terrestrial CO2 Uptake
NASA Astrophysics Data System (ADS)
Kondo, Masayuki; Ichii, Kazuhito; Patra, Prabir K.; Poulter, Benjamin; Calle, Leonardo; Koven, Charles; Pugh, Thomas A. M.; Kato, Etsushi; Harper, Anna; Zaehle, Sönke; Wiltshire, Andy
2018-05-01
The increasing strength of land CO2 uptake in the 2000s has been attributed to a stimulating effect of rising atmospheric CO2 on photosynthesis (CO2 fertilization). Using terrestrial biosphere models, we show that enhanced CO2 uptake is induced not only by CO2 fertilization but also an increasing uptake by plant regrowth (accounting for 0.33 ± 0.10 Pg C/year increase of CO2 uptake in the 2000s compared with the 1960s-1990s) with its effect most pronounced in eastern North America, southern-eastern Europe, and southeastern temperate Eurasia. Our analysis indicates that ecosystems in North America and Europe have established the current productive state through regrowth since the 1960s, and those in temperate Eurasia are still in a stage from regrowth following active afforestation in the 1980s-1990s. As the strength of model representation of CO2 fertilization is still in debate, plant regrowth might have a greater potential to sequester carbon than indicated by this study.
Martin, C E; McKee, J M; Schmitt, A K
1989-09-01
Past studies of the effects of varying levels of photosynthetic photon flux density (PPFD) on the morphology and physiology of the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides L. (Bromeliaceae) have resulted in two important findings: (1) CAM, measured as integrated nocturnal CO2 uptake or as nocturnal increases in tissue acidity, saturates at relatively low PPFD, and (2) this plant does not acclimate to different PPFD levels, these findings require substantiation using photosynthetic responses immediately attributable to different PPFD levels, e.g., O2 evolution, as opposed to the delayed, nocturnal responses (CO2 uptake and acid accumulation). In the present study, instantaneous responses of O2 evolution to PPFD level were measured using plants grown eight weeks at three PPFD (20-45, 200-350, and 750-800 μmol m(-2)s(-1)) in a growth chamber, and using shoots taken from the exposed upper portions (maximum PPFD of 800 μmol m(-2)s(-1)) and shaded lower portions (maximum PPFD of 140 μmol m(-2)s(-1)) of plants grown ten years in a greenhouse. In addition, nocturnal increases in acidity were measured in the growth chamber plants. Regardless of the PPFD levels during growth, O2 evolution rates saturated around 500 μmol m(-2)s(-1). Furthermore, nocturnal increases in tissue acidity saturated at much lower PPFD. Thus, previous results were confirmed: photosynthesis saturated at low PPFD, and this epiphyte does not acclimate to different levels of PPFD.
Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic
NASA Astrophysics Data System (ADS)
Jammet, Mathilde; Dengel, Sigrid; Kettner, Ernesto; Parmentier, Frans-Jan W.; Wik, Martin; Crill, Patrick; Friborg, Thomas
2017-11-01
Lakes and wetlands, common ecosystems of the high northern latitudes, exchange large amounts of the climate-forcing gases methane (CH4) and carbon dioxide (CO2) with the atmosphere. The magnitudes of these fluxes and the processes driving them are still uncertain, particularly for subarctic and Arctic lakes where direct measurements of CH4 and CO2 emissions are often of low temporal resolution and are rarely sustained throughout the entire year. Using the eddy covariance method, we measured surface-atmosphere exchange of CH4 and CO2 during 2.5 years in a thawed fen and a shallow lake of a subarctic peatland complex. Gas exchange at the fen exhibited the expected seasonality of a subarctic wetland with maximum CH4 emissions and CO2 uptake in summer, as well as low but continuous emissions of CH4 and CO2 throughout the snow-covered winter. The seasonality of lake fluxes differed, with maximum CO2 and CH4 flux rates recorded at spring thaw. During the ice-free seasons, we could identify surface CH4 emissions as mostly ebullition events with a seasonal trend in the magnitude of the release, while a net CO2 flux indicated photosynthetic activity. We found correlations between surface CH4 emissions and surface sediment temperature, as well as between diel CO2 uptake and diel solar input. During spring, the breakdown of thermal stratification following ice thaw triggered the degassing of both CH4 and CO2. This spring burst was observed in 2 consecutive years for both gases, with a large inter-annual variability in the magnitude of the CH4 degassing. On the annual scale, spring emissions converted the lake from a small CO2 sink to a CO2 source: 80 % of total annual carbon emissions from the lake were emitted as CO2. The annual total carbon exchange per unit area was highest at the fen, which was an annual sink of carbon with respect to the atmosphere. Continuous respiration during the winter partly counteracted the fen summer sink by accounting for, as both CH4 and CO2, 33 % of annual carbon exchange. Our study shows (1) the importance of overturn periods (spring or fall) for the annual CH4 and CO2 emissions of northern lakes, (2) the significance of lakes as atmospheric carbon sources in subarctic landscapes while fens can be a strong carbon sink, and (3) the potential for ecosystem-scale eddy covariance measurements to improve the understanding of short-term processes driving lake-atmosphere exchange of CH4 and CO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luxmoore, R.J.; O'Neill, E.G.; Ells, J.M.
One-year-old Virgina pine (Pinus virginiana Mill.) seedlings with native or Pisolithus tinctorius mycorrhizal associations were grown in pots with soil low in organic matter and in cation exchange capacity and were exposed to one of five atmospheric CO/sub 2/ levels in the range of 340 to 940 ..mu..L/L in open-top field chambers. The mean dry weight of the seedlings increased from 4.4 to 11.0 g/plant during the 122-d exposure period. Significant increases in dry weight and uptake of N, Ca, Al, Fe, Zn, and Sr occurred with CO/sub 2/ enrichment. Greater chemical uptake was associated with greater root weight. Specificmore » absorption rates for chemicals (uptake per gram of root per day) were generally not affected by CO/sub 2/ enrichment. The uptake of P and K was not increased with elevated CO/sub 2/, and these elements showed the greater nutrient-use efficiency (C gain per element uptake). The nutrient-use efficiency for N and Ca was not influenced by atmospheric CO/sub 2/ enrichment. Large increases in Zn uptake at high CO'' suggested an increase in rhizosphere acidification, which may have resulted from the release of protons from the roots, since it was estimated that cation uptake increasingly exceeded anion uptake with CO/sub 2/ enrichment. Potassium, P, and NO/sub 3//sup -/ concentrations in the pot leachate decreased with higher CO/sub 2/ levels, and a similar trend was found for Al and Mg. These results suggest that soil-plant systems may exhibit increased nutrient and chemical retention at elevated atmospheric CO/sub 2/.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nobel, P.S.; Hartsock, T.L.
Net CO/sub 2/ uptake over 24-hour periods was examined for the leaves and for the stems of 11 species of cacti representing all three subfamilies. For Pereskia aculeata, Pereskia grandifolia, and Maihuenia poeppigii (subfamily Pereskioideae), all the net shoot CO/sub 2/ uptake was by the leaves and during the daytime. In contrast, for the leafless species Carnegiea gigantea, Ferocactus acanthodes, Coryphantha vivipara, and Mammillaria dioica (subfamily Cactoideae), all the shoot net CO/sub 2/ uptake was by the stems and at night. Similarly, for leafless Opuntia ficus-indica (subfamily Opuntioideae), all net CO/sub 2/ uptake occurred at night. For leafy members ofmore » the Opuntioideae (Pereskiopsis porteri, Quiabentia chacoensis, Austrocylindropuntia subulata), at least 88% of the shoot CO/sub 2/ uptake over 24 hours was by the leaves and some CO/sub 2/ uptake occurred at night. Leaves responded to the instantaneous level of photosynthetically active radiation (PAR) during the daytime, as occurs for C/sub 3/ plants, whereas nocturnal CO/sub 2/ uptake by stems of O. ficus-indica and F. acanthodes responded to the total daily PAR, as occurs for Crassulacean acid metabolism (CAM) plants. Thus, under the well-watered conditions employed, the Pereskioideae behaved as C/sub 3/ plants, the Cactoideae behaved as CAM plants, and the Opuntioideae exhibited characteristics of both pathways.« less
Temporal evolution of mechanisms controlling ocean carbon uptake during the last glacial cycle
NASA Astrophysics Data System (ADS)
Kohfeld, Karen E.; Chase, Zanna
2017-08-01
Many mechanisms have been proposed to explain the ∼85-90 ppm decrease in atmospheric carbon dioxide (CO2) during the last glacial cycle, between 127,000 and 18,000 yrs ago. When taken together, these mechanisms can, in some models, account for the full glacial-interglacial CO2 drawdown. Most proxy-based evaluations focus on the peak of the Last Glacial Maximum, 24,000-18,000 yrs ago, and little has been done to determine the sequential timing of processes affecting CO2 during the last glacial cycle. Here we use a new compilation of sea-surface temperature records together with time-sequenced records of carbon and Nd isotopes, and other proxies to determine when the most commonly proposed mechanisms could have been important for CO2 drawdown. We find that the initial major drawdown of 35 ppm 115,000 yrs ago was most likely a result of Antarctic sea ice expansion. Importantly, changes in deep ocean circulation and mixing did not play a major role until at least 30,000 yrs after the first CO2 drawdown. The second phase of CO2 drawdown occurred ∼70,000 yrs ago and was also coincident with the first significant influences of enhanced ocean productivity due to dust. Finally, minimum concentrations of atmospheric CO2 during the Last Glacial Maximum resulted from the combination of physical and biological factors, including the barrier effect of expanded Southern Ocean sea ice, slower ventilation of the deep sea, and ocean biological feedbacks.
Decadal predictions of the North Atlantic CO2 uptake.
Li, Hongmei; Ilyina, Tatiana; Müller, Wolfgang A; Sienz, Frank
2016-03-30
As a major CO2 sink, the North Atlantic, especially its subpolar gyre region, is essential for the global carbon cycle. Decadal fluctuations of CO2 uptake in the North Atlantic subpolar gyre region are associated with the evolution of the North Atlantic Oscillation, the Atlantic meridional overturning circulation, ocean mixing and sea surface temperature anomalies. While variations in the physical state of the ocean can be predicted several years in advance by initialization of Earth system models, predictability of CO2 uptake has remained unexplored. Here we investigate the predictability of CO2 uptake variations by initialization of the MPI-ESM decadal prediction system. We find large multi-year variability in oceanic CO2 uptake and demonstrate that its potential predictive skill in the western subpolar gyre region is up to 4-7 years. The predictive skill is mainly maintained in winter and is attributed to the improved physical state of the ocean.
NASA Astrophysics Data System (ADS)
Churkina, Galina; Brovkin, Victor; von Bloh, Werner; Trusilova, Kristina; Jung, Martin; Dentener, Frank
2009-12-01
Increased carbon uptake of land in response to elevated atmospheric CO2 concentration and nitrogen deposition could slow down the rate of CO2 increase and facilitate climate change mitigation. Using a coupled model of climate, ocean, and land biogeochemistry, we show that atmospheric nitrogen deposition and atmospheric CO2 have a strong synergistic effect on the carbon uptake of land. Our best estimate of the global land carbon uptake in the 1990s is 1.34 PgC/yr. The synergistic effect could explain 47% of this carbon uptake, which is higher than either the effect of increasing nitrogen deposition (29%) or CO2 fertilization (24%). By 2030, rising carbon uptake on land has a potential to reduce atmospheric CO2 concentration by about 41 ppm out of which 16 ppm reduction would come from the synergetic response of land to the CO2 and nitrogen fertilization effects. The strength of the synergy depends largely on the cooccurrence of high nitrogen deposition regions with nonagricultural ecosystems. Our study suggests that reforestation and sensible ecosystem management in industrialized regions may have larger potential for climate change mitigation than anticipated.
Kottmeier, Dorothee M; Rokitta, Sebastian D; Rost, Björn
2016-07-01
A combined increase in seawater [CO2 ] and [H(+) ] was recently shown to induce a shift from photosynthetic HCO3 (-) to CO2 uptake in Emiliania huxleyi. This shift occurred within minutes, whereas acclimation to ocean acidification (OA) did not affect the carbon source. To identify the driver of this shift, we exposed low- and high-light acclimated E. huxleyi to a matrix of two levels of dissolved inorganic carbon (1400, 2800 μmol kg(-1) ) and pH (8.15, 7.85) and directly measured cellular O2 , CO2 and HCO3 (-) fluxes under these conditions. Exposure to increased [CO2 ] had little effect on the photosynthetic fluxes, whereas increased [H(+) ] led to a significant decline in HCO3 (-) uptake. Low-light acclimated cells overcompensated for the inhibition of HCO3 (-) uptake by increasing CO2 uptake. High-light acclimated cells, relying on higher proportions of HCO3 (-) uptake, could not increase CO2 uptake and photosynthetic O2 evolution consequently became carbon-limited. These regulations indicate that OA responses in photosynthesis are caused by [H(+) ] rather than by [CO2 ]. The impaired HCO3 (-) uptake also provides a mechanistic explanation for lowered calcification under OA. Moreover, it explains the OA-dependent decrease in photosynthesis observed in high-light grown phytoplankton. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Stoy, Paul C; Trowbridge, Amy M; Bauerle, William L
2014-02-01
Most models of photosynthetic activity assume that temperature is the dominant control over physiological processes. Recent studies have found, however, that photoperiod is a better descriptor than temperature of the seasonal variability of photosynthetic physiology at the leaf scale. Incorporating photoperiodic control into global models consequently improves their representation of the seasonality and magnitude of atmospheric CO2 concentration. The role of photoperiod versus that of temperature in controlling the seasonal variability of photosynthetic function at the canopy scale remains unexplored. We quantified the seasonal variability of ecosystem-level light response curves using nearly 400 site years of eddy covariance data from over eighty Free Fair-Use sites in the FLUXNET database. Model parameters describing maximum canopy CO2 uptake and the initial slope of the light response curve peaked after peak temperature in about 2/3 of site years examined, emphasizing the important role of temperature in controlling seasonal photosynthetic function. Akaike's Information Criterion analyses indicated that photoperiod should be included in models of seasonal parameter variability in over 90% of the site years investigated here, demonstrating that photoperiod also plays an important role in controlling seasonal photosynthetic function. We also performed a Granger causality analysis on both gross ecosystem productivity (GEP) and GEP normalized by photosynthetic photon flux density (GEP n ). While photoperiod Granger-caused GEP and GEP n in 99 and 92% of all site years, respectively, air temperature Granger-caused GEP in a mere 32% of site years but Granger-caused GEP n in 81% of all site years. Results demonstrate that incorporating photoperiod may be a logical step toward improving models of ecosystem carbon uptake, but not at the expense of including enzyme kinetic-based temperature constraints on canopy-scale photosynthesis.
NASA Astrophysics Data System (ADS)
Niu, S.
2015-12-01
Earth system exhibits strong interannual variability (IAV) in the global carbon cycle as reflected in the year-to-year anomalies of the atmospheric CO2 concentration. Although various analyses suggested that land ecosystems contribute mostly to the IAV of atmospheric CO2 concentration, processes leading to the IAV in the terrestrial carbon (C) cycle are far from clear and hinder our effort in predicting the IAV of global C cycle. Previous studies on IAV of global C cycle have focused on the regulation of climatic variables in tropical or semiarid areas, but generated inconsistent conclusions. Using long-term eddy-flux measurements of net ecosystem production (NEP), atmospheric CO2 inversion NEP, and the MODIS-derived gross primary production (GPP), we demonstrate that seasonal carbon uptake amplitude (CUA) and period (CUP) are two key processes that control the IAV in the terrestrial C cycle. The two processes together explain 78% of the variations in the IAV in eddy covariance NEP, 70% in global atmospheric inversed NEP, and 53% in the IAV of GPP. Moreover, the three lines of evidence consistently show that variability in CUA is much more important than that of CUP in determining the variation of NEP at most eddy-flux sites, and most grids of global NEP and GPP. Our results suggest that the maximum carbon uptake potential in the peak-growing season is a determinant process of global C cycle internnual variability and carbon uptake period may play less important role than previous expectations. This study uncovers the most parsimonious, proximate processes underlying the IAV in global C cycle of the Earth system. Future research is needed to identify how climate factors affect the IAV in terrestrial C cycle through their influence on CUA and CUP.
Jayawardena, Dileepa M; Heckathorn, Scott A; Bista, Deepesh R; Mishra, Sasmita; Boldt, Jennifer K; Krause, Charles R
2017-03-01
Atmospheric CO 2 enrichment is expected to often benefit plant growth, despite causing global warming and nitrogen (N) dilution in plants. Most plants primarily procure N as inorganic nitrate (NO 3 - ) or ammonium (NH 4 + ), using membrane-localized transport proteins in roots, which are key targets for improving N use. Although interactive effects of elevated CO 2 , chronic warming and N form on N relations are expected, these have not been studied. In this study, tomato (Solanum lycopersicum) plants were grown at two levels of CO 2 (400 or 700 ppm) and two temperature regimes (30 or 37°C), with NO 3 - or NH 4 + as the N source. Elevated CO 2 plus chronic warming severely inhibited plant growth, regardless of N form, while individually they had smaller effects on growth. Although %N in roots was similar among all treatments, elevated CO 2 plus warming decreased (1) N-uptake rate by roots, (2) total protein concentration in roots, indicating an inhibition of N assimilation and (3) shoot %N, indicating a potential inhibition of N translocation from roots to shoots. Under elevated CO 2 plus warming, reduced NO 3 - -uptake rate per g root was correlated with a decrease in the concentration of NO 3 - -uptake proteins per g root, reduced NH 4 + uptake was correlated with decreased activity of NH 4 + -uptake proteins and reduced N assimilation was correlated with decreased concentration of N-assimilatory proteins. These results indicate that elevated CO 2 and chronic warming can act synergistically to decrease plant N uptake and assimilation; hence, future global warming may decrease both plant growth and food quality (%N). © 2016 Scandinavian Plant Physiology Society.
König, Jörg; Klatt, Sabine; Dilger, Karin; Fromm, Martin F
2012-08-01
Ursodeoxycholic acid (UDCA) is the only approved treatment for primary biliary cirrhosis, and norursodeoxycholic acid (norUDCA) is currently tested in clinical trials for future treatment of primary sclerosing cholangitis because of beneficial effects in cholestatic Mdr2 knock-out mice. Uptake of UDCA and norUDCA into hepatocytes is believed to be a prerequisite for subsequent metabolism and therapeutic action. However, the molecular determinants of hepatocellular uptake of UDCA and norUDCA are poorly understood. We therefore investigated whether UDCA and norUDCA are substrates of the hepatic uptake transporters OATP1B1, OATP1B3, OATP2B1 and Na(+) -taurocholate co-transporting polypeptide (NTCP), which are localized in the basolateral membrane of hepatocytes. Uptake of [(3) H]UDCA and [(14) C]norUDCA into Human embryonic kidney (HEK) cells stably expressing OATP1B1, OATP1B3, OATP2B1 or NTCP was investigated and compared with uptake into vector control cells. Uptake ratios were calculated by dividing uptake into transporter-transfected cells by uptake into respective control cells. Uptake ratios of OATP1B1-, OATP1B3- and OATP2B1-mediated UDCA and norUDCA uptake were at maximum 1.23 and 1.49, respectively. Uptake of UDCA was significantly higher into HEK-NTCP cells only at the lowest tested concentration (1 μM, p < 0.001) compared with the control cells with an uptake ratio of 1.34-fold. NorUDCA was not significantly transported by NTCP. The low uptake rates suggest that OATP1B1, OATP1B3, OATP2B1 and NTCP are not relevant for hepatocellular uptake and effects of UDCA and norUDCA in human beings. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.
Iron in the Ross Sea: 2. Impact of discrete iron addition strategies
NASA Astrophysics Data System (ADS)
Arrigo, Kevin R.; Tagliabue, Alessandro
2005-03-01
Presented are results of a regional-scale numerical investigation into the effectiveness of Fe fertilization as a means to increase the efficiency of the biological pump in Fe-limited waters of the Ross Sea, Antarctica. This investigation was conducted using a modified version of the Coupled Ice And Ocean (CIAO) ecosystem model of the Ross Sea sector of the Southern Ocean. Four sets of experiments were performed, investigating the impacts of differences in (1) timing of fertilization, (2) duration of fertilization, (3) amount of Fe added, and (4) size of the fertilized patch. Results show that the stimulation of air-sea CO2 exchange (FCO2) depends primarily on the timing of fertilization, regardless of the amount of Fe added. When Fe was added at the optimal time of year, FCO2 from the atmosphere into the Ross Sea was increased by 3-22%, depending on fertilization strategy. Increasing patch size produced the largest response, and increasing initial Fe concentration produced the smallest. In all cases, as the intensity of Fe fertilization increased, the fertilization efficiency (increase in CO2 uptake per unit added Fe) dropped. Strategies that maximized the fertilization efficiency resulted in relatively little additional CO2 being drawn out of the atmosphere. To markedly increase oceanic uptake of atmospheric CO2 would require the addition of large amounts of Fe due to the low fertilization efficiencies associated with maximum air-sea CO2 exchange. Our results also show that differences in the fertilization strategy should be kept in mind when comparing the results of different Fe fertilization experiments.
NASA Astrophysics Data System (ADS)
Sun, W.; Maseyk, K. S.; Lett, C.; Seibt, U.
2017-12-01
Using carbonyl sulfide (COS) as a tracer to derive gross primary productivity (GPP) estimates requires knowledge of the relationship between leaf COS and CO2 uptake, which is typically embodied in a parameter called leaf relative uptake (LRU) ratio, defined as the concentration normalized COS:CO2 flux ratio. Previous laboratory and field studies have found light as the key environmental driver of LRU due to differential light responses of COS and CO2 uptake imposed by stomatal regulation. But the influences on LRU from other environmental drivers, particularly vapor pressure deficit (VPD) that affects stomatal conductance, remain elusive. Here we show that VPD is an important determinant of the COS-CO2 uptake relationship in a water-stressed ecosystem. We measured leaf COS and CO2 fluxes from a coast live oak with automated leaf chambers in spring 2013 in a southern Californian woodland. In this semiarid ecosystem, both leaf COS and CO2 uptake responded to VPD and showed a midday depression caused by reduced stomatal conductance. Above a moderate light level ( 500 µmol m-2 s-1), COS uptake decreased with light, whereas CO2 uptake saturated. As a result of the VPD-limited COS uptake, LRU value became smaller than 1.0 at high light (> 1000 µmol m-2 s-1), strongly deviating from previous laboratory values that converge to 1.6. Hence, failure to consider VPD influence may result in overestimated LRU value and underestimated CO2 uptake in this ecosystem. Using a coupled photosynthesis-stomatal conductance model, we show that the VPD control on LRU is in accordance with the response of stomatal conductance to VPD. Our results highlight that incorporating the VPD effect into the prediction of LRU value is crucial to the implementation of COS-based photosynthesis estimates in semiarid ecosystems.
Pulmonary vascular function and exercise capacity in black sub-Saharan Africans.
Simaga, Bamodi; Vicenzi, Marco; Faoro, Vitalie; Caravita, Sergio; Di Marco, Giovanni; Forton, Kevin; Deboeck, Gael; Lalande, Sophie; Naeije, Robert
2015-09-01
Sex and age affect the pulmonary circulation. Whether there may be racial differences in pulmonary vascular function is unknown. Thirty white European Caucasian subjects (15 women) and age and body-size matched 30 black sub-Saharan African subjects (15 women) underwent a cardiopulmonary exercise test and exercise stress echocardiography with measurements of pulmonary artery pressure (PAP) and cardiac output (CO). A pulmonary vascular distensibility coefficient α was mathematically determined from the natural curvilinearity of multipoint mean PAP (mPAP)-CO plots. Maximum oxygen uptake (V̇o2max) and workload were higher in the whites, while maximum respiratory exchange ratio and ventilatory equivalents for CO2 were the same. Pulmonary hemodynamics were not different at rest. Exercise was associated with a higher maximum total pulmonary vascular resistance, steeper mPAP-CO relationships, and lower α-coefficients in the blacks. These differences were entirely driven by higher slopes of mPAP-CO relationships (2.5 ± 0.7 vs. 1.4 ± 0.7 mmHg·l(-1)·min; P < 0.001) and lower α-coefficients (0.85 ± 0.33 vs. 1.35 ± 0.51%/mmHg; P < 0.01) in black men compared with white men. There were no differences in any of the hemodynamic variables between black and white women. In men only, the slopes of mPAP-CO relationships were inversely correlated to V̇o2max (P < 0.01). Thus the pulmonary circulation is intrinsically less distensible in black sub-Saharan African men compared with white Caucasian Europeans men, and this is associated with a lower exercise capacity. This study did not identify racial differences in pulmonary vascular function in women. Copyright © 2015 the American Physiological Society.
Stomatal control of leaf fluxes of carbonyl sulfide and CO2 in a Typha freshwater marsh
NASA Astrophysics Data System (ADS)
Sun, Wu; Maseyk, Kadmiel; Lett, Céline; Seibt, Ulli
2018-06-01
Carbonyl sulfide (COS) is an emerging tracer to constrain land photosynthesis at canopy to global scales, because leaf COS and CO2 uptake processes are linked through stomatal diffusion. The COS tracer approach requires knowledge of the concentration normalized ratio of COS uptake to photosynthesis, commonly known as the leaf relative uptake (LRU). LRU is known to increase under low light, but the environmental controls over LRU variability in the field are poorly understood due to scant leaf scale observations. Here we present the first direct observations of LRU responses to environmental variables in the field. We measured leaf COS and CO2 fluxes at a freshwater marsh in summer 2013. Daytime leaf COS and CO2 uptake showed similar peaks in the mid-morning and late afternoon separated by a prolonged midday depression, highlighting the common stomatal control on diffusion. At night, in contrast to CO2, COS uptake continued, indicating partially open stomata. LRU ratios showed a clear relationship with photosynthetically active radiation (PAR), converging to 1.0 at high PAR, while increasing sharply at low PAR. Daytime integrated LRU (calculated from daytime mean COS and CO2 uptake) ranged from 1 to 1.5, with a mean of 1.2 across the campaign, significantly lower than the previously reported laboratory mean value (˜ 1.6). Our results indicate two major determinants of LRU - light and vapor deficit. Light is the primary driver of LRU because CO2 assimilation capacity increases with light, while COS consumption capacity does not. Superimposed upon the light response is a secondary effect that high vapor deficit further reduces LRU, causing LRU minima to occur in the afternoon, not at noon. The partial stomatal closure induced by high vapor deficit suppresses COS uptake more strongly than CO2 uptake because stomatal resistance is a more dominant component in the total resistance of COS. Using stomatal conductance estimates, we show that LRU variability can be explained in terms of different patterns of stomatal vs. internal limitations on COS and CO2 uptake. Our findings illustrate the stomata-driven coupling of COS and CO2 uptake during the most photosynthetically active period in the field and provide an in situ characterization of LRU - a key parameter required for the use of COS as a photosynthetic tracer.
Pulmonary circulation and gas exchange at exercise in Sherpas at high altitude.
Faoro, Vitalie; Huez, Sandrine; Vanderpool, Rebecca; Groepenhoff, Herman; de Bisschop, Claire; Martinot, Jean-Benot; Lamotte, Michel; Pavelescu, Adriana; Guénard, Hervé; Naeije, Robert
2014-04-01
Tibetans have been reported to present with a unique phenotypic adaptation to high altitude characterized by higher resting ventilation and arterial oxygen saturation, no excessive polycythemia, and lower pulmonary arterial pressures (Ppa) compared with other high-altitude populations. How this affects exercise capacity is not exactly known. We measured aerobic exercise capacity during an incremental cardiopulmonary exercise test, lung diffusing capacity for carbon monoxide (DL(CO)) and nitric oxide (DL(NO)) at rest, and mean Ppa (mPpa) and cardiac output by echocardiography at rest and at exercise in 13 Sherpas and in 13 acclimatized lowlander controls at the altitude of 5,050 m in Nepal. In Sherpas vs. lowlanders, arterial oxygen saturation was 86 ± 1 vs. 83 ± 2% (mean ± SE; P = nonsignificant), mPpa at rest 19 ± 1 vs. 23 ± 1 mmHg (P < 0.05), DL(CO) corrected for hemoglobin 61 ± 4 vs. 37 ± 2 ml · min(-1) · mmHg(-1) (P < 0.001), DL(NO) 226 ± 18 vs. 153 ± 9 ml · min(-1) · mmHg(-1) (P < 0.001), maximum oxygen uptake 32 ± 3 vs. 28 ± 1 ml · kg(-1) · min(-1) (P = nonsignificant), and ventilatory equivalent for carbon dioxide at anaerobic threshold 40 ± 2 vs. 48 ± 2 (P < 0.001). Maximum oxygen uptake was correlated directly to DL(CO) and inversely to the slope of mPpa-cardiac index relationships in both Sherpas and acclimatized lowlanders. We conclude that Sherpas compared with acclimatized lowlanders have an unremarkable aerobic exercise capacity, but with less pronounced pulmonary hypertension, lower ventilatory responses, and higher lung diffusing capacity.
Yoder, C.K.; Vivin, P.; DeFalco, L.A.; Seemann, J.R.; Nowak, R.S.
2000-01-01
Root growth and physiological responses to elevated CO2 were investigated for three important Mojave Desert grasses: the C3 perennial Achnatherum hymenoides, the C4 perennial Pleuraphis rigida and the C3 annual Bromus madritensis ssp. rubens. Seeds of each species were grown at ambient (360 μl l−1) or elevated (1000 μl l−1) CO2 in a glasshouse and harvested at three phenological stages: vegetative, anthesis and seed fill. Because P. rigida did not flower during the course of this study, harvests for this species represent three vegetative stages. Primary productivity was increased in both C3 grasses in response to elevated CO2 (40 and 19% for A. hymenoides and B. rubens, respectively), but root biomass increased only in the C3 perennial grass. Neither above-ground nor below-ground biomass of the C4 perennial grass was significantly affected by the CO2 treatment. Elevated CO2 did not significantly affect root surface area for any species. Total plant nitrogen was also not statistically different between CO2treatments for any species, indicating no enhanced uptake of N under elevated CO2. Physiological uptake capacities for NO3 and NH4 were not affected by the CO2 treatment during the second harvest; measurements were not made for the first harvest. However, at the third harvest uptake capacity was significantly decreased in response to elevated CO2 for at least one N form in each species. NO3 uptake rates were lower in A. hymenoides and P. rigida, and NH4 uptake rates were lower in B. rubens at elevated CO2. Nitrogen uptake on a whole root-system basis (NO3+NH4uptake capacity × root biomass) was influenced positively by elevated CO2 only for A. hymenoidesafter anthesis. These results suggest that elevated CO2 may result in a competitive advantage forA. hymenoides relative to species that do not increase root-system N uptake capacity. Root respiration measurements normalized to 20 °C were not significantly affected by the CO2treatment. However, specific root respiration was significantly correlated with either root C∶N ratio or root water content when all data per species were included within a simple regression model. The results of this study provide little evidence for up-regulation of root physiology in response to elevated CO2 and indicate that root biomass responses to CO2 are species-specific.
Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification
Zhang, Han; Cao, Long
2016-01-01
Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations. PMID:26838480
Bicarbonate uptake by Southern Ocean phytoplankton
NASA Astrophysics Data System (ADS)
Cassar, Nicolas; Laws, Edward A.; Bidigare, Robert R.; Popp, Brian N.
2004-06-01
Marine phytoplankton have the potential to significantly buffer future increases in atmospheric carbon dioxide levels. However, in order for CO2 fertilization to have an effect on carbon sequestration to the deep ocean, the increase in dissolved CO2 must stimulate primary productivity; that is, marine phototrophs must be CO2 limited [, 1993]. Estimation of the extent of bicarbonate (HCO3-) uptake in the oceans is therefore required to determine whether the anthropogenic carbon sources will enhance carbon flux to the deep ocean. Using short-term 14CO2-disequilibrium experiments during the Southern Ocean Iron Experiment (SOFeX), we show that HCO3- uptake by Southern Ocean phytoplankton is significant. Since the majority of dissolved inorganic carbon (DIC) in the ocean is in the form of bicarbonate, the biological pump may therefore be insensitive to anthropogenic CO2. Approximately half of the DIC uptake observed was attributable to direct HCO3- uptake, the other half being direct CO2 uptake mediated either by passive diffusion or active uptake mechanisms. The increase in growth rates and decrease in CO2 concentration associated with the iron fertilization did not trigger any noticeable changes in the mode of DIC acquisition, indicating that under most environmental conditions the carbon concentrating mechanism (CCM) is constitutive. A low-CO2 treatment induced an increase in uptake of CO2, which we attributed to increased extracellular carbonic anhydrase activity, at the expense of direct HCO3- transport across the plasmalemma. Isotopic disequilibrium experimental results are consistent with Southern Ocean carbon stable isotope fractionation data from this and other studies. Although iron fertilization has been shown to significantly enhance phytoplankton growth and may potentially increase carbon flux to the deep ocean, an important source of the inorganic carbon taken up by phytoplankton in this study was HCO3-, whose concentration is negligibly affected by the anthropogenic rise in CO2. We conclude that biological productivity in this region of the world's ocean is unlikely to be directly regulated by natural or anthropogenic variations in atmospheric CO2 concentrations because of the presence of a constitutive CCM.
Can chilling tolerance of C 4 photosynthesis in Miscanthus be transferred to sugarcane?
Glowacka, Katarzyna; Ahmed, Aasifuddin; Sharma, Shailendra; ...
2015-07-29
Our goal is to investigate whether chilling tolerance of C 4 photosynthesis in Miscanthus can be transferred to sugarcane by hybridization. Net leaf CO 2 uptake (A sat) and we measured the maximum operating efficiency of photosystem II (Ф PSII) in warm conditions (25 °C/20 °C), and then during and following a chilling treatment of 10 °C/5 °C for 11 day in controlled environment chambers.
NASA Astrophysics Data System (ADS)
Sandoval-Soto, L.; Stanimirov, M.; von Hobe, M.; Schmitt, V.; Valdes, J.; Wild, A.; Kesselmeier, J.
2005-06-01
COS uptake by trees, as observed under dark/light changes and under application of the plant hormone abscisic acid, exhibited a strong correlation with the CO2 assimilation rate and the stomatal conductance. As the uptake of COS occurred exclusively through the stomata we compared experimentally derived and re-evaluated deposition velocities (Vd; related to stomatal conductance) for COS and CO2. We show that Vd of COS is generally significantly larger than that of CO2. We therefore introduced this attribute into a new global estimate of COS fluxes into vegetation. The new global estimate of the COS uptake based on available net primary productivity data (NPP) ranges between 0.69-1.40 Tga-1. However, as a COS molecule is irreversibly split in contrast to CO2 which is released again by respiration processes, we took into account the Gross Primary Productivity (GPP) representing the true CO2 leaf flux the COS uptake has to be related to. Such a GPP based deposition estimate ranged between 1.4--2.8 Tga-1 (0.73-1.50 TgSa-1). We believe that in order to obtain accurate global COS sink estimates such a GPP-based estimate corrected by the different deposition velocities of COS and CO2 must be taken into account.
Cole, B.E.; Harmon, D.D.
1981-01-01
Rates of phytoplankton productivity, respiration, and nutrient uptake and regeneration are presented. These observations were made on the Potomac River estuary (POTE) during four cruises between August 1977 and August 1978. Four experimental methods were used: carbon uptake using carbon-14, carbon uptake and respiration by a pH method, productivity and respiration by the dissolved oxygen method, and nutrient (NH4+, NO3-, NO2-, PO4=, and SiO2=) uptake and regeneration by colorimetry. The experiments were made at sites representative of conditions in four principal reaches of the tidal Potomac River estuary: near the mouth, seaward of the summer nutrient and phytoplankton maximum, near the region of maximum phytoplankton standing stock , and near the maximum anthropogenic nutrient source. (USGS)
Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme
Roy, Jacques; Picon-Cochard, Catherine; Augusti, Angela; Benot, Marie-Lise; Thiery, Lionel; Darsonville, Olivier; Landais, Damien; Piel, Clément; Defossez, Marc; Devidal, Sébastien; Escape, Christophe; Ravel, Olivier; Fromin, Nathalie; Volaire, Florence; Milcu, Alexandru; Bahn, Michael; Soussana, Jean-François
2016-01-01
Extreme climatic events (ECEs) such as droughts and heat waves are predicted to increase in intensity and frequency and impact the terrestrial carbon balance. However, we lack direct experimental evidence of how the net carbon uptake of ecosystems is affected by ECEs under future elevated atmospheric CO2 concentrations (eCO2). Taking advantage of an advanced controlled environment facility for ecosystem research (Ecotron), we simulated eCO2 and extreme cooccurring heat and drought events as projected for the 2050s and analyzed their effects on the ecosystem-level carbon and water fluxes in a C3 grassland. Our results indicate that eCO2 not only slows down the decline of ecosystem carbon uptake during the ECE but also enhances its recovery after the ECE, as mediated by increases of root growth and plant nitrogen uptake induced by the ECE. These findings indicate that, in the predicted near future climate, eCO2 could mitigate the effects of extreme droughts and heat waves on ecosystem net carbon uptake. PMID:27185934
King, Caitlin E; King, Gary M
2012-01-01
Ecosystem succession on a large deposit of volcanic cinders emplaced on Kilauea Volcano in 1959 has resulted in a mosaic of closed-canopy forested patches and contiguous unvegetated patches. Unvegetated and unshaded surface cinders (Bare) experience substantial diurnal temperature oscillations ranging from moderate (16 °C) to extreme (55 °C) conditions. The surface material of adjacent vegetated patches (Canopy) experiences much smaller fluctuations (14–25 °C) due to shading. To determine whether surface material from these sites showed adaptations by carbon monoxide (CO) and hydrogen (H2) consumption to changes in ambient temperature regimes accompanying succession, we measured responses of CO and H2 uptake to short-term variations in temperature and long-term incubations at elevated temperature. Based on its broader temperature optimum and lower activation energy, Canopy H2 uptake was less sensitive than Bare H2 uptake to temperature changes. In contrast, Bare and Canopy CO uptake responded similarly to temperature during short-term incubations, indicating no differences in temperature sensitivity. However, during extended incubations at 55 °C, CO uptake increased for Canopy but not Bare material, which indicated that the former was capable of thermal adaptation. H2 uptake for material from both sites was completely inhibited at 55 °C throughout extended incubations. These results indicated that plant development during succession did not elicit differences in short-term temperature responses for Bare and Canopy CO uptake, in spite of previously reported differences in CO oxidizer community composition, and differences in average daily and extreme temperatures. Differences associated with vegetation due to succession did, however, lead to a notable capacity for thermophilic CO uptake by Canopy but not Bare material. PMID:22258097
King, Caitlin E; King, Gary M
2012-08-01
Ecosystem succession on a large deposit of volcanic cinders emplaced on Kilauea Volcano in 1959 has resulted in a mosaic of closed-canopy forested patches and contiguous unvegetated patches. Unvegetated and unshaded surface cinders (Bare) experience substantial diurnal temperature oscillations ranging from moderate (16 °C) to extreme (55 °C) conditions. The surface material of adjacent vegetated patches (Canopy) experiences much smaller fluctuations (14-25 °C) due to shading. To determine whether surface material from these sites showed adaptations by carbon monoxide (CO) and hydrogen (H(2)) consumption to changes in ambient temperature regimes accompanying succession, we measured responses of CO and H(2) uptake to short-term variations in temperature and long-term incubations at elevated temperature. Based on its broader temperature optimum and lower activation energy, Canopy H(2) uptake was less sensitive than Bare H(2) uptake to temperature changes. In contrast, Bare and Canopy CO uptake responded similarly to temperature during short-term incubations, indicating no differences in temperature sensitivity. However, during extended incubations at 55 °C, CO uptake increased for Canopy but not Bare material, which indicated that the former was capable of thermal adaptation. H(2) uptake for material from both sites was completely inhibited at 55 °C throughout extended incubations. These results indicated that plant development during succession did not elicit differences in short-term temperature responses for Bare and Canopy CO uptake, in spite of previously reported differences in CO oxidizer community composition, and differences in average daily and extreme temperatures. Differences associated with vegetation due to succession did, however, lead to a notable capacity for thermophilic CO uptake by Canopy but not Bare material.
Takahashi, Tsuyoshi; Ohtsuka, Tatsuyuki; Uno, Yasuhiro; Utoh, Masahiro; Yamazaki, Hiroshi; Kume, Toshiyuki
2016-11-01
Cyclosporine A, an inhibitor of hepatic organic anion transporting polypeptides (OATPs), reportedly increased plasma concentrations of probe substrates, although its maximum unbound blood concentrations were lower than the experimental half-maximal inhibitory (IC 50 ) concentrations. Pre-incubation with cyclosporine A in vitro before simultaneous incubation with probes has been reported to potentiate its inhibitory effects on recombinant human OATP-mediated probe uptake. In the present study, the effects of cyclosporine A and rifampicin on recombinant cynomolgus monkey OATP-mediated pitavastatin uptake were investigated in pre- and simultaneous incubation systems. Pre-incubation with cyclosporine A, but not with rifampicin, decreased the apparent IC 50 values on recombinant cynomolgus monkey OATP1B1- and OATP1B3-mediated pitavastatin uptake. Application of the co-incubated IC 50 values toward R values (1 + [unbound inhibitor] inlet to the liver, theoretically maximum /inhibition constant) in static models, 1.1 in monkeys and 1.3 in humans, for recombinant cynomolgus monkey and human OATP1B1-mediated pitavastatin uptake might result in the poor prediction of drug interaction magnitudes. In contrast, the lowered IC 50 values after pre-incubation with cyclosporine A provided better prediction with R values of 3.9 for monkeys and 2.7 for humans when the estimated maximum cyclosporine A concentrations at the inlet to the liver were used. These results suggest that the enhanced inhibitory potential of perpetrator medicines by pre-incubation on cynomolgus monkey OATP-mediated pitavastatin uptake in vitro could be of value for the precise estimation of drug interaction magnitudes in silico, in accordance with the findings from pre-administration of inhibitors on pitavastatin pharmacokinetics validated in monkeys. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Delayed and reduced carbon uptake in a subarctic peatland following an extreme winter event
NASA Astrophysics Data System (ADS)
Parmentier, F. J. W.; Rasse, D. P.; Lund, M.; Bjerke, J. W.; Drake, B. G.; Weldon, S.; Tømmervik, H. A.; Hansen, G.
2017-12-01
An increase in the frequency of extreme winter events in the Arctic may lead to more widespread damage to shrub-dominated ecosystems, including peatlands. In principle, such damage should reduce carbon uptake in the following summer, but the resilience of northern ecosystems to extreme winter events remains unclear due to a dearth of flux measurements from affected areas. In this talk, therefore, we report CO2 fluxes measured with eddy covariance from a peatland in northern Norway and show that vegetation productivity was delayed and reduced during the summer of 2014, following an extreme winter event. Strong frost and the absence of a protective snow cover in January of that year - its combined intensity unprecedented in the local climate record - led to severe dieback of the shrub species Calluna vulgaris and Empetrum nigrum. Similar vegetation damage was reported at the time along 1000 km of coastal Norway, indicating the widespread impact of this frost drought event. Consequently, gross primary production (GPP) showed a strong delayed response to temperature, from snowmelt up to the peak of summer, potentially reducing carbon uptake by 15 (0-24) g C m-2 ( 13% of GPP in that period). The delayed response of the vegetation was also exhibited in remotely-sensed NDVI values, with a maximum two weeks later than normal and at the lowest level in more than a decade. Photosynthesis was eventually stimulated by the warm and sunny summer, but ecosystem respiration increased as well - which limited net carbon uptake. This study shows that damage from a single extreme winter event can have a profound impact on ecosystem CO2 uptake, and it highlights the importance of including winter-induced shrub damage in terrestrial ecosystem models to accurately predict vegetation and carbon sequestration trends in the arctic and boreal region.
Carbonation and CO{sub 2} uptake of concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Keun-Hyeok, E-mail: yangkh@kgu.ac.kr; Seo, Eun-A, E-mail: ssooaa@naver.com; Tae, Sung-Ho, E-mail: jnb55@hanyang.ac.kr
This study developed a reliable procedure to assess the carbon dioxide (CO{sub 2}) uptake of concrete by carbonation during the service life of a structure and by the recycling of concrete after demolition. To generalize the amount of absorbable CO{sub 2} per unit volume of concrete, the molar concentration of carbonatable constituents in hardened cement paste was simplified as a function of the unit content of cement, and the degree of hydration of the cement paste was formulated as a function of the water-to-cement ratio. The contribution of the relative humidity, type of finishing material for the concrete surface, andmore » the substitution level of supplementary cementitious materials to the CO{sub 2} diffusion coefficient in concrete was reflected using various correction factors. The following parameters varying with the recycling scenario were also considered: the carbonatable surface area of concrete crusher-runs and underground phenomena of the decreased CO{sub 2} diffusion coefficient and increased CO{sub 2} concentration. Based on the developed procedure, a case study was conducted for an apartment building with a principal wall system and an office building with a Rahmen system, with the aim of examining the CO{sub 2} uptake of each structural element under different exposure environments during the service life and recycling of the building. As input data necessary for the case study, data collected from actual surveys conducted in 2012 in South Korea were used, which included data on the surrounding environments, lifecycle inventory database, life expectancy of structures, and recycling activity scenario. Ultimately, the CO{sub 2} uptake of concrete during a 100-year lifecycle (life expectancy of 40 years and recycling span of 60 years) was estimated to be 15.5%–17% of the CO{sub 2} emissions from concrete production, which roughly corresponds to 18%–21% of the CO{sub 2} emissions from the production of ordinary Portland cement. - Highlights: • CO{sub 2} uptake assessment approach owing to the concrete carbonation is developed. • An equation to directly determine the absorbable CO{sub 2} amount in concrete is proposed. • The carbonatable surface area of concrete crusher-runs for CO{sub 2} uptake is ascertained. • This study provides typical data for uptake and emission of CO{sub 2} in concrete building.« less
Does elevated CO 2 alter silica uptake in trees?
Fulweiler, Robinson W.; Maguire, Timothy J.; Carey, Joanna C.; ...
2015-01-13
Human activities have greatly altered global carbon (C) and Nitrogen (N) cycling. In fact, atmospheric concentrations of carbon dioxide (CO 2) have increased 40% over the last century and the amount of N cycling in the biosphere has more than doubled. In an effort to understand how plants will respond to continued global CO 2 fertilization, longterm free-air CO 2 enrichment experiments have been conducted at sites around the globe. Here we examine how atmospheric CO 2 enrichment and N fertilization affects the uptake of silicon (Si) in the Duke Forest, North Carolina, a stand dominated by Pinus taeda (loblollymore » pine), and five hardwood species. Specifically, we measured foliar biogenic silica concentrations in five deciduous and one coniferous species across three treatments: CO 2 enrichment, N enrichment, and N and CO 2 enrichment. We found no consistent trends in foliar Si concentration under elevated CO 2, N fertilization, or combined elevated CO 2 and N fertilization. However, two-thirds of the tree species studied here have Si foliar concentrations greater than well-known Si accumulators, such as grasses. Based on net primary production values and aboveground Si concentrations in these trees, we calculated forest Si uptake rates under control and elevated CO 2 concentrations. Due largely to increased primary production, elevated CO 2 enhanced the magnitude of Si uptake between 20 and 26%, likely intensifying the terrestrial silica pump. This uptake of Si by forests has important implications for Si export from terrestrial systems, with the potential to impact C sequestration and higher trophic levels in downstream ecosystems.« less
Atmospheric Management for Closed Bioregenerative Life Support Systems
NASA Astrophysics Data System (ADS)
Wheeler, Raymond
Bioregenerative life support systems for future space missions will likely center on photosynthetic organisms, such as higher plants, that could produce biomass and oxygen, while removing CO2. When the systems are sized sufficiently to produce most of the food for the humans, they would also provide all of the oxygen and removal of CO2. But managing the atmosphere must consider the ratio of CO2 uptake and oxygen production of the plants (assimilation quotients), and the CO2 production and oxygen uptake by humans (respiration quotients). Both of these ratios are affected by the composition of the biomass being produced or consumed (e.g., CH2O, protein, and fat content), and other factors such the form of nitrogen cycling back to the photosynthetic organisms. Planting and harvest strategies must also be considered because of their direct effects on near term photosynthetic capacity. For example, staggered planting and harvest strategies could reduce the impacts on oxygen production within the system. Maintaining optimal concentrations of the CO2 will also be important for the plants, where maximum photosynthetic rates for most C3 plants occur when CO2 greater than 1000 ppm. But allowing CO2 to rise to super-elevated levels, such as greater than 5000 ppm may be undesirable, and could also increase water use. This latter effect of increased transpiration at super-elevated CO2 is poorly understood and needs further research. The plants and other living organisms will also produce a range of volatile organic compounds (VOCs), and these VOCs must be managed just like any other trace contaminants in human space habitats. For plants, ethylene control will be especially important because of its potent effects on plant growth and development. Ultimately, a combination of biological systems with some physico-chemical control capabilities will likely provide the best approach.
Revised budget for the oceanic uptake of anthropogenic carbon dioxide
Sarmiento, J.L.; Sundquist, E.T.
1992-01-01
TRACER-CALIBRATED models of the total uptake of anthropogenic CO2 by the world's oceans give estimates of about 2 gigatonnes carbon per year1, significantly larger than a recent estimate2 of 0.3-0.8 Gt C yr-1 for the synoptic air-to-sea CO2 influx. Although both estimates require that the global CO2 budget must be balanced by a large unknown terrestrial sink, the latter estimate implies a much larger terrestrial sink, and challenges the ocean model calculations on which previous CO2 budgets were based. The discrepancy is due in part to the net flux of carbon to the ocean by rivers and rain, which must be added to the synoptic air-to-sea CO2 flux to obtain the total oceanic uptake of anthropogenic CO2. Here we estimate the magnitude of this correction and of several other recently proposed adjustments to the synoptic air-sea CO2 exchange. These combined adjustments minimize the apparent inconsistency, and restore estimates of the terrestrial sink to values implied by the modelled oceanic uptake.
Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake
NASA Astrophysics Data System (ADS)
Oschlies, A.
2009-08-01
The sensitivity of oceanic CO2 uptake to alterations in the marine biological carbon pump, such as brought about by natural or purposeful ocean fertilization, has repeatedly been investigated by studies employing numerical biogeochemical ocean models. It is shown here that the results of such ocean-centered studies are very sensitive to the assumption made about the response of the carbon reservoirs on the atmospheric side of the sea surface. Assumptions made include prescribed atmospheric pCO2, an interactive atmospheric CO2 pool exchanging carbon with the ocean but not with the terrestrial biosphere, and an interactive atmosphere that exchanges carbon with both oceanic and terrestrial carbon pools. The impact of these assumptions on simulated annual to millennial oceanic carbon uptake is investigated for a hypothetical increase in the C:N ratio of the biological pump and for an idealized enhancement of phytoplankton growth. Compared to simulations with interactive atmosphere, using prescribed atmospheric pCO2 overestimates the sensitivity of the oceanic CO2 uptake to changes in the biological pump, by about 2%, 25%, 100%, and >500% on annual, decadal, centennial, and millennial timescales, respectively. The smaller efficiency of the oceanic carbon uptake under an interactive atmosphere is due to the back flux of CO2 that occurs when atmospheric CO2 is reduced. Adding an interactive terrestrial carbon pool to the atmosphere-ocean model system has a small effect on annual timescales, but increases the simulated fertilization-induced oceanic carbon uptake by about 4%, 50%, and 100% on decadal, centennial, and millennial timescales, respectively, for pCO2 sensitivities of the terrestrial carbon storage in the middle range of the C4MIP models (Friedlingstein et al., 2006). For such sensitivities, a substantial fraction of oceanic carbon uptake induced by natural or purposeful ocean fertilization originates, on timescales longer than decades, not from the atmosphere but from the terrestrial biosphere.
Relationship between root water uptake and soil respiration: A modeling perspective
NASA Astrophysics Data System (ADS)
Teodosio, Bertrand; Pauwels, Valentijn R. N.; Loheide, Steven P.; Daly, Edoardo
2017-08-01
Soil moisture affects and is affected by root water uptake and at the same time drives soil CO2 dynamics. Selecting root water uptake formulations in models is important since this affects the estimation of actual transpiration and soil CO2 efflux. This study aims to compare different models combining the Richards equation for soil water flow to equations describing heat transfer and air-phase CO2 production and flow. A root water uptake model (RWC), accounting only for root water compensation by rescaling water uptake rates across the vertical profile, was compared to a model (XWP) estimating water uptake as a function of the difference between soil and root xylem water potential; the latter model can account for both compensation (XWPRWC) and hydraulic redistribution (XWPHR). Models were compared in a scenario with a shallow water table, where the formulation of root water uptake plays an important role in modeling daily patterns and magnitudes of transpiration rates and CO2 efflux. Model simulations for this scenario indicated up to 20% difference in the estimated water that transpired over 50 days and up to 14% difference in carbon emitted from the soil. The models showed reduction of transpiration rates associated with water stress affecting soil CO2 efflux, with magnitudes of soil CO2 efflux being larger for the XWPHR model in wet conditions and for the RWC model as the soil dried down. The study shows the importance of choosing root water uptake models not only for estimating transpiration but also for other processes controlled by soil water content.
Estimating the contribution of bryophytes to the atmospheric COS budget
NASA Astrophysics Data System (ADS)
Gimeno, Teresa; Ogee, Jerome; Wingate, Lisa
2017-04-01
In the past decade, global biogeochemical modellers have embraced enthusiastically the potential of carbonyl sulphide (COS) as a tracer for gross primary productivity (GPP). COS is the most abundant sulphur-containing gas in the atmosphere, it is produced mainly in the ocean and it is consumed by the biosphere, with terrestrial vegetation being the most important contributor. Plant COS uptake is proportional to photosynthetic CO2 withdraw and that is why measurements of the biosphere-atmosphere COS flux can serve a proxy for GPP. Plant COS uptake is mediated by the light-independent enzyme carbonic anhydrase that irreversibly hydrolyses COS into H2S, which is quickly utilised as a sulphur source. Currently, there are no described plant-processes with COS as a by-product and hence the atmospheric-plant COS flux is assumed unidirectional. So far, we had focused on characterizing plant COS uptake dynamics on vascular plants and previous studies are consistent with the unidirectional flux assumption. However, although early works on sulphur metabolism suggested non-vascular plants might not abide to this assumption, we lack estimates of COS uptake dynamics for non-vascular communities. Bryophytes are key constituents of biocrusts and non-vascular photoautrophic communities and in temperate and cold latitudes contribute significantly to ecosystem carbon and nutrient cycling. We expect that in these ecosystems the coupling between COS and CO2 uptake will be influenced by specific environmental cues that control gas-exchange in bryophytes. We expect tissue hydration to be the most influential driver on COS uptake. In contrast, light would constrain CO2 but not COS uptake and therefore we expect greater uncoupling of COS and CO2 in the dark than in vascular plants. We characterized COS and CO2 uptake dynamics in two broadly distributed bryophytes, with contrasting life forms and evolutionary origins: the liverwort Marchantia polymorpha and the feather moss Scleropodium purum. We measured CO2 and COS uptake with varying hydration status, light and temperatures. Our results showed that COS uptake is limited by either excess or low tissue water content, similar to photosynthetic CO2 uptake. We found that COS uptake continued in the dark, despite impaired photosynthesis. We demonstrate that the COS flux in bryophytes is not unidirectional and that COS emissions are temperature and not light driven. Our results also suggest that both the uptake and the emission components are subject to seasonal regulation, with both uptakes limited in winter by low temperatures. Our results serve as a first approximation to model seasonal COS fluxes from air temperature and humidity in bryophyte-dominated ecosystems in high latitudes. We suggest that bryophytes might have an unexpected contribution to the ecosystem COS budget: during the day, when photosynthesis dominates the CO2 flux, COS emission are enhanced by warmer temperatures, while COS uptake is limited by tissue hydration and bryophytes act a net COS source; at night when the temperatures are cool and humidity is high, COS uptake dominates and bryophytes would act a net COS sink, while continuing to emit CO2 from respiration.
Quercetin inhibits glucose transport by binding to an exofacial site on GLUT1.
Hamilton, Kathryn E; Rekman, Janelle F; Gunnink, Leesha K; Busscher, Brianna M; Scott, Jordan L; Tidball, Andrew M; Stehouwer, Nathan R; Johnecheck, Grace N; Looyenga, Brendan D; Louters, Larry L
2018-05-29
Quercetin, a common dietary flavone, is a competitive inhibitor of glucose uptake and is also thought to be transported into cells by GLUT1. In this study, we confirm that quercetin is a competitive inhibitor of GLUT1 and also demonstrate that newly synthesized compounds, WZB-117 and BAY-876 are robust inhibitors of GLUT1 in L929 cells. To measure quercetin interaction with L929 cells, we develop a new fluorescent assay using flow cytometry. The binding of quercetin and its inhibitory effects on 2-deoxyglucose (2DG) uptake showed nearly identical dose dependent effects, with both having maximum effects between 50 and 100 μM and similar half maximum effects at 8.9 and 8.5 μM respectively. The interaction of quercetin was rapid with t 1/2 of 54 s and the onset and loss of its inhibitory effects on 2DG uptake were equally fast. This suggests that either quercetin is simply binding to surface GLUT1 or its transport in and out of the cell reaches equilibrium very quickly. If quercetin is transported, the co-incubation of quercetin with other glucose inhibitors should block quercetin uptake. However, we observed that WZB-117, an exofacial binding inhibitor of GLUT1 reduced quercetin interaction, while cytochalasin B, an endofacial binding inhibitor, enhanced quercetin interaction, and BAY-876 had no effect on quercetin interaction. Taken together, these data are more consistent with quercetin simply binding to GLUT1, but not actually being transported into L929 cells via the glucose channel in GLUT1. Copyright © 2018. Published by Elsevier B.V.
Lautner, Silke; Stummer, Michaela; Matyssek, Rainer; Fromm, Jörg; Grams, Thorsten E E
2014-01-01
Leaf photosynthesis of the sensitive plant Mimosa pudica displays a transient knockout in response to electrical signals induced by heat stimulation. This study aims at clarifying the underlying mechanisms, in particular, the involvement of respiration. To this end, leaf gas exchange and light reactions of photosynthesis were assessed under atmospheric conditions largely eliminating photorespiration by either elevated atmospheric CO2 or lowered O2 concentration (i.e. 2000 μmol mol(-1) or 1%, respectively). In addition, leaf gas exchange was studied in the absence of light. Under darkness, heat stimulation caused a transient increase of respiratory CO2 release simultaneously with stomatal opening, hence reflecting direct involvement of respiratory stimulation in the drop of the net CO2 uptake rate. However, persistence of the transient decline in net CO2 uptake rate under illumination and elevated CO2 or 1% O2 makes it unlikely that photorespiration is the metabolic origin of the respiratory CO2 release. In conclusion, the transient knockout of net CO2 uptake is at least partially attributed to an increased CO2 release through mitochondrial respiration as stimulated by electrical signals. Putative CO2 limitation of Rubisco due to decreased activity of carbonic anhydrase was ruled out as the photosynthesis effect was not prevented by elevated CO2 . © 2013 John Wiley & Sons Ltd.
From COS ecosystem fluxes to GPP: integrating soil, branch and ecosystem fluxes.
NASA Astrophysics Data System (ADS)
Kooijmans, L.; Maseyk, K. S.; Vesala, T.; Mammarella, I.; Baker, I. T.; Seibt, U.; Sun, W.; Aalto, J.; Franchin, A.; Kolari, P.; Keskinen, H.; Levula, J.; Chen, H.
2016-12-01
The close coupling of Carbonyl Sulfide (COS) and CO2 due to a similar uptake pathway into plant stomata makes COS a promising new tracer that can potentially be used to partition the Net Ecosystem Exchange into gross primary production (GPP) and respiration. Although ecosystem-scale measurements have been made at several sites, the contribution of different ecosystem components to the total COS budget is often unknown. Besides that, the average Leaf Relative Uptake (LRU) ratio needs to be better determined to accurately translate COS ecosystem fluxes into GPP estimates when the simple linear correlation between GPP estimates and COS plant uptake is used. We performed two campaigns in the summer of 2015 and 2016 at the SMEAR II site in Hyytiälä, Finland to provide better constrained COS flux data for boreal forests. A combination of COS measurements were made during both years, i.e. atmospheric profile concentrations up to 125 m, eddy-covariance fluxes and soil chamber fluxes. In addition to these, branch chamber measurements were done in 2016 in an attempt to observe the LRU throughout the whole season. The LRU ratio shows an exponential correlation with photosynthetic active radiation (PAR) but is constant for PAR levels above 500 µmol m-2 s-1. Mid-day LRU values are 1.0 (aspen) and 1.5 (pine). The correlation between LRU and PAR can be explained by the fact that COS is hydrolyzed with the presence of the enzyme carbonic anhydrase, and is not light dependent, whereas the photosynthetic uptake of CO2 is. We observed nighttime fluxes on the order of 25-30 % of the daily maximum COS uptake. Soils are a small sink of COS and contribute to 3 % of the total ecosystem COS flux during daytime. In a comparison between observed and simulated fluxes from the Simple Biosphere (SiB) model, the modelled COS and CO2 ecosystem fluxes are on average 40 % smaller than the observed fluxes, however, the Ecosystem Relative Uptake (ERU) ratios are identical at a value of 1.9 ± 0.2, which can be explained by 40 % smaller modelled stomatal conductance. The full budget of COS will be considered by scaling up the soil and branch measurements to the ecosystem level.
Tsen, Edward W J; Holtum, Joseph A M
2012-09-01
This study demonstrates unequivocally the presence of crassulacean acid metabolism (CAM) in a species of the Rubiaceae, the fourth largest angiosperm plant family. The tropical Australian endemic epiphytic ant-plant, Myrmecodia beccarii Hook.f., exhibits net CO(2) uptake in the dark and a concomitant accumulation of titratable acidity in plants in the field and in cultivation. Plants growing near Cardwell, in a north Queensland coastal seasonally dry forest of Melaleuca viridiflora Sol. ex Gaertn., accumulated ~50 % of their 24 h carbon gain in the dark during the warm wet season. During the transition from the wet season to the dry season, 24 h carbon gain was reduced whilst the proportion of carbon accumulated during the dark increased. By mid dry season many plants exhibited zero net carbon uptake over 24 h, but CO(2) uptake in the dark was observed in some plants following localised rainfall. In a shade-house experiment, droughted plants in which CO(2) uptake in the light was absent and dark CO(2) uptake was reduced, were able to return to relatively high rates of CO(2) uptake in the light and dark within 12 h of rewatering.
NASA Astrophysics Data System (ADS)
Dass, P.; Houlton, B. Z.; Wang, Y.; Pak, B. C.; Morford, S.
2016-12-01
Empirical evidence of widespread scarcity of nitrogen (N) and phosphorus (P) availability in natural land ecosystems constrains the carbon dioxide (CO2) uptake capacity of the global biosphere. Recent studies have pointed to the importance of rock weathering in supplying both N and P to terrestrial soils and vegetation; however, the potential for N and P to rapidly weather from different rocks and thereby alter the global carbon (C) cycle remains an open question, particularly at the global scale. Here, we combine empirical measurements and a new global simulation model to quantify the flux of N and P released from rocks to the terrestrial biosphere. Our model considers the role of tectonic uplift and physical and chemical weathering on rock nutrient cycling by using a probabilistic approach that is anchored in watershed-scale 10Be and Na data from the world's rivers. We use USGS DEM data for relief, monthly averaged MODIS evapotranspiration data and global precipitation datasets. Based on simulations using mean climate data for the past 10 years, we estimate annual values of 11 Tg of N and 6 Tg of P to weather from rocks to the terrestrial biosphere. The rate of N weathering rivals that of atmospheric N deposition in natural ecosystems, and the P weathering flux is approximately 6 times higher than prior estimates based on a modeling approach where the chemical weathering is dependant on lithology and runoff with further factors correcting for soil shielding and temperature. The increase in nutrient inputs we simulate reveals an important role for rock weathering to support new production in terrestrial ecosystems, and thereby allow for additional CO2 uptake in sectors of the biosphere where weathering rates are substantial. Given that current generation of models are yet to consider how short-term weathering of rocks can affect nutrient limited C storage, these results will help to advance the geochemical aspects of carbon-climate feedback this century. Moreover, we will present results for CO2 uptake capacity based on the future climate scenario involving the least mitigation storyline, i.e. RCP 8.5 as well as historic uptake from the beginning of the retreat if the glaciers, i.e. the Last Glacial Maximum.
Uptake of atmospheric carbon dioxide into silk fiber by silkworms.
Magoshi, Jun; Tanaka, Toshihisa; Sasaki, Haruto; Kobayashi, Masatoshi; Magoshi, Yoshiko; Tsuda, Hidetoshi; Becker, Mary A; Inoue, Shun-ichi; Ishimaru, Ken
2003-01-01
The relation between the uptake of atmospheric CO(2) and insect's production of silk fiber has not yet been reported. Here, we provide the first quantitative demonstrations that four species of silkworms (Bombyx mori, Samia cynthia ricini, Antheraea pernyi, and Antheraea yamamai) and a silk-producing spider (Nephila clavata) incorporate atmospheric CO(2) into their silk fibers. The abundance of (13)C incorporated from the environment was determined by mass spectrometry and (13)C NMR measurements. Atmospheric CO(2) was incorporated into the silk fibers in the carbonyl groups of alanine, aspartic acid, serine, and glycine and the C(gamma) of aspartic acid. We show a simple model for the uptake of atmospheric CO(2) by silkworms. These results will demonstrate that silkworm has incorporated atmospheric CO(2) into silk fiber via the TCA cycle; however, the magnitude of uptake into the silk fibers is smaller than that consumed by the photosynthesis in trees and coral reefs.
Silkin, V A; Chubchikova, I N
2007-01-01
We studied nonstationary kinetics of the uptake of phosphates and nitrates by the red marine algae Gelidium latifolium (Grev.) Born et Thur. and calculated constants of the Michaelis-Menten equation for these elements. In the area of 0-3 microM, the kinetics of phosphate consumption had the following coefficients: maximum rate of uptake 0.8 micromol/(g x h), constant of half-saturation 1.745 microM. For nitrate nitrogen at 0-30 microM, an adaptive strategy of uptake kinetics was noted with change of the equation parameters with time: after 1 h, the maximum rate of uptake was 5.1 micromol/(g x h) and constant of half-saturation 19 gM, while within 2 h, the maximum rate of uptake significantly increased. This could be related to the synthesis of nitrate reductase. Coupled with the uptake of nitrates, nonstationary kinetics of the release of nitrates in the surrounding medium had a one-peak pattern: the maximum concentration of nitrites in the medium and the time of its achievement increased with the initial concentration of nitrates. The maximum concentration of nitrites was 6 to 14% of the initial concentration in the medium.
The Southern Ocean as a constraint to reduce uncertainty in future ocean carbon sinks
Kessler, A.; Tjiputra, J.
2016-04-07
Earth system model (ESM) simulations exhibit large biases compares to observation-based estimates of the present ocean CO 2 sink. The inter-model spread in projections increases nearly 2-fold by the end of the 21st century and therefore contributes significantly to the uncertainty of future climate projections. In this study, the Southern Ocean (SO) is shown to be one of the hot-spot regions for future uptake of anthropogenic CO 2, characterized by both the solubility pump and biologically mediated carbon drawdown in the spring and summer. Here, we show, by analyzing a suite of fully interactive ESMs simulations from the Coupled Model Intercomparisonmore » Project phase 5 (CMIP5) over the 21st century under the high-CO 2 Representative Concentration Pathway (RCP) 8.5 scenario, that the SO is the only region where the atmospheric CO 2 uptake rate continues to increase toward the end of the 21st century. Furthermore, our study discovers a strong inter-model link between the contemporary CO 2 uptake in the Southern Ocean and the projected global cumulated uptake over the 21st century. This strong correlation suggests that models with low (high) carbon uptake rate in the contemporary SO tend to simulate low (high) uptake rate in the future. None the less, our analysis also shows that none of the models fully capture the observed biophysical mechanisms governing the CO 2 fluxes in the SO. The inter-model spread for the contemporary CO 2 uptake in the Southern Ocean is attributed to the variations in the simulated seasonal cycle of surface pCO 2. Two groups of model behavior have been identified. The first one simulates anomalously strong SO carbon uptake, generally due to both too strong a net primary production and too low a surface pCO 2 in December–January. The second group simulates an opposite CO 2 flux seasonal phase, which is driven mainly by the bias in the sea surface temperature variability. Furthermore, we show that these biases are persistent throughout the 21st century, which highlights the urgent need for a sustained and comprehensive biogeochemical monitoring system in the Southern Ocean to better constrain key processes represented in current model systems.« less
The Southern Ocean as a constraint to reduce uncertainty in future ocean carbon sinks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kessler, A.; Tjiputra, J.
Earth system model (ESM) simulations exhibit large biases compares to observation-based estimates of the present ocean CO 2 sink. The inter-model spread in projections increases nearly 2-fold by the end of the 21st century and therefore contributes significantly to the uncertainty of future climate projections. In this study, the Southern Ocean (SO) is shown to be one of the hot-spot regions for future uptake of anthropogenic CO 2, characterized by both the solubility pump and biologically mediated carbon drawdown in the spring and summer. Here, we show, by analyzing a suite of fully interactive ESMs simulations from the Coupled Model Intercomparisonmore » Project phase 5 (CMIP5) over the 21st century under the high-CO 2 Representative Concentration Pathway (RCP) 8.5 scenario, that the SO is the only region where the atmospheric CO 2 uptake rate continues to increase toward the end of the 21st century. Furthermore, our study discovers a strong inter-model link between the contemporary CO 2 uptake in the Southern Ocean and the projected global cumulated uptake over the 21st century. This strong correlation suggests that models with low (high) carbon uptake rate in the contemporary SO tend to simulate low (high) uptake rate in the future. None the less, our analysis also shows that none of the models fully capture the observed biophysical mechanisms governing the CO 2 fluxes in the SO. The inter-model spread for the contemporary CO 2 uptake in the Southern Ocean is attributed to the variations in the simulated seasonal cycle of surface pCO 2. Two groups of model behavior have been identified. The first one simulates anomalously strong SO carbon uptake, generally due to both too strong a net primary production and too low a surface pCO 2 in December–January. The second group simulates an opposite CO 2 flux seasonal phase, which is driven mainly by the bias in the sea surface temperature variability. Furthermore, we show that these biases are persistent throughout the 21st century, which highlights the urgent need for a sustained and comprehensive biogeochemical monitoring system in the Southern Ocean to better constrain key processes represented in current model systems.« less
Sandrini, Giovanni; Cunsolo, Serena; Schuurmans, J. Merijn; Matthijs, Hans C. P.; Huisman, Jef
2015-01-01
Rising CO2 concentrations may have large effects on aquatic microorganisms. In this study, we investigated how elevated pCO2 affects the harmful freshwater cyanobacterium Microcystis aeruginosa. This species is capable of producing dense blooms and hepatotoxins called microcystins. Strain PCC 7806 was cultured in chemostats that were shifted from low to high pCO2 conditions. This resulted in a transition from a C-limited to a light-limited steady state, with a ~2.7-fold increase of the cyanobacterial biomass and ~2.5-fold more microcystin per cell. Cells increased their chlorophyll a and phycocyanin content, and raised their PSI/PSII ratio at high pCO2. Surprisingly, cells had a lower dry weight and contained less carbohydrates, which might be an adaptation to improve the buoyancy of Microcystis when light becomes more limiting at high pCO2. Only 234 of the 4691 genes responded to elevated pCO2. For instance, expression of the carboxysome, RuBisCO, photosystem and C metabolism genes did not change significantly, and only a few N assimilation genes were expressed differently. The lack of large-scale changes in the transcriptome could suit a buoyant species that lives in eutrophic lakes with strong CO2 fluctuations very well. However, we found major responses in inorganic carbon uptake. At low pCO2, cells were mainly dependent on bicarbonate uptake, whereas at high pCO2 gene expression of the bicarbonate uptake systems was down-regulated and cells shifted to CO2 and low-affinity bicarbonate uptake. These results show that the need for high-affinity bicarbonate uptake systems ceases at elevated CO2. Moreover, the combination of an increased cyanobacterial abundance, improved buoyancy, and higher toxin content per cell indicates that rising atmospheric CO2 levels may increase the problems associated with the harmful cyanobacterium Microcystis in eutrophic lakes. PMID:25999931
Negative CO2 emissions via subsurface mineral carbonation in fractured peridotite
NASA Astrophysics Data System (ADS)
Kelemen, P. B.; Matter, J.
2014-12-01
Uptake of CO2 from surface water via mineral carbonation in peridotite can be engineered to achieve negative CO2 emissions. Reaction with peridotite, e.g., CO2 + olivine (A), serpentine (B) and brucite (C), forms inert, non-toxic, solid carbonates such as magnesite. Experimental studies show that A can be 80% complete in a few hours with 30 micron powders and elevated P(CO2) [1,2,3]. B is slower, but in natural systems the rate of B+C is significant [4]. Methods for capture of dilute CO2 via mineral carbonation [4,5,6,7] are not well known, though CO2 storage via mineral carbonation has been discussed for decades [8,9]. Where crushed peridotite is available, as in mine tailings, increased air or water flow could enhance CO2 uptake at a reasonable cost [4,5]. Here we focus on enhancing subsurface CO2 uptake from surface water flowing in fractured peridotite, in systems driven by thermal convection such as geothermal power plants. Return of depleted water to the surface would draw down CO2 from the air [6,7]. CO2 uptake from water, rate limited by flow in input and output wells, could exceed 1000 tons CO2/yr [7]. If well costs minus power sales were 0.1M to 1M and each system lasts 10 years this costs < 10 to 100 per ton CO2. As for other CCS methods, upscaling requires infrastructure resembling the oil industry. Uptake of 1 Gt CO2/yr at 1000 t/well/yr requires 1M wells, comparable to the number of producing oil and gas wells in the USA. Subsurface CO2 uptake could first be applied in coastal, sub-seafloor peridotite with onshore drilling. Sub-seafloor peridotite is extensive off Oman, New Caledonia and Papua New Guinea, with smaller amounts off Spain, Morocco, USA, etc. This would be a regional contribution, used in parallel with other methods elsewhere. To achieve larger scale is conceivable. There is a giant mass of seafloor peridotite along slow-spreading mid-ocean ridges. Could robotic drills enhance CO2 uptake at a reasonable cost, while fabric chimneys transport CO2-depleted water to the sea surface? Does anyone know James Cameron's phone number? [1] O'Connor et al DOE Report 04 [2] Chizmeshya et al DOE Report 07 [3] Gadikota et al Phys Chem Chem Phys 14 [4] Wilson et al IJGHGC 14 [5] Schuiling & Krijgsman Climate Change 06 [6] Kelemen & Matter PNAS 08 [7] Kelemen et al AREPS 11 [8] Seifritz Nature 90 [9] Lackner et al Energy 95
Houshmandfar, Alireza; Fitzgerald, Glenn J; O'Leary, Garry; Tausz-Posch, Sabine; Fletcher, Andrew; Tausz, Michael
2017-12-04
The impact of elevated [CO 2 ] (e[CO 2 ]) on crops often includes a decrease in their nutrient concentrations where reduced transpiration-driven mass flow of nutrients has been suggested to play a role. We used two independent approaches, a free-air CO 2 enrichment (FACE) experiment in the South Eastern wheat belt of Australia and a simulation study employing the agricultural production systems simulator (APSIM), to show that transpiration (mm) and nutrient uptake (g m -2 ) of nitrogen (N), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg) and manganese (Mn) in wheat are correlated under e[CO 2 ], but that nutrient uptake per unit water transpired is higher under e[CO 2 ] than under ambient [CO 2 ] (a[CO 2 ]). This result suggests that transpiration-driven mass flow of nutrients contributes to decreases in nutrient concentrations under e[CO 2 ], but cannot solely explain the overall decline. © 2017 Scandinavian Plant Physiology Society.
Chanut, Nicolas; Bourrelly, Sandrine; Kuchta, Bogdan; Serre, Christian; Chang, Jong-San; Wright, Paul A; Llewellyn, Philip L
2017-04-10
A simple laboratory-scale protocol that enables the evaluation of the effect of adsorbed water on CO 2 uptake is proposed. 45 metal-organic frameworks (MOFs) were compared against reference zeolites and active carbons. It is possible to classify materials with different trends in CO 2 uptake with varying amounts of pre-adsorbed water, including cases in which an increase in CO 2 uptake is observed for samples with a given amount of pre-adsorbed water. Comparing loss in CO 2 uptake between "wet" and "dry" samples with the Henry constant calculated from the water adsorption isotherm results in a semi-logarithmic trend for the majority of samples allowing predictions to be made. Outliers from this trend may be of particular interest and an explanation for the behaviour for each of the outliers is proposed. This thus leads to propositions for designing or choosing MOFs for CO 2 capture in applications where humidity is present. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Santschi, Ch; Rossi, M J
2006-06-01
All experimental observations of the uptake of the four title compounds on calcite are consistent with the presence of a reactive bifunctional surface intermediate Ca(OH)(HCO3) that has been proposed in the literature. The uptake of CO2 and SO2 occurs on specific adsorption sites of crystalline CaCO3(s) rather than by dissolution in adsorbed water, H2O(ads). SO2 primarily interacts with the bicarbonate moiety whereas CO2, HNO3 and HCl all react first with the hydroxyl group of the surface intermediate. Subsequently, the latter two react with the bicarbonate group to presumably form Ca(NO3)2 and CaCl2.2H2O. The effective equilibrium constant of the interaction of CO2 with calcite in the presence of H2O(ads) is kappa = deltaCO2/(H2O(ads)[CO2]) = 1.62 x 10(3) bar(-1), where CO2 is the quantity of CO2 adsorbed on CaCO3. The reaction mechanism involves a weakly bound precursor species that is reversibly adsorbed and undergoes rate-controlling concurrent reactions with both functionalities of the surface intermediate. The initial uptake coefficients gamma0 on calcite powder depend on the abundance of H2O(ads) under the present experimental conditions and are on the order of 10(-4) for CO2 and 0.1 for SO2, HNO3 and HCl, with gamma(ss) being significantly smaller than gamma0 for HNO3 and HCl, thus indicating partial saturation of the uptake. At 33% relative humidity and 300 K there are 3.5 layers of H2O adsorbed on calcite that reduce to a fraction of a monolayer of weakly and strongly bound water upon pumping and/or heating.
Supercritical CO2 uptake by nonswelling phyllosilicates
Tokunaga, Tetsu K.; Ashby, Paul D.; Kim, Yongman; Voltolini, Marco; Gilbert, Benjamin; DePaolo, Donald J.
2018-01-01
Interactions between supercritical (sc) CO2 and minerals are important when CO2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubation with scCO2), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO2, can increase CO2 storage capacity by up to ∼30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO2 uptake constitutes a previously unrecognized potential trapping mechanism. PMID:29339499
Supercritical CO2 uptake by nonswelling phyllosilicates.
Wan, Jiamin; Tokunaga, Tetsu K; Ashby, Paul D; Kim, Yongman; Voltolini, Marco; Gilbert, Benjamin; DePaolo, Donald J
2018-01-30
Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubation with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2 , can increase CO 2 storage capacity by up to ∼30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism. Copyright © 2018 the Author(s). Published by PNAS.
Supercritical CO 2 uptake by nonswelling phyllosilicates
Wan, Jiamin; Tokunaga, Tetsu K.; Ashby, Paul D.; ...
2018-01-16
Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubationmore » with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2, can increase CO 2 storage capacity by up to ~30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism.« less
Nabavi, Seyed Ali; Vladisavljević, Goran T; Zhu, Yidi; Manović, Vasilije
2017-10-03
Highly selective molecularly imprinted poly[acrylamide-co-(ethylene glycol dimethacrylate)] polymer particles (MIPs) for CO 2 capture were synthesized by suspension polymerization via oil-in-oil emulsion. Creation of CO 2 -philic, amide-decorated cavities in the polymer matrix led to a high affinity to CO 2 . At 0.15 bar CO 2 partial pressure, the CO 2 /N 2 selectivity was 49 (corresponding to 91% purity of the gas stream after regeneration), and reached 97 at ultralow CO 2 partial pressures. The imprinted polymers showed considerably higher CO 2 uptakes compared to their nonimprinted counterparts, and the maximum equilibrium CO 2 capture capacity of 1.1 mmol g -1 was achieved at 273 K. The heat of adsorption was below 32 kJ mol -1 and the temperature of onset of intense thermal degradation was 351-376 °C. An increase in monomer-to-cross-linker molar ratio in the dispersed phase up to 1:2.5 led to a higher affinity toward CO 2 due to higher density of selective amide groups in the polymer network. MIPs are a promising option for industrial packed and fluidized bed CO 2 capture systems due to large particles with a diameter up to 1200 μm and irregular oblong shapes formed due to arrested coalescence during polymerization, occurring as a result of internal elasticity of the partially polymerized semisolid drops.
Luo, Shuangjiang; Zhang, Qinnan; Zhang, Yizhou; Weaver, Kevin P; Phillip, William A; Guo, Ruilan
2018-05-02
Rigid H-shaped pentiptycene units, with an intrinsic hierarchical structure, were employed to fabricate a highly microporous organic polymer sorbent via Friedel-Crafts reaction/polymerization. The obtained microporous polymer exhibits good thermal stability, a high Brunauer-Emmett-Teller surface area of 1604 m 2 g -1 , outstanding CO 2 , H 2 , and CH 4 storage capacities, as well as good adsorption selectivities for the separation of CO 2 /N 2 and CO 2 /CH 4 gas pairs. The CO 2 uptake values reached as high as 5.00 mmol g -1 (1.0 bar and 273 K), which, along with high adsorption selectivity values (e.g., 47.1 for CO 2 /N 2 ), make the pentiptycene-based microporous organic polymer (PMOP) a promising sorbent material for carbon capture from flue gas and natural gas purification. Moreover, the PMOP material displayed superior absorption capacities for organic solvents and dyes. For example, the maximum adsorption capacities for methylene blue and Congo red were 394 and 932 mg g -1 , respectively, promoting the potential of the PMOP as an excellent sorbent for environmental remediation and water treatment.
Uptake of Nitrate and Sulfate on Dust Aerosols during TRACE-P
NASA Technical Reports Server (NTRS)
Jordan, C. E.; Dibb, J. E.; Anderson, B. E.; Fuelberg, H. E.
2003-01-01
Aerosol data collected near Asia on the DC-8 aircraft platform during TRACE-P has been examined for evidence of uptake of NO3(-) and SO4(-) on dust surfaces. Data is compared between a sector where dust was predominant and a sector where dust was less of an influence. Coincident with dust were higher mixing ratios of anthropogenic pollutants. HNO3, SO2, and CO were higher in the dust sector than the nondust sector by factors of 2.7, 6.2, and 1.5, respectively. The colocation of dust and pollution sources allowed for the uptake of NO3(-) and nss-SO4(-) on the coarse dust aerosols, increasing the mixing ratios of these particulates by factors of 5.7 and 2.6 on average. There was sufficient nss-SO4(-) to take up all of the NH4(+) present, with enough excess nss-SO4(-) to also react with dust CaCO3. This suggests that the enhanced NO3(-) was not in fine mode NH4NO3. Particulate NO3(-) (p-NO3(-)) constituted 54% of the total NO3(-), (t-NO3(-)) on average, reaching a maximum of 72% in the dust sector. In the nondust sector, p-NO3(-) contributed 37% to t-NO3(-), likely due to the abundance of sea salts there. In two other sectors where the influence of dust and sea salt were minimal, p-NO3(-), accounted for < 15% of t-NO3(-).
Estimating CO2 Fluxes Pre and Post Drought Using Remote Sensing Data in the Sierra Nevada Range
NASA Astrophysics Data System (ADS)
Mazzi, J. R.; Grigsby, S.; Goulden, M.; Ustin, S.
2015-12-01
The recent California drought presents an opportunity to study CO2 flux changes over time due to insufficient water uptake by plant life using remote sensing data. Three flux towers were used to create linear regressions between AVIRIS derived Net Ecosystem Exchange (NEE = PRI * NDVI * PAR) and tower measured CO2 flux in the San Joaquin Experimental Range. To estimate CO2 from NEE, two linear regressions were used based on time of day and season, with R2 values of 0.85 and 0.87 respectively. Per-pixel CO2 flux was estimated for AVIRIS flights flown in June 2013, 2014, and 2015, as well as September 2011 and October 2014. There was a significant decrease in post drought photosynthetic CO2 uptake over the 6,700 km2 studied, totaling 2,977 grams per minute less (15.9% decrease) from June 2013 to June 2014. Data from the 2015 HyspIRI flights suggest a continuation of this trend for June 2015. Pre-drought conditions over a 33 km2 area show that the photosynthetic CO2 uptake dropped from 74 mg per minute on September 24, 2011, to 35 mg per minute on October 6, 2014 (a 53% decrease). HyspIRI flight lines also include 434 km2 of the Rim Fire, an area that saw a decrease in CO2 uptake of 413 grams per minute (71.7% decrease from June 2013 to June 2014) from the burn alone. It is estimated that the entire Rim Fire (1,041 km2) has caused a total decrease in photosynthetic CO2 uptake totaling 988 grams less per minute from 2013 to 2014, with some recovery evident in 2015.
Impact of bubble size on growth and CO2 uptake of Arthrospira (Spirulina) platensis KMMCC CY-007.
Kim, Kisok; Choi, Jaeho; Ji, Yosep; Park, Soyoung; Do, Hyungki; Hwang, Cherwon; Lee, Bongju; Holzapfel, Wilhelm
2014-10-01
Optimisation of cyanobacterial cell productivity should consider the key factors light cycle and carbon source. We studied the influence of CO2 bubble size on carbon uptake and fixation, on basis of mRNA expression levels in Arthrospira platensis KMMCC CY-007 at 30°C (light intensity: 40μmolm(-2)s(-1); 1% CO2). Growth rate, carbon fixation and lipid accumulation were examined over 7days under fine bubble (FB) (100μm Ø) bulk bubble (BB) (5000μm Ø) and non-CO2 (NB) aeration. The low affinity CO2 uptake mRNA (NDH-I4 complex) was stronger expressed than the high affinity NDH-I3 complex (bicA and sbtA) under 1% CO2 and FB conditions, with no expression of bicA1 and sbtA1 after 4days. The high affinity CO2 uptake mRNA levels corresponded to biomass, carbon content and lipid accumulation, and increase in NDH-I3 complex (9.72-fold), bicA (5.69-fold), and sbtA (10.61-fold), compared to NB, or BB conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cellular delivery of PEGylated PLGA nanoparticles.
Pamujula, Sarala; Hazari, Sidhartha; Bolden, Gevoni; Graves, Richard A; Chinta, Dakshinamurthy Devanga; Dash, Srikanta; Kishore, Vimal; Mandal, Tarun K
2012-01-01
The objective of this study was to investigate the efficiency of uptake of PEGylated polylactide-co-gycolide (PLGA) nanoparticles by breast cancer cells. Nanoparticles of PLGA containing various amounts of polyethylene glycol (PEG, 5%-15%) were prepared using a double emulsion solvent evaporation method. The nanoparticles were loaded with coumarin-6 (C6) as a fluorescence marker. The particles were characterized for surface morphology, particle size, zeta potential, and for cellular uptake by 4T1 murine breast cancer cells. Irrespective of the amount of PEG, all formulations yielded smooth spherical particles. However, a comparison of the particle size of various formulations showed bimodal distribution of particles. Each formulation was later passed through a 1.2 µm filter to obtain target size particles (114-335 nm) with zeta potentials ranging from -2.8 mV to -26.2 mV. While PLGA-PEG di-block (15% PEG) formulation showed significantly higher 4T1 cellular uptake than all other formulations, there was no statistical difference in cellular uptake among PLGA, PLGA-PEG-PLGA tri-block (10% PEG), PLGA-PEG di-block (5% PEG) and PLGA-PEG di-block (10% PEG) nanoparticles. These preliminary findings indicated that the nanoparticle formulation prepared with 15% PEGylated PLGA showed maximum cellular uptake due to it having the smallest particle size and lowest zeta potential. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.
Bahrololoomi, Zahra; Sorouri, Milad
2015-01-01
Objectives: Fluoride therapy is important for control and prevention of dental caries. Laser irradiation can increase fluoride uptake especially when combined with topical fluoride application. The objective of this study was to compare the effects of CO2 and diode lasers on enamel fluoride uptake in primary teeth. Materials and Methods: Forty human primary molars were randomly assigned to four groups (n=10). The roots were removed and the crowns were sectioned mesiodistally into buccal and lingual halves as the experimental and control groups. All samples were treated with 5% sodium fluoride (NaF) varnish. The experimental samples in the four groups were irradiated with 5 or 7W diode or 1 or 2W CO2 laser for 15 seconds and were compared with the controls in terms of fluoride uptake, which was determined using an ion selective electrode after acid dissolution of the specimens. Data were analyzed by SPSS version 16 using ANOVA treating the control measurements as covariates. Results: The estimated amount of fluoride uptake was 59.5± 16.31 ppm, 66.5± 14.9 ppm, 78.6± 12.43 ppm and 90.4± 11.51 ppm for 5W and 7 W diode and 1W and 2 W CO2 lasers, respectively, which were significantly greater than the values in the conventional topical fluoridation group (P<0.005). There were no significant differences between 7W diode laser and 1W CO2 laser, 5W and 7W diode laser, or 1W and 2W CO2 laser in this regard. Conclusion: The results showed that enamel surface irradiation by CO2 and diode lasers increases the fluoride uptake. PMID:27123018
Bahrololoomi, Zahra; Fotuhi Ardakani, Faezeh; Sorouri, Milad
2015-08-01
Fluoride therapy is important for control and prevention of dental caries. Laser irradiation can increase fluoride uptake especially when combined with topical fluoride application. The objective of this study was to compare the effects of CO2 and diode lasers on enamel fluoride uptake in primary teeth. Forty human primary molars were randomly assigned to four groups (n=10). The roots were removed and the crowns were sectioned mesiodistally into buccal and lingual halves as the experimental and control groups. All samples were treated with 5% sodium fluoride (NaF) varnish. The experimental samples in the four groups were irradiated with 5 or 7W diode or 1 or 2W CO2 laser for 15 seconds and were compared with the controls in terms of fluoride uptake, which was determined using an ion selective electrode after acid dissolution of the specimens. Data were analyzed by SPSS version 16 using ANOVA treating the control measurements as covariates. The estimated amount of fluoride uptake was 59.5± 16.31 ppm, 66.5± 14.9 ppm, 78.6± 12.43 ppm and 90.4± 11.51 ppm for 5W and 7 W diode and 1W and 2 W CO2 lasers, respectively, which were significantly greater than the values in the conventional topical fluoridation group (P<0.005). There were no significant differences between 7W diode laser and 1W CO2 laser, 5W and 7W diode laser, or 1W and 2W CO2 laser in this regard. The results showed that enamel surface irradiation by CO2 and diode lasers increases the fluoride uptake.
Song, Ningning; Wang, Fangli; Zhang, Changbo; Tang, Shirong; Guo, Junkang; Ju, Xuehai; Smith, Donald L
2013-01-01
Fungal inoculation and elevated CO2 may mediate plant growth and uptake of heavy metals, but little evidence from Diffusive Gradients in Thin-films (DGT) measurement has been obtained to characterize the process. Lolium mutiforum and Phytolacca americana were grown at ambient and elevated CO2 on naturally Cd and Pb contaminated soils inoculated with and without Trichoderma asperellum strain C3 or Penicillium chrysogenum strain D4, to investigate plant growth, metal uptake, and metal bioavailability responses. Fungal inoculation increased plant biomass and shoot/root Cd and Pb concentrations. Elevated CO2 significantly increased plants biomass, but decreased Cd and Pb concentrations in shoot/root to various extents, leading to a metal dilution phenomenon. Total Cd and Pb uptake by plants, and DGT-measured Cd and Pb concentrations in rhizosphere soils, were higher in all fungal inoculation and elevated CO2 treatments than control treatments, with the combined treatments having more influence than either treatment alone. Metal dilution phenomenon occurred because the increase in DGT-measured bioavailable metal pools in plant rhizosphere due to elevated CO2 was unable to match the increase in requirement for plant uptake of metals due to plant biomass increase.
NASA Astrophysics Data System (ADS)
Sandoval-Soto, L.; Stanimirov, M.; von Hobe, M.; Schmitt, V.; Valdes, J.; Wild, A.; Kesselmeier, J.
2005-01-01
COS uptake by trees, as observed under dark/light changes and under application of the plant hormone abscisic acid, exhibited a strong correlation with the CO2 assimilation rate and the stomatal conductance. As the uptake of COS occurred exclusively through the stomata we compared experimentally derived and re-evaluated deposition velocities (Vd for COS and CO2). We show that Vd of COS is generally significantly larger than that of CO2. We therefore introduced this attribute into a new global estimate of COS fluxes into vegetation. The global COS uptake by vegetation as estimated by the new model ranges between 0.69-1.40 Tg a-1, based on the Net Primary Productivity (NPP). Taking into account Gross Primary Productivity (GPP) the deposition estimate ranges between 1.37-2.81 Tg a-1 (0.73-1.50 Tg S a-1). We believe that in order to obtain accurate and reliable global NPP-based estimates for the COS flux into vegetation, the different deposition velocities of COS and CO2 must be taken into account.
Kinetics of 11C-labeled opiates in the brain of rhesus monkeys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartvig, P.; Bergstroem, K.; Lindberg, B.
1984-07-01
The regional uptake in the brain of Rhesus monkeys of i.v. administered 11C-labeled morphine, codeine, heroin and pethidine was studied by means of positron emission tomography. The technique measures the sum of parent drug and radiolabeled metabolites. (For the sake of simplicity the drug derived radioactivity is denoted by the drug name.) Morphine had a limited uptake to discrete areas of the brain. The maximum normalized uptake, with respect to dose per kilogram body weight, was about 0.2, i.e., 20% of the calculated activity if the drug had been evenly distributed throughout the body of the monkey. Maximum radioactivity appearedmore » 30 to 45 min after injection. Morphine left the brain slowly with an estimated half-life of more than 2 hr. An area with a normalized uptake of about 1.0 was detected centrally in the lowest horizontal transsection of the skull. The origin of this area was identified as the pituitary. Codeine, heroin and pethidine were taken up to the brain to a larger extent than morphine, with maximum normalized uptakes of 2.6, 4.6 and 6.3, respectively. Maximum radioactivities of these drugs were achieved earlier and the elimination rates were faster than for morphine. Differences in the uptake of these drugs to the brain, as well as differences in time to maximal normalized uptake and rate of disappearance are considered to reflect differences in the lipophilic character between the drugs. Pethidine had the most rapid and extensive uptake followed by heroin, codeine and morphine in order of decreasing lipophilicity.« less
Wang, Tsinghai; Xiao, Da-Cheng; Huang, Chih-Hung; Hsieh, Yi-Kong; Tan, Chung-Sung; Wang, Chu-Fang
2014-04-15
In this paper, we demonstrate a means of simultaneously solving two serious environmental issues by reutilization of calcinated mixture of pulverized waste oyster shells blending with poly(methyl methacrylate) (PMMA) nanospheres to prepare CaO-based sorbents for CO2 capture. After 10 cycles of isothermal carbonation/calcination at 750°C, the greatest CO2 uptake (0.19 g CO2/g sorbent) was that for the sorbent featuring 70 wt% of PMMA, which was almost three times higher than that (0.07 g CO2/g sorbent) of untreated waste oyster shell. The greater CO2 uptake was likely a result of particle size reduction and afterwards surface basicity enhancement and an increase in the volume of mesopores and macropores. Following simplified life cycle assessment, whose all input values were collected from our experimental results, suggested that a significant CO2 emission reduction along with lesser human health and ecosystems impacts would be achieved immediately once waste is reutilized. Most importantly, the CO2 uptake efficiency must be greater than 20% or sorbents prepared from limestone mining would eventually produce a net positive CO2 emission. Copyright © 2014 Elsevier B.V. All rights reserved.
Yan, Feng; Jiang, Jianguo; Li, Kaimin; Liu, Nuo; Chen, Xuejing; Gao, Yuchen; Tian, Sicong
2017-07-05
High-temperature sorption of CO 2 via calcium looping has wide applications in postcombustion carbon capture, sorption-enhanced hydrogen production, and inherent energy storage. However, fast deactivations of CaO sorbents and low CO 2 uptake in the fast carbonation stage are major drawbacks of this technology. For the first time, we developed a green approach through the reuse of nanosilica derived from coal fly ash (CFA) to enhance both the cyclic CO 2 uptakes and the sorption kinetics of CaO sorbents. The as-synthesized nanosilica-supported CaO sorbent showed superior cyclic stability even under realistic carbonation/calcination conditions, and maintained a final CO 2 uptake of 0.20 g(CO 2 ) g(sorbent) -1 within short carbonation time, markedly increased by 155% over conventional CaO sorbent. Significantly, it also exhibited very fast sorption rate and could achieve almost 90% of the total CO 2 uptake within ∼20 s after the second cycle, which is critical for practical applications. These positive effects were attributed to the formation of larnite (Ca 2 SiO 4 ) and the physical nanostructure of silica, which could yield and keep abundant reactive small pores directly exposed to CO 2 throughout multiple cycles. The proposed strategy, integrating the on-site recycling of CFA, appears to be promising for CO 2 abatement from coal-fired power plants.
Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.
Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M
2015-01-21
Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive.
Nocturnal versus diurnal CO2 uptake: how flexible is Agave angustifolia?
Winter, Klaus; Garcia, Milton; Holtum, Joseph A. M.
2014-01-01
Agaves exhibit the water-conserving crassulacean acid metabolism (CAM) photosynthetic pathway. Some species are potential biofuel feedstocks because they are highly productive in seasonally dry landscapes. In plants with CAM, high growth rates are often believed to be associated with a significant contribution of C3 photosynthesis to total carbon gain when conditions are favourable. There has even been a report of a shift from CAM to C3 in response to overwatering a species of Agave. We investigated whether C3 photosynthesis can contribute substantially to carbon uptake and growth in young and mature Agave angustifolia collected from its natural habitat in Panama. In well-watered plants, CO2 uptake in the dark contributed about 75% of daily carbon gain. This day/night pattern of CO2 exchange was highly conserved under a range of environmental conditions and was insensitive to intensive watering. Elevated CO2 (800 ppm) stimulated CO2 fixation predominantly in the light. Exposure to CO2-free air at night markedly enhanced CO2 uptake during the following light period, but CO2 exchange rapidly reverted to its standard pattern when CO2 was supplied during the subsequent 24h. Although A. angustifolia consistently engages in CAM as its principal photosynthetic pathway, its relatively limited photosynthetic plasticity does not preclude it from occupying a range of habitats, from relatively mesic tropical environments in Panama to drier habitats in Mexico. PMID:24648568
Morin, Francoise; André, Marcel; Betsche, Thomas
1992-01-01
Intact air-grown (photosynthetic photon flux density, 400 microeinsteins per square meter per second) clover plants (Trifolium subterraneum L.) were transfered to high CO2 (4000 microliters CO2 per liter; photosynthetic photon flux density, 400 microeinsteins per square meter per second) or to high light (340 microliters CO2 per liter; photosynthetic photon flux density, 800 microeinsteins per square meter per second) to similarly stimulate photosynthetic net CO2 uptake. The daily increment of net CO2 uptake declined transiently in high CO2, but not in high light, below the values in air/standard light. After about 3 days in high CO2, the daily increment of net CO2 uptake increased but did not reach the high light values. Nightly CO2 release increased immediately in high light, whereas there was a 3-day lag phase in high CO2. During this time, starch accumulated to a high level, and leaf deterioration was observed only in high CO2. After 12 days, starch was two- to threefold higher in high CO2 than in high light, whereas sucrose was similar. Leaf carbohydrates were determined during the first and fourth day in high CO2. Starch increased rapidly throughout the day. Early in the day, sucrose was low and similar in high CO2 and ambient air (same light). Later, sucrose increased considerably in high CO2. The findings that (a) much more photosynthetic carbon was partitioned into the leaf starch pool in high CO2 than in high light, although net CO2 uptake was similar, and that (b) rapid starch formation occurred in high CO2 even when leaf sucrose was only slightly elevated suggest that low sink capacity was not the main constraint in high CO2. It is proposed that carbon partitioning between starch (chloroplast) and sucrose (cytosol) was perturbed by high CO2 because of the lack of photorespiration. Total phosphate pools were determined in leaves. Concentrations based on fresh weight of orthophosphate, soluble esterified phosphate, and total phosphate markedly declined during 13 days of exposure of the plants to high CO2 but changed little in high light/ambient air. During this time, the ratio of orthophosphate to soluble esterified phosphate decreased considerably in high CO2 and increased slightly in high light/ambient air. It appears that phosphate uptake and growth were similarly stimulated by high light, whereas the coordination was weak in high CO2. PMID:16668889
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koivula, Risto; Harjula, Risto; Tusa, Esko
2012-07-01
The synthesised cryptomelane-type α-MnO{sub 2} was tested for its Co-57 uptake properties in UV-photo-reactor filled with 10 μM Co-EDTA solution with a background of 10 mM NaNO{sub 3}. High cobalt uptake of 96% was observed after 1 hour of UV irradiation. As for comparison, a well-known TiO{sub 2} (Degussa P25) was tested as reference material that showed about 92% cobalt uptake after six hours of irradiation in identical experiment conditions. It was also noted that the cobalt uptake on cryptomelane with out UV irradiation was modest, only about 10%. Decreasing the pH of the Co-EDTA solution had severe effects onmore » the cobalt uptake mainly due to the rather high point of zero charge of the MnO{sub 2} surface (pzc at pH ∼4.5). Modifying the synthesis procedure we were able to produce a material that functioned well even in solution of pH 3 giving cobalt uptake of almost 99%. The known properties, catalytic and ion exchange, of manganese oxides were simultaneously used for the separation of EDTA complexed Co-57. Tunnel structured cryptomelane -type showed very fast and efficient Co uptake properties outperforming the well known and widely used Degussa P25 TiO{sub 2} in both counts. The layered structured manganese oxide, birnessite, reached also as high Co removal level as the reference material Degussa did but the reaction rate was considerably faster. Since the decontamination solutions are typically slightly acidic and the point of zero charge of the manganese oxides are rather high > pH 4.5 the material had to be modified. This modified material had tolerance to acidic solutions and it's Co uptake performance remained high in the solutions of lower pH (pH 3). Increasing the ion concentration of test solutions, background concentration, didn't affect the final Co uptake level; however, some changes in the uptake kinetics could be seen. The increase in EDTA/MoMO ratio was clearly reflected in the Co uptake curves. The obtained results of manganese oxide were very promising for the treatment of EDTA complexed Co solutions. The better performance values and cheaper production cost of manganese oxide, compared to titanium dioxide, is so big driving force that further studies on the material are evident. The possibilities for continuous treatment, instead of the fluidized bed -type batch experiment are investigated and the effects of other compounds affecting the de-complexation of Co-EDTA are further studied. (authors)« less
NASA Astrophysics Data System (ADS)
Niu, S.; Luo, Y.; Hui, D.; Chen, J.
2013-12-01
The interannual variability (IAV) of atmospheric CO2 concentration varies substantial and is largely ascribed to IAV of terrestrial ecosystem carbon fluxes. However, we have limited understanding on the mechanisms that control the IAV on the carbon flux of terrestrial ecosystems. Here, we hypothesized that physiological and phonological processes regulate IAV significantly in terrestrial carbon uptake (i.e., net ecosystem production, NEP). To test this hypothesis, we analyzed eddy-covariance data from 24 sites with more than 8 years data in deciduous broadleaf forests (DBF), evergreen forests (EF), and grasslands (GRA) in the northern hemisphere. Ecosystem physiology is represented by the maximum carbon uptake capacity (NEPmax) in one year whereas phonology is represented by carbon uptake period (CUP). We found that yearly anomalies of CUP and NEPmax accounted for 40% and 60% separately, and 73% in combination, of the anomalies in annual NEP across all the 253 site-years, with their relative contributions varying among the sites. The IAV of CUP was determined by the anomalies of spring and autumn carbon uptake phenology, both of which were sensitive to climate changes but controlled by different environmental factors in different biomes. IAV of NEPmax was determined by summer precipitation anomalies in DBF and GRA. The results suggest that IAV of NEP is consistently co-determined by CUP and NEPmax anomalies among sites in the northern hemisphere. Overall, the mechanisms revealed by our study on NEP anomalies through changing in phenology and physiology contribute to predictive understanding of temporal dynamics of terrestrial carbon uptake.
Muñoz-Martínez, Francisco Antonio; Rubio-Arias, Jacobo Á; Ramos-Campo, Domingo Jesús; Alcaraz, Pedro E
2017-12-01
It is well known that concurrent increases in both maximal strength and aerobic capacity are associated with improvements in sports performance as well as overall health. One of the most popular training methods used for achieving these objectives is resistance circuit-based training. The objective of the present systematic review with a meta-analysis was to evaluate published studies that have investigated the effects of resistance circuit-based training on maximum oxygen uptake and one-repetition maximum of the upper-body strength (bench press exercise) in healthy adults. The following electronic databases were searched from January to June 2016: PubMed, Web of Science and Cochrane. Studies were included if they met the following criteria: (1) examined healthy adults aged between 18 and 65 years; (2) met the characteristics of resistance circuit-based training; and (3) analysed the outcome variables of maximum oxygen uptake using a gas analyser and/or one-repetition maximum bench press. Of the 100 articles found from the database search and after all duplicates were removed, eight articles were analysed for maximum oxygen uptake. Of 118 healthy adults who performed resistance circuit-based training, maximum oxygen uptake was evaluated before and after the training programme. Additionally, from the 308 articles found for one-repetition maximum, eight articles were analysed. The bench press one-repetition maximum load, of 237 healthy adults who performed resistance circuit-based training, was evaluated before and after the training programme. Significant increases in maximum oxygen uptake and one-repetition maximum bench press were observed following resistance circuit-based training. Additionally, significant differences in maximum oxygen uptake and one-repetition maximum bench press were found between the resistance circuit-based training and control groups. The meta-analysis showed that resistance circuit-based training, independent of the protocol used in the studies, is effective in increasing maximum oxygen uptake and one-repetition maximum bench press in healthy adults. However, its effect appears to be larger depending on the population and training characteristics. For large effects in maximum oxygen uptake, the programme should include ~14-30 sessions for ~6-12 weeks, with each session lasting at least ~20-30 min, at intensities between ~60 and 90% one-repetition maximum. For large effects in one-repetition maximum bench press, the data indicate that intensity should be ~30-60% one-repetition maximum, with sessions lasting at least ~22.5-60 min. However, the lower participant's baseline fitness level may explain the lighter optimal loads used in the circuit training studies where greater strength gains were reported.
Sodium uptake in different life stages of crustaceans: the water flea Daphnia magna Strauss.
Bianchini, Adalto; Wood, Chris M
2008-02-01
The concentration-dependent kinetics and main mechanisms of whole-body Na+ uptake were assessed in neonate and adult water flea Daphnia magna Strauss acclimated to moderately hard water (0.6 mmol l(-1) NaCl, 1.0 mmol l(-1) CaCO3 and 0.15 mmol l(-1) MgSO4.7H2O; pH 8.2). Whole-body Na+ uptake is independent of the presence of Cl(-) in the external medium and kinetic parameters are dependent on the life stage. Adults have a lower maximum capacity of Na+ transport on a mass-specific basis but a higher affinity for Na+ when compared to neonates. Based on pharmacological analyses, mechanisms involved in whole-body Na+ uptake differ according to the life stage considered. In neonates, a proton pump-coupled Na+ channel appears to play an important role in the whole-body Na+ uptake at the apical membrane. However, they do not appear to contribute to whole-body Na+ uptake in adults, where only the Na+ channel seems to be present, associated with the Na+/H+ exchanger. In both cases, carbonic anhydrase contributes by providing H+ for the transporters. At the basolateral membrane of the salt-transporting epithelia of neonates, Na+ is pumped from the cells to the extracellular fluid by a Na+, K+-ATPase and a Na+/Cl(-) exchanger whereas K+ and Cl(-) move through specific channels. In adults, a Na+/K+/2Cl(-) cotransporter replaces the Na+/Cl(-) exchanger. Differential sensitivity of neonates and adults to iono- and osmoregulatory toxicants, such as metals, are discussed with respect to differences in whole-body Na+ uptake kinetics, as well as in the mechanisms of Na+ transport involved in the whole-body Na+ uptake in the two life stages.
Winter crop CO2 uptake inferred from CONTRAIL measurements over Delhi, India
NASA Astrophysics Data System (ADS)
Umezawa, Taku; Niwa, Yosuke; Sawa, Yousuke; Machida, Toshinobu; Matsueda, Hidekazu
2016-11-01
Recent studies have shown the impact of expanding agricultural activities on atmospheric CO2 variations and the global carbon cycle. In this study, we show clear evidence of the measureable impact of Indian wintertime crops (mainly wheat) on the regional carbon budget using high-frequency atmospheric CO2 measurements by Comprehensive Observation Network for Trace gases by Airliners (CONTRAIL) over Delhi; this phenomenon is not detected by the existing network of surface CO2 sites. While a general increase in the vertical profiles of CO2 toward the ground in the boundary layer was observed throughout December-April, we frequently observed sharp decreases below 2 km during January-March. Seasonal circulations during these 3 months indicated influences from neighboring croplands (with patchy urban areas) located upwind. We conclude that the observed CO2 decrease is attributable to active uptake by the crops grown in winter and that the uptake exceeds in magnitude the urban CO2 emissions from the Delhi metropolitan area.
Zhou, Xiaoping; Wang, Xiaoke; Tong, Lei; Zhang, Hongxing; Lu, Fei; Zheng, Feixiang; Hou, Peiqiang; Song, Wenzhi; Ouyang, Zhiyun
2012-01-01
The significant warming in urban environment caused by the combined effects of global warming and heat island has stimulated widely development of urban vegetations. However, it is less known of the climate feedback of urban lawn in warmed environment. Soil warming effect on net ecosystem exchange (NEE) of carbon dioxide during the transition period from winter to spring was investigated in a temperate urban lawn in Beijing, China. The NEE (negative for uptake) under soil warming treatment (temperature was about 5 degrees C higher than the ambient treatment as a control) was -0.71 micromol/(m2 x sec), the ecosytem was a CO2 sink under soil warming treatment, the lawn ecosystem under the control was a CO2 source (0.13 micromol/(m2 x sec)), indicating that the lawn ecosystem would provide a negative feedback to global warming. There was no significant effect of soil warming on nocturnal NEE (i.e., ecosystem respiration), although the soil temperature sensitivity (Q10) of ecosystem respiration under soil warming treatment was 3.86, much lower than that in the control (7.03). The CO2 uptake was significantly increased by soil warming treatment that was attributed to about 100% increase of alpha (apparent quantum yield) and Amax (maximum rate of photosynthesis). Our results indicated that the response of photosynthesis in urban lawn is much more sensitive to global warming than respiration in the transition period.
Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake
NASA Astrophysics Data System (ADS)
Oschlies, A.
2009-04-01
The sensitivity of oceanic CO2 uptake to alterations in the marine biological carbon pump, such as brought about by natural or purposeful ocean fertilization, has repeatedly been investigated by studies employing numerical biogeochemical ocean models. It is shown here that the results of such ocean-centered studies are very sensitive to the assumption made about the response of the carbon reservoirs on the atmospheric side of the sea surface. Assumptions made include prescribed atmospheric pCO2, an interactive atmospheric CO2 pool exchanging carbon with the ocean but not with the terrestrial biosphere, and an interactive atmosphere that exchanges carbon with both oceanic and terrestrial carbon pools. The impact of these assumptions on simulated annual to millennial oceanic carbon uptake is investigated for a hypothetical increase in the C:N ratio of the biological pump and for an idealized enhancement of phytoplankton growth. Compared to simulations with interactive atmosphere, using prescribed atmospheric pCO2 overestimates the sensitivity of the oceanic CO2 uptake to changes in the biological pump, by about 2%, 25%, 100%, and >500% on annual, decadal, centennial, and millennial timescales, respectively. Adding an interactive terrestrial carbon pool to the atmosphere-ocean model system has a small effect on annual timescales, but increases the simulated fertilization-induced oceanic carbon uptake by about 4%, 50%, and 100% on decadal, centennial, and millennial timescales, respectively. On longer than decadal timescales, a substantial fraction of oceanic carbon uptake induced by natural or purposeful ocean fertilization may not come from the atmosphere but from the terrestrial biosphere.
Rouco, Mónica; Branson, Oscar; Lebrato, Mario; Iglesias-Rodríguez, M Débora
2013-01-01
Growth and calcification of the marine coccolithophorid Emiliania huxleyi is affected by ocean acidification and macronutrients limitation and its response varies between strains. Here we investigated the physiological performance of a highly calcified E. huxleyi strain, NZEH, in a multiparametric experiment. Cells were exposed to different CO2 levels (ranging from 250 to 1314 μatm) under three nutrient conditions [nutrient replete (R), nitrate limited (-N), and phosphate limited (-P)]. We focused on calcite and organic carbon quotas and on nitrate and phosphate utilization by analyzing the activity of nitrate reductase (NRase) and alkaline phosphatase (APase), respectively. Particulate inorganic (PIC) and organic (POC) carbon quotas increased with increasing CO2 under R conditions but a different pattern was observed under nutrient limitation. The PIC:POC ratio decreased with increasing CO2 in nutrient limited cultures. Coccolith length increased with CO2 under all nutrient conditions but the coccosphere volume varied depending on the nutrient treatment. Maximum APase activity was found at 561 μatm of CO2 (pH 7.92) in -P cultures and in R conditions, NRase activity increased linearly with CO2. These results suggest that E. huxleyi's competitive ability for nutrient uptake might be altered in future high-CO2 oceans. The combined dataset will be useful in model parameterizations of the carbon cycle and ocean acidification.
Co-ordination of NDH and Cup proteins in CO2 uptake in cyanobacterium Synechocystis sp. PCC 6803.
Han, Xunling; Sun, Nan; Xu, Min; Mi, Hualing
2017-06-01
High and low affinity CO2-uptake systems containing CupA (NDH-1MS) and CupB (NDH-1MS'), respectively, have been identified in Synechocystis sp. PCC 6803, but it is yet unknown how the complexes function in CO2 uptake. In this work, we found that deletion of cupB significantly lowered the growth of cells, and deletion of both cupA and cupB seriously suppressed the growth below pH 7.0 even under 3% CO2. The rate of photosynthetic oxygen evolution was decreased slightly by deletion of cupA but significantly by deletion of cupB and more severely by deletion of both cupA and cupB, especially in response to changed pH conditions under 3% CO2. Furthermore, we found that assembly of CupB into NDH-1MS' was dependent on NdhD4 and NdhF4. NDH-1MS' was not affected in the NDH-1MS-degradation mutant and NDH-1MS was not affected in the NDH-1MS'-degradation mutants, indicating the existence of independent CO2-uptake systems under high CO2 conditions. The light-induced proton gradient across thylakoid membranes was significantly inhibited in ndhD-deletion mutants, suggesting that NdhDs functions in proton pumping. The carbonic anhydrase activity was suppressed partly in the cupA- or cupB-deletion mutant but severely in the mutant with both cupA and cupB deletion, indicating that CupA and CupB function in conversion of CO2 to HCO3-. In turn, deletion of cup genes lowered the transthylakoid membrane proton gradient and deletion of ndhDs decreased the CO2 hydration. Our results suggest that NDH-1M provides an alkaline region to activate Cup proteins involved in CO2 uptake. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Scaling up carbonyl sulfide (COS) fluxes from leaf and soil to the canopy
NASA Astrophysics Data System (ADS)
Yang, Fulin; Yakir, Dan
2016-04-01
Carbonyl sulfide (COS) with atmospheric concentrations around 500 ppt is an analog of CO2 which can potentially serve as powerful and much needed tracer of photosynthetic CO2 uptake, and global gross primary production (GPP). However, questions remain regarding the application of this approach due to uncertainties in the contributions of different ecosystem components to the canopy scale fluxes of COS. We used laser quantum cascade spectroscopy in combination with soil and branch chambers, and eddy covariance measurements of net ecosystem exchange fluxes of COS and CO2 (NEE) in citrus orchard during the driest summer month to test our ability to integrate the chamber measurements into the ecosystem fluxes. The results indicated that: 1) Soil fluxes showed clear gradient from continuous uptake under the trees in wet soil of up to -4 pmol m-2s-1 (CO2 emission of ~0.5 umol m-2s-1) to emission in dry hot and exposed soil between rows of trees of up to +3 pmol m-2s-1 (CO2 emission of ~11 umol m-2s-1). In all cases a clear correlation between fluxes and soil temperature was observed. 2) At the leaf scale, midday uptake was ~5.5 pmol m-2s-1 (CO2 uptake of ~1.8 umol m-2s-1). Some nighttime COS uptake was observed in the citrus leaves consistent with nocturnal leaf stomatal conductance. Leaf relative uptake (LRU) of COS vs. CO2 was not constant over the diurnal cycle, but showed exponential correlation with photosynthetically active radiation (PAR) during the daytime. 3) At the canopy scale mid-day summer flux reached -12.0 pmol m-2s-1 (NEE ~6 umol m-2s-1) with the diurnal patterns of COS fluxes following those of CO2 fluxes during the daytime, but with small COS uptake fluxes maintained also during the night when significant CO2 emission fluxes were observed. The canopy-scale fluxes always indicated COS uptake, irrespective of the soil emission effects. GPP estimates were consistent with conventional indirect estimates based on NEE and nocturnal measurements. Scaling up from soil and leaf chamber to canopy scale was possible by estimating LAI, and differential consideration of soil surface components (shaded vs. exposed fractions). 4) Diurnal changes in the atmospheric concentrations of COS and CO2 above the canopy showed complex patterns with opposite trends after sunrise that could be explain by the development of the planetary boundary layer 5) COS-based estimate of GPP can be improved by adopting light dependent LRU, around the mean value of ~1.6, and correcting for soil COS fluxes based on soil temperature and canopy cover estimates, and coupled COS/CO2 concentration measurements provide useful information on boundary layer dynamics.
Benecke, U; Schulze, E -D; Matyssek, R; Havranek, W M
1981-08-01
CO 2 -assimilation and leaf conductance of Larix decidua Mill. were measured in the field at high (Patscherkofel, Austria) and low (Bayreuth, Germany) elevation in Europe, and outside its natural range along an altitudinal gradient in New Zealand.Phenology of leaf and stem growth showed New Zealand sites to have much longer growing seasons than in Europe, so that the timberline (1,330 m) season was almost twice as long as at the Austrian timberline (1,950 m).The maximum rates of photosynthesis, A max , were similar at all sites after completion of leaf growth, namely 3 to 3.5 μmol m -2 s -1 . Only the sun needles of the Bayreuth tree reached 3.5 to 5 μmol m -2 s -1 . Light response curves for CO 2 -assimilation changed during leaf ontogeny, the slope being less in young than in adult leaves. The temperature optimum for 90% of maximum photosynthesis was at all sites similar between ca. 12-28°C for much of the summer. Only at the cooler high altitude timberline sites were optima lower at ca. 10-16°C in developing needles during early summer.A linear correlation existed between A max and leaf conductance at A max , and this showed no difference between the sites except for sun needles at Bayreuth.Leaf conductance responded strongly to light intensity and this was concurrent with the light response of CO 2 -uptake. A short-term and a long-term effect were differentiated. With increasing age maximum rates of CO 2 -uptake and leaf conductance at A max increased, whereas short-term response during changes in light declined. The stomata became less responsive with increasing age and tended to remain open. The stomatal responses to light have a significant effect on the water use efficiency during diurnal courses. A higher water use efficiency was found for similar atmospheric conditions in spring than in autumn.Stomata responded with progressive closure to declining air humidity in a similar manner under dissimilar climates. Humidity response thus showed insensitivity to habitat differences.From the diurnal course of gas-exchange stomata were more closed at timberline (1,330 m) than at lower elevations but this did not lead to corresponding site differences in CO 2 -exchange suggesting Larix may not be operating at high water use efficiency when air is humid.The main difference between habitats studied was in the time necessary for completion of needle development. Similarity in photosynthesis and leaf conductance existed between sites when tree foliage was compared at the same stage of development. Length of growing season and time requirement for foliar development appear to be a principle factor in the carbon balance of deciduous species. The evergreen habit may be more effective in counterbalancing the effects of cool short summers.
NASA Astrophysics Data System (ADS)
Weissert, L. F.; Salmond, J. A.; Turnbull, J. C.; Schwendenmann, L.
2016-10-01
Measurements of CO2 fluxes in temperate climates have shown that urban areas are a net source of CO2 and that photosynthetic CO2 uptake is generally not sufficient to offset local CO2 emissions. However, little is known about the role of vegetation in cities where biogenic CO2 uptake is not limited to a 2-8 months growing season. This study used the eddy covariance technique to quantify the atmospheric CO2 fluxes over a period of 12 months in a residential area in subtropical Auckland, New Zealand, where the vegetation cover (surface cover fraction: 47%) is dominated by evergreen vegetation. Radiocarbon isotope measurements of CO2 were conducted at three different times of the day (06:00-09:00, 12:00-15:00, 01:00-04:00) for four consecutive weekdays in summer and winter to differentiate anthropogenic sources of CO2 (fossil fuel combustion) from biogenic sources (ecosystem respiration, combustion of biofuel/biomass). The results reveal previously unreported patterns for CO2 fluxes, with no seasonal variability and negative (net uptake) CO2 midday fluxes throughout the year, demonstrating photosynthetic uptake by the evergreen vegetation all year-round. The winter radiocarbon measurements showed that 85% of the CO2 during the morning rush hour was attributed to fossil fuel emissions, when wind was from residential areas. However, for all other time periods radiocarbon measurements showed that fossil fuel combustion was not a large source of CO2, suggesting that biogenic processes likely dominate CO2 fluxes at this residential site. Overall, our findings highlight the importance of vegetation in residential areas to mitigate local CO2 emissions, particularly in cities with a climate that allows evergreen vegetation to maintain high photosynthetic rates over winter. As urban areas grow, urban planners need to consider the role of urban greenspace to mitigate urban CO2 emissions.
Thermoregulatory Response to Exercise After Exertional Heat Stroke.
Sagui, Emmanuel; Beighau, Sophie; Jouvion, Arnaud; Trichereau, Julie; Cornet, Delphine; Berthelot, René Charles; Canini, Frédéric; Grélot, Laurent
2017-07-01
After one episode of exertional heat stroke (EHS), risk factors must be identified to determine the potential for subsequent episodes. One of these risk factors, core body temperature (T co ) kinetics during strenuous exercise, may be a surrogate marker suggestive of impaired thermoregulation. This study aimed to determine the kinetics of increases in T co among military subjects who had a history of EHS. Forty subjects (38 males, mean age 28.4 ± 4.9 years, mean body mass index 24.9 ± 2.4) who had a history of EHS ran 8 km in full combat gear with continuous monitoring of T co and heart rate. The run was a qualifying event for military service. T co was assessed using an ingestible sensor (Cortemp HQ Inc., Palmetto, Florida). Maximum oxygen uptake (VO 2max ) was measured on the day before the run. The mean performance time for the run was 44.6 ± 6.6 minutes achieved under mild climatic conditions. No neurological impairment was observed. The mean maximum T co was 39.9 ± 0.5°C. On the basis of T co during the last 10 minutes of running, two T co profiles were identified: increased T co (T co increase > 0.5°C) and plateaued T co . Neither profile depended on initial, mid-run, or maximal T co , VO 2max , speed running, body surface area or body fat mass. Subjects who had a history of EHS exhibited different T co profiles at the end of an 8-km run. Laboratory studies will be necessary to identify the mechanisms underlying these profiles; future longitudinal studies can determine whether a T co increase >0.5°C during the last 10 minutes is a risk factor for EHS recurrence. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
Potassium-based sorbents from fly ash for high-temperature CO2 capture.
Sanna, Aimaro; Maroto-Valer, M Mercedes
2016-11-01
Potassium-fly ash (K-FA) sorbents were investigated for high-temperature CO 2 sorption. K-FAs were synthesised using coal fly ash as source of silica and aluminium. The synthesised materials were also mixed with Li 2 CO 3 and Ca(OH) 2 to evaluate their effect on CO 2 capture. Temperature strongly affected the performance of the K-FA sorbents, resulting in a CO 2 uptake of 1.45 mmol CO 2 /g sorbent for K-FA 1:1 at 700 °C. The CO 2 sorption was enhanced by the presence of Li 2 CO 3 (10 wt%), with the K-FA 1:1 capturing 2.38 mmol CO 2 /g sorbent at 700 °C in 5 min. This sorption was found to be similar to previously developed Li-Na-FA (2.54 mmol/g) and Li-FA (2.4 mmol/g) sorbents. The presence of 10 % Li 2 CO 3 also accelerated sorption and desorption. The results suggest that the increased uptake of CO 2 and faster reaction rates in presence of K-FA can be ascribed to the formation of K-Li eutectic phase, which favours the diffusion of potassium and CO 2 in the material matrix. The cyclic experiments showed that the K-FA materials maintained stable CO 2 uptake and reaction rates over 10 cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modak, Arindam; Bhaumik, Asim, E-mail: msab@iacs.res.in
2015-12-15
Microporous carbon having Brunauer-Emmett-Teller (BET) surface area of 2186 m{sup 2} g{sup −1} and micropore volume of 0.85 cm{sup 3} g{sup −1} has been synthesized via KOH induced high temperature carbonization of a non-conjugated hypercrosslinked organic polymer. Owing to the templating and activation by KOH, we have succeeded in making a microporous carbon from this porous polymer and the resultant carbon material showed high uptake for CO{sub 2} (7.6 mmol g{sup −1}) and CH{sub 4} (2.4 mmol g{sup −1}) at 1 atm, 273 K together with very good selectivity for the CO{sub 2}/N{sub 2} (30.2) separation. Furthermore, low pressure (1more » atm) H{sub 2} (2.6 wt%, 77 K) and water uptake (57.4 wt%, 298 K) ability of this polymer derived porous activated carbon is noteworthy. - Graphical abstract: Microporous carbon with BET surface area of 2186 m{sup 2} g{sup −1} has been synthesized via KOH activation of a porous organic polymer and it showed high uptake for CO{sub 2} (7.6 mmol g{sup −1}), CH{sub 4} (2.4 mmol g{sup −1}) and H{sub 2} (2.6 wt%) at 1 atm together with very good selectivity for CO{sub 2}. - Highlights: • Porous carbon from hypercrosslinked organic polymer. • KOH activated carbon with BET surface area 2186 m{sup 2} g{sup −1}. • High CO2 uptake (7.6 mmol g{sup −1}) and CO{sub 2}/N{sub 2} selectivity (30.2). • Porous carbon also showed high H{sub 2} (2.6 wt%) and H{sub 2}O (57.4 wt%) uptakes.« less
Zhang, Gaosheng; Liu, Huijuan; Qu, Jiuhui; Jefferson, William
2012-01-15
Arsenate retention, arsenite sorption and oxidation on the surfaces of Fe-Mn binary oxides may play an important role in the mobilization and transformation of arsenic, due to the common occurrence of these oxides in the environment. However, no sufficient information on the sorption behaviors of arsenic on Fe-Mn binary oxides is available. This study investigated the influences of Mn/Fe molar ratio, solution pH, coexisting calcium ions, and humic acids have on arsenic sorption by Fe-Mn binary oxides. To create Fe-Mn binary oxides, simultaneous oxidation and co-precipitation methods were employed. The Fe-Mn binary oxides exhibited a porous crystalline structure similar to 2-line ferrihydrite at Mn/Fe ratios 1:3 and below, whereas exhibited similar structures to δ-MnO(2) at higher ratios. The As(V) sorption maximum was observed at a Mn/Fe ratio of 1:6, but As(III) uptake maximum was at Mn/Fe ratio 1:3. However, As(III) adsorption capacity was much higher than that of As(V) at each Mn/Fe ratio. As(V) sorption was found to decrease with increasing pH, while As(III) sorption edge was different, depending on the content of MnO(2) in the binary oxides. The presence of Ca(2+) enhanced the As(V) uptake under alkaline pH, but did not significantly influence the As(III) sorption by 1:9 Fe-Mn binary oxide; whereas the presence of humic acid slightly reduced both As(V) and As(III) uptake. These results indicate that As(III) is more easily immobilized than As(V) in the environment, where Fe-Mn binary oxides are available as sorbents and they represent attractive adsorbents for both As(V) and As(III) removal from water and groundwater. Copyright © 2011 Elsevier Inc. All rights reserved.
Tian, Sicong; Jiang, Jianguo; Yan, Feng; Li, Kaimin; Chen, Xuejing
2015-06-16
Capturing anthropogenic CO2 in a cost-effective and highly efficient manner is one of the most challenging issues faced by scientists today. Herein, we report a novel structure-reforming approach to convert steel slag, a cheap, abundant, and nontoxic calcium-rich industrial waste, as the only feedstock into superior CaO-based, self-stabilizing CO2 sorbents. The CO2 capture capacity of all the steel slag-derived sorbents was improved more than 10-fold compared to the raw slag, with the maximum uptake of CO2 achieving at 0.50 gCO2 gsorbent(-1). Additionally, the initial steel slag-derived sorbent could retain 0.25 gCO2 gsorbent(-1), that is, a decay rate of only 12% over 30 carbonation-calcination cycles, the excellent self-stabilizing property allowed it to significantly outperform conventional CaO, and match with most of the existing synthetic CaO-based sorbents. A synergistic effect that facilitated CO2 capture by CaO-based sorbents was clearly recognized when Mg and Al, the most common elements in steel slag, coexisted with CaO in the forms of MgO and Al2O3, respectively. During the calcium looping process, MgO served as a well spacer to increase the porosity of sorbents together with Al2O3 serving as a durable stabilizer to coresist the sintering of CaCO3 grains at high temperatures.
Ibarra, Ilich A; Mace, Amber; Yang, Sihai; Sun, Junliang; Lee, Sukyung; Chang, Jong-San; Laaksonen, Aatto; Schröder, Martin; Zou, Xiaodong
2016-08-01
([Sc2(OH)2(BPTC)]) (H4BPTC = biphenyl-3,3',5,5'-tetracarboxylic acid), MFM-400 (MFM = Manchester Framework Material, previously designated NOTT), and ([Sc(OH)(TDA)]) (H2TDA = thiophene-2,5-dicarboxylic acid), MFM-401, both show selective and reversible capture of CO2. In particular, MFM-400 exhibits a reasonably high CO2 uptake at low pressures and competitive CO2/N2 selectivity coupled to a moderate isosteric heat of adsorption (Qst) for CO2 (29.5 kJ mol(-1)) at zero coverage, thus affording a facile uptake-release process. Grand canonical Monte Carlo (GCMC) and density functional theory (DFT) computational analyses of CO2 uptake in both materials confirmed preferential adsorption sites consistent with the higher CO2 uptake observed experimentally for MFM-400 over MFM-401 at low pressures. For MFM-400, the Sc-OH group participates in moderate interactions with CO2 (Qst = 33.5 kJ mol(-1)), and these are complemented by weak hydrogen-bonding interactions (O···H-C = 3.10-3.22 Å) from four surrounding aromatic -CH groups. In the case of MFM-401, adsorption is provided by cooperative interactions of CO2 with the Sc-OH group and one C-H group. The binding energies obtained by DFT analysis for the adsorption sites for both materials correlate well with the observed moderate isosteric heats of adsorption for CO2. GCMC simulations for both materials confirmed higher uptake of EtOH compared with nonpolar vapors of toluene and cyclohexane. This is in good correlation with the experimental data, and DFT analysis confirmed the formation of a strong hydrogen bond between EtOH and the hydrogen atom of the hydroxyl group of the MFM-400 and MFM-401 framework (FW) with H-OEtOH···H-OFW distances of 1.77 and 1.75 Å, respectively. In addition, the accessible regeneration of MFM-400 and MFM-401 and release of CO2 potentially provide minimal economic and environmental penalties.
The role of vegetation in the CO2 flux from a tropical urban neighbourhood
NASA Astrophysics Data System (ADS)
Velasco, E.; Roth, M.; Tan, S. H.; Quak, M.; Nabarro, S. D. A.; Norford, L.
2013-03-01
Urban surfaces are usually net sources of CO2. Vegetation can potentially have an important role in reducing the CO2 emitted by anthropogenic activities in cities, particularly when vegetation is extensive and/or evergreen. Negative daytime CO2 fluxes, for example have been observed during the growing season at suburban sites characterized by abundant vegetation and low population density. A direct and accurate estimation of carbon uptake by urban vegetation is difficult due to the particular characteristics of the urban ecosystem and high variability in tree distribution and species. Here, we investigate the role of urban vegetation in the CO2 flux from a residential neighbourhood in Singapore using two different approaches. CO2 fluxes measured directly by eddy covariance are compared with emissions estimated from emissions factors and activity data. The latter includes contributions from vehicular traffic, household combustion, soil respiration and human breathing. The difference between estimated emissions and measured fluxes should approximate the biogenic flux. In addition, a tree survey was conducted to estimate the annual CO2 sequestration using allometric equations and an alternative model of the metabolic theory of ecology for tropical forests. Palm trees, banana plants and turfgrass were also included in the survey with their annual CO2 uptake obtained from published growth rates. Both approaches agree within 2% and suggest that vegetation captures 8% of the total emitted CO2 in the residential neighbourhood studied. A net uptake of 1.4 ton km-2 day-1 (510 ton km-2 yr-1 ) was estimated from the difference between the daily CO2 uptake by photosynthesis (3.95 ton km-2 ) and release by respiration (2.55 ton km-2). The study shows the importance of urban vegetation at the local scale for climate change mitigation in the tropics.
Roos, Marjoleine M H; Wu, Gi-Mick; Miller, Patrick J O
2016-07-01
Respiration rate has been used as an indicator of metabolic rate and associated cost of transport (COT) of free-ranging cetaceans, discounting potential respiration-by-respiration variation in O2 uptake. To investigate the influence of respiration timing on O2 uptake, we developed a dynamic model of O2 exchange and storage. Individual respiration events were revealed from kinematic data from 10 adult Norwegian herring-feeding killer whales (Orcinus orca) recorded with high-resolution tags (DTAGs). We compared fixed O2 uptake per respiration models with O2 uptake per respiration estimated through a simple 'broken-stick' O2-uptake function, in which O2 uptake was assumed to be the maximum possible O2 uptake when stores are depleted or maximum total body O2 store minus existing O2 store when stores are close to saturated. In contrast to findings assuming fixed O2 uptake per respiration, uptake from the broken-stick model yielded a high correlation (r(2)>0.9) between O2 uptake and activity level. Moreover, we found that respiration intervals increased and became less variable at higher swimming speeds, possibly to increase O2 uptake efficiency per respiration. As found in previous studies, COT decreased monotonically versus speed using the fixed O2 uptake per respiration models. However, the broken-stick uptake model yielded a curvilinear COT curve with a clear minimum at typical swimming speeds of 1.7-2.4 m s(-1) Our results showed that respiration-by-respiration variation in O2 uptake is expected to be significant. And though O2 consumption measurements of COT for free-ranging cetaceans remain impractical, accounting for the influence of respiration timing on O2 uptake will lead to more consistent predictions of field metabolic rates than using respiration rate alone. © 2016. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Hauck, Judith; Köhler, Peter; Wolf-Gladrow, Dieter; Völker, Christoph
2016-02-01
Carbon dioxide removal (CDR) approaches are efforts to reduce the atmospheric CO2 concentration. Here we use a marine carbon cycle model to investigate the effects of one CDR technique: the open ocean dissolution of the iron-containing mineral olivine. We analyse the maximum CDR potential of an annual dissolution of 3 Pg olivine during the 21st century and focus on the role of the micro-nutrient iron for the biological carbon pump. Distributing the products of olivine dissolution (bicarbonate, silicic acid, iron) uniformly in the global surface ocean has a maximum CDR potential of 0.57 gC/g-olivine mainly due to the alkalinisation of the ocean, with a significant contribution from the fertilisation of phytoplankton with silicic acid and iron. The part of the CDR caused by ocean fertilisation is not permanent, while the CO2 sequestered by alkalinisation would be stored in the ocean as long as alkalinity is not removed from the system. For high CO2 emission scenarios the CDR potential due to the alkalinity input becomes more efficient over time with increasing ocean acidification. The alkalinity-induced CDR potential scales linearly with the amount of olivine, while the iron-induced CDR saturates at 113 PgC per century (on average ˜ 1.1 PgC yr-1) for an iron input rate of 2.3 Tg Fe yr-1 (1% of the iron contained in 3 Pg olivine). The additional iron-related CO2 uptake occurs in the Southern Ocean and in the iron-limited regions of the Pacific. Effects of this approach on surface ocean pH are small (\\lt 0.01).
Secondary Amine Functional Disiloxanes as CO2 Sorbents
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, MJ; Farnum, RL; Perry, RJ
2014-05-01
A series of two different types of secondary amine functional disiloxanes were prepared and screened as CO2 capture solvents. The first group of materials contained RNHCH2CH2CH2 side chains where the R groups were C1-6 alkyls. When R was a primary alkyl group, these materials exhibited CO2 uptake values slightly in excess of theoretical. As the alkyl groups were changed to more sterically hindered secondary or tertiary alkyls, the uptake was less efficient. Heats of absorption values for these materials were generally in the range 2000-2200 kJ/kg of CO2, values significantly lower than those obtained for primary amine functional disiloxanes (2500-2700more » kJ/kg of CO2). Also explored were a series of secondary amine functional disiloxanes with X-CH2CH2NH-CH2CH2CH2 - substituents. When X was an electron-donating group (RO-, R2N-, RO-CH2-) the CO2 uptake was also in excess of theoretical. Interestingly, these compounds were generally found to produce carbamate salts that were flowable, low-viscosity oils. Furthermore, the heat of absorption values determined for these materials were even lower. Most compounds gave values below 2000 kJ/kg of CO2. Overall the most promising results were obtained with a methoxyethylaminopropyl derivative, an ethoxyethylaminopropyl-containing material, and a dimethylaminoethylaminopropyl-based compound. These materials showed excellent CO2 uptake, had low heats of absorption, and produced carbamate salts that were flowable liquids even at room temperature.« less
[Primary study on photosynthetic characteristics of Dendrobium nobile].
Su, Wenhua; Zhang, Guangfei
2003-03-01
With LiCor-6400 Portable Photosynthesis System, carbon dioxide exchange pattern for leaves of Dendrobium nobile during 24 hours were studied in sunny day and rainy day, and the variation of CO2 exchange rate to light intensity was analysed. The results showed that in sunny day D. nobile absorbed CO2 in all day except at midday, at noon photorespiration took place. The CO2 exchange pattern was similar to Crassulacean Acid Metabolism(CAM). In rainy day CO2 uptake was in all day, at night CO2 uptake was monitored at 21:00, then CO2 released from 23:00 to dawn. Light saturation point was 1000 mumol/m2s. Over light saturation point photosynthesis, photoinhibition of photosynthesis will be induced by high-light. Exposed to high-light, the light saturation point and the CO2 uptake velocity would be decreased. With variation of environmental factors, photosynthetic pathway in D. nobile could change from CAM to C3 photosynthetic metabolism. It may be one of main reasons for D. nobile to adapt to the shade-requiring environment, the slow growth and rareness in nature.
The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump
NASA Astrophysics Data System (ADS)
Jin, X.; Gruber, N.; Frenzel, H.; Doney, S. C.; McWilliams, J. C.
2007-10-01
Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical biogeochemical ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC) removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability) tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.
The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump
NASA Astrophysics Data System (ADS)
Jin, X.; Gruber, N.; Frenzel, H.; Doney, S. C.; McWilliams, J. C.
2008-03-01
Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical/biogeochemical/ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC) removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, integrated over 10 years, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production and export. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability) tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.
NASA Astrophysics Data System (ADS)
Diaz-Pulido, Guillermo; Cornwall, Christopher; Gartrell, Patrick; Hurd, Catriona; Tran, Dien V.
2016-12-01
Macroalgae are generally used as indicators of coral reef status; thus, understanding the drivers and mechanisms leading to increased macroalgal abundance are of critical importance. Ocean acidification (OA) due to elevated carbon dioxide (CO2) concentrations has been suggested to stimulate macroalgal growth and abundance on reefs. However, little is known about the physiological mechanisms by which reef macroalgae use CO2 from the bulk seawater for photosynthesis [i.e., (1) direct uptake of bicarbonate (HCO3 -) and/or CO2 by means of carbon concentrating mechanisms (CCM) and (2) the diffusive uptake of CO2], which species could benefit from increased CO2 or which habitats may be more susceptible to acidification-induced algal proliferations. Here, we provide the first quantitative examination of CO2-use strategies in coral reef macroalgae and provide information on how the proportion of species and the proportional abundance of species utilising each of the carbon acquisition strategies varies across a gradient of terrestrial influence (from inshore to offshore reefs) in the Great Barrier Reef (GBR). Four macroalgal groups were identified based on their carbon uptake strategies: (1) CCM-only (HCO3 - only users); (2) CCM-HCO3 -/CO2 (active uptake HCO3 - and/or CO2 use); (3) Non-CCM species (those relying on diffusive CO2 uptake); and (4) Calcifiers. δ13C values of macroalgae, confirmed by pH drift assays, show that diffusive CO2 use is more prevalent in deeper waters, possibly due to low light availability that limits activity of CCMs. Inshore shallow reefs had a higher proportion of CCM-only species, while reefs further away from terrestrial influence and exposed to better water quality had a higher number of non-CCM species than inshore and mid-shelf reefs. As non-CCM macroalgae are more responsive to increased seawater CO2 and OA, reef slopes of the outer reefs are probably the habitats most vulnerable to the impacts of OA. Our results suggest a potentially important role of carbon physiology in structuring macroalgal communities in the GBR.
Buckley, Thomas N; Vice, Heather; Adams, Mark A
2017-12-01
The Kok effect - an abrupt decline in quantum yield (QY) of net CO 2 assimilation at low photosynthetic photon flux density (PPFD) - is widely used to estimate respiration in the light (R), which assumes the effect is caused by light suppression of R. A recent report suggested much of the Kok effect can be explained by declining chloroplastic CO 2 concentration (c c ) at low PPFD. Several predictions arise from the hypothesis that the Kok effect is caused by declining c c , and we tested these predictions in Vicia faba. We measured CO 2 exchange at low PPFD, in 2% and 21% oxygen, in developing and mature leaves, which differed greatly in R in darkness. Our results contradicted each of the predictions based on the c c effect: QY exceeded the theoretical maximum value for photosynthetic CO 2 uptake; QY was larger in 21% than 2% oxygen; and the change in QY at the Kok effect breakpoint was unaffected by oxygen. Our results strongly suggest the Kok effect arises largely from a progressive decline in R with PPFD that includes both oxygen-sensitive and -insensitive components. We suggest an improved Kok method that accounts for high c c at low PPFD. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Response of CO and H2 uptake to extremes of water stress in saline and non-saline soils
NASA Astrophysics Data System (ADS)
King, G.
2017-12-01
Neither carbon monoxide (CO) nor hydrogen (H2) have direct impacts on radiative forcing, but both play important roles in tropospheric chemistry. Soils affect both the fate and significance of atmospheric CO and H2 by acting as strong global gas sinks ( 15% and >75 %, respectively), but much remains unknown about the microbiology of these gases, including responses to key environmental drivers. The role of water availability, measured as water potential, has been addressed to a limited extent by earlier studies with results suggesting that CO and H2 uptake are strongly limited by water stress. However recent results indicate a much greater tolerance of water stress than previously suspected. Ex situ assays have shown that non-saline playa soils from the Alvord Basin (Oregon, USA) consumed atmospheric and exogenous hydrogen and CO under conditions of severe water stress. CO uptake occurred at water potentials < -30 MPa, which are far below values considered optimal for terrestrial bacterial growth. Surface soils that had been exposed to water potentials as low as -300 MPa also oxidized CO and H2 after brief equilibration at higher potentials (less water stress), indicating remarkable tolerance of desiccating conditions. Tolerance to water stress for CO and H2 uptake was also observed for soils from a montane rainforest (Hawai`i, USA). However, unlike playa soils rainforest soils seldom experience extended drought that would select for desiccation tolerance. While CO uptake by forest soils was more sensitive to water stress (limits -10MPa) than in playa soils, H2 uptake was observed at -90 MPa to -100 MPa. Tolerance at these levels might be due to the formation of intracellular water that limits the local effects of stress. Comparisons of water stress responses between saline and non-saline soils further suggested that communities of CO- and H2-oxidizing were generally robust with respect to stresses resulting from solute and matric effects. Collectively the results indicate that models of global CO and H2 dynamics might be improved by incorporating responses to soil water stress that could be estimated using relative humidity regimes calibrated for different soil types and systems. Incorporating water stress responses into models offers a means for assessing potential climate change impacts on two important trace gases.
NASA Astrophysics Data System (ADS)
Eder, Lucia Muriel; Weber, Enrico; Schrumpf, Marion; Zaehle, Sönke
2017-04-01
The response of plant growth to elevated concentrations of CO2 (eCO2) is often constrained by plant nitrogen (N) uptake. To overcome potential N limitation, plants may invest photosynthetically fixed carbon (C) into N acquiring strategies, including fine root biomass, root exudation, or C allocation to mycorrhizal fungi. In turn, these strategies may affect the decomposition of soil organic matter, leading to uncertainties in net effects of eCO2 on C storage. To gain more insight into these plant-soil C-N-interactions, we combined C and N stable isotope labeling in a mesocosm experiment. Saplings of Fagus sylvatica L. were exposed to a 13CO2 enriched atmosphere at near ambient (380 ppm) or elevated (550 ppm) CO2 concentrations for four months of the vegetation period in 2016. Aboveground and belowground net CO2 fluxes were measured separately and the 13C label enabled partitioning of total soil CO2 efflux into old, soil derived and new, plant-derived C. We used ingrowth cores to assess effects of eCO2on belowground C allocation and plant N uptake in more detail and in particular we evaluated the relative importance of ectomycorrhizal associations. In the soil of each sapling, ingrowth cores with different mesh sizes allowed fine roots or only mycorrhizal hyphae to penetrate. In one type of ingrowth core each, we incorporated fine root litter that was enriched in 15N. Additionally, total N uptake was estimated by using 15N enriched saplings and unlabeled control plants. We found that eCO2 increased aboveground net CO2 exchange rates by 19% and total soil respiration by 11%. The eCO2 effect for GPP and also for NPP was positive (+23% and +11%, respectively). By combining gaseous C fluxes with data on new and old C stocks in bulk soil and plants through destructive harvesting in late autumn 2016, we will be able to infer net effects of eCO2 on the fate of C in these mesocosms. Biomass allocation patterns can reveal physiological responses to high C availability under potentially constrained N availability. Together with data on biomass production within the ingrowth cores these results elucidate mechanisms affecting soil C storage and plant N uptake under eCO2.
Głowacka, Katarzyna; Jørgensen, Uffe; Kjeldsen, Jens B; Kørup, Kirsten; Spitz, Idan; Sacks, Erik J; Long, Stephen P
2015-05-01
A clone of the hybrid perennial C4 grass Miscanthus × giganteus (Mxg) is known for achieving exceptionally high rates of leaf CO2 uptake during chilling. This is a requisite of success in the early spring, as is the ability of the leaves to survive occasional frosts. The aim of this study was to search for genotypes with greater potential than Mxg for photosynthesis and frost survival under these conditions. A total of 864 accessions representing 164 local populations of M. sacchariflorus (Msa), M. sinensis (Msi) and M. tinctorius (Mti) collected across Japan were studied. Accessions whose leaves survived a natural late frost in the field were screened for high maximum photosystem II efficiency (Fv/Fm) following chilling weather, as an indicator of their capacity for light-limited photosynthesis. Those showing the highest Fv/Fm were transferred to a high-light-controlled environment and maintained at chilling temperatures, where they were further screened for their capacities for high-light-limited and light-saturated leaf uptake of CO2 (ΦCO2,max and Asat, respectively). For the first time, relatives of Mxg with significantly superior capacities for photosynthesis at chilling temperatures were identified. Msa accession '73/2' developed leaves in the spring that survived night-time frost, and during growth under chilling maintained a statistically significant 79 % higher ΦCO2,max, as a measure of light-limited photosynthesis, and a 70 % higher Asat, as a measure of light-saturated photosynthesis. A second Msa accession, '73/3' also showed significantly higher rates of leaf uptake of CO2. As remarkable as Mxg has proved in its chilling tolerance of C4 photosynthesis, this study shows that there is still value and potential in searching for yet more superior tolerance. Msa accession '73/2' shows rates of light-limited and light-saturated photosynthesis at chilling temperatures that are comparable with those of the most cold-tolerant C3 species. This adds further proof to the thesis that C4 photosynthesis is not inherently limited to warm climates. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lateral Flow of Carbon From U.S. Agricultural Lands: Carbon Uptake, Consumption, and Respiration
NASA Astrophysics Data System (ADS)
Sabesan, A.; West, T. O.; Roddy, A. B.; Marland, G.; Bhaduri, B. L.
2005-12-01
Net carbon exchange between biomass and the atmosphere can be estimated and modeled on a regional basis to understand the effects of land-use change on the carbon cycle and on net CO2 emissions to the atmosphere. However, within ecosystems that are managed to produce commodities for consumption (i.e., agriculture and forest lands), carbon can be transported laterally when crops or timber are harvested, in addition to being transported vertically between plants and the atmosphere. The spatial and temporal domain over which carbon uptake, transport, and release occur has implications for regional carbon studies. For example, carbon may be taken up by crops in one region, but released through human consumption in another region. Estimates of lateral transport and release of carbon may therefore contribute another dimension to bottom-up carbon modeling, and may also be used as input for comparison to top-down atmospheric modeling. Our research to date has focused on the uptake, consumption, and respiration of CO2 associated with agricultural crops and related food commodities. We estimate a net uptake of 495 Tg C on U.S. croplands in 2000. This uptake occurs primarily in the Midwestern U.S. Human respiration of CO2 contributed about 31 Tg C and livestock emitted about 77 Tg C as CO2 and CH4 in 2000. Estimates of CO2 from food wastes in municipal landfills and from human excrement in wastewater treatment plants are currently being developed. The spatial distribution of CO2 uptake and release are mapped, respectively, at the county level and at 1km resolution that is commensurate with Landscan USA population data.
Initial Net CO2 Uptake Responses and Root Growth for a CAM Community Placed in a Closed Environment
NOBEL, PARK S.; BOBICH, EDWARD G.
2002-01-01
To help understand carbon balance between shoots and developing roots, 41 bare‐root crassulacean acid metabolism (CAM) plants native to the Sonoran Desert were studied in a glass‐panelled sealable room at day/night air temperatures of 25/15 °C. Net CO2 uptake by the community of Agave schottii, Carnegia gigantea, Cylindropuntia versicolor, Ferocactus wislizenii and Opuntia engelmannii occurred 3 weeks after watering. At 4 weeks, the net CO2 uptake rate measured for south‐east‐facing younger parts of the shoots averaged 1·94 µmol m–2 s–1 at night, considerably higher than the community‐level nocturnal net CO2 uptake averaged over the total shoot surface, primarily reflecting the influences of surface orientation on radiation interception (predicted net CO2 uptake is twice as high for south‐east‐facing surfaces compared with all compass directions). Estimated growth plus maintenance respiration of the roots averaged 0·10 µmol m–2 s–1 over the 13‐week period, when the community had a net carbon gain from the atmosphere of 4 mol C while the structural C incorporated into the roots was 23 mol. Thus, these five CAM species diverted all net C uptake over the 13‐week period plus some existing shoot C to newly developing roots. Only after sufficient roots develop to support shoot water and nutrient requirements will the plant community have net above‐ground biomass gains. PMID:12466099
Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes
NASA Astrophysics Data System (ADS)
Morales-Williams, Ana M.; Wanamaker, Alan D., Jr.; Downing, John A.
2017-06-01
Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3-) across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs). To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC) and phytoplankton particulate organic carbon (δ13Cphyto) in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass-balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3- during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3- uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.
Zhu, Xiancan; Song, Fengbin; Liu, Shengqun; Liu, Fulai
2016-02-01
Effects of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis on plant growth, carbon (C) and nitrogen (N) accumulation, and partitioning was investigated in Triticum aestivum L. plants grown under elevated CO2 in a pot experiment. Wheat plants inoculated or not inoculated with the AM fungus were grown in two glasshouse cells with different CO2 concentrations (400 and 700 ppm) for 10 weeks. A (15)N isotope labeling technique was used to trace plant N uptake. Results showed that elevated CO2 increased AM fungal colonization. Under CO2 elevation, AM plants had higher C concentration and higher plant biomass than the non-AM plants. CO2 elevation did not affect C and N partitioning in plant organs, while AM symbiosis increased C and N allocation into the roots. In addition, plant C and N accumulation, (15)N recovery rate, and N use efficiency (NUE) were significantly higher in AM plants than in non-AM controls under CO2 enrichment. It is concluded that AM symbiosis favors C and N partitioning in roots, increases C accumulation and N uptake, and leads to greater NUE in wheat plants grown at elevated CO2.
Walker, Anthony P.; Zaehle, Sönke; Medlyn, Belinda E.; ...
2015-04-27
Large uncertainty exists in model projections of the land carbon (C) sink response to increasing atmospheric CO 2. Free-Air CO 2 Enrichment (FACE) experiments lasting a decade or more have investigated ecosystem responses to a step change in atmospheric CO 2 concentration. To interpret FACE results in the context of gradual increases in atmospheric CO 2 over decades to centuries, we used a suite of seven models to simulate the Duke and Oak Ridge FACE experiments extended for 300 years of CO 2 enrichment. We also determine key modeling assumptions that drive divergent projections of terrestrial C uptake and evaluatemore » whether these assumptions can be constrained by experimental evidence. All models simulated increased terrestrial C pools resulting from CO 2 enrichment, though there was substantial variability in quasi-equilibrium C sequestration and rates of change. In two of two models that assume that plant nitrogen (N) uptake is solely a function of soil N supply, the net primary production response to elevated CO 2 became progressively N limited. In four of five models that assume that N uptake is a function of both soil N supply and plant N demand, elevated CO 2 led to reduced ecosystem N losses and thus progressively relaxed nitrogen limitation. Many allocation assumptions resulted in increased wood allocation relative to leaves and roots which reduced the vegetation turnover rate and increased C sequestration. Additionally, self-thinning assumptions had a substantial impact on C sequestration in two models. As a result, accurate representation of N process dynamics (in particular N uptake), allocation, and forest self-thinning is key to minimizing uncertainty in projections of future C sequestration in response to elevated atmospheric CO 2.« less
Simulated Impact of Glacial Runoff on CO2 Uptake in the Gulf of Alaska
NASA Astrophysics Data System (ADS)
Pilcher, Darren J.; Siedlecki, Samantha A.; Hermann, Albert J.; Coyle, Kenneth O.; Mathis, Jeremy T.; Evans, Wiley
2018-01-01
The Gulf of Alaska (GOA) receives substantial summer freshwater runoff from glacial meltwater. The alkalinity of this runoff is highly dependent on the glacial source and can modify the coastal carbon cycle. We use a regional ocean biogeochemical model to simulate CO2 uptake in the GOA under different alkalinity-loading scenarios. The GOA is identified as a current net sink of carbon, though low-alkalinity tidewater glacial runoff suppresses summer coastal carbon uptake. Our model shows that increasing the alkalinity generates an increase in annual CO2 uptake of 1.9-2.7 TgC/yr. This transition is comparable to a projected change in glacial runoff composition (i.e., from tidewater to land-terminating) due to continued climate warming. Our results demonstrate an important local carbon-climate feedback that can significantly increase coastal carbon uptake via enhanced air-sea exchange, with potential implications to the coastal ecosystems in glaciated areas around the world.
Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle.
Belshe, E F; Schuur, E A G; Bolker, B M
2013-10-01
Are tundra ecosystems currently a carbon source or sink? What is the future trajectory of tundra carbon fluxes in response to climate change? These questions are of global importance because of the vast quantities of organic carbon stored in permafrost soils. In this meta-analysis, we compile 40 years of CO2 flux observations from 54 studies spanning 32 sites across northern high latitudes. Using time-series analysis, we investigated if seasonal or annual CO2 fluxes have changed over time, and whether spatial differences in mean annual temperature could help explain temporal changes in CO2 flux. Growing season net CO2 uptake has definitely increased since the 1990s; the data also suggest (albeit less definitively) an increase in winter CO2 emissions, especially in the last decade. In spite of the uncertainty in the winter trend, we estimate that tundra sites were annual CO2 sources from the mid-1980s until the 2000s, and data from the last 7 years show that tundra continue to emit CO2 annually. CO2 emissions exceed CO2 uptake across the range of temperatures that occur in the tundra biome. Taken together, these data suggest that despite increases in growing season uptake, tundra ecosystems are currently CO2 sources on an annual basis. © 2013 John Wiley & Sons Ltd/CNRS.
CaO-Based CO2 Sorbents Effectively Stabilized by Metal Oxides.
Naeem, Muhammad Awais; Armutlulu, Andac; Imtiaz, Qasim; Müller, Christoph R
2017-11-17
Calcium looping (i.e., CO 2 capture by CaO) is a promising second-generation CO 2 capture technology. CaO, derived from naturally occurring limestone, offers an inexpensive solution, but due to the harsh operating conditions of the process, limestone-derived sorbents undergo a rapid capacity decay induced by the sintering of CaCO 3 . Here, we report a Pechini method to synthesize cyclically stable, CaO-based CO 2 sorbents with a high CO 2 uptake capacity. The sorbents synthesized feature compositional homogeneity in combination with a nanostructured and highly porous morphology. The presence of a single (Al 2 O 3 or Y 2 O 3 ) or bimetal oxide (Al 2 O 3 -Y 2 O 3 ) provides cyclic stability, except for MgO which undergoes a significant increase in its particle size with the cycle number. We also demonstrate a direct relationship between the CO 2 uptake and the morphology of the synthesized sorbents. After 30 cycles of calcination and carbonation, the best performing sorbent, containing an equimolar mixture of Al 2 O 3 and Y 2 O 3 , exhibits a CO 2 uptake capacity of 8.7 mmol CO 2 g -1 sorbent, which is approximately 360 % higher than that of the reference limestone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Long, An; Zhang, Jiang; Yang, Lin-Tong; Ye, Xin; Lai, Ning-Wei; Tan, Ling-Ling; Lin, Dan; Chen, Li-Song
2017-01-01
Seedlings of “Xuegan” (Citrus sinensis) and “Sour pummelo” (Citrus grandis) were irrigated daily with a nutrient solution at a pH of 2.5, 3, 4, 5, or 6 for 9 months. Thereafter, the following responses were investigated: seedling growth; root, stem, and leaf concentrations of nutrient elements; leaf gas exchange, pigment concentration, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and chlorophyll a fluorescence; relative water content, total soluble protein level, H2O2 production and electrolyte leakage in roots and leaves. This was done (a) to determine how low pH affects photosynthesis, related physiological parameters, and mineral nutrient profiles; and (b) to understand the mechanisms by which low pH may cause a decrease in leaf CO2 assimilation. The pH 2.5 greatly inhibited seedling growth, and many physiological parameters were altered only at pH 2.5; pH 3 slightly inhibited seedling growth; pH 4 had almost no influence on seedling growth; and seedling growth and many physiological parameters reached their maximum at pH 5. No seedlings died at any given pH. These results demonstrate that citrus survival is insensitive to low pH. H+-toxicity may directly damage citrus roots, thus affecting the uptake of mineral nutrients and water. H+-toxicity and a decreased uptake of nutrients (i.e., nitrogen, phosphorus, potassium, calcium, and magnesium) and water were likely responsible for the low pH-induced inhibition of growth. Leaf CO2 assimilation was inhibited only at pH 2.5. The combinations of an impaired photosynthetic electron transport chain, increased production of reactive oxygen species, and decreased uptake of nutrients and water might account for the pH 2.5-induced decrease in CO2 assimilation. Mottled bleached leaves only occurred in the pH 2.5-treated C. grandis seedlings. Furthermore, the pH 2.5-induced alterations of leaf CO2 assimilation, water-use efficiency, chlorophylls, polyphasic chlorophyll a fluorescence (OJIP) transients and many fluorescence parameters, root and leaf total soluble proteins, H2O2 production, and electrolyte leakage were all slightly greater in C. grandis than in C. sinensis seedlings. Hence, C. sinensis was slightly more tolerant to low pH than C. grandis. In conclusion, our findings provide novel insight into the causes of low pH-induced inhibition of seedling growth and leaf CO2 assimilation. PMID:28270819
Long, An; Zhang, Jiang; Yang, Lin-Tong; Ye, Xin; Lai, Ning-Wei; Tan, Ling-Ling; Lin, Dan; Chen, Li-Song
2017-01-01
Seedlings of "Xuegan" ( Citrus sinensis ) and "Sour pummelo" ( Citrus grandis ) were irrigated daily with a nutrient solution at a pH of 2.5, 3, 4, 5, or 6 for 9 months. Thereafter, the following responses were investigated: seedling growth; root, stem, and leaf concentrations of nutrient elements; leaf gas exchange, pigment concentration, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and chlorophyll a fluorescence; relative water content, total soluble protein level, H 2 O 2 production and electrolyte leakage in roots and leaves. This was done ( a ) to determine how low pH affects photosynthesis, related physiological parameters, and mineral nutrient profiles; and ( b ) to understand the mechanisms by which low pH may cause a decrease in leaf CO 2 assimilation. The pH 2.5 greatly inhibited seedling growth, and many physiological parameters were altered only at pH 2.5; pH 3 slightly inhibited seedling growth; pH 4 had almost no influence on seedling growth; and seedling growth and many physiological parameters reached their maximum at pH 5. No seedlings died at any given pH. These results demonstrate that citrus survival is insensitive to low pH. H + -toxicity may directly damage citrus roots, thus affecting the uptake of mineral nutrients and water. H + -toxicity and a decreased uptake of nutrients (i.e., nitrogen, phosphorus, potassium, calcium, and magnesium) and water were likely responsible for the low pH-induced inhibition of growth. Leaf CO 2 assimilation was inhibited only at pH 2.5. The combinations of an impaired photosynthetic electron transport chain, increased production of reactive oxygen species, and decreased uptake of nutrients and water might account for the pH 2.5-induced decrease in CO 2 assimilation. Mottled bleached leaves only occurred in the pH 2.5-treated C. grandis seedlings. Furthermore, the pH 2.5-induced alterations of leaf CO 2 assimilation, water-use efficiency, chlorophylls, polyphasic chlorophyll a fluorescence (OJIP) transients and many fluorescence parameters, root and leaf total soluble proteins, H 2 O 2 production, and electrolyte leakage were all slightly greater in C. grandis than in C. sinensis seedlings. Hence, C. sinensis was slightly more tolerant to low pH than C. grandis . In conclusion, our findings provide novel insight into the causes of low pH-induced inhibition of seedling growth and leaf CO 2 assimilation.
Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest
Shawn Urbanski; C. Barford; S. Wofsy; C. Kucharik; E. Pyle; J. Budney; K. McKain; D. Fitzjarrald; M. Czikowsky; J. W. Munger
2007-01-01
We analyzed 13 years (1992-2004) of CO2 flux data, biometry, and meteorology from a mixed deciduous forest in central Massachusetts. Annual net uptake of CO2 ranged from 1.0 to 4.7 Mg-C ha-1yr-1, with an average of 2.5 Mg-C ha-1yr-1. Uptake rates increased systematically, nearly doubling over the period despite forest age of 75–110 years; there were...
Fernández, Pamela A; Hurd, Catriona L; Roleda, Michael Y
2014-12-01
Macrocystis pyrifera is a widely distributed, highly productive, seaweed. It is known to use bicarbonate (HCO3 (-) ) from seawater in photosynthesis and the main mechanism of utilization is attributed to the external catalyzed dehydration of HCO3 (-) by the surface-bound enzyme carbonic anhydrase (CAext ). Here, we examined other putative HCO3 (-) uptake mechanisms in M. pyrifera under pHT 9.00 (HCO3 (-) : CO2 = 940:1) and pHT 7.65 (HCO3 (-) : CO2 = 51:1). Rates of photosynthesis, and internal CA (CAint ) and CAext activity were measured following the application of AZ which inhibits CAext , and DIDS which inhibits a different HCO3 (-) uptake system, via an anion exchange (AE) protein. We found that the main mechanism of HCO3 (-) uptake by M. pyrifera is via an AE protein, regardless of the HCO3 (-) : CO2 ratio, with CAext making little contribution. Inhibiting the AE protein led to a 55%-65% decrease in photosynthetic rates. Inhibiting both the AE protein and CAext at pHT 9.00 led to 80%-100% inhibition of photosynthesis, whereas at pHT 7.65, passive CO2 diffusion supported 33% of photosynthesis. CAint was active at pHT 7.65 and 9.00, and activity was always higher than CAext , because of its role in dehydrating HCO3 (-) to supply CO2 to RuBisCO. Interestingly, the main mechanism of HCO3 (-) uptake in M. pyrifera was different than that in other Laminariales studied (CAext -catalyzed reaction) and we suggest that species-specific knowledge of carbon uptake mechanisms is required in order to elucidate how seaweeds might respond to future changes in HCO3 (-) :CO2 due to ocean acidification. © 2014 Phycological Society of America.
Rain events decrease boreal peatland net CO2 uptake through reduced light availability.
Nijp, Jelmer J; Limpens, Juul; Metselaar, Klaas; Peichl, Matthias; Nilsson, Mats B; van der Zee, Sjoerd E A T M; Berendse, Frank
2015-06-01
Boreal peatlands store large amounts of carbon, reflecting their important role in the global carbon cycle. The short-term exchange and the long-term storage of atmospheric carbon dioxide (CO2 ) in these ecosystems are closely associated with the permanently wet surface conditions and are susceptible to drought. Especially, the single most important peat forming plant genus, Sphagnum, depends heavily on surface wetness for its primary production. Changes in rainfall patterns are expected to affect surface wetness, but how this transient rewetting affects net ecosystem exchange of CO2 (NEE) remains unknown. This study explores how the timing and characteristics of rain events during photosynthetic active periods, that is daytime, affect peatland NEE and whether rain event associated changes in environmental conditions modify this response (e.g. water table, radiation, vapour pressure deficit, temperature). We analysed an 11-year time series of half-hourly eddy covariance and meteorological measurements from Degerö Stormyr, a boreal peatland in northern Sweden. Our results show that daytime rain events systematically decreased the sink strength of peatlands for atmospheric CO2 . The decrease was best explained by rain associated reduction in light, rather than by rain characteristics or drought length. An average daytime growing season rain event reduced net ecosystem CO2 uptake by 0.23-0.54 gC m(-2) . On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that reduced light availability associated with rain events is more important in explaining the NEE response to rain events than rain characteristics and changes in water availability. This suggests that peatland CO2 uptake is highly sensitive to changes in cloud cover formation and to altered rainfall regimes, a process hitherto largely ignored. © 2015 John Wiley & Sons Ltd.
Carbon dioxide exchange in compact and semi-open sorghum inflorescences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastin, J.D.; Sullivan, C.Y.
Carbon dioxide exchange rates were monitored in light and dark in compact and semi-open heads of sorghum (Sorghum bicolor (L.) Moench). Developmental stages ranged from bottom to hard dough in the grain. Highest CO/sub 2/ uptake in both head types occurred at the bloom stage when net uptake rates for semi-open and compact type heads were 3.9 and 1.2 mg CO/sub 2/ g dry wt/sup -1/ hr/sup -1/, respectively. Beginning at the milk stage, a net CO/sub 2/ evolution on the order of 1 to 1.4 mg g dry wt/sup -1/ hr/sup -1/ occurred in compact heads in the light.more » The semi-open head type continued a small net CO/sub 2/ uptake in the light through the milk and soft dough stages. Both head types evolved CO/sub 2/ at hard dough stage. Dark respiration was similar in both head types and decreased from about 4 to 1 mg CO/sub 2/ g dry wt/sup -1/ hr/sup -1/ from bloom to hard dough. 16 references, 1 figure.« less
Lan, Jianhui; Cao, Dapeng; Wang, Wenchuan; Smit, Berend
2010-07-27
We use the multiscale simulation approach, which combines the first-principles calculations and grand canonical Monte Carlo simulations, to comprehensively study the doping of a series of alkali (Li, Na, and K), alkaline-earth (Be, Mg, and Ca), and transition (Sc and Ti) metals in nanoporous covalent organic frameworks (COFs), and the effects of the doped metals on CO2 capture. The results indicate that, among all the metals studied, Li, Sc, and Ti can bind with COFs stably, while Be, Mg, and Ca cannot, because the binding of Be, Mg, and Ca with COFs is very weak. Furthermore, Li, Sc, and Ti can improve the uptakes of CO2 in COFs significantly. However, the binding energy of a CO2 molecule with Sc and Ti exceeds the lower limit of chemisorptions and, thus, suffers from the difficulty of desorption. By the comparative studies above, it is found that Li is the best surface modifier of COFs for CO2 capture among all the metals studied. Therefore, we further investigate the uptakes of CO2 in the Li-doped COFs. Our simulation results show that at 298 K and 1 bar, the excess CO2 uptakes of the Li-doped COF-102 and COF-105 reach 409 and 344 mg/g, which are about eight and four times those in the nondoped ones, respectively. As the pressure increases to 40 bar, the CO2 uptakes of the Li-doped COF-102 and COF-105 reach 1349 and 2266 mg/g at 298 K, respectively, which are among the reported highest scores to date. In summary, doping of metals in porous COFs provides an efficient approach for enhancing CO2 capture.
NASA Astrophysics Data System (ADS)
Emmel, C.; Bowler, R.; Black, T. A.; Christen, A.
2012-12-01
Disturbance of forests caused by insect attacks, such as the mountain pine beetle (Dendroctonus ponderosae, MPB) outbreak in Western North America may lead to a conversion of affected forests from a net carbon dioxide (CO2) sink to a net source. Informed management of forests can help reduce the associated CO2 emissions. The objective of this study is to determine the vertical distribution of sources and sinks of CO2 in an open MPB attacked lodgepole pine (Pinus contorta var. latifolia) canopy (stand height h = 17 m, leaf areas index LAI = 0.55 m2 m-2) in the Interior of British Columbia. The stand has a considerable living secondary structure with a maximum height of 12 m while 99% of the mature pine trees composing the upper canopy are dead. We compared two different methods to accomplish the goal of determining the vertical divergence of the CO2 flux and relate it to the different vegetation layers. Data from a field campaign in July / August 2010 were used. The first method employs eddy-covariance (EC) measurements to determine the vertical source/sink distribution within and above the canopy. The instrumentation included open-path infrared gas analyzers and 3D ultrasonic anemometers. With simultaneous EC measurements at seven heights (z/h = 0.05, 0.15, 0.40, 0.60, 0.85, 1.05 and 1.30) we determined the CO2 uptake or release of the layers between the measurement levels by calculating the flux density divergence and the CO2 storage change in the air of each layer. The second method uses an ecophysiological approach developing a canopy CO2 exchange model. CO2 exchange was directly measured on tree boles and the soil using a portable non-steady-state CO2 chamber system and on leaves using a LI-COR LI-6400 photosynthesis system. Measurements were made during different times of the day and under varying temperature and moisture conditions over the course of the campaign. Airborne light detection and ranging (LIDAR) measurements, and vertical, horizontal and species-specific LAI measurements provided necessary information about the stand structure. We combined this information with measurements of photosynthetically active radiation (PAR) at 6 levels, soil moisture and temperature measurements to model the vertical CO2 source/sink distribution over the course of the campaign. In earlier research, it was found that this stand made the transition from a carbon source to a sink faster than expected (Brown et al., 2010, Agric For Meteorol 150, 254-264). The flux profile showed substantial daytime CO2 uptake below z/h = 0.5, while in the upper canopy there was respiratory CO2 loss. PAR penetrates deep into the canopy with on average almost 60% reaching the ground level (z/h = 0.05). Our study demonstrates that the secondary structure is responsible for significant CO2 uptake, while the understory together with the soil and the dead lodgepole pine trees in the upper canopy are weak CO2 sources, resulting in the stand being a carbon sink. We will discuss the strengths and weaknesses of the two proposed methods with regard to technical challenges and uncertainties, and how the two methods compared overall.
Surface modification of a low cost bentonite for post-combustion CO2 capture
NASA Astrophysics Data System (ADS)
Chen, Chao; Park, Dong-Wha; Ahn, Wha-Seung
2013-10-01
A low cost bentonite was modified with PEI (polyethylenimine) through a physical impregnation method. Bentonite in its natural state and after amine modification were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy, X-ray diffraction, N2 adsorption-desorption isotherms, and investigated for CO2 capture using a thermogravimetric analysis unit connected to a flow panel. The effect of adsorption temperature, PEI loading and CO2 partial pressure on the CO2 capture performance of the PEI-modified bentonite was examined. A cyclic CO2 adsorption-desorption test was also carried out to assess the stability of PEI-modified bentonite as a CO2 adsorbent. Bentonite in its natural state showed negligible CO2 uptake. After amine modification, the CO2 uptake increased significantly due to CO2 capture by amine species introduced via chemisorption. The PEI-modified bentonites showed high CO2 capture selectivity over N2, and exhibited excellent stability in cyclic CO2 adsorption-desorption runs.
Ultrafast and Stable CO2 Capture Using Alkali Metal Salt-Promoted MgO-CaCO3 Sorbents.
Cui, Hongjie; Zhang, Qiming; Hu, Yuanwu; Peng, Chong; Fang, Xiangchen; Cheng, Zhenmin; Galvita, Vladimir V; Zhou, Zhiming
2018-06-20
As a potential candidate for precombustion CO 2 capture at intermediate temperatures (200-400 °C), MgO-based sorbents usually suffer from low kinetics and poor cyclic stability. Herein, a general and facile approach is proposed for the fabrication of high-performance MgO-based sorbents via incorporation of CaCO 3 into MgO followed by deposition of a mixed alkali metal salt (AMS). The AMS-promoted MgO-CaCO 3 sorbents are capable of adsorbing CO 2 at an ultrafast rate, high capacity, and good stability. The CO 2 uptake of sorbent can reach as high as above 0.5 g CO 2 g sorbent -1 after only 5 min of sorption at 350 °C, accounting for vast majority of the total uptake. In addition, the sorbents are very stable even under severe but more realistic conditions (desorption in CO 2 at 500 °C), where the CO 2 uptake of the best sorbent is stabilized at 0.58 g CO 2 g sorbent -1 in 20 consecutive cycles. The excellent CO 2 capture performance of the sorbent is mainly due to the promoting effect of molten AMS, the rapid formation of CaMg(CO 3 ) 2 , and the plate-like structure of sorbent. The exceptional ultrafast rate and the good stability of the AMS-promoted MgO-CaCO 3 sorbents promise high potential for practical applications, such as precombustion CO 2 capture from integrated gasification combined cycle plants and sorption-enhanced water gas shift process.
Abdelmoaty, Yomna H; Tessema, Tsemre-Dingel; Choudhury, Fatema Akthar; El-Kadri, Oussama M; El-Kaderi, Hani M
2018-05-09
The use of fossil fuels for energy production is accompanied by carbon dioxide release into the environment causing catastrophic climate changes. Meanwhile, replacing fossil fuels with carbon-free nuclear energy has the potential to release radioactive iodine during nuclear waste processing and in case of a nuclear accident. Therefore, developing efficient adsorbents for carbon dioxide and iodine capture is of great importance. Two nitrogen-rich porous polymers (NRPPs) derived from 4-bis-(2,4-diamino-1,3,5-triazine)-benzene building block were prepared and tested for use in CO 2 and I 2 capture. Copolymerization of 1,4-bis-(2,4-diamino-1,3,5-triazine)-benzene with terephthalaldehyde and 1,3,5-tris(4-formylphenyl)benzene in dimethyl sulfoxide at 180 °C afforded highly porous NRPP-1 (SA BET = 1579 m 2 g -1 ) and NRPP-2 (SA BET = 1028 m 2 g -1 ), respectively. The combination of high nitrogen content, π-electron conjugated structure, and microporosity makes NRPPs very effective in CO 2 uptake and I 2 capture. NRPPs exhibit high CO 2 uptakes (NRPP-1, 6.1 mmol g -1 and NRPP-2, 7.06 mmol g -1 ) at 273 K and 1.0 bar. The 7.06 mmol g -1 CO 2 uptake by NRPP-2 is the second highest value reported to date for porous organic polymers. According to vapor iodine uptake studies, the polymers display high capacity and rapid reversible uptake release for I 2 (NRPP-1, 192 wt % and NRPP-2, 222 wt %). Our studies show that the green nature (metal-free) of NRPPs and their effective capture of CO 2 and I 2 make this class of porous materials promising for environmental remediation.
Movement of NH3 through the human urea transporter B: a new gas channel
Musa-Aziz, Raif; Enkavi, Giray; Mahinthichaichan, P.; Tajkhorshid, Emad; Boron, Walter F.
2013-01-01
Aquaporins and Rh proteins can function as gas (CO2 and NH3) channels. The present study explores the urea, H2O, CO2, and NH3 permeability of the human urea transporter B (UT-B) (SLC14A1), expressed in Xenopus oocytes. We monitored urea uptake using [14C]urea and measured osmotic water permeability (Pf) using video microscopy. To obtain a semiquantitative measure of gas permeability, we used microelectrodes to record the maximum transient change in surface pH (ΔpHS) caused by exposing oocytes to 5% CO2/33 mM HCO3− (pHS increase) or 0.5 mM NH3/NH4+ (pHS decrease). UT-B expression increased oocyte permeability to urea by >20-fold, and Pf by 8-fold vs. H2O-injected control oocytes. UT-B expression had no effect on the CO2-induced ΔpHS but doubled the NH3-induced ΔpHS. Phloretin reduced UT-B-dependent urea uptake (Jurea*) by 45%, Pf* by 50%, and (−ΔpHS*)NH3 by 70%. p-Chloromercuribenzene sulfonate reduced Jurea* by 25%, Pf* by 30%, and (ΔpHS*)NH3 by 100%. Molecular dynamics (MD) simulations of membrane-embedded models of UT-B identified the monomeric UT-B pores as the main conduction pathway for both H2O and NH3 and characterized the energetics associated with permeation of these species through the channel. Mutating each of two conserved threonines lining the monomeric urea pores reduced H2O and NH3 permeability. Our data confirm that UT-B has significant H2O permeability and for the first time demonstrate significant NH3 permeability. Thus the UTs become the third family of gas channels. Inhibitor and mutagenesis studies and results of MD simulations suggest that NH3 and H2O pass through the three monomeric urea channels in UT-B. PMID:23552862
Cantu, David C.; Lee, Juntaek; Lee, Mal -Soon; ...
2016-03-28
The deployment of transformational non-aqueous CO 2-capture solvent systems is encumbered by high viscosity even at intermediate uptakes. Using single-molecule CO 2 binding organic liquids as a prototypical example, we identify the key molecular features controlling bulk liquid viscosity and CO 2 uptake kinetics. Fast uptake kinetics arise from close proximity of the alcohol and amine sites that are involved in CO 2 binding. This process results in the concerted formation of a Zwitterion containing both an alkylcarbonate and a protonated amine. The hydrogen bonding between the two functional groups ultimately determines the solution viscosity. Based on molecular simulation, thismore » work reveals options to significantly reduce viscosity with molecular modifications that shift the proton transfer equilibrium towards a neutral acid/amine species as opposed to the ubiquitously accepted Zwitterionic state. Lastly, the molecular design concepts proposed here, for the alkyl-carbonate systems, are readily extensible to other CO 2 capture technologies, such as the carbamate- or imidazole-based solvent chemistries.« less
21st Century Carbon-Climate Change as Simulated by the Canadian Earth System Model CanESM1
NASA Astrophysics Data System (ADS)
Curry, C.; Christian, J. R.; Arora, V.; Boer, G. J.; Denman, K. L.; Flato, G. M.; Scinocca, J. F.; Merryfield, W. J.; Lee, W. G.; Yang, D.
2009-12-01
The Canadian Earth System Model CanESM1 is a fully coupled climate/carbon-cycle model with prognostic ocean and terrestrial components. The model has been used to simulate the 1850-2000 climate using historical greenhouse gas emissions, and future climates using IPCC emission scenarios. Modelled globally averaged CO2 concentration, land and ocean carbon uptake compare well with observation-based values at year 2000, as do the annual cycle and latitudinal distribution of CO2, instilling confidence that the model is suitable for future projections of carbon cycle behaviour in a changing climate. Land use change emissions are calculated explicitly using an observation-based time series of fractional coverage of different plant functional types. A more complete description of the model may be found in Arora et al. (2009). Differences in the land-atmosphere CO2 flux from the present to the future period under the SRES A2 emissions scenario show an increase in land sinks by a factor of 7.5 globally, mostly the result of CO2 fertilization. By contrast, the magnitude of the global ocean CO2 sink increases by a factor of only 2.3 by 2100. Expressed as a fraction of total emissions, ocean carbon uptake decreases throughout the 2000-2100 period, while land carbon uptake increases until around 2050, then declines. The result is an increase in airborne CO2 fraction after the mid-21st century, reaching a value of 0.55 by 2100. The simulated decline in ocean carbon uptake over the 21st century occurs despite steadily rising atmospheric CO2. This behaviour is usually attributed to climate-induced changes in surface temperature and salinity that reduce CO2 solubility, and increasing ocean stratification that weakens the biological pump. However, ocean biological processes such as dinitrogen fixation and calcification may also play an important role. Although not well understood at present, improved parameterizations of these processes will increase confidence in projections of future trends in CO2 uptake.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Jiamin; Tokunaga, Tetsu K.; Ashby, Paul D.
Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubationmore » with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2, can increase CO 2 storage capacity by up to ~30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism.« less
Adachi, Minaco; Hasegawa, Toshihiro; Fukayama, Hiroshi; Tokida, Takeshi; Sakai, Hidemitsu; Matsunami, Toshinori; Nakamura, Hirofumi; Sameshima, Ryoji; Okada, Masumi
2014-02-01
To enable prediction of future rice production in a changing climate, we need to understand the interactive effects of temperature and elevated [CO2] (E[CO2]). We therefore examined if the effect of E[CO2] on the light-saturated leaf photosynthetic rate (Asat) was affected by soil and water temperature (NT, normal; ET, elevated) under open-field conditions at the rice free-air CO2 enrichment (FACE) facility in Shizukuishi, Japan, in 2007 and 2008. Season-long E[CO2] (+200 µmol mol(-1)) increased Asat by 26%, when averaged over two years, temperature regimes and growth stages. The effect of ET (+2°C) on Asat was not significant at active tillering and heading, but became negative and significant at mid-grain filling; Asat in E[CO2]-ET was higher than in ambient [CO2] (A[CO2])-NT by only 4%. Photosynthetic down-regulation at E[CO2] also became apparent at mid-grain filling; Asat compared at the same [CO2] in the leaf cuvette was significantly lower in plants grown in E[CO2] than in those grown in A[CO2]. The additive effects of E[CO2] and ET decreased Asat by 23% compared with that of A[CO2]-NT plants. Although total crop nitrogen (N) uptake was increased by ET, N allocation to the leaves and to Rubisco was reduced under ET and E[CO2] at mid-grain filling, which resulted in a significant decrease (32%) in the maximum rate of ribulose-1,5-bisphosphate carboxylation on a leaf area basis. Because the change in N allocation was associated with the accelerated phenology in E[CO2]-ET plants, we conclude that soil and water warming accelerates photosynthetic down-regulation at E[CO2].
NASA Astrophysics Data System (ADS)
Loring, J.
2015-12-01
Injection of CO2 into low permeability shale formations leads to additional gas recovery and reduces the flux of CO2 into the atmosphere, thus combining a strong economic incentive with a permanent storage option for CO2. Reduced formation transmissivity due to clay swelling is a concern in CO2-enhanced gas production. Clay minerals partly determine the physical (i.e. permeability, brittleness) and certain chemical properties (i.e. wetting ability, gas adsorption) of shales, and montmorillonites are of particular interest because they swell by the uptake of species in their interlayer. In this study, the hydration and expansion of Na-, Cs-, and NH4+-saturated montmorillonite (Na-, Cs-, and NH4-SWy-2) in high-pressure (90 bar) and moderate temperature (50 °C) methane, carbon dioxide, and CO2/CH4 mixtures (3 and 25 mole% CO2) were investigated using in situ IR spectroscopic titrations, in situ XRD, in situ MAS-NMR, and ab initio electronic structure calculations. The overarching goal was to better understand the hydration/expansion behavior of Na-SWy-2 in CO2/CH4 fluid mixtures by comparison to Cs-, and NH4+-saturated clays. Specific aims were to (1) determine if CH4 intercalates the clays, (2) probe the effects of increasing dissolved CO2 and H2O concentrations, and (3) understand the role of cation solvation by H2O and/or CO2. In pure CH4, no evidence of CH4 intercalation was detected by IR for any of the clays. Similarly, no measurable changes to the basal spacing were observed by XRD in the presence of pure CH4. However, when dry Cs- and NH4-SWy-2 were exposed to dry fluids containing CO2, IR showed maximum CO2 penetrated the interlayer, XRD indicated the clays expanded, and NMR showed evidence for cation solvation by CO2, in line with theoretical predictions. IR titration of these clays with water showed sorbed H2O concentrations decreased with increasing dissolved CO2, suggesting competition for interlayer residency by CO2 and H2O. For Na-SWy-2, on the other hand, CO2 intercalated the clay and was at a maximum only after a minimum sorbed H2O was achieved. Further increases in sorbed H2O led to displacement of intercalated CO2. These findings demonstrate that complicated H2O and CO2 intercalation processes could lead to permeability changes that directly impact methane transmissivity in shales.
Kottmeier, Dorothee M; Rokitta, Sebastian D; Tortell, Philippe D; Rost, Björn
2014-09-01
Effects of ocean acidification on Emiliania huxleyi strain RCC 1216 (calcifying, diploid life-cycle stage) and RCC 1217 (non-calcifying, haploid life-cycle stage) were investigated by measuring growth, elemental composition, and production rates under different pCO2 levels (380 and 950 μatm). In these differently acclimated cells, the photosynthetic carbon source was assessed by a (14)C disequilibrium assay, conducted over a range of ecologically relevant pH values (7.9-8.7). In agreement with previous studies, we observed decreased calcification and stimulated biomass production in diploid cells under high pCO2, but no CO2-dependent changes in biomass production for haploid cells. In both life-cycle stages, the relative contributions of CO2 and HCO3 (-) uptake depended strongly on the assay pH. At pH values ≤ 8.1, cells preferentially used CO2 (≥ 90 % CO2), whereas at pH values ≥ 8.3, cells progressively increased the fraction of HCO3 (-) uptake (~45 % CO2 at pH 8.7 in diploid cells; ~55 % CO2 at pH 8.5 in haploid cells). In contrast to the short-term effect of the assay pH, the pCO2 acclimation history had no significant effect on the carbon uptake behavior. A numerical sensitivity study confirmed that the pH-modification in the (14)C disequilibrium method yields reliable results, provided that model parameters (e.g., pH, temperature) are kept within typical measurement uncertainties. Our results demonstrate a high plasticity of E. huxleyi to rapidly adjust carbon acquisition to the external carbon supply and/or pH, and provide an explanation for the paradoxical observation of high CO2 sensitivity despite the apparently high HCO3 (-) usage seen in previous studies.
Ben-Harari, R. R.; Youdim, M. B.
1981-01-01
1. Uptake of 5-hydroxytryptamine (5-HT) and beta-phenylethylamine (PEA) was studied in perfused lung from male rats between 10 and 70 days old. 2. Monoamine oxidase (MAO) activity towards 5-HT, PEA and dopamine was studied in homogenate preparations of lung from rats aged between 5 and 80 days. 3. Uptake of 5-HT (10 microM) decreased throughout the age range studied but uptake of PEA (50 microM) increased for the first 30 days and beyond this age it decreased. Metabolites formed for both amines reflected the changes in uptake. 4. MAO activity deaminating 5-HT is well developed by day 10 and reaches its maximum by day 40. For dopamine and PEA, MAO activity remained low until day 20, and the developed rapidly, reaching a maximum by day 40 for dopamine; activity towards PEA did not reach a maximum by day 80. 5. These results show that uptake and MAO activity changes with age and thus the lung responds like other tissues. 6. These results also demonstrate the independent development of uptake and MAO activity towards 5-HT, PEA and dopamine. PMID:7284689
The absorption of protons with specific amino acids and carbohydrates by yeast
Seaston, A.; Inkson, C.; Eddy, A. A.
1973-01-01
1. Proton uptake in the presence of various amino acids was studied in washed yeast suspensions containing deoxyglucose and antimycin to inhibit energy metabolism. A series of mutant strains of Saccharomyces cerevisiae with defective amino acid permeases was used. The fast absorption of glycine, l-citrulline and l-methionine through the general amino acid permease was associated with the uptake of about 2 extra equivalents of protons per mol of amino acid absorbed, whereas the slower absorption of l-methionine, l-proline and, possibly, l-arginine through their specific permeases was associated with about 1 proton equivalent. l-Canavanine and l-lysine were also absorbed with 1–2 equivalents of protons. 2. A strain of Saccharomyces carlsbergensis behaved similarly with these amino acids. 3. Preparations of the latter yeast grown with maltose subsequently absorbed it with 2–3 equivalents of protons. The accelerated rate of proton uptake increased up to a maximum value with the maltose concentration (Km=1.6mm). The uptake of protons was also faster in the presence of α-methylglucoside and sucrose, but not in the presence of glucose, galactose or 2-deoxyglucose. All of these compounds except the last could cause acid formation. The uptake of protons induced by maltose, α-methylglucoside and sucrose was not observed when the yeast was grown with glucose, although acid was then formed both from sucrose and glucose. 4. A strain of Saccharomyces fragilis that both fermented and formed acid from lactose absorbed extra protons in the presence of lactose. 5. The observations show that protons were co-substrates in the systems transporting the amino acids and certain of the carbohydrates. PMID:4587071
NASA Astrophysics Data System (ADS)
Biswas, Haimanti; Shaik, Aziz Ur Rahman; Bandyopadhyay, Debasmita; Chowdhury, Neha
2017-11-01
The ongoing increase in surface seawater CO2 level could potentially impact phytoplankton primary production in coastal waters; however, CO2 sensitivity studies on tropical coastal phytoplankton assemblages are rare. The present study investigated the interactive impacts of variable CO2 level, light and zinc (Zn) addition on the diatom dominated phytoplankton assemblages from the western coastal Bay of Bengal. Increased CO2 supply enhanced particulate organic matter (POC) production; a concomitant depletion in δ13CPOM values at elevated CO2 suggested increased CO2 diffusive influx inside the cell. Trace amount of Zn added under low CO2 level accelerated growth probably by accelerating Zn-Carbonic Anhydrase activity which helps in converting bicarbonate ion to CO2. Almost identical values of δ13CPOM in the low CO2 treated cells grown with and without Zn indicated a low discrimination between 13C and 12C probably due to bicarbonate uptake. These evidences collectively indicated the existence of the carbon concentration mechanisms (CCMs) at low CO2. A minimum growth rate was observed at low CO2 and light limited condition indicating light dependence of CCMs activity. Upon the increase of light and CO2 level, growth response was maximum. The cells grown in the low CO2 levels showed higher light stress (higher values of both diatoxanthin index and the ratio of photo-protective to light-harvesting pigments) that was alleviated by both increasing CO2 supply and Zn addition (probably by efficient light energy utilization in presence of adequate CO2). This is likely that the diatom dominated phytoplankton communities benefited from the increasing CO2 supply and thus may enhance primary production in response to any further increase in coastal water CO2 levels and can have large biogeochemical consequences in the study area.
Enhanced microbial electrosynthesis by using defined co-cultures
Deutzmann, Jörg S; Spormann, Alfred M
2017-01-01
Microbial uptake of free cathodic electrons presents a poorly understood aspect of microbial physiology. Uptake of cathodic electrons is particularly important in microbial electrosynthesis of sustainable fuel and chemical precursors using only CO2 and electricity as carbon, electron and energy source. Typically, large overpotentials (200 to 400 mV) were reported to be required for cathodic electron uptake during electrosynthesis of, for example, methane and acetate, or low electrosynthesis rates were observed. To address these limitations and to explore conceptual alternatives, we studied defined co-cultures metabolizing cathodic electrons. The Fe(0)-corroding strain IS4 was used to catalyze the electron uptake reaction from the cathode forming molecular hydrogen as intermediate, and Methanococcus maripaludis and Acetobacterium woodii were used as model microorganisms for hydrogenotrophic synthesis of methane and acetate, respectively. The IS4-M. maripaludis co-cultures achieved electromethanogenesis rates of 0.1–0.14 μmol cm−2 h−1 at −400 mV vs standard hydrogen electrode and 0.6–0.9 μmol cm−2 h−1 at −500 mV. Co-cultures of strain IS4 and A. woodii formed acetate at rates of 0.21–0.23 μmol cm−2 h−1 at −400 mV and 0.57–0.74 μmol cm−2 h−1 at −500 mV. These data show that defined co-cultures coupling cathodic electron uptake with synthesis reactions via interspecies hydrogen transfer may lay the foundation for an engineering strategy for microbial electrosynthesis. PMID:27801903
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luxmoore, R.J.; Norby, R.J.; O'Neill, E.G.
1986-01-01
Three species of seedling trees were grown in pots containing low-nutrient soil for periods of up to 40 weeks under a range of atmospheric CO/sub 2/ concentrations. In all cases, total dry weight increased with CO/sub 2/ enrichment, with a greater relative increase in root weight than shoot weight. In an experiment with Pinus virginiana in open-top field chambers, phosphorus and potassium uptake did not increase with an increase in CO/sub 2/ from 365 to 690 ..mu..L/L, even though dry matter gain increased by 37% during the exposure period. In experiments with Quercus alba and Liriodendron tulipifera under controlled environmentmore » conditions there were obvious symptoms of nitrogen deficiency and total nitrogen uptake did not increase with CO/sub 2/ enrichment. However, dry weight gain was more than 90% higher at 690 ..mu..L/L CO/sub 2/. The three experiments with CO/sub 2/ enrichment treatments demonstrate that increases in plant dry weight can occur without increased uptake of some nutrients from the low-nutrient soil. A mechanism for these responses may involve increased mobilization of nutrients in association with increased sucrose transport under elevated CO/sub 2/ conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsobrook, Andera N.; Hauser, B. G.; Hupp, Joseph T.
2010-11-01
Four heterobimetallic U(VI)/M(II) (M = Mn, Co, Cd) carboxyphosphonates have been synthesized. M 2[(UO 2) 6(PO 3CH 2CO 2) 3O 3(OH)(H 2O) 2]·16H 2O (M = Mn(II), Co(II), and Cd(II)) adopt cubic three-dimensional network structures with large cavities approximately 16 Å in diameter that are filled with co-crystallized water molecules. [Cd 3(UO 2) 6(PO 3CH 2CO 2) 6(H 2O) 13]·6H 2 O forms a rhombohedral channel structure with hydrated Cd(II) within the channels. The cubic compound (Co) displays differential gas absorption with a surface area for CO 2 uptake of 40 m 2 g -1 at 273 K, and nomore » uptake of N 2 at 77 K.« less
Hall, Marianne; Medlyn, Belinda E; Abramowitz, Gab; Franklin, Oskar; Räntfors, Mats; Linder, Sune; Wallin, Göran
2013-11-01
Photosynthesis is highly responsive to environmental and physiological variables, including phenology, foliage nitrogen (N) content, atmospheric CO2 concentration ([CO2]), irradiation (Q), air temperature (T) and vapour pressure deficit (D). Each of these responses is likely to be modified by long-term changes in climatic conditions such as rising air temperature and [CO2]. When modelling photosynthesis under climatic changes, which parameters are then most important to calibrate for future conditions? To assess this, we used measurements of shoot carbon assimilation rates and microclimate conditions collected at Flakaliden, northern Sweden. Twelve 40-year-old Norway spruce trees were enclosed in whole-tree chambers and exposed to elevated [CO2] and elevated air temperature, separately and in combination. The treatments imposed were elevated temperature, +2.8 °C in July/August and +5.6 °C in December above ambient, and [CO2] (ambient CO2 ∼370 μ mol mol(-1), elevated CO2 ∼700 μ mol mol(-1)). The relative importance of parameterization of Q, T and D responses for effects on the photosynthetic rate, expressed on a projected needle area, and the annual shoot carbon uptake was quantified using an empirical shoot photosynthesis model, which was developed and fitted to the measurements. The functional form of the response curves was established using an artificial neural network. The [CO2] treatment increased annual shoot carbon (C) uptake by 50%. Most important was effects on the light response curve, with a 67% increase in light-saturated photosynthetic rate, and a 52% increase in the initial slope of the light response curve. An interactive effect of light saturated photosynthetic rate was found with foliage N status, but no interactive effect for high temperature and high CO2. The air temperature treatment increased the annual shoot C uptake by 44%. The most important parameter was the seasonality, with an elongation of the growing season by almost 4 weeks. The temperature response curve was almost flat over much of the temperature range. A shift in temperature optimum had thus an insignificant effect on modelled annual shoot C uptake. The combined temperature and [CO2] treatment resulted in a 74% increase in annual shoot C uptake compared with ambient conditions, with no clear interactive effects on parameter values.
Watanabe, Chihiro K.; Sato, Shigeru; Yanagisawa, Shuichi; Uesono, Yukifumi; Terashima, Ichiro; Noguchi, Ko
2014-01-01
Elevated CO2 affects plant growth and photosynthesis, which results in changes in plant respiration. However, the mechanisms underlying the responses of plant respiration to elevated CO2 are poorly understood. In this study, we measured diurnal changes in the transcript levels of genes encoding respiratory enzymes, the maximal activities of the enzymes and primary metabolite levels in shoots of Arabidopsis thaliana grown under moderate or elevated CO2 conditions (390 or 780 parts per million by volume CO2, respectively). We examined the relationships between these changes and respiratory rates. Under elevated CO2, the transcript levels of several genes encoding respiratory enzymes increased at the end of the light period, but these increases did not result in changes in the maximal activities of the corresponding enzymes. The levels of some primary metabolites such as starch and sugar phosphates increased under elevated CO2, particularly at the end of the light period. The O2 uptake rate at the end of the dark period was higher under elevated CO2 than under moderate CO2, but higher under moderate CO2 than under elevated CO2 at the end of the light period. These results indicate that the changes in O2 uptake rates are not directly related to changes in maximal enzyme activities and primary metabolite levels. Instead, elevated CO2 may affect anabolic processes that consume respiratory ATP, thereby affecting O2 uptake rates. PMID:24319073
Understanding the recent changes in the Southern Ocean carbon cycle: A multidisciplinary approach
NASA Astrophysics Data System (ADS)
Manizza, M.; Kahru, M.; Menemenlis, D.; Nevison, C. D.; Mitchell, B. G.; Keeling, R. F.
2016-12-01
The Southern Ocean represents a key area of the global ocean for the uptake of the CO2 originating from fossil fuels emissions. In these waters, cold temperatures combined with high rates of biological production drive the carbon uptake that accounts for about one-third of the global ocean uptake.Recent studies showed that changes in the Southern Annular Mode (SAM) index, mainly a proxy of the intensity of westerly winds, had a significant impact on the temporal variability of the CO2 uptake in the Southern Ocean. In order to shed light on this problem we propose to use both satellite-derived estimates of ocean productivity and carbon export in combinations of ocean physical and biogeochemical state estimates focusing on the 2006-2013 period. While the estimates of carbon fixation and export based on remote sensing will provide key information on the spatial and temporal variations of the biological carbon pump, the ocean state estimates will provide additional information on physical and carbon cycle processes, including the air-sea CO2 fluxes of the Southern Ocean in the 2006-2013 period where model solutions have been optimized.These physical estimates will be used to force an ocean biogeochemical model (ECCO2-Darwin) that will compute the CO2 uptake for each year. The physical model, forced with optimized atmospheric forcing, aims to realistically simulate interannual ocean climate variability that drives changes in both physical and biogeochemical processes ultimately impacting the carbon uptake of the Southern Ocean, and potentially responding to the SAM index variations.Although in this study great emphasis is given to the role of physical climate variations at driving the CO2 uptake of these polar waters, we will integrate model results with estimates from remote sensing techniques to better understand role of the biological carbon pump and its variability potentially responding to the SAM index changes.
The impact of changing wind speeds on gas transfer and its effect on global air-sea CO2 fluxes
NASA Astrophysics Data System (ADS)
Wanninkhof, R.; Triñanes, J.
2017-06-01
An increase in global wind speeds over time is affecting the global uptake of CO2 by the ocean. We determine the impact of changing winds on gas transfer and CO2 uptake by using the recently updated, global high-resolution, cross-calibrated multiplatform wind product (CCMP-V2) and a fixed monthly pCO2 climatology. In particular, we assess global changes in the context of regional wind speed changes that are attributed to large-scale climate reorganizations. The impact of wind on global CO2 gas fluxes as determined by the bulk formula is dependent on several factors, including the functionality of the gas exchange-wind speed relationship and the regional and seasonal differences in the air-water partial pressure of CO2 gradient (ΔpCO2). The latter also controls the direction of the flux. Fluxes out of the ocean are influenced more by changes in the low-to-intermediate wind speed range, while ingassing is impacted more by changes in higher winds because of the regional correlations between wind and ΔpCO2. Gas exchange-wind speed parameterizations with a quadratic and third-order polynomial dependency on wind, each of which meets global constraints, are compared. The changes in air-sea CO2 fluxes resulting from wind speed trends are greatest in the equatorial Pacific and cause a 0.03-0.04 Pg C decade-1 increase in outgassing over the 27 year time span. This leads to a small overall decrease of 0.00 to 0.02 Pg C decade-1 in global net CO2 uptake, contrary to expectations that increasing winds increase net CO2 uptake.
Atmospheric Carbon Dioxide and the Global Carbon Cycle: The Key Uncertainties
DOE R&D Accomplishments Database
Peng, T. H.; Post, W. M.; DeAngelis, D. L.; Dale, V. H.; Farrell, M. P.
1987-12-01
The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO{sub 2} concentrations. The observed increase in atmospheric CO{sub 2} content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO{sub 2} produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO{sub 2} uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO{sub 2} uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO{sub 2} than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO{sub 2} fluxes. The instability of current models to estimate accurately oceanic uptake of CO{sub 2} creates one of the key uncertainties in predictions of atmospheric CO{sub 2} increases and climate responses over the next 100 to 200 years.
Preliminary Evidence for Adipocytokine Signals in Skeletal Muscle Glucose Uptake.
Kudoh, Akihiro; Satoh, Hiroaki; Hirai, Hiroyuki; Watanabe, Tsuyoshi; Shimabukuro, Michio
2018-01-01
The cross talk between the adipose tissue and insulin target tissues is a key mechanism for obesity-associated insulin resistance. However, the precise role of the interaction between the skeletal muscle and adipose tissue for insulin signaling and glucose uptake is questionable. L6 myocytes were co-cultured with or without 3T3-L1 adipocytes (~5 × 10 3 cells/cm 2 ) up to 24 h. Glucose uptake was evaluated by 2-[ 3 H] deoxyglucose uptake assay. Levels of mRNA expression of Glut1 and Glut4 and mitochondrial enzymes were analyzed by quantitative real-time reverse transcription polymerase chain reaction. Levels of Glut1 and Glut4 protein and phosphorylation of Akt (Ser473 and Thr308) were analyzed by immunoblotting. Study 1: co-culture with 3T3-L1 adipocytes increased glucose uptake in dose- and time-dependent manner in L6 myocytes under insulin-untreated conditions. When co-cultured with 3T3-L1 cells, reactive oxygen species production and levels of Glut1 mRNA and protein were increased in L6 cells, while these changes were abrogated and the glucose uptake partially inhibited by antioxidant treatment. Study 2: co-culture with 3T3-L1 adipocytes suppressed insulin-stimulated glucose uptake in L6 myocytes. Insulin-induced Akt phosphorylation at Ser473 decreased, which was proportional to 3T3-L1 density. Antioxidant treatment partially reversed this effect. Interactions between skeletal muscle and adipose tissues are important for glucose uptake under insulin-untreated or -treated condition through oxygen stress mechanism.
Malmberg, Catarina; Ripa, Rasmus S; Johnbeck, Camilla B; Knigge, Ulrich; Langer, Seppo W; Mortensen, Jann; Oturai, Peter; Loft, Annika; Hag, Anne Mette; Kjær, Andreas
2015-12-01
The somatostatin receptor subtype 2 is expressed on macrophages, an abundant cell type in the atherosclerotic plaque. Visualization of somatostatin receptor subtype 2, for oncologic purposes, is frequently made using the DOTA-derived somatostatin analogs DOTATOC or DOTATATE for PET. We aimed to compare the uptake of the PET tracers (68)Ga-DOTATOC and (64)Cu-DOTATATE in large arteries, in the assessment of atherosclerosis by noninvasive imaging technique, combining PET and CT. Further, the correlation of uptake and cardiovascular risk factors was investigated. Sixty consecutive patients with neuroendocrine tumors underwent both (68)Ga-DOTATOC and (64)Cu-DOTATATE PET/CT scans, in random order. For each scan, the maximum and mean standardized uptake values (SUVs) were calculated in 5 arterial segments. In addition, the blood-pool-corrected target-to-background ratio was calculated. Uptake of the tracers was correlated with cardiovascular risk factors collected from medical records. We found detectable uptake of both tracers in all arterial segments studied. Uptake of (64)Cu-DOTATATE was significantly higher than (68)Ga-DOTATOC in the vascular regions both when calculated as maximum and mean uptake. There was a significant association between Framingham risk score and the overall maximum uptake of (64)Cu-DOTATATE using SUV (r = 0.4; P = 0.004) as well as target-to-background ratio (r = 0.3; P = 0.04), whereas no association was found with (68)Ga-DOTATOC. The association of risk factors and maximum SUV of (64)Cu-DOTATATE was found driven by body mass index, smoking, diabetes, and coronary calcium score (P < 0.001, P = 0.01, P = 0.005, and P = 0.03, respectively). In a series of oncologic patients, vascular uptake of (68)Ga-DOTATOC and (64)Cu-DOTATATE was found, with highest uptake of the latter. Uptake of (64)Cu-DOTATATE, but not of (68)Ga-DOTATOC, was correlated with cardiovascular risk factors, suggesting a potential role for (64)Cu-DOTATATE in the assessment of atherosclerosis. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, Shanlin; University of Chinese Academy of Sciences, Beijing 100049; Du, Zhengkun
2014-04-01
Two novel thiophene-based conjugated networks CMPs-TTT and CMPs-DTBT were designed and prepared with different steric configuration building blocks by FeCl{sub 3} oxidative coupling polymerization. UV–vis spectra, FE-SEM and TEM images showed CMPs-TTT and CMPs-DTBT having the different aggregated morphologies. After porous analysis and gas adsorption test, the result showed CO{sub 2} uptake capacity of CMPs-DTBT with amorphous aggregation model is 2.88 times and 2.66 times greater than that of CMPs-TTT with large lamellar structure model at 273 K and 298 K (1.0 bar), respectively. As a result, this communication proved that change the topological structure of the polymer can influencemore » the CO{sub 2} adsorption capacity significantly. - Graphical abstract: Two thiophene-based conjugated networks were prepared with different steric configuration building blocks, and they show various CO{sub 2} uptake capacity and sorption isosteric enthalpies, although they have identical chemical constitution. - Highlights: • Topological-directed design and synthesis two conjugated porous polymers. • Two thiophene-based CMPs show different aggregated morphologies. • They exhibit similar porosity structure and different CO{sub 2} uptake capacity.« less
Grant, R F; Margolis, H A; Barr, A G; Black, T A; Dunn, A L; Bernier, P Y; Bergeron, O
2009-01-01
Net ecosystem productivity (NEP) of boreal coniferous forests is believed to rise with climate warming, thereby offsetting some of the rise in atmospheric CO(2) concentration (C(a)) by which warming is caused. However, the response of conifer NEP to warming may vary seasonally, with rises in spring and declines in summer. To gain more insight into this response, we compared changes in CO(2) exchange measured by eddy covariance and simulated by the ecosystem process model ecosys under rising mean annual air temperatures (T(a)) during 2004-2006 at black spruce stands in Saskatchewan, Manitoba and Quebec. Hourly net CO(2) uptake was found to rise with warming at T(a) < 15 degrees C and to decline with warming at T(a) > 20 degrees C. As mean annual T(a) rose from 2004 to 2006, increases in net CO(2) uptake with warming at lower T(a) were greater than declines with warming at higher T(a) so that annual gross primary productivity and hence NEP increased. Increases in net CO(2) uptake measured at lower T(a) were explained in the model by earlier recovery of photosynthetic capacity in spring, and by increases in carboxylation activity, using parameters for the Arrhenius temperature functions of key carboxylation processes derived from independent experiments. Declines in net CO(2) uptake measured at higher T(a) were explained in the model by sharp declines in mid-afternoon canopy stomatal conductance (g(c)) under higher vapor pressure deficits (D). These declines were modeled from a hydraulic constraint to water uptake imposed by low axial conductivity of conifer roots and boles that forced declines in canopy water potential (psi(c)), and hence in g(c) under higher D when equilibrating water uptake with transpiration. In a model sensitivity study, the contrasting responses of net CO(2) uptake to specified rises in T(a) caused annual NEP of black spruce in the model to rise with increases in T(a) of up to 6 degrees C, but to decline with further increases at mid-continental sites with lower precipitation. However, these contrasting responses to warming also indicate that rises in NEP with climate warming would depend on the seasonality (spring versus summer) as well as the magnitude of rises in T(a).
Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 2: Carbon Dioxide
NASA Astrophysics Data System (ADS)
Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.
2013-04-01
Increased ocean acidification from fossil fuel CO2 invasion, from temperature-driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Discussion of these impacts has so far focused only on changes in the oceanic bulk fluid properties (ΔpH, Δ[∑ CO2], etc.) as the critical variable and with a major focus on carbonate shell formation. Here we describe the rate problem for animals that must export CO2 at about the same rate at which O2 is consumed. We analyse the basic properties controlling CO2 export within the diffusive boundary layer around marine animals in an ocean changing in temperature (T) and CO2 concentration in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas, since with CO2 the influence of the seawater carbonate acid-base system needs to be considered. These reactions significantly facilitate CO2 efflux compared to O2 intake at equal temperature, pressure and fluid flow rate under typical oceanic concentrations. The effect of these reactions can be described by an enhancement factor, similar to that widely used for CO2 invasion at the sea surface. While organisms do need to actively regulate flow over their surface to thin the boundary layer to take up enough O2, this seems to be not necessary to facilitate CO2 efflux. Instead, the main impacts of rising oceanic CO2 will most likely be those associated with classical ocean acidification science. Regionally, as with O2, the combination of T, P and pH/pCO2 creates a zone of maximum CO2 stress at around 1000 m depth.
Treatment of mining waste leachate by the adsorption process using spent coffee grounds.
Ayala, Julia; Fernández, Begoña
2018-02-15
The removal of heavy metals from mining waste leachate by spent coffee grounds has been investigated. In synthetic solutions, metal uptake was studied in batch adsorption experiments as a function of pH, contact time, initial metal concentration, adsorbent concentration, particle size, and the effect of co-ions (Na, K, Ca, Mg, Cu, Cd, Ni, Zn). Results showed that adsorption was significantly affected by pH, showing the highest affinity within a pH range of 5-7. Sorption of heavy metals reached equilibrium in 3 h. Removal percentages of metals ions increased with increasing dosage. Particle size did not have a significant influence on metal uptake. The adsorption of heavy metals was found to fit Langmuir and Freundlich isotherms. Maximum Zn, Cd and Ni uptake values were calculated as 10.22, 5.96 and 7.51 mg/g, respectively, using unwashed coffee grounds (UCG) as the adsorbent and 5.36, 4.28 and 4.37 mg/g when employing washed coffee grounds as the adsorbent. The presence of co-ions inhibited the uptake of heavy metals, divalent ions having a more negative effect than monovalent ions. The results obtained in the experiments with mining waste leachate showed that UCG is effective in removing heavy metals.
Kluge, M; Lange, O L; Eichmann, M V; Schmid, R
1973-12-01
Tillandsia usneoides, in the common sense a non-succulent plant, exhibits CO2 exchange characterized by net CO2 dark fixation during the night and depression of CO2 exchange during the day. Malate has been demonstrated to accumulate during CO2 dark fixation and to be converted to carbohydrates in light. Thus, T. usneoides exhibits CAM like typical succulents.Net CO2 uptake during the day is increased with net CO2 output being suppressed in duration of time and extent when light intensity increases. Furthermore, a slight increase in CO2 fixation during the following night can be observed if the plants were treated with high light intensity during the previous day.Curves of CO2 exchange typical for CAM are obtained if T. usneoides is kept at 15°C and 20°C. Lower temperature tend to increase CO2 uptake during the day and to inhibit CO2 dark fixation. Temperatures higher than 20°C favour loss of CO2 by respiration, which becomes apparent during the whole day and night at 30°C and higher temperatures. Thus, T. usneoides gains carbon only at temperatures well below 25°C.Net CO2 uptake during the day occurs only in moist plant material and is inhibited in plants cept under water stress conditions. However, CO2 uptake during the night is clearly favoured if the plants dry out. Therefore dry plants gain more carbon than moist ones.Curves of CO2 exchange typical for CAM were also obtained with 13 other species of the genus Tillandsia.The exhibition of CAM by the non-succulent T. usneoides calls for a new definition of the term "succulence" if it is to remain useful in characterizing this metabolic pathway. Because CO2-fixing cells of T. usneoides possess relatively large vacuoles and are relatively poor in chloroplasts, they resembles the assimilatory cells of typical CAM-exhibiting succulents. Therefore, if "succulence" only means the capacity of big vacuoles to store malate, the assimilatory cells in T. usneoides are succulent. It seems to be useful to investigate parameters which would allow a definition of the term "succulence" on the level of the cell rather than on the level of the whole plant or plant organs.
Hongo, Yuki; Ikuta, Tetsuro; Takaki, Yoshihiro; Shimamura, Shigeru; Shigenobu, Shuji; Maruyama, Tadashi; Yoshida, Takao
2016-07-10
Deep-sea vesicomyid clams, including the genus Phreagena (formerly Calyptogena), harbor thioautotrophic bacterial symbionts in the host symbiosome, which consists of cytoplasmic vacuoles in gill epithelial cells called bacteriocytes. The symbiont requires inorganic carbon (Ci), such as CO2, HCO3(-), and CO3(2-), to synthesize organic compounds, which are utilized by the host clam. The dominant Ci in seawater is HCO3(-), which is impermeable to cell membranes. Within the bacteriocyte, cytoplasmic carbonic anhydrase (CA) from the host, which catalyzes the inter-conversion between CO2 and HCO3(-), has been shown to be abundant and is thought to supply intracellular CO2 to symbionts in the symbiosome. However, the mechanism of Ci uptake by the host gill from seawater is poorly understood. To elucidate the influx pathway of Ci into the bacteriocyte, we isolated the genes related to Ci uptake via the pyrosequencing of cDNA from the gill of Phreagena okutanii, and investigated their expression patterns. Using phylogenetic and amino acid sequence analyses, three solute carrier family 4 (SLC4) bicarbonate transporters (slc4co1, slc4co2, and slc4co4) and two membrane-associated CAs (mcaco1 and mcaco2) were identified as candidate genes for Ci uptake. In an in situ hybridization analysis of gill sections, the expression of mcaco1 and mcaco2 was detected in the bacteriocytes and asymbiotic non-ciliated cells, respectively, and the expression of slc4co1 and slc4co2 was detected in the asymbiotic cells, including the intermediate cells of the inner area and the non-ciliated cells of the external area. Although subcellular localizations of the products of these genes have not been fully elucidated, they may play an important role in the uptake of Ci into the bacteriocytes. These findings will improve our understanding of the Ci transport system in the symbiotic relationships of chemosynthetic bivalves. Copyright © 2016 Elsevier B.V. All rights reserved.
Light Levels Affect Carbon Utilisation in Tropical Seagrass under Ocean Acidification.
Ow, Yan X; Uthicke, Sven; Collier, Catherine J
2016-01-01
Under future ocean acidification (OA), increased availability of dissolved inorganic carbon (DIC) in seawater may enhance seagrass productivity. However, the ability to utilise additional DIC could be regulated by light availability, often reduced through land runoff. To test this, two tropical seagrass species, Cymodocea serrulata and Halodule uninervis were exposed to two DIC concentrations (447 μatm and 1077 μatm pCO2), and three light treatments (35, 100, 380 μmol m(-2) s(-1)) for two weeks. DIC uptake mechanisms were separately examined by measuring net photosynthetic rates while subjecting C. serrulata and H. uninervis to changes in light and addition of bicarbonate (HCO3-) use inhibitors (carbonic anhydrase inhibitor, acetazolamide) and TRIS buffer (pH 8.0). We observed a strong dependence on energy driven H+-HCO3- co-transport (TRIS, which disrupts H+ extrusion) in C. serrulata under all light levels, indicating greater CO2 dependence in low light. This was confirmed when, after two weeks exposure, DIC enrichment stimulated maximum photosynthetic rates (Pmax) and efficiency (α) more in C. serrulata grown under lower light levels (36-60% increase) than for those in high light (4% increase). However, C. serrulata growth increased with both DIC enrichment and light levels. Growth, NPP and photosynthetic responses in H. uninervis increased with higher light treatments and were independent of DIC availability. Furthermore, H. uninervis was found to be more flexible in HCO3- uptake pathways. Here, light availability influenced productivity responses to DIC enrichment, via both carbon fixation and acquisition processes, highlighting the role of water quality in future responses to OA.
Light Levels Affect Carbon Utilisation in Tropical Seagrass under Ocean Acidification
2016-01-01
Under future ocean acidification (OA), increased availability of dissolved inorganic carbon (DIC) in seawater may enhance seagrass productivity. However, the ability to utilise additional DIC could be regulated by light availability, often reduced through land runoff. To test this, two tropical seagrass species, Cymodocea serrulata and Halodule uninervis were exposed to two DIC concentrations (447 μatm and 1077 μatm pCO2), and three light treatments (35, 100, 380 μmol m-2 s-1) for two weeks. DIC uptake mechanisms were separately examined by measuring net photosynthetic rates while subjecting C. serrulata and H. uninervis to changes in light and addition of bicarbonate (HCO3-) use inhibitors (carbonic anhydrase inhibitor, acetazolamide) and TRIS buffer (pH 8.0). We observed a strong dependence on energy driven H+-HCO3- co-transport (TRIS, which disrupts H+ extrusion) in C. serrulata under all light levels, indicating greater CO2 dependence in low light. This was confirmed when, after two weeks exposure, DIC enrichment stimulated maximum photosynthetic rates (Pmax) and efficiency (α) more in C. serrulata grown under lower light levels (36–60% increase) than for those in high light (4% increase). However, C. serrulata growth increased with both DIC enrichment and light levels. Growth, NPP and photosynthetic responses in H. uninervis increased with higher light treatments and were independent of DIC availability. Furthermore, H. uninervis was found to be more flexible in HCO3- uptake pathways. Here, light availability influenced productivity responses to DIC enrichment, via both carbon fixation and acquisition processes, highlighting the role of water quality in future responses to OA. PMID:26938454
Recent increases in terrestrial carbon uptake at little cost to the water cycle.
Cheng, Lei; Zhang, Lu; Wang, Ying-Ping; Canadell, Josep G; Chiew, Francis H S; Beringer, Jason; Li, Longhui; Miralles, Diego G; Piao, Shilong; Zhang, Yongqiang
2017-07-24
Quantifying the responses of the coupled carbon and water cycles to current global warming and rising atmospheric CO 2 concentration is crucial for predicting and adapting to climate changes. Here we show that terrestrial carbon uptake (i.e. gross primary production) increased significantly from 1982 to 2011 using a combination of ground-based and remotely sensed land and atmospheric observations. Importantly, we find that the terrestrial carbon uptake increase is not accompanied by a proportional increase in water use (i.e. evapotranspiration) but is largely (about 90%) driven by increased carbon uptake per unit of water use, i.e. water use efficiency. The increased water use efficiency is positively related to rising CO 2 concentration and increased canopy leaf area index, and negatively influenced by increased vapour pressure deficits. Our findings suggest that rising atmospheric CO 2 concentration has caused a shift in terrestrial water economics of carbon uptake.The response of the coupled carbon and water cycles to anthropogenic climate change is unclear. Here, the authors show that terrestrial carbon uptake increased significantly from 1982 to 2011 and that this increase is largely driven by increased water-use efficiency, rather than an increase in water use.
Zhou, Yumei; Hagedorn, Frank; Zhou, Chunliang; Jiang, Xiaojie; Wang, Xiuxiu; Li, Mai-He
2016-01-01
Climatic warming is expected to particularly alter greenhouse gas (GHG) emissions from soils in cold ecosystems such as tundra. We used 1 m2 open-top chambers (OTCs) during three growing seasons to examine how warming (+0.8–1.2 °C) affects the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from alpine tundra soils. Results showed that OTC warming increased soil CO2 efflux by 141% in the first growing season and by 45% in the second and third growing season. The mean CH4 flux of the three growing seasons was −27.6 and −16.7 μg CH4-C m−2h−1 in the warmed and control treatment, respectively. Fluxes of N2O switched between net uptake and emission. Warming didn’t significantly affect N2O emission during the first and the second growing season, but stimulated N2O uptake in the third growing season. The global warming potential of GHG was clearly dominated by soil CO2 effluxes (>99%) and was increased by the OTC warming. In conclusion, soil temperature is the main controlling factor for soil respiration in this tundra. Climate warming will lead to higher soil CO2 emissions but also to an enhanced CH4 uptake with an overall increase of the global warming potential for tundra. PMID:26880107
The Potential of Carbonyl Sulfide as a Tracer for Gross Primary Productivity at Flux Tower Sites
USDA-ARS?s Scientific Manuscript database
Regional/continental scale studies of atmospheric carbonyl sulfide (OCS) seasonal dynamics and leaf level studies of plant OCS uptake have shown a close relationship to CO2 dynamics and uptake, suggesting potential for OCS as a tracer for gross primary productivity (GPP). Canopy CO2 and OCS differen...
EFFECTS OF CO2 AND O3 ON CARBON FLUX FOR PONDEROSA PINE PLANT/LITTER/SOIL SYSTEM
Carbon dioxide (CO2), a main contributor to global climate change, also adds carbon to forests. In contrast, tropospheric ozone (O3) can reduce carbon uptake and increase carbon loss by forests. Thus, the net balance of carbon uptake and loss for forests can be affected by concu...
Gomez-Casanovas, Nuria; Blanc-Betes, Elena; Gonzalez-Meler, Miquel A.; Azcon-Bieto, Joaquim
2007-01-01
Studies on long-term effects of plants grown at elevated CO2 are scarce and mechanisms of such responses are largely unknown. To gain mechanistic understanding on respiratory acclimation to elevated CO2, the Crassulacean acid metabolism Mediterranean invasive Opuntia ficus-indica Miller was grown at various CO2 concentrations. Respiration rates, maximum activity of cytochrome c oxidase, and active mitochondrial number consistently decreased in plants grown at elevated CO2 during the 9 months of the study when compared to ambient plants. Plant growth at elevated CO2 also reduced cytochrome pathway activity, but increased the activity of the alternative pathway. Despite all these effects seen in plants grown at high CO2, the specific oxygen uptake rate per unit of active mitochondria was the same for plants grown at ambient and elevated CO2. Although decreases in photorespiration activity have been pointed out as a factor contributing to the long-term acclimation of plant respiration to growth at elevated CO2, the homeostatic maintenance of specific respiratory rate per unit of mitochondria in response to high CO2 suggests that photorespiratory activity may play a small role on the long-term acclimation of respiration to elevated CO2. However, despite growth enhancement and as a result of the inhibition in cytochrome pathway activity by elevated CO2, total mitochondrial ATP production was decreased by plant growth at elevated CO2 when compared to ambient-grown plants. Because plant growth at elevated CO2 increased biomass but reduced respiratory machinery, activity, and ATP yields while maintaining O2 consumption rates per unit of mitochondria, we suggest that acclimation to elevated CO2 results from physiological adjustment of respiration to tissue ATP demand, which may not be entirely driven by nitrogen metabolism as previously suggested. PMID:17660349
Winter crop CO2 uptake inferred from CONTRAIL CO2 measurements over Delhi, India
NASA Astrophysics Data System (ADS)
Umezawa, T.; Niwa, Y.; Sawa, Y.; Machida, T.; Matsueda, H.
2016-12-01
CONTRAIL is an ongoing project that measures atmospheric trace gases onboard aircraft of Japan Airlines. Atmospheric CO2 concentration is analyzed using Continuous CO2 Measuring Equipment (CME) during intercontinental flights. Since 2005, we have obtained >7 millions of data points of CO2 concentration along level-flight and ascent/descent tracks of >12 thousands flights with extensive coverage of the Asia-Pacific region. In this study, we analyze 787 vertical profiles of CO2 over Delhi, India. The surrounding area is mainly covered by irrigated croplands with patchy urban areas. We observed a general increase of CO2 toward the ground in the boundary layer throughout December-April due to urban CO2 emissions from the Delhi metropolitan area. In January-March, however, we frequently observed sharp decreases of CO2 below 2 km, indicating the existence of local CO2 sinks in this season. We calculated enhancement/depletion of CO2 amount in the boundary layer, and found clear depletion in February-March, coincident with the growing season of the winter crops (mainly wheat) in the region. It is also inferred that the crop uptake may exceed in magnitude the urban anthropogenic emissions from the Delhi area, indicating significance of agricultural CO2 fluxes in the regional carbon budget. Due to the winter crop uptake, CO2 concentration over Delhi shows no increasing/decreasing temporal trends during January-March when that at baseline stations at similar latitudes in the northern hemisphere increases steadily. This suggests that the CONTRAIL measurements capture local to regional flux signals that are not well resolved by the existing observation network.
NASA Astrophysics Data System (ADS)
Grant, R. F.; Humphreys, E. R.; Lafleur, P. M.
2015-07-01
CO2 and CH4 exchange are strongly affected by hydrology in landscapes underlain by permafrost. Hypotheses for these effects in the model ecosys were tested by comparing modeled CO2 and CH4 exchange with CO2 fluxes measured by eddy covariance from 2006 to 2009, and with CH4 fluxes measured with surface chambers in 2008, along a topographic gradient at Daring Lake, NWT. In an upland tundra, rises in net CO2 uptake in warmer years were constrained by declines in CO2 influxes when vapor pressure deficits (D) exceeded 1.5 kPa and by rises in CO2 effluxes with greater active layer depth. Consequently, net CO2 uptake rose little with warming. In a lowland fen, CO2 influxes declined less with D and CO2 effluxes rose less with warming, so that rises in net CO2 uptake were greater than those in the tundra. Greater declines in CO2 influxes with warming in the tundra were modeled from greater soil-plant-atmosphere water potential gradients that developed under higher D in drained upland soil, and smaller rises in CO2 effluxes with warming in the fen were modeled from O2 constraints to heterotrophic and belowground autotrophic respiration from a shallow water table in poorly drained lowland soil. CH4 exchange modeled during July and August indicated very small influxes in the tundra and larger effluxes characterized by afternoon emission events caused by degassing of warming soil in the fen. Emissions of CH4 modeled from degassing during soil freezing in October-November contributed about one third of the annual total.
NASA Astrophysics Data System (ADS)
Welp, L.; Calle, L.; Graven, H. D.; Poulter, B.
2017-12-01
The seasonal amplitude of Northern Hemisphere atmospheric CO2 concentrations has systematically increased over the last several decades, indicating that the timing and amplitude of net CO2 uptake and release by northern terrestrial ecosystems has changed substantially. Remote sensing, dynamic vegetation modeling, and in-situ studies have explored how changes in phenology, expansion of woody vegetation, and changes in species composition and disturbance regimes, among others, are driven by changes in climate and CO2. Despite these efforts, ecosystem models have not been able to reproduce observed atmospheric CO2 changes. Furthermore, the implications for the source/sink balance of northern ecosystems remains unclear. Changing proportions of evergreen and deciduous tree cover in response to climate change could be one of the key mechanisms that have given rise to amplified atmospheric CO2 seasonality. These two different plant functional types (PFTs) have different carbon uptake seasonal patterns and also different sensitivities to climate change, but are often lumped together as one forest type in global ecosystem models. We will demonstrate the potential that shifting distributions of evergreen and deciduous forests can have on the amplitude of atmospheric CO2. We will show phase differences in the net CO2 seasonal uptake using CO2 flux data from paired evergreen/deciduous eddy covariance towers. We will use simulations of evergreen and deciduous PFTs from the LPJ dynamic vegetation model to explore how climate change may influence the abundance and CO2 fluxes of each. Model results show that the area of deciduous forests is predicted to have increased, and the seasonal amplitude of CO2 fluxes has increased as well. The impact of surface flux seasonal variability on atmospheric CO2 amplitude is examined by transporting fluxes from each forest PFT through the TM3 transport model. The timing of the most intense CO2 uptake leads to an enhanced effect of deciduous forests on the atmospheric CO2 amplitude. These results demonstrate the potential significance of evergreen/deciduous forest PFTs on the amplitude of atmospheric CO2. In order to better understand the causes of the increasing amplitude trend, we encourage creating time-varying maps of evergreen/deciduous PFTs from remote sensing observations.
James, W.F.; Richardson, W.B.; Soballe, D.M.
2008-01-01
Routing nitrate through backwaters of regulated floodplain rivers to increase retention could decrease loading to nitrogen (N)-sensitive coastal regions. Sediment core determinations of N flux were combined with inflow-outflow fluxes to develop mass balance approximations of N uptake and transformations in a flow-controlled backwater of the Upper Mississippi River (USA). Inflow was the dominant nitrate source (>95%) versus nitrification and varied as a function of source water concentration since flow was constant. Nitrate uptake length increased linearly, while uptake velocity decreased linearly, with increasing inflow concentration to 2 mg l-1, indicating limitation of N uptake by loading. N saturation at higher inflow concentration coincided with maximum uptake capacity, 40% uptake efficiency, and an uptake length 2 times greater than the length of the backwater. Nitrate diffusion and denitrification in sediment accounted for 27% of the backwater nitrate retention, indicating that assimilation by other biota or denitrification on other substrates were the dominant uptake mechanisms. Ammonium export from the backwater was driven by diffusive efflux from the sediment. Ammonium increased from near zero at the inflow to a maximum mid-lake, then declined slightly toward the outflow due to uptake during transport. Ammonium export was small compared to nitrate retention. ?? 2007 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
Tanaka, T.; Thingstad, T. F.; Løvdal, T.; Grossart, H.-P.; Larsen, A.; Schulz, K. G.; Riebesell, U.
2007-11-01
Availability of phosphate for phytoplankton and bacteria and of labile organic carbon for bacteria at different pCO2 levels were studied in a mesocosm experiment (PeECE III). Using nutrient-depleted SW Norwegian fjord waters, three different levels of pCO2 (350 μatm: 1×CO2; 750 μatm: 2×CO2; 1050 μatm: 3×CO2) were set up, and nitrate and phosphate were added at the start of the experiment in order to induce a phytoplankton bloom. Despite similar responses of total particulate P concentration and phosphate turnover time at the three different pCO2 levels, the size distribution of particulate P and 33PO4 uptake suggested that phosphate transferred to the >10 μm fraction was greater in the 3×CO2 mesocosm during the first 6-10 days when phosphate concentration was high. During the period of phosphate depletion (after Day 12), specific phosphate affinity and specific alkaline phosphatase activity (APA) suggested a P-deficiency (i.e. suboptimal phosphate supply) but not a P-limitation for the phytoplankton and bacterial community at the three different pCO2 levels. Although specific phosphate affinity and specific APA tended to be higher in 3×CO2 than in 2×CO2 and 1×CO2 mesocosms during the phosphate depletion period, no statistical differences were found. Responses of specific glucose affinity for bacteria were similar at the three different pCO2 levels. Measured specific glucose affinities were consistently much lower than the theoretical maximum predicted from the diffusion-limited model, suggesting that bacterial growth was not limited by the availability of labile dissolved organic carbon. These results suggest that availability of phosphate and glucose was similar at the three different pCO2 levels.
Spring photosynthetic onset and net CO2 uptake in Alaska triggered by landscape thawing.
Parazoo, Nicholas C; Arneth, Almut; Pugh, Thomas A M; Smith, Ben; Steiner, Nicholas; Luus, Kristina; Commane, Roisin; Benmergui, Josh; Stofferahn, Eric; Liu, Junjie; Rödenbeck, Christian; Kawa, Randy; Euskirchen, Eugenie; Zona, Donatella; Arndt, Kyle; Oechel, Walt; Miller, Charles
2018-04-24
The springtime transition to regional-scale onset of photosynthesis and net ecosystem carbon uptake in boreal and tundra ecosystems are linked to the soil freeze-thaw state. We present evidence from diagnostic and inversion models constrained by satellite fluorescence and airborne CO 2 from 2012 to 2014 indicating the timing and magnitude of spring carbon uptake in Alaska correlates with landscape thaw and ecoregion. Landscape thaw in boreal forests typically occurs in late April (DOY 111 ± 7) with a 29 ± 6 day lag until photosynthetic onset. North Slope tundra thaws 3 weeks later (DOY 133 ± 5) but experiences only a 20 ± 5 day lag until photosynthetic onset. These time lag differences reflect efficient cold season adaptation in tundra shrub and the longer dehardening period for boreal evergreens. Despite the short transition from thaw to photosynthetic onset in tundra, synchrony of tundra respiration with snow melt and landscape thaw delays the transition from net carbon loss (at photosynthetic onset) to net uptake by 13 ± 7 days, thus reducing the tundra net carbon uptake period. Two global CO 2 inversions using a CASA-GFED model prior estimate earlier northern high latitude net carbon uptake compared to our regional inversion, which we attribute to (i) early photosynthetic-onset model prior bias, (ii) inverse method (scaling factor + optimization window), and (iii) sparsity of available Alaskan CO 2 observations. Another global inversion with zero prior estimates the same timing for net carbon uptake as the regional model but smaller seasonal amplitude. The analysis of Alaskan eddy covariance observations confirms regional scale findings for tundra, but indicates that photosynthesis and net carbon uptake occur up to 1 month earlier in evergreens than captured by models or CO 2 inversions, with better correlation to above-freezing air temperature than date of primary thaw. Further collection and analysis of boreal evergreen species over multiple years and at additional subarctic flux towers are critically needed. © 2018 John Wiley & Sons Ltd.
Lorah, Michelle M.; Herman, Janet S.
1988-01-01
This field study focuses on quantitatively defining the chemical changes occurring in Falling Spring Creek, a travertine-depositing stream located in Alleghany County, Virginia. The processes of CO2outgassing and calcite precipitation or dissolution control the chemical evolution of the stream. The observed chemical composition of the water was used with the computerized geochemical model WATEQF to calculate aqueous speciation, saturation indices, and CO2 partial pressure values. Mass balance calculations were performed to obtain mass transfers of CO2 and calcite. Reaction times, estimated from stream discharge, were used with the mass transfer results to calculate rates of CO2, outgassing and calcite precipitation between consecutive sampling points. The stream, which is fed by a carbonate spring, is supersaturated with respect to CO2 along the entire 5.2-km flow path. Outgassing of CO2 drives the solution to high degrees of supersaturation with respect to calcite. Metabolic uptake of CO2 by photosynthetic plants is insignificant, because the high supply rate of dissolved carbon dioxide and the extreme agitation of the stream at waterfalls and rapids causes a much greater amount of inorganic CO2 outgassing to occur. Calcite precipitation is kinetically inhibited until near the crest of a 20-m vertical waterfall. Calcite precipitation rates then reach a maximum at the waterfall where greater water turbulence allows the most rapid escape of CO2. Physical evidence for calcite precipitation exists in the travertine deposits which are first observed immediately above the waterfall and extend for at least 1.0 km below the falls. Net calcite precipitation occurs at all times of the year but is greatest during low-flow conditions in the summer and early fall.
Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years.
Ballantyne, A P; Alden, C B; Miller, J B; Tans, P P; White, J W C
2012-08-02
One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO(2) emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO(2) measurements, CO(2) emission inventories and their full range of uncertainties to calculate changes in global CO(2) sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions.
Pająk, Marek; Woźniczka, Magdalena; Vogt, Andrzej; Kufelnicki, Aleksander
2017-09-19
The paper examines Co(II)-amino acid-imidazole systems (where amino acid = L-α-amino acid: alanine, asparagine, histidine) which, when in aqueous solutions, activate and reversibly take up dioxygen, while maintaining the structural scheme of the heme group (imidazole as axial ligand and O 2 uptake at the sixth, trans position) thus imitating natural respiratory pigments such as myoglobin and hemoglobin. The oxygenated reaction shows higher reversibility than for Co(II)-amac systems with analogous amino acids without imidazole. Unlike previous investigations of the heteroligand Co(II)-amino acid-imidazole systems, the present study accurately calculates all equilibrium forms present in solution and determines the [Formula: see text]equilibrium constants without using any simplified approximations. The equilibrium concentrations of Co(II), amino acid, imidazole and the formed complex species were calculated using constant data obtained for analogous systems under oxygen-free conditions. Pehametric and volumetric (oxygenation) studies allowed the stoichiometry of O 2 uptake reaction and coordination mode of the central ion in the forming oxygen adduct to be determined. The values of dioxygen uptake equilibrium constants [Formula: see text] were evaluated by applying the full mass balance equations. Investigations of oxygenation of the Co(II)-amino acid-imidazole systems indicated that dioxygen uptake proceeds along with a rise in pH to 9-10. The percentage of reversibility noted after acidification of the solution to the initial pH ranged within ca 30-60% for alanine, 40-70% for asparagine and 50-90% for histidine, with a rising tendency along with the increasing share of amino acid in the Co(II): amino acid: imidazole ratio. Calculations of the share of the free Co(II) ion as well as of the particular complex species existing in solution beside the oxygen adduct (regarding dioxygen bound both reversibly and irreversibly) indicated quite significant values for the systems with alanine and asparagine-in those cases the of oxygenation reaction is right shifted to a relatively lower extent. The experimental results indicate that the "active" complex, able to take up dioxygen, is a heteroligand CoL 2 L'complex, where L = amac (an amino acid with a non-protonated amine group) while L' = Himid, with the N1 nitrogen protonated within the entire pH range under study. Moreover, the corresponding log [Formula: see text] value at various initial total Co(II), amino acid and imidazole concentrations was found to be constant within the limits of error, which confirms those results. The highest log [Formula: see text] value, 14.9, occurs for the histidine system; in comparison, asparagine is 7.8 and alanine is 9.7. This high value is most likely due to the participation of the additional effective N3 donor of the imidazole side group of histidine. The Co(II)-amac-Himid systems formed by using a [Co(imid) 2 ] n polymer as starting material demonstrate that the reversible uptake of molecular oxygen occurs by forming dimeric μ-peroxy adducts. The essential impact on the electron structure of the dioxygen bridge, and therefore, on the reversibility of O 2 uptake, is due to the imidazole group at axial position (trans towards O 2 ). However, the results of reversibility measurements of O 2 uptake, unequivocally indicate a much higher effectiveness of dioxygenation than in systems in which the oxygen adducts are formed in equilibrium mixtures during titration of solutions containing Co(II) ions, the amino acid and imidazole, separately.
Wang, Hsiu-Wen; Fanelli, Victor R; Reiche, Helmut M; Larson, Eric; Taylor, Mark A; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine
2014-12-01
This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.
NASA Astrophysics Data System (ADS)
Launois, T.; Peylin, P.; Belviso, S.; Poulter, B.
2015-08-01
Clear analogies between carbonyl sulfide (OCS) and carbon dioxide (CO2) diffusion pathways through leaves have been revealed by experimental studies, with plant uptake playing an important role for the atmospheric budget of both species. Here we use atmospheric OCS to evaluate the gross primary production (GPP) of three dynamic global vegetation models (Lund-Potsdam-Jena, LPJ; National Center for Atmospheric Research - Community Land Model 4, NCAR-CLM4; and Organising Carbon and Hydrology In Dynamic Ecosystems, ORCHIDEE). Vegetation uptake of OCS is modeled as a linear function of GPP and leaf relative uptake (LRU), the ratio of OCS to CO2 deposition velocities of plants. New parameterizations for the non-photosynthetic sinks (oxic soils, atmospheric oxidation) and biogenic sources (oceans and anoxic soils) of OCS are also provided. Despite new large oceanic emissions, global OCS budgets created with each vegetation model show exceeding sinks by several hundred Gg S yr-1. An inversion of the surface fluxes (optimization of a global scalar which accounts for flux uncertainties) led to balanced OCS global budgets, as atmospheric measurements suggest, mainly by drastic reduction (up to -50 %) in soil and vegetation uptakes. The amplitude of variations in atmospheric OCS mixing ratios is mainly dictated by the vegetation sink over the Northern Hemisphere. This allows for bias recognition in the GPP representations of the three selected models. The main bias patterns are (i) the terrestrial GPP of ORCHIDEE at high northern latitudes is currently overestimated, (ii) the seasonal variations of the GPP are out of phase in the NCAR-CLM4 model, showing a maximum carbon uptake too early in spring in the northernmost ecosystems, (iii) the overall amplitude of the seasonal variations of GPP in NCAR-CLM4 is too small, and (iv) for the LPJ model, the GPP is slightly out of phase for the northernmost ecosystems and the respiration fluxes might be too large in summer in the Northern Hemisphere. These results rely on the robustness of the OCS modeling framework and, in particular, the choice of the LRU values (assumed constant in time) and the parameterization of soil OCS uptake with small seasonal variations. Refined optimization with regional-scale and seasonally varying coefficients might help to test some of these hypothesis.
Influence of the biosphere and circulation on atmospheric CO2
NASA Astrophysics Data System (ADS)
Corbett, A.; Jiang, X.; La, J.; Olsen, E. T.; Licata, S. J.; Yung, Y. L.
2017-12-01
Using multiple satellite CO2 retrievals (e.g., AIRS, GOSAT, and OCO-2), we have investigated seasonal changes of CO2 as a function of latitudes and altitudes. The annual cycle of atmospheric CO2 is closely related to the exchange of CO2 between the biosphere and the atmosphere, so we also examine solar-induced fluorescence (SIF). High SIF value means more CO2 uptake by photosynthesis, which will lead to lower atmospheric CO2 concentrations. The satellite data demonstrate a negative correlation between atmospheric CO2 and SIF. SIF can be influenced by precipitation and evaporation. We have found a positive correlation between SIF and the difference of precipitation and evaporation, suggesting there is more CO2 uptake by vegetation when more water is available. In addition to the annual cycle, large-scale circulation, such as South Atlantic Walker Circulation, can also modulate atmospheric CO2 concentrations. As seen from AIRS, GOSAT, and OCO-2 CO2 retrievals, there is less CO2 over the South Atlantic Ocean than over South America from December to March. Results in this study will help us better understand interactions between the biosphere, circulation, and atmospheric CO2.
Bishop, Kristen A; Lemonnier, Pauline; Quebedeaux, Jennifer C; Montes, Christopher M; Leakey, Andrew D B; Ainsworth, Elizabeth A
2018-06-02
Species have different strategies for loading sugars into the phloem, which vary in the route that sugars take to enter the phloem and the energetics of sugar accumulation. Species with passive phloem loading are hypothesized to have less flexibility in response to changes in some environmental conditions because sucrose export from mesophyll cells is dependent on fixed anatomical plasmodesmatal connections. Passive phloem loaders also have high mesophyll sugar content, and may be less likely to exhibit sugar-mediated down-regulation of photosynthetic capacity at elevated CO 2 concentrations. To date, the effect of phloem loading strategy on the response of plant carbon metabolism to rising atmospheric CO 2 concentrations is unclear, despite the widespread impacts of rising CO 2 on plants. Over three field seasons, five species with apoplastic loading, passive loading, or polymer-trapping were grown at ambient and elevated CO 2 concentration in free air concentration enrichment plots. Light-saturated rate of photosynthesis, photosynthetic capacity, leaf carbohydrate content, and anatomy were measured and compared among the species. All five species showed significant stimulation in midday photosynthetic CO 2 uptake by elevated CO 2 even though the two passive loading species showed significant down-regulation of maximum Rubisco carboxylation capacity at elevated CO 2 . There was a trend toward greater starch accumulation at elevated CO 2 in all species, and was most pronounced in passive loaders. From this study, we cannot conclude that phloem loading strategy is a key determinant of plant response to elevated CO 2 , but compelling differences in response counter to our hypothesis were observed. A phylogenetically controlled experiment with more species may be needed to fully test the hypothesis.
USDA-ARS?s Scientific Manuscript database
Atmospheric CO2 enrichment is expected to often benefit plant growth, despite causing global warming and nitrogen (N) dilution in plants. Most plants primarily procure N as inorganic nitrate (NO3-) or ammonium (NH4+), using membrane-localized transport proteins in roots, which are key targets for im...
The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum.
Conway, Tim M; Hoffmann, Linn J; Breitbarth, Eike; Strzepek, Robert F; Wolff, Eric W
2016-01-01
Relief of iron (Fe) limitation in the surface Southern Ocean has been suggested as one driver of the regular glacial-interglacial cycles in atmospheric carbon dioxide (CO2). The proposed cause is enhanced deposition of Fe-bearing atmospheric dust to the oceans during glacial intervals, with consequent effects on export production and the carbon cycle. However, understanding the role of enhanced atmospheric Fe supply in biogeochemical cycles is limited by knowledge of the fluxes and 'bioavailability' of atmospheric Fe during glacial intervals. Here, we assess the effect of Fe fertilization by dust, dry-extracted from the Last Glacial Maximum portion of the EPICA Dome C Antarctic ice core, on the Antarctic diatom species Eucampia antarctica and Proboscia inermis. Both species showed strong but differing reactions to dust addition. E. antarctica increased cell number (3880 vs. 786 cells mL-1), chlorophyll a (51 vs. 3.9 μg mL-1) and particulate organic carbon (POC; 1.68 vs. 0.28 μg mL-1) production in response to dust compared to controls. P. inermis did not increase cell number in response to dust, but chlorophyll a and POC per cell both strongly increased compared to controls (39 vs. 15 and 2.13 vs. 0.95 ng cell-1 respectively). The net result of both responses was a greater production of POC and chlorophyll a, as well as decreased Si:C and Si:N incorporation ratios within cells. However, E, antarctica decreased silicate uptake for the same nitrate and carbon uptake, while P. inermis increased carbon and nitrate uptake for the same silicate uptake. This suggests that nutrient utilization changes in response to Fe addition could be driven by different underlying mechanisms between different diatom species. Enhanced supply of atmospheric dust to the surface ocean during glacial intervals could therefore have driven nutrient-utilization changes which could permit greater carbon fixation for lower silica utilization. Additionally, both species responded more strongly to lower amounts of direct Fe chloride addition than they did to dust, suggesting that not all the Fe released from dust was in a bioavailable form available for uptake by diatoms.
The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum
Hoffmann, Linn J.; Breitbarth, Eike; Strzepek, Robert F.; Wolff, Eric W.
2016-01-01
Relief of iron (Fe) limitation in the surface Southern Ocean has been suggested as one driver of the regular glacial-interglacial cycles in atmospheric carbon dioxide (CO2). The proposed cause is enhanced deposition of Fe-bearing atmospheric dust to the oceans during glacial intervals, with consequent effects on export production and the carbon cycle. However, understanding the role of enhanced atmospheric Fe supply in biogeochemical cycles is limited by knowledge of the fluxes and ‘bioavailability’ of atmospheric Fe during glacial intervals. Here, we assess the effect of Fe fertilization by dust, dry-extracted from the Last Glacial Maximum portion of the EPICA Dome C Antarctic ice core, on the Antarctic diatom species Eucampia antarctica and Proboscia inermis. Both species showed strong but differing reactions to dust addition. E. antarctica increased cell number (3880 vs. 786 cells mL-1), chlorophyll a (51 vs. 3.9 μg mL-1) and particulate organic carbon (POC; 1.68 vs. 0.28 μg mL-1) production in response to dust compared to controls. P. inermis did not increase cell number in response to dust, but chlorophyll a and POC per cell both strongly increased compared to controls (39 vs. 15 and 2.13 vs. 0.95 ng cell-1 respectively). The net result of both responses was a greater production of POC and chlorophyll a, as well as decreased Si:C and Si:N incorporation ratios within cells. However, E, antarctica decreased silicate uptake for the same nitrate and carbon uptake, while P. inermis increased carbon and nitrate uptake for the same silicate uptake. This suggests that nutrient utilization changes in response to Fe addition could be driven by different underlying mechanisms between different diatom species. Enhanced supply of atmospheric dust to the surface ocean during glacial intervals could therefore have driven nutrient-utilization changes which could permit greater carbon fixation for lower silica utilization. Additionally, both species responded more strongly to lower amounts of direct Fe chloride addition than they did to dust, suggesting that not all the Fe released from dust was in a bioavailable form available for uptake by diatoms. PMID:27384948
Hierarchical Zeolites with Amine-Functionalized Mesoporous Domains for Carbon Dioxide Capture.
Nguyen, Tien Hoa; Kim, Sungjune; Yoon, Minyoung; Bae, Tae-Hyun
2016-03-08
To prepare materials with high CO2 adsorption, a series of hierarchical LTA zeolites possessing various mesopore spaces that are decorated with alkylamines was designed and synthesized. The highest CO2 uptake capacity was achieved when (3-aminopropyl)trimethoxysilane (APTMS) was grafted onto the hierarchical LTA zeolite having the largest mesopores. Owing to the contributions of both alkylamine groups grafted onto the mesopore surfaces and active sites in the LTA zeolites, the amount of CO2 that can be taken up on these materials is much higher than for conventional aminosilicas such SBA-15 and MCM-41. Furthermore, the adsorbent shows good CO2 uptake capacity and recyclability in dynamic flow conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015-01-01
We investigate the influence of structural heterogeneity on the transport properties of simple gases in a Hybrid Reverse Monte Carlo (HRMC) constructed model of silicon carbide-derived carbon (SiC-DC). The energy landscape of the system is determined based on free energy analysis of the atomistic model. The overall energy barriers of the system for different gases are computed along with important properties, such as Henry constant and differential enthalpy of adsorption at infinite dilution, and indicate hydrophobicity of the SiC-DC structure and its affinity for CO2 and CH4 adsorption. We also study the effect of molecular geometry, pore structure and energy heterogeneity considering different hopping scenarios for diffusion of CO2 and CH4 through ultramicropores using the Nudged Elastic Band (NEB) method. It is shown that the energy barrier of a hopping molecule is very sensitive to the shape of the pore entry. We provide evidence for the influence of structural heterogeneity on self-diffusivity of methane and carbon dioxide using molecular dynamics simulation, based on a maximum in the variation of self-diffusivity with loading. A comparison of the MD simulation results with self-diffusivities from quasi-elastic neutron scattering (QENS) measurements and, with macroscopic uptake-based low-density transport coefficients, reveals the existence of internal barriers not captured in MD simulation and QENS experiments. Nevertheless, the simulation and macroscopic uptake-based diffusion coefficients agree within a factor of 2–3, indicating that our HRMC model structure captures most of the important energy barriers affecting the transport of CH4 in the nanostructure of SiC-DC. PMID:24932319
Farmahini, Amir H; Shahtalebi, Ali; Jobic, Hervé; Bhatia, Suresh K
2014-06-05
We investigate the influence of structural heterogeneity on the transport properties of simple gases in a Hybrid Reverse Monte Carlo (HRMC) constructed model of silicon carbide-derived carbon (SiC-DC). The energy landscape of the system is determined based on free energy analysis of the atomistic model. The overall energy barriers of the system for different gases are computed along with important properties, such as Henry constant and differential enthalpy of adsorption at infinite dilution, and indicate hydrophobicity of the SiC-DC structure and its affinity for CO 2 and CH 4 adsorption. We also study the effect of molecular geometry, pore structure and energy heterogeneity considering different hopping scenarios for diffusion of CO 2 and CH 4 through ultramicropores using the Nudged Elastic Band (NEB) method. It is shown that the energy barrier of a hopping molecule is very sensitive to the shape of the pore entry. We provide evidence for the influence of structural heterogeneity on self-diffusivity of methane and carbon dioxide using molecular dynamics simulation, based on a maximum in the variation of self-diffusivity with loading. A comparison of the MD simulation results with self-diffusivities from quasi-elastic neutron scattering (QENS) measurements and, with macroscopic uptake-based low-density transport coefficients, reveals the existence of internal barriers not captured in MD simulation and QENS experiments. Nevertheless, the simulation and macroscopic uptake-based diffusion coefficients agree within a factor of 2-3, indicating that our HRMC model structure captures most of the important energy barriers affecting the transport of CH 4 in the nanostructure of SiC-DC.
Subarctic weathering of mineral wastes provides a sink for atmospheric CO(2).
Wilson, Siobhan A; Dipple, Gregory M; Power, Ian M; Barker, Shaun L L; Fallon, Stewart J; Southam, Gordon
2011-09-15
The mineral waste from some mines has the capacity to trap and store CO(2) within secondary carbonate minerals via the process of silicate weathering. Nesquehonite [MgCO(3)·3H(2)O] forms by weathering of Mg-silicate minerals in kimberlitic mine tailings at the Diavik Diamond Mine, Northwest Territories, Canada. Less abundant Na- and Ca-carbonate minerals precipitate from sewage treatment effluent deposited in the tailings storage facility. Radiocarbon and stable carbon and oxygen isotopes are used to assess the ability of mine tailings to trap and store modern CO(2) within these minerals in the arid, subarctic climate at Diavik. Stable isotopic data cannot always uniquely identify the source of carbon stored within minerals in this setting; however, radiocarbon isotopic data provide a reliable quantitative estimate for sequestration of modern carbon. At least 89% of the carbon trapped within secondary carbonate minerals at Diavik is derived from a modern source, either by direct uptake of atmospheric CO(2) or indirect uptake though the biosphere. Silicate weathering at Diavik is trapping 102-114 g C/m(2)/y within nesquehonite, which corresponds to a 2 orders of magnitude increase over the background rate of CO(2) uptake predicted from arctic and subarctic river catchment data.
NASA Astrophysics Data System (ADS)
Lo Monaco, C.; Metzl, N.; D'Ovidio, F.; Llort, J.; Ridame, C.
2014-12-01
Iron and light are the main factors limiting the biological pump of CO2 in the Southern Ocean. Iron fertilization experiments have demonstrated the potential for increased uptake of atmospheric CO2, but little is known about the evolution of fertilized environnements. This paper presents observations collected in one of the largest phytoplankton bloom of the Southern Ocean sustained by iron originating from the Kerguelen Plateau. We first complement previous studies by investigating the mechanisms that control air-sea CO2 fluxes over and downstream of the Kerguelen Plateau at the onset of the bloom based on measurements obtained in October-November 2011. These new observations show the rapid establishment of a strong CO2 sink in waters fertilized with iron as soon as vertical mixing is reduced. The magnitude of the CO2 sink was closely related to chlorophyll a and iron concentrations. Because iron concentration strongly depends on the distance from the iron source and the mode of delivery, we identified lateral advection as the main mechanism controlling air-sea CO2 fluxes downtream the Kerguelen Plateau during the growing season. In the southern part of the bloom, situated over the Plateau (iron source), the CO2 sink was stronger and spatially more homogeneous than in the plume offshore. However, we also witnessed a substantial reduction in the uptake of atmospheric CO2 over the Plateau following a strong winds event. Next, we used all the data available in this region in order to draw the seasonal evolution of air-sea CO2 fluxes. The CO2 sink is rapidly reduced during the course of the growing season, which we attribute to iron and silicic acid depletion. South of the Polar Front, where nutrients depletion is delayed, we suggest that the amplitude and duration of the CO2 sink is mainly controlled by vertical mixing. The impact of iron fertilization on air-sea CO2 fluxes is revealed by comparing the uptake of CO2 integrated over the productive season in the bloom, between 1 and 1.5 mol C m-2 yr-1, and in the iron-poor HNLC waters, where we found a typical value of 0.4 mol C m-2 yr-1. Extrapolating our results to the ice-free Southern Ocean (~50-60° S) suggests that iron fertilization of the whole area would increase the contemporay oceanic uptake of CO2 by less than 0.1 Pg C yr-1, i.e., less than 1% of the current anthropogenic CO2 emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubey, Manvendra; Parket, Harrison; Myers, Katherine
Forests soak up 25% of the carbon dioxide (CO2) emitted by anthropogenic fossil energy use (10 Gt C y-1), moderating its atmospheric accumulation. How this terrestrial CO2 uptake will evolve with climate change in the 21st Century is largely unknown. Rainforests are the most active ecosystems, with the Amazon basin storing 120 Gt C as biomass and exchanging 18 Gt C y-1 of CO2 via photosynthesis and respiration and fixing carbon at 2-3 kg C m-2 y-1. Furthermore, the intense hydrologic and carbon cycles are tightly coupled in the Amazon where about half of the water is recycled by evapotranspirationmore » and the other half imported from the ocean by Northeasterly trade winds. Climate models predict a drying in the Amazon with reduced carbon uptake while observationally guided assessments indicate sustained uptake. We set out to resolve this huge discrepancy in the size and sign of the future Amazon carbon cycle by performing the first simultaneous regional-scale high-frequency measurements of atmospheric CO2, H2O, HOD, CH4, N2O, and CO at the T3 site in Manacupuru, Brazil, as part of DOE's GoAmazon 2014/15 project. Our data will be used to inform and develop DOE's Community Land Model (CLM) on the tropical carbon-water couplings at the appropriate grid scale (10-50 km). Our measurements will also validate the CO2 data from Japan's Greenhouse gases Observing Satellite (GOSAT) and NASA's Orbiting Carbon Observatory (OCO)-2 satellite (launched in July, 2014). Our data addresses these science questions: 1. How does ecosystem heterogeneity and climate variability influence the rainforest carbon cycle? 2. How well do current tropical ecosystem models simulate the observed regional carbon cycle? 3. Does nitrogen deposition (from the Manaus, Brazil, plume) enhance rainforest carbon uptake?« less
Computer program for calculation of oxygen uptake
NASA Technical Reports Server (NTRS)
Castle, B. L.; Castle, G.; Greenleaf, J. E.
1979-01-01
A description and operational precedures are presented for a computer program, written in Super Basic, that calculates oxygen uptake, carbon dioxide production, and related ventilation parameters. Program features include: (1) the option of entering slope and intercept values of calibration curves for the O2 and CO2 and analyzers; (2) calculation of expired water vapor pressure; and (3) the option of entering inspured O2 and CO2 concentrations. The program is easily adaptable for programmable laboratory calculators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welp, Lisa R.; Patra, Prabir K.; Rodenbeck, Christian
Warmer temperatures and elevated atmospheric CO 2 concentrations over the last several decades have been credited with increasing vegetation activity and photosynthetic uptake of CO 2 from the atmosphere in the high northern latitude ecosystems: the boreal forest and arctic tundra. At the same time, soils in the region have been warming, permafrost is melting, fire frequency and severity are increasing, and some regions of the boreal forest are showing signs of stress due to drought or insect disturbance. The recent trends in net carbon balance of these ecosystems, across heterogeneous disturbance patterns, and the future implications of these changesmore » are unclear. Here, we examine CO 2 fluxes from northern boreal and tundra regions from 1985 to 2012, estimated from two atmospheric inversions (RIGC and Jena). Both used measured atmospheric CO 2 concentrations and wind fields from interannually variable climate reanalysis. In the arctic zone, the latitude region above 60°N excluding Europe (10 W-63°E), neither inversion finds a significant long-term trend in annual CO 2 balance. The boreal zone, the latitude region from approximately 50–60°N, again excluding Europe, showed a trend of 8–11 TgCyr -2 over the common period of validity from 1986 to 2006, resulting in an annual CO 2 sink in 2006 that was 170–230 TgCyr -1 larger than in 1986. This trend appears to continue through 2012 in the Jena inversion as well. In both latitudinal zones, the seasonal amplitude of monthly CO 2 fluxes increased due to increased uptake in summer, and in the arctic zone also due to increased fall CO 2 release. These findings suggest that the boreal zone has been maintaining and likely increasing CO 2 sink strength over this period, despite browning trends in some regions and changes in fire frequency and land use. Meanwhile, the arctic zone shows that increased summer CO 2 uptake, consistent with strong greening trends, is offset by increased fall CO 2 release, resulting in a net neutral trend in annual fluxes. Finally, the inversion fluxes from the arctic and boreal zones covering the permafrost regions showed no indication of a large-scale positive climate–carbon feedback caused by warming temperatures on high northern latitude terrestrial CO 2 fluxes from 1985 to 2012.« less
Welp, Lisa R.; Patra, Prabir K.; Rodenbeck, Christian; ...
2016-07-25
Warmer temperatures and elevated atmospheric CO 2 concentrations over the last several decades have been credited with increasing vegetation activity and photosynthetic uptake of CO 2 from the atmosphere in the high northern latitude ecosystems: the boreal forest and arctic tundra. At the same time, soils in the region have been warming, permafrost is melting, fire frequency and severity are increasing, and some regions of the boreal forest are showing signs of stress due to drought or insect disturbance. The recent trends in net carbon balance of these ecosystems, across heterogeneous disturbance patterns, and the future implications of these changesmore » are unclear. Here, we examine CO 2 fluxes from northern boreal and tundra regions from 1985 to 2012, estimated from two atmospheric inversions (RIGC and Jena). Both used measured atmospheric CO 2 concentrations and wind fields from interannually variable climate reanalysis. In the arctic zone, the latitude region above 60°N excluding Europe (10 W-63°E), neither inversion finds a significant long-term trend in annual CO 2 balance. The boreal zone, the latitude region from approximately 50–60°N, again excluding Europe, showed a trend of 8–11 TgCyr -2 over the common period of validity from 1986 to 2006, resulting in an annual CO 2 sink in 2006 that was 170–230 TgCyr -1 larger than in 1986. This trend appears to continue through 2012 in the Jena inversion as well. In both latitudinal zones, the seasonal amplitude of monthly CO 2 fluxes increased due to increased uptake in summer, and in the arctic zone also due to increased fall CO 2 release. These findings suggest that the boreal zone has been maintaining and likely increasing CO 2 sink strength over this period, despite browning trends in some regions and changes in fire frequency and land use. Meanwhile, the arctic zone shows that increased summer CO 2 uptake, consistent with strong greening trends, is offset by increased fall CO 2 release, resulting in a net neutral trend in annual fluxes. Finally, the inversion fluxes from the arctic and boreal zones covering the permafrost regions showed no indication of a large-scale positive climate–carbon feedback caused by warming temperatures on high northern latitude terrestrial CO 2 fluxes from 1985 to 2012.« less
Schulze, E -D; Lange, O L; Koch, W
1972-12-01
The influence of climatic factors on net photosynthesis, dark respiration and transpiration was investigated in the Negev Desert at the end of the dry summer period when plant water stress was at a maximum. Species studied included: dominant species of the natural vegetation (Artemisia herba-alba, Hammada scoparia, Noaea mucronata, Reaumuria negevensis, Salsola inermis, Zygophyllum dumosum), cultivated plants receiving rainfall and run-off water during the winter season in the run-off farm Avdat (Prunus armeniaca, Vitis vinifera), and irrigated cultivated plants receiving additional water during the summer season (Citrullus colocynthis, Datura metel). 1. Light saturation of net photosynthesis was reached at 60-90 klx conforming to the high solar radiation intensities of the desert. 2. Maximum rates of CO 2 uptake per unit of dry weight for the irrigated mesomorphic plants was ten times that of the wild plants. However, in comparison to the other species, maximal rates of CO 2 uptake for wild plants were higher when calculated on a leaf area basis than when represented on a dry weight basis. Maximum rates of net photosynthesis per unit chlorophyll content for some of the wild plants (Salsola and Noaea) were comparable to those of the cultivated Vitis and irrigated Citrullus and Datura, Hammada exhibited even higher rates than Prunus. This demonstrates the great photosynthetic capacity of the wild plants even at the end of the dry season. 3. The upper temperature compensation point for net photosynthesis of the wild plants was unusually high as an adaptation to the temperatures of the habitat. Compensation points higher than 49°C exceed the maxima known so far for other flowering species. Maximum rates of net photosynthesis of Hammada were measured when the temperature of the photosynthetic organs was 37°C; at 49°C photosynthesis was only reduced by 50%. 4. Leaf temperature affects plant gas exchange by influencing stomatal aperture. Diffusion resistance of leaves to water vapour was reduced at low temperatures and increased at high temperatures. Reduction of net photosynthesis and transpiration of desert plants at midday may, therefore, be the result of temperature-induced stomatal closure. The possible influence of peristomatal transpiration on stomatal aperture is also discussed. Peristomatal transpiration is directly related to the vapour pressure gradient between the leaf mesophyll and the ambient air which increases with increasing temperatures. 5. Diffusion resistance to water vapour was reduced at high temperatures approaching the limits of heat resistance, due to increased stomatal aperture. This resulted in greater transpirational cooling. 6. Under conditions of increased leaf water stress, diffusion resistance increased, either by sudden stomatal closure at specific threshold values of water stress or through a continuous increase in resistance. This increased resistance is coupled with decreases in transpiration and photosynthesis. 7. In several plant species increased diffusion resistance during the course of the day caused decreased transpiration without a corresponding decrease in photosynthesis. Under these conditions, the ratio of CO 2 uptake to transpiration became more favourable as the day progressed. The possibility that this favourable gas exchange response is the result of an increased mesophyll resistance to water vapour loss is discussed.
King, Gary M.
2003-01-01
A series of sites were established on Hawaiian volcanic deposits ranging from about 18 to 300 years old. Three sites occurred in areas that supported tropical rain forests; the remaining sites were in areas that supported little or no plant growth. Sites >26 years old consumed atmospheric CO and hydrogen at rates ranging from about 0.2 to 5 mg of CO m−2 day−1 and 0.1 to 4 mg of H2 m−2 day−1, respectively. Respiration, measured as CO2 production, for a subset of the sites ranged from about 40 to >1,400 mg of CO2 m−2 day−1. CO and H2 accounted for about 13 to 25% of reducing equivalent flow for all but a forested site, where neither substrate appeared significant. Based on responses to chloroform fumigation, hydrogen utilization appeared largely due to microbial uptake. In contrast to results for CO and hydrogen, methane uptake occurred consistently only at the forest site. Increasing deposit age was generally accompanied by increasing concentrations of organic matter and microbial biomass, measured as phospholipid phosphate. Exoenzymatic activities (acid and alkaline phosphatases and α- and β-glucosidases) were positively correlated with deposit age in spite of considerable variability within sites. The diversity of substrates utilized in Biolog Ecoplate assays also increased with deposit age, possibly reflecting changes in microbial community complexity. PMID:12839783
Huntzinger, D. N.; Michalak, A. M.; Schwalm, C.; ...
2017-07-06
Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO 2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO 2 which shows almost twice the variability in cumulative landmore » uptake since 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO 2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huntzinger, D. N.; Michalak, A. M.; Schwalm, C.
2017-07-06
Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO2 which shows almost twice the variability in cumulative land uptake sincemore » 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huntzinger, D. N.; Michalak, A. M.; Schwalm, C.
Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO 2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO 2 which shows almost twice the variability in cumulative landmore » uptake since 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO 2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomes, Ruth; Bhaumik, Asim, E-mail: msab@iacs.res.in
2015-02-15
We report a very simple and unique strategy for synthesis of a tertiary amine functionalized high surface area porous organic polymer (POP) PDVTA-1 through the co-polymerization of monomers divinylbenzene (DVB) and triallylamine (TAA) under solvothermal reaction conditions. Two different PDVTA-1 samples have been synthesized by varying the molar ratio of the monomers. The porous polymeric materials have been thoroughly characterized by solid state {sup 13}C CP MAS-NMR, FT-IR and UV–vis spectroscopy, N{sub 2} sorption, HR TEM and FE SEM to understand its chemical environment, nanostructure, bonding, morphology and related surface properties. PDVTA-1 with higher amine content (DVB/TAA=4.0) showed exceptionally highmore » CO{sub 2} uptake capacity of 85.8 wt% (19.5 mmol g{sup −1}) at 273 K and 43.69 wt% (9.93 mmol g{sup −1}) at 298 K under 3 bar pressure, whereas relatively low amine loaded material (DVB/TAA=7.0) shows uptake capacity of 59.2 wt% (13.45 mmol g{sup −1}) at 273 K and 34.36 wt% (7.81 mmol g{sup −1}) at 298 K. Highly porous nanostructure together with very high surface area and basicity at the surface due to the presence of abundant basic tertiary amine N-sites in the framework of PDVTA-1 could be responsible for very high CO{sub 2} adsorption. - Graphical abstract: Exceptionally high CO2 uptake (85.8 wt % at 273 K) has been observed over a high surface area porous organic polymer PDVTA-1 synthesized through copolymerization of divinylbenzene and triallyl amine. - Highlights: • Designing the synthesis of a new N-rich cross-linked porous organic polymer PDVTA-1. • PDVTA-1 showed mesoporosity with very high surface area of 903 m{sup 2} g{sup −1}. • High surface area and presence of basic sites facilitates the CO{sub 2} uptake. • PDVTA-1 showed exceptionally high CO{sub 2} adsorption capacity of 85.8 wt% at 273 K, 3 bar pressure.« less
Reznicek, O; Facey, S J; de Waal, P P; Teunissen, A W R H; de Bont, J A M; Nijland, J G; Driessen, A J M; Hauer, B
2015-07-01
Saccharomyces cerevisiae does not express any xylose-specific transporters. To enhance the xylose uptake of S. cerevisiae, directed evolution of the Gal2 transporter was performed. Three rounds of error-prone PCR were used to generate mutants with improved xylose-transport characteristics. After developing a fast and reliable high-throughput screening assay based on flow cytometry, eight mutants were obtained showing an improved uptake of xylose compared to wild-type Gal2 out of 41 200 single yeast cells. Gal2 variant 2·1 harbouring five amino acid substitutions showed an increased affinity towards xylose with a faster overall sugar metabolism of glucose and xylose. Another Gal2 variant 3·1 carrying an additional amino acid substitution revealed an impaired growth on glucose but not on xylose. Random mutagenesis of the S. cerevisiae Gal2 led to an increased xylose uptake capacity and decreased glucose affinity, allowing improved co-consumption. Random mutagenesis is a powerful tool to evolve sugar transporters like Gal2 towards co-consumption of new substrates. Using a high-throughput screening system based on flow-through cytometry, various mutants were identified with improved xylose-transport characteristics. The Gal2 variants in this work are a promising starting point for further engineering to improve xylose uptake from mixed sugars in biomass. © 2015 The Society for Applied Microbiology.
Microbial imprint on soil-atmosphere H2, COS, and CO2 fluxes
NASA Astrophysics Data System (ADS)
Meredith, L. K.; Commane, R.; Munger, J. W.; Wofsy, S. C.; Prinn, R. G.
2013-12-01
Microorganisms drive large trace gas fluxes between soil and atmosphere, but the signal can be difficult to detect and quantify in the presence of stronger exchange processes in an ecosystem. Partitioning methods are often needed to estimate trace gas budgets and to develop process-based models to explore the sensitivity of microbe-mediated fluxes. In this study, we test the performance of trace gases with predominantly microbe-mediated soil fluxes as a metric of the soil microbial uptake activity of other trace gases. Using simultaneous, collocated measurements at Harvard Forest, we consider three trace gases with microbe-mediated soil fluxes of various importance relative to their other (mainly plant-mediated) ecosystem fluxes: molecular hydrogen (H2), carbonyl sulfide (COS), and carbon dioxide (CO2). These gases probe different aspects of the soil trace-gas microbiology. Soil H2 uptake is a redox reaction driving the energy metabolism of a portion of the microbial community, while soil CO2 respiration is a partial proxy for the overall soil microbial metabolism. In comparison, very little is understood about the microbiological and environmental drivers of soil COS uptake and emissions. In this study, we find that H2, COS, and CO2 soil uptake rates are often correlated, but the relative soil uptake between gases is not constant, and is influenced by seasonality and local environmental conditions. We also consider how differences in the microbial communities and pathways involved in the soil fluxes may explain differences in the observations. Our results are important for informing previous studies using tracer approaches. For example, H2 has been used to estimate COS soil uptake, which must be accounted for to use COS as a carbon cycle tracer. Furthermore, the global distribution of H2 deposition velocity has been inferred from net primary productivity (CO2). Given that insufficient measurement frequency and spatial distribution exists to partition global net ecosystem fluxes of many climate-relevant trace gases, insight into the use of certain trace gases to estimate rates of more general biogeochemical processes is useful.
Toriihara, Akira; Ohtake, Makoto; Tateishi, Kensuke; Hino-Shishikura, Ayako; Yoneyama, Tomohiro; Kitazume, Yoshio; Inoue, Tomio; Kawahara, Nobutaka; Tateishi, Ukihide
2018-05-01
The potential of positron emission tomography/computed tomography using 62 Cu-diacetyl-bis (N 4 -methylthiosemicarbazone) ( 62 Cu-ATSM PET/CT), which was originally developed as a hypoxic tracer, to predict therapeutic resistance and prognosis has been reported in various cancers. Our purpose was to investigate prognostic value of 62 Cu-ATSM PET/CT in patients with glioma, compared to PET/CT using 2-deoxy-2-[ 18 F]fluoro-D-glucose ( 18 F-FDG). 56 patients with glioma of World Health Organization grade 2-4 were enrolled. All participants had undergone both 62 Cu-ATSM PET/CT and 18 F-FDG PET/CT within mean 33.5 days prior to treatment. Maximum standardized uptake value and tumor/background ratio were calculated within areas of increased radiotracer uptake. The prognostic significance for progression-free survival and overall survival were assessed by log-rank test and Cox's proportional hazards model. Disease progression and death were confirmed in 37 and 27 patients in follow-up periods, respectively. In univariate analysis, there was significant difference of both progression-free survival and overall survival in age, tumor grade, history of chemoradiotherapy, maximum standardized uptake value and tumor/background ratio calculated using 62 Cu-ATSM PET/CT. Multivariate analysis revealed that maximum standardized uptake value calculated using 62 Cu-ATSM PET/CT was an independent predictor of both progression-free survival and overall survival (p < 0.05). In a subgroup analysis including patients of grade 4 glioma, only the maximum standardized uptake values calculated using 62 Cu-ATSM PET/CT showed significant difference of progression-free survival (p < 0.05). 62 Cu-ATSM PET/CT is a more promising imaging method to predict prognosis of patients with glioma compared to 18 F-FDG PET/CT.
Grundmann, Sabine; Doerfler, Ulrike; Munch, Jean Charles; Ruth, Bernhard; Schroll, Reiner
2011-03-01
The environmental fate of the worldwide used herbicide isoproturon was studied in four different, undisturbed lysimeters in the temperate zone of Middle Europe. To exclude climatic effects due to location, soils were collected at different regions in southern Germany and analyzed at a lysimeter station under identical environmental conditions. (14)C-isoproturon mineralization varied between 2.59% and 57.95% in the different soils. Barley plants grown on these lysimeters accumulated (14)C-pesticide residues from soil in partially high amounts and emitted (14)CO(2) in an extent between 2.01% and 13.65% of the applied (14)C-pesticide. Plant uptake and (14)CO(2) emissions from plants were inversely linked to the mineralization of the pesticide in the various soils: High isoproturon mineralization in soil resulted in low plant uptake whereas low isoproturon mineralization in soil resulted in high uptake of isoproturon residues in crop plants and high (14)CO(2) emission from plant surfaces. The soil water regime was identified as an essential factor that regulates degradation and plant uptake of isoproturon whereby the intensity of the impact of this factor is strongly dependent on the soil type. Copyright © 2010 Elsevier Ltd. All rights reserved.
Armutlulu, Andac; Naeem, Muhammad Awais; Liu, Hsueh-Ju; Kim, Sung Min; Kierzkowska, Agnieszka; Fedorov, Alexey; Müller, Christoph R
2017-11-01
CO 2 capture and storage is a promising concept to reduce anthropogenic CO 2 emissions. The most established technology for capturing CO 2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high-temperature CO 2 sorbent can significantly reduce the costs of CO 2 capture. A serious disadvantage of CaO derived from earth-abundant precursors, e.g., limestone, is the rapid, sintering-induced decay of its cyclic CO 2 uptake. Here, a template-assisted hydrothermal approach to develop CaO-based sorbents exhibiting a very high and cyclically stable CO 2 uptake is exploited. The morphological characteristics of these sorbents, i.e., a porous shell comprised of CaO nanoparticles coated by a thin layer of Al 2 O 3 (<3 nm) containing a central void, ensure (i) minimal diffusion limitations, (ii) space to accompany the substantial volumetric changes during CO 2 capture and release, and (iii) a minimal quantity of Al 2 O 3 for structural stabilization, thus maximizing the fraction of CO 2 -capture-active CaO. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A montane Mediterranean climate supports year-round photosynthesis and high forest biomass.
Kelly, Anne E; Goulden, Michael L
2016-04-01
The mid-elevation forest of California's Sierra Nevada poses a bioclimatic paradox. Mid-elevation trees experience a montane Mediterranean climate, with near-freezing winter days and rain-free summers. The asynchrony between warmth and water input suggests low primary production, limited by photosynthetic dormancy in winter cold, and again in summer and early autumn with drought, yet this forest is characterized by tall trees and high biomass. We used eddy covariance in a mid-elevation Sierra stand to understand how winter cold and summer drought limit canopy photosynthesis and production. The trees exhibited canopy photosynthesis year-round. Trees avoided winter dormancy, and daytime CO2uptake continued despite a deep snowpack and near-freezing temperatures. Photosynthesis on sunny days continued at half of maximum rates when air temperature was 0 °C. Likewise, the vegetation avoided summer drought dormancy, and high rates of daytime CO2uptake and transpiration continued despite a 5-month period with only negligible water input. We attribute this drought avoidance to deep rooting and availability of deep soil water. Year-round photosynthesis helps explain the large biomass observed in the Sierra Nevada, and implies adaptive strategies that may contribute to the resiliency or vulnerability of Sierran vegetation to climate change. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Saha, Dipendu; Orkoulas, Gerassimos; Chen, Jihua; ...
2017-03-01
In this research, we have synthesized two sulfur functionalized nanoporous carbons by post-synthesis modifications with sulfur bearing activating agents that simultaneously enhanced the surface area and introduced sulfur functionalities on the carbon surface. The Brunauer–Emmett–Teller (BET) surface areas of these materials were 2865 and 837 m 2/g with total sulfur contents of 8.2 and 12.9 %, respectively. The sulfur-functionalized carbons were characterized with pore textural properties, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and electron microscopy (SEM and TEM). In both the carbons, CO 2 adsorption isotherms and kinetics were measured in three different temperatures of 298, 288 and 278more » K and pressures up to 760 torr. The gravimetric CO 2 uptake followed the trend with BET surface area but the surface area-based uptake was reversed and it followed the trend of sulfur content. The heat of adsorption of CO 2 in low uptake was 60-65 kJ/mol, which is the highest for CO 2 adsorption in porous carbons. In order to investigate the adsorptive separation of CO 2, N 2 and CH 4 adsorption isotherms were also measured at 298 K and 760 torr. The selectivity of separation for CO 2/N 2 and CO 2/CH 4 was calculated based on the Ideal Adsorbed Solution Theory (IAST) and all the results demonstrated the high CO 2 selectivity for the carbon with higher sulfur content. The adsorption isotherms were combined with mass balances to calculate the breakthrough behavior of the binary mixtures of CO 2/N 2 and CO 2/CH 4. The simulation results demonstrated that the dimensionless breakthrough time is a decreasing function of the mole fraction of CO 2 in the feed stream. The overall results suggest that the sulfurfunctionalized carbons can be employed as potential adsorbents for CO 2 separation.« less
Air-sea exchange of CO2 in the central and western equatorial Pacific in 1990
NASA Astrophysics Data System (ADS)
Ishii, Masao; Yoshikawa Inoue, Hisayuki
1995-09-01
Measurements of CO2 in marine boundary air and in surface seawater of the central and western Pacific west of 150°W were made during the period from September to December 1990. The meridional section along 150°W showed pCO2(sea) maximum over 410 µatm between the equator and 3°S due to strong equatorial upwelling. In the equatorial Pacific between 150°W and 179°E, pCO2(sea) decreased gradually toward the west as a result of biological CO2 uptake and surface sea temperature increase. Between 179°E and 170°E, the pCO2(sea) decreased steeply from 400 µatm to 350 µatm along with a decrease of salinity. West of 170°E, where the salinity is low owing to the heavy rainfall, pCO2(sea) was nearly equal to pCO2(air). The distribution of the atmospheric CO2 concentration showed a considerable variability (±3ppm) in the area north of the Intertropical Convergence Zone due to the regional net source-sink strength of the terrestrial biosphere. The net CO2 flux from the sea to the atmosphere in the equatorial region of the central and western Pacific (15°S-10°N, 140°E-150°W) was evaluated from the ΔpCO2 distribution and the several gas transfer coefficients reported so far. It ranged from 0.13 GtC year
1-0.29 GtC year
1. This CO2 outflux is thought to almost disappear during the period of an El Niño event.
Re-evaluating the 1940s CO2 plateau
NASA Astrophysics Data System (ADS)
Bastos, A.; Ciais, P.; Barichivitch, J.; Brovkin, V.; Gasser, T.; Pongratz, J.; Trudinger, C. M.
2016-12-01
The ice-core record reveals a stabilisation of atmospheric CO2 in the 1940s (the so called "plateau"), in spite of continued emissions from fossil fuel burning (FF) and land-use change (LUC). This stabilisation has been previously attributed to very strong oceanic CO2 uptake, perhaps in response to the El-Niño event in 1940. However, this explanation is questionable, since recent atmospheric CO2 data indicate that El Niño events generally lead to higher atmospheric CO2 growth-rates because of the terrestrial response, and oceanic CO2 measurements indicate the range of variability in the ocean sink has been rather modest in recent decades. We use up-to-date reconstructions of the CO2 sources (FF and LUC), ocean uptake from two different reconstructions and the terrestrial sink (from TRENDY models) over the 20th century to evaluate whether these allow capturing the CO2 plateau and provide further insight about its drivers. While these datasets provide a plausible explanation for most of the 20th century carbon budget, especially since 1970, they overestimate atmospheric CO2 growth rate during the plateau period by 0.9-2.0PgC.yr-1. We test the possible explanations for this mismatch, namely i) the role of natural variability in the ocean sink; ii) the representation of the terrestrial sink response to the climate anomalies during the 1940s by land-surface models; iii) the contribution of land-use processes possibly not represented in the current datasets. We conclude that a strong terrestrial sink concurrent with enhanced oceanic uptake is required to explain the CO2 stabilisation. Tests performed using the OSCAR carbon-cycle model suggest that changes in land-use coinciding with drastic socioeconomic changes during WW2 could plausibly contribute to the additional sink required.
Lack of ventilatory threshold in patients with chronic obstructive pulmonary disease.
Midorikawa, J; Hida, W; Taguchi, O; Okabe, S; Kurosawa, H; Mizusawa, A; Ogawa, H; Ebihara, S; Kikuchi, Y; Shirato, K
1997-01-01
We investigated whether the ventilatory threshold (VET) could be detected in 25 patients with severe chronic obstructive pulmonary disease (COPD). Exercise on a treadmill was performed until symptom-limited maximum oxygen uptake (VO2SL) was obtained. VET was absent in 14 patients (56%, VET(-) group) and present in the others (44%, VET(+) group). Basal pulmonary functions and dyspnea index (VE,SL/MVV) were not different between the two groups. Endurance time and exercise tolerance (VO2SL/bw) were significantly less in VET(-) than in VET(+). In the former group, PaO2 and pH at maximal exercise decreased and PaCO2 increased significantly, but HCO3- did not change compared with the corresponding values before exercise. In the latter group, PaCO2 at maximal exercise increased significantly, and pH and HCO3- decreased significantly compared with the values before exercise, but PaO2 did not. The changes in PaO2 and PaCO2 were not different between the two groups, but changes in pH and HCO3- in VET(+) were greater than those in VET(-). These results suggest that the absence of VET in some COPD patients indicates a lower exercise capacity without producing metabolic acidosis. This may be caused by rapidly developing dyspnea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olstad, J.L.; Phillips, S.D.
2009-01-01
The process of gasifi cation converts biomass into synthesis gas (syngas), which can be used to produce biofuels. Solid-phase sorbents were investigated for the removal of CO2 from a N2/CO2 gas stream using a CO2 concentration similar to that found in a biomass gasifi cation process. During the gasifying process, large amounts of carbon dioxide (CO2) are created along with the syngas. The produced CO2 must be removed before the syngas can be used for fuel synthesis and to avoid the possible formation of unwanted byproducts. A thermogravimetric analyzer was used to test the CO2 absorption rates of sorbents composedmore » of lithium zirconate (Li2ZrO3), as well as mixtures of Li2ZrO3 with potassium carbonate (K2CO3) and sodium carbonate (Na2CO3). The experimental results show that Li2ZrO3 has a low absorption rate, but sorbents containing combinations of Li2ZrO3 and the K2CO3 and Na2CO3 additives have high uptake rates. Using different proportions of K2CO3 and Na2CO3 produces varying uptake rates, so an optimization experiment was performed to obtain an improved sorbent. The CO2 absorption and regeneration stability of the solid-phase sorbents were also examined. A sorbent composed of Li2ZrO3 and 12.1 weight % Na2CO3 was shown to be stable, based on the consistent CO2 uptake rates. Sorbents prepared with Li2ZrO3, 17.6 weight % K2CO3 and 18.1 weight % Na2CO3 showed instability during regeneration cycles in air at 800 °C. Sorbent stability improved during regeneration cycles at 700 °C. Further testing of the Li2ZrO3 sorbent under actual syngas conditions, including higher pressure and composition, should be done. Once the optimum sorbent has been found, a suitable support will be needed to use the sorbent in an actual reactor.« less
Thirion, Damien; Lee, Joo S; Özdemir, Ercan
2016-01-01
Effective carbon dioxide (CO2) capture requires solid, porous sorbents with chemically and thermally stable frameworks. Herein, we report two new carbon–carbon bonded porous networks that were synthesized through metal-free Knoevenagel nitrile–aldol condensation, namely the covalent organic polymer, COP-156 and 157. COP-156, due to high specific surface area (650 m2/g) and easily interchangeable nitrile groups, was modified post-synthetically into free amine- or amidoxime-containing networks. The modified COP-156-amine showed fast and increased CO2 uptake under simulated moist flue gas conditions compared to the starting network and usual industrial CO2 solvents, reaching up to 7.8 wt % uptake at 40 °C. PMID:28144294
Pohlman, John W; Greinert, Jens; Ruppel, Carolyn; Silyakova, Anna; Vielstädte, Lisa; Casso, Michael; Mienert, Jürgen; Bünz, Stefan
2017-05-23
Continued warming of the Arctic Ocean in coming decades is projected to trigger the release of teragrams (1 Tg = 10 6 tons) of methane from thawing subsea permafrost on shallow continental shelves and dissociation of methane hydrate on upper continental slopes. On the shallow shelves (<100 m water depth), methane released from the seafloor may reach the atmosphere and potentially amplify global warming. On the other hand, biological uptake of carbon dioxide (CO 2 ) has the potential to offset the positive warming potential of emitted methane, a process that has not received detailed consideration for these settings. Continuous sea-air gas flux data collected over a shallow ebullitive methane seep field on the Svalbard margin reveal atmospheric CO 2 uptake rates (-33,300 ± 7,900 μmol m -2 ⋅d -1 ) twice that of surrounding waters and ∼1,900 times greater than the diffusive sea-air methane efflux (17.3 ± 4.8 μmol m -2 ⋅d -1 ). The negative radiative forcing expected from this CO 2 uptake is up to 231 times greater than the positive radiative forcing from the methane emissions. Surface water characteristics (e.g., high dissolved oxygen, high pH, and enrichment of 13 C in CO 2 ) indicate that upwelling of cold, nutrient-rich water from near the seafloor accompanies methane emissions and stimulates CO 2 consumption by photosynthesizing phytoplankton. These findings challenge the widely held perception that areas characterized by shallow-water methane seeps and/or strongly elevated sea-air methane flux always increase the global atmospheric greenhouse gas burden.
Phenological mismatch in coastal western Alaska may increase summer season greenhouse gas uptake
NASA Astrophysics Data System (ADS)
Kelsey, Katharine C.; Leffler, A. Joshua; Beard, Karen H.; Choi, Ryan T.; Schmutz, Joel A.; Welker, Jeffery M.
2018-04-01
High latitude ecosystems are prone to phenological mismatches due to climate change- driven advances in the growing season and changing arrival times of migratory herbivores. These changes have the potential to alter biogeochemical cycling and contribute to feedbacks on climate change by altering greenhouse gas (GHG) emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) through large regions of the Arctic. Yet the effects of phenological mismatches on gas fluxes are currently unexplored. We used a three-year field experiment that altered the start of the growing season and timing of grazing to investigate how phenological mismatch affects GHG exchange. We found early grazing increased mean GHG emission to the atmosphere despite lower CH4 emissions due to grazing-induced changes in vegetation structure that increased uptake of CO2. In contrast, late grazing reduced GHG emissions because greater plant productivity led to an increase in CO2 uptake that overcame the increase in CH4 emission. Timing of grazing was an important control on both CO2 and CH4 emissions, and net GHG exchange was the result of opposing fluxes of CO2 and CH4. N2O played a negligible role in GHG flux. Advancing the growing season had a smaller effect on GHG emissions than changes to timing of grazing in this study. Our results suggest that a phenological mismatch that delays timing of grazing relative to the growing season, a change which is already developing along in western coastal Alaska, will reduce GHG emissions to the atmosphere through increased CO2 uptake despite greater CH4 emissions.
Phenological mismatch in coastal western Alaska may increase summer season greenhouse gas uptake
Kelsey, Katharine C.; Leffler, A. Joshua; Beard, Karen H.; Choi, Ryan T.; Schmutz, Joel A.; Welker, Jeffery M.
2018-01-01
High latitude ecosystems are prone to phenological mismatches due to climate change- driven advances in the growing season and changing arrival times of migratory herbivores. These changes have the potential to alter biogeochemical cycling and contribute to feedbacks on climate change by altering greenhouse gas (GHG) emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) through large regions of the Arctic. Yet the effects of phenological mismatches on gas fluxes are currently unexplored. We used a three-year field experiment that altered the start of the growing season and timing of grazing to investigate how phenological mismatch affects GHG exchange. We found early grazing increased mean GHG emission to the atmosphere despite lower CH4 emissions due to grazing-induced changes in vegetation structure that increased uptake of CO2. In contrast, late grazing reduced GHG emissions because greater plant productivity led to an increase in CO2 uptake that overcame the increase in CH4 emission. Timing of grazing was an important control on both CO2 and CH4 emissions, and net GHG exchange was the result of opposing fluxes of CO2 and CH4. N2O played a negligible role in GHG flux. Advancing the growing season had a smaller effect on GHG emissions than changes to timing of grazing in this study. Our results suggest that a phenological mismatch that delays timing of grazing relative to the growing season, a change which is already developing along in western coastal Alaska, will reduce GHG emissions to the atmosphere through increased CO2 uptake despite greater CH4 emissions.
Greinert, Jens; Silyakova, Anna; Vielstädte, Lisa; Casso, Michael; Mienert, Jürgen; Bünz, Stefan
2017-01-01
Continued warming of the Arctic Ocean in coming decades is projected to trigger the release of teragrams (1 Tg = 106 tons) of methane from thawing subsea permafrost on shallow continental shelves and dissociation of methane hydrate on upper continental slopes. On the shallow shelves (<100 m water depth), methane released from the seafloor may reach the atmosphere and potentially amplify global warming. On the other hand, biological uptake of carbon dioxide (CO2) has the potential to offset the positive warming potential of emitted methane, a process that has not received detailed consideration for these settings. Continuous sea−air gas flux data collected over a shallow ebullitive methane seep field on the Svalbard margin reveal atmospheric CO2 uptake rates (−33,300 ± 7,900 μmol m−2⋅d−1) twice that of surrounding waters and ∼1,900 times greater than the diffusive sea−air methane efflux (17.3 ± 4.8 μmol m−2⋅d−1). The negative radiative forcing expected from this CO2 uptake is up to 231 times greater than the positive radiative forcing from the methane emissions. Surface water characteristics (e.g., high dissolved oxygen, high pH, and enrichment of 13C in CO2) indicate that upwelling of cold, nutrient-rich water from near the seafloor accompanies methane emissions and stimulates CO2 consumption by photosynthesizing phytoplankton. These findings challenge the widely held perception that areas characterized by shallow-water methane seeps and/or strongly elevated sea−air methane flux always increase the global atmospheric greenhouse gas burden. PMID:28484018
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez-Gonzalez, Sergio Efrain; Carbajal-Arizaga, Gregorio Guadalupe; Manriquez-Gonzalez, Ricardo
Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH{sub 3}COO){sub 2}Cr{sup +} ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed tomore » assess the removal of this metal from aqueous solutions. {sup 13}C, {sup 29}Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level.« less
Sequestering CO2 in the Ocean: Options and Consequences
NASA Astrophysics Data System (ADS)
Rau, G. H.; Caldeira, K.
2002-12-01
The likelihood of negative climate and environmental impacts associated with increasing atmospheric CO2 has prompted serious consideration of various CO2 mitigation strategies. Among these are methods of capturing and storing of CO2 in the ocean. Two approaches that have received the most attention in this regard have been i) ocean fertilization to enhanced biological uptake and fixation of CO2, and ii) the chemical/mechanical capture and injection of CO2 into the deep ocean. Both methods seek to enhance or speed up natural mechanisms of CO2 uptake and storage by the ocean, namely i) the biological CO2 "pump" or ii) the passive diffusion of CO2 into the surface ocean and subsequent mixing into the deep sea. However, as will be reviewed, concerns about the capacity and effectiveness of either strategy in long-term CO2 sequestration have been raised. Both methods are not without potentially significant environmental impacts, and the costs of CO2 capture and injection (option ii) are currently prohibitive. An alternate method of ocean CO2 sequestration would be to react and hydrate CO2 rich waste gases (e.g., power plant flue gas) with seawater and to subsequently neutralize the resulting carbonic acid with limestone to produce calcium and bicarbonate ions in solution. This approach would simply speed up the CO2 uptake and sequestration that naturally (but very slowly) occurs via global carbonate weathering. This would avoid much of the increased acidity associated with direct CO2 injection while obviating the need for costly CO2 separation and capture. The addition of the resulting bicarbonate- and carbonate-rich solution to the ocean would help to counter the decrease in pH and carbonate ion concentration, and hence loss of biological calcification that is presently occurring as anthropogenic CO2 invades the ocean from the atmosphere. However, as with any approach to CO2 mitigation, the costs, impacts, risks, and benefits of this method need to be better understood and weighed against those of alternative strategies, including business as usual.
NASA Astrophysics Data System (ADS)
Sun, Wu; Kooijmans, Linda M. J.; Maseyk, Kadmiel; Chen, Huilin; Mammarella, Ivan; Vesala, Timo; Levula, Janne; Keskinen, Helmi; Seibt, Ulli
2018-02-01
Soil is a major contributor to the biosphere-atmosphere exchange of carbonyl sulfide (COS) and carbon monoxide (CO). COS is a tracer with which to quantify terrestrial photosynthesis based on the coupled leaf uptake of COS and CO2, but such use requires separating soil COS flux, which is unrelated to photosynthesis, from ecosystem COS uptake. For CO, soil is a significant natural sink that influences the tropospheric CO budget. In the boreal forest, magnitudes and variabilities of soil COS and CO fluxes remain poorly understood. We measured hourly soil fluxes of COS, CO, and CO2 over the 2015 late growing season (July to November) in a Scots pine forest in Hyytiälä, Finland. The soil acted as a net sink of COS and CO, with average uptake rates around 3 pmol m-2 s-1 for COS and 1 nmol m-2 s-1 for CO. Soil respiration showed seasonal dynamics controlled by soil temperature, peaking at around 4 µmol m-2 s-1 in late August and September and dropping to 1-2 µmol m-2 s-1 in October. In contrast, seasonal variations of COS and CO fluxes were weak and mainly driven by soil moisture changes through diffusion limitation. COS and CO fluxes did not appear to respond to temperature variation, although they both correlated well with soil respiration in specific temperature bins. However, COS : CO2 and CO : CO2 flux ratios increased with temperature, suggesting possible shifts in active COS- and CO-consuming microbial groups. Our results show that soil COS and CO fluxes do not have strong variations over the late growing season in this boreal forest and can be represented with the fluxes during the photosynthetically most active period. Well-characterized and relatively invariant soil COS fluxes strengthen the case for using COS as a photosynthetic tracer in boreal forests.
NASA Astrophysics Data System (ADS)
Peltzer, E. T.; Hofmann, A. F.; Brewer, P. G.
2011-12-01
Increasing ocean acidification from fossil fuel CO2 invasion, from temperature driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Here we describe the rate problem for animals who must export CO2 at about the same rate at which O2 is consumed. We analyze the basic properties controlling CO2 export within the diffusive boundary of marine animals in a changing ocean in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas since, as with gas exchange of CO2 at the air-sea interface, the influence of the ensemble of reactions within the CO2 - HCO3- - CO3= acid-base system needs to be considered. These reactions appear as an enhancement factor which significantly facilitates CO2 efflux compared to O2 intake at equal temperature, pressure and flow rate under typical oceanic concentrations. Possibly as an adaptation to this chemical advantage marine animals typically can respond to external CO2 stress simply by metabolic adjustment. This is energetically more favorable than having to resort to mechanically increasing flow over their surface to thin the boundary layer as is required to alleviate O2 stress. Regionally as with O2 the combination of T, P, and pH/pCO2 creates a zone of maximum CO2 stress at around 1000 m depth. But the net result is that the combination of an increase in T combined with declining O2 poses a greater respiratory challenge to marine life than does increasing CO2. The relationships developed here allow a more accurate prediction of the impacts on marine life from the combined effects of changing T, O2, and CO2 than can be estimated from single variable studies.
NASA Astrophysics Data System (ADS)
Ballantyne, F.; Billings, S. A.
2016-12-01
Much of the variability in projections of Earth's future C balance derives from uncertainty in how to formulate and parameterize models of biologically mediated transformations of soil organic C (SOC). Over the past decade, models of belowground decomposition have incorporated more realism, namely microbial biomass and exoenzyme pools, but it remains unclear whether microbially mediated decomposition is accurately formulated. Different models and different assumptions about how microbial efficiency, defined in terms of respiratory losses, varies with temperature exert great influence on SOC and CO2 flux projections for the future. Here, we incorporate a physiologically realistic formulation of CO2 loss from microbes, distinct from extant formulations and logically consistent with microbial C uptake and losses, into belowground dynamics and contrast its projections for SOC pools and CO2 flux from soils to those from the phenomenological formulations of efficiency in current models. We quantitatively describe how short and long term SOC dynamics are influenced by different mathematical formulations of efficiency, and that our lack of knowledge regarding loss rates from SOC and microbial biomass pools, specific respiration rate and maximum substrate uptake rate severely constrains our ability to confidently parameterize microbial SOC modules in Earth System Models. Both steady-state SOC and microbial biomass C pools, as well as transient responses to perturbations, can differ substantially depending on how microbial efficiency is derived. In particular, the discrepancy between SOC stocks for different formulations of efficiency varies from negligible to more than two orders of magnitude, depending on the relative values of respiratory versus non-respiratory losses from microbial biomass. Mass-specific respiration and proportional loss rates from soil microbes emerge as key determinants of the consequences of different formulations of efficiency for C flux in soils.
Climate change reduces the net sink of CH4 and N2O in a semiarid grassland.
Dijkstra, Feike A; Morgan, Jack A; Follett, Ronald F; Lecain, Daniel R
2013-06-01
Atmospheric concentrations of methane (CH4 ) and nitrous oxide (N2 O) have increased over the last 150 years because of human activity. Soils are important sources and sinks of both potent greenhouse gases where their production and consumption are largely regulated by biological processes. Climate change could alter these processes thereby affecting both rate and direction of their exchange with the atmosphere. We examined how a rise in atmospheric CO2 and temperature affected CH4 and N2 O fluxes in a well-drained upland soil (volumetric water content ranging between 6% and 23%) in a semiarid grassland during five growing seasons. We hypothesized that responses of CH4 and N2 O fluxes to elevated CO2 and warming would be driven primarily by treatment effects on soil moisture. Previously we showed that elevated CO2 increased and warming decreased soil moisture in this grassland. We therefore expected that elevated CO2 and warming would have opposing effects on CH4 and N2 O fluxes. Methane was taken up throughout the growing season in all 5 years. A bell-shaped relationship was observed with soil moisture with highest CH4 uptake at intermediate soil moisture. Both N2 O emission and uptake occurred at our site with some years showing cumulative N2 O emission and other years showing cumulative N2 O uptake. Nitrous oxide exchange switched from net uptake to net emission with increasing soil moisture. In contrast to our hypothesis, both elevated CO2 and warming reduced the sink of CH4 and N2 O expressed in CO2 equivalents (across 5 years by 7% and 11% for elevated CO2 and warming respectively) suggesting that soil moisture changes were not solely responsible for this reduction. We conclude that in a future climate this semiarid grassland may become a smaller sink for atmospheric CH4 and N2 O expressed in CO2 -equivalents. © 2013 Blackwell Publishing Ltd.
Historical Carbon Dioxide Emissions Caused by Land-Use Changes are Possibly Larger than Assumed
NASA Technical Reports Server (NTRS)
Arneth, A.; Sitch, S.; Pongratz, J.; Stocker, B. D.; Ciais, P.; Poulter, B.; Bayer, A. D.; Bondeau, A.; Calle, L.; Chini, L. P.;
2017-01-01
The terrestrial biosphere absorbs about 20% of fossil-fuel CO2 emissions. The overall magnitude of this sink is constrained by the difference between emissions, the rate of increase in atmospheric CO2 concentrations, and the ocean sink. However, the land sink is actually composed of two largely counteracting fluxes that are poorly quantified: fluxes from land-use change andCO2 uptake by terrestrial ecosystems. Dynamic global vegetation model simulations suggest that CO2 emissions from land-use change have been substantially underestimated because processes such as tree harvesting and land clearing from shifting cultivation have not been considered. As the overall terrestrial sink is constrained, a larger net flux as a result of land-use change implies that terrestrial uptake of CO2 is also larger, and that terrestrial ecosystems might have greater potential to sequester carbon in the future. Consequently, reforestation projects and efforts to avoid further deforestation could represent important mitigation pathways, with co-benefits for biodiversity. It is unclear whether a larger land carbon sink can be reconciled with our current understanding of terrestrial carbon cycling. Our possible underestimation of the historical residual terrestrial carbon sink adds further uncertainty to our capacity to predict the future of terrestrial carbon uptake and losses.
Rapid Cycle Amine (RCA 2.0) System Development
NASA Technical Reports Server (NTRS)
Papale, William; O'Coin, James; Wichowski, Robert; Chullen, Cinda; Campbell, Colin
2013-01-01
The Rapid Cycle Amine (RCA) system is a low-power assembly capable of simultaneously removing carbon dioxide (CO2) and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. Two solid amine sorbent beds are alternated between an uptake mode and a regeneration mode. During the uptake mode, the sorbent is exposed to an air steam (ventilation loop) to adsorb CO2 and water (H2O) vapor, whereas during the regeneration mode, the sorbent rejects the adsorbed CO2 and H2O vapor to a vacuum source. The two beds operate such that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. A novel valve assembly provides a simple means of diverting the process air flow through the uptake bed while simultaneously directing the vacuum source to the regeneration bed. Additionally, the valve assembly is designed to allow for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The process can be controlled by a compact, low-power controller design with several modes of operation available to the user. Together with NASA Johnson Space Center, Hamilton Sundstrand Space Systems International, Inc. has been developing RCA 2.0 based on performance and design feedback on several sorbent bed test articles and valve design concepts. A final design of RCA 2.0 was selected in November 2011 and fabricated and assembled between March and August 2012, with delivery to NASA Johnson Space Center in September 2012. This paper provides an overview of the RCA system design and results of pre-delivery testing.
Madsen, T. V.; Breinholt, M.
1995-01-01
Callitriche cophocarpa Sendtner is a heterophyllous amphibious macrophyte that produces apical rosettes of floating leaves. The importance of air contact for inorganic carbon and N uptake and for growth was investigated. Plants were grown with the floating rosette in contact with air of various humidities (10, 50, and >90% relative humidity) and with the submerged parts in N-free water at 350 [mu]M free CO2 and the roots in sediment with low or high NH3-N content. Humidity greatly affected the transpiration rate, whereas growth rate and N content were unaffected and were comparable to values measured for fully submerged shoots. Air contact had, however, a significant impact on growth when the free CO2 concentration in the water was low. Thus, the growth rate of shoots with air contact was about 3 times faster than the rate of fully submerged shoots when grown at air-equilibrium concentration of dissolved free CO2 in the water (16 [mu]M). This difference decreased with increased dissolved free CO2 concentration in the water, and the two shoot types grew at the same rate when the submerged shoots received >350 [mu]M free CO2. The quantitative importance of the floating rosette for total carbon uptake declined also with decreased ratio of floating rosette to total shoot weight. It is concluded that floating rosettes can enhance the inorganic carbon uptake of Callitriche. In contrast, air contact is of minor importance for nutrient transport. PMID:12228350
Solution and particle effects on the biosorption of heavy metals by seaweed biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leusch, A.; Holan, Z.R.; Volesky, B.
Biosorption of cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) by six fractions of particle sizes, ranging from 0.063 to 1.4 mm of dry marine algal biomass of Sargassum fluitans and Ascophyllum nodosum, is examined. Equilibrium metal uptake by larger particles was higher than that by smaller particles in the order of Pb > Cd > Cu > Co > Zn > Ni for both biomass types, with S. fluitans sorbing slightly more than A. nodosum. Uptakes of metals ranged from the highest, q{sub max} = 369 mg Pb/g (particle size 0.84-1.00 mm), to themore » low Zn and Ni uptakes, q{sub max} = 77 mg/g (size 0.84-1.00 mm) for S. fluitans. A. nodosum adsorbed metals in the range from q{sub max} = 287 mg Pg/g (particle size 0.84-1.00 mm) to q{sub max} = 73 mg Zn/g (particle size 0.84-1.00mm). Harder stipe fractions of S. fluitans demonstrated generally higher metal uptakes than the softer fractions derived from its blades (leaves). The pH dependence of the Zn uptake by S. fluitans exhibited an S-shaped curve between pH 1.5 and pH 7, with 50% of the maximum (pH 7.0) uptake at pH 3.5. Monovalent Na and K ions at higher concentrations inhibited the biosorption of Zn by S. fluitans. A significant inhibition started at 50 mM potassium chloride or sodium acetate, and at 1M the biosorption was completely blocked. 40 refs., 8 figs., 3 tabs.« less
CO₂ adsorption on amine-functionalized periodic mesoporous benzenesilicas.
Sim, Kyohyun; Lee, Nakwon; Kim, Joonseok; Cho, Eun-Bum; Gunathilake, Chamila; Jaroniec, Mietek
2015-04-01
CO2 adsorption was investigated on amine-functionalized mesoporous silica (SBA-15) and periodic mesoporous organosilica (PMO) samples. Hexagonally (p6mm) ordered mesoporous SBA-15 and benzene-PMO (BPMO) samples were prepared in the presence of Pluronic P123 block copolymer template under acidic conditions. Three kinds of amine-containing organosilanes and polyethylenimine were used to functionalize SBA-15 and BPMO. Small-angle X-ray scattering and nitrogen adsorption isotherms showed that these samples featured ordered mesostructure, high surface area, and narrow pore size distributions. Solid-state (13)C- and (29)Si cross-polarization magic-angle spinning NMR spectra showed chemical linkage between amine-containing modifiers and the surface of mesoporous materials. The chemically linked amine-containing modifiers were found to be on both the inner and outer surfaces. N-[3-(trimethoxysilyl)propyl]ethylenediamine-modified BPMO (A2-BPMO) sample exhibited the highest CO2 uptake (i.e., ∼3.03 mmol/g measured on a volumetric adsorption analyzer) and the fastest adsorption rate (i.e., ∼13 min to attain 90% of the maximum amount) among all the samples studied. Selectivity and reproducibility measurements for the A2-BPMO sample showed quite good performance in flowing N2 gas at 40 mL/min and CO2 gas of 60 mL/min at 25 °C.
The effect of hydrate promoters on gas uptake.
Xu, Chun-Gang; Yu, Yi-Song; Ding, Ya-Long; Cai, Jing; Li, Xiao-Sen
2017-08-16
Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH 4 storage and CO 2 capture from CO 2 /H 2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.
Spring Hydrology Determines Summer Net Carbon Uptake in Northern Ecosystems
NASA Technical Reports Server (NTRS)
Yi, Yonghong; Kimball, John; Reichle, Rolf H.
2014-01-01
Increased photosynthetic activity and enhanced seasonal CO2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the Normalized Difference Vegetation Index; NDVI) and atmospheric CO2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (greater than or equal to 50N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends.
Niu, Yaofang; Chai, Rushan; Dong, Huifen; Wang, Huan; Tang, Caixian; Zhang, Yongsong
2013-01-01
Phosphorus (P) nutrition is always a key issue regarding plants responses to elevated CO(2). Yet it is unclear of how elevated CO(2) affects P uptake under different nitrogen (N) forms. This study investigated the influence of elevated CO(2) (800 µl l(-1)) on P uptake and utilization by Arabidopsis grown in pH-buffered phosphate (P)-deficient (0.5 µM) hydroponic culture supplying with 2mM nitrate (NO(3)(-)) or ammonium (NH(4)(+)). After 7 d treatment, elevated CO(2) enhanced the biomass production of both NO(3)(-)- and NH(4) (+)-fed plants but decreased the P amount absorbed per weight of roots and the P concentration in the shoots of plants supplied with NH(4)(+). In comparison, elevated CO(2) increased the amount of P absorbed per weight of roots, as well as the P concentration in plants and alleviated P deficiency-induced symptoms of plants supplied with NO(3)(-). Elevated CO(2) also increased the root/shoot ratio, total root surface area, and acid phosphatase activity, and enhanced the expression of genes or transcriptional factors involving in P uptake, allocation and remobilization in P deficient plants. Furthermore, elevated CO(2) increased the nitric oxide (NO) level in roots of NO(3)(-)-fed plants but decreased it in NH(4)(+)-fed plants. NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) inhibited plant P acquisition by roots under elevated CO(2). Considering all of these findings, this study concluded that a combination of elevated CO(2) and NO(3)(-) nutrition can induce a set of plant adaptive strategies to improve P status from P-deficient soluble sources and that NO may be a signalling molecule that controls these processes.
Naeem, Muhammad Awais; Armutlulu, Andac; Imtiaz, Qasim; Donat, Felix; Schäublin, Robin; Kierzkowska, Agnieszka; Müller, Christoph R
2018-06-19
Calcium looping, a CO 2 capture technique, may offer a mid-term if not near-term solution to mitigate climate change, triggered by the yet increasing anthropogenic CO 2 emissions. A key requirement for the economic operation of calcium looping is the availability of highly effective CaO-based CO 2 sorbents. Here we report a facile synthesis route that yields hollow, MgO-stabilized, CaO microspheres featuring highly porous multishelled morphologies. As a thermal stabilizer, MgO minimized the sintering-induced decay of the sorbents' CO 2 capacity and ensured a stable CO 2 uptake over multiple operation cycles. Detailed electron microscopy-based analyses confirm a compositional homogeneity which is identified, together with the characteristics of its porous structure, as an essential feature to yield a high-performance sorbent. After 30 cycles of repeated CO 2 capture and sorbent regeneration, the best performing material requires as little as 11 wt.% MgO for structural stabilization and exceeds the CO 2 uptake of the limestone-derived reference material by ~500%.
Li, Hao; Wang, Kecheng; Feng, Dawei; Chen, Ying-Pin; Verdegaal, Wolfgang; Zhou, Hong-Cai
2016-10-06
The escalating atmospheric CO 2 concentration is one of the most urgent environmental concerns of our age. To effectively capture CO 2 , various materials have been studied. Among them, alkylamine-modified metal-organic frameworks (MOFs) are considered to be promising candidates. In most cases, alkylamine molecules are integrated into MOFs through the coordination bonds formed between open metal sites (OMSs) and amine groups. Thus, the alkylamine density, as well as the corresponding CO 2 uptake in MOFs, are severely restricted by the density of OMSs. To overcome this limit, other approaches to incorporating alkylamine into MOFs are highly desired. We have developed a new method based on Brønsted acid-base reaction to tether alkylamines into Cr-MIL-101-SO 3 H for CO 2 capture. A systematic optimization of the amine tethering process was also conducted to maximize the CO 2 uptake of the modified MOF. Under the optimal amine tethering condition, the obtained tris(2-aminoethyl)amine-functionalized Cr-MIL-101-SO 3 H (Cr-MIL-101-SO 3 H-TAEA) has a cyclic CO 2 uptake of 2.28 mmol g -1 at 150 mbar and 40 °C, and 1.12 mmol g -1 at 0.4 mbar and 20 °C. The low-cost starting materials and simple synthetic procedure for the preparation of Cr-MIL-101-SO 3 H-TAEA suggest that it has the potential for large-scale production and practical applications. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
O’Donnell, Michael J.; Grosell, Martin
2010-01-01
Embryos of the freshwater common pond snail Lymnaea stagnalis develop to hatch within 10 days under control conditions (22°C, Miami-Dade tap water) and this development is impaired by removal of ambient calcium. In contrast, embryos did not exhibit dependence upon an ambient HCO3−/CO32− source, developing and hatching in HCO3−/CO32−-free water at rates comparable to controls. Post-metamorphic, shell-laying embryos exhibited a significant saturation-type calcium uptake as a function of increasing ambient calcium concentration. However, changes in ambient bicarbonate concentration did not influence calcium or apparent titratable alkalinity uptake. There was a distinct shift from no significant flux in pre-metamorphic embryos to net uptake of calcium in post-metamorphic stages as indicated by an increased uptake from the micro-environment surrounding the egg mass and increased net uptake in 24-h, whole egg mass flux measurements. Furthermore, HCO3−/CO32− acquisition as measured by titratable alkalinity flux is at least partially attributable to an endogenous carbonate source that is associated with acid extrusion. Thus, calcium requirements for embryonic shell formation are met via uptake but HCO3−/CO32−, which is also necessary for shell formation is acquired in part from endogenous sources with no detectable correlation to ambient HCO3−/CO32− availability. PMID:20361194
NASA Astrophysics Data System (ADS)
Yasunaka, Sayaka; Siswanto, Eko; Olsen, Are; Hoppema, Mario; Watanabe, Eiji; Fransson, Agneta; Chierici, Melissa; Murata, Akihiko; Lauvset, Siv K.; Wanninkhof, Rik; Takahashi, Taro; Kosugi, Naohiro; Omar, Abdirahman M.; van Heuven, Steven; Mathis, Jeremy T.
2018-03-01
We estimated monthly air-sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014. This was done by mapping partial pressure of CO2 in the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating chlorophyll a concentration (Chl a), sea surface temperature, sea surface salinity, sea ice concentration, atmospheric CO2 mixing ratio, and geographical position. We applied new algorithms for extracting Chl a from satellite remote sensing reflectance with close examination of uncertainty of the obtained Chl a values. The overall relationship between pCO2w and Chl a was negative, whereas the relationship varied among seasons and regions. The addition of Chl a as a parameter in the SOM process enabled us to improve the estimate of pCO2w, particularly via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. As a result of the inclusion of Chl a, the uncertainty in the CO2 flux estimate was reduced, with a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C yr-1. Seasonal to interannual variation in the CO2 influx was also calculated.
NASA Astrophysics Data System (ADS)
Goodale, C. L.; Fredriksen, G.; McCalley, C. K.; Sparks, J. P.; Thomas, S. A.
2011-12-01
The atmospheric carbon dioxide (CO2) concentration has increased to a level unprecedented in the last 2 million years, and the concentration is projected to increase further with a rate unseen in geological past. The increase in CO2 cause a rise in surface temperatures and changes in the hydrological cycle through the redistribution of rainfall patterns. All of these changes will impact the weathering of rocks, which in turn affect atmospheric CO2 concentrations via two different pathways. On the one hand, CO2 is consumed by the dissolution reaction of the exposed minerals. And on the other hand, biological CO2 fixation is affected due to changes in phosphorus release from minerals, as biological activity is constrained by phosphorus availability at large scales. The traditional view is that both effects are negligible on a centennial time scale, but recent work on catchment scale challenge this view in favor of a potential high sensitivity of weathering to ongoing climate and land use changes. To globally quantify the contribution of CO2 fixation associated with weathering on the historical trend in terrestrial CO2 uptake, we applied a model of chemical weathering and phosphorus release under climate reconstructions from four Earth System Models. The simulations indicate that changes in weathering could have contributed considerably to the trend in terrestrial CO2 uptake since the pre-industrial revolution, with warming being the main driver of change. The increase in biological CO2 fixation is of comparable magnitude as the increase in CO2 consumption by chemical weathering. Our simulations support the previous findings on catchment scale that weathering can change significantly on a centennial time scale. This finding has implications for 21st century climate projections, which ignore changes in weathering, as well as for long-term airborne fraction of CO2 emissions, whose calculation usually neglects changes in phosphorus availability.
NASA Astrophysics Data System (ADS)
Goll, D. S.; Moosdorf, N.; Brovkin, V.; Hartmann, J.
2013-12-01
The atmospheric carbon dioxide (CO2) concentration has increased to a level unprecedented in the last 2 million years, and the concentration is projected to increase further with a rate unseen in geological past. The increase in CO2 cause a rise in surface temperatures and changes in the hydrological cycle through the redistribution of rainfall patterns. All of these changes will impact the weathering of rocks, which in turn affect atmospheric CO2 concentrations via two different pathways. On the one hand, CO2 is consumed by the dissolution reaction of the exposed minerals. And on the other hand, biological CO2 fixation is affected due to changes in phosphorus release from minerals, as biological activity is constrained by phosphorus availability at large scales. The traditional view is that both effects are negligible on a centennial time scale, but recent work on catchment scale challenge this view in favor of a potential high sensitivity of weathering to ongoing climate and land use changes. To globally quantify the contribution of CO2 fixation associated with weathering on the historical trend in terrestrial CO2 uptake, we applied a model of chemical weathering and phosphorus release under climate reconstructions from four Earth System Models. The simulations indicate that changes in weathering could have contributed considerably to the trend in terrestrial CO2 uptake since the pre-industrial revolution, with warming being the main driver of change. The increase in biological CO2 fixation is of comparable magnitude as the increase in CO2 consumption by chemical weathering. Our simulations support the previous findings on catchment scale that weathering can change significantly on a centennial time scale. This finding has implications for 21st century climate projections, which ignore changes in weathering, as well as for long-term airborne fraction of CO2 emissions, whose calculation usually neglects changes in phosphorus availability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salminen, S.O.; Streeter, J.G.
Bradyrhizobium japonicum bacteroids were isolated anaerobically and were supplied with /sup 14/C-labeled trehalose, sucrose, UDP-glucose, glucose, or fructose under low O/sub 2/ (2% in the gas phase). Uptake and conversion of /sup 14/C to CO/sub 2/ were measured at intervals up to 90 minutes. Of the five compounds studied, UDP-glucose was most rapidly absorbed but it was very slowly metabolized. Trehalose was the sugar most rapidly converted to CO/sub 2/, and fructose was respired at a rate of at least double that of glucose. Sucrose and glucose were converted to CO/sub 2/ at a very low but measurable rate (<0.1more » nanomoles per milligram protein per hour). Carbon Number 1 of glucose appeared in CO/sub 2/ at a rate 30 times greater than the conversion of carbon Number 6 to CO/sub 2/, indicating high activity of the pentose phosphate pathway. Enzymes of the Entner-Doudoroff pathway were not detected in bacteroids, but very low activities of sucrose synthase and phosphofructokinase were demonstrated. Although metabolism of sugars by B. japonicum bacteroids was clearly demonstrated, the rate of sugar uptake was only 1/30 to 1/50 the rate of succinate uptake. The overall results support the view that, although bacteroids metabolize sugars, the rates are very low and are inadequate to support nitrogenase.« less
Young Daughter Cladodes Affect CO2 Uptake by Mother Cladodes of Opuntia ficus-indica
PIMIENTA-BARRIOS, EULOGIO; ZAÑUDO-HERNANDEZ, JULIA; ROSAS-ESPINOZA, VERONICA C.; VALENZUELA-TAPIA, AMARANTA; NOBEL, PARK S.
2004-01-01
• Background and Aims Drought damages cultivated C3, C4 and CAM plants in the semi-arid lands of central Mexico. Drought damage to Opuntia is common when mother cladodes, planted during the dry spring season, develop young daughter cladodes that behave like C3 plants, with daytime stomatal opening and water loss. In contrast, wild Opuntia are less affected because daughter cladodes do not develop on them under extreme drought conditions. The main objective of this work is to evaluate the effects of the number of daughter cladodes on gas exchange parameters of mother cladodes of Opuntia ficus-indica exposed to varying soil water contents. • Methods Rates of net CO2 uptake, stomatal conductance, intercellular CO2 concentration, chlorophyll content and relative water content were measured in mature mother cladodes with a variable number of daughter cladodes growing in spring under dry and wet conditions. • Key Results Daily carbon gain by mother cladodes was reduced as the number of daughter cladodes increased to eight, especially during drought. This was accompanied by decreased mother cladode relative water content, suggesting movement of water from mother to daughter cladodes. CO2 assimilation was most affected in phase IV of CAM (late afternoon net CO2 uptake) by the combined effects of daughter cladodes and drought. Rainfall raised the soil water content, decreasing the effects of daughter cladodes on net CO2 uptake by mother cladodes. • Conclusions Daughter cladodes significantly hasten the effects of drought on mother cladodes by competition for the water supply and thus decrease daily carbon gain by mother cladodes, mainly by inhibiting phase IV of CAM. PMID:15567805
NASA Technical Reports Server (NTRS)
2008-01-01
Evaluation of Maximal Oxygen Uptake and Submaximal Estimates of VO2max Before, During, and After Long Duration International Space Station Missions (VO2max) will document changes in maximum oxygen uptake for crewmembers onboard the International Space Station (ISS) on long-duration missions, greater than 90 days. This investigation will establish the characteristics of VO2max during flight and assess the validity of the current methods of tracking aerobic capacity change during and following the ISS missions.
99mTc-HYNIC-(tricine/EDDA)-FROP peptide for MCF-7 breast tumor targeting and imaging.
Ahmadpour, Sajjad; Noaparast, Zohreh; Abedi, Seyed Mohammad; Hosseinimehr, Seyed Jalal
2018-02-19
Breast cancer is the most common malignancy among women in the world. Development of novel tumor-specific radiopharmaceuticals for early breast tumor diagnosis is highly desirable. In this study we developed 99m Tc-HYNIC-(tricine/EDDA)-Lys-FROP peptide with the ability of specific binding to MCF-7 breast tumor. The FROP-1 peptide was conjugated with the bifunctional chelator hydrazinonicotinamide (HYNIC) and labeled with 99m Tc using tricine/EDDA co-ligand. The cellular specific binding of 99m Tc-HYNIC-FROP was evaluated on different cell lines as well as with blocking experiment on MCF-7 (human breast adenocarcinoma). The tumor targeting and imaging of this labeled peptide were performed on MCF-7 tumor bearing mice. Radiochemical purity for 99m Tc-HYNIC-(tricine/EDDA)-FROP was 99% which was determined with ITLC method. This radiolabeled peptide showed high stability in normal saline and serum about 98% which was monitored with HPLC method. In saturation binding experiments, the binding constant (K d ) to MCF-7 cells was determined to be 158 nM. Biodistribution results revealed that the 99m Tc-HYNIC-FROP was mainly exerted from urinary route. The maximum tumor uptake was found after 30 min post injection (p.i.); however maximum tumor/muscle ratio was seen at 15 min p.i. The tumor uptake of this labeled peptide was specific and blocked by co-injection of excess FROP. According to the planar gamma imaging result, tumor was clearly visible due to the tumor uptake of 99m Tc-HYNIC-(tricine/EDDA)-FROP in mouse after 15 min p.i. The 99m Tc-HYNIC-(tricine/EDDA)-FROP is considered a promising probe with high specific binding to MCF-7 breast cancer cells.
The potential of using remote sensing data to estimate air-sea CO2 exchange in the Baltic Sea
NASA Astrophysics Data System (ADS)
Parard, Gaëlle; Rutgersson, Anna; Parampil, Sindu Raj; Alexandre Charantonis, Anastase
2017-12-01
In this article, we present the first climatological map of air-sea CO2 flux over the Baltic Sea based on remote sensing data: estimates of pCO2 derived from satellite imaging using self-organizing map classifications along with class-specific linear regressions (SOMLO methodology) and remotely sensed wind estimates. The estimates have a spatial resolution of 4 km both in latitude and longitude and a monthly temporal resolution from 1998 to 2011. The CO2 fluxes are estimated using two types of wind products, i.e. reanalysis winds and satellite wind products, the higher-resolution wind product generally leading to higher-amplitude flux estimations. Furthermore, the CO2 fluxes were also estimated using two methods: the method of Wanninkhof et al. (2013) and the method of Rutgersson and Smedman (2009). The seasonal variation in fluxes reflects the seasonal variation in pCO2 unvaryingly over the whole Baltic Sea, with high winter CO2 emissions and high pCO2 uptakes. All basins act as a source for the atmosphere, with a higher degree of emission in the southern regions (mean source of 1.6 mmol m-2 d-1 for the South Basin and 0.9 for the Central Basin) than in the northern regions (mean source of 0.1 mmol m-2 d-1) and the coastal areas act as a larger sink (annual uptake of -4.2 mmol m-2 d-1) than does the open sea (-4 mmol m-2 d-1). In its entirety, the Baltic Sea acts as a small source of 1.2 mmol m-2 d-1 on average and this annual uptake has increased from 1998 to 2012.
Influence of a Vented Mouthguard on Physiological Responses in Handball.
Schulze, Antina; Laessing, Johannes; Kwast, Stefan; Busse, Martin
2018-05-23
Schulze, A, Laessing, J, Kwast, S, and Busse, M. Influence of a vented mouthguard on physiological responses in handball. J Strength Cond Res XX(X): 000-000, 2018-Mouthguards (MGs) improve sports safety. However, airway obstruction and a resulting decrease in performance are theoretical disadvantages regarding their use. The study aim was to assess possible limitations of a "vented" MG on aerobic performance in handball. The physiological effects were investigated in 14 male professional players in a newly developed handball-specific course. The measured values were oxygen uptake, ventilation, heart rate, and lactate. Similar oxygen uptake (V[Combining Dot Above]O2) values were observed with and without MG use (51.9 ± 6.4 L·min·kg vs. 52.1 ± 10.9 L·min·kg). During maximum load, ventilation was markedly lower with the vented MG (153.1 ± 25 L·min vs. 166.3 ± 20.8 L·min). The endexpiratory concentrations of O2 (17.2 ± 0.5% vs. 17.6 ± 0.8%) and CO2 (4.0 ± 0.5% vs. 3.7 ± 0.6%) were significantly lower and higher, respectively, when using the MG. The inspiration and expiration times with and without the MG were 0.6 ± 0.1 seconds vs. 0.6 ± 0.1 seconds and 0.7 ± 0.2 seconds vs. 0.6 ± 0.2 seconds (all not significant), respectively, indicating that there was no relevant airflow restriction. The maximum load was not significantly affected by the MG. The lower ventilation for given V[Combining Dot Above]O2 values associated with MG use may be an effect of improved biomechanics and lower respiratory drive of the peripheral musculature.
The availability of dissolved organic phosphorus compounds to marine phytoplankton
NASA Astrophysics Data System (ADS)
Hua-Sheng, Hong; Hai-Li, Wang; Bang-Qin, Huang
1995-06-01
The availability of three dissolved organic phosphorus (DOP) compounds as nutrient sources for experimental culture of three algae was studied. Results indicated that these compounds could be utilized by algae, and that dissolved inorganic phosphorus (DIP) was first to be uptaken when various forms of phosphorus (DIP and DOP) co-existed. Dicrateria zhanjiangensis' uptake of sodium glycerophosphate was faster than that of D-ribose-5-phosphate. The increase of sodium glycerophosphate had little effect on the maximum uptake rate( V max) of Chlorella sp., but increased the semisaturation constant( K s) remarkably; the photosynthesis rates(PR) of Dicrateria zhanjiangensis and Chlorella sp. were rarely affected by using various forms of phosphorus in the culture experiments. The possible DOP pathways utilized by algae are discussed.
Tang, Shirong; Liao, Shangqiang; Guo, Junkang; Song, Zhengguo; Wang, Ruigang; Zhou, Xiaomin
2011-12-30
Growth and cesium uptake responses of plants to elevated CO(2) and microbial inoculation, alone or in combination, can be explored for clean-up of contaminated soils, and this induced phytoextraction may be better than the natural process. The present study used open-top chambers to investigate combined effects of Burkholderia sp. D54 inoculation and elevated CO(2) (860 μL L(-1)) on growth and Cs uptake by Phytolacca americana and Amaranthus cruentus grown on soil spiked with various levels of Cs (0-1000 mg kg(-1)). Elevated CO(2) and bacterial inoculation, alone or in combination, significantly increased biomass production with increased magnitude, ranging from 22% to 139% for P. americana, and 14% to 254% for A. cruentus. Total tissue Cs in both plants was significantly greater for bacterial inoculation treatment singly, and combined treatments of bacterial inoculation and elevated CO(2) than for the control treatment in most cases. Regardless of CO(2) concentrations and bacterial inoculation, A. cruentus had higher tissue Cs concentration, Cs transfer factors and concentration ratios than P. americana, but they had slightly different contents of antioxidant enzymes. It is concluded that combined effects of elevated CO(2) and microbial inoculation with regard to plant ability to grow and remove radionuclides from soil can be explored for CO(2)- and microbe-assisted phytoextraction technology. Copyright © 2011 Elsevier B.V. All rights reserved.
Uptake and storage of anthropogenic CO2 in the pacific ocean estimated using two modeling approaches
NASA Astrophysics Data System (ADS)
Li, Yangchun; Xu, Yongfu
2012-07-01
A basin-wide ocean general circulation model (OGCM) of the Pacific Ocean is employed to estimate the uptake and storage of anthropogenic CO2 using two different simulation approaches. The simulation (named BIO) makes use of a carbon model with biological processes and full thermodynamic equations to calculate surface water partial pressure of CO2, whereas the other simulation (named PTB) makes use of a perturbation approach to calculate surface water partial pressure of anthropogenic CO2. The results from the two simulations agree well with the estimates based on observation data in most important aspects of the vertical distribution as well as the total inventory of anthropogenic carbon. The storage of anthropogenic carbon from BIO is closer to the observation-based estimate than that from PTB. The Revelle factor in 1994 obtained in BIO is generally larger than that obtained in PTB in the whole Pacific, except for the subtropical South Pacific. This, to large extent, leads to the difference in the surface anthropogenic CO2 concentration between the two runs. The relative difference in the annual uptake between the two runs is almost constant during the integration processes after 1850. This is probably not caused by dissolved inorganic carbon (DIC), but rather by a factor independent of time. In both runs, the rate of change in anthropogenic CO2 fluxes with time is consistent with the rate of change in the growth rate of atmospheric partial pressure of CO2.
NASA Astrophysics Data System (ADS)
Wohlfahrt, Georg; Cremonese, Edoardo; Hammerle, Albin; Hörtnagl, Lukas; Galvagno, Marta; Gianelle, Damiano; Marcolla, Barbara; Cella, Umberto Morra
2013-12-01
is well established that warming leads to longer growing seasons in seasonally cold ecosystems. Whether this goes along with an increase in the net ecosystem carbon dioxide (CO2) uptake is much more controversial. We studied the effects of warming on the start of the carbon uptake period (CUP) of three mountain grasslands situated along an elevational gradient in the Alps. To this end, we used a simple empirical model of the net ecosystem CO2 exchange, calibrated, and forced with multiyear empirical data from each site. We show that reductions in the quantity and duration of daylight associated with earlier snowmelts were responsible for diminishing returns, in terms of carbon gain, from longer growing seasons caused by reductions in daytime photosynthetic uptake and increases in nighttime losses of CO2. This effect was less pronounced at high, compared to low, elevations, where the start of the CUP occurred closer to the summer solstice when changes in day length and incident radiation are minimal.
Wohlfahrt, Georg; Cremonese, Edoardo; Hammerle, Albin; Hörtnagl, Lukas; Galvagno, Marta; Gianelle, Damiano; Marcolla, Barbara; di Cella, Umberto Morra
2013-12-16
It is well established that warming leads to longer growing seasons in seasonally cold ecosystems. Whether this goes along with an increase in the net ecosystem carbon dioxide (CO 2 ) uptake is much more controversial. We studied the effects of warming on the start of the carbon uptake period (CUP) of three mountain grasslands situated along an elevational gradient in the Alps. To this end we used a simple empirical model of the net ecosystem CO 2 exchange, calibrated and forced with multi-year empirical data from each site. We show that reductions in the quantity and duration of daylight associated with earlier snowmelts were responsible for diminishing returns, in terms of carbon gain, from longer growing seasons caused by reductions in daytime photosynthetic uptake and increases in nighttime losses of CO 2 . This effect was less pronounced at high, compared to low, elevations, where the start of the CUP occurred closer to the summer solstice when changes in day length and incident radiation are minimal.
Helbig, Manuel; Chasmer, Laura E; Desai, Ankur R; Kljun, Natascha; Quinton, William L; Sonnentag, Oliver
2017-08-01
In the sporadic permafrost zone of northwestern Canada, boreal forest carbon dioxide (CO 2 ) fluxes will be altered directly by climate change through changing meteorological forcing and indirectly through changes in landscape functioning associated with thaw-induced collapse-scar bog ('wetland') expansion. However, their combined effect on landscape-scale net ecosystem CO 2 exchange (NEE LAND ), resulting from changing gross primary productivity (GPP) and ecosystem respiration (ER), remains unknown. Here, we quantify indirect land cover change impacts on NEE LAND and direct climate change impacts on modeled temperature- and light-limited NEE LAND of a boreal forest-wetland landscape. Using nested eddy covariance flux towers, we find both GPP and ER to be larger at the landscape compared to the wetland level. However, annual NEE LAND (-20 g C m -2 ) and wetland NEE (-24 g C m -2 ) were similar, suggesting negligible wetland expansion effects on NEE LAND . In contrast, we find non-negligible direct climate change impacts when modeling NEE LAND using projected air temperature and incoming shortwave radiation. At the end of the 21st century, modeled GPP mainly increases in spring and fall due to reduced temperature limitation, but becomes more frequently light-limited in fall. In a warmer climate, ER increases year-round in the absence of moisture stress resulting in net CO 2 uptake increases in the shoulder seasons and decreases during the summer. Annually, landscape net CO 2 uptake is projected to decline by 25 ± 14 g C m -2 for a moderate and 103 ± 38 g C m -2 for a high warming scenario, potentially reversing recently observed positive net CO 2 uptake trends across the boreal biome. Thus, even without moisture stress, net CO 2 uptake of boreal forest-wetland landscapes may decline, and ultimately, these landscapes may turn into net CO 2 sources under continued anthropogenic CO 2 emissions. We conclude that NEE LAND changes are more likely to be driven by direct climate change rather than by indirect land cover change impacts. © 2017 John Wiley & Sons Ltd.
Parys, Eugeniusz; Jastrzebski, Hubert
2006-04-01
The rate of respiratory CO2 evolution from the leaves of Zea mays, Panicum miliaceum, and Panicum maximum, representing NADP-ME, NAD-ME, and PEP-CK types of C4 plants, respectively, was increased by approximately two to four times after a period of photosynthesis. This light-enhanced dark respiration (LEDR) was a function of net photosynthetic rate specific to plant species, and was depressed by 1% O2. When malate, aspartate, oxaloacetate or glycine solution at 50 mM concentration was introduced into the leaves instead of water, the rate of LEDR was enhanced, far less in Z. mays (by 10-25%) than in P. miliaceum (by 25-35%) or P. maximum (by 40-75%). The enhancement of LEDR under glycine was relatively stable over a period of 1 h, whereas the remaining metabolites caused its decrease following a transient increase. The metabolites reduced the net photosynthesis rate in the two Panicum species, but not in Z. mays, where this process was stimulated by glycine. The bundle sheath cells from P. miliaceum exhibited a higher rate of LEDR than those of Z. mays and P. maximum. Glycine had no effect on the respiration rate of the cells, but malate increased in cells of Z. mays and P. miliaceum by about 50% and 30%, respectively. With the exception of aspartate, which stimulated both the O2 evolution and O2 uptake in P. maximum, the remaining metabolites reduced photosynthetic O2 evolution from bundle sheath cells in Panicun species. The net O2 exchange in illuminated cells of Z. mays did not respond to CO2 or metabolites. Leaf mesophyll protoplasts of Z. mays and P. miliaceum, and bundle sheath protoplasts of Z. mays, which are unable to fix CO2 photosynthetically, also produced LEDR, but the mesophyll protoplasts, compared with bundle sheath protoplasts, required twice the time of illumination to obtain the maximal rate. The results suggest that the substrates for LEDR in C4 plants are generated during a period of illumination not only via the Calvin cycle reactions, but also by the conversion of endogenous compounds present in leaf cells. The stimulation of LEDR under glycine is discussed in relation to its direct or indirect effect on mitochondrial respiration.
Longitudinal observation of [11C]4DST uptake in turpentine-induced inflammatory tissue.
Toyohara, Jun; Sakata, Muneyuki; Oda, Keiichi; Ishii, Kenji; Ishiwata, Kiichi
2013-02-01
Longitudinal changes of 4'-[methyl-(11)C]thiothymidine ([(11)C]4DST) uptake were evaluated in turpentine-induced inflammation. Turpentine (0.1 ml) was injected intramuscularly into the right hind leg of male Wistar rats. Longitudinal [(11)C]4DST uptake was evaluated by the tissue dissection method at 1, 2, 4, 7, and 14 days after turpentine injection (n=5). The tumor selectivity index was calculated using the previously published biodistribution data in C6 glioma-bearing rats. Dynamic PET scan was performed on day 4 when maximum [(11)C]4DST uptake was observed during the longitudinal study. Histopathological analysis and Ki-67 immunostaining were also performed. The uptake of [(11)C]4DST in inflammatory tissue was significantly increased on days 2-4 after turpentine injection, and then decreased. On day 14, tracer uptake returned to the day 1 level. The maximum SUV of inflamed muscle was 0.6 and was 3 times higher than that of the contralateral healthy muscle on days 2-4 after turpentine injection. However, tumor selectivity index remains very high (>10) because of the low inflammation uptake. A dynamic PET scan showed that the radioactivity in inflammatory tissues peaked at 5 min after [(11)C]4DST injection, and then washed out until 20 min. At intervals >20 min, radioactivity levels were constant and double that of healthy muscle. The changes in Ki-67 index were paralleled with those of [(11)C]4DST uptake, indicating cell proliferation-dependent uptake of [(11)C]4DST in inflammatory tissues. In our animal model, low but significant levels of [(11)C]4DST uptake were observed in subacute inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.
Interaction of cruciferin-based nanoparticles with Caco-2 cells and Caco-2/HT29-MTX co-cultures.
Akbari, Ali; Lavasanifar, Afsaneh; Wu, Jianping
2017-12-01
The objective of this work was to assess the potential of Cruciferin/Calcium (Cru/Ca) and Cruciferin/Chitosan (Cru/Cs) nanoparticles for oral drug delivery. For this purpose, Cru/Ca and Cru/Cs nanoparticles were developed through cold gelation of Cruciferin, a major canola protein, and in interaction with calcium and chitosan, respectively. The extent and rate of particle uptake in Caco-2 cells and Caco-2/HT29 co-culture was then evaluated by fluorescence spectroscopy as well as flow cytometry. Through pre-incubation of Caco-2 cell monolayer with specific endocytosis inhibitors, the mechanism of cell uptake was investigated. Our results showed that the uptake of negatively-charged Cru/Ca particles to be ∼3 times higher than positively-charged Cru/Cs ones by Caco-2 cells. Presence of mucus secreted by HT29 cells in their co-culture with Caco-2 had negligible influence on the uptake and transport of both particles. In contrast to Cru/Ca particles which were dissociated in the simulated gastrointestinal conditions, digestion of Cru/Cs particles resulted in 6- and 2-fold increase in the cellular uptake and transport of encapsulated coumarin in the latter particles, respectively. While the presence of mucus in Caco-2/HT29 co-culture caused 40-50% decrease of cellular uptake and transport for coumarin encapsulated in digested Cru/Cs particles, it had no significant effect on the cell uptake and transport of coumarin associated with Cru/Ca particles after digestion. Energy-dependent mechanisms were the dominant mechanism for uptake of both undigested and digested particles. Therefore, in Caco-2/HT29 co-culture which closely simulated intestinal epithelial cells, undigested Cru/Ca and Cru/Cs particles had the ability to penetrate mucus layers, while digested Cru/Cs particles showed mucoadhesive property, and digested Cru/Ca particles were dissociated. Our results points to a potential for cruciferin based nanoparticles for oral drug delivery. The long-term objective of this research is to investigate the potential of edible and safe biopolymer in enhanced oral delivery of drugs and/or vaccines. Here, we investigated the potential application of nanoparticles based on a protein extracted from Canola seeds, i.e., cruciferin, for oral delivery of a model small molecule, i.e., coumarin, through cells representing gastrointestinal epithelium, Caco-2 and Caco-2/HT29 cell monolayer. This study was completed for intact cruciferin nanoparticles and cruciferin coated chitosan nanoparticles, before and after digestion with gastric or intestine simulating fluids. This comparison was useful to understand the fate the cruciferin based particles in digestive mucosal tissues and their potential mucoadhesive and/or mucus-penetrating property. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Carbon Metabolism in Two Species of Pereskia (Cactaceae) 1
Rayder, Lisa; Ting, Irwin P.
1981-01-01
The Pereskia are morphologically primitive, leafed members of the Cactaceae. Gas exchange characteristics using a dual isotope porometer to monitor 14CO2 and tritiated water uptake, diurnal malic acid fluctuations, phosphoenolpyruvate carboxylase, and malate dehydrogenase activities were examined in two species of the genus Pereskia, Pereskia grandifolia and Pereskia aculeata. Investigations were done on well watered (control) and water-stressed plants. Nonstressed plants showed a CO2 uptake pattern indicating C3 carbon metabolism. However, diurnal fluctuations in titratable acidity were observed similar to Crassulacean acid metabolism. Plants exposed to 10 days of water stress exhibited stomatal opening only during an early morning period. Titratable acidity, phosphoenolpyruvate carboxylase activity, and malate dehydrogenase activity fluctuations were magnified in the stressed plants, but showed the same diurnal pattern as controls. Water stress causes these cacti to shift to an internal CO2 recycling (“idling”) that has all attributes of Crassulacean acid metabolism except nocturnal stomata opening and CO2 uptake. The consequences of this shift, which has been observed in other succulents, are unknown, and some possibilities are suggested. PMID:16661857
Teng, Jia Ling; Jia, Rong Liang; Hu, Yi Gang; Xu, Bing Xin; Chen, Meng Chen; Zhao, Yun
2016-03-01
Based on the measurements of the fluxes of CO 2 , CH 4 and N 2 O from the soil covered by two types of biocrusts dominated separately by moss and algae-lichen, followed by 0 (control), 1 (shallow) and 10 (deep) mm depths of sand burial treatments, we studied the effects of sand burial on greenhouse gases fluxes and their relationships with soil temperature and moisture at Shapotou, southeastern edge of the Tengger Desert. The results showed that sand burial had significantly positive effects on CO 2 emission fluxes and CH 4 uptake fluxes of the soil covered by the two types of biocrusts, but imposed differential effects on N 2 O fluxes depending on the type of biocrust and the depth of burial. Deep burial (10 mm) dramatically increased the N 2 O uptake fluxes of the soil co-vered by the two types of biocrusts, while shallow burial (1 mm) decreased the N 2 O uptake flux of the soil co-vered by moss crust only and had no significant effects on N 2 O uptake flux of the soil covered by algae-lichen crust. In addition, CO 2 fluxes of the two biocrusts were closely related to the soil temperature and soil moisture, thereby increasing with the raised soil surface temperature and soil moisture caused by sand burial. However, the relationships of burial-induced changes of soil temperature and moisture with the changes in the other two greenhouse gases fluxes were not evident, indicating that the variations of soil temperature and moisture caused by sand burial were not the key factors affecting the fluxes of CH 4 and N 2 O of the soil covered by the two types of biocrusts.
Bowling, David R.; Bethers-Marchetti, S.; Lunch, C.K.; Grote, E.E.; Belnap, J.
2010-01-01
The net exchanges of carbon dioxide, water vapor, and energy were examined in a perennial Colorado Plateau grassland for 5 years. The study began within a multiyear drought and continued as the drought ended. The grassland is located near the northern boundary of the influence of the North American monsoon, a major climatic feature bringing summer rain. Following rain, evapotranspiration peaked above 8 mm d-1 but was usually much smaller (2-4 mm d-1). Net productivity of the grassland was low compared to other ecosystems, with peak hourly net CO2 uptake in the spring of 4 (mu or u)mol m-2 s-1 and springtime carbon gain in the range of 42 + or - 11 g C m-2 (based on fluxes) to 72 + or - 55 g C m-2 (based on carbon stocks; annual carbon gain was not quantified). Drought decreased gross ecosystem productivity (GEP) and total ecosystem respiration, with a much larger GEP decrease. Monsoon rains led to respiratory pulses, lasting a few days at most, and only rarely resulted in net CO2 gain, despite the fact that C4 grasses dominated plant cover. Minor CO2 uptake was observed in fall following rain. Spring CO2 uptake was regulated by deep soil moisture, which depended on precipitation in the prior fall and winter. The lack of CO2 uptake during the monsoon and the dependence of GEP on deep soil moisture are in contrast with arid grasslands of the warm deserts. Cold desert grasslands are most likely to be impacted by future changes in winter and not summer precipitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsobrook, Andrea N.; Hauser, Brad G.; Hupp, Joseph T.
2011-02-08
Five heterobimetallic U(VI)/Co(II) carboxyphosphonates have been synthesized under mild hydrothermal conditions by reacting UO 3, Co(CH 3CO 2) 2·4H 2O, and triethyl phosphonoacetate. These compounds, Co(H 2O) 4[(UO 2) 2(PO 3CH 2CO 2) 2(H 2O) 2] (CoUPAA-1), [Co(H 2O) 6][UO 2(PO 3CH 2CO 2)] 2·8H 2O (CoUPAA-2), Co(H 2O) 4[UO 2(PO 3CH 2CO 2)] 2·4H 2O (CoUPAA-3), Co(H 2O) 4[(UO 2) 62CH 2CO 2) 2O 2(OH) 3(H 2O) 3] 2·3H 2O (CoUPAA-4), and Co 2(UO 2) 6(PO 3CH 2CO 2) 3O 3(OH)(H 2O) 2·16H 2O (CoUPAA-5), range from two- to three-dimensional structures. CoUPAA-1 to CoUPAA-3 all possess uranyl carboxyphosphonate layersmore » that are separated by the Co(II) cation with varying degrees of hydration. CoUPAA-4 contains both UO 7 pentagonal bipyramids and UO 8 hexagonal bipyramids within the uranyl carboxyphosphonate plane. Unlike the first four low-symmetry compounds, CoUPAA-5 is a cubic, three-dimensional network with large cavities approximately 16 Å in diameter that are filled with cocrystallized water molecules. Differential gas absorption measurements performed on CoUPAA-5 displayed a surface area uptake for CO 2 of 40 m 2 g -1 at 273 K, and no uptake for N 2 at 77 K.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubey, Manvendra Krishna
Forests soak up 25% of the carbon dioxide (CO 2) emitted by anthropogenic fossil energy use (10 Gt C y -1) moderating its atmospheric accumulation. How this terrestrial CO 2 uptake will evolve with climate change in the 21st century is largely unknown. Rainforests are the most active ecosystems with the Amazon basin storing 120 Gt C as biomass and exchanging 18 Gt C y -1 of CO 2 via photosynthesis and respiration and fixing carbon at 2-3 kg C m -2 y -1. Furthermore, the intense hydrologic and carbon cycles are tightly coupled in the Amazon where about halfmore » of the water is recycled by evapotranspiration and the other half imported from the ocean by Northeasterly trade winds. Climate models predict a drying in the Amazon with reduced carbon uptake while observationally guided assessments indicate sustained uptake. We will resolve this huge discrepancy in the size and sign of the future Amazon carbon cycle by performing the first simultaneous regional scale high frequency measurements of atmospheric CO 2, H 2O, HOD, CH 4, N 2O and CO at the T3 site in Manacupuru, Brazil as part of DOE's GoAmazon project. Our data will be used to inform and develop DOE's CLM on the tropical carbon-water couplings at the appropriate grid scale (10-50km). Our measurements will also validate the CO 2 data from Japan's GOSAT and NASA's imminent OCO-2 satellite (launch date July 2014).« less
Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation.
Kim, Hyun-Seok; Oren, Ram; Hinckley, Thomas M
2008-04-01
We examined the tradeoffs between stand-level water use and carbon uptake that result when biomass production of trees in plantations is maximized by removing nutrient and water limitations. A Populus trichocarpa Torr. x P. deltoides Bartr. & Marsh. plantation was irrigated and received frequent additions of nutrients to optimize biomass production. Sap flux density was measured continuously over four of the six growing-season months, supplemented with periodic measurements of leaf gas exchange and water potential. Measurements of tree diameter and height were used to estimate leaf area and biomass production based on allometric relationships. Sap flux was converted to canopy conductance and analyzed with an empirical model to isolate the effects of water limitation. Actual and soil-water-unlimited potential CO(2) uptakes were estimated with a canopy conductance constrained carbon assimilation (4C-A) scheme, which couples actual or potential canopy conductance with vertical gradients of light distribution, leaf-level conductance, maximum Rubisco capacity and maximum electron transport. Net primary production (NPP) was about 43% of gross primary production (GPP); when estimated for individual trees, this ratio was independent of tree size. Based on the NPP/GPP ratio, we found that current irrigation reduced growth by about 18% compared with growth with no water limitation. To achieve maximum growth, however, would require 70% more water for transpiration, and would reduce water-use efficiency by 27%, from 1.57 to 1.15 g stem wood C kg(-1) water. Given the economic and social values of water, plantation managers appear to have optimized water use.
Highly nitrogen-doped porous carbon derived from zeolitic imidazolate framework-8 for CO2 capture.
Ma, Xiancheng; Li, Liqing; Chen, Ruofei; Wang, Chunhao; Li, Haoyang; Li, Hailong
2018-05-18
CO2 adsorption capacity of nitrogen-doped porous carbon depends to a large nitrogen doping levels and high surface area in previous studies. However, it seems difficult to incorporate large amounts of nitrogen while maintaining a high surface area and pore structure. Here we have reported porous carbon having a nitrogen content of up to 25.52% and specific surface area of 948 m2 g-1, which is prepared by pyrolyzing the nitrogen-containing zeolite imidazole framework-8 and urea composite at 650 °C under a nitrogen atmosphere. ZNC650 exhibits a superior CO2 uptake of 3.7 mmol g-1 at 25 ℃ and 1 bar. Experimental and theoretical results indicate that the nitrogen-containing functional groups can enhance CO2 uptake electrostatic interactions, Lewis acid-base interactions and hydrogen-bonding interactions, which are elucidated by density functional theory calculations. As CO2 adsorbent materials, these carbons have excellent adsorption capacity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Riisgård, Frederik Kier; Gunther, William Stuart; Lønsmann Iversen, Jens Jørgen
2006-01-01
Growth of the green algae Chlamydomonas reinhardtii and Chlorella sp. in batch cultures was investigated in a novel gas-tight photobioreactor, in which CO2, H2, and N2 were titrated into the gas phase to control medium pH, dissolved oxygen partial pressure, and headspace pressure, respectively. The exit gas from the reactor was circulated through a loop of tubing and re-introduced into the culture. CO2 uptake was estimated from the addition of CO2 as acidic titrant and O2 evolution was estimated from titration by H2, which was used to reduce O2 over a Pd catalyst. The photosynthetic quotient, PQ, was estimated as the ratio between O2 evolution and CO2 up-take rates. NH4+, NO2−, or NO3− was the final cell density limiting nutrient. Cultures of both algae were, in general, characterised by a nitrogen sufficient growth phase followed by a nitrogen depleted phase in which starch was the major product. The estimated PQ values were dependent on the level of oxidation of the nitrogen source. The PQ was 1 with NH4+ as the nitrogen source and 1.3 when NO3− was the nitrogen source. In cultures grown on all nitrogen sources, the PQ value approached 1 when the nitrogen source was depleted and starch synthesis became dominant, to further increase towards 1.3 over a period of 3–4 days. This latter increase in PQ, which was indicative of production of reduced compounds like lipids, correlated with a simultaneous increase in the degree of reduction of the biomass. When using the titrations of CO2 and H2 into the reactor headspace to estimate the up-take of CO2, the production of O2, and the PQ, the rate of biomass production could be followed, the stoichiometrical composition of the produced algal biomass could be estimated, and different growth phases could be identified. PMID:19396354
NASA Astrophysics Data System (ADS)
Takahashi, Taro; Sutherland, Stewart C.; Sweeney, Colm; Poisson, Alain; Metzl, Nicolas; Tilbrook, Bronte; Bates, Nicolas; Wanninkhof, Rik; Feely, Richard A.; Sabine, Christopher; Olafsson, Jon; Nojiri, Yukihiro
Based on about 940,000 measurements of surface-water pCO 2 obtained since the International Geophysical Year of 1956-59, the climatological, monthly distribution of pCO 2 in the global surface waters representing mean non-El Niño conditions has been obtained with a spatial resolution of 4°×5° for a reference year 1995. The monthly and annual net sea-air CO 2 flux has been computed using the NCEP/NCAR 41-year mean monthly wind speeds. An annual net uptake flux of CO 2 by the global oceans has been estimated to be 2.2 (+22% or -19%) Pg C yr -1 using the (wind speed) 2 dependence of the CO 2 gas transfer velocity of Wanninkhof (J. Geophys. Res. 97 (1992) 7373). The errors associated with the wind-speed variation have been estimated using one standard deviation (about±2 m s -1) from the mean monthly wind speed observed over each 4°×5° pixel area of the global oceans. The new global uptake flux obtained with the Wanninkhof (wind speed) 2 dependence is compared with those obtained previously using a smaller number of measurements, about 250,000 and 550,000, respectively, and are found to be consistent within±0.2 Pg C yr -1. This estimate for the global ocean uptake flux is consistent with the values of 2.0±0.6 Pg C yr -1 estimated on the basis of the observed changes in the atmospheric CO 2 and oxygen concentrations during the 1990s (Nature 381 (1996) 218; Science 287 (2000) 2467). However, if the (wind speed) 3 dependence of Wanninkhof and McGillis (Res. Lett. 26 (1999) 1889) is used instead, the annual ocean uptake as well as the sensitivity to wind-speed variability is increased by about 70%. A zone between 40° and 60° latitudes in both the northern and southern hemispheres is found to be a major sink for atmospheric CO 2. In these areas, poleward-flowing warm waters meet and mix with the cold subpolar waters rich in nutrients. The pCO 2 in the surface water is decreased by the cooling effect on warm waters and by the biological drawdown of pCO 2 in subpolar waters. High wind speeds over these low pCO 2 waters increase the CO 2 uptake rate by the ocean waters. The pCO 2 in surface waters of the global oceans varies seasonally over a wide range of about 60% above and below the current atmospheric pCO 2 level of about 360 μatm. A global map showing the seasonal amplitude of surface-water pCO 2 is presented. The effect of biological utilization of CO 2 is differentiated from that of seasonal temperature changes using seasonal temperature data. The seasonal amplitude of surface-water pCO 2 in high-latitude waters located poleward of about 40° latitude and in the equatorial zone is dominated by the biology effect, whereas that in the temperate gyre regions is dominated by the temperature effect. These effects are about 6 months out of phase. Accordingly, along the boundaries between these two regimes, they tend to cancel each other, forming a zone of small pCO 2 amplitude. In the oligotrophic waters of the northern and southern temperate gyres, the biology effect is about 35 μatm on average. This is consistent with the biological export flux estimated by Laws et al. (Glob. Biogeochem. Cycles 14 (2000) 1231). Small areas such as the northwestern Arabian Sea and the eastern equatorial Pacific, where seasonal upwelling occurs, exhibit intense seasonal changes in pCO 2 due to the biological drawdown of CO 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azcon-Bieto, J.; Gonzalez-Meler, M.A.; Doherty, W.
1994-11-01
C{sub 3} and C{sub 4} plants were grown in open-top chambers in the field at two CO{sub 2} concentrations, normal ambient (ambient) and normal ambient + 340 {mu}L L{sup {minus}1} (elevated). Dark oxygen uptake was measured in leaves and stems using a liquid-phase Clark-type oxygen electrode. High CO{sub 2} treatment decreased dark oxygen uptake in stems of Scirpus olneyi (C{sub 3}) and leaves of Lindera benzoin (C{sub 3}) expressed on either a dry weight or area basis. Respiration of Spartina patens (C{sub 4}) leaves was unaffected by CO{sub 2} treatment. Leaf dry weight per unit area was unchanged by CO{submore » 2}, but respiration per unit of carbon or per unit of nitrogen was decreased in the C{sub 3} species grown at high CO{sub 2}. The component of respiration in stems of S. olneyi and leaves of L. benzoin primarily affected by long-term exposure to the elevated CO{sub 2} treatment was the activity of the cytochrome pathway. Elevated CO{sub 2} had no effect on activity and capacity of the alternative pathway in S. olneyi. The cytochrome c oxidase activity, assayed in a cell-free extract, was strongly decreased by growth at high CO{sub 2} in stems of S. olneyi but it was unaffected in S. patens leaves. The activity of cytochrome c oxidase and complex III extracted from mature leaves of L. benzoin was also decreased after one growing season of plant exposure to elevated CO{sub 2} concentration. These results show that in some C{sub 3} species respiration will be reduced when plants are grown in elevated atmospheric CO{sub 2}. The possible physiological causes and implications of these effects are discussed. 34 refs., 1 fig., 6 tabs.« less
Rapid Cycle Amine (RCA 2.0) System Development
NASA Technical Reports Server (NTRS)
Papale, William; O'Coin, James; Wichowski, Robert; Chullen, Cinda; Campbell, Colin
2012-01-01
The Rapid Cycle Amine (RCA) system is a low power assembly capable of simultaneously removing carbon dioxide (CO2) and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. Two solid amine sorbent beds are alternated between an uptake mode and a regeneration mode. During the uptake mode, the sorbent is exposed to an air steam (ventilation loop) to adsorb CO2 and water vapor, while during the regeneration mode, the sorbent rejects the adsorbed CO2 and water vapor to a vacuum source. The two beds operate such that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. A novel valve assembly provides a simple means of diverting the process air flow through the uptake bed while simultaneously directing the vacuum source to the regeneration bed. Additionally, the valve assembly is designed to allow for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The process can be controlled by a compact, low power controller design with several modes of operation available to the user. Together with NASA, United Technologies Corporation Aerospace Systems has been developing RCA 2.0 based on performance and design feedback on several sorbent bed test articles and valve design concepts. A final design was selected in November 2011 and fabricated and assembled between March and August 2012, with delivery to NASA-JSC in September 2012. This paper will provide an overview on the RCA system design and results of pre-delivery testing.
NASA Astrophysics Data System (ADS)
Shutler, J. D.; Land, P. E.; Brown, C. W.; Findlay, H. S.; Donlon, C. J.; Medland, M.; Snooke, R.; Blackford, J. C.
2013-04-01
Coccolithophores are the primary oceanic phytoplankton responsible for the production of calcium carbonate (CaCO3). These climatically important plankton play a key role in the oceanic carbon cycle as a major contributor of carbon to the open ocean carbonate pump (~50%) and their calcification can affect the atmosphere-to-ocean (air-sea) uptake of carbon dioxide (CO2) through increasing the seawater partial pressure of CO2 (pCO2). Here we document variations in the areal extent of surface blooms of the globally important coccolithophore, Emiliania huxleyi, in the North Atlantic over a 10-year period (1998-2007), using Earth observation data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). We calculate the annual mean sea surface areal coverage of E. huxleyi in the North Atlantic to be 474 000 ± 104 000 km2, which results in a net CaCO3 carbon (CaCO3-C) production of 0.14-1.71 Tg CaCO3-C per year. However, this surface coverage (and, thus, net production) can fluctuate inter-annually by -54/+8% about the mean value and is strongly correlated with the El Niño/Southern Oscillation (ENSO) climate oscillation index (r=0.75, p<0.02). Our analysis evaluates the spatial extent over which the E. huxleyi blooms in the North Atlantic can increase the pCO2 and, thus, decrease the localised air-sea flux of atmospheric CO2. In regions where the blooms are prevalent, the average reduction in the monthly air-sea CO2 flux can reach 55%. The maximum reduction of the monthly air-sea CO2 flux in the time series is 155%. This work suggests that the high variability, frequency and distribution of these calcifying plankton and their impact on pCO2 should be considered if we are to fully understand the variability of the North Atlantic air-to-sea flux of CO2. We estimate that these blooms can reduce the annual N. Atlantic net sink atmospheric CO2 by between 3-28%.
Jiang, G.M.
2013-01-01
The beneficial effects of elevated CO2 on plants are expected to be compromised by the negative effects posed by other global changes. However, little is known about ozone (O3)-induced modulation of elevated CO2 response in plants with differential sensitivity to O3. An old (Triticum aestivum cv. Beijing 6, O3 tolerant) and a modern (T. aestivum cv. Zhongmai 9, O3 sensitive) winter wheat cultivar were exposed to elevated CO2 (714 ppm) and/or O3 (72 ppb, for 7h d–1) in open-topped chambers for 21 d. Plant responses to treatments were assessed by visible leaf symptoms, simultaneous measurements of gas exchange and chlorophyll a fluorescence, in vivo biochemical properties, and growth. It was found that elevated CO2 resulted in higher growth stimulation in the modern cultivar attributed to a higher energy capture and electron transport rate compared with the old cultivar. Exposure to O3 caused a greater growth reduction in the modern cultivar due to higher O3 uptake and a greater loss of photosystem II efficiency (mature leaf) and mesophyll cell activity (young leaf) than in the old cultivar. Elevated CO2 completely protected both cultivars against the deleterious effects of O3 under elevated CO2 and O3. The modern cultivar showed a greater relative loss of elevated CO2-induced growth stimulation due to higher O3 uptake and greater O3-induced photoinhibition than the old cultivar at elevated CO2 and O3. Our findings suggest that the elevated CO2-induced growth stimulation in the modern cultivar attributed to higher energy capture and electron transport rate can be compromised by its higher O3 uptake and greater O3-induced photoinhibition under elevated CO2 and O3 exposure. PMID:23378379
Faria-Urbina, Mariana; Oliveira, Rudolf K F; Segrera, Sergio A; Lawler, Laurie; Waxman, Aaron B; Systrom, David M
2018-01-01
Ambrisentan in 22 patients with pulmonary hypertension diagnosed during exercise (ePH) improved pulmonary hemodynamics; however, there was only a trend toward increased maximum oxygen uptake (VO 2 max) secondary to decreased maximum exercise systemic oxygen extraction (Ca-vO 2 ). We speculate that improved pulmonary hemodynamics at maximum exercise "unmasked" a pre-existing skeletal muscle abnormality.
NASA Astrophysics Data System (ADS)
Bronk, D. A.; Spackeen, J.; Sipler, R. E.; Bertrand, E. M.; Roberts, Q. N.; Xu, K.; Baer, S. E.; McQuaid, J.; Zhu, Z.; Walworth, N. G.; Hutchins, D. A.; Allen, A. E.
2016-02-01
Western Antarctic Seas are rapidly changing as a result of elevated concentrations of CO2 and rising sea surface temperatures. It is critical to determine how the structure and function of microbial communities will be impacted by these changes in the future because the Southern Ocean has seasonally high rates of primary production, is an important sink for anthropogenic CO2, and supports a diverse assemblage of higher trophic level organisms. During the Austral summer of 2013 and 2015, a collaborative research group conducted a series of experiments to understand how the individual and combined effects of temperature, CO2, and iron impact Ross Sea microorganisms. Our project used a variety of approaches, including batch experiments, semi-continuous experiments, and continuous-culturing over extended time intervals, to determine how future changes may shift Ross Sea microbial communities and how nutrient cycling and carbon biogeochemistry may subsequently be altered. Chemical and biological parameters were measured throughout the experiments to assess changes in community composition and nutrient cycling, including uptake rate measurements of nitrate and bicarbonate by different size fractions of microorganisms. Relative to the control, nitrate uptake rates significantly increased when temperature and iron were elevated indicating that temperature and iron are important physical drivers that influence nutrient cycling. Elevations in temperature and iron independently and synergistically produced higher rates than elevated CO2. Our nutrient uptake results also suggest that the physiology of large microorganisms will be more impacted by climate change variables than small microorganisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.
This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO{sub 2}more » measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO{sub 2} sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H{sub 2} and natural gas uptake/storage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.
This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2measurements.more » As a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage.« less
Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.; ...
2014-12-24
This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2measurements.more » As a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage.« less
Comparison of Sea-Air CO2 Flux Estimates Using Satellite-Based Versus Mooring Wind Speed Data
NASA Astrophysics Data System (ADS)
Sutton, A. J.; Sabine, C. L.; Feely, R. A.; Wanninkhof, R. H.
2016-12-01
The global ocean is a major sink of anthropogenic CO2, absorbing approximately 27% of CO2 emissions since the beginning of the industrial revolution. Any variation or change in the ocean CO2 sink has implications for future climate. Observations of sea-air CO2 flux have relied primarily on ship-based underway measurements of partial pressure of CO2 (pCO2) combined with satellite, model, or multi-platform wind products. Direct measurements of ΔpCO2 (seawater - air pCO2) and wind speed from moored platforms now allow for high-resolution CO2 flux time series. Here we present a comparison of CO2 flux calculated from moored ΔpCO2 measured on four moorings in different biomes of the Pacific Ocean in combination with: 1) Cross-Calibrated Multi-Platform (CCMP) winds or 2) wind speed measurements made on ocean reference moorings excluded from the CCMP dataset. Preliminary results show using CCMP winds overestimates CO2 flux on average by 5% at the Kuroshio Extension Observatory, Ocean Station Papa, WHOI Hawaii Ocean Timeseries Station, and Stratus. In general, CO2 flux seasonality follows patterns of seawater pCO2 and SST with periods of CO2 outgassing during summer and CO2 uptake during winter at these locations. Any offsets or seasonal biases in CCMP winds could impact global ocean sink estimates using this data product. Here we present patterns and trends between the two CO2 flux estimates and discuss the potential implications for tracking variability and change in global ocean CO2 uptake.
NASA Astrophysics Data System (ADS)
Tanaka, T.; Thingstad, T. F.; Løvdal, T.; Grossart, H.-P.; Larsen, A.; Allgaier, M.; Meyerhöfer, M.; Schulz, K. G.; Wohlers, J.; Zöllner, E.; Riebesell, U.
2008-05-01
Availability of phosphate for phytoplankton and bacteria and of glucose for bacteria at different pCO2 levels were studied in a mesocosm experiment (PeECE III). Using nutrient-depleted SW Norwegian fjord waters, three different levels of pCO2 (350 μatm: 1×CO2; 700 μatm: 2×CO2; 1050 μatm: 3×CO2) were set up, and nitrate and phosphate were added at the start of the experiment in order to induce a phytoplankton bloom. Despite similar responses of total particulate P concentration and phosphate turnover time at the three different pCO2 levels, the size distribution of particulate P and 33PO4 uptake suggested that phosphate transferred to the >10 μm fraction was greater in the 3×CO2 mesocosm during the first 6-10 days when phosphate concentration was high. During the period of phosphate depletion (after Day 12), specific phosphate affinity and specific alkaline phosphatase activity (APA) suggested a P-deficiency (i.e. suboptimal phosphate supply) rather than a P-limitation for the phytoplankton and bacterial community at the three different pCO2 levels. Specific phosphate affinity and specific APA tended to be higher in the 3×CO2 than in the 2×CO2 and 1×CO2 mesocosms during the phosphate depletion period, although no statistical differences were found. Glucose turnover time was correlated significantly and negatively with bacterial abundance and production but not with the bulk DOC concentration. This suggests that even though constituting a small fraction of the bulk DOC, glucose was an important component of labile DOC for bacteria. Specific glucose affinity of bacteria behaved similarly at the three different pCO2 levels with measured specific glucose affinities being consistently much lower than the theoretical maximum predicted from the diffusion-limited model. This suggests that bacterial growth was not severely limited by the glucose availability. Hence, it seems that the lower availability of inorganic nutrients after the phytoplankton bloom reduced the bacterial capacity to consume labile DOC in the upper mixed layer of the stratified mesocosms.
Constraining surface carbon fluxes using in situ measurements of carbonyl sulfide and carbon dioxide
NASA Astrophysics Data System (ADS)
Berkelhammer, M.; Asaf, D.; Still, C.; Montzka, S.; Noone, D.; Gupta, M.; Provencal, R.; Chen, H.; Yakir, D.
2014-02-01
Understanding the processes that control the terrestrial exchange of carbon is critical for assessing atmospheric CO2 budgets. Carbonyl sulfide (COS) is taken up by vegetation during photosynthesis following a pathway that mirrors CO2 but has a small or nonexistent emission component, providing a possible tracer for gross primary production. Field measurements of COS and CO2 mixing ratios were made in forest, senescent grassland, and riparian ecosystems using a laser absorption spectrometer installed in a mobile trailer. Measurements of leaf fluxes with a branch-bag gas-exchange system were made across species from 10 genera of trees, and soil fluxes were measured with a flow-through chamber. These data show (1) the existence of a narrow normalized daytime uptake ratio of COS to CO2 across vascular plant species of 1.7, providing critical information for the application of COS to estimate photosynthetic CO2 fluxes and (2) a temperature-dependent normalized uptake ratio of COS to CO2 from soils. Significant nighttime uptake of COS was observed in broad-leafed species and revealed active stomatal opening prior to sunrise. Continuous high-resolution joint measurements of COS and CO2 concentrations in the boundary layer are used here alongside the flux measurements to partition the influence that leaf and soil fluxes and entrainment of air from above have on the surface carbon budget. The results provide a number of critical constraints on the processes that control surface COS exchange, which can be used to diagnose the robustness of global models that are beginning to use COS to constrain terrestrial carbon exchange.
Gautier, Hélène; Vavasseur, Alain; Gans, Pierre; Lascève, Gérard
1991-01-01
A mass spectrometric method combining 16O/18O and 12C/13C isotopes was used to quantify the unidirectional fluxes of O2 and CO2 during a dark to light transition for guard cell protoplasts and mesophyll cell protoplasts of Commelina communis L. In darkness, O2 uptake and CO2 evolution were similar on a protein basis. Under light, guard cell protoplasts evolved O2 (61 micromoles of O2 per milligram of chlorophyll per hour) almost at the same rate as mesophyll cell protoplasts (73 micromoles of O2 per milligram of chlorophyll per hour). However, carbon assimilation was totally different. In contrast with mesophyll cell protoplasts, guard cell protoplasts were able to fix CO2 in darkness at a rate of 27 micromoles of CO2 per milligram of chlorophyll per hour, which was increased by 50% in light. At the onset of light, a delay observed for guard cell protoplasts between O2 evolution and CO2 fixation and a time lag before the rate of saturation suggested a carbon metabolism based on phosphoenolpyruvate carboxylase activity. Under light, CO2 evolution by guard cell protoplasts was sharply decreased (37%), while O2 uptake was slowly inhibited (14%). A control of mitochondrial activity by guard cell chloroplasts under light via redox equivalents and ATP transfer in the cytosol is discussed. From this study on protoplasts, we conclude that the energy produced at the chloroplast level under light is not totally used for CO2 assimilation and may be dissipated for other purposes such as ion uptake. PMID:16668030
Niu, Yaofang; Chai, Rushan; Zhang, Yongsong
2013-01-01
Phosphorus (P) nutrition is always a key issue regarding plants responses to elevated CO2. Yet it is unclear of how elevated CO2 affects P uptake under different nitrogen (N) forms. This study investigated the influence of elevated CO2 (800 µl l–1) on P uptake and utilization by Arabidopsis grown in pH-buffered phosphate (P)-deficient (0.5 µM) hydroponic culture supplying with 2mM nitrate (NO3 −) or ammonium (NH4 +). After 7 d treatment, elevated CO2 enhanced the biomass production of both NO3 −- and NH4 +-fed plants but decreased the P amount absorbed per weight of roots and the P concentration in the shoots of plants supplied with NH4 +. In comparison, elevated CO2 increased the amount of P absorbed per weight of roots, as well as the P concentration in plants and alleviated P deficiency-induced symptoms of plants supplied with NO3 −. Elevated CO2 also increased the root/shoot ratio, total root surface area, and acid phosphatase activity, and enhanced the expression of genes or transcriptional factors involving in P uptake, allocation and remobilization in P deficient plants. Furthermore, elevated CO2 increased the nitric oxide (NO) level in roots of NO3 −-fed plants but decreased it in NH4 +-fed plants. NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) inhibited plant P acquisition by roots under elevated CO2. Considering all of these findings, this study concluded that a combination of elevated CO2 and NO3 − nutrition can induce a set of plant adaptive strategies to improve P status from P-deficient soluble sources and that NO may be a signalling molecule that controls these processes. PMID:23183255
NASA Astrophysics Data System (ADS)
Lamba, Shubhangi; Uddling, Johan; Räntfors, Mats; Hall, Marianne; Wallin, Göran
2014-05-01
Leaf photosynthesis, respiration and stomatal conductance exert strong control over the exchange of carbon, water and energy between the terrestrial biosphere and the atmosphere. As such, leaf physiological responses to rising atmospheric CO2 concentration ([CO2]) and temperature have important implications for the global carbon cycle and rate of ongoing global warming, as well as for local and regional hydrology and evaporative cooling. It is therefore critical to improve the understanding of plant physiological responses to elevated [CO2] and temperature, in particular for boreal and tropical ecosystems. In order to do so, we examined physiological responses of mature boreal Norway spruce trees (ca 40-years old) exposed to elevated [CO2] and temperature inside whole-tree chambers at Flakaliden research site, Northern Sweden. The trees were exposed to a factorial combination of two levels of [CO2] (ambient and doubled) and temperature (ambient and +2.8 degree C in summer and +5.6 degree C in winter). Three replicates in each of the four treatments were used. It was found that photosynthesis was increased considerably in elevated [CO2], but was not affected by the warming treatment. The maximum rate of photosynthetic carboxylation was reduced in the combined elevated [CO2] and elevated temperature treatment, but not in single factor treatments. Elevated [CO2] also strongly increased the base rate of respiration and to a lesser extent reduced the temperature sensitivity (Q10 value) of respiration; responses which may be important for the carbon balance of these trees which have a large proportion of shaded foliage. Stomatal conductance at a given VPD was reduced by elevated temperature treatment, to a degree that mostly offset the higher vapour pressure deficit in warmed air with respect to transpiration. Elevated [CO2] did not affect stomatal conductance, and thus increased the ratio of leaf internal to external [CO2]. These results indicate that the large elevated [CO2]-induced increase in CO2 uptake is partly counteracted by substantial increases in autotrophic respiration in boreal spruce. Furthermore, stomatal results suggest conservative leaf-level water use of spruce under rising [CO2] and temperature.
Wallin, Göran; Hall, Marianne; Slaney, Michelle; Räntfors, Mats; Medhurst, Jane; Linder, Sune
2013-11-01
Accumulated carbon uptake, apparent quantum yield (AQY) and light-saturated net CO2 assimilation (Asat) were used to assess the responses of photosynthesis to environmental conditions during spring for three consecutive years. Whole-tree chambers were used to expose 40-year-old field-grown Norway spruce trees in northern Sweden to an elevated atmospheric CO2 concentration, [CO2], of 700 μmol CO2 mol(-1) (CE) and an air temperature (T) between 2.8 and 5.6 °C above ambient T (TE), during summer and winter. Net shoot CO2 exchange (Anet) was measured continuously on 1-year-old shoots and was used to calculate the accumulated carbon uptake and daily Asat and AQY. The accumulated carbon uptake, from 1 March to 30 June, was stimulated by 33, 44 and 61% when trees were exposed to CE, TE, and CE and TE combined, respectively. Air temperature strongly influenced the timing and extent of photosynthetic recovery expressed as AQY and Asat during the spring. Under elevated T (TE), the recovery of AQY and Asat commenced ∼10 days earlier and the activity of these parameters was significantly higher throughout the recovery period. In the absence of frost events, the photosynthetic recovery period was less than a week. However, frost events during spring slowed recovery so that full recovery could take up to 60 days to complete. Elevated [CO2] stimulated AQY and Asat on average by ∼10 and ∼50%, respectively, throughout the recovery period, but had minimal or no effect on the onset and length of the photosynthetic recovery period during the spring. However, AQY, Asat and Anet all recovered at significantly higher T (average +2.2 °C) in TE than in TA, possibly caused by acclimation or by shorter days and lower light levels during the early part of the recovery in TE compared with TA. The results suggest that predicted future climate changes will cause prominent stimulation of photosynthetic CO2 uptake in boreal Norway spruce forest during spring, mainly caused by elevated T, but also elevated [CO2]. However, the effects of elevated T may not be linearly extrapolated to future warmer climates.
Euskirchen, Eugenie S; Edgar, C.W.; Turetsky, M.R.; Waldrop, Mark P.; Harden, Jennifer W.
2016-01-01
Changes in vegetation and soil properties following permafrost degradation and thermokarst development in peatlands may cause changes in net carbon storage. To better understand these dynamics, we established three sites in Alaska that vary in permafrost regime, including a black spruce peat plateau forest with stable permafrost, an internal collapse scar bog formed as a result of thermokarst, and a rich fen without permafrost. Measurements include year-round eddy covariance estimates of carbon dioxide (CO2), water, and energy fluxes, associated environmental variables, and methane (CH4) fluxes at the collapse scar bog. The ecosystems all acted as net sinks of CO2 in 2011 and 2012, when air temperature and precipitation remained near long-term means. In 2013, under a late snowmelt and late leaf out followed by a hot, dry summer, the permafrost forest and collapse scar bog were sources of CO2. In this same year, CO2 uptake in the fen increased, largely because summer inundation from groundwater inputs suppressed ecosystem respiration. CO2 exchange in the permafrost forest and collapse scar bog was sensitive to warm air temperatures, with 0.5 g C m−2 lost each day when maximum air temperature was very warm (≥29°C). The bog lost 4981 ± 300 mg CH4 m−2 between April and September 2013, indicating that this ecosystem acted as a significant source of both CO2 and CH4 to the atmosphere in 2013. These results suggest that boreal peatland responses to warming and drying, both of which are expected to occur in a changing climate, will depend on permafrost regime.
Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K
2018-07-15
Nitrogen enriched carbon adsorbents with high surface areas were successfully prepared by carbonizing the low-cost urea formaldehyde resin, followed by KOH activation. Different characterization techniques were used to determine the structure and surface functional groups. Maximum surface area and total pore volume of 4547 m 2 g -1 and 4.50 cm 3 g -1 were found by controlling activation conditions. The optimized sample denoted as UFA-3-973 possesses a remarkable surface area, which is found to be one of the best surface areas achieved so far. Nitrogen content of this sample was found to be 22.32%. Dynamic CO 2 uptake capacity of the carbon adsorbents were determined thermogravimetrically at different CO 2 concentrations (6-100%) and adsorption temperatures (303-373 K) which have a much more relevance for the flue gas application. Highest adsorption capacity of 2.43 mmol g -1 for this sample was obtained at 303 K under pure CO 2 flow. Complete regenerability of the adsorbent over four adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description of adsorption over all adsorption temperatures and CO 2 concentrations. Heterogeneity of the adsorbent surface was confirmed from the Langmuir and Freundlich isotherms fits and isosteric heat of adsorption values. Exothermic, spontaneous and feasible nature of adsorption process was confirmed from thermodynamic parameter values. The combination of high surface area and large pore volume makes the adsorbent a new promising carbon material for CO 2 capture from power plant flue gas and for other relevant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Parmentier, Frans-Jan W.; Rasse, Daniel P.; Lund, Magnus; Bjerke, Jarle W.; Drake, Bert G.; Weldon, Simon; Tømmervik, Hans; Hansen, Georg H.
2018-06-01
Extreme winter events that damage vegetation are considered an important climatic cause of arctic browning—a reversal of the greening trend of the region—and possibly reduce the carbon uptake of northern ecosystems. Confirmation of a reduction in CO2 uptake due to winter damage, however, remains elusive due to a lack of flux measurements from affected ecosystems. In this study, we report eddy covariance fluxes of CO2 from a peatland in northern Norway and show that vegetation CO2 uptake was delayed and reduced in the summer of 2014 following an extreme winter event earlier that year. Strong frost in the absence of a protective snow cover—its combined intensity unprecedented in the local climate record—caused severe dieback of the dwarf shrub species Calluna vulgaris and Empetrum nigrum. Similar vegetation damage was reported at the time along ~1000 km of coastal Norway, showing the widespread impact of this event. Our results indicate that gross primary production (GPP) exhibited a delayed response to temperature following snowmelt. From snowmelt up to the peak of summer, this reduced carbon uptake by 14 (0–24) g C m‑2 (~12% of GPP in that period)—similar to the effect of interannual variations in summer weather. Concurrently, remotely-sensed NDVI dropped to the lowest level in more than a decade. However, bulk photosynthesis was eventually stimulated by the warm and sunny summer, raising total GPP. Species other than the vulnerable shrubs were probably resilient to the extreme winter event. The warm summer also increased ecosystem respiration, which limited net carbon uptake. This study shows that damage from a single extreme winter event can have an ecosystem-wide impact on CO2 uptake, and highlights the importance of including winter-induced shrub damage in terrestrial ecosystem models to accurately predict trends in vegetation productivity and carbon sequestration in the Arctic and sub-Arctic.
Kinetic bottlenecks to chemical exchange rates for deep-sea animals II: Carbon dioxide
NASA Astrophysics Data System (ADS)
Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.
2012-11-01
Increased ocean acidification from fossil fuel CO2 invasion, from temperature-driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Discussion of these impacts has so far focused only on changes in the oceanic bulk fluid properties (ΔpH, Δ[∑CO2] etc.) as the critical variable and with a major focus on carbonate shell dissolution. Here we describe the rate problem for animals that must export CO2 at about the same rate at which O2 is consumed. We analyze the basic properties controlling CO2 export within the diffusive boundary layer around marine animals in an ocean changing in temperature (T) and CO2 concentration in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas since, as with gas exchange of CO2 at the air-sea interface, the influence of the ensemble of reactions within the CO2-HCO3--CO32- acid-base system needs to be considered. These reactions significantly facilitate CO2 efflux compared to O2 intake at equal temperature, pressure and flow rate under typical oceanic concentrations.The effect of these reactions can be described by an enhancement factor. For organisms, this means mechanically increasing flow over their surface to thin the boundary layer as is required to alleviate O2 stress seems not necessary to facilitate CO2 efflux. Nevertheless the elevated pCO2 cost most likely is non-zero. Regionally as with O2 the combination of T, P, and pH/pCO2 creates a zone of maximum CO2 stress at around 1000 m depth. But the net result is that, for the problem of gas exchange with the bulk ocean, the combination of an increasing T combined with declining O2 poses a greater challenge to marine life than does increasing CO2. The relationships developed here allow a more accurate prediction of the impacts on marine life from the combined effects of changing T, O2, and CO2 than can be estimated from single variable studies.
Continuous ECS-indicated recording of the proton-motive charge flux in leaves.
Klughammer, Christof; Siebke, Katharina; Schreiber, Ulrich
2013-11-01
Technical features and examples of application of a special emitter-detector module for highly sensitive measurements of the electrochromic pigment absorbance shift (ECS) via dual-wavelength (550-520 nm) transmittance changes (P515) are described. This device, which has been introduced as an accessory of the standard, commercially available Dual-PAM-100 measuring system, not only allows steady-state assessment of the proton motive force (pmf) and its partitioning into ΔpH and ΔΨ components, but also continuous recording of the overall charge flux driven by photosynthetic light reactions. The new approach employs a double-modulation technique to derive a continuous signal from the light/dark modulation amplitude of the P515 signal. This new, continuously measured signal primarily reflects the rate of proton efflux via the ATP synthase, which under quasi-stationary conditions corresponds to the overall rate of proton influx driven by coupled electron transport. Simultaneous measurements of charge flux and CO2 uptake as a function of light intensity indicated a close to linear relationship in the light-limited range. A linear relationship between these two signals was also found for different internal CO2 concentrations, except for very low CO2, where the rate of charge flux distinctly exceeded the rate of CO2 uptake. Parallel oscillations in CO2 uptake and charge flux were induced by high CO2 and O2. The new device may contribute to the elucidation of complex regulatory mechanisms in intact leaves.
Miyake, Ryosuke; Kuwata, Chika; Masumoto, Yui
2015-02-21
Crystalline peptide Ni(ii)-macrocycles (BF4(-) salt) exhibited moderate CO2 gas adsorption (ca. 6-7 CO2 molecules per macrocycle) into very narrow cavities (narrowest part <2 Å), accompanied by the expansion of the cavities. The BF4(-) salt demonstrated selective uptake of CO2 gas in preference to CH4 and N2 gases.
Tucker, Colin; Ferrenberg, Scott; Reed, Sasha C.
2018-01-01
Arid and semiarid ecosystems make up approximately 41% of Earth’s terrestrial surface and are suggested to regulate the trend and interannual variability of the global terrestrial carbon (C) sink. Biological soil crusts (biocrusts) are common dryland soil surface communities of bryophytes, lichens, and/or cyanobacteria that bind the soil surface together and that may play an important role in regulating the climatic sensitivity of the dryland C cycle. Major uncertainties exist in our understanding of the interacting effects of changing temperature and moisture on CO2 uptake (photosynthesis) and loss (respiration) from biocrust and sub-crust soil, particularly as related to biocrust successional state. Here, we used a mesocosm approach to assess how biocrust successional states related to climate treatments. We subjected bare soil (Bare), early successional lightly pigmented cyanobacterial biocrust (Early), and late successional darkly pigmented moss-lichen biocrust (Late) to either ambient or + 5°C above ambient soil temperature for 84 days. Under ambient temperatures, Late biocrust mesocosms showed frequent net uptake of CO2, whereas Bare soil, Early biocrust, and warmed Late biocrust mesocosms mostly lost CO2 to the atmosphere. The inhibiting effect of warming on CO2 exchange was a result of accelerated drying of biocrust and soil. We used these data to parameterize, via Bayesian methods, a model of ecosystem CO2 fluxes, and evaluated the model with data from an autochamber CO2 system at our field site on the Colorado Plateau in SE Utah. In the context of the field experiment, the data underscore the negative effect of warming on fluxes both biocrust CO2 uptake and loss—which, because biocrusts are a dominant land cover type in this ecosystem, may extend to ecosystem-scale C cycling.
CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials.
Kierzkowska, Agnieszka M; Pacciani, Roberta; Müller, Christoph R
2013-07-01
The enormous anthropogenic emission of the greenhouse gas CO2 is most likely the main reason for climate change. Considering the continuing and indeed growing utilisation of fossil fuels for electricity generation and transportation purposes, development and implementation of processes that avoid the associated emissions of CO2 are urgently needed. CO2 capture and storage, commonly termed CCS, would be a possible mid-term solution to reduce the emissions of CO2 into the atmosphere. However, the costs associated with the currently available CO2 capture technology, that is, amine scrubbing, are prohibitively high, thus making the development of new CO2 sorbents a highly important research challenge. Indeed, CaO, readily obtained through the calcination of naturally occurring limestone, has been proposed as an alternative CO2 sorbent that could substantially reduce the costs of CO2 capture. However, one of the major drawbacks of using CaO derived from natural sources is its rapidly decreasing CO2 uptake capacity with repeated carbonation-calcination reactions. Here, we review the current understanding of fundamental aspects of the cyclic carbonation-calcination reactions of CaO such as its reversibility and kinetics. Subsequently, recent attempts to develop synthetic, CaO-based sorbents that possess high and cyclically stable CO2 uptakes are presented. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yasunaka, Sayaka; Murata, Akihiko; Watanabe, Eiji; Chierici, Melissa; Fransson, Agneta; van Heuven, Steven; Hoppema, Mario; Ishii, Masao; Johannessen, Truls; Kosugi, Naohiro; Lauvset, Siv K.; Mathis, Jeremy T.; Nishino, Shigeto; Omar, Abdirahman M.; Olsen, Are; Sasano, Daisuke; Takahashi, Taro; Wanninkhof, Rik
2016-09-01
We produced 204 monthly maps of the air-sea CO2 flux in the Arctic north of 60°N, including the Arctic Ocean and its adjacent seas, from January 1997 to December 2013 by using a self-organizing map technique. The partial pressure of CO2 (pCO2) in surface water data were obtained by shipboard underway measurements or calculated from alkalinity and total inorganic carbon of surface water samples. Subsequently, we investigated the basin-wide distribution and seasonal to interannual variability of the CO2 fluxes. The 17-year annual mean CO2 flux shows that all areas of the Arctic Ocean and its adjacent seas were net CO2 sinks. The estimated annual CO2 uptake by the Arctic Ocean was 180 TgC yr-1. The CO2 influx was strongest in winter in the Greenland/Norwegian Seas (>15 mmol m-2 day-1) and the Barents Sea (>12 mmol m-2 day-1) because of strong winds, and strongest in summer in the Chukchi Sea (∼10 mmol m-2 day-1) because of the sea-ice retreat. In recent years, the CO2 uptake has increased in the Greenland/Norwegian Sea and decreased in the southern Barents Sea, owing to increased and decreased air-sea pCO2 differences, respectively.
Carbonate formation on Mars: Latest experiments
NASA Technical Reports Server (NTRS)
Stephens, S. K.; Stevenson, D. J.; Rossman, G. R.; Keyser, L. F.
1993-01-01
Laboratory simulations of Martian CO2 storage address whether carbonate formation could have reduced CO2 pressure from a hypothetical greater than 1 bar to the present 7 mbar in less than or equal to 3 to 4 billion years. This problem is addressed with experiments and analysis designed to verify and improve previous kinetic measurements, reaction mechanisms, and product characterizations, with the goal of improving existing models of Martian CO2 history. A sensitive manometer monitored the pressure drop of CO2 due to uptake by powdered silicate for periods of 3 to 100+ days. Pressure drops for diopside 1 and basalt show rapid short-term (approximately one day) CO2 uptake and considerably slower long-term pressure drops. Curves for diopside 2, olivine 1, and olivine 2 are qualitatively similar to those for diopside 1, whereas quartz and plagioclase show near-zero short-term pressure drops and very slow long-term signals, indistinguishable from a leak (less than 10(exp 11) mol/sq m/s).
Kay, J.T.; Conklin, M.H.; Fuller, C.C.; O'Day, P. A.
2001-01-01
A series of column experiments was conducted using manganese oxide coated sediments collected from the hyporheic zone in Pinal Creek (AZ), a metal-contaminated stream, to study the uptake and retention of Mn, Ni, and Co. Experimental variables included the absence (abiotic) and presence (biotic) of active Mn-oxidizing bacteria, the absence and presence of dissolved Mn, and sediment manganese oxide content. Uptake of Mn under biotic conditions was between 8 and 39% higher than under abiotic conditions. Continuous uptake of Mn due to biotic oxidation was evident from extraction of column sediments. Manganese uptake is hypothesized to initially occur as adsorption, which led to subsequent surface and/or microbial oxidation. Complete breakthrough of Ni within 100 pore volumes indicated no process of continuous uptake and was modeled as an equilibrium adsorption process. Nickel uptake in the presence of dissolved Mn was 67-100% reversible. Sediment extractions suggest that Ni uptake occurred through weak and strong adsorption. Continuous uptake of cobalt increased with sediment manganese oxide content, and Co uptake was up to 75% greater under biotic than abiotic conditions. Cobalt uptake was controlled by both existing and newly formed manganese oxides. Only a small amount of Co uptake was reversible (10-25%). XANES spectral analysis indicated that most Co(II) was oxidized to Co(III) and probably incorporated structurally into manganese oxides. Although manganese oxides were the primary phase controlling uptake and retention of Mn, Ni, and Co, the mechanisms varied among the metals.
Moghadam, Peyman Z.; Ivy, Joshua F.; Arvapally, Ravi K.; dos Santos, Antonio M.; Pearson, John C.; Zhang, Li; Tylianakis, Emmanouil; Ghosh, Pritha; Oswald, Iain W. H.; Kaipa, Ushasree
2017-01-01
FMOF-1 is a flexible, superhydrophobic metal–organic framework with a network of channels and side pockets decorated with –CF3 groups. CO2 adsorption isotherms measured between 278 and 313 K and up to 55 bar reveal a maximum uptake of ca. 6.16 mol kg–1 (11.0 mol L–1) and unusual isotherm shapes at the higher temperatures, suggesting framework expansion. We used neutron diffraction and molecular simulations to investigate the framework expansion behaviour and the accessibility of the small pockets to N2, O2, and CO2. Neutron diffraction in situ experiments on the crystalline powder show that CO2 molecules are favourably adsorbed at three distinct adsorption sites in the large channels of FMOF-1 and cannot access the small pockets in FMOF-1 at 290 K and oversaturated pressure at 61 bar. Stepped adsorption isotherms for N2 and O2 at 77 K can be explained by combining Monte Carlo simulations in several different crystal structures of FMOF-1 obtained from neutron and X-ray diffraction under different conditions. A similar analysis is successful for CO2 adsorption at 278 and 283 K up to ca. 30 bar; however, at 298 K and pressures above 30 bar, the results suggest even more substantial expansion of the FMOF-1 framework. The measured contact angle for water on an FMOF-1 pellet is 158°, demonstrating superhydrophobicity. Simulations and adsorption measurements also show that FMOF-1 is hydrophobic and water is not adsorbed in FMOF-1 at room temperature. Simulated mixture isotherms of CO2 in the presence of 80% relative humidity predict that water does not influence the CO2 adsorption in FMOF-1, suggesting that hydrophobic MOFs could hold promise for CO2 capture from humid gas streams. PMID:28553541
Moghadam, Peyman Z; Ivy, Joshua F; Arvapally, Ravi K; Dos Santos, Antonio M; Pearson, John C; Zhang, Li; Tylianakis, Emmanouil; Ghosh, Pritha; Oswald, Iain W H; Kaipa, Ushasree; Wang, Xiaoping; Wilson, Angela K; Snurr, Randall Q; Omary, Mohammad A
2017-05-01
FMOF-1 is a flexible, superhydrophobic metal-organic framework with a network of channels and side pockets decorated with -CF 3 groups. CO 2 adsorption isotherms measured between 278 and 313 K and up to 55 bar reveal a maximum uptake of ca. 6.16 mol kg -1 (11.0 mol L -1 ) and unusual isotherm shapes at the higher temperatures, suggesting framework expansion. We used neutron diffraction and molecular simulations to investigate the framework expansion behaviour and the accessibility of the small pockets to N 2 , O 2 , and CO 2 . Neutron diffraction in situ experiments on the crystalline powder show that CO 2 molecules are favourably adsorbed at three distinct adsorption sites in the large channels of FMOF-1 and cannot access the small pockets in FMOF-1 at 290 K and oversaturated pressure at 61 bar. Stepped adsorption isotherms for N 2 and O 2 at 77 K can be explained by combining Monte Carlo simulations in several different crystal structures of FMOF-1 obtained from neutron and X-ray diffraction under different conditions. A similar analysis is successful for CO 2 adsorption at 278 and 283 K up to ca. 30 bar; however, at 298 K and pressures above 30 bar, the results suggest even more substantial expansion of the FMOF-1 framework. The measured contact angle for water on an FMOF-1 pellet is 158°, demonstrating superhydrophobicity. Simulations and adsorption measurements also show that FMOF-1 is hydrophobic and water is not adsorbed in FMOF-1 at room temperature. Simulated mixture isotherms of CO 2 in the presence of 80% relative humidity predict that water does not influence the CO 2 adsorption in FMOF-1, suggesting that hydrophobic MOFs could hold promise for CO 2 capture from humid gas streams.
Improving the representation of Arctic photosynthesis in Earth System Models
NASA Astrophysics Data System (ADS)
Rogers, A.; Serbin, S.; Sloan, V. L.; Norby, R. J.; Wullschleger, S. D.
2014-12-01
The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this models must accurately represent the terrestrial carbon cycle. Although Arctic carbon fluxes are small relative to global carbon fluxes, uncertainty is large. Photosynthetic CO2 uptake is well described by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis and most ESMs use a derivation of the FvCB model to calculate gross primary productivity. Two key parameters required by the FvCB model are an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max) and the maximum rate of electron transport (Jmax). In ESMs the parameter Vc,max is typically fixed for a given plant functional type (PFT). Only four ESMs currently have an explicit Arctic PFT and the data used to derive Vc,max in these models relies on small data sets and unjustified assumptions. We examined the derivation of Vc,max and Jmax in current Arctic PFTs and estimated Vc,max and Jmax for a range of Arctic PFTs growing on the Barrow Environmental Observatory, Barrow, AK. We found that the values of Vc,max currently used to represent Arctic plants in ESMs are 70% lower than the values we measured, and contemporary temperature response functions for Vc,max also appear to underestimate Vc,max at low temperature. ESMs typically use a single multiplier (JVratio) to convert Vc,max to Jmax, however we found that the JVratio of Arctic plants is higher than current estimates suggesting that Arctic PFTs will be more responsive to rising carbon dioxide than currently projected. In addition we are exploring remotely sensed methods to scale up key biochemical (e.g. leaf N, leaf mass area) and physiological (e.g. Vc,max and Jmax) properties that drive model representation of photosynthesis in the Arctic. Our data suggest that the Arctic tundra has a much greater capacity for CO2 uptake, particularly at low temperature, and will be more CO2 responsive than is currently represented in ESMs. As we build robust relationships between physiology and spectral signatures we hope to provide spatially and temporally resolved trait maps of key model parameters that can be ingested by new model frameworks, or used to validate emergent model properties.
Improving the representation of Arctic photosynthesis in Earth system models
NASA Astrophysics Data System (ADS)
Rogers, A.; Serbin, S.; Ely, K.; Sloan, V. L.; Wyatt, R. A.; Kubien, D. S.; Ali, A. A.; Xu, C.; Wullschleger, S. D.
2015-12-01
The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this they must accurately represent the carbon fluxes associated with the terrestrial carbon cycle. Although Arctic carbon fluxes are small - relative to global carbon fluxes - uncertainty is large. As part of a multidisciplinary project to improve the representation of the Arctic in ESMs (Next Generation Ecosystem Experiments - Arctic) we are examining the photosynthetic parameterization of the Arctic plant functional type (PFT) in ESMs. Photosynthetic CO2 uptake is well described by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis. Most ESMs use a derivation of the FvCB model to calculate gross primary productivity. Two key parameters required by the FvCB model are an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max) and the maximum rate of electron transport (Jmax). In ESMs the parameter Vc,max is usually fixed for a given PFT. Only four ESMs currently have an explicit Arctic PFT and the data used to derive Vc,max for the Arctic PFT in these models relies on small data sets and unjustified assumptions. We examined the derivation of Vc,max and Jmax in current Arctic PFTs and estimated Vc,max and Jmax for 7 species representing both dominant vegetation and key Arctic PFTs growing on the Barrow Environmental Observatory, Barrow, AK. The values of Vc,max currently used to represent Arctic PFTs in ESMs are 70% lower than the values we measured in these species. Examination of the derivation of Vc,max in ESMs identified that the cause of the relatively low Vc,max value was the result of underestimating both the leaf N content and the investment of that N in Rubisco. Contemporary temperature response functions for Vc,max also appear to underestimate Vc,max at low temperature. ESMs typically use a single multiplier (JVratio) to convert Vc,max to Jmax for all PFTs. We found that the JVratio of Arctic plants is higher than current estimates suggesting that the Arctic PFT will be more responsive to rising carbon dioxide than currently projected. Our data suggest that the Arctic tundra has a much greater capacity for CO2 uptake, particularly at low temperature, and will be more CO2 responsive than is currently represented in ESMs.
Greenhouse Gas Emission from Beef Cattle Grazing Systems on Temperate Grasslands
NASA Astrophysics Data System (ADS)
Rice, C. W.; Rivera-Zayas, J.
2017-12-01
At a global scale, cattle production is responsible for 65% of GHG emissions. During 2014 cattle management was the largest emitters of methane (CH4) representing a 23.2% of the total CH4 from anthropogenic activities. Since 2014, gas samples have been gathered and analyzed for carbon dioxide (CO2), CH4 and nitrous oxide (N2O) from three grazing areas under three different burning regimes at the temperate grassland of Konza Prairie Biological Station in Kansas. Burning regimes included one site in annually burned, and two sites with patch burned every three years on offset years. Burning regimes showed no effect in N2O emissions (p<0.05). Annual burning lowered CO2 emissions relative to patch burned. There was a significant effect of interaction between emissions and season. Maximum CO2 and CH4 fluxes were gathered during summer and fall; which coincided with high biomass seasons. Weather and edaphological conditions during fall and winter increase N2O emissions. A decrease in CO2 and CH4 fluxes, and N2O and CH4 soil uptake occurred during winter. Data gathered since 2014 implies CH4 and N2O are consumed on grazed grassland soils; with an increase in consumption with patch burning. Results quantify the role of temperate grasslands as a sink of CH4, and a possible sink of N2O. This experiment evidence CO2, CH4 and N2O emissions behavior as a consequence of burning regimes, and quantify the role of temperate grasslands as a sink of CH4 and N2O in order to understand best practice for resilience of beef cattle management.
Cooperative CO2 Absorption Isotherms from a Bifunctional Guanidine and Bifunctional Alcohol.
Steinhardt, Rachel; Hiew, Stanley C; Mohapatra, Hemakesh; Nguyen, Du; Oh, Zachary; Truong, Richard; Esser-Kahn, Aaron
2017-12-27
Designing new liquids for CO 2 absorption is a challenge in CO 2 removal. Here, achieving low regeneration energies while keeping high selectivity and large capacity are current challenges. Recent cooperative metal-organic frameworks have shown the potential to address many of these challenges. However, many absorbent systems and designs rely on liquid capture agents. We present herein a liquid absorption system which exhibits cooperative CO 2 absorption isotherms. Upon introduction, CO 2 uptake is initially suppressed, followed by an abrupt increase in absorption. The liquid consists of a bifunctional guanidine and bifunctional alcohol, which, when dissolved in bis(2-methoxyethyl) ether, forms a secondary viscous phase within seconds in response to increases in CO 2 . The precipitation of this second viscous phase drives CO 2 absorption from the gas phase. The isotherm of the bifunctional system differs starkly from the analogous monofunctional system, which exhibits limited CO 2 uptake across the same pressure range. In our system, CO 2 absorption is strongly solvent dependent. In DMSO, both systems exhibit hyperbolic isotherms and no precipitation occurs. Subsequent 1 H NMR experiments confirmed the formation of distinct alkylcarbonate species having either one or two molecules of CO 2 bound. The solvent and structure relationships derived from these results can be used to tailor new liquid absorption systems to the conditions of a given CO 2 separation process.
Zancopé, Bruna R; Rodrigues, Lívia P; Parisotto, Thais M; Steiner-Oliveira, Carolina; Rodrigues, Lidiany K A; Nobre-dos-Santos, Marinês
2016-04-01
This study evaluated if Carbon dioxide (CO2) (λ 10.6 μm) laser irradiation combined with acidulated phosphate fluoride gel application (APF gel) enhances "CaF2" uptake by demineralized enamel specimens (DES) and inhibits enamel lesion progression. Thus, two studies were conducted and DES were subjected to APF gel combined or not with CO2 laser irradiation (11.3 or 20.0 J/cm(2), 0.4 or 0.7 W) performed before, during, or after APF gel application. In study 1, 165 DES were allocated to 11 groups. Fluoride as "CaF2 like material" formed on enamel was determined in 100 DES (n = 10/group), and the surface morphologies of 50 specimens were evaluated by scanning electron microscopy (SEM) before and after "CaF2" extraction. In study 2, 165 DES (11 groups, n = 15), subjected to the same treatments as in study 1, were further subjected to a pH-cycling model to simulate a high cariogenic challenge. The progression of demineralization in DES was evaluated by cross-sectional microhardness and polarized light microscopy analyses. Laser at 11.3 J/cm(2) applied during APF gel application increased "CaF2" uptake on enamel surface. Laser irradiation and APF gel alone arrested the lesion progression compared with the control (p < 0.05). Areas of melting, fusion, and cracks were observed. CO2 laser irradiation, combined with a single APF application enhanced "CaF2" uptake on enamel surface and a synergistic effect was found. However, regarding the inhibition of caries lesion progression, no synergistic effect could be demonstrated. In conclusion, the results have shown that irradiation with specific laser parameters significantly enhanced CaF2 uptake by demineralized enamel and inhibited lesion progression.
Griffiths, Howard; Cousins, Asaph B; Badger, Murray R; von Caemmerer, Susanne
2007-02-01
A model defining carbon isotope discrimination (delta13C) for crassulacean acid metabolism (CAM) plants was experimentally validated using Kalanchoe daigremontiana. Simultaneous measurements of gas exchange and instantaneous CO2 discrimination (for 13C and 18O) were made from late photoperiod (phase IV of CAM), throughout the dark period (phase I), and into the light (phase II). Measurements of CO2 response curves throughout the dark period revealed changing phosphoenolpyruvate carboxylase (PEPC) capacity. These systematic changes in PEPC capacity were tracked by net CO2 uptake, stomatal conductance, and online delta13C signal; all declined at the start of the dark period, then increased to a maximum 2 h before dawn. Measurements of delta13C were higher than predicted from the ratio of intercellular to external CO2 (p(i)/p(a)) and fractionation associated with CO2 hydration and PEPC carboxylations alone, such that the dark period mesophyll conductance, g(i), was 0.044 mol m(-2) s(-1) bar(-1). A higher estimate of g(i) (0.085 mol m(-2) s(-1) bar(-1)) was needed to account for the modeled and measured delta18O discrimination throughout the dark period. The differences in estimates of g(i) from the two isotope measurements, and an offset of -5.5 per thousand between the 18O content of source and transpired water, suggest spatial variations in either CO2 diffusion path length and/or carbonic anhydrase activity, either within individual cells or across a succulent leaf. Our measurements support the model predictions to show that internal CO2 diffusion limitations within CAM leaves increase delta13C discrimination during nighttime CO2 fixation while reducing delta13C during phase IV. When evaluating the phylogenetic distribution of CAM, carbon isotope composition will reflect these diffusive limitations as well as relative contributions from C3 and C4 biochemistry.
Prediction of Maximum Oxygen Consumption from Walking, Jogging, or Running.
ERIC Educational Resources Information Center
Larsen, Gary E.; George, James D.; Alexander, Jeffrey L.; Fellingham, Gilbert W.; Aldana, Steve G.; Parcell, Allen C.
2002-01-01
Developed a cardiorespiratory endurance test that retained the inherent advantages of submaximal testing while eliminating reliance on heart rate measurement in predicting maximum oxygen uptake (VO2max). College students completed three exercise tests. The 1.5-mile endurance test predicted VO2max from submaximal exercise without requiring heart…
Devarapalli, Mamatha; Atiyeh, Hasan K; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L
2016-06-01
An efficient syngas fermentation bioreactor provides a mass transfer capability that matches the intrinsic kinetics of the microorganism to obtain high gas conversion efficiency and productivity. In this study, mass transfer and gas utilization efficiencies of a trickle bed reactor during syngas fermentation by Clostridium ragsdalei were evaluated at various gas and liquid flow rates. Fermentations were performed using a syngas mixture of 38% CO, 28.5% CO2, 28.5% H2 and 5% N2, by volume. Results showed that increasing the gas flow rate from 2.3 to 4.6sccm increased the CO uptake rate by 76% and decreased the H2 uptake rate by 51% up to Run R6. Biofilm formation after R6 increased cells activity with over threefold increase in H2 uptake rate. At 1662h, the final ethanol and acetic acid concentrations were 5.7 and 12.3g/L, respectively, at 200ml/min of liquid flow rate and 4.6sccm gas flow rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jia, Yan; Tang, Shi-rong; Ju, Xue-hai; Shu, Li-na; Tu, Shu-xing; Feng, Ren-wei; Giusti, Lorenzino
2011-01-01
This study was conducted to investigate the combined effects of elevated CO2 levels and cadmium (Cd) on the root morphological traits and Cd accumulation in Lolium multiflorum Lam. and Lolium perenne L. exposed to two CO2 levels (360 and 1000 μl/L) and three Cd levels (0, 4, and 16 mg/L) under hydroponic conditions. The results show that elevated levels of CO2 increased shoot biomass more, compared to root biomass, but decreased Cd concentrations in all plant tissues. Cd exposure caused toxicity to both Lolium species, as shown by the restrictions of the root morphological parameters including root length, surface area, volume, and tip numbers. These parameters were significantly higher under elevated levels of CO2 than under ambient CO2, especially for the number of fine roots. The increases in magnitudes of those parameters triggered by elevated levels of CO2 under Cd stress were more than those under non-Cd stress, suggesting an ameliorated Cd stress under elevated levels of CO2. The total Cd uptake per pot, calculated on the basis of biomass, was significantly greater under elevated levels of CO2 than under ambient CO2. Ameliorated Cd toxicity, decreased Cd concentration, and altered root morphological traits in both Lolium species under elevated levels of CO2 may have implications in food safety and phytoremediation. PMID:21462388
Acidification at the Surface in the East Sea: A Coupled Climate-carbon Cycle Model Study
NASA Astrophysics Data System (ADS)
Park, Young-Gyu; Seol, Kyung-Hee; Boo, Kyung-On; Lee, Johan; Cho, Chunho; Byun, Young-Hwa; Seo, Seongbong
2018-05-01
This modeling study investigates the impacts of increasing atmospheric CO2 concentration on acidification in the East Sea. A historical simulation for the past three decades (1980 to 2010) was performed using the Hadley Centre Global Environmental Model (version 2), a coupled climate model with atmospheric, terrestrial and ocean cycles. As the atmospheric CO2 concentration increased, acidification progressed in the surface waters of the marginal sea. The acidification was similar in magnitude to observations and models of acidification in the global ocean. However, in the global ocean, the acidification appears to be due to increased in-situ oceanic CO2 uptake, whereas local processes had stronger effects in the East Sea. pH was lowered by surface warming and by the influx of water with higher dissolved inorganic carbon (DIC) from the northwestern Pacific. Due to the enhanced advection of DIC, the partial pressure of CO2 increased faster than in the overlying air; consequently, the in-situ oceanic uptake of CO2 decreased.
Striegl, Robert G.; Wickland, K.P.
2001-01-01
Soil carbon dioxide (CO2) emission (soil respiration), net CO2 exchange after photosynthetic uptake by ground-cover plants, and soil CO2 concentration versus depth below land surface were measured at four ages of jack pine (Pinus banksiana Lamb.) forest in central Saskatchewan. Soil respiration was smallest at a clear-cut site, largest in an 8-year-old stand, and decreased with stand age in 20-year-old and mature (60-75 years old) stands during May-September 1994 (12.1, 34.6, 31.5, and 24.9 mol C??m-2, respectively). Simulations of soil respiration at each stand based on continuously recorded soil temperature were within one standard deviation of measured flux for 48 of 52 measurement periods, but were 10%-30% less than linear interpolations of measured flux for the season. This was probably due to decreased soil respiration at night modeled by the temperature-flux relationships, but not documented by daytime chamber measurements. CO2 uptake by ground-cover plants ranged from 0 at the clear-cut site to 29, 25, and 9% of total growing season soil respiration at the 8-year, 20-year, and mature stands. CO2 concentrations were as great as 7150 ppmv in the upper 1 m of unsaturated zone and were proportional to measured soil respiration.
Gaseous oxygen uptake in porous media at different moisture contents and airflow velocities.
Sharma, Prabhakar; Poulsen, Tjalfe G; Kalluri, Prasad N V
2009-06-01
The presence and distribution of water in the pore space is a critical factor for flow and transport of gases through unsaturated porous media. The water content also affects the biological activity necessary for treatment of polluted gas streams in biofilters. In this research, microbial activity and quantity of inactive volume in a porous medium as a function of moisture content and gas flow rate were investigated. Yard waste compost was used as a test medium, and oxygen uptake rate measurements were used to quantify microbial activity and effective active compost volume using batch and column flow-through systems. Compost water contents were varied from air-dry to field capacity and gas flows ranged from 0.2 to 2 L x min(-1). The results showed that overall microbial activity and the relative fraction of active compost medium volume increased with airflow velocity for all levels of water content up to a certain flow rate above which the oxygen uptake rate assumed a constant value independent of gas flow. The actual value of the maximum oxygen uptake rate was controlled by the water content. The oxygen uptake rate also increased with increasing water content and reached a maximum between 42 and 48% volumetric water content, above which it decreased, again likely because of formation of inactive zones in the compost medium. Overall, maximum possible oxygen uptake rate as a function of gas flow rate across all water contents and gas flows could be approximated by a linear expression. The relative fraction of active volume also increased with gas flow rate and reached approximately 80% for the highest gas flows used.
Analysis of trickle-bed reactor for ethanol production from syngas using Clostridium ragsdalei
NASA Astrophysics Data System (ADS)
Devarapalli, Mamatha
The conversion of syngas components (CO, CO2 and H2) to liquid fuels such as ethanol involves complex biochemical reactions catalyzed by a group of acetogens such as Clostridium ljungdahlii, Clostridium carboxidivorans and Clostridium ragsdalei. The low ethanol productivity in this process is associated with the low solubility of gaseous substrates CO and H2 in the fermentation medium. In the present study, a 1-L trickle-bed reactor (TBR) was analyzed to understand its capabilities to improve the mass transfer of syngas in fermentation medium. Further, semi-continuous and continuous syngas fermentations were performed using C. ragsdalei to evaluate the ability of the TBR for ethanol production. In the mass transfer studies, using 6-mm glass beads, it was found that the overall mass transfer coefficient (kLa/V L) increased with the increase in gas flow rate from 5.5 to 130.5 sccm. Further, an increase in the liquid flow rate in the TBR decreased the kLa/VL due to the increase in liquid hold up volume (VL) in the packing. The highest kLa/VL values of 421 h-1 and 178 h-1 were achieved at a gas flow rate of 130.5 sccm for 6-mm and 3-mm glass beads, respectively. Semi-continuous fermentations were performed with repetitive medium replacement in counter-current and co-current modes. In semi-continuous fermentations with syngas consisting of 38% CO, 5% N2, 28.5% CO2 and 28.5% H2 (by volume), the increase in H2 conversion (from 18 to 55%) and uptake (from 0.7 to 2.2 mmol/h) were observed. This increase was attributed to more cell attachment in the packing that reduced CO inhibition to hydrogenase along the column length and increased the H2 uptake. The maximum ethanol produced during counter-current and co-current modes were 3.0 g/L and 5.7 g/L, respectively. In continuous syngas fermentation, the TBR was operated at dilution rates between 0.006 h-1and 0.012 h -1 and gas flow rates between 1.5 sccm and 18.9 sccm. The highest ethanol concentration of 13 g/L was achieved at dilution and gas flow rates of 0.012 h-1 and 18.9 sccm, respectively. The molar ratio of ethanol to acetic acid of 4:1 was obtained during continuous fermentation which was 7.7 times higher than in semi-continuous fermentations. The improvement of the reactor performance in continuous mode gives scope to explore the TBR as a potential bioreactor design for large scale biofuels production.
Measurement and modeling of CO2 mass transfer in brine at reservoir conditions
NASA Astrophysics Data System (ADS)
Shi, Z.; Wen, B.; Hesse, M. A.; Tsotsis, T. T.; Jessen, K.
2018-03-01
In this work, we combine measurements and modeling to investigate the application of pressure-decay experiments towards delineation and interpretation of CO2 solubility, uptake and mass transfer in water/brine systems at elevated pressures of relevance to CO2 storage operations in saline aquifers. Accurate measurements and modeling of mass transfer in this context are crucial to an improved understanding of the longer-term fate of CO2 that is injected into the subsurface for storage purposes. Pressure-decay experiments are presented for CO2/water and CO2/brine systems with and without the presence of unconsolidated porous media. We demonstrate, via high-resolution numerical calculations in 2-D, that natural convection will complicate the interpretation of the experimental observations if the particle size is not sufficiently small. In such settings, we demonstrate that simple 1-D interpretations can result in an overestimation of the uptake (diffusivity) by two orders of magnitude. Furthermore, we demonstrate that high-resolution numerical calculations agree well with the experimental observations for settings where natural convection contributes substantially to the overall mass transfer process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Wen-Wen; Xia, Liang; Peng, Zhen
Under solvothermal conditions, the reactions of Co{sup II}/Zn{sup II} ions with bent ligand 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole (4-Hpzpt) afford two compounds {[M(4-pzpt)_2] guest}{sub n} (guest=H{sub 2}O, M=Co{sup II} (1), Zn{sup II} (2)). Both compounds are the thermally and hydrolytically robust 4-connected 3D NbO framework, which formed by double helical chains to give rise to 1D hollow nanochannel with uncoordinated nitrogens completely exposed on the pore surface. Compound 1 exhibits improved N{sub 2}, CO{sub 2} and H{sub 2} uptake capacities, while compound 2 displays the strong luminescent emission with obvious red shift. - Graphical abstract: Two 2-fold interpenetrated NbO-type MOFs with 1D nanochannel weremore » synthesized. Compound 1 exhibits improved N{sub 2}, CO{sub 2} and H{sub 2} uptake capacities, while compound 2 displays the strong fluorescent emission with obvious red shift. Display Omitted.« less
Koschate, Jessica; Drescher, Uwe; Baum, Klaus; Brinkmann, Christian; Schiffer, Thorsten; Latsch, Joachim; Brixius, Klara; Hoffmann, Uwe
2017-05-01
The aim of this pilot study was to investigate whether there are differences in heart rate and oxygen uptake kinetics in type 2 diabetes patients, considering their cardiovascular medication. It was hypothesized that cardiovascular medication would affect heart rate and oxygen uptake kinetics and that this could be detected using a standardized exercise test. 18 subjects were tested for maximal oxygen uptake. Kinetics were measured in a single test session with standardized, randomized moderate-intensity work rate changes. Time series analysis was used to estimate kinetics. Greater maxima in cross-correlation functions indicate faster kinetics. 6 patients did not take any cardiovascular medication, 6 subjects took peripherally acting medication and 6 patients were treated with centrally acting medication. Maximum oxygen uptake was not significantly different between groups. Significant main effects were identified regarding differences in muscular oxygen uptake kinetics and heart rate kinetics. Muscular oxygen uptake kinetics were significantly faster than heart rate kinetics in the group with no cardiovascular medication (maximum in cross-correlation function of muscular oxygen uptake vs. heart rate; 0.32±0.08 vs. 0.25±0.06; p=0.001) and in the group taking peripherally acting medication (0.34±0.05 vs. 0.28±0.05; p=0.009) but not in the patients taking centrally acting medication (0.28±0.05 vs. 0.30±0.07; n.s.). It can be concluded that regulatory processes for the achievement of a similar maximal oxygen uptake are different between the groups. The used standardized test provided plausible results for heart rate and oxygen uptake kinetics in a single measurement session in this patient group. © Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mene, Ravindra U.; School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, M.S.; Mahabole, Megha P.
Highlights: • We report improved gas sensing and dielectric characteristics of Fe ion exchanged HAp films. • Fe doped HAp film shows maximum gas response at relatively lower temperature. • Response and gas uptake capacity of sensors is improved for appropriate amount of Fe ions in HAp matrix. • Fe-HAp films exhibit remarkable improvement in dielectric properties compared to pure HAp. • Fe doped HAp films show significant improvement in gas sensing as well as in dielectric properties. - Abstract: In the present work Fe doped hydroxyapatite (Fe-HAp) thick films has been successfully utilized to improve the gas sensing asmore » well as its dielectric properties. Initially, HAp nano powder is synthesized by chemical precipitation process and later on Fe ions are doped in HAp by ion exchange process. Structural and morphological modifications are observed by means of X-ray diffraction and scanning electron microscopy analysis. The sensing parameters such as operating temperature, response/recovery time and gas uptake capacity are experimentally determined. The Fe-HAp (0.05 M) film shows improved CO and CO{sub 2} gas sensing capacity at lower operating temperature compared to pure HAp. Moreover, variation of dielectric constant and dielectric loss for pure and Fe-HAp thick films are studied as a function of frequency in the range of 10 Hz–1 MHz. The study reveals that Fe doped HAp thick films improve the sensing and dielectric characteristics as compared to pure HAp.« less
Enamorado, Santiago; Abril, José M; Delgado, Antonio; Más, José L; Polvillo, Oliva; Quintero, José M
2014-02-15
Phosphogypsum (PG) has been usually applied as Ca-amendment to reclaim sodic soils such as those in the marshland area of Lebrija (SW Spain). This work aimed at the effects of PG amendments on the uptake of trace-elements by tomato and its implications for food safety. A completely randomized experiment was performed using a representative soil from Lebrija in a greenhouse involving six replicates and four PG treatments equivalent to 0, 20, 60, and 200 Mg ha(-1). Soil-to-plant transfer factors (TFs) were determined for Be, B, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Ag, Cd, Sb, Cs, Ba, Tl, Pb, Th and U. The highest TF in shoots was observed for Cd (4.0; 1.5 in fruits), its concentration being increased with increasing PG doses due to its content in this metal (2.1 mg Cd kg(-1)PG). Phosphogypsum applying decreased the concentrations of Mn, Co and Cu in shoots; and of B, Cu, Sb, Cs, Ba, Tl and Th in fruits, however enhanced the accumulation of Se in fruits. Although Cd concentrations in tomato were below the maximum allowed levels in control pots (0 Mg PG ha(-1)), PG amendments above 60 Mg ha(-1) exceeded such limits. Copyright © 2013 Elsevier B.V. All rights reserved.
Effects of gaseous ammonia on intracellular pH values in leaves of C 3- and C 4-plants
NASA Astrophysics Data System (ADS)
Yin, Zu-Hua; Kaiser, Werner; Heber, Ulrich; Raven, John A.
Responses of cytosolic and vacuolar pH to different concentrations (1.3-5.4 μmol NH 3 mol -1 gas or 0.940-3.825 mg NH 3 m -3 gas) of gaseous NH 3 were studied in experiments of 3 h duration by recording changes in fluorescence of pyranine and esculin in leaves of C 3 and C 4 plants. After a lag phase of 0.5-4 min, the uptake of NH 3 at 50-200 nmol m -2 leaf area s -1 increased pyranine fluorescence, indicating cytosolic alkalinization in leaves of Pelargonium zonale L. (C 3) and Amaranthus caudatus L. (C 4). A smaller increase in esculin fluorescence induced by NH 3 indicated some vacuolar alkalization in a Spinacia oleracea L. leaf. Photosynthesis and transpiration remained unchanged during exposure of illuminated leaves to NH 3 for up to 30 min (the maximum tested). CO 2 concentrations influenced the extent of cytosolic alkalinization. 500 μmol CO 2 mol -1 gas suppressed the NH 3-induced cytosolic alkalinization relative to that found in 16 μmol CO 2 mol -1 gas. The suppressing effect of CO 2 on NH 3-induced alkalization was larger in illuminated leaves of the C 4Amaranthus than the C 3Pelargonium. These results indicate that the alkaline pH shift caused by solution and protonation of NH 3 in aqueous leaf compartments is affected by assimilation of NH 3.
40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND...) The use of linearizing circuits is permitted. (c) The minimum water rejection ratio (maximum CO 2...) The minimum CO 2 rejection ratio (maximum CO 2 interference) as measured by § 86.322 for CO analyzers...
Photosynthesis, Earth System Models and the Arctic
NASA Astrophysics Data System (ADS)
Rogers, A.; Sloan, V. L.; Xu, C.; Wullschleger, S. D.
2013-12-01
The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this they must accurately represent the huge carbon fluxes associated with the terrestrial carbon cycle. Photosynthetic CO2 uptake is the largest of these fluxes, and is well described by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis. Most ESMs use a derivation of the FvCB model to calculate gross primary productivity (GPP). One of the key parameters required by the FvCB model is an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max). In ESMs the parameter Vc,max is usually fixed for a given plant functional type (PFT). Although Arctic GPP a small flux relative to global GPP, uncertainty is large. Only four ESMs currently have an explicit Arctic PFT and the data used to derive Vc,max for the Arctic PFT in these models relies on small data sets and unjustified assumptions. As part of a multidisciplinary project to improve the representation of the Arctic in ESMs (Next Generation Ecosystem Experiments - Arctic) we examined the derivation of Vc,max in current Arctic PFTs and estimated Vc,max for 12 species representing both dominant vegetation and key PFTs growing on the Barrow Environmental Observatory, Barrow, AK. The values of Vc,max currently used to represent Arctic PFTs in ESMs are 70% lower than the values we measured in these species. Separate measurements of CO2 assimilation (A) made at ambient conditions were compared with A modeled using the Vc,max values we measured in Barrow and those used by the ESMs. The A modeled with the Vc,max values used by the ESMs was 80% lower than the observed A. When our measured Vc,max values were used, modeled A was within 5% of observed A. Examination of the derivation of Vc,max in ESMs identified that the cause of the relatively low Vc,max value was the result of underestimating both the leaf N content and the investment of that N in Rubisco. Here we have identified possible improvements to the derivation of Vc,max in ESMs and provided new physiological characterization of Arctic species that is mechanistically consistent with observed leaf level CO2 uptake. These data suggest that the Arctic tundra has a much greater capacity for CO2 uptake than is currently represented in ESMs. Our parameterization can be used in future model projections to improve representation of the Arctic landscape in ESMs.
Stomatal uptake of O3 in aspen and aspen-birch forests under free-air CO2 and O3 enrichment
Johan Uddling; Alan J. Hogg; Ronald M. Teclaw; Mary Anne Carroll; David S. Ellsworth
2010-01-01
Rising atmospheric carbon dioxide (CO2) may alleviate the toxicological impacts of concurrently rising tropospheric ozone (O3) during the present century if higher CO2 is accompanied by lower stomatal conductance (gs), as assumed by many models. We investigated how elevated...
Forest response to elevated CO2 is conserved across a broad range of productivity
R. Norby; E. DeLucia; B. Gielen; C. Calfapietra; C. Giardina; J. King; J. Ledford; H. McCarthy; D. Moore; R. Ceulemans; P. De Angelis; A. C. Finzi; D. F. Karnosky; M. E. Kubiske; M. Lukac; K. S. Pregitzer; G. E. Scarascia-Mugnozza; W. Schlesinger and R. Oren.
2005-01-01
Climate change predictions derived from coupled carbon-climate models are highly dependent on assumptions about feedbacks between the biosphere and atmosphere. One critical feedback occurs if C uptake by the biosphere increases in response to the fossil-fuel driven increase in atmospheric [CO2] ("CO2 fertilization...
Estimation of Pre-industrial Nitrous Oxide Emission from the Terrestrial Biosphere
NASA Astrophysics Data System (ADS)
Xu, R.; Tian, H.; Lu, C.; Zhang, B.; Pan, S.; Yang, J.
2015-12-01
Nitrous oxide (N2O) is currently the third most important greenhouse gases (GHG) after methane (CH4) and carbon dioxide (CO2). Global N2O emission increased substantially primarily due to reactive nitrogen (N) enrichment through fossil fuel combustion, fertilizer production, and legume crop cultivation etc. In order to understand how climate system is perturbed by anthropogenic N2O emissions from the terrestrial biosphere, it is necessary to better estimate the pre-industrial N2O emissions. Previous estimations of natural N2O emissions from the terrestrial biosphere range from 3.3-9.0 Tg N2O-N yr-1. This large uncertainty in the estimation of pre-industrial N2O emissions from the terrestrial biosphere may be caused by uncertainty associated with key parameters such as maximum nitrification and denitrification rates, half-saturation coefficients of soil ammonium and nitrate, N fixation rate, and maximum N uptake rate. In addition to the large estimation range, previous studies did not provide an estimate on preindustrial N2O emissions at regional and biome levels. In this study, we applied a process-based coupled biogeochemical model to estimate the magnitude and spatial patterns of pre-industrial N2O fluxes at biome and continental scales as driven by multiple input data, including pre-industrial climate data, atmospheric CO2 concentration, N deposition, N fixation, and land cover types and distributions. Uncertainty associated with key parameters is also evaluated. Finally, we generate sector-based estimates of pre-industrial N2O emission, which provides a reference for assessing the climate forcing of anthropogenic N2O emission from the land biosphere.
Uptake of Nickel by Synthetic Mackinawite
The uptake of aqueous Ni(II) by synthetic mackinawite (FeS) was examined in anaerobic batch experiments at near-neutral pH (5.2 to 8.4). Initial molar ratios of Ni(II) to FeS ranged from 0.008 to 0.83 and maximum Ni concentrations in mackinawite, expressed as the cation mol fract...
The effect of H2O and CO2 on planetary mantles
NASA Technical Reports Server (NTRS)
Wyllie, P. J.
1978-01-01
The peridotite-H2O-CO2 system is discussed, and it is shown that even traces of H2O and CO2, in minerals or vapor, lower mantle solidus temperatures through hundreds of degrees in comparison with the volatile-free solidus. The solidus for peridotite-H2O-CO2 is a divariant surface traversed by univariant lines that locate the intersections of subsolidus divariant surfaces for carbonation or hydration reactions occurring in the presence of H2O-CO2 mixtures. Vapor phase compositions are normally buffered to these lines, and near the buffered curve for the solidus of partly carbonated peridotite there is a temperature maximum on the peridotite-vapor solidus. Characteristics on the CO2 side of the maximum and on the H2O side of the maximum are described.
Patil, Lakkanagouda; Kaliwal, Basappa
2017-05-01
Photosynthetic mitigation of CO 2 through microalgae is gaining great importance due to its higher photosynthetic ability compared to plants, and the biomass can be commercially exploited for various applications. CO 2 fixation capability of the newly isolated freshwater microalgae Scenedesmus bajacalifornicus BBKLP-07 was investigated using a 1-l photobioreactor. The cultivation was carried at varying concentration of CO 2 ranging from 5 to 25%, and the temperature and light intensities were kept constant. A maximum CO 2 fixation rate was observed at 15% CO 2 concentration. Characteristic growth parameters such as biomass productivity, specific growth rate, and maximum biomass yield, and biochemical parameters such as carbohydrate, protein, lipid, chlorophyll, and carotenoid were determined and discussed. It was observed that the effect of CO 2 concentration on growth and biochemical composition was quite significant. The maximum biomass productivity was 0.061 ± 0.0007 g/l/day, and the rate of CO 2 fixation was 0.12 ± 0.002 g/l/day at 15% CO 2 concentration. The carbohydrate and lipid content were maximum at 25% CO 2 with 26.19 and 25.81% dry cell weight whereas protein, chlorophyll, and carotenoid contents were 32.89% dry cell weight, 25.07 μg/ml and 6.15 μg/ml respectively at 15% CO 2 concentration.
Effects of trimetazidine in nonischemic heart failure: a randomized study.
Winter, José Luis; Castro, Pablo F; Quintana, Juan Carlos; Altamirano, Rodrigo; Enriquez, Andres; Verdejo, Hugo E; Jalil, Jorge E; Mellado, Rosemarie; Concepción, Roberto; Sepúlveda, Pablo; Rossel, Victor; Sepúlveda, Luis; Chiong, Mario; García, Lorena; Lavandero, Sergio
2014-03-01
Heart failure (HF) is associated with changes in myocardial metabolism that lead to impairment of contractile function. Trimetazidine (TMZ) modulates cardiac energetic efficiency and improves outcomes in ischemic heart disease. We evaluated the effects of TMZ on left ventricular ejection fraction (LVEF), cardiac metabolism, exercise capacity, O2 uptake, and quality of life in patients with nonischemic HF. Sixty patients with stable nonischemic HF under optimal medical therapy were included in this randomized double-blind study. Patients were randomized to TMZ (35 mg orally twice a day) or placebo for 6 months. LVEF, 6-minute walk test (6MWT), maximum O2 uptake in cardiopulmonary exercise test, different markers of metabolism, oxidative stress, and endothelial function, and quality of life were assessed at baseline and after TMZ treatment. Left ventricular peak glucose uptake was evaluated with the use of the maximum standardized uptake value (SUV) by 18-fluorodeoxyglucose positron emission tomography ((18)FDG-PET). Etiology was idiopathic in 85% and hypertensive in 15%. Both groups were similar in age, functional class, LVEF, and levels of N-terminal pro-B-type natriuretic peptide at baseline. After 6 months of TMZ treatment, no changes were observed in LVEF (31 ± 10% vs 34 ± 8%; P = .8), 6MWT (443 ± 25 m vs 506 ± 79 m; P = .03), maximum O2 uptake (19.1 ± 5.0 mL kg(-1) min(-1) vs 23.0 ± 7.2 mL kg(-1) min(-1); P = .11), functional class (percentages of patients in functional classes I/II/III/IV 10/3753/0 vs 7/40/50/3; P = .14), or quality of life (32 ± 26 points vs 24 ± 18 points; P = .25) in TMZ versus placebo, respectively. In the subgroup of patients evaluated with (18)FDG-PET, no significant differences were observed in SUV between both groups (7.0 ± 3.6 vs 8.2 ± 3.4 respectively; P = .47). In patients with nonischemic HF, the addition of TMZ to optimal medical treatment does not result in significant changes of LVEF, exercise capacity, O2 uptake, or quality of life. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiang; Mahurin, Shannon M.; An, Shu-Hao
2014-05-02
We synthesized a porous triazine and carbazole bifunctionalized task-specific polymer using a facile Friedel–Crafts reaction. We found that the resultant porous framework exhibited excellent CO 2 uptake (18.0 wt%, 273 K and 1 bar) and good adsorption selectivity for CO 2 over N 2.
NASA Astrophysics Data System (ADS)
Yue, Chao; Ciais, Philippe; Bastos, Ana; Chevallier, Frederic; Yin, Yi; Rödenbeck, Christian; Park, Taejin
2017-11-01
Understanding the variations in global land carbon uptake, and their driving mechanisms, is essential if we are to predict future carbon-cycle feedbacks on global environmental changes. Satellite observations of vegetation greenness have shown consistent greening across the globe over the past three decades. Such greening has driven the increasing land carbon sink, especially over the growing season in northern latitudes. On the other hand, interannual variations in land carbon uptake are strongly influenced by El Niño-Southern Oscillation (ENSO) climate variations. Marked reductions in land uptake and strong positive anomalies in the atmospheric CO2 growth rates occur during El Niño events. Here we use the year 2015 as a natural experiment to examine the possible response of land ecosystems to a combination of vegetation greening and an El Niño event. The year 2015 was the greenest year since 2000 according to satellite observations, but a record atmospheric CO2 growth rate also occurred due to a weaker than usual land carbon sink. Two atmospheric inversions indicate that the year 2015 had a higher than usual northern land carbon uptake in boreal spring and summer, consistent with the positive greening anomaly and strong warming. This strong uptake was, however, followed by a larger source of CO2 in the autumn. For the year 2015, enhanced autumn carbon release clearly offset the extra uptake associated with greening during the summer. This finding leads us to speculate that a long-term greening trend may foster more uptakes during the growing season, but no large increase in annual carbon sequestration. For the tropics and Southern Hemisphere, a strong transition towards a large carbon source for the last 3 months of 2015 is discovered, concomitant with El Niño development. This transition of terrestrial tropical CO2 fluxes between two consecutive seasons is the largest ever found in the inversion records. The strong transition to a carbon source in the tropics with the peak of El Niño is consistent with historical observations, but the detailed mechanisms underlying such an extreme transition remain to be elucidated.
Effects of a holiday week on urban soil CO2 flux: an intensive study in Xiamen, southeastern China
NASA Astrophysics Data System (ADS)
Ye, H.; Wang, K.; Chen, F.
2012-12-01
To study the effects of a holiday period on urban soil CO2 flux, CO2 efflux from grassland soil in a traditional park in the city of Xiamen was measured hourly from 28th Sep to 11th Oct, a period that included China's National Day holiday week in 2009. The results of this study revealed that: a) The urban soil CO2 emissions were higher before and after the holiday week and lower during the National Day holiday reflecting changes in the traffic cycles; b) A diurnal cycle where the soil CO2 flux decreased from early morning to noon was associated with CO2 uptake by vegetation which strongly offset vehicle CO2 emissions. The soil CO2 flux increased from night to early morning, associated with reduced CO2 uptake by vegetation; c) During the National Day holiday week in 2009, lower rates of soil respiration were measured after Mid-Autumn Day than earlier in the week, and this was related to a reduced level of human activities and vehicle traffic, reducing the CO2 concentration in the air. Urban holidays have a clear effect on soil CO2 flux through the interactions between vehicle, visitor and vegetation CO2 emissions which indirectly control the use of carbon by plant roots, the rhizosphere and soil microorganisms. Consequently, appropriate traffic controls and tourism travel plans can have positive effects on the soil carbon store and may improve local air quality.
CO2 Enhancement of Growth and Photosynthesis in Rice (Oryza sativa) 1
Ziska, Lewis H.; Teramura, Alan H.
1992-01-01
Two cultivars of rice (Oryza sativa L.) IR-36 and Fujiyama-5 were grown at ambient (360 microbars) and elevated CO2 (660 microbars) from germination through reproduction in unshaded greenhouses at the Duke University Phytotron. Growth at elevated CO2 resulted in significant decreases in nighttime respiration and increases in photosynthesis, total biomass, and yield for both cultivars. However, in plants exposed to simultaneous increases in CO2 and ultraviolet-B (UV-B) radiation, CO2 enhancement effects on respiration, photosynthesis, and biomass were eliminated in IR-36 and significantly reduced in Fujiyama-5. UV-B radiation simulated a 25% depletion in stratospheric ozone at Durham, North Carolina. Analysis of the response of CO2 uptake to internal CO2 concentration at light saturation suggested that, for IR-36, the predominant limitation to photosynthesis with increased UV-B radiation was the capacity for regeneration of ribulose bisphosphate (RuBP), whereas for Fujiyama-5 the primary photosynthetic decrease appeared to be related to a decline in apparent carboxylation efficiency. Changes in the RuBP regeneration limitation in IR-36 were consistent with damage to the photochemical efficiency of photosystem II as estimated from the ratio of variable to maximum chlorophyll fluorescence. Little change in RuBP regeneration and photochemistry was evident in cultivar Fujiyama-5, however. The degree of sensitivity of photochemical reactions with increased UV-B radiation appeared to be related to leaf production of UV-B-absorbing compounds. Fujiyama-5 had a higher concentration of these compounds than IR-36 in all environments, and the production of these compounds in Fujiyama-5 was stimulated by UV-B fluence. Results from this study suggest that in rice alterations in growth or photosynthesis as a result of enhanced CO2 may be eliminated or reduced if UV-B radiation continues to increase. PMID:16668910
RedOx-controlled sorption of iodine anions by hydrotalcite composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitskaia, Tatiana G.; Chatterjee, Sayandev; Arey, Bruce W.
2016-01-01
The radioactive contaminant iodine-129 (I-129) is one of the top risk drivers at radiological waste disposal and contaminated groundwater sites where nuclear material fabrication or reprocessing has occurred. Currently there are very few options available to treat I-129 in the groundwater, which is partially related to its complex biogeochemical behavior in the subsurface and occurrence in the multiple chemical forms. We hypothesize that layered hydrotalcite materials containing redox active transition metal ions offer a potential solution, benefiting from the simultaneous adsorption of iodate (IO3-) and iodide (I-) anions, which exhibit different electronic and structural properties and therefore may require dissimilarmore » hosts. To test this hypothesis, Cr3+- based materials were selected based on the rationale that Cr3+ readily reduces IO3- in solution. It was combined with either redox-active Co2+ or redox-inactive Ni2+ so that two model materials were prepared by hydrothermal synthesis including Co2+-Cr3+ and Ni2+-Cr3+(M-Cr). Obtained M-Cr materials comprised of Co2+-Cr3+ or Ni2+-Cr3+ layered hydrotalcite and small fractions of Co3O4 spinel or Ni(OH)2 theophrastite phases were structurally characterized before and after uptake of periodate (IO4-), IO3-, and I- anions. It was found that the IO3- uptake is driven by its chemical reduction to I2 and I-. Interestingly, in the Co2+-Cr3+ hydrotalcite, Co2+ and not Cr3+ serves as a reductant while in the Ni2+-Cr3+ hydrotalcite Cr3+ is responsible for the reduction of IO3-. A different uptake mechanism was identified for the IO4- anion. The Co2+-Cr3+ hydrotalcite phase efficiently uptakes IO4- by a diffusion-limited ion exchange mechanism and is not accompanied by the redox process, while Cr3+ in the Ni2+-Cr3+ hydrotalcite reduces IO4- to IO3-, I2 and I-. Iodide exhibited high affinity only to the Co-Cr material. The Co-Cr material performed remarkably well for the removal of IO3-, I- and total iodine from the groundwater collected from the US DOE Hanford site, WA, USA outperforming non-redox active hydrotalcites (e.g., Mg2+-Al3+) reported previously. This work demonstrates that redox-controlled sorption can be a highly effective method for the treatment of anions based on elements with mobile oxidation states. Further, multiple anions of interest could be simultaneously removed through combination of approaches.« less
Yang, Hui-Juan; Yang, Hong; Hong, Yu-Hao; Zhang, Peng-Yang; Wang, Tao; Chen, Li-Na; Zhang, Feng-Yang; Wu, Qi-Hui; Tian, Na; Zhou, Zhi-You; Sun, Shi-Gang
2018-03-09
Cu is a unique catalyst for CO 2 electroreduction, since it can catalyze CO 2 reduction to a series of hydrocarbons, alcohols, and carboxylic acids. Nevertheless, such Cu catalysts suffer from poor selectivity. High pressure of CO 2 is considered to facilitate the activity and selectivity of CO 2 reduction. Herein, a new strategy is presented for CO 2 reduction with improved C 2 H 4 selectivity on a Cu catalyst by using CO 2 capture materials as the support at ambient pressure. N-doped carbon (N x C) was synthesized through high-temperature carbonization of melamine and l-lysine. We observed that the CO 2 uptake capacity of N x C depends on both the microporous area and the content of pyridinic N species, which can be controlled by the carbonization temperature (600-800 °C). The as-prepared CuO/N x C catalysts exhibit a considerably higher C 2 H 4 faradaic efficiency (36 %) than CuO supported on XC-72 carbon black (19 %), or unsupported CuO (20 %). Moreover, there is a good linear relationship between the C 2 H 4 faradaic efficiency and CO 2 uptake capacity of the supports for CuO. The local high CO 2 concentration near Cu catalysts, created by CO 2 capture materials, was proposed to increase the coverage of CO intermediate, which is favorable for the coupling of two CO units in the formation of C 2 H 4 . This study demonstrates that pairing Cu catalysts with CO 2 capture supports is a promising approach for designing highly effective CO 2 reduction electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gayen, Saikat; Saha, Debraj; Koner, Subratanath
2018-06-01
A new supramolecular metal-carboxylate framework [Co(mqc)2]n (1), and another monomeric compound [Zn (mqc)2(H2O)] (2) (mqcH = 4-methoxy 2-quinolinecarboxylic acid) have been synthesized solvothermally and characterized by single crystal X-ray diffraction, elemental analysis, IR spectra, UV-vis spectra, powdered X-ray diffraction (PXRD) and thermogravimetric analysis. Compound 1 is a 2D coordination polymer, extended to a 3D porous supramolecular network having void space in between 2D layers. Compound 1 exhibits gas uptake capacity of N2, H2, CO2 and CH4 like small gas molecules in which moderately high uptake of H2 and CO2 takes place among the 2D MOFs. While the Zn variety, compound 2 features a one-dimensional chain like structure through strong intermolecular hydrogen-bonding.
Integrated micro-biochemical approach for phytoremediation of cadmium and zinc contaminated soils.
Mani, Dinesh; Kumar, Chitranjan; Patel, Niraj Kumar
2015-01-01
The integrated potential of oilcake manure (OM), elemental sulphur (S(0)), Glomus fasciculatum and Pseudomonas putida by growing Helianthus annuus L for phytoremediation of cadmium and zinc contaminated soils was investigated under pot experiment. The integrated treatment (2.5 g kg(-1) OM, 0.8 g kg(-1) S(0) and co-inoculation with G. fasciculatum and P. putida promoted the dry biomass of the plant. The treatment was feasible for enhanced cadmium accumulation up to 6.56 and 5.25 mg kg(-1) and zinc accumulation up to 45.46 and 32.56 mg kg(-1) in root and shoot, respectively, which caused maximum remediation efficiency (0.73 percent and 0.25 percent) and bioaccumulation factor (2.39 and 0.83) for Cd and Zn, respectively showing feasible uptake (in mg kg(-1) dry biomass) of Cd (5.55) and Zn (35.51) at the contaminated site. Thus, authors conclude to integrate oilcake manure, S(0) and microbial co-inoculation for enhanced clean-up of cadmium and zinc-contaminated soils. Copyright © 2014 Elsevier Inc. All rights reserved.
Charlton, R R; Wenner, C E
1978-03-15
1. The interaction of intact Ehrlich ascites-tumour cells with Ca2+ at 37 degrees C consists of Ca2+ uptake followed by efflux from the cells. Under optimum conditions, two or three cycles of uptake and efflux are observed in the first 15 min after Ca2+ addition. 2. The respiratory substrates malate, succinate and ascorbate plus p-phenylenediamine support Ca2+ uptake. Ca2+ uptake at 37 degrees C is sensitive to the respiratory inhibitors rotenone and antimycin A when appropriate substrates are present. Ca2+ uptake and retention are inhibited by the uncoupler S-13. 3. Increasing extracellular Pi (12 to 30 mM) stimulates uncoupler-sensitive Ca2+ uptake, which reaches a maximum extent of 15 nmol/mg of protein when supported by succinate respiration. Ca2+ efflux is partially inhibited at 30 mM-Pi. 4. Optimum Ca2+ uptake occurs in the presence of succinate and Pi, suggesting that availability of substrate and Pi are rate-limiting. K. Ca2+ uptake occurs at 4 degrees C and is sensitive to uncouplers and oligomycin. Ca2+ efflux at this temperature is minimal. These data are consistent with a model in which passive diffusion of Ca2+ through the plasma membrane is followed by active uptake by the mitochondria. Ca2+ uptake is supported by substrates entering respiration at all three energy-coupling sites. Ca2+ efflux appears to be an active process with a high temperature coefficient.
Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation
Tokoro, Tatsuki; Hosokawa, Shinya; Miyoshi, Eiichi; Tada, Kazufumi; Watanabe, Kenta; Montani, Shigeru; Kayanne, Hajime; Kuwae, Tomohiro
2014-01-01
‘Blue Carbon’, which is carbon captured by marine living organisms, has recently been highlighted as a new option for climate change mitigation initiatives. In particular, coastal ecosystems have been recognized as significant carbon stocks because of their high burial rates and long-term sequestration of carbon. However, the direct contribution of Blue Carbon to the uptake of atmospheric CO2 through air-sea gas exchange remains unclear. We performed in situ measurements of carbon flows, including air-sea CO2 fluxes, dissolved inorganic carbon changes, net ecosystem production, and carbon burial rates in the boreal (Furen), temperate (Kurihama), and subtropical (Fukido) seagrass meadows of Japan from 2010 to 2013. In particular, the air-sea CO2 flux was measured using three methods: the bulk formula method, the floating chamber method, and the eddy covariance method. Our empirical results show that submerged autotrophic vegetation in shallow coastal waters can be functionally a sink for atmospheric CO2. This finding is contrary to the conventional perception that most near-shore ecosystems are sources of atmospheric CO2. The key factor determining whether or not coastal ecosystems directly decrease the concentration of atmospheric CO2 may be net ecosystem production. This study thus identifies a new ecosystem function of coastal vegetated systems; they are direct sinks of atmospheric CO2. PMID:24623530
Spalding, Martin H.
2014-01-01
The limiting-CO2 inducible CO2-concentrating mechanism (CCM) of microalgae represents an effective strategy to capture CO2 when its availability is limited. At least two limiting-CO2 acclimation states, termed low CO2 and very low CO2, have been demonstrated in the model microalga Chlamydomonas reinhardtii, and many questions still remain unanswered regarding both the regulation of these acclimation states and the molecular mechanism underlying operation of the CCM in these two states. This study examines the role of two proteins, Limiting CO2 Inducible A (LCIA; also named NAR1.2) and LCIB, in the CCM of C. reinhardtii. The identification of an LCIA-LCIB double mutant based on its inability to survive in very low CO2 suggests that both LCIA and LCIB are critical for survival in very low CO2. The contrasting effects of individual mutations in LCIB and LCIA compared with the effects of LCIB-LCIA double mutations on growth and inorganic carbon-dependent photosynthetic O2 evolution reveal distinct roles of LCIA and LCIB in the CCM. Although both LCIA and LCIB are essential for very low CO2 acclimation, LCIB appears to function in a CO2 uptake system, whereas LCIA appears to be associated with a HCO3− transport system. The contrasting and complementary roles of LCIA and LCIB in acclimation to low CO2 and very low CO2 suggest a possible mechanism of differential regulation of the CCM based on the inhibition of HCO3− transporters by moderate to high levels of CO2. PMID:25336519
Muscular Oxygen Uptake Kinetics in Aged Adults.
Koschate, J; Drescher, U; Baum, K; Eichberg, S; Schiffer, T; Latsch, J; Brixius, K; Hoffmann, U
2016-06-01
Pulmonary oxygen uptake (V˙O2) kinetics and heart rate kinetics are influenced by age and fitness. Muscular V˙O2 kinetics can be estimated from heart rate and pulmonary V˙O2. In this study the applicability of a test using pseudo-random binary sequences in combination with a model to estimate muscular V˙O2 kinetics was tested. Muscular V˙O2 kinetics were expected to be faster than pulmonary V˙O2 kinetics, slowed in aged subjects and correlated with maximum V˙O2 and heart rate kinetics. 27 elderly subjects (73±3 years; 81.1±8.2 kg; 175±4.7 cm) participated. Cardiorespiratory kinetics were assessed using the maximum of cross-correlation functions, higher maxima implying faster kinetics. Muscular V˙O2 kinetics were faster than pulmonary V˙O2 kinetics (0.31±0.1 vs. 0.29±0.1 s; p=0.004). Heart rate kinetics were not correlated with muscular or pulmonary V˙O2 kinetics or maximum V˙O2. Muscular V˙O2 kinetics correlated with maximum V˙O2 (r=0.35; p=0.033). This suggests, that muscular V˙O2 kinetics are faster than estimates from pulmonary V˙O2 and related to maximum V˙O2 in aged subjects. In the future this experimental approach may help to characterize alterations in muscular V˙O2 under various conditions independent of motivation and maximal effort. © Georg Thieme Verlag KG Stuttgart · New York.
Lefevre, Sjannie
2016-01-01
With the occurrence of global change, research aimed at estimating the performance of marine ectotherms in a warmer and acidified future has intensified. The concept of oxygen- and capacity-limited thermal tolerance, which is inspired by the Fry paradigm of a bell-shaped increase-optimum-decrease-type response of aerobic scope to increasing temperature, but also includes proposed negative and synergistic effects of elevated CO2 levels, has been suggested as a unifying framework. The objectives of this meta-analysis were to assess the following: (i) the generality of a bell-shaped relationship between absolute aerobic scope (AAS) and temperature; (ii) to what extent elevated CO2 affects resting oxygen uptake MO2rest and AAS; and (iii) whether there is an interaction between elevated temperature and CO2. The behavioural effects of CO2 are also briefly discussed. In 31 out of 73 data sets (both acutely exposed and acclimated), AAS increased and remained above 90% of the maximum, whereas a clear thermal optimum was observed in the remaining 42 data sets. Carbon dioxide caused a significant rise in MO2rest in only 18 out of 125 data sets, and a decrease in 25, whereas it caused a decrease in AAS in four out of 18 data sets and an increase in two. The analysis did not reveal clear evidence for an overall correlation with temperature, CO2 regime or duration of CO2 treatment. When CO2 had an effect, additive rather than synergistic interactions with temperature were most common and, interestingly, they even interacted antagonistically on MO2rest and AAS. The behavioural effects of CO2 could complicate experimental determination of respiratory performance. Overall, this meta-analysis reveals heterogeneity in the responses to elevated temperature and CO2 that is not in accordance with the idea of a single unifying principle and which cannot be ignored in attempts to model and predict the impacts of global warming and ocean acidification on marine ectotherms.
Lefevre, Sjannie
2016-01-01
Abstract With the occurrence of global change, research aimed at estimating the performance of marine ectotherms in a warmer and acidified future has intensified. The concept of oxygen- and capacity-limited thermal tolerance, which is inspired by the Fry paradigm of a bell-shaped increase–optimum–decrease-type response of aerobic scope to increasing temperature, but also includes proposed negative and synergistic effects of elevated CO2 levels, has been suggested as a unifying framework. The objectives of this meta-analysis were to assess the following: (i) the generality of a bell-shaped relationship between absolute aerobic scope (AAS) and temperature; (ii) to what extent elevated CO2 affects resting oxygen uptake MO2rest and AAS; and (iii) whether there is an interaction between elevated temperature and CO2. The behavioural effects of CO2 are also briefly discussed. In 31 out of 73 data sets (both acutely exposed and acclimated), AAS increased and remained above 90% of the maximum, whereas a clear thermal optimum was observed in the remaining 42 data sets. Carbon dioxide caused a significant rise in MO2rest in only 18 out of 125 data sets, and a decrease in 25, whereas it caused a decrease in AAS in four out of 18 data sets and an increase in two. The analysis did not reveal clear evidence for an overall correlation with temperature, CO2 regime or duration of CO2 treatment. When CO2 had an effect, additive rather than synergistic interactions with temperature were most common and, interestingly, they even interacted antagonistically on MO2rest and AAS. The behavioural effects of CO2 could complicate experimental determination of respiratory performance. Overall, this meta-analysis reveals heterogeneity in the responses to elevated temperature and CO2 that is not in accordance with the idea of a single unifying principle and which cannot be ignored in attempts to model and predict the impacts of global warming and ocean acidification on marine ectotherms. PMID:27382472
Löw, M; Häberle, K-H; Warren, C R; Matyssek, R
2007-03-01
Knowledge of responses of photosynthesis, respiration, and stomatal conductance to cumulative ozone uptake (COU) is still scarce, and this is particularly the case for adult trees. The effect of ozone (O(3)) exposure on trees was examined with 60-year-old beech trees (FAGUS SYLVATICA) at a forest site of southern Germany. Trees were exposed to the ambient O(3) regime (1 x O(3)) or an experimentally elevated twice-ambient O(3) regime (2 x O(3)). The elevated 2 x O (3) regime was provided by means of a free-air O(3) canopy exposure system. The hypotheses were tested that (1) gas exchange is negatively affected by O(3) and (2) the effects of O(3) are dose-dependent and thus the sizes of differences between treatments are positively related to COU. Gas exchange (light-saturated CO(2) uptake rate A(max), stomatal conductance g (s), maximum rate of carboxylation Vc (max), ribulose-1,5-bisphosphate turnover limited rate of photosynthesis J (max), CO(2) compensation point CP, apparent quantum yield of net CO(2) uptake AQ, carboxylation efficiency CE, day- and nighttime respiration) and chlorophyll fluorescence (electron transfer rate, ETR) were measured IN SITU on attached sun and shade leaves. Measurements were made periodically throughout the growing seasons of 2003 (an exceptionally dry year) and 2004 (a year with average rainfall). In 2004 Vc(max), J(max), and CE were lower in trees receiving 2 x O(3) compared with the ambient O(3) regime (1 x O(3)). Treatment differences in Vc (max), J (max), CE were rather small in 2004 (i.e., parameter levels were lower by 10 - 30 % in 2 x O(3) than 1 x O(3)) and not significant in 2003. In 2004 COU was positively correlated with the difference between treatments in A (max), g (s), and ETR (i.e., consistent with the dose-dependence of O(3)'s deleterious effects). However, in 2003, differences in A(max), g (s), and ETR between the two O(3) regimes were smaller at the end of the dry summer 2003 (i.e., when COU was greatest). The relationship of COU with effects on gas exchange can apparently be complex and, in fact, varied between years and within the growing season. In addition, high doses of O(3) did not always have significant effects on leaf gas exchange. In view of the key findings, both hypotheses were to be rejected.
Grazing reduces soil greenhouse gas fluxes in global grasslands: a meta-analysis
NASA Astrophysics Data System (ADS)
Tang, Shiming; Tian, Dashuan; Niu, Shuli
2017-04-01
Grazing causes a worldwide degradation in grassland and likely alters soil greenhouse gas fluxes (GHGs). However, the general patterns of grazing-induced changes in grassland soil GHGs and the underlying mechanisms remain unclear. Thus, we synthesized 63 independent experiments in global grasslands that examined grazing impacts on soil GHGs (CO2, CH4 and N2O). We found that grazing with light or moderate intensity did not significantly influence soil GHGs, but consistently depressed them under heavy grazing, reducing CO2 emission by 10.55%, CH4 uptake by 19.24% and N2O emission by 28.04%. The reduction in soil CO2 was mainly due to decreased activity in roots and microbes (soil respiration per unit root and microbial biomass), which was suppressed by less water availability due to higher soil temperature induced by lower community cover under heavy grazing. N2O emission decreased with grazing-caused decline in soil total N. The inhibitory effect on methanotroph activities by water stress is responsible for the decreased CH4 uptake. Furthermore, grazing duration and precipitation also influenced the direction and magnitude of responses in GHGs fluxes. Overall, our results indicate that the reduction in soil CO2 and N2O emission under heavy grazing is partially compensated by the decrease in CH4 uptake, which is mainly regulated by variations in soil moisture.
Androgens enhance in vivo 2-deoxyglucose uptake by rat striated muscle
NASA Technical Reports Server (NTRS)
Max, S. R.; Toop, J.
1983-01-01
It is shown that testosterone propionate (TP) causes a striking increase in the in vivo uptake of 2-deoxyglucose (2-DG) by the levator ani muscle of immature male rats, which was found to be uniformly distributed over the entire muscle. After a single subcutaneous injection of TP, no enhancement of 2-DG was observed before 3.5 hr, at which time uptake was increased 2-fold; maximum enhancement (4-fold) was attained at 12 hr. At 72 hr, 2-DG uptake remained elevated at twice the control value. It was determined that the effect of TP probably is mediated by specific androgen receptors. In addition, it was found that the effect of TP was blocked by the simultaneous administration of an androgen antagonist, cyproterone acetate. TP also was found to enhance the uptake of 2-DG in the bulbocavernosus (253 percent over control) and extensor digitorum longus muscles (150 percent over control), but not in the biceps brachii or soleus. It is suggested that the increased uptake of glucose may be an important early step in the anabolic response of muscle to androgens.
McPherson, Brian J.; Sundquist, Eric T.
2009-01-01
Carbon sequestration has emerged as an important option in policies to mitigate the increasing atmospheric concentrations of anthropogenic carbon dioxide (CO2). Significant quantities of anthropogenic CO2 are sequestered by natural carbon uptake in plants, soils, and the oceans. These uptake processes are objects of intense study by biogeochemists, ecologists, and other researchers who seek to understand the processes that determine the mass balance (“budget”) among global carbon fluxes. At the same time, many scientists and engineers are examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological formations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, S; DeSilva, MA; Brennecke, JF
2014-12-25
Ionic liquids (ILs) with aprotic heterocyclic anions (AHA) are attractive candidates for CO2 capture technologies. In this study, a series of AHA ILs with 1-ethyl-3-methylimidazolium ([emim](+)) cations were synthesized, and their physical properties (density, viscosity, and ionic conductivity) were measured. In addition, CO2 solubility in each IL was determined at room temperature using a volumetric method at pressures between 0 and 1 bar. The AHAs are basic anions that are capable of reacting stoichiometrically with CO2 to form carbamate species. An interesting CO2 uptake isotherm behavior was observed, and this may be attributed to a parallel, equilibrium proton exchange processmore » between the imidazolium cation and the basic AHA in the presence of CO2, followed by the formation of "transient" carbene species that react rapidly with CO2. The presence of the imidazolium-carboxylate species and carbamate anion species was verified using H-1 and C-13 NMR spectroscopy. While the reaction between CO2 and the proposed transient carbene resulted in cation-CO2 binding that is stronger than the anion-CO2 reaction, the reactions of the imidazolium AHA ILs were fully reversible upon regeneration at 80 degrees C with nitrogen purging. The presence of water decreased the CO2 uptake due to the inhibiting effect of the neutral species (protonated form of AHA) that is formed.« less
Development of a cost-effective CO2 adsorbent from petroleum coke via KOH activation
NASA Astrophysics Data System (ADS)
Jang, Eunji; Choi, Seung Wan; Hong, Seok-Min; Shin, Sangcheol; Lee, Ki Bong
2018-01-01
The capture of CO2 via adsorption is considered an effective technology for decreasing global warming issues; hence, adsorbents for CO2 capture have been actively developed. Taking into account cost-effectiveness and environmental concerns, the development of CO2 adsorbents from waste materials is attracting considerable attention. In this study, petroleum coke (PC), which is the carbon residue remaining after heavy oil upgrading, was used to produce high-value-added porous carbon for CO2 capture. Porous carbon materials were prepared by KOH activation using different weight ratios of KOH/PC (1:1, 2:1, 3:1, and 4:1) and activation temperatures (600, 700, and 800 °C). The specific surface area and total pore volume of resulting porous carbon materials increased with KOH amount, reaching up to 2433 m2/g and 1.11 cm3/g, respectively. The sample prepared under moderate conditions with a KOH/PC weight ratio of 2:1 and activation temperature of 700 °C exhibited the highest CO2 adsorption uptake of 3.68 mmol/g at 25 °C and 1 bar. Interestingly, CO2 adsorption uptake was linearly correlated with the volume of micropores less than 0.8 nm, indicating that narrow micropore volume is crucial for CO2 adsorption. The prepared porous carbon materials also exhibited good selectivity for CO2 over N2, rapid adsorption, facile regeneration, and stable adsorption-desorption cyclic performance, demonstrating potential as a candidate for CO2 capture.
1073 K (800 °C) Isothermal Section of the Co-Al-V System
NASA Astrophysics Data System (ADS)
Liao, Guangjing; Yin, Fucheng; Liu, Ye; Zhao, Manxiu
2017-08-01
The isothermal section of the Co-Al-V ternary system at 1073 K (800 °C) has been determined by means of X-ray diffraction and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. Thirteen three-phase regions have been confirmed experimentally. A new ternary compound named `T' phase (Al2CoV) is found in this study which possesses a face-centered cubic (fcc) structure with a lattice parameter of 11.7224 Å. The T phase can be in equilibrium with Al3V, Al8V5, α-V, Al5Co2, and AlCo. The maximum solubility of Al in Co3V, σ-CoV, and CoV3 is 5.6, 6.3, and 4 at. pct, respectively. The maximum solubility of Co in Al3V, Al8V5, and α-V is 1.1, 2.5, and 24.9 at. pct, respectively. The maximum solubility of V in Al9Co2, Al13Co4, Al3Co, Al5Co2, AlCo, and α-Co is 0.3, 0.2, 0.1, 2.1, 35.0, and 16.4 at. pct, respectively.
Jo, Hyuna; Lee, Woo Ram; Kim, Nam Woo; Jung, Hyun; Lim, Kwang Soo; Kim, Jeong Eun; Kang, Dong Won; Lee, Hanyeong; Hiremath, Vishwanath; Seo, Jeong Gil; Jin, Hailian; Moon, Dohyun; Han, Sang Soo; Hong, Chang Seop
2017-02-08
A combined sonication and microwave irradiation procedure provides the most effective functionalization of ethylenediamine (en) and branched primary diamines of 1-methylethylenediamine (men) and 1,1-dimethylethylenediamine (den) onto the open metal sites of Mg 2 (dobpdc) (1). The CO 2 capacities of the advanced adsorbents 1-en and 1-men under simulated flue gas conditions are 19 wt % and 17.4 wt %, respectively, which are the highest values reported among amine-functionalized metal-organic frameworks (MOFs) to date. Moreover, 1-den exhibits both a significant working capacity (12.2 wt %) and superb CO 2 uptake (11 wt %) at 3 % CO 2 . Additionally, this framework showcases the superior recyclability; ultrahigh stability after exposure to O 2 , moisture, and SO 2 ; and exceptional CO 2 adsorption capacity under humid conditions, which are unprecedented among MOFs. We also elucidate that the performance of CO 2 adsorption can be controlled by the structure of the diamine ligands grafted such as the number of amine end groups or the presence of side groups, which provides the first systematic and comprehensive demonstration of fine-tuning of CO 2 uptake capability using different amines. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gimeno, Teresa; Royles, Jessica; Ogee, Jerome; Jones, Samuel; Burlett, Regis; West, Jason; Sauze, Joana; Wohl, Steven; Genty, Bernard; Griffiths, Howard; Wingate, Lisa
2016-04-01
Terrestrial surfaces are often covered by photoautotrophic communities that play a significant role in the biological fixation of C and N at the global scale. Bryophytes (mosses, liverworts and hornworts) are key members in these communities and are especially adapted to thrive in hostile environments, by growing slowly and surviving repeated dehydration events. Consequently, bryophyte communities can be extremely long-lived (>1500yrs) and can serve as valuable records of historic climate change. In particular the carbon and oxygen isotope compositions of mosses can be used as powerful proxies describing how growing season changes in atmospheric CO2 and rainfall have changed in the distant past over the land surface. Interpreting the climate signals of bryophyte biomass requires a robust understanding of how changes in photosynthetic activity and moisture status regulate the growth and isotopic composition of bryophyte biomass. Thus theoretical models predicting how changes in isotopic enrichment and CO2 discrimination respond to dehydration and rehydration are used to tease apart climatic and isotopic source signals. Testing these models with high resolution datasets obtained from new generation laser spectrometers can provide more information on how these plants that lack stomata cope with water loss. In addition novel tracers such as carbonyl sulfide (COS) can also be measured at high resolution and precision (<5ppt) and used to constrain understanding of diffusional and enzymatic limitations during dehydration and rehydration events in the light and the dark. Here, we will present for the first time simultaneous high-resolution chamber measurements of COS, 13CO2, CO18O and H218O fluxes by a bryophyte species (Marchantia sp.) in the light and during the dark, through complete desiccation cycles. Our measurements consistently reveal a strong enrichment dynamic in the oxygen isotope composition of transpired water over the dessication cycle that caused an increase in the oxygen isotope discrimination of CO2. These data followed closely values predicted by our process-based model. We also observed a consistent pattern in the fluxes of CO2 and COS during the desiccation cycle. Initially when the bryophyte was wet and a barrier to diffusion existed, net CO2 and COS uptake rates were low. As the water film on the bryophyte disappeared the net rates of CO2 and COS uptake increased to a steady maximum rate whilst relative water content values remained above 100%. Thereafter, the bryophyte turned from a COS sink to a source. In this talk we will further explore how the COS exchange rate of bryophytes varies with light level and whether there is any evidence for differences in the activity of the enzyme carbonic anhydrase with light and moisture status. We also use the data to develop and test a new theoretical model of COS exchange for astomatous plants for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, J.R.; Bailey, E.H.; Purvis, O.W.
1998-11-01
Uranium sorption experiments were carried out at {approximately}25 C using natural samples of the lichen Peltigera membranacea. Thalli were incubated in solutions containing 100 ppm U for up to 24 h at pH values from 2 to 10. Equilibrium sorption was not observed at less than {approximately}6 h under any pH condition. U sorption was strongest in the pH range 4--5, with maximum sorption occurring at a pH of 4.5 and an incubation time of 24 h. Maximum U uptake by P. membranacea averaged {approximately}42,000 ppm, or {approximately}4.2 wt% U. This appears to represent the highest concentration of biosorbed U,more » relative to solution U activity, of any lichen reported to date. Investigation of post-experimental lichen tissues using electron probe microanalysis (EPM) reveals that U uptake is spatially heterogeneous within the lichen body, and that U attains very high local concentrations on scattered areas of the upper cortex. Energy dispersive spectroscopic (EDS) analysis reveals that strong U uptake correlates with P signal intensity, suggesting involvement of biomass-derived phosphate ligands or surface functional groups in the uptake process.« less
Driever, Steven M; Baker, Neil R
2011-05-01
Electron flux from water via photosystem II (PSII) and PSI to oxygen (water-water cycle) may provide a mechanism for dissipation of excess excitation energy in leaves when CO(2) assimilation is restricted. Mass spectrometry was used to measure O(2) uptake and evolution together with CO(2) uptake in leaves of French bean and maize at CO(2) concentrations saturating for photosynthesis and the CO(2) compensation point. In French bean at high CO(2) and low O(2) concentrations no significant water-water cycle activity was observed. At the CO(2) compensation point and 3% O(2) a low rate of water-water cycle activity was observed, which accounted for 30% of the linear electron flux from water. In maize leaves negligible water-water cycle activity was detected at the compensation point. During induction of photosynthesis in maize linear electron flux was considerably greater than CO(2) assimilation, but no significant water-water cycle activity was detected. Miscanthus × giganteus grown at chilling temperature also exhibited rates of linear electron transport considerably in excess of CO(2) assimilation; however, no significant water-water cycle activity was detected. Clearly the water-water cycle can operate in leaves under some conditions, but it does not act as a major sink for excess excitation energy when CO(2) assimilation is restricted. © 2011 Blackwell Publishing Ltd.
González-Rodríguez, Alberto; de Dios López-González, Juan; del Castillo, Juan de Dios Luna; Villalba-Moreno, Juan
2011-05-01
Various authors have reported more effective fluoridation from the use of lasers combined with topical fluoride than from conventional topical fluoridation. Besides the beneficial effect of lasers in reducing the acid solubility of an enamel surface, they can also increase the uptake of fluoride. The study objectives were to compare the action of CO(2) and GaAlAs diode lasers on dental enamel and their effects on pulp temperature and enamel fluoride uptake. Different groups of selected enamel surfaces were treated with amine fluoride and irradiated with CO(2) laser at an energy power of 1 or 2 W or with diode laser at 5 or 7 W for 15 s each and compared to enamel surfaces without treatment or topical fluoridated. Samples were examined by means of environmental scanning electron microscopy (ESEM). Surfaces of all enamel samples were then acid-etched, measuring the amount of fluoride deposited on the enamel by using a selective ion electrode. Other enamel surfaces selected under the same conditions were irradiated as described above, measuring the increase in pulp temperature with a thermocouple wire. Fluorination with CO(2) laser at 1 W and diode laser at 7 W produced a significantly greater fluoride uptake on enamel (89 ± 18 mg/l) and (77 ± 17 mg/l) versus topical fluoridation alone (58 ± 7 mg/l) and no treatment (20 ± 1 mg/l). Diode laser at 5 W produced a lesser alteration of the enamel surface compared to CO(2) laser at 1 W, but greater pulp safety was provided by CO(2) laser (ΔT° 1.60° ± 0.5) than by diode laser (ΔT° 3.16° ± 0.6). Diode laser at 7 W and CO(2) laser at 2 W both caused alterations on enamel surfaces, but great pulp safety was again obtained with CO(2) (ΔT° 4.44° ± 0.60) than with diode (ΔT° 5.25° ± 0.55). Our study demonstrates that CO(2) and diode laser irradiation of the enamel surface can both increase fluoride uptake; however, laser energy parameters must be carefully controlled in order to limit increases in pulpal temperature and alterations to the enamel surface.
Macananey, Oscar; O'Shea, Donal; Warmington, Stuart A; Green, Simon; Egaña, Mikel
2012-08-01
Supervised exercise (SE) in patients with type 2 diabetes improves oxygen uptake kinetics at the onset of exercise. Maintenance of these improvements, however, has not been examined when supervision is removed. We explored if potential improvements in oxygen uptake kinetics following a 12-week SE that combined aerobic and resistance training were maintained after a subsequent 12-week unsupervised exercise (UE). The involvement of cardiac output (CO) in these improvements was also tested. Nineteen volunteers with type 2 diabetes were recruited. Oxygen uptake kinetics and CO (inert gas rebreathing) responses to constant-load cycling at 50% ventilatory threshold (V(T)), 80% V(T), and mid-point between V(T) and peak workload (50% Δ) were examined at baseline (on 2 occasions) and following each 12-week training period. Participants decided to exercise at a local gymnasium during the UE. Thirteen subjects completed all the interventions. The time constant of phase 2 of oxygen uptake was significantly faster (p < 0.05) post-SE and post-UE compared with baseline at 50% V(T) (17.3 ± 10.7 s and 17.5 ± 5.9 s vs. 29.9 ± 10.7 s), 80% V(T) (18.9 ± 4.7 and 20.9 ± 8.4 vs. 34.3 ± 12.7s), and 50% Δ (20.4 ± 8.2 s and 20.2 ± 6.0 s vs. 27.6 ± 3.7 s). SE also induced faster heart rate kinetics at all 3 intensities and a larger increase in CO at 30 s in relation to 240 s at 80% V(T); and these responses were maintained post-UE. Unsupervised exercise maintained benefits in oxygen uptake kinetics obtained during a supervised exercise in subjects with diabetes, and these benefits were associated with a faster dynamic response of heart rate after training.
Interannual variability in CO2 and CH4 exchange in a brackish tidal marsh in Northern California
NASA Astrophysics Data System (ADS)
Knox, S. H.; Windham-Myers, L.; Anderson, F. E.; Bergamaschi, B. A.
2017-12-01
Carbon (C) cycling in coastal wetlands is difficult to measure and model due to extremely dynamic atmospheric and hydrologic fluxes, as well as sensitivities to dynamic land- and ocean-based drivers. To date, few studies have begun continuous measurements of net ecosystem CO2 exchange (NEE) in these systems, and as such our understanding of the key drivers of NEE in coastal wetlands remain poorly understood. Recent eddy covariance measurements of NEE in these environments show considerable variability both within and across sites, with daily CO2 uptake and annual net CO2 budgets varying by nearly an order of magnitude between years and across locations. Furthermore, measurements of CH4 fluxes in these systems are even more limited, despite the potential for CH4 emissions from brackish and freshwater coastal wetlands. Here we present 3 years of near-continuous eddy covariance measurements of CO2 and CH4 fluxes from a brackish tidal marsh in Northern California and explore the drivers of interannual variability in CO2 and CH4 exchange. CO2 fluxes showed significant interannual variability; net CO2 uptake was near-zero in 2014 (6 ± 26 g C-CO2 m-2 yr-1), while much greater uptake was observed in 2015 and 2016 (209 ± 27 g C- CO2 m-2 yr-1 and 243 ± 26 g C-CO2 m-2 yr-1, respectively). Conversely, annual CH4 emissions were small and consistent across years, with the wetland emitting on average 1 ± 0.1 g C-CH4 m-2 yr-1. With respect to the net atmospheric GHG budget (assuming a sustained global warming potential (SGWP) of 45, expressed in units of CO2 equivalents), the wetland was near neutral in 2014, but a net GHG sink of 706 ± 105 g CO2 eq m-2 yr-1 and 836 ± 83 g CO2 eq m-2 yr-1 in 2015 and 2016, respectively. The large interannual variability in CO2 exchange was driven by notable year-to-year differences in temperature and precipitation as California experienced a severe drought and record high temperatures from 2012 to 2015. The large interannual variability in NEE and GHG budgets observed in this study emphasizes the need for long-term measurements of C fluxes in coastal wetlands, particularly under changing climatic conditions.
CO 2 uptake is offset by CH 4 and N 2O emissions in a poplar short-rotation coppice
Zenone, Terenzio; Zona, Donatella; Gelfand, Ilya; ...
2015-04-18
The need for renewable energy sources will lead to a considerable expansion in the planting of dedicated fast-growing biomass crops across Europe. These are commonly cultivated as short-rotation coppice (SRC), and currently poplar ( Populus spp.) is the most widely planted. In this study, we report the greenhouse gas (GHG) fluxes of carbon dioxide (CO 2), methane (CH 4) and nitrous oxide (N 2O) measured using eddy covariance technique in an SRC plantation for bioenergy production. Measurements were made during the period 2010–2013, that is, during the first two rotations of the SRC. The overall GHG balance of the 4more » years of the study was an emission of 1.90 (±1.37) Mg CO 2eq ha -1; this indicated that soil trace gas emissions offset the CO 2 uptake by the plantation. CH 4 and N 2O contributed almost equally to offset the CO 2 uptake of -5.28 (±0.67) Mg CO2eq ha -1 with an overall emission of 3.56 (±0.35) Mg CO 2eq ha -1 of N 2O and of 3.53 (±0.85) Mg CO 2eq ha-1 of CH 4. N 2O emissions mostly occurred during one single peak a few months after the site was converted to SRC; this peak comprised 44% of the total N 2O loss during the two rotations. Accurately capturing emission events proved to be critical for deriving correct estimates of the GHG balance. The nitrogen (N) content of the soil and the water table depth were the two drivers that best explained the variability in N 2O and CH 4, respectively. Here, this study underlines the importance of the ‘non-CO 2 GHGs’ on the overall balance. Further long-term investigations of soil trace gas emissions should monitor the N content and the mineralization rate of the soil, as well as the microbial community, as drivers of the trace gas emissions.« less
Gas adsorption capacity of wood pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yazdanpanah, F.; Sokhansanj, Shahabaddine; Lim, C. Jim
In this paper, temperature-programmed desorption (TPD) analysis was used to measure and analyze the adsorption of off-gases and oxygen by wood pellets during storage. Such information on how these gases interact with the material helps in the understanding of the purging/stripping behavior of off-gases to develop effective ventilation strategies for wood pellets. Steam-exploded pellets showed the lowest carbon dioxide (CO 2) uptake compared to the regular and torrefied pellets. The high CO 2 adsorption capacity of the torrefied pellets could be attributed to their porous structure and therefore greater available surface area. Quantifying the uptake of carbon monoxide by pelletsmore » was challenging due to chemical adsorption, which formed a strong bond between the material and carbon monoxide. The estimated energy of desorption for CO (97.8 kJ/mol) was very high relative to that for CO 2 (7.24 kJ/mol), demonstrating the mechanism of chemical adsorption and physical adsorption for CO and CO 2, respectively. As for oxygen, the strong bonds that formed between the material and oxygen verified the existence of chemical adsorption and formation of an intermediate material.« less
Gas adsorption capacity of wood pellets
Yazdanpanah, F.; Sokhansanj, Shahabaddine; Lim, C. Jim; ...
2016-02-03
In this paper, temperature-programmed desorption (TPD) analysis was used to measure and analyze the adsorption of off-gases and oxygen by wood pellets during storage. Such information on how these gases interact with the material helps in the understanding of the purging/stripping behavior of off-gases to develop effective ventilation strategies for wood pellets. Steam-exploded pellets showed the lowest carbon dioxide (CO 2) uptake compared to the regular and torrefied pellets. The high CO 2 adsorption capacity of the torrefied pellets could be attributed to their porous structure and therefore greater available surface area. Quantifying the uptake of carbon monoxide by pelletsmore » was challenging due to chemical adsorption, which formed a strong bond between the material and carbon monoxide. The estimated energy of desorption for CO (97.8 kJ/mol) was very high relative to that for CO 2 (7.24 kJ/mol), demonstrating the mechanism of chemical adsorption and physical adsorption for CO and CO 2, respectively. As for oxygen, the strong bonds that formed between the material and oxygen verified the existence of chemical adsorption and formation of an intermediate material.« less
Atmosphere-biosphere exchange of CO2 and O3 in the Central Amazon Forest
NASA Technical Reports Server (NTRS)
Fan, Song-Miao; Wofsy, Steven C.; Bakwin, Peter S.; Jacob, Daniel J.; Fitzjarrald, David R.
1990-01-01
An eddy correlation measurement of O3 deposition and CO2 exchange at a level 10 m above the canopy of the Amazon forest, conducted as part of the NASA/INPE ABLE2b mission during the wet season of 1987, is presented. It was found that the ecosystem exchange of CO2 undergoes a well-defined diurnal variation driven by the input of solar radiation. A curvilinear relationship was found between solar irradiance and uptake of CO2, with net CO2 uptake at a given solar irradiance equal to rates observed over forests in other climate zones. The carbon balance of the system appeared sensitive to cloud cover on the time scale of the experiment, suggesting that global carbon storage might be affected by changes in insolation associated with tropical climate fluctuations. The forest was found to be an efficient sink for O3 during the day, and evidence indicates that the Amazon forests could be a significant sink for global ozone during the nine-month wet period and that deforestation could dramatically alter O3 budgets.
Drought Rapidly Diminishes the Large Net CO2 Uptake in 2011 Over Semi-Arid Australia
NASA Technical Reports Server (NTRS)
Ma, Xuanlong; Huete, Alfredo; Cleverly, James; Eamus, Derek; Chevallier, Frederic; Joiner, Joanna; Poulter, Benjamin; Zhang, Yongguang; Guanter, Luis; Meyer, Wayne;
2016-01-01
Each year, terrestrial ecosystems absorb more than a quarter of the anthropogenic carbon emissions, termed as land carbon sink. An exceptionally large land carbon sink anomaly was recorded in 2011, of which more than half was attributed to Australia. However, the persistence and spatially attribution of this carbon sink remain largely unknown. Here we conducted an observation-based study to characterize the Australian land carbon sink through the novel coupling of satellite retrievals of atmospheric CO2 and photosynthesis and in-situ flux tower measures. We show the 2010-11 carbon sink was primarily ascribed to savannas and grasslands. When all biomes were normalized by rainfall, shrublands however, were most efficient in absorbing carbon. We found the 2010-11 net CO2 uptake was highly transient with rapid dissipation through drought. The size of the 2010-11 carbon sink over Australia (0.97 Pg) was reduced to 0.48 Pg in 2011-12, and was nearly eliminated in 2012-13 (0.08 Pg). We further report evidence of an earlier 2000-01 large net CO2 uptake, demonstrating a repetitive nature of this land carbon sink. Given a significant increasing trend in extreme wet year precipitation over Australia, we suggest that carbon sink episodes will exert greater future impacts on global carbon cycle.
Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia
NASA Astrophysics Data System (ADS)
Ma, Xuanlong; Huete, Alfredo; Cleverly, James; Eamus, Derek; Chevallier, Frédéric; Joiner, Joanna; Poulter, Benjamin; Zhang, Yongguang; Guanter, Luis; Meyer, Wayne; Xie, Zunyi; Ponce-Campos, Guillermo
2016-11-01
Each year, terrestrial ecosystems absorb more than a quarter of the anthropogenic carbon emissions, termed as land carbon sink. An exceptionally large land carbon sink anomaly was recorded in 2011, of which more than half was attributed to Australia. However, the persistence and spatially attribution of this carbon sink remain largely unknown. Here we conducted an observation-based study to characterize the Australian land carbon sink through the novel coupling of satellite retrievals of atmospheric CO2 and photosynthesis and in-situ flux tower measures. We show the 2010-11 carbon sink was primarily ascribed to savannas and grasslands. When all biomes were normalized by rainfall, shrublands however, were most efficient in absorbing carbon. We found the 2010-11 net CO2 uptake was highly transient with rapid dissipation through drought. The size of the 2010-11 carbon sink over Australia (0.97 Pg) was reduced to 0.48 Pg in 2011-12, and was nearly eliminated in 2012-13 (0.08 Pg). We further report evidence of an earlier 2000-01 large net CO2 uptake, demonstrating a repetitive nature of this land carbon sink. Given a significant increasing trend in extreme wet year precipitation over Australia, we suggest that carbon sink episodes will exert greater future impacts on global carbon cycle.
Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia.
Ma, Xuanlong; Huete, Alfredo; Cleverly, James; Eamus, Derek; Chevallier, Frédéric; Joiner, Joanna; Poulter, Benjamin; Zhang, Yongguang; Guanter, Luis; Meyer, Wayne; Xie, Zunyi; Ponce-Campos, Guillermo
2016-11-25
Each year, terrestrial ecosystems absorb more than a quarter of the anthropogenic carbon emissions, termed as land carbon sink. An exceptionally large land carbon sink anomaly was recorded in 2011, of which more than half was attributed to Australia. However, the persistence and spatially attribution of this carbon sink remain largely unknown. Here we conducted an observation-based study to characterize the Australian land carbon sink through the novel coupling of satellite retrievals of atmospheric CO 2 and photosynthesis and in-situ flux tower measures. We show the 2010-11 carbon sink was primarily ascribed to savannas and grasslands. When all biomes were normalized by rainfall, shrublands however, were most efficient in absorbing carbon. We found the 2010-11 net CO 2 uptake was highly transient with rapid dissipation through drought. The size of the 2010-11 carbon sink over Australia (0.97 Pg) was reduced to 0.48 Pg in 2011-12, and was nearly eliminated in 2012-13 (0.08 Pg). We further report evidence of an earlier 2000-01 large net CO 2 uptake, demonstrating a repetitive nature of this land carbon sink. Given a significant increasing trend in extreme wet year precipitation over Australia, we suggest that carbon sink episodes will exert greater future impacts on global carbon cycle.
Uptake of leptin and albumin via separate pathways in proximal tubule cells.
Briffa, Jessica F; Grinfeld, Esther; Poronnik, Philip; McAinch, Andrew J; Hryciw, Deanne H
2016-10-01
The adipokine leptin and oncotic protein albumin are endocytosed in the proximal tubule via the scavenger receptor megalin. Leptin reduces megalin expression and activates cell signalling pathways that upregulate fibrotic protein expression. The aim of this study was to investigate if leptin uptake in proximal tubule cells was via the albumin-megalin endocytic complex. In immortalised proximal tubule Opossum kidney cells (OK) fluorescent leptin and albumin co-localised following 5min exposure, however there was no co-localisation at 10, 20 and 30min exposure. In OK cells, acute exposure to leptin for 2h did not alter NHE3, ClC-5, NHERF1 and NHERF2 mRNA. However, acute leptin exposure increased NHERF2 protein expression in proximal tubule cells. In OK cells, immunoprecipitation experimentation indicated leptin did not bind to ClC-5. Leptin uptake in OK cells was enhanced by bafilomycin and ammonium chloride treatment, demonstrating that uptake was not dependent on lysosomal pH. Thus, it is likely that two pools of megalin exist in proximal tubule cells to facilitate separate uptake of leptin and albumin by endocytosis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Informing climate models with rapid chamber measurements of forest carbon uptake.
Metcalfe, Daniel B; Ricciuto, Daniel; Palmroth, Sari; Campbell, Catherine; Hurry, Vaughan; Mao, Jiafu; Keel, Sonja G; Linder, Sune; Shi, Xiaoying; Näsholm, Torgny; Ohlsson, Klas E A; Blackburn, M; Thornton, Peter E; Oren, Ram
2017-05-01
Models predicting ecosystem carbon dioxide (CO 2 ) exchange under future climate change rely on relatively few real-world tests of their assumptions and outputs. Here, we demonstrate a rapid and cost-effective method to estimate CO 2 exchange from intact vegetation patches under varying atmospheric CO 2 concentrations . We find that net ecosystem CO 2 uptake (NEE) in a boreal forest rose linearly by 4.7 ± 0.2% of the current ambient rate for every 10 ppm CO 2 increase, with no detectable influence of foliar biomass, season, or nitrogen (N) fertilization. The lack of any clear short-term NEE response to fertilization in such an N-limited system is inconsistent with the instantaneous downregulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with considerable empirical support - diversion of excess carbon to storage compounds - into an existing earth system model brings the model output into closer agreement with our field measurements. A global simulation incorporating this modified model reduces a long-standing mismatch between the modeled and observed seasonal amplitude of atmospheric CO 2 . Wider application of this chamber approach would provide critical data needed to further improve modeled projections of biosphere-atmosphere CO 2 exchange in a changing climate. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Deppeler, Stacy; Petrou, Katherina; Schulz, Kai G.; Westwood, Karen; Pearce, Imojen; McKinlay, John; Davidson, Andrew
2018-01-01
High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm) to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a) and particulate organic matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C), causing significant reductions in gross primary production (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments ≥ 953 µatm (days 3-5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial productivity (csBP14C) was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative effects on the Antarctic food web and the biological pump, resulting in negative feedbacks on anthropogenic CO2 uptake. Increases in bacterial abundance under high CO2 conditions may also increase the efficiency of the microbial loop, resulting in increased organic matter remineralisation and further declines in carbon sequestration.
Charlie Byrer
2017-12-09
Terrestrial sequestration is the enhancement of CO2 uptake by plants that grow on land and in freshwater and, importantly, the enhancement of carbon storage in soils where it may remain more permanently stored. Terrestrial sequestration provides an opportunity for low-cost CO2 emissions offsets.
Competition between cyanobacteria and green algae at low versus elevated CO2: who will win, and why?
Ji, Xing; Verspagen, Jolanda M H; Stomp, Maayke; Huisman, Jef
2017-06-01
Traditionally, it has often been hypothesized that cyanobacteria are superior competitors at low CO2 and high pH in comparison with eukaryotic algae, owing to their effective CO2-concentrating mechanism (CCM). However, recent work indicates that green algae can also have a sophisticated CCM tuned to low CO2 levels. Conversely, cyanobacteria with the high-flux bicarbonate uptake system BicA appear well adapted to high inorganic carbon concentrations. To investigate these ideas we studied competition between three species of green algae and a bicA strain of the harmful cyanobacterium Microcystis aeruginosa at low (100 ppm) and high (2000 ppm) CO2. Two of the green algae were competitively superior to the cyanobacterium at low CO2, whereas the cyanobacterium increased its competitive ability with respect to the green algae at high CO2. The experiments were supported by a resource competition model linking the population dynamics of the phytoplankton species with dynamic changes in carbon speciation, pH and light. Our results show (i) that competition between phytoplankton species at different CO2 levels can be predicted from species traits in monoculture, (ii) that green algae can be strong competitors under CO2-depleted conditions, and (iii) that bloom-forming cyanobacteria with high-flux bicarbonate uptake systems will benefit from elevated CO2 concentrations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
NASA Astrophysics Data System (ADS)
Menviel, L.; Joos, F.
2012-03-01
The Bern3D model was applied to quantify the mechanisms of carbon cycle changes during the Holocene (last 11,000 years). We rely on scenarios from the literature to prescribe the evolution of shallow water carbonate deposition and of land carbon inventory changes over the glacial termination (18,000 to 11,000 years ago) and the Holocene and modify these scenarios within uncertainties. Model results are consistent with Holocene records of atmospheric CO2 and δ13C as well as the spatiotemporal evolution of δ13C and carbonate ion concentration in the deep sea. Deposition of shallow water carbonate, carbonate compensation of land uptake during the glacial termination, land carbon uptake and release during the Holocene, and the response of the ocean-sediment system to marine changes during the termination contribute roughly equally to the reconstructed late Holocene pCO2 rise of 20 ppmv. The 5 ppmv early Holocene pCO2 decrease reflects terrestrial uptake largely compensated by carbonate deposition and ocean sediment responses. Additional small contributions arise from Holocene changes in sea surface temperature, ocean circulation, and export productivity. The Holocene pCO2 variations result from the subtle balance of forcings and processes acting on different timescales and partly in opposite direction as well as from memory effects associated with changes occurring during the termination. Different interglacial periods with different forcing histories are thus expected to yield different pCO2 evolutions as documented by ice cores.
NASA Astrophysics Data System (ADS)
Pawson, S.; Nielsen, J.; Ott, L. E.; Darmenov, A.; Putman, W.
2015-12-01
Model-data fusion approaches, such as global inverse modeling for surface flux estimation, have traditionally been performed at spatial resolutions of several tens to a few hundreds of kilometers. Use of such coarse scales presents a fundamental limitation in reconciling the modeled field with both the atmospheric observations and the distribution of surface emissions and uptake. Emissions typically occur on small scales, including point sources (e.g. power plants, forest fires) or with inhomegeneous structure. Biological uptake can have spatial variations related to complex, diverse vegetation, etc. Atmospheric observations of CO2 are either surface based, providing information at a single point, or space based with a finite-sized footprint. For instance, GOSAT and OCO-2 have footprint sizes of around 10km and proposed active sensors (such as ASCENDS) will likely have even finer footprints. One important aspect of reconciling models to measurements is the representativeness of the observation for the model field, and this depends on the generally unknown spatio-temporal variations of the CO2 field around the measurement location and time. This work presents an assessment of the global spatio-temporal variations of the CO2 field using the "7km GEOS-5 Nature Run" (7km-G5NR), which includes CO2 emissions and uptake mapped to the finest possible resolution. Results are shown for surface CO2 concentrations, total-column CO2, and separate upper and lower tropospheric columns. Spatial variability is shown to be largest in regions with strong point sources and at night in regions with complex terrain, especially where biological processes dominate the local CO2 fluxes, where the day-night differences are also most marked. The spatio-temporal variations are strongest for surface concentrations and for lower tropospheric CO2. While these results are largely anticipated, these high resolution simulations provide quantitative estimates of the global nature of spatio-temporal CO2 variability. Implications for characterizing representativeness of passive CO2 observations will be discussed. Differences between daytime and nighttime structures will be considered in light of active CO2 sensors. Finally, some possible limitations of the model will be highlighted, using some global 3-km simulations.
Differential uptake of salicylate in serum, cerebrospinal fluid, and perilymph.
Jastreboff, P J; Hansen, R; Sasaki, P G; Sasaki, C T
1986-10-01
After intraperitoneal administration of salicylate in anesthetized rats and guinea pigs, we found that salicylate levels in perilymph (PL) are closely related to both drug levels in cerebrospinal fluid (CSF) and in serum, with higher levels systematically observed in PL than in CSF. Further analysis suggests that salicylate is not passively transported into PL across CSF but, rather, is transported from blood directly to PL. The time course of salicylate uptake in rats reveals maximum levels at 1 1/2 hours (serum) and two to four hours (CSF and PL). On the other hand, salicylate uptake into serum and CSF of guinea pigs exhibits a longer time course, with maximum levels reached at four hours (serum) and five hours (CSF). These data, not previously available, are basic to our understanding of salicylate-related auditory effects.
Moheimani, Navid R; Borowitzka, Michael A
2011-05-01
The effects of changes in CO(2) and pH on biomass productivity and carbon uptake of Pleurochrysis carterae and Emiliania huxleyi in open raceway ponds and a plate photobioreactor were studied. The pH of P. carterae cultures increased during day and decreased at night, whereas the pH of E. huxleyi cultures showed no significant diurnal changes. P. carterae coccolith production occurs during the dark period, whereas in E. huxleyi, coccolith production is mainly during the day. Addition of CO(2) at constant pH (pH-stat) resulted in an increase in P. carterae biomass and coccolith productivity, while CO(2) addition lowered E. huxleyi biomass and coccolith production. Neither of these algae could grow at less than pH 7.5. Species-specific diurnal pH and pCO(2) variations could be indicative of significant differences in carbon uptake between these two species. While E. huxleyi has been suggested to be predominantly a bicarbonate user, our results indicate that P. carterae may be using CO(2) as the main C source for photosynthesis and calcification.
Tang, X.; Liu, S.; Zhou, G.; Zhang, Dongxiao; Zhou, C.
2006-01-01
The magnitude, temporal, and spatial patterns of soil-atmospheric greenhouse gas (hereafter referred to as GHG) exchanges in forests near the Tropic of Cancer are still highly uncertain. To contribute towards an improvement of actual estimates, soil-atmospheric CO2, CH4, and N2O fluxes were measured in three successional subtropical forests at the Dinghushan Nature Reserve (hereafter referred to as DNR) in southern China. Soils in DNR forests behaved as N2O sources and CH4 sinks. Annual mean CO2, N2O, and CH4 fluxes (mean ?? SD) were 7.7 ?? 4.6MgCO2-Cha-1 yr-1, 3.2 ?? 1.2 kg N2ONha-1 yr-1, and 3.4 ?? 0.9 kgCH4-Cha-1 yr-1, respectively. The climate was warm and wet from April through September 2003 (the hot-humid season) and became cool and dry from October 2003 through March 2004 (the cool-dry season). The seasonality of soil CO2 emission coincided with the seasonal climate pattern, with high CO2 emission rates in the hot-humid season and low rates in the cool-dry season. In contrast, seasonal patterns of CH4 and N2O fluxes were not clear, although higher CH4 uptake rates were often observed in the cool-dry season and higher N2O emission rates were often observed in the hot-humid season. GHG fluxes measured at these three sites showed a clear increasing trend with the progressive succession. If this trend is representative at the regional scale, CO2 and N2O emissions and CH4 uptake in southern China may increase in the future in light of the projected change in forest age structure. Removal of surface litter reduced soil CO2 effluxes by 17-44% in the three forests but had no significant effect on CH4 absorption and N2O emission rates. This suggests that microbial CH4 uptake and N2O production was mainly related to the mineral soil rather than in the surface litter layer. ?? 2006 Blackwell Publishing Ltd.
Reduced carbon uptake during the 2010 Northern Hemisphere summer from GOSAT
NASA Astrophysics Data System (ADS)
Guerlet, S.; Basu, S.; Butz, A.; Krol, M.; Hahne, P.; Houweling, S.; Hasekamp, O. P.; Aben, I.
2013-05-01
Column-averaged dry air mole fractions of carbon dioxide (XCO2) measured by the Greenhouse Gases Observing Satellite (GOSAT) reveal significant interannual variation (IAV) of CO2uptake during the Northern Hemisphere summer between 2009 and 2010. The XCO2drawdown in 2010 is shallower than in 2009 by 2.4 ppm and 3.0 ppm over North America and Eurasia, respectively. Reduced carbon uptake in the summer of 2010 is most likely due to the heat wave in Eurasia driving biospheric fluxes and fire emissions. A joint inversion of GOSAT and surface data estimates an integrated biospheric and fire emission anomaly in April-September of 0.89 ±0.20 PgC over Eurasia. In contrast, inversions of surface measurements alone fail to replicate the observed XCO2IAV and underestimate emission IAV over Eurasia. This shows the value of GOSAT XCO2in constraining the response of land-atmosphere exchange of CO2 to climate events.
NASA Astrophysics Data System (ADS)
Halem, M.; Dorband, J.; Rao, R.; Lomonaco, S.; Chapman, D. R.; LeMoigne, J.; Nearing, G. S.; Pelissier, C. S.; Simpson, D. G.; Clune, T.
2014-12-01
Recent aircraft measurements from scattered records have shown long-term, global, seasonal photosynthetic CO2 uptake over land accelerating over the past 50 years. The successful launch of the sun-synchronous Orbiting Carbon Observatory 2 (OCO-2) on July 2, 2014 is expected to provide global, high spatial and spectral resolution datasets of vertical CO2 concentrations with surface spectral resolutions capable of yielding accurate CO2 flux profiles. It is unclear whether the biosphere will continue to act as a sink for anthropogenic CO2 loading of the atmosphere. Since current climate models with detailed terrestrial ecosystems are unable to simulate the observed increase in net ecosystem production (NEP), we will conduct assimilation studies with the derived CO2 fluxes in the GSFC Land Information System hydrological model to validate the generated NEP uptake. Further, we plan to use the OCO-2 CO2 concentrations to train a neural network to enable the calculation of long term trends from a decade of AIRS CO2 concentration data to produce regional NEP. To address this important Big Data science issue, a multi-institutional collaboration was formed to leverage their combined resources and the expertise of the researchers at the NASA GSFC, the Lamont Doherty Earth Observatory and UMBC. We will employ a high speed 10Gb network to connect the collaborating researchers and provide them with remote access to dedicated computational hybrid multicore resources at UMBC, as well as access to an archive containing more than a decade of readily accessible continuous daily gridded AIRS data and ten years of daily MODIS data for each September. The status of the following research efforts is planned to be presented; (i) acquisition and processing of the expected CO2 profile data from OCO-2 for two test sites, a low latitude region over the Amazon and a Boral forest at high latitude, (ii) initial impact of 3-D data assimilation of CO2 fluxes with the advanced Goddard LIS hydrological surface model, (iii) preliminary results in training AIRS CO2 data. In addition, early results of innovative exploration on quantum annealing optimization for 3-D data assimilation, image registration and a Hopfield neural network for training the AIRS CO2 spectral data through UMBC remote access to the D-Wave system in Vancouver, CA, will be introduced.
The effect of elevated CO2 and temperature on nutrient uptake by plants grown in basaltic soil
NASA Astrophysics Data System (ADS)
Villasenor Iribe, E.; Dontsova, K.; Juarez, S.; Le Galliard, J. F.; Chollet, S.; Llavata, M.; Massol, F.; Barré, P.; Gelabert, A.; Daval, D.; Troch, P.; Barron-Gafford, G.; Van Haren, J. L. M.; Ferrière, R.
2017-12-01
Mineral weathering is an important process in soil formation. The interactions between the hydrologic, geologic and atmospheric cycles often determine the rate at which weathering occurs. Elements and nutrients weathered from the soil by water can be removed from soils in the runoff and seepage, but they can also remain in situ as newly precipitated secondary minerals or in biomass as a result of plant uptake. Here we present data from an experiment that was conducted at the controlled environment facility, Ecotron Ile-de-France (Saint-Pierre-les-Nemours, France) that studied mineral weathering and plant growth in granular basaltic material with high glass content that is being used to simulate soil in large scale Biosphere 2 Landscape Evolution Observatory (LEO) project. The experiment used 3 plant types: velvet mesquite (Prosopis velutina), green spangletop (Leptochloa dubia), and alfalfa (Medicago sativa), which were grown under varying temperature and CO2 conditions. We hypothesized that plants grown under warmer, higher CO2 conditions would have larger nutrient concentrations as more mineral weathering would occur. Results of plant digestions and analysis showed that plant concentrations of lithogenic elements were significantly influenced by the plant type and were different between above- and below-ground parts of the plant. Temperature and CO2 treatment effects were less pronounced, but we observed significant temperature effect on plant uptake. A number of major and trace elements showed increase in concentration with increase in temperature at elevated atmospheric CO2. Effect was observed both in the shoots and in the roots, but more significant differences were observed in the shoots. Results presented here indicate that climate change would have strong effect on plant uptake and mobility of weathered elements during soil formation and give further evidence of interactions between abiotic and biological processes in terrestrial ecosystems.
An anomalous CO2 uptake measured over asphalt surface by open-path eddy-covariance system
NASA Astrophysics Data System (ADS)
Bogoev, Ivan; Santos, Eduardo
2017-04-01
Measurements of net ecosystem exchange of CO2 in desert environments made by Wohlfahrt et al. (2008) and Ma (2014) indicate strong CO2 sink. The results of these studies have been challenged by Schlesinger (2016) because the rates of the CO2 uptake are incongruent with the increase of biomass in the vegetation and accumulation of organic and inorganic carbon in the soil. Consequently, the accuracy of the open-path eddy-covariance systems in arid and semi-arid ecosystems has been questioned. A new technology merging the sensing paths of the gas analyzer and the sonic anemometer has recently been developed. This integrated open-path system allows a direct measurement of CO2 mixing ratio in the open air and has the potential to improve the quality of the temperature related density and spectroscopic corrections by synchronously measuring the sensible heat flux in the optical path of the gas analyzer. We evaluate the performance and the accuracy of this new sensor over a large parking lot with an asphalt surface where the water vapor and CO2 fluxes are expected to be low and the interfering sensible heat fluxes are above 200 Wm-2. For independent CO2 flux reference measurements, we use a co-located closed-path analyzer with a short intake tube and a standalone sonic anemometer. We compare energy and carbon dioxide fluxes between the open- and the closed-path systems. During periods with sensible heat flux above 100 W m-2, the open-path system reports an apparent CO2 uptake of 0.02 mg m-2 s-1, while the closed-path system consistently measures a more acceptable upward flux of 0.015 mg m-2 s-1. We attribute this systematic bias to inadequate fast-response temperature compensation of absorption-line broadening effects. We demonstrate that this bias can be eliminated by using the humidity-corrected fast-response sonic temperature to compensate for the abovementioned spectroscopic effects in the open-path analyzer.
Uptake and metabolism of 14C-palmitate by fetal rabbit tissues.
Hudson, D G; Hull, D
1977-01-01
The uptake and esterification of 14C-palmitate into lipid classes in placenta, fetal brown adipose tissue (BAT) and liver of rabbits were investigated in vitro. Fetal BAT showed a high rate of fatty acid uptake, 8.5 mumol-a-1 tissue-h-1. From 5 min onwards, the majority of incorporated label was in the triglyceride fraction. The placenta and fetal liver also incorporated I-[14C]-palmitate into both FFA and esterified lipid fractions, although at much lower rates than observed for BAT. In the liver, triglycerides, but in the placenta phospholipids, contained the majority of the label after 1 h incubation. BAT from both fetal and newborn rabbits released 14CO2 and the production of 14 CO2 was greater in the presence of noradrenaline. The specific activity of the CO2 was the same in stimulated and unstimulated tissue. It is concluded that BAT as well as the liver are important sites of free fatty acid removal from the fetal circulation. The potential for fatty acid oxidation is present in BAT of the 28-day rabbit fetus.
Polyamine Uptake in Carrot Cell Cultures 1
Pistocchi, Rossella; Bagni, Nello; Creus, José A.
1987-01-01
Putrescine and spermidine uptake into carrot (Daucus carota L.) cells in culture was studied. The time course of uptake showed that the two polyamines were very quickly transported into the cells, reaching a maximum absorption within 1 minute. Increasing external polyamine concentrations up to 100 millimolar showed the existence of a biphasic system with different affinities at low and high polyamine concentrations. The cellular localization of absorbed polyamines was such that a greater amount of putrescine was present in the cytoplasmic soluble fraction, while spermidine was mostly present in cell walls. The absorbed polyamines were released into the medium in the presence of increasing external concentrations of the corresponding polyamine or Ca2+. The effects of Ca2+ were different for putrescine and spermidine; putrescine uptake was slightly stimulated by 10 micromolar Ca2+ and inhibited by higher concentrations, while for spermidine uptake there was an increasing stimulation in the Ca2+ concentration range between 10 micromolar and 1 millimolar. La3+ nullified the stimulatory effect of 10 micromolar Ca2+ on putrescine uptake and that of 1 millimolar Ca2+ on spermidine uptake. La3+ at 0.5 to 1 millimolar markedly inhibited the uptake of both polyamines, suggesting that it interferes with the sites of polyamine uptake. Putrescine uptake was affected to a lesser extent by metabolic inhibitors than was spermidine uptake. It is proposed that the entry of polyamines into the cells is driven by the transmembrane electrical gradient, with a possible antiport mechanism between external and internal polyamine molecule. PMID:16665446
Ali, Zeshan; Mujeeb-Kazi, Abdul; Quraishi, Umar Masood; Malik, Riffat Naseem
2018-04-25
The current study provides one of the first attempts to identify tolerant, moderately sensitive, and highly sensitive wheat genotypes on the basis of heavy metal accumulation, biochemical attributes, and human health risk assessments on urban wastewater (UW) irrigation. Mean heavy metals (Fe, Co, Ni, Cu, Zn, Pb, Cd, Cr, Mn) and macro-nutrients (Na, K, Ca, Mg) levels increased in the roots, stem, and grains of studied genotypes. Except K (stem > root > grain), all metals were accumulated in highest concentrations in roots followed by stem and grains. Principal component analyses (PCA) identified three groups of UW-irrigated genotypes which were confirmed by hierarchical agglomerative cluster analyses (HACA). Wheat genotypes with the lowest metal accumulation were regarded as tolerant, whereas those with maximum accumulation were considered highly sensitive. Tolerant genotypes showed the lowest hazard quotient for heavy metals, i.e., Co, Mn, Cd, Cu, Fe, Pb, and Cr, and hazard index (HI) values (adults, 2.04; children, 2.27) than moderately and highly sensitive genotypes. Higher health risks (HI) associated with moderate (adults 2.26; children 2.53) and highly sensitive (adults 2.52; children 2.82) genotypes revealed maximum uptake of heavy metals. The heatmap showed higher mean biochemical levels of chlorophyll, carotenoids, membrane stability index (MSI%), sugars, proteins, proline, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in tolerant genotypes than remaining genotypes. With the lowest metal accumulation and advanced biochemical mechanisms to cope with the adverse effects of heavy metals in their plant bodies, tolerant genotypes present a better option for cultivation in areas receiving UW or similar type of wastewater.
Prediction of Maximum Oxygen Uptake Using Both Exercise and Non-Exercise Data
ERIC Educational Resources Information Center
George, James D.; Paul, Samantha L.; Hyde, Annette; Bradshaw, Danielle I.; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.
2009-01-01
This study sought to develop a regression model to predict maximal oxygen uptake (VO[subscript 2max]) based on submaximal treadmill exercise (EX) and non-exercise (N-EX) data involving 116 participants, ages 18-65 years. The EX data included the participants' self-selected treadmill speed (at a level grade) when exercise heart rate first reached…
NASA Astrophysics Data System (ADS)
Hauck, Judith
2018-01-01
Ocean uptake of CO2 slows the rate of anthropogenic climate change but comes at the cost of ocean acidification. Observations now show that the seasonal cycle of CO2 in the ocean also changes, leading to earlier occurrence of detrimental conditions for ocean biota.
NASA Astrophysics Data System (ADS)
Benthien, A.; Schulte, S.; Andersen, N.; Müller, P. J.; Schneider, R. R.
The carbon isotopic signal of the C37-alkenone, a taxon-specific biomarker for hap- tophyte algae, has been used in various paleoceanographic studies as a proxy for an- cient surface water CO2 concentration ([CO2aq]). However, a number of recent cul- ture, field and sediment studies imply that the carbon isotopic fractionation (ep) of alkenones is controlled predominantly by physiological processes and environmental factors other than the ambient CO2 concentration (i.e., growth rate, nutrient availabil- ity, light intensity, active carbon uptake, bicarbonate utilisation). The environmental conditions controlling phytoplankton growth are likely to vary strongly with oceano- graphic setting. Culture experiments can not perfectly recreate natural growth con- ditions and physical processes which affect the carbon isotopic signal in the field and its preservation in the sediment. Consequently, the use of the carbon isotopic record of alkenones as a reliable paleoceonographic proxy also requires sediment- based studies covering a broad range of different oceanic regimes for the past and modern ocean. Here, we present the first basin-wide comparison of alkenone ep val- ues from sediments of the Last Glacial Maximum (LGM) and the latest Holocene. Different oceanographic regions from the equatorial and South Atlantic Ocean were examined. Generally, alkenone ep is lower during the LGM compared to the Holocene. Considering present understanding of LGM-Holocene changes in surface water condi- tions, the observed glacial/interglacial difference in ep indicates that different effects controlled the isotopic fractionation in alkenone-producing algae depending on the regional setting. In upwelling regions, the variations in ep probably reflect a glacial increase in haptophyte productivity controlled by the availability of surface water nu- trient concentrations. By contrast, in oligotrophic areas slightly lower nutrient content was available during LGM. Here, the observed ep difference can be explained partly with an assumed glacial decrease in surface water [CO2aq]. However, it can not be ruled out that changes in haptophyte productivity also affected the ep signal to some extent. This study clearly demonstrates that a reliable reconstruction of [CO2aq] on the basis of the isotopic composition of alkenones is not feasible without a detailed 1 knowledge of ancient haptophyte growth conditions. 2
Nitrogen and sulfur Co-doped microporous activated carbon macro-spheres for CO2 capture.
Sun, Yahui; Li, Kaixi; Zhao, Jianghong; Wang, Jianlong; Tang, Nan; Zhang, Dongdong; Guan, Taotao; Jin, Zuer
2018-04-27
Millimeter-sized nitrogen and sulfur co-doped microporous activated carbon spheres (NSCSs) were first synthesized from poly(styrene-vinylimidazole-divinylbenzene) resin spheres through concentrated H 2 SO 4 sulfonation, carbonization and KOH activation. Styrene (ST) and N-vinylimidazole (VIM) were carbon and nitrogen sources, while the sulfonic acid functional groups introduced by the simple concentrated sulfuric acid sulfonation worked simultaneously as cross-linking agent and sulfur source during the following thermal treatments. It was found that the surface chemistries, textural structures, and CO 2 adsorption performances of the NSCSs were significantly affected by the addition of VIM. The NSCS-4-700 sample with a molar ratio of ST: VIM = 1: 0.75 showed the best CO 2 uptake at different temperatures and pressures. An exhaustive adsorption evaluation indicated that CO 2 sorption at low pressures originated from the synergistic effect of surface chemistry and micropores below 8.04 Å, while at the moderate pressure of 8.0 bar, CO 2 uptake was dominated by the volume of micropores. The thermodynamics suggested the exothermic and orderly nature of the adsorption process, which was dominated by a physisorption mechanism. The high CO 2 adsorption capacity, fast kinetic adsorption rate, and great regeneration stability of the nitrogen and sulfur co-doped activated carbon spheres indicated that the as-prepared carbon adsorbents were good candidates for large-scale CO 2 capture. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zahariev, Konstantin; Christian, James R.; Denman, Kenneth L.
2008-04-01
The Canadian Model of Ocean Carbon (CMOC) has been developed as part of a global coupled climate carbon model. In a stand-alone integration to preindustrial equilibrium, the model ecosystem and global ocean carbon cycle are in general agreement with estimates based on observations. CMOC reproduces global mean estimates and spatial distributions of various indicators of the strength of the biological pump; the spatial distribution of the air-sea exchange of CO 2 is consistent with present-day estimates. Agreement with the observed distribution of alkalinity is good, consistent with recent estimates of the mean rain ratio that are lower than historic estimates, and with calcification occurring primarily in the lower latitudes. With anthropogenic emissions and climate forcing from a 1850-2000 climate model simulation, anthropogenic CO 2 accumulates at a similar rate and with a similar spatial distribution as estimated from observations. A hypothetical scenario for complete elimination of iron limitation generates maximal rates of uptake of atmospheric CO 2 of less than 1 PgC y -1, or about 11% of 2004 industrial emissions. Even a ‘perfect’ future of sustained fertilization would have a minor impact on atmospheric CO 2 growth. In the long term, the onset of fertilization causes the ocean to take up an additional 77 PgC after several thousand years, compared with about 84 PgC thought to have occurred during the transition into the last glacial maximum due to iron fertilization associated with increased dust deposition.
Koushik, Kavitha; Kompella, Uday B
2004-03-01
The purpose of this study was to prepare large-porous peptide-encapsulating polymeric particles with low residual solvent that retain deslorelin integrity, sustain drug release, and exhibit reduced epithelial and macrophage uptake. We hypothesized that supercritical carbon dioxide (SC CO2) pressure-quench treatment of microparticles prepared using conventional approach expands these particles and extracts the residual organic solvent. Initial studies with crystalline L-lactide (L-PLA) and amorphous copolymers of lactide-co-glycolide (PLGA) 50:50, 65:35, and 75:25 indicated that PLGA 50:50 was the most amenable to morphological changes upon SC CO2 treatment. Therefore, we prepared deslorelin-PLGA (50:50) microparticles using the conventional emulsion-solvent evaporation method, and in a second step equilibrated with SC CO2 at various temperatures (33-37 degrees C) and pressures (1200-2000 psi) for discrete intervals followed by rapid isothermal depressurization. The particles were then characterized for morphology, polymer thermal properties, particle size, porosity, bulk density, and residual solvent content. Also, deslorelin integrity, conformation, release, and cellular uptake before and after SC CO2 treatment was determined. Upon SC CO2 treatment (1200 psi, 33 degrees C for 30 min), the mean particle size of the deslorelin PLGA microparticles increased from 2.2 to 13.8 microm, the mean porosity increased from 39 to 92.38% the mean pore diameter increased from 90 to 190 nm, the mean bulk density reduced from 0.7 to 0.082 g/cc, mass spectrometry indicated structural integrity of released deslorelin, the circular dichroism spectrum indicated stabilization of beta-turn conformation, and the scanning electron microscopy confirmed increased particle size and pore formation. The deslorelin release was sustained during the 7-day study period. Also, the peak Tg of PLGA decreased from 51 to 45 degrees C, and the residual solvent content was reduced from 4500 ppm to below detection limit (< 25 ppm). The accumulation of drug from SC CO2 treated particles in cell layers of Calu-3, A549, and rat alveolar macrophages was reduced by 87, 91 and 50%, respectively, compared to untreated particles. An SCF-derived process could be successfully applied to prepare large porous deslorelin-PLGA particles with reduced residual solvent content, which retained deslorelin integrity, sustained deslorelin release, and reduced cellular uptake.
NASA Astrophysics Data System (ADS)
Schafer, K. V.; Duman, T.
2017-12-01
The New Jersey Meadowlands are an urban brackish marsh with a long history of human activity causing disturbances and alterations. Carbon emissions were measured from two sites in the Meadowlands, a natural site and a restored site, using eddy-covariance (EC) from 2014 to 2016. At each site, the EC towers were placed at the interface of two vegetation covers, allowing capturing this aspect of the wetland's heterogeneity. Using footprint modeling and light response curves we were able to partition measured fluxes between vegetation cover types and compare CO2 fluxes from patches of invasive versus native wetland vegetation communities. We show that further separating the data into seasonal and diurnal fluxes reveals patterns in CO2 fluxes that allow determining the nature of each vegetation cover as a source or sink for CO2. Our results also show that CO2 emissions from the restored wetland are significantly higher than the natural wetland. Areas of invasive Phragmites australis at the natural site had the lowest CO2 release rates during winter. These were consistently lower in magnitude than summer daytime uptake, therefore making this part of the wetland a CO2 sink. Areas planted with native Spartina alterniflora at the restored site had the largest uptake during daytime, therefore seemingly justifying restoration activities. However, they also had the highest emission rates during summer nighttime, and therefore the daily summer net uptake was not the highest compared with other vegetation covers. Furthermore, emissions from the restored site during winter were larger compared to the natural site, indicating that restoration activities might have led to a significant increase of carbon release from the wetland. Thus, during the study period the restored wetland acted as a carbon source.
Paradigm shift in plant growth control.
Körner, Christian
2015-06-01
For plants to grow they need resources and appropriate conditions that these resources are converted into biomass. While acknowledging the importance of co-drivers, the classical view is still that carbon, that is, photosynthetic CO2 uptake, ranks above any other drivers of plant growth. Hence, theory and modelling of growth traditionally is carbon centric. Here, I suggest that this view is not reflecting reality, but emerged from the availability of methods and process understanding at leaf level. In most cases, poorly understood processes of tissue formation and cell growth are governing carbon demand, and thus, CO2 uptake. Carbon can only be converted into biomass to the extent chemical elements other than carbon, temperature or cell turgor permit. Copyright © 2015. Published by Elsevier Ltd.
Jena, Usha Rani; Swain, Dillip Kumar; Hazra, K K; Maity, Mrinal K
2018-05-16
Climate models predict an increase in global temperature in response to a doubling of atmospheric [CO 2 ] that may impact future rice production and quality. In this study, the effect of elevated [CO 2 ] on yield, nutrient acquisition and utilization, and grain quality of rice genotypes was investigated in subtropical climate of eastern India (Kharagpur). Three environments (open field, ambient, and elevated [CO 2 ]) were tested using four rice cultivars of eastern India. Under elevated [CO 2 ] (25% higher), yield of high yielding cultivars (HYCs) viz. IR 36, Swarna, and Swarna sub1 was significantly reduced (11-13%), whereas the yield increased (6-9%) for Badshabhog, a low-yielding aromatic cultivar. Elevated [CO 2 ] significantly enhanced K uptake (14-21%), but did not influence the uptake of total N and P. The nutrient harvest index and use efficiency values in HYCs were reduced under elevated [CO 2 ] indicating that nutrients translocation from source to sink (grain) was significantly reduced. An increase in alkali spreading value (10%) and reduction in grain protein (2-3%) and iron (5-6%) was also observed upon [CO 2 ] elevation. The study highlights the importance of nutrient management (increasing N rate for HYCs) and selective breeding of tolerant cultivar in minimizing the adverse effect of elevated [CO 2 ] on rice yield and quality. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Technical Reports Server (NTRS)
Raper, C. D.; Tolley-Henry, L.
1989-01-01
An important feature of controlled-environment crop production systems such as those to be used for life support of crews during space exploration is the efficient utilization of nitrogen supplies. Making decisions about the best sources of these supplies requires research into the relationship between nitrogen source and the physiological processes which regulate vegetative and reproductive plant growth. Work done in four areas within this research objective is reported: (1) experiments on the effects of root-zone pH on preferential utilization of NO3(-) versus NH4(+) nitrogen; (2) investigation of processes at the whole-plant level that regulate nitrogen uptake; (3) studies of the effects of atmospheric CO2 and NO3(-) supply on the growth of soybeans; and (4) examination of the role of NO3(-) uptake in enhancement of root respiration.
The role of Phragmites in the CH4 and CO2 fluxes in a minerotrophic peatland in southwest Germany
NASA Astrophysics Data System (ADS)
van den Berg, Merit; Ingwersen, Joachim; Lamers, Marc; Streck, Thilo
2016-11-01
Peatlands are interesting as a carbon storage option, but are also natural emitters of the greenhouse gas methane (CH4). Phragmites peatlands are particularly interesting due to the global abundance of this wetland plant (Phragmites australis) and the highly efficient internal gas transport mechanism, which is called humidity-induced convection (HIC). The research aims were to (1) clarify how this plant-mediated gas transport influences the CH4 fluxes, (2) which other environmental variables influence the CO2 and CH4 fluxes, and (3) whether Phragmites peatlands are a net source or sink of greenhouse gases. CO2 and CH4 fluxes were measured with the eddy covariance technique within a Phragmites-dominated fen in southwest Germany. One year of flux data (March 2013-February 2014) shows very clear diurnal and seasonal patterns for both CO2 and CH4. The diurnal pattern of CH4 fluxes was only visible when living, green reed was present. In August the diurnal cycle of CH4 was the most distinct, with 11 times higher midday fluxes (15.7 mg CH4 m-2 h-1) than night fluxes (1.41 mg CH4 m-2 h-1). This diurnal cycle has the highest correlation with global radiation, which suggests a high influence of the plants on the CH4 flux. But if the cause were the HIC, it would be expected that relative humidity would correlate stronger with CH4 flux. Therefore, we conclude that in addition to HIC, at least one additional mechanism must be involved in the creation of the convective flow within the Phragmites plants. Overall, the fen was a sink for carbon and greenhouse gases in the measured year, with a total carbon uptake of 221 g C m-2 yr-1 (26 % of the total assimilated carbon). The net uptake of greenhouse gases was 52 g CO2 eq. m-2 yr-1, which is obtained from an uptake of CO2 of 894 g CO2 eq. m-2 yr-1 and a release of CH4 of 842 g CO2 eq. m-2 yr-1.
Numerical cell model investigating cellular carbon fluxes in Emiliania huxleyi.
Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke
2015-01-07
Coccolithophores play a crucial role in the marine carbon cycle and thus it is interesting to know how they will respond to climate change. After several decades of research the interplay between intracellular processes and the marine carbonate system is still not well understood. On the basis of experimental findings given in literature, a numerical cell model is developed that describes inorganic carbon fluxes between seawater and the intracellular sites of calcite precipitation and photosynthetic carbon fixation. The implemented cell model consists of four compartments, for each of which the carbonate system is resolved individually. The four compartments are connected to each other via H(+), CO2, and HCO3(-) fluxes across the compartment-confining membranes. For CO2 accumulation around RubisCO, an energy-efficient carbon concentrating mechanism is proposed that relies on diffusive CO2 uptake. At low external CO2 concentrations and high light intensities, CO2 diffusion does not suffice to cover the carbon demand of photosynthesis and an additional uptake of external HCO3(-) becomes essential. The model is constrained by data of Emiliania huxleyi, the numerically most abundant coccolithophore species in the present-day ocean. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janssen, Marco H.M., E-mail: marco.janssen@maastro.nl; Aerts, Hugo J.W.L.; Buijsen, Jeroen
2012-02-01
Purpose: The purpose of this study was to analyze both the intratumoral fluorodeoxyglucose (FDG) uptake and perfusion within rectal tumors before and after hypofractionated radiotherapy. Methods and Materials: Rectal cancer patients, referred for preoperative hypofractionated radiotherapy (RT), underwent FDG-positron emission tomography (PET)-computed tomography (CT) and perfusion-CT (pCT) imaging before the start of hypofractionated RT and at the day of the last RT fraction. The pCT-images were analyzed using the extended Kety model, quantifying tumor perfusion with the pharmacokinetic parameters K{sup trans}, v{sub e}, and v{sub p}. The mean and maximum FDG uptake based on the standardized uptake value (SUV) andmore » transfer constant (K{sup trans}) within the tumor were correlated. Also, the tumor was subdivided into eight subregions and for each subregion the mean and maximum SUVs and K{sup trans} values were assessed and correlated. Furthermore, the mean FDG uptake in voxels presenting with the lowest 25% of perfusion was compared with the FDG uptake in the voxels with the 25% highest perfusion. Results: The mean and maximum K{sup trans} values were positively correlated with the corresponding SUVs ({rho} = 0.596, p = 0.001 and {rho} = 0.779, p < 0.001). Also, positive correlations were found for K{sup trans} values and SUVs within the subregions (mean, {rho} = 0.413, p < 0.001; and max, {rho} = 0.540, p < 0.001). The mean FDG uptake in the 25% highest-perfused tumor regions was significantly higher compared with the 25% lowest-perfused regions (10.6% {+-} 5.1%, p = 0.017). During hypofractionated radiotherapy, stable mean (p = 0.379) and maximum (p = 0.280) FDG uptake levels were found, whereas the mean (p = 0.040) and maximum (p = 0.003) K{sup trans} values were found to significantly increase. Conclusion: Highly perfused rectal tumors presented with higher FDG-uptake levels compared with relatively low perfused tumors. Also, intratumor regions with a high FDG uptake demonstrated with higher levels of perfusion than regions with a relatively low FDG-uptake. Early after hypofractionated RT, stable FDG uptake levels were found, whereas tumor perfusion was found to significantly increase.« less
Carbon uptake in granular basalt is mitigated by added organic carbon.
NASA Astrophysics Data System (ADS)
Howard, E. L.; Van Haren, J. L. M.; Dontsova, K.
2017-12-01
Soils represent a large, and potentially long-term, storage component of the global carbon budget. Accurate projections of the response of soil respiration -the release of CO2 from soils generated either through root respiration or microbial respiration- to rainfall events remains one of the largest uncertainties in global carbon cycling models. Similarly poorly represented in models is the uptake of CO2 by basalt soils. In an attempt to address these unknowns, we have investigated how the addition of carbon influences the negative CO2 flux observed after wetting basalt. At Biosphere 2 we have constructed a large scale environmentally controlled experiment known as the Landscape Evolution Observatory (LEO). The objective of LEO is to observe the interactions between water, microbes, and climate in the formation of soil and landscapes utilizing granular basalt as a young soil. Previous studies show that water addition to the LEO soil leads to considerable CO2 uptake and that the addition of plants does not alter this response. In this study, we conducted soil incubations to investigate the effect of varying soil carbon content on CO2 fluxes. During incubations we measured CO2 emissions from two types of soil (granular basalt and sand soil) mixed with seven (0, 5, 10, 25, 50, 75, 100%) different proportions of Kalso prairie. The carbon content varied from nearly zero in the basalt to 6.5% in the Kalso Prarie soil. Other parameters that influence soil CO2 fluxes such as pH were taken into account. In conclusion, our experiments confirm that unweathered basalt will consume CO2 when wetted, whereas added carbon will cause a strong pulse of CO2 following water addition. This supports our hypotheses that the carbon content is a large contributor and that maturation of basalt flows will lead to a shift in the carbon dynamics from inorganic to organic dominated. Likewise, these transitions would be expected to be present during soil formation after primary succession and even after anthropogenic alteration to landscape function.
Microbial dissolution of calcite at T = 28 °C and ambient pCO 2
NASA Astrophysics Data System (ADS)
Jacobson, Andrew D.; Wu, Lingling
2009-04-01
This study used batch reactors to quantify the mechanisms and rates of calcite dissolution in the presence and absence of a single heterotrophic bacterial species ( Burkholderia fungorum). Experiments were conducted at T = 28°C and ambient pCO 2 over time periods spanning either 21 or 35 days. Bacteria were supplied with minimal growth media containing either glucose or lactate as a C source, NH 4+ as an N source, and H 2PO 4- as a P source. Combining stoichiometric equations for microbial growth with an equilibrium mass-balance model of the H 2O-CO 2-CaCO 3 system demonstrates that B. fungorum affected calcite dissolution by modifying pH and alkalinity during utilization of ionic N and C species. Uptake of NH 4+ decreased pH and alkalinity, whereas utilization of lactate, a negatively charged organic anion, increased pH and alkalinity. Calcite in biotic glucose-bearing reactors dissolved by simultaneous reaction with H 2CO 3 generated by dissolution of atmospheric CO 2 (H 2CO 3 + CaCO 3 → Ca 2+ + 2HCO 3-) and H + released during NH 4+ uptake (H + + CaCO 3 → Ca 2+ + HCO 3-). Reaction with H 2CO 3 and H + supplied ˜45% and 55% of the total Ca 2+ and ˜60% and 40% of the total HCO 3-, respectively. The net rate of microbial calcite dissolution in the presence of glucose and NH 4+ was ˜2-fold higher than that observed for abiotic control experiments where calcite dissolved only by reaction with H 2CO 3. In lactate bearing reactors, most H + generated by NH 4+ uptake reacted with HCO 3- produced by lactate oxidation to yield CO 2 and H 2O. Hence, calcite in biotic lactate-bearing reactors dissolved by reaction with H 2CO 3 at a net rate equivalent to that calculated for abiotic control experiments. This study suggests that conventional carbonate equilibria models can satisfactorily predict the bulk fluid chemistry resulting from microbe-calcite interactions, provided that the ionic forms and extent of utilization of N and C sources can be constrained. Because the solubility and dissolution rate of calcite inversely correlate with pH, heterotrophic microbial growth in the presence of nonionic organic matter and NH 4+ appears to have the greatest potential for enhancing calcite weathering relative to abiotic conditions.
Water Adsorption on Various Metal Organic Framework
NASA Astrophysics Data System (ADS)
Teo, H. W. B.; Chakraborty, A.
2017-12-01
In this paper, Metal Organic Framework (MOF) undergoes N2 and water adsorption experiment to observe how the material properties affects the water sorption performance. The achieved N2 isotherms is used to estimate the BET surface area, pore volume and, most importantly, the pore size distribution of the adsorbent material. It is noted that Aluminium Fumarate and CAU-10 has pore distribution of about 6Å while MIL-101(Cr) has 16 Å. The water adsorption isotherms at 25°C shows MIL-101(Cr) has a long hydrophobic length from relative pressure of 0 ≤ P/Ps ≤ 0.4 with a maximum water uptake of 1kg/kg sorbent. Alkali metal ions doped MIL-101(Cr) reduced the hydrophobic length and maximum water uptake of original MIL-101(Cr). Aluminium Fumarate and CAU-10 has lower water uptake, but the hydrophobic length of both materials is within relative pressure of P/Ps ≤ 0.2. The kinetic behaviour of doped MIL-101(Cr), Aluminium Fumarate and CAU-10 are faster than MIL-101(Cr).
Björkman, Karin; Duhamel, Solange; Karl, David M.
2012-01-01
We investigated the concentration dependent uptake of inorganic phosphate (Pi) and adenosine-5′-triphosphate (ATP) in microbial populations in the North Pacific Subtropical Gyre (NPSG). We used radiotracers to measure substrate uptake into whole water communities, differentiated microbial size classes, and two flow sorted groups; Prochlorococcus (PRO) and non-pigmented bacteria (NPB). The Pi concentrations, uptake rates, and Pi pool turnover times (Tt) were (mean, ±SD); 54.9 ± 35.0 nmol L−1 (n = 22), 4.8 ± 1.9 nmol L−1 day−1 (n = 19), and 14.7 ± 10.2 days (n = 19), respectively. Pi uptake into >2 μm cells was on average 12 ± 7% (n = 15) of the total uptake. The kinetic response to Pi (10–500 nmol L−1) was small, indicating that the microorganisms were close to their maximum uptake velocity (Vmax). Vmax averaged 8.0 ± 3.6 nmol L−1 day−1 (n = 19) in the >0.2 μm group, with half saturation constants (Km) of 40 ± 28 nmol L−1 (n = 19). PRO had three times the cell specific Pi uptake rate of NPB, at ambient concentrations, but when adjusted to cells L−1 the rates were similar, and these two groups were equally competitive for Pi. The Tt of γ-P-ATP in the >0.2 μm group were shorter than for the Pi pool (4.4 ± 1.0 days; n = 6), but this difference diminished in the larger size classes. The kinetic response to ATP was large in the >0.2 μm class with Vmax exceeding the rates at ambient concentrations (mean 62 ± 27 times; n = 6) with a mean Vmax for γ-P-ATP of 2.8 ± 1.0 nmol L−1 day−1, and Km at 11.5 ± 5.4 nmol L−1 (n = 6). The NPB contribution to γ-P-ATP uptake was high (95 ± 3%, n = 4) at ambient concentrations but decreased to ∼50% at the highest ATP amendment. PRO had Km values 5–10 times greater than NPB. The above indicates that PRO and NPB were in close competition in terms of Pi acquisition, whereas P uptake from ATP could be attributed to NPB. This apparent resource partitioning may be a niche separating strategy and an important factor in the successful co-existence within the oligotrophic upper ocean of the NPSG. PMID:22701449
Simultaneous quantum yield measurements of carbon uptake and oxygen evolution in microalgal cultures
Gholami, Pardis; Kline, David I.; DuPont, Christopher L.; Dickson, Andrew G.; Mendola, Dominick; Martz, Todd; Allen, Andrew E.; Mitchell, B. Greg
2018-01-01
The photosynthetic quantum yield (Φ), defined as carbon fixed or oxygen evolved per unit of light absorbed, is a fundamental but rarely determined biophysical parameter. A method to estimate Φ for both net carbon uptake and net oxygen evolution simultaneously can provide important insights into energy and mass fluxes. Here we present details for a novel system that allows quantification of carbon fluxes using pH oscillation and simultaneous oxygen fluxes by integration with a membrane inlet mass spectrometer. The pHOS system was validated using Phaeodactylum tricornutum cultured with continuous illumination of 110 μmole quanta m-2 s-1 at 25°C. Furthermore, simultaneous measurements of carbon and oxygen flux using the pHOS-MIMS and photon flux based on spectral absorption were carried out to explore the kinetics of Φ in P. tricornutum during its acclimation from low to high light (110 to 750 μmole quanta m-2 s-1). Comparing results at 0 and 24 hours, we observed strong decreases in cellular chlorophyll a (0.58 to 0.21 pg cell-1), Fv/Fm (0.71 to 0.59) and maximum ΦCO2 (0.019 to 0.004) and ΦO2 (0.028 to 0.007), confirming the transition toward high light acclimation. The Φ time-series indicated a non-synchronized acclimation response between carbon uptake and oxygen evolution, which has been previously inferred based on transcriptomic changes for a similar experimental design with the same diatom that lacked physiological data. The integrated pHOS-MIMS system can provide simultaneous carbon and oxygen measurements accurately, and at the time-resolution required to resolve high-resolution carbon and oxygen physiological dynamics. PMID:29920568
Positron emission tomography imaging of braintumors with Cobalt-55 and L-[1-C11]-tyrosine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, H.M.L.; Pruim J.; Willemsen, A.T.M.
1994-05-01
The applicability of positron emission tomography (PET) with [C-11] tyrosine (TYR) and Cobalt-55 (Co) in patients with known primary brain tumors is reported. We used Co as a Calcium (Ca) marker to study Ca influx in degenerating neural tissue and TYR to indicate incorporation of amino acids into protein. Four patients showing a primary brain tumor with central necrosis on CT/MRI were studied with Co-PET. Additionally, 2 of these patients were consecutively studied with TYR-PET. Diagnostic confirmation was obtained by means of histology and/or cytology shortly after PET. Thirty-seven MBq Co was administered iv. approximately 24 hours before acquisition. Themore » Co-scan was acquired for I hour. Immediately following Co-PET, 2 patients received 370 MBq TYR iv. TYR-PET acquisition was done dynamically for 55 minutes starting from the time of injection. The necrotic center of the tumor revealed no uptake of either Co or TYR. Vital tumor tissue showed intense uptake of TYR, indicating a high protein synthesis rate (PSR). The circumferent zone between necrotic and tumor tissue showed evident uptake of Co, suggesting cell-decay. In conclusion, TYR and Co are both suitable tracers for visualization of different aspects of brain malignancies, ie. PSR and cell-decay. Combining Co and TYR enables differentiation of necrosis vs. tumor growth with clear marking of the border zone. We think these complementary PET-techniques in conjunction with CT and/or MRI allow the visualization of different aspects of tumor tissue: central necrosis (CT/MRI), cell-decay (Co-PET) and vital tumor tissue (TYR-PET).« less
Greater deciduous shrub abundance extends tundra peak season and increases modeled net CO2 uptake.
Sweet, Shannan K; Griffin, Kevin L; Steltzer, Heidi; Gough, Laura; Boelman, Natalie T
2015-06-01
Satellite studies of the terrestrial Arctic report increased summer greening and longer overall growing and peak seasons since the 1980s, which increases productivity and the period of carbon uptake. These trends are attributed to increasing air temperatures and reduced snow cover duration in spring and fall. Concurrently, deciduous shrubs are becoming increasingly abundant in tundra landscapes, which may also impact canopy phenology and productivity. Our aim was to determine the influence of greater deciduous shrub abundance on tundra canopy phenology and subsequent impacts on net ecosystem carbon exchange (NEE) during the growing and peak seasons in the arctic foothills region of Alaska. We compared deciduous shrub-dominated and evergreen/graminoid-dominated community-level canopy phenology throughout the growing season using the normalized difference vegetation index (NDVI). We used a tundra plant-community-specific leaf area index (LAI) model to estimate LAI throughout the green season and a tundra-specific NEE model to estimate the impact of greater deciduous shrub abundance and associated shifts in both leaf area and canopy phenology on tundra carbon flux. We found that deciduous shrub canopies reached the onset of peak greenness 13 days earlier and the onset of senescence 3 days earlier compared to evergreen/graminoid canopies, resulting in a 10-day extension of the peak season. The combined effect of the longer peak season and greater leaf area of deciduous shrub canopies almost tripled the modeled net carbon uptake of deciduous shrub communities compared to evergreen/graminoid communities, while the longer peak season alone resulted in 84% greater carbon uptake in deciduous shrub communities. These results suggest that greater deciduous shrub abundance increases carbon uptake not only due to greater leaf area, but also due to an extension of the period of peak greenness, which extends the period of maximum carbon uptake. © 2015 John Wiley & Sons Ltd.
Defect engineering of UiO-66 for CO2 and H2O uptake - a combined experimental and simulation study.
Liang, Weibin; Coghlan, Campbell J; Ragon, Florence; Rubio-Martinez, Marta; D'Alessandro, Deanna M; Babarao, Ravichandar
2016-03-21
Defect concentrations and their compensating groups have been systematically tuned within UiO-66 frameworks by using modified microwave-assisted solvothermal methods. Both of these factors have a pronounced effect on CO2 and H2O adsorption at low and high pressure.
Uptake of uranium from seawater by amidoxime-based polymeric adsorbent marine testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsouris, C.; Kim, J.; Oyola, Y.
2013-07-01
Amidoxime-based polymer adsorbents in the form of functionalized fibers were prepared at the Oak Ridge National Laboratory (ORNL) and screened in laboratory experiments, in terms of uranium uptake capacity, using spiked uranium solution and seawater samples. Batch laboratory experiments conducted with 5-gallon seawater tanks provided equilibrium information. Based on results from 5-gallon experiments, the best adsorbent was selected for field-testing of uranium adsorption from seawater. Flow-through column tests have been performed at different marine sites to investigate the uranium uptake rate and equilibrium capacity under diverse biogeochemistry. The maximum amount of uranium uptake from seawater tests at Sequim, WA, wasmore » 3.3 mg U/g adsorbent after eight weeks of contact of the adsorbent with seawater. This amount was three times higher than the maximum adsorption capacity achieved in this study by a leading adsorbent developed by the Japan Atomic Energy Agency (JAEA), which was 1.1 mg U/g adsorbent at equilibrium. The initial uranium uptake rate of the ORNL adsorbent was 2.6 times higher than that of the JAEA adsorbent under similar conditions. A mathematical model derived from the mass balance of uranium was employed to describe the data. (authors)« less
The effect of pH on metal accumulation in two Alyssum species.
Kukier, Urszula; Peters, Carinne A; Chaney, Rufus L; Angle, J Scott; Roseberg, Richard J
2004-01-01
Nickel phytoextraction using hyperaccumulator plants offers a potential for profit while decontaminating soils. Although soil pH is considered a key factor in metal uptake by crops, little is known about soil pH effects on metal uptake by hyperaccumulator plants. Two Ni and Co hyperaccumulators, Alyssum murale and A. corsicum, were grown in Quarry muck (Terric Haplohemist) and Welland (Typic Epiaquoll) soils contaminated by a Ni refinery in Port Colborne, Ontario, Canada, and in the serpentine Brockman soil (Typic Xerochrepts) from Oregon, USA. Soils were acidified and limed to cover pH from strongly acidic to mildly alkaline. Alyssum grown in both industrially contaminated soils exhibited increased Ni concentration in shoots as soil pH increased despite a decrease in water-soluble soil Ni, opposite to that seen with agricultural crop plants. A small decrease in Alyssum shoot Ni concentration as soil pH increased was observed in the serpentine soil. The highest fraction of total soil Ni was phytoextracted from Quarry muck (6.3%), followed by Welland (4.7%), and Brockman (0.84%). Maximum Ni phytoextraction was achieved at pH 7.3, 7.7, and 6.4 in the Quarry, Welland, and Brockman soils, respectively. Cobalt concentrations in shoots increased with soil pH increase in the Quarry muck, but decreased in the Welland soil. Plants extracted 1.71, 0.83, and 0.05% of the total soil Co from Welland, Quarry, and Brockman, respectively. The differences in uptake pattern of Ni and Co by Alyssum from different soils and pH were probably related to the differences in organic matter and iron contents of the soils.
Emission of Carbon Dioxide Influenced by Different Water Levels from Soil Incubated Organic Residues
Hossain, M. B.; Puteh, A. B.
2013-01-01
We studied the influence of different organic residues and water levels on decomposition rate and carbon sequestration in soil. Organic residues (rice straw, rice root, cow dung, and poultry litter) including control were tested under moistened and flooding systems. An experiment was laid out as a complete randomized design at 25°C for 120 days. Higher CO2-C (265.45 mg) emission was observed in moistened condition than in flooding condition from 7 to 120 days. Among the organic residues, poultry litter produced the highest CO2-C emission. Poultry litter with soil mixture increased 121% cumulative CO2-C compared to control. On average, about 38% of added poultry litter C was mineralized to CO2-C. Maximum CO2-C was found in 7 days after incubation and thereafter CO2-C emission was decreased with the increase of time. Control produced the lowest CO2-C (158.23 mg). Poultry litter produced maximum cumulative CO2-C (349.91 mg). Maximum organic carbon was obtained in cow dung which followed by other organic residues. Organic residues along with flooding condition decreased cumulative CO2-C, k value and increased organic C in soil. Maximum k value was found in poultry litter and control. Incorpored rice straw increased organic carbon and decreased k value (0.003 g d−1) in soil. In conclusion, rice straw and poultry litter were suitable for improving soil carbon. PMID:24163626
Changes in vegetation phenology are not reflected in atmospheric CO2 and 13 C/12 C seasonality.
Gonsamo, Alemu; D'Odorico, Petra; Chen, Jing M; Wu, Chaoyang; Buchmann, Nina
2017-10-01
Northern terrestrial ecosystems have shown global warming-induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO 2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystem on the atmospheric CO 2 and 13 C/ 12 C seasonality. Here, we use four CO 2 observation stations in the Northern Hemisphere, namely Alert, La Jolla, Point Barrow, and Mauna Loa Observatory, to determine how changes in vegetation productivity and phenology, respiration, and air temperature affect both the atmospheric CO 2 and 13 C/ 12 C seasonality. Since the 1960s, the only significant long-term trend of CO 2 and 13 C/ 12 C seasonality was observed at the northern most station, Alert, where the spring CO 2 drawdown dates advanced by 0.65 ± 0.55 days yr -1 , contributing to a nonsignificant increase in length of the CO 2 uptake period (0.74 ± 0.67 days yr -1 ). For Point Barrow station, vegetation phenology changes in well-watered ecosystems such as the Canadian and western Siberian wetlands contributed the most to 13 C/ 12 C seasonality while the CO 2 seasonality was primarily linked to nontree vegetation. Our results indicate significant increase in the Northern Hemisphere soil respiration. This means, increased respiration of 13 C depleted plant materials cancels out the 12 C gain from enhanced vegetation activities during the start and end of growing season. These findings suggest therefore that parallel warming-induced increases both in photosynthesis and respiration contribute to the long-term stability of CO 2 and 13 C/ 12 C seasonality under changing climate and vegetation activity. The summer photosynthesis and the soil respiration in the dormant seasons have become more vigorous which lead to increased peak-to-through CO 2 amplitude. As the relative magnitude of the increased photosynthesis in summer months is more than the increased respiration in dormant months, we have the increased overall carbon uptake rates in the northern ecosystems. © 2017 John Wiley & Sons Ltd.
Theoretical Study of Molecular Transport Through a Permeabilized Cell Membrane in a Microchannel.
Mahboubi, Masoumeh; Movahed, Saeid; Hosseini Abardeh, Reza; Hoshyargar, Vahid
2017-06-01
A two-dimensional model is developed to study the molecular transport into an immersed cell in a microchannel and to investigate the effects of finite boundary (a cell is suspended in a microchannel), amplitude of electric pulse, and geometrical parameter (microchannel height and size of electrodes) on cell uptake. Embedded electrodes on the walls of the microchannel generate the required electric pulse to permeabilize the cell membrane, pass the ions through the membrane, and transport them into the cell. The shape of electric pulses is square with the time span of 6 ms; their intensities are in the range of 2.2, 2.4, 2.6, 3 V. Numerical simulations have been performed to comprehensively investigate the molecular uptake into the cell. The obtained results of the current study demonstrate that calcium ions enter the cell from the anodic side (the side near positive electrode); after a while, the cell faces depletion of the calcium ions on a positive electrode-facing side within the microchannel; the duration of depletion depends on the amplitude of electric pulse and geometry that lasts from microseconds to milliseconds. By keeping geometrical parameters and time span constant, increment of a pulse intensity enhances molecular uptake and rate of propagation inside the cell. If a ratio of electrode size to cell diameter is larger than 1, the transported amount of Ca 2+ into the cell, as well as the rate of propagation, will be significantly increased. By increasing the height of the microchannel, the rate of uptake is decreased. In an infinite domain, the peak concentration becomes constant after reaching the maximum value; this value depends on the intra-extracellular conductivity and diffusion coefficient of interior and exterior domains of the cell. In comparison, the maximum concentration is changed by geometrical parameters in the microchannel. After reaching the maximum value, the peak concentration reduces due to the depletion of Ca 2+ ions within the microchannel. Electrophoretic velocity has a significant effect on the cell uptake.
NASA Astrophysics Data System (ADS)
Tai, X.; Mackay, D. S.
2015-12-01
Interactions among co-occurring species are mediated by plant physiology, morphology and environment. Without proper mechanisms to account for these factors, it remains difficult to predict plant mortality/survival under changing climate. A plant ecophysiological model, TREES, was extended to incorporate co-occurring species' belowground interaction for water. We used it to examine the interaction between two commonly co-occurring species during drought experiment, pine (Pinus edulis) and juniper (Juniperus monosperma), with contrasting physiological traits (vulnerability to cavitation and leaf water potential regulation). TREES was parameterized and validated using field-measured plant physiological traits. The root architecture (depth, profile, and root area to leaf area ratio) of juniper was adjusted to see how root morphology could affect the survival/mortality of its neighboring pine under both ambient and drought conditions. Drought suppressed plant water and carbon uptake, as well increased the average percentage loss of conductivity (PLC). Pine had 59% reduction in water uptake, 48% reduction in carbon uptake, and 38% increase in PLC, while juniper had 56% reduction in water uptake, 50% reduction in carbon and 29% increase in PLC, suggesting different vulnerability to drought as mediated by plant physiological traits. Variations in juniper root architecture further mediated drought stress on pine, from negative to positive. Different juniper root architecture caused variations in response of pine over drought (water uptake reduction ranged 0% ~63%, carbon uptake reduction ranged 0% ~ 70%, and PLC increase ranged 2% ~ 91%). Deeper or more uniformly distributed roots of juniper could effectively mitigate stress experienced by pine. In addition, the total water and carbon uptake tended to increase as the ratio of root area to leaf area increased while PLC showed non-monotonic response, suggesting the potential trade-off between maximizing resource uptake and susceptibility to cavitation. The results showed that co-occurring species' morphological traits could alleviate or aggravate stress imposed by drought and should therefore be considered together with plant physiological traits in predicting plant mortality and ecosystem structural shift under future climate conditions.
Effects of management thinning on carbon dioxide uptake by a plantation oak woodland in SE England
NASA Astrophysics Data System (ADS)
Wilkinson, Matthew; Eaton, Edward; Casella, Eric; Crow, Peter; Morison, James
2013-04-01
Eddy covariance (EC) methods are widely used to estimate net ecosystem CO2 exchanges from sub-hourly to inter-annual time scales. The majority of forest sites contributing to the global EC networks are located in large, unmanaged forest areas. However, managed and plantation forests have an important role in greenhouse gas emissions abatement, nationally and globally, as exemplified by LULUCF inventory reporting. In the lowland areas of the UK forestry is mainly carried out in small woodlands, heterogeneous in species and structure and with regular management interventions. The aim of this study was to improve our understanding of the influence of management on forest CO2 uptake during a stand-scale thinning. CO2 fluxes have been measured using EC at the 70-80 year old, 90 ha oak-with-understorey plantation of the Straits Inclosure in the Alice Holt Research Forest since 1998. The mean annual net ecosystem productivity (NEP) from EC over 12 years was 486g C m-2 y-1, although there has been substantial inter-annual variation (95 % CI of ± 73g C m-2 y-1). This has been partitioned into a gross primary productivity (GPP) of 2034 ± 145g C m-2 y-1 and an ecosystem respiration rate (Reco) of 1548 ± 122 C m-2 y-1. In 2007 approximately 50% of the woodland area within the EC flux tower footprint was selectively thinned according to normal management prescription with mechanical harvesters. High resolution aerial LiDAR surveys of the whole woodland collected pre- (2006) and post- (2010) thin were used to characterise the canopy gap fraction and tree height changes. We then used EC footprint analysis combined with LiDAR data to quantify the effects of the management thinning and subsequent recovery on the CO2 flux and partitioning. Following the management thinning there was an average reduction in peak midday summer uptakes of approximately 5 μmol CO2 m-2 s-1 (20%) compared to fluxes from the un-thinned area, and a larger depression in night-time efflux. A depression in net daily CO2 uptake was still evident in the summer of 2010, three years after the thin. The implications of such management intervention for woodland C balances are discussed.
NASA Astrophysics Data System (ADS)
Taft, William C.; Delorenzo, Robert J.
1984-05-01
Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.
Taft, W C; DeLorenzo, R J
1984-01-01
Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance. PMID:6328498
NASA Astrophysics Data System (ADS)
Qiu, Yuan; Rojas, Elena; Murray, Richard A.; Irigoyen, Joseba; Gregurec, Danijela; Castro-Hartmann, Pablo; Fledderman, Jana; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio E.
2015-04-01
Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO2-x NPs. The brush coating does not prevent CeO2-x NPs from displaying antioxidant properties.Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO2-x NPs. The brush coating does not prevent CeO2-x NPs from displaying antioxidant properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00884k
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, D.K.; Lee, I.C.; Park, S.K.
1996-03-01
The promotional effect of tungsten in the CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst was studied for series of W-incorporated CoMo/{gamma}-Al{sub 2}O{sub 3} catalysts with different content of tungsten. Two series of the catalysts were prepared by changing the impregnation order of cobalt and tungsten onto a base Mo/{gamma}-Al{sub 2}O{sub 3} catalyst. Impregnation of tungsten was achieved under the condition that the pH of an aqueous impregnating solution of W anion was controlled to 9.5. The hydrodesulfurization (HDS) and hydrogenation (HYD) activities of the sulfided catalysts were evaluated by thiophene HDS and ethylene HYD reactions at atmospheric pressure, respectively. Low-temperature O{sub 2} chemisorptionmore » at 195 K was conducted for the sulfided catalysts in order to determine the W-incorporation effects on the surface concentration of coordinatively unsaturated sites related to the catalytic activities. The dependence of catalytic activities on tungsten content showed initially an increase and subsequent decrease with increasing tungsten content. The maximum promotion of HDS and HYD activities occurred at a low content of tungsten corresponding to 0.025 in W/(W + Mo) atomic ratio regardless of the impregnation order of tungsten and cobalt. Oxygen uptake correlated well with catalytic activities. In general, the catalysts prepared by impregnating tungsten onto the CoMo/{gamma}-Al{sub 2}O{sub 3} showed higher activities than the catalysts prepared by impregnating tungsten onto Mo/{gamma}-Al{sub 2}O{sub 3} prior to impregnation of cobalt. 37 refs., 7 figs., 2 tabs.« less
Kinney, C.A.; Mosier, A.R.; Ferrer, I.; Furlong, E.T.; Mandernack, K.W.
2004-01-01
Management of agricultural soil plays an important role in present and future atmospheric concentrations of the greenhouse gases carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). Pesticides are used as management tools in crop production, but little is known about their effects on soil-atmosphere exchange of CO2, N2O, and CH4. Field studies described in this paper determined the effect of two commonly used fungicides, mancozeb and chlorothalonil, on trace gas exchange. Separate experimental plots, 1 m2, were established in nitrogen fertilized no-tilled native grassland and tilled soils with and without fungicide application. Two studies were conducted. The first study was initiated in June 1999 and lasted for 1 year with monthly flux measurements from tilled and no-till soils. The second study commenced in August 2001 with twelve weekly measurements from tilled soils only. From both studies mancozeb suppressed emissions of CO2 and N2O in the tilled soil by an average of 28% and 47%, respectively. This suppression corresponded with efficacy periods of 14-29 and 56-77 days, respectively. From the no-till soils mancozeb decreased CO2 and N2O emissions by 33% and 80% for periods of 29 and 94 days, respectively. Mancozeb inhibited CH4 consumption in the first study by 46% and 71% in the tilled and no-till soil for periods of 8 and 29 days, respectively, but had no effect in the second study. From both studies chlorothalonil initially suppressed CO2 and N2O emissions and enhanced CH4 uptake in the tilled soil by an average of 37%, 40%, and 115%, respectively. These effects corresponded with efficacy periods of 14-29, 21-56, and 1-14 days, respectively. In the no-till soil chlorothalonil inhibited CO2 and N2O emissions and enhanced CH4 uptake by 29%, 48%, and 86% for periods of 29, 56, and 56 days, respectively. Following the initial period of suppression, chlorothalonil subsequently enhanced N2O emissions in the tilled soil by an average of 51% and in the no-till soil by 81% before returning to near background levels. The beginning of increased N2O emissions from the chlorothalonil-amended plots corresponded with a maximum soil concentration of the chlorothalonil degradate, 4-hydroxy-2, 5, 6-trichloroisophthalonitrile. The site specific global warming potential (GWP) resulting from the fluxes of CO2, N2O, and CH4 from all soils was determined to decrease by an average 26% and 21% as a result of a single application of mancozeb or chlorothalonil, respectively. The decrease in CO2 emissions in the fungicide-amended plots potentially could result in the conservation of as much as 1200 and 2400 kg C ha-1 yr-1 organic carbon in the tilled and no-till plots, respectively. Therefore it is feasible that application of certain fungicides to agricultural soil might lead to enhanced soil carbon sequestration and thus have additional positive effects on atmospheric CO2 concentrations. Copyright 2004 by the American Geophysical Union.
Xu, Dong; Wang, Yitao; Fan, Xiao; Wang, Dongsheng; Ye, Naihao; Zhang, Xiaowen; Mou, Shanli; Guan, Zheng; Zhuang, Zhimeng
2014-07-15
Studies on ocean acidification have mostly been based on short-term experiments of low latitude with few investigations of the long-term influence on sea ice communities. Here, the combined effects of ocean acidification and photoperiod on the physiological response of the Antarctic sea ice microalgae Chlamydomonas sp. ICE-L were examined. There was a general increase in growth, PSII photosynthetic parameters, and N and P uptake in continuous light, compared to those exposed to regular dark and light cycles. Elevated pCO2 showed no consistent effect on growth rate (p=0.8) and N uptake (p=0.38) during exponential phrase, depending on the photoperiod but had a positive effect on PSII photosynthetic capacity and P uptake. Continuous dark reduced growth, photosynthesis, and nutrient uptake. Moreover, intracellular lipid, mainly in the form of PUFA, was consumed at 80% and 63% in low and high pCO2 in darkness. However, long-term culture under high pCO2 gave a more significant inhibition of growth and Fv/Fm to high light stress. In summary, ocean acidification may have significant effects on Chlamydomonas sp. ICE-L survival in polar winter. The current study contributes to an understanding of how a sea ice algae-based community may respond to global climate change at high latitudes.
Abdelmoaty, Yomna H; Tessema, Tsemre-Dingel; Norouzi, Nazgol; El-Kadri, Oussama M; Turner, Joseph B McGee; El-Kaderi, Hani M
2017-10-18
Development of efficient sorbents for carbon dioxide (CO 2 ) capture from flue gas or its removal from natural gas and landfill gas is very important for environmental protection. A new series of heteroatom-doped porous carbon was synthesized directly from pyrazole/KOH by thermolysis. The resulting pyrazole-derived carbons (PYDCs) are highly doped with nitrogen (14.9-15.5 wt %) as a result of the high nitrogen-to-carbon ratio in pyrazole (43 wt %) and also have a high oxygen content (16.4-18.4 wt %). PYDCs have a high surface area (SA BET = 1266-2013 m 2 g -1 ), high CO 2 Q st (33.2-37.1 kJ mol -1 ), and a combination of mesoporous and microporous pores. PYDCs exhibit significantly high CO 2 uptakes that reach 2.15 and 6.06 mmol g -1 at 0.15 and 1 bar, respectively, at 298 K. At 273 K, the CO 2 uptake improves to 3.7 and 8.59 mmol g -1 at 0.15 and 1 bar, respectively. The reported porous carbons also show significantly high adsorption selectivity for CO 2 /N 2 (128) and CO 2 /CH 4 (13.4) according to ideal adsorbed solution theory calculations at 298 K. Gas breakthrough studies of CO 2 /N 2 (10:90) at 298 K showed that PYDCs display excellent separation properties. The ability to tailor the physical properties of PYDCs as well as their chemical composition provides an effective strategy for designing efficient CO 2 sorbents.
21. Increased FDG uptake in Childhood CNS Tumors is Associated with Tumor Malignancy.
Borgwardt; Carstensen; Schmiegelow; Højgaard
2000-07-01
Background: In adults PET scanning of CNS tumors with the tracer FDG (18F-flourodeoxyglucose) can provide information about the degree of malignancy, tumor extent, and dissemination. FDG PET can also be able to assess tumor response to therapy and to differentiate recurrence from necrosis. Although CNS tumors are the most common solid tumor in childhood, so far only few PET-studies have been reported. Pre-operative assessment of malignancy would facilitate surgical planning and the use of pre-operative chemotherapy.Materials and Methods: 21 children with CNS tumors were referred to clinical FDG PET prior to therapy (M/F = 12/9, median age: 9 (range 0-16)), (4 PNET/medulloblastomas; 1 gr. III ependymoma, 16 benign tumors)). Image processing included co-registration with MRI and image fusion. The FDG uptake in the tumors was ranked 0-5 by a hotspot/cortex-ratio by two observers independently. The FDG uptake in grey and white matter was used as reference for the grading system with FDG uptakes defined as 4 and 2 respectively.Results: 15 of 16 patients with tumors WHO gr. I-II had FDG-uptake of 1-2, and all 5 patients with tumors WHO gr. III-IV had FDG-uptake of 3-4. A WHO gr. I papilloma, known to have a high metabolism caused by high mitochondrial activity, had FDG uptake of 5. Except for this tumor, the FDG uptake was positively correlated with tumor malignancy. MRI/PET co-registration and image fusion increased the specificity of tumor location, as well as of tumor extent, and of heterogeneity (e.g., areas of necrosis).Conclusion: FDG PET with MRI/PET co-registration and image fusion could be an important adjunct in the diagnostic work up of pediatric CNS tumors, and could help define patients eligible for pre-operative chemotherapy.
First System-Wide Estimates of Air-Sea Exchange of Carbon Dioxide in the Chesapeake Bay
NASA Astrophysics Data System (ADS)
Herrmann, M.; Najjar, R.; Menendez, A.
2016-02-01
Estuaries are estimated to play a major role in the global carbon cycle by degassing between 0.25 and 0.4 Pg C y-1, comparable to the uptake of atmospheric CO2 by continental shelf waters and as much as one quarter of the uptake of atmospheric CO2 by the open ocean. However, the global estimates of estuarine CO2 gas exchange are highly uncertain mostly due to limited data availability and extreme heterogeneity of coastal systems. Notably, the air-water CO2 flux for the largest U.S. estuary, the Chesapeake Bay, is yet unknown. Here we provide first system-level CO2 gas exchange estimates for the Chesapeake Bay, using data from the Chesapeake Bay Water Quality Monitoring Program (CBWQMP) and other data sources. We focus on the main stem of the Chesapeake Bay; hence, tributaries, such as the tidal portions of the Potomac and James Rivers, are not included in this first estimation of the flux. The preliminary results show the Bay to be a net source of CO2 to the atmosphere, outgassing on average 0.2 Tg C yr-1 over the study period, between 1985 and 2013. The spatial and temporal variability of the gas exchange will be discussed.
Zhang, Jiayi; Shao, Xiongjun; Townsend, Oliver V; Lynd, Lee R
2009-12-01
A kinetic model was developed to predict batch simultaneous saccharification and co-fermentation (SSCF) of paper sludge by the xylose-utilizing yeast Saccharomyces cerevisiae RWB222 and the commercial cellulase preparation Spezyme CP. The model accounts for cellulose and xylan enzymatic hydrolysis and competitive uptake of glucose and xylose. Experimental results show that glucan and xylan enzymatic hydrolysis are highly correlated, and that the low concentrations of xylose encountered during SSCF do not have a significant inhibitory effect on enzymatic hydrolysis. Ethanol is found to not only inhibit the specific growth rate, but also to accelerate cell death. Glucose and xylose uptake rates were found to be competitively inhibitory, but this did not have a large impact during SSCF because the sugar concentrations are low. The model was used to evaluate which constants had the greatest impact on ethanol titer for a fixed substrate loading, enzyme loading, and fermentation time. The cellulose adsorption capacity and cellulose hydrolysis rate constants were found to have the greatest impact among enzymatic hydrolysis related constants, and ethanol yield and maximum ethanol tolerance had the greatest impact among fermentation related constants.
Findings of 2-fluoro-2-deoxy-d-glucose positron emission tomography in hemorrhoids.
Tsai, Shih-Chuan; Jeng, Long-Bin; Yeh, Jun-Jun; Lin, Cheng-Chieh; Chen, Jin-Hua; Lin, Wan-Yu; Kao, Chia-Hung
2011-10-01
Hemorrhoids are very common in adults. The data regarding the incidence of high 2-fluoro-2-deoxy-D: -glucose (FDG) uptake in hemorrhoids is incomplete. In this study, we evaluated FDG uptake in hemorrhoids and calculated the rate of high FDG uptake in these lesions. One hundred and seventy six subjects who undertook whole body FDG-PET for health screening examination were investigated retrospectively. All patients had colonoscopy and 156 subjects were found to have hemorrhoids and 20 had no hemorrhoids. Quantitative analysis of FDG uptake in the anal region was performed by calculating the maximum standard uptake value (SUV(max)). The SUV(max) ranged from 1.8 to 4.1 (2.8 ± 0.6) for normal subjects and ranged from 1.4 to 8.3 (2.9 ± 0.8) for patients with hemorrhoids. No statistical difference was noted between these two groups using a Student's t-tests. If the highest SUV(max), which was 4.1 in normal subjects, was used as a cutoff, 5.1% (8/156) hemorrhoid patients had a SUV(max) greater than 4.1. Hemorrhoids can be one possible cause of focal high FDG uptake in the rectum.
Yu, Wei; Zhang, Wenbo; Chen, Ying; Song, Xiaoxue; Tong, Weijun; Mao, Zhengwei; Gao, Changyou
2016-03-01
It is important to understand the safety issue and cell interaction pattern of polyelectrolyte microcapsules with different deformability before their use in biomedical applications. In this study, SiO2, poly(sodium-p-styrenesulfonate) (PSS) doped CaCO3 and porous CaCO3 spheres, all about 4μm in diameter, were used as templates to prepare microcapsules with different inner structure and subsequent deformability. As a result, three kinds of covalently assembled poly(allylaminehydrochloride)/glutaraldehyde (PAH/GA) microcapsules with similar size but different deformability under external osmotic pressure were prepared. The impact of different microcapsules on cell viability and functions are studied using smooth muscle cells (SMCs), endothelial cells (ECs) and HepG2 cells. The results demonstrated that viabilities of SMCs, ECs and HepG2 cells were not significantly influenced by either of the three kinds of microcapsules. However, the adhesion ability of SMCs and ECs as well as the mobility of SMCs, ECs and HepG2 cells were significantly impaired after treatment with microcapsules in a deformability dependent manner, especially the microcapsules with lower deformability caused higher impairment on cell functions. The cellular uptake kinetics, uptake pathways, intracellular distribution of microcapsules are further investigated in SMCs to reveal the potential mechanism. The SMCs showed faster uptake rate and exocytosis rate of microcapsules with lower deformability (Cap@CaCO3/PSS and Cap@CaCO3), leading to higher intracellular accumulation of microcapsules with lower deformability and possibly larger retardation of cell functions. The results pointed out that the deformability of microcapsules is an important factor governing the biological performance of microcapsules, which requires careful adjustment for further biomedical applications. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Wheeler, R. M.; Mackowiak, C. L.; Peterson, B. V.; Sager, J. C.; Knott, W. M.; Berry, W. L.; Sharifi, M. R.
1998-01-01
A data set is given describing daily nutrient and water uptake, carbon dioxide (CO2) exchange, ethylene production, and carbon and nutrient partitioning from a 20 sq m stand of soybeans (Glycine max (L.) Merr. cv. McCall] for use in bioregenerative life support systems. Stand CO2 exchange rates were determined from nocturnal increases in CO2 (respiration) and morning drawdowns (net photosynthesis) to a set point of 1000 micromol/ mol each day (i.e., a closed system approach). Atmospheric samples were analyzed throughout growth for ethylene using gas chromatography with photoionization detection (GC/PH)). Water use was monitored by condensate production from the humidity control system, as well as water uptake from the nutrient solution reservoirs each day. Nutrient uptake data were determined from daily additions of stock solution and acid to maintain an EC of 0.12 S/m and pH of 5.8. Dry mass yields of seeds, pods (without seeds), leaves, stems, and roots are provided, as well as elemental and proximate nutritional compositions of the tissues. A methods section is included to qualify any assumptions that might be required for the use of the data in plant growth models, along with a daily event calendar documenting set point adjustments and the occasional equipment or sensor failure.
Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia
Ma, Xuanlong; Huete, Alfredo; Cleverly, James; Eamus, Derek; Chevallier, Frédéric; Joiner, Joanna; Poulter, Benjamin; Zhang, Yongguang; Guanter, Luis; Meyer, Wayne; Xie, Zunyi; Ponce-Campos, Guillermo
2016-01-01
Each year, terrestrial ecosystems absorb more than a quarter of the anthropogenic carbon emissions, termed as land carbon sink. An exceptionally large land carbon sink anomaly was recorded in 2011, of which more than half was attributed to Australia. However, the persistence and spatially attribution of this carbon sink remain largely unknown. Here we conducted an observation-based study to characterize the Australian land carbon sink through the novel coupling of satellite retrievals of atmospheric CO2 and photosynthesis and in-situ flux tower measures. We show the 2010–11 carbon sink was primarily ascribed to savannas and grasslands. When all biomes were normalized by rainfall, shrublands however, were most efficient in absorbing carbon. We found the 2010–11 net CO2 uptake was highly transient with rapid dissipation through drought. The size of the 2010–11 carbon sink over Australia (0.97 Pg) was reduced to 0.48 Pg in 2011–12, and was nearly eliminated in 2012–13 (0.08 Pg). We further report evidence of an earlier 2000–01 large net CO2 uptake, demonstrating a repetitive nature of this land carbon sink. Given a significant increasing trend in extreme wet year precipitation over Australia, we suggest that carbon sink episodes will exert greater future impacts on global carbon cycle. PMID:27886216
Plant biomarkers in aerosols record isotopic discrimination of terrestrial photosynthesis.
Conte, Maureen H; Weber, John C
2002-06-06
Carbon uptake by the oceans and by the terrestrial biosphere can be partitioned using changes in the (12)C/(13)C isotopic ratio (delta(13)C) of atmospheric carbon dioxide, because terrestrial photosynthesis strongly discriminates against (13)CO(2), whereas ocean uptake does not. This approach depends on accurate estimates of the carbon isotopic discrimination of terrestrial photosynthesis (Delta; ref. 5) at large regional scales, yet terrestrial ecosystem heterogeneity makes such estimates problematic. Here we show that ablated plant wax compounds in continental air masses can be used to estimate Delta over large spatial scales and at less than monthly temporal resolution. We measured plant waxes in continental air masses advected to Bermuda, which are mainly of North American origin, and used the wax isotopic composition to estimate Delta simply. Our estimates indicate a large (5 6 per thousand) seasonal variation in Delta of the temperate North American biosphere, with maximum discrimination occurring in late spring, coincident with the onset of production. We suggest that the observed seasonality arises from several factors, including seasonal shifts in the proportions of production by C(3) and C(4) plants, and environmentally controlled adjustments in the photosynthetic discrimination of C(3)-plant-dominated ecosystems.
Cell Type-Specific Modulation of Cobalamin Uptake by Bovine Serum
Zhao, Hua; Ruberu, Kalani; Li, Hongyun; Garner, Brett
2016-01-01
Tracking cellular 57Co-labelled cobalamin (57Co-Cbl) uptake is a well-established method for studying Cbl homeostasis. Previous studies established that bovine serum is not generally permissive for cellular Cbl uptake when used as a supplement in cell culture medium, whereas supplementation with human serum promotes cellular Cbl uptake. The underlying reasons for these differences are not fully defined. In the current study we address this question. We extend earlier observations by showing that fetal calf serum inhibits cellular 57Co-Cbl uptake by HT1080 cells (a fibrosarcoma-derived fibroblast cell line). Furthermore, we discovered that a simple heat-treatment protocol (95°C for 10 min) ameliorates this inhibitory activity for HT1080 cell 57Co-Cbl uptake. We provide evidence that the very high level of haptocorrin in bovine serum (as compared to human serum) is responsible for this inhibitory activity. We suggest that bovine haptocorrin competes with cell-derived transcobalamin for Cbl binding, and that cellular Cbl uptake may be minimised in the presence of large amounts of bovine haptocorrin that are present under routine in vitro cell culture conditions. In experiments conducted with AG01518 cells (a neonatal foreskin-derived fibroblast cell line), overall cellular 57Co-Cbl uptake was 86% lower than for HT1080 cells, cellular TC production was below levels detectable by western blotting, and heat treatment of fetal calf serum resulted in only a modest increase in cellular 57Co-Cbl uptake. We recommend a careful assessment of cell culture protocols should be conducted in order to determine the potential benefits that heat-treated bovine serum may provide for in vitro studies of mammalian cell lines. PMID:27893837
Long-Term Drainage Reduces CO2 Uptake and CH4 Emissions in a Siberian Permafrost Ecosystem
NASA Astrophysics Data System (ADS)
Kittler, Fanny; Heimann, Martin; Kolle, Olaf; Zimov, Nikita; Zimov, Sergei; Göckede, Mathias
2017-12-01
Permafrost landscapes in northern high latitudes with their massive organic carbon stocks are an important, poorly known, component of the global carbon cycle. However, in light of future Arctic warming, the sustainability of these carbon pools is uncertain. To a large part, this is due to a limited understanding of the carbon cycle processes because of sparse observations in Arctic permafrost ecosystems. Here we present an eddy covariance data set covering more than 3 years of continuous CO2 and CH4 flux observations within a moist tussock tundra ecosystem near Chersky in north-eastern Siberia. Through parallel observations of a disturbed (drained) area and a control area nearby, we aim to evaluate the long-term effects of a persistently lowered water table on the net vertical carbon exchange budgets and the dominating biogeochemical mechanisms. Persistently drier soils trigger systematic shifts in the tundra ecosystem carbon cycle patterns. Both, uptake rates of CO2 and emissions of CH4 decreased. Year-round measurements emphasize the importance of the non-growing season—in particular the "zero-curtain" period in the fall—to the annual budget. Approximately 60% of the CO2 uptake in the growing season is lost during the cold seasons, while CH4 emissions during the non-growing season account for 30% of the annual budget. Year-to-year variability in temperature conditions during the late growing season was identified as the primary control of the interannual variability observed in the CO2 and CH4 fluxes.
Prasad, Vikas; Steffen, Ingo G; Diederichs, Gerd; Makowski, Marcus R; Wust, Peter; Brenner, Winfried
2016-06-01
The aim of this study was to determine the physiological and pathophysiological biodistribution of [(68)Ga]PSMA-HBED-CC (PSMA-11) ([(68)Ga]PSMA) in patients with prostate cancer (PCA) to establish the range of normal uptake in relevant organs and primary prostate tumours, locally recurrent PCA, lymph and bone metastases and other metastatic lesions. Additionally, we aimed to determine a cut-off uptake value for differentiation of primary tumours from normal prostate tissue. Overall, [(68)Ga]PSMA positron emission tomography/x-ray computed tomography (PET/CT) of 101 patients (mean age 69.1 years) with PCA was analysed retrospectively. For assessment of tracer biodistribution, maximum standardized uptake values (SUVmax) were calculated for various normal organs, as well as for primary tumours (PT) and/or metastases. Results are presented as median, interquartile range (IQR; 25th quantil-75th quantil) and range (minimum-maximum). [(68)Ga]PSMA PET/CT was performed 50 min (range 30-126) after injection of 109 MBq (range 84-158). Regarding biodistribution, highest uptake (median/IQR/range) of the tracer was found in the kidneys (49.6/40.7-57.6/2.7-97.0) followed by the submandibular glands (17.3/13.7-21.2/7.5-30.4), parotid glands (16.1/12.2-19.8/5.5-30.9) and duodenum (13.8/10.5-17.2/5.8-26.9). The best cut-off value for differentiating physiological uptake in the primary tumour from that in the prostate was found to be an SUVmax of 3.2. The median SUVmax in the PT (n = 35), locally recurrent PCA (n = 8), lymph node (n = 166), bone (n = 157) and other metastases (n = 3) were 10.2, 5.9, 6.2, 7.4 and 3.8, respectively. The best cut-off values for differentiating non-pathological uptake in lymph nodes and bones from tumour uptake were found to be SUVmax of 3.2 and 1.9, respectively. Patients with PSA <2 had significantly lower SUVmax in bone metastases as compared to patients with PSA ≥2 (p < 0.01). This biodistribution study provided a broad range of uptake data of [(68)Ga]PSMA-11 for normal organs/tissues, primary prostate tumours and metastatic lesions based on a large patient cohort. Both PT and small metastatic lesions were detectable due to their high tracer uptake. Four-times-higher median uptake in PT in comparison to normal prostate stroma resulted in a high diagnostic accuracy that could potentially be used for multimodal image-guided biopsy with dedicated reconstruction software.
Vijayakumar, Subbukalai; Nagamuthu, Sadayappan; Ryu, Kwang-Sun
2018-05-15
A binder-free, MgCo2O4 nanosheet-like architecture was prepared on Ni-foam using a hydrothermal method. MgCo2O4/Ni-foam was characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), and transmission electron microscopy techniques. The FESEM image revealed a nanosheet array-like architecture. The MgCo2O4 nanosheets grown on Ni-foam exhibited the maximum specific capacity of 947 C g-1 at a specific current of 2 A g-1. Approximately 96% of the specific capacity was retained from the maximum specific capacity after 5000 continuous charge-discharge cycles. This hybrid device exhibited a maximum specific capacity of 52 C g-1 at a specific current of 0.5 A g-1, and also exhibited a maximum specific energy of 12.99 W h kg-1 at a specific power of 448.7 W kg-1. These results confirmed that the binder-free MgCo2O4 nanosheets grown on Ni-foam are a suitable positive electrode material for hybrid supercapacitors.
Inhibition of ethylene production by cobaltous ion. [Beans, apples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, O.L; Yang, S.F.
1976-07-01
The effect of Co/sup 2 +/ on ethylene production by mung bean (Phaseolus aureus Roxb.) and by apple tissues was studied. Co/sup 2 +/, depending on concentrations applied, effectively inhibited ethylene production by both tissues. It also strongly inhibited the ethylene production induced by IAA, kinetin, IAA plus kinetin, Ca/sup 2 +/, kinetin plus Ca/sup 2 +/, or Cu/sup 2 +/ treatments in mung bean hypocotyl segments. While Co/sup 2 +/ greatly inhibited ethylene production, it had little effect on the respiration of apple tissue, indicating that Co/sup 2 +/ does not exert its inhibitory effect as a general metabolicmore » inhibitor. Ni/sup 2 +/, which belongs to the same group as Co/sup 2 +/ in the periodic table, also markedly curtailed both the basal and the induced ethylene production by apple and mung bean hypocotyl tissues. In a system in which kinetin and Ca/sup 2 +/ were applied together, kinetin greatly enhanced Ca/sup 2 +/ uptake, thus enhancing ethylene production. Co/sup 2 +/, however, slightly inhibited the uptake of Ca/sup 2 +/ but appreciably inhibited ethylene production, either in the presence or in the absence of kinetin. Tracer experiments using apple tissue indicated that Co/sup 2 +/ strongly inhibited the in vivo conversion of L-(U--/sup 14/C)methionine to /sup 14/C-ethylene. These data suggested that Co/sup 2 +/ inhibited ethylene production by inhibiting the conversion of methionine to ethylene, a common step which is required for ethylene formation by higher plants. Co/sup 2 +/ is known to promote elongation, leaf expansion, and hook opening in excised plant parts in response to applied auxins or cytokinins.Since ethylene is known to inhibit those growth phenomena, it is suggested that Co/sup 2 +/ exerts its promotive effect, at least in part, by inhibiting ethylene formation.« less
Inter-annual variation of carbon uptake by a plantation oak woodland in south-eastern England
NASA Astrophysics Data System (ADS)
Wilkinson, M.; Eaton, E. L.; Broadmeadow, M. S. J.; Morison, J. I. L.
2012-12-01
The carbon balance of an 80-yr-old deciduous oak plantation in the temperate oceanic climate of the south-east of Great Britain was measured by eddy covariance over 12 yr (1999-2010). The mean annual net ecosystem productivity (NEP) was 486 g C m-2 yr-1 (95% CI of ±73 g C m-2 yr-1), and this was partitioned into a gross primary productivity (GPP) of 2034 ± 145 g C m-2 yr-1, over a 165 (±6) day growing season, and an annual loss of carbon through respiration and decomposition (ecosystem respiration, Reco) of 1548 ± 122 g C m-2 yr-1. Although the maximum variation of NEP between years was large (333 g C m-2 yr-1), the ratio of Reco/GPP remained relatively constant (0.76 ± 0.02 CI). Some anomalies in the annual patterns of the carbon balance could be linked to particular weather events, such as low summer solar radiation and low soil moisture content (values below 30% by volume). The European-wide heat wave and drought of 2003 did not reduce the NEP of this woodland because of good water supply from the surface-water gley soil. The inter-annual variation in estimated intercepted radiation only accounted for ~ 47% of the variation in GPP, although a significant relationship (p < 0.001) was found between peak leaf area index and annual GPP, which modified the efficiency with which incident radiation was used in net CO2 uptake. Whilst the spring start and late autumn end of the net CO2 uptake period varied substantially (range of 24 and 27 days respectively), annual GPP was not related to growing season length. Severe outbreaks of defoliating moth caterpillars, mostly Tortrix viridana L. and Operophtera brumata L., caused considerable damage to the forest canopy in 2009 and 2010, resulting in reduced GPP in these two years. Inter-annual variation in the sensitivity of Reco to temperature was found to be strongly related to summer soil moisture content. The eddy covariance estimates of NEP closely matched mensuration-based estimates, demonstrating that this forest was a substantial sink of carbon over the 12-yr measurement period.
Climate warming impacts on boreal landscape net CO2 exchange
NASA Astrophysics Data System (ADS)
Helbig, Manuel; Kljun, Natascha; E Chasmer, Laura; Desai, Ankur R.; Quinton, William L.; Sonnentag, Oliver
2017-04-01
In boreal peatlands of the North American sporadic permafrost zone, climate change causes permafrost thaw and induces changes in vegetation composition and structure. Boreal landscape net carbon dioxide (CO2) fluxes in these regions will thus be modified directly through the changes in the meteorological forcing of ecosystem processes and indirectly through changes in landscape functioning associated with thaw-induced land cover changes. How the combined effects alter net ecosystem CO2 exchange of these landscapes (NEELAND), resulting from changes in gross primary productivity (GPP) and ecosystem respiration (ER), remains unknown. Here, we quantify indirect land cover and direct climate change impacts on NEELAND for a boreal forest-wetland landscape in the organic-rich Taiga Plains of northwestern Canada. Using 1.5 years of nested eddy covariance flux tower measurements, we observe both larger GPP and ER at the landscape-level (50% forested permafrost plateaus & 50% permafrost-free wetlands) compared to the wetland-level (100% permafrost-free wetland). However, the resulting annual NEELAND (-20±6 g C m-2) was similar to NEE of the wetland (-24±8 g C m-2). Indirect thaw-induced wetland expansion effects thus appear to have negligible effects on NEELAND. In contrast, we find larger direct climate change impacts when modeling end-of-the-21st-century NEELAND (2091-2100) using downscaled air temperature and incoming shortwave radiation projections. Modeled GPP indicates large spring and fall increases due to reduced temperature-limitation. At the same time, light-limitation of GPP becomes more frequent in fall. The projected warmer air temperatures increase ER year-round in the absence of moisture stress. As a result, larger net CO2 uptake is projected for the shoulder seasons while the peak growing season net CO2 uptake declines. The modeled annual NEELAND is projected to decline by 25±15 g C m-2 for a moderate (RCP 4.5) and 103±37 g C m-2 for a high warming scenario (RCP 8.5), potentially reversing recently observed increasing net CO2 uptake trends across the boreal zone. At the end of the 21st-century, modeled annual NEELAND was not significantly different from 0 g C m-2 for the RCP 4.5 scenario (+16±42 g C m-2) and positive for the RCP 8.5 scenario with +94±54 g C m-2. Thus, even without moisture stress, net CO2 uptake of boreal forest-wetland landscapes may decline - and likely cease - if anthropogenic CO2 emissions are not reduced. Future NEELAND changes are thus more likely driven by direct climate than by indirect land cover change impacts.
Takatani, Nobuyuki; Ito, Takuro; Kiba, Takatoshi; Mori, Marie; Miyamoto, Tetsuro; Maeda, Shin-Ichi; Omata, Tatsuo
2014-02-01
Elevated CO2 has been reported to stimulate plant growth under nitrogen-sufficient conditions, but the effects of CO2 on growth in a constantly nitrogen-limited state, which is relevant to most natural habitats of plants, remain unclear. Here, we maintained Arabidopsis seedlings under such conditions by growing a mutant with reduced nitrate uptake activity on a medium containing nitrate as the sole nitrogen source. Under nitrogen-sufficient conditions (i.e. in the presence of ammonium), growth of shoots and roots of both the wild type (WT) and the mutant was increased approximately 2-fold by elevated CO2. Growth stimulation of shoots and roots by elevated CO2 was observed in the WT growing with nitrate as the sole nitrogen source, but in the mutant grown with nitrate, the high-CO2 conditions stimulated only the growth of roots. In the mutant, elevated CO2 caused well-known symptoms of nitrogen-starved plants, including decreased shoot/root ratio, reduced nitrate content and accumulation of anthocyanin, but also had an increased Chl content in the shoot, which was contradictory to the known effect of nitrogen depletion. A high-CO2-responsive change specific to the mutant was not observed in the levels of the major metabolites, although CO2 responses were observed in the WT and the mutant. These results indicated that elevated CO2 causes nitrogen limitation in the seedlings grown with a constantly limited supply of nitrogen, but the Chl content and the root biomass of the plant increase to enhance the activities of both photosynthesis and nitrogen uptake, while maintaining normal metabolism and response to high CO2.
Mallia, Madhava B; Mittal, Sweety; Sarma, Haladhar D; Banerjee, Sharmila
2016-01-01
Previous studies have clearly demonstrated strong correlation between in vivo distribution and blood clearance of radiopharmaceuticals for the detection of hypoxia. Present study describes an attempt to improve the in vivo distribution of a previously reported 2-nitroimidazole-(99m)Tc(CO)3 complex by tuning its blood clearance pattern through structural modification of the ligand. Herein, a 2-nitroimidazole-dipicolylamine ligand (2-nitroimidazole-DPA) was synthesized in a two-step procedure and radiolabeled with (99m)Tc(CO)3 core. Subsequently, the complex was evaluated in Swiss mice bearing fibrosarcoma tumor. As intended by its design, 2-nitroimidazole-DPA-(99m)Tc(CO)3 complex was more lipophilic than previously reported 2-nitroimidazole-DETA-(99m)Tc(CO)3 complex (DETA-diethylenetriamine) and showed slower blood clearance. Consequently it showed higher tumor uptake than 2-nitroimidazole-DETA-(99m)Tc(CO)3 complex. Significantly, despite structural modifications, other parameters such as the tumor to blood ratio and tumor to muscle ratio of the 2-nitroimidazole-DPA-(99m)Tc(CO)3 complex remained comparable to that of 2-nitroimidazole-DETA-(99m)Tc(CO)3 complex. Present study demonstrates the feasibility of structural modifications for improving in vivo tumor uptake of hypoxia detecting radiopharmaceuticals. This might encourage researchers to improve suboptimal properties of a potential radiopharmaceuticals rather than ignoring it altogether. Copyright © 2015 Elsevier Ltd. All rights reserved.
Huang, Qi-Bo; Qin, Xiao-Qun; Liu, Peng-Yu; Zhang, Lian-Kai; Su, Chun-Tian
2017-08-01
Carbonate weathering and the CO 2 consumption in karstic area are extensive affected by anthropogenic activities, especially sulfuric and nitric acids usage in the upper-middle reaches of Wujiang River, China. The carbonic acid would be substituted by protons from sulfuric and nitric acids which can be reduce CO 2 absorption. Therefore, The goal of this study was to highlight the impacts of sulfuric and nitric acids on carbonate dissolution and the associated deficit of CO 2 uptaking during carbonate weathering. The hydrochemistries and carbon isotopic signatures of dissolved inorganic carbon from groundwater were measured during the rainy season (July; 41 samples) and post-rainy season (October; 26 samples). Our results show that Ca 2+ and Mg 2+ were the dominant cations (55.87-98.52%), and HCO 3 - was the dominant anion (63.63-92.87%). The combined concentrations of Ca 2+ and Mg 2+ commonly exceeded the equivalent concentration of HCO 3 - , with calculated [Ca 2+ +Mg 2+ ]/[HCO 3 - ] equivalent ratios of 1.09-2.12. The mean measured groundwater δ 13 C DIC value (-11.38‰) was higher than that expected for carbonate dissolution mediated solely by carbonic acid (-11.5‰), and the strong positive correlation of these values with [SO 4 2- +NO 3 - ]/HCO 3 - showed that additional SO 4 2- and NO 3 - were required to compensate for this cation excess. Nitric and sulfuric acids are, therefore, suggested to have acted as the additional proton-promoted weathering agents of carbonate in the region, alongside carbonic acid. The mean contribution of atmospheric/pedospheric CO 2 to the total aquatic HCO 3 - decreased by 15.67% (rainy season) and 14.17% (post-rainy season) due to the contributions made by these acids. The annual mean deficit of soil CO 2 uptake by carbonate weathering across the study area was 14.92%, which suggests that previous workers may have overestimated the absorption of CO 2 by carbonate weathering in other karstic areas worldwide. Copyright © 2017 Elsevier B.V. All rights reserved.
Gas exchange kinetics following concentric-eccentric isokinetic arm and leg exercise.
Drescher, U; Mookerjee, S; Steegmanns, A; Knicker, A; Hoffmann, U
2017-06-01
To evaluate the effects of exercise velocity (60, 150, 240deg∙s -1 ) and muscle mass (arm vs leg) on changes in gas exchange and arterio-venous oxygen content difference (avDO 2 ) following high-intensity concentric-eccentric isokinetic exercise. Fourteen subjects (26.9±3.1years) performed a 3×20-repetition isokinetic exercise protocol. Recovery beat-to-beat cardiac output (CO) and breath-by-breath gas exchange were recorded to determine post-exercise half-time (t 1/2 ) for oxygen uptake (V˙O 2 pulm), carbon dioxide output (V˙CO 2 pulm), and ventilation (V˙ E ). Significant differences of the t 1/2 values were identified between 60 and 150deg∙s -1 . Significant differences in the t 1/2 values were observed between V˙O 2 pulm and V˙CO 2 pulm and between V˙CO 2 pulm and V˙ E . The time to attain the first avDO 2 -peak showed significant differences between arm and leg exercise. The present study illustrates, that V˙O 2 pulm kinetics are distorted due to non-linear CO dynamics. Therefore, it has to be taken into account, that V˙O 2 pulm may not be a valuable surrogate for muscular oxygen uptake kinetics in the recovery phases. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Biederman, J. A.; Scott, R. L.; Smith, W. K.; Litvak, M. E.; MacBean, N.
2017-12-01
Global-scale studies suggest that water-limited dryland ecosystems dominate the increasing trend in magnitude and interannual variability of the land CO2 sink. However, the terrestrial biosphere models and remote sensing models used in large-scale analyses are poorly constrained by flux measurements in drylands, which are under-represented in global datasets. In this talk, I will address this gap with eddy covariance data from 30 ecosystems across the Southwest of North America with observed ranges in annual precipitation of 100 - 1000 mm, annual temperatures of 2 - 25 °C, and records of 3 - 10 years each (160 site-years). This extensive dryland dataset enables new approaches including 1) separation of temporal and spatial patterns to infer fast and slow ecosystem responses to change, and 2) partitioning of precipitation into hydrologic losses, evaporation, and ecosystem-available water. I will then compare direct flux measurements with models and remote sensing used to scale fluxes regionally. Combining eddy covariance and streamflow measurements, I will show how evapotranspiration (ET), which is the efflux of soil moisture remaining after hydrologic losses, is a better metric than precipitation of water available to drive ecosystem CO2 exchange. Furthermore, I will present a novel method to partition ET into evaporation and transpiration using the tight coupling of transpiration and photosynthesis. In contrast with typical carbon sink function in wetter, more-studied regions, dryland sites express an annual net carbon uptake varying from -350 to +330 gC m-2. Due to less respiration losses relative to photosynthesis gains during winter, declines in winter precipitation across the Southwest since 1999 are reducing annual net CO2 uptake. Interannual variability of net uptake is larger than for wetter regions, and half the sites pivot between sinks in wet years to sources in dry years. Biospheric and remote sensing models capture only 20-30 % of interannual variability in ET and CO2 fluxes, suggesting the impact of dryland regions on the variability of global CO2 may be up to 3 - 5 times larger than current estimates. Finally, I will highlight progress in ongoing work to develop improved remote sensing models of dryland CO2 uptake using novel indices including solar-induced fluorescence.
Future Projections and Consequences of the Changing North American Carbon Cycle
NASA Astrophysics Data System (ADS)
Huntzinger, D. N.; Cooley, S. R.; Moore, D. J.
2017-12-01
The rise of atmospheric carbon dioxide (CO2), primarily due to human-caused fossil fuel emissions and land-use change, has been dampened by carbon uptake by the oceans and terrestrial biosphere. Nevertheless, today's atmospheric CO2 levels are higher than at any time in the past 800,000 years. Over the past decade, there has been considerable effort to understand how carbon cycle changes interact with, and influence, atmospheric CO2 concentrations and thus climate. Here, we summarize the key findings related to projected changes to the North American carbon cycle and the consequences of these changes as reported in Chapters 17 and 19 of the 2nd State of the Carbon Cycle Report (SOCCR-2). In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, plant growth, and water-use efficiency. Together, these may lead to changes in vegetation composition, carbon storage, hydrology and biogeochemical cycling. In the ocean, increased uptake of atmospheric CO2 causes ocean acidification, which leads to changes in reproduction, survival, and growth of many marine species. These direct physiological responses to acidification are likely to have indirect ecosystem-scale consequences that we are just beginning to understand. In all environments, the effects of rising CO2 also interact with other global changes. For example, nutrient availability can set limits on growth and a warming climate alters carbon uptake depending on a number of other factors. As a result, there is low confidence in the future evolution of the North American carbon cycle. For example, models project that terrestrial ecosystems could continue to be a net sink (of up to 1.19 PgC yr-1) or switch to a net source of carbon to the atmosphere (of up to 0.60 PgC yr-1) by the end of the century under business-as-usual emission scenarios. And, while North American coastal areas have historically been a sink of carbon (e.g., 2.6 to 3.5 PgC since 1995) and are projected to continue to take up carbon into the future, mangroves and wetlands are particularly vulnerable to carbon loss due to sea level rise and other factors. The capacity and longevity of ocean and terrestrial carbon uptake remains uncertain and this uncertainty feeds back to other Earth system processes.
Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2.
McNeil, Ben I; Matear, Richard J
2008-12-02
Southern Ocean acidification via anthropogenic CO(2) uptake is expected to be detrimental to multiple calcifying plankton species by lowering the concentration of carbonate ion (CO(3)(2-)) to levels where calcium carbonate (both aragonite and calcite) shells begin to dissolve. Natural seasonal variations in carbonate ion concentrations could either hasten or dampen the future onset of this undersaturation of calcium carbonate. We present a large-scale Southern Ocean observational analysis that examines the seasonal magnitude and variability of CO(3)(2-) and pH. Our analysis shows an intense wintertime minimum in CO(3)(2-) south of the Antarctic Polar Front and when combined with anthropogenic CO(2) uptake is likely to induce aragonite undersaturation when atmospheric CO(2) levels reach approximately 450 ppm. Under the IPCC IS92a scenario, Southern Ocean wintertime aragonite undersaturation is projected to occur by the year 2030 and no later than 2038. Some prominent calcifying plankton, in particular the Pteropod species Limacina helicina, have important veliger larval development during winter and will have to experience detrimental carbonate conditions much earlier than previously thought, with possible deleterious flow-on impacts for the wider Southern Ocean marine ecosystem. Our results highlight the critical importance of understanding seasonal carbon dynamics within all calcifying marine ecosystems such as continental shelves and coral reefs, because natural variability may potentially hasten the onset of future ocean acidification.
Wang, Yingjun; Spalding, Martin H
2006-06-27
Many photosynthetic microorganisms acclimate to CO(2) limited environments by induction and operation of CO(2)-concentrating mechanisms (CCMs). Despite their central role in CCM function, inorganic carbon (Ci) transport systems never have been identified in eukaryotic photosynthetic organisms. In the green alga Chlamydomonas reinhardtii, a mutant, pmp1, was described in 1983 with deficiencies in Ci transport, and a Pmp1 protein-associated Ci uptake system has been proposed to be responsible for Ci uptake in low CO(2) (air level)-acclimated cells. However, even though pmp1 represents the only clear genetic link to Ci transport in microalgae and is one of only a very few mutants directly affecting the CCM itself, the identity of Pmp1 has remained unknown. Physiological analyses indicate that C. reinhardtii possesses multiple Ci transport systems responsible for acclimation to different levels of limiting CO(2) and that the Pmp1-associated transport system is required specifically for low (air level) CO(2) acclimation. In the current study, we identified and characterized a pmp1 allelic mutant, air dier 1 (ad1) that, like pmp1, cannot grow in low CO(2) (350 ppm) but can grow either in high CO(2) (5% CO(2)) or in very low CO(2) (<200 ppm). Molecular analyses revealed that the Ad1/Pmp1 protein is encoded by LciB, a gene previously identified as a CO(2)-responsive gene. LciB and three related genes in C. reinhardtii compose a unique gene family that encode four closely related, apparently soluble plastid proteins with no clearly identifiable conserved motifs.
Maximum Oxygen Uptake Determination in Insulin-Dependent Diabetes Mellitus.
ERIC Educational Resources Information Center
Fremion, Amy S.; And Others
1987-01-01
A study of 10 children with insulin-dependent diabetes mellitus performing a maximum-effort cycling test indicated blood glucose levels did not change appreciably during test, while maximal oxygen uptake was substandard for their age groups. Findings suggest patients in fair to poor metabolic control can tolerate stress testing without…
Li, Li; Yang, Deshuai; Fisher, Trevor R; Qiao, Qi; Yang, Zhen; Hu, Na; Chen, Xiangshu; Huang, Liangliang
2017-10-24
The loading-dependent diffusion behavior of CH 4 , CO 2 , SO 2 , and their binary mixtures in ZIF-10 has been investigated in detail by using classical molecular dynamics simulations. Our simulation results demonstrate that the self-diffusion coefficient D i of CH 4 molecules decreases sharply and monotonically with the loading while those of both CO 2 and SO 2 molecules initially display a slight increase at low uptakes and follow a slow decrease at high uptakes. Accordingly, the interaction energies between CH 4 molecules and ZIF-10 remain nearly constant regardless of the loading due to the absence of hydrogen bonds (HBs), while the interaction energies between CO 2 (or SO 2 ) and ZIF-10 decease rapidly with the loading, especially at small amounts of gas molecules. Such different loading-dependent diffusion and interaction mechanisms can be attributed to the relevant HB behavior between gas molecules and ZIF-10. At low loadings, both the number and strength of HBs between CO 2 (or SO 2 ) molecules and ZIF-10 decrease obviously as the loading increases, which is responsible for the slight increase of their diffusion coefficients. However, at high loadings, their HB strength increases with the loading. Similar loading-dependent phenomena of diffusion, interaction, and HB behavior can be observed for CH 4, CO 2 , and SO 2 binary mixtures in ZIF-10, only associated with some HB competition between CO 2 and SO 2 molecules in the case of the CO 2 /SO 2 mixture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhunia, Subhajit; Bhanja, Piyali; Das, Sabuj Kanti
Targeted synthesis of microporous adsorbents for CO{sub 2} capture and storage is very challenging in the context of remediation from green house gases. Herein we report two novel N-rich microporous networks SB-TRZ-CRZ and SB-TRZ-TPA by extensive incorporation of triazine containing tripodal moiety in the porous polymer framework. These materials showed excellent CO{sub 2} storage capacities: SB-TRZ-CRZ displayed the CO{sub 2} uptake capacity of 25.5 wt% upto 1 bar at 273 K and SB-TRZ-TPA gave that of 16 wt% under identical conditions. The substantial dipole quadruple interaction between network (polar triazine) and CO{sub 2} boosts the selectivity for CO{sub 2}/N{sub 2}.more » SB-TRZ-CRZ has this CO{sub 2}/N{sub 2} selectivity ratio of 377, whereas for SB-TRZ-TPA it was 97. Compared to other porous polymers, these materials are very cost effective, scalable and very promising material for clean energy application and environmental issues. - Graphical abstract: We report two novel N-rich microporous polymeric materials by doping of triazine containing tripodal dopant in the organic framework. These materials showed excellent CO{sub 2} storage capacities as high as 25.5 wt% under 1 bar pressure with exceptional CO{sub 2}/N{sub 2} selectivity of 377. - Highlights: • Triazine containing trimodal moiety incorporated in polycarbazolic and poly triphenylamine networks. • N-rich crosslinked polymers with high BET surface area and 1.5–1.7 nm size large micropores. • CO{sub 2} uptake capacity of 25.5 wt% upto 1 bar at 273 K. • These crosslinked porous polymers showed exceptional CO{sub 2}/N{sub 2} selectivity.« less
NASA Astrophysics Data System (ADS)
Huang, Qi-bo; Qin, Xiao-qun; Liu, Peng-yu; Zhang, Lian-kai; Su, Chun-tian
2017-08-01
Carbonate weathering and the CO2 consumption in karstic area are extensive affected by anthropogenic activities, especially sulfuric and nitric acids usage in the upper-middle reaches of Wujiang River, China. The carbonic acid would be substituted by protons from sulfuric and nitric acids which can be reduce CO2 absorption. Therefore, The goal of this study was to highlight the impacts of sulfuric and nitric acids on carbonate dissolution and the associated deficit of CO2 uptaking during carbonate weathering. The hydrochemistries and carbon isotopic signatures of dissolved inorganic carbon from groundwater were measured during the rainy season (July; 41 samples) and post-rainy season (October; 26 samples). Our results show that Ca2 + and Mg2 + were the dominant cations (55.87-98.52%), and HCO3- was the dominant anion (63.63-92.87%). The combined concentrations of Ca2 + and Mg2 + commonly exceeded the equivalent concentration of HCO3-, with calculated [Ca2 + + Mg2 +]/[HCO3-] equivalent ratios of 1.09-2.12. The mean measured groundwater δ13CDIC value (- 11.38‰) was higher than that expected for carbonate dissolution mediated solely by carbonic acid (- 11.5‰), and the strong positive correlation of these values with [SO42 - + NO3-]/HCO3- showed that additional SO42 - and NO3- were required to compensate for this cation excess. Nitric and sulfuric acids are, therefore, suggested to have acted as the additional proton-promoted weathering agents of carbonate in the region, alongside carbonic acid. The mean contribution of atmospheric/pedospheric CO2 to the total aquatic HCO3- decreased by 15.67% (rainy season) and 14.17% (post-rainy season) due to the contributions made by these acids. The annual mean deficit of soil CO2 uptake by carbonate weathering across the study area was 14.92%, which suggests that previous workers may have overestimated the absorption of CO2 by carbonate weathering in other karstic areas worldwide.
Two rare indium-based porous metal-metalloporphyrin frameworks exhibiting interesting CO 2 uptake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Wen-Yang; Zhang, Zhuxiu; Cash, Lindsay
2014-01-13
Two rare indium-based porous metal–metalloporphyrin frameworks (MMPFs), MMPF-7 and MMPF-8, were constructed by self-assembly of In(III) and two custom-designed porphyrin–tetracarboxylate ligands. MMPF-7 and MMPF-8 possess the pts topology and exhibit interesting CO 2 adsorption properties.
Multiparameter analysis of activated sludge inhibition by nickel, cadmium, and cobalt.
Hernandez-Martinez, Gabriel R; Ortiz-Alvarez, Daniela; Perez-Roa, Michael; Urbina-Suarez, Nestor Andres; Thalasso, Frederic
2018-06-05
Activated sludge processes are often inhibited by nickel, cadmium, and cobalt. The inhibitory effect of these heavy metals on a synthetic wastewater treatment process was tested through pulse microrespirometry; i.e., pulse of substrate injected in a microreactor system. The inhibitory effect was tested under different conditions including the heavy metals, substrate and biomass concentrations, and exposure time. The inhibitory effect was quantified by the percentage of inhibition, half saturation constant (K S ), inhibition constant (K I ), and maximum oxygen uptake rate (OUR max ). The results indicated that, in a range of concentration from 0 to 40 mg L -1 , the three heavy metals exerted an uncompetitive and incomplete inhibitory effect, with a maximum inhibition of 67, 57, and 53% for Ni, Co, and Cd, respectively. An increase of the biomass concentration by 620% resulted in a decrease of the inhibition by 47 and 69% for Co and Cd, respectively, while no effect was observed on Ni inhibition. An increase of the substrate concentration by 87% resulted in an increase of the inhibition by 24, 70, and 47% for Ni, Co and Cd, respectively. In the case of nickel and cadmium, an increase in the exposure time to the heavy metals also increased the inhibition. Copyright © 2018 Elsevier B.V. All rights reserved.
Shah, Karan M; Quinn, Paul D; Gartland, Alison; Wilkinson, J Mark
2015-01-01
Cobalt and chromium species are released in the local tissues as a result of tribo-corrosion, and affect bone cell survival and function. However we have little understanding of the mechanisms of cellular entry, intracellular distribution, and speciation of the metals that result in impaired bone health. Here we used synchrotron based X-ray fluorescence (XRF), X-ray absorption spectroscopy (XAS), and fluorescent-probing approaches of candidate receptors P2X7R and divalent metal transporter-1 (DMT-1), to better understand the entry, intra-cellular distribution and speciation of cobalt (Co) and chromium (Cr) in human osteoblasts and primary human osteoclasts. We found that both Co and Cr were most highly localized at nuclear and perinuclear sites in osteoblasts, suggesting uptake through cell membrane transporters, and supported by a finding that P2X7 receptor blockade reduced cellular entry of Co. In contrast, metal species were present at discrete sites corresponding to the basolateral membrane in osteoclasts, suggesting cell entry by endocytosis and trafficking through a functional secretory domain. An intracellular reduction of Cr6+ to Cr3+ was the only redox change observed in cells treated with Co2+, Cr3+, and Cr6+. Our data suggest that the cellular uptake and processing of Co and Cr differs between osteoblasts and osteoclasts. © 2014 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society.
Morphological and physiological studies on Indian national kabaddi players.
Dey, S K; Khanna, G L; Batra, M
1993-01-01
Twenty-five national kabaddi players (Asiad gold medalists 1990), mean age 27.91 years, who attended a national camp at the Sports Authority of India, Bangalore before the Beijing Asian Games in 1990, were investigated for their physical characteristics, body fat, lean body mass (LBM) and somatotype. The physiological characteristics assessed included back strength, maximum oxygen uptake capacity and anaerobic capacity (oxygen debt) and related cardiorespiratory parameters (oxygen pulse, breathing equivalent, maximum pulmonary ventilation, maximum heart rate). Body fat was calculated from skinfold thicknesses taken at four different sites, using Harpenden skinfold calipers. An exercise test (graded protocol) was performed on a bicycle ergometer (ER-900) using a computerized EOS Sprint (Jaeger, West Germany). The mean(s.d.) percentage body fat (17.56(3.48)) of kabaddi players was found to be higher than normal sedentary people. Their physique was found to be endomorphic mesomorph (3.8-5.2-1.7). Mean(s.d.) back strength, maximum oxygen uptake capacity (VO2max) and oxygen debt were found to be 162.6(18.08) kg, 42.6(4.91) ml kg-1 min-1 and 5.02(1.29) litre respectively. Physical characteristics, percentage body fat, somatotype, maximum oxygen uptake capacity and anaerobic capacity (oxygen debt) and other cardiorespiratory parameters were compared with other national counterparts. Present data are comparable with data for judo, wrestling and weightlifting. Since no such study has been conducted on international counterparts, these data could not be compared. These data may act as a guideline in the selection of future kabaddi players and to attain the physiological status comparable to the present gold medalists. Images Figure 4 Figure 5 p242-a PMID:8130960
Basu, Samarpita; Roy, Abhijit Sarma; Mohanty, Kaustubha; Ghoshal, Aloke K
2013-09-01
The present study aimed to isolate a high CO2 and temperature tolerant microalga capable of sequestering CO2 from flue gas. Microalga strain SA1 was isolated from a freshwater body of Assam and identified as Scenedesmus obliquus (KC733762). At 13.8±1.5% CO2 and 25 °C, maximum biomass (4.975±0.003 g L(-1)) and maximum CO2 fixation rate (252.883±0.361 mg L(-1) d(-1)) were obtained which were higher than most of the relevant studies. At elevated temperature (40 °C) and 13.8±1.5% CO2 maximum biomass (0.883±0.001 g L(-1)) was obtained. The carbohydrate, protein, lipid, and chlorophyll content of the CO2 treated SA1 were 30.87±0.64%, 9.48±1.65%, 33.04±0.46% and 6.03±0.19% respectively, which were higher than previous reports. Thus, SA1 could prove to be a potential candidate for CO2 sequestration from flue gas as well as for the production of value added substances. Copyright © 2013 Elsevier Ltd. All rights reserved.
Inorganic Carbon Source for Photosynthesis in the Seagrass Thalassia hemprichii (Ehrenb.) Aschers.
Abel, K M
1984-11-01
Photosynthetic carbon uptake of the tropical seagrass Thalassia hemprichii (Ehrenb.) Aschers was studied by several methods. Photosynthesis in buffered seawater in media in the range of pH 6 to pH 9 showed an exponentially increasing rate with decreasing pH, thus indicating that free CO(2) was a photosynthetic substrate. However, these experiments were unable to determine whether photosynthesis at alkaline pH also contained some component due to HCO(3) (-) uptake. This aspect was further investigated by studying photosynthetic rates in a number of media of varying pH (7.8-8.61) and total inorganic carbon (0.75-13.17 millimolar). In these media, photosynthetic rate was correlated with free CO(2) concentration and was independent of the HCO(3) (-) concentration in the medium. Short time-course experiments were conducted during equilibration of free CO(2) and HCO(3) (-) after injection of (14)C labeled solution at acid or alkaline pH. High initial photosynthetic rates were observed when acidic solutions (largely free CO(2)) were used but not with alkaline solutions. The concentration of free CO(2) was found to be a limiting factor for photosynthesis in this plant.
The changing phenology of the land carbon fluxes as derived from atmospheric CO2 data
NASA Astrophysics Data System (ADS)
Cescatti, A.; Alkama, R.; Forzieri, G.; Rödenbeck, C.; Zaehle, S.; Sitch, S.; Friedlingstein, P.; Nabel, J.; Viovy, N.; Kato, E.; Koven, C.; Zeng, N.; Ciais, P.
2017-12-01
Dynamic vegetation models and atmospheric observations of CO2 concentration point to a large increase of the global terrestrial carbon uptake over the recent decades. However, they disagree on the key regions, on the seasonality and on the processes underlying such a persistent increase. In particular, the role of the changing plant phenology on the global carbon budget is still unknown. To investigate these issues we explored the temporal dynamic of the land carbon fluxes over 1981-2014 using the Jena CarboScope atmospheric CO2 inversion and an ensemble of land surface models (TRENDY). Using these datasets the temporal extent and timing of the land carbon uptake and carbon release period have been investigated in four different latitudinal bands (75N-45N; 45N-15N; 15N-15S; 15S-45S) to explore the recent changes in the phenology of the vegetation CO2 exchange across different climates and biomes. The impact of phenological changes on the land carbon flux has been investigated by factoring out the signal due to the length of the growing season from the other signals. Estimates retrieved from the atmospheric inversion have been compared with the prediction of the ensemble of vegetation models. Results shows that the changes in the global carbon fluxes occurred in the last three decades are dominated by the duration and intensification of the uptake during the growing season. Interestingly, the seasonality of the trends shows a consistent pattern at all latitudinal bands, with a systematic advancement of the onset and minor changes of the end dates of the growing season. According to the atmospheric inversion the increasing trend in the land sink is driven about equally by the changes in phenology (due to the earlier onset and later offset) and by the intensification of the daily uptake. The increased annual carbon uptake revealed by the atmospheric inversion is about 60% larger than the model predictions, possibly due to the model underestimation of land use flues and poor representation of climate-driven changes in phenology. The observed large and persistent variations in the phenology of the terrestrial carbon fluxes emphasize the ongoing rapid changes in boreal and tropical biomes, whose dynamic response to climate change and rising CO2 concentration is still poorly represented in vegetation models.
Hwang, Daw-Yang; Ismail-Beigi, Faramarz
2002-03-15
Glut-1-mediated glucose transport is augmented in response to a variety of conditions and stimuli. In this study we examined the metabolic fate of glucose in cells in which glucose transport is stimulated by exposure to CoCl(2), an agent that stimulates the expression of a set of hypoxia-responsive genes including several glycolytic enzymes and the Glut-1 glucose transporter. Similarly, we determined the metabolic fate of glucose in stably transfected cells overexpressing Glut-1. Exposure of Clone 9 liver cell line, 3T3-L1 fibroblasts, and C(2)C(12) myoblasts to CoCl(2) resulted in an increase glucose uptake and in the activity of glucose phosphorylation ("hexokinase") and lactate dehydrogenase. In cells treated with CoCl(2), the net increase in glucose taken up was accounted for by its near-complete conversion to lactate. Cells stably transfected to overexpress Glut-1 also exhibited enhanced net uptake of glucose with the near-complete conversion of the increased glucose taken up to lactate; however, the effect in these cells was observed in the absence of any change in the activity of two glycolytic enzymes examined. These findings suggest that in cells in which glucose transport is rate-limiting for glucose metabolism, enhancement of the glucose entry step per se results in a near-complete conversion of the extra glucose to lactate.
Mastren, Tara; Marquez, Bernadette V.; Sultan, Deborah E.; Bollinger, Elizabeth; Eisenbeis, Paul; Voller, Tom; Lapi, Suzanne E.
2016-01-01
This work describes the production of high-specific activity 55Co and the evaluation of the stability of 55Co-metal-chelate-peptide complexes in vivo. 55Co was produced via the 58Ni(p,α)55Co reaction and purified using anion exchange chromatography with an average recovery of 92% and an average specific activity of 1.96GBq/µmol. 55Co-DO3A and 55Co-NO2A peptide complexes were radiolabelled at 3.7MBq/µg and injected into HCT-116 tumor xenografted mice. PET imaging and biodistribution studies were performed at 24 and 48 hours post injection and compared with that of 55CoCl2. Both 55Co-metal-chelate complexes demonstrated good in vivo stability by reducing the radiotracers’ uptake in the liver by 6-fold at 24 with ~1% ID/g and at 48 hours with ~0.5% ID/g, and reducing uptake in the heart by 4-fold at 24 hours with ~0.7% ID/g and 7-fold at 48 hours with ~0.35% ID/g. These results support the use of 55Co as a promising new radiotracer for Positron Emission Tomography (PET) imaging of cancer and other diseases. PMID:26505224
Mastren, Tara; Marquez, Bernadette V; Sultan, Deborah E; Bollinger, Elizabeth; Eisenbeis, Paul; Voller, Tom; Lapi, Suzanne E
2015-01-01
This work describes the production of high-specific activity 55Co and the evaluation of the stability of 55Co-metal-chelate-peptide complexes in vivo. 55Co was produced via the 58Ni(p,α)55Co reaction and purified using anion exchange chromatography with an average recovery of 92% and an average specific activity of 1.96 GBq/μmol. 55Co-DO3A and 55Co-NO2A peptide complexes were radiolabeled at 3.7 MBq/μg and injected into HCT-116 tumor xenografted mice. Positron emission tomography (PET) and biodistribution studies were performed at 24 and 48 hours postinjection and compared to those of 55CoCl2. Both 55Co-metal-chelate complexes demonstrated good in vivo stability by reducing the radiotracers' uptake in the liver by sixfold at 24 hours with ~ 1% ID/g and at 48 hours with ~ 0.5% ID/g and reducing uptake in the heart by fourfold at 24 hours with ~ 0.7% ID/g and sevenfold at 48 hours with ~ 0.35% ID/g. These results support the use of 55Co as a promising new radiotracer for PET imaging of cancer and other diseases.
A carbon cycle science update since IPCC AR-4.
Dolman, A J; van der Werf, G R; van der Molen, M K; Ganssen, G; Erisman, J-W; Strengers, B
2010-01-01
We review important advances in our understanding of the global carbon cycle since the publication of the IPCC AR4. We conclude that: the anthropogenic emissions of CO2 due to fossil fuel burning have increased up through 2008 at a rate near to the high end of the IPCC emission scenarios; there are contradictory analyses whether an increase in atmospheric fraction, that might indicate a declining sink strength of ocean and/or land, exists; methane emissions are increasing, possibly through enhanced natural emission from northern wetland, methane emissions from dry plants are negligible; old-growth forest take up more carbon than expected from ecological equilibrium reasoning; tropical forest also take up more carbon than previously thought, however, for the global budget to balance, this would imply a smaller uptake in the northern forest; the exchange fluxes between the atmosphere and ocean are increasingly better understood and bottom up and observation-based top down estimates are getting closer to each other; the North Atlantic and Southern ocean take up less CO2, but it is unclear whether this is part of the 'natural' decadal scale variability; large-scale fires and droughts, for instance in Amazonia, but also at Northern latitudes, have lead to significant decreases in carbon uptake on annual timescales; the extra uptake of CO2 stimulated by increased N-deposition is, from a greenhouse gas forcing perspective, counterbalanced by the related additional N2O emissions; the amount of carbon stored in permafrost areas appears much (two times) larger than previously thought; preservation of existing marine ecosystems could require a CO2 stabilization as low as 450 ppm; Dynamic Vegetation Models show a wide divergence for future carbon trajectories, uncertainty in the process description, lack of understanding of the CO2 fertilization effect and nitrogen-carbon interaction are major uncertainties.
Makris, George; Tseligka, Eirini D; Pirmettis, Ioannis; Papadopoulos, Minas S; Vizirianakis, Ioannis S; Papagiannopoulou, Dionysia
2016-07-05
A novel bisphosphonate, 1-(3-aminopropylamino)ethane-1,1-diyldiphosphonic acid (3), was coupled to the tridentate chelators di-2-picolylamine, 2-picolylamine-N-acetic acid, iminodiacetic acid, 3-((2-aminoethyl)thio)-3-(1H-imidazol-4-yl)propanoic acid, and 2-((2-carboxyethyl)thio)-3-(1H-imidazol-4-yl)propanoic acid to form ligands 6, 9, 11, 15, and 19, respectively. Organometallic complexes of the general formula [Re/(99m)Tc(CO)3(κ(3)-L)] were synthesized, where L denotes ligand 6, 9, 11, 15, or 19. The rhenium complexes were prepared at the macroscopic level and characterized by spectroscopic methods. The technetium-99m organometallic complexes were synthesized in high yield and were identified by comparative reversed-phase HPLC with their Re analogues. The (99m)Tc tracers were stable in vitro and exhibited binding to hydroxyapatite. In biodistribution studies, all of the (99m)Tc complexes exhibited high bone uptake superior to that of 25, which is the directly (99m)Tc-labeled bisphosphonate 3, and comparable to that of (99m)Tc-methylene diphosphonate ((99m)Tc-MDP). The tracers [(99m)Tc(CO)3(6)] (26), [(99m)Tc(CO)3(9)] (27), [(99m)Tc(CO)3(11)] (28), and [(99m)Tc(CO)3(15)] (29) exhibited higher bone/blood ratios than (99m)Tc-MDP. 26 had the highest bone uptake at 1 h p.i. The new bisphosphonates showed no substantial growth inhibitory capacity in PC-3, Saos-2, and MCF-7 established cancer cell lines at low concentrations. Incubation of 26 with the same cancer cell lines indicated a rapid and saturated uptake. The promising properties of 26-29 indicate their potential for use as bone-imaging agents.
Sobhani, Hamideh; Tarighi, Parastoo; Ostad, Seyed Nasser; Shafaati, Alireza; Nafissi-Varcheh, Nastaran; Aboofazeli, Reza
2015-01-01
The aim of this investigation was to design and develop nanoemulsions (NEs) as novel delivery systems for rapamycin. Phase behavior of quaternary systems composed of Traicetin (as oil), various surfactants and co-surfactants and water at different surfactant/co-surfactant weight ratios was investigated by the construction of phase diagrams. Formulations were taken from the o/w NE region of the phase diagrams, depending upon the extent of NE domain. The spontaneous emulsification method was used to prepare various formulations containing 1 mg/mL of the drug. The NEs were characterized and subjected to stability tests at various temperatures over 9-12 months. Cumulative drug release from the selected formulations was determined for a period of 48 h using a dialysis sac. The assay of rapamycin was carried out using an HPLC technique. The effect of NEs on the viability of SKBR-3 cells was evaluated by MTT assay. The integrity of Caco-2 cell monolayers was measured by Transepithelial Electrical Resistance (TEER) and the transport of rapamycin-loaded NEs across Caco-2 cell monolayers was then assessed. The uptake of NEs by SKBR-3 cells was also investigated using florescence microscopy. Maximum drug release was observed in case of 4 formulations prepared with Tween 80 and Tween 20. MTT test results revealed different toxicity of NEs for SKBR-3 cell line and TEER demonstrated that formulations containing Tween 20 caused a more considerable decrease in cell integrity in comparison with those prepared with Tween 80. The results obtained from cellular uptake experiments were in consistent with those obtained from TEER and cytotoxicity experiments. PMID:26185501
Sobhani, Hamideh; Tarighi, Parastoo; Ostad, Seyed Nasser; Shafaati, Alireza; Nafissi-Varcheh, Nastaran; Aboofazeli, Reza
2015-01-01
The aim of this investigation was to design and develop nanoemulsions (NEs) as novel delivery systems for rapamycin. Phase behavior of quaternary systems composed of Traicetin (as oil), various surfactants and co-surfactants and water at different surfactant/co-surfactant weight ratios was investigated by the construction of phase diagrams. Formulations were taken from the o/w NE region of the phase diagrams, depending upon the extent of NE domain. The spontaneous emulsification method was used to prepare various formulations containing 1 mg/mL of the drug. The NEs were characterized and subjected to stability tests at various temperatures over 9-12 months. Cumulative drug release from the selected formulations was determined for a period of 48 h using a dialysis sac. The assay of rapamycin was carried out using an HPLC technique. The effect of NEs on the viability of SKBR-3 cells was evaluated by MTT assay. The integrity of Caco-2 cell monolayers was measured by Transepithelial Electrical Resistance (TEER) and the transport of rapamycin-loaded NEs across Caco-2 cell monolayers was then assessed. The uptake of NEs by SKBR-3 cells was also investigated using florescence microscopy. Maximum drug release was observed in case of 4 formulations prepared with Tween 80 and Tween 20. MTT test results revealed different toxicity of NEs for SKBR-3 cell line and TEER demonstrated that formulations containing Tween 20 caused a more considerable decrease in cell integrity in comparison with those prepared with Tween 80. The results obtained from cellular uptake experiments were in consistent with those obtained from TEER and cytotoxicity experiments.
Compatibility of Medical-Grade Polymers with Dense CO2
Jiménez, A; Thompson, G L; Matthews, M A; Davis, T A; Crocker, K; Lyons, J S; Trapotsis, A
2009-01-01
This study reports the effect of exposure to liquid carbon dioxide on the mechanical properties of selected medical polymers. The tensile strengths and moduli of fourteen polymers are reported. Materials were exposed to liquid CO2, or CO2 + trace amounts of aqueous H2O2, at 6.5 MPa and ambient temperature. Carbon dioxide uptake, swelling, and distortion were observed for the more amorphous polymers while polymers with higher crystallinity showed little effect from CO2 exposure. Changes in tensile strength were not statistically significant for most plastics, and most indicated good tolerance to liquid CO2. These results are relevant to evaluating the potential of liquid CO2-based sterilization technology. PMID:19756235
Bell, Russell T.; Ahlgren, Gunnel M.; Ahlgren, Ingemar
1983-01-01
Bacterioplankton abundance, [3H]thymidine incorporation, 14CO2 uptake in the dark, and fractionated primary production were measured on several occasions between June and August 1982 in eutrophic Lake Norrviken, Sweden. Bacterioplankton abundance and carbon biomass ranged from 0.5 × 109 to 2.4 × 109 cells liter−1 and 7 to 47 μg of C liter−1, respectively. The average bacterial cell volume was 0.185 μm3. [3H]thymidine incorporation into cold-trichloroacetic acid-insoluble material ranged from 12 × 10−12 to 200 × 10−12 mol liter−1 h−1. Bacterial carbon production rates were estimated to be 0.2 to 7.1 μg of C liter−1 h−1. Bacterial production estimates from [3H]thymidine incorporation and 14CO2 uptake in the dark agreed when activity was high but diverged when activity was low and when blue-green algae (cyanobacteria) dominated the phytoplankton. Size fractionation indicated negligible uptake of [3H]thymidine in the >3-μm fraction during a chrysophycean bloom in early June. We found that >50% of the 3H activity was in the >3-μm fraction in late August; this phenomenon was most likely due to Microcystis spp., their associated bacteria, or both. Over 60% of the 14CO2 uptake in the dark was attributed to algae on each sampling occasion. Algal exudate was an important carbon source for planktonic bacteria. Bacterial production was roughly 50% of primary production. PMID:16346304
NASA Astrophysics Data System (ADS)
Komarova, Tatiana; Vasenev, Ivan
2017-04-01
One of the principal factors influencing the current level of the greenhouse fluxes are land-use changes, including the forest restoration in fallow lands, which is widespread at the Central Region of Russia. The comprehensive environmental studies of soil greenhouse fluxes have been done in comparable sites with different stages of the forest-fallow successions in the southern part of the Central Forest Reserve with spruce domination in the mature forest - representative southern-taiga ecosystems. Seasonal and diurnal dynamics CO2 fluxes measurements were carried out in situ using a mobile gas analyzer Li-820 with soil exposure chambers and parallel observation of air temperature, soil temperature and moisture. Also, every ten days the soil air has been sampled in the vials for further CO2, CH4 and N2O flux measurements by the stationary gas chromatograph. Within forest-fallow successions there are shown the litter gradual development, humus-accumulative horizon differentiation, soil acidity and bulk density increasing. At the same time there is enough obvious in the down part of past-arable horizon gradual restoration of the podzolic horizon. The monitoring results have shown the essential decreasing of soil CO2 fluxes (in 2 times) in frame of successions. The maximum CO2 fluxes have been fixed in July with optimal soil temperature/moisture ratio. In the middle of July the maximum CO2 emission is observed in fallow grassland (34,1 g CO2 / m2day), that is almost in 2-times more than in spruce-forest after fallow stage of 120-150 years. It is important that soil CO2 fluxes essentially increase with soil temperature rise (with up to R = 0,75) and drop soil moisture (with up to R = - 0,66). During the day, the most intense soil CO2 fluxes have been observed from case of 12:00 to 18:00. The maximum CO2 flux has been recorded at 15:00 in the fallow grassland (23 g CO2 / m2 day). In the forest-fallow stage of 10-15 years the maximum soil CO2 flux observed at 12 hours was (16 - 17 g CO2 / m2 day). There were not strong differences in soil CO2 fluxes of these two investigated sites in the night time from 21:00 to 9:00. The essential daily dynamics must be taken into attention for assessment the seasonal fluxes of greenhouse gases and carbon balance. The maximum CH4 flux has been fixed in the fallow grassland and forest-fallow stage of 10 - 15 years - in contrast to stable soil sink CH4 in the spruce-forest after forest-fallow older than 120 years. In the fallow meadow grassland there are observed CH4 emission in July and sink in June and August, with a maximum flux in early July. The level of N2O fluxes usually does not exceed 0,2 mg N2O /m2*day with the maximum flux in mid-August and light sink in early June.
Maes, Michael; Schouteden, Stijn; Alaerts, Luc; Depla, Diederik; De Vos, Dirk E
2011-04-07
The water-stable metal-organic framework MIL-53(Cr) is able to adsorb phenol and p-cresol from contaminated water as well as the monomeric sugar D-(-)-fructose. Based on the isotherm for phenol uptake from the liquid phase, it is proposed that the framework breathes to maximize the uptake.
NASA Astrophysics Data System (ADS)
Jasoni, Richard; Arnone, John; Fenstermaker, Lynn; Wohlfahrt, Georg
2014-05-01
Eddy covariance measurements of net ecosystem CO2 exchange (NEE) in the Mojave Desert (Jasoni et al. 2005-Global Change Biology 11:749-756; Wohlfahrt et al. 2008-Global Change Biology 14:1475-1487), and in other deserts of the world (e.g., Hastings et al. 2005- Global Change Biology 14:927-939, indicate greater rates of net CO2 uptake (more negative NEE values) and net ecosystem productivity (NEP) than would have been expected for deserts (as high as -120 g C m-2 year-1). We continue to observe high rates of NEE and NEP and seek explanations for these findings at interannual, seasonal, and sub-seasonal time scales. Because moisture availability most strongly constrains biological activity in deserts, responses to rains probably play a significant role in defining components of NEE-namely net primary productivity (NPP, or roughly net photosynthesis by vascular and non-vascular plants) and heterotrophic respiration (Rh, mainly by soil microorganisms). Most precipitation in the Mojave Desert falls from October through April and periodically in the summer as convective storms. The main objective of this study was to quantify the extent to which NEE and the net flux of CO2 from/to biological soil crust (BSC) covered soil surfaces respond to rain pulses occurring during cool/cold and warm/hot times of the year. Flux data from 7 years (2005-2011) of measurements at our shub land desert site (average 150 mm rain per year) located 120 km northwest of Las Vegas showed a range in NEP from -111±34 to -47±28 g C m-2 year-1. Cool season rains usually stimulated NEE (more negative NEE values or net CO2 uptake) while warm season rains reversed this effect and led to positive NEE values (net ecosystem CO2 efflux. Cool season stimulation of NEE often occurred in the absence of green leaves on vascular plants, suggesting that photosynthesis of BSCs (up to 70% of soil surface covered by cyanobacteria, mosses, and lichens) were responsible for this net uptake. At other times during the cool season, herbaceous vascular plants also contributed to increases in NEE. Parallel experiments in which we simulated rain pulses (10 mm) in the cool (February) and warm (May) seasons and measured net CO2 fluxes from BSC covered soil surfaces showed responses similar to those observed at the level of the ecosystem. Earlier continuous measurements of soil air relative humidity (RH; 2001-2006) showed that soil moisture increases occurring after rains in the cool season persist up to 3 weeks after events (a total of 48-108 day equivalent per year at >98% RH) indicating conditions favorable for photosynthetic activity. Thus, net CO2 uptake by BSCs during cool months may largely determine large NEEs measured under moist conditions during this time of year and, together with NPP of herbaceous vascular plants, help explain overall consistently high annual NEP in these ecosystems.
Shi, Chaohong; Zhu, Nengwu; Kang, Naixin; Wu, Pingxiao; Zhang, Xiaoping; Zhang, Yanhong
2017-09-01
Biorecovery is emerging as a promising process to retrieve gold from secondary resources. The present study aimed to explore the uptake pattern of Pycnoporus sanguineus biomass for gold, identify the effective functional groups in gold recovery process, and thus further intensify the process via microbial surface modification. Results showed that P. sanguineus biomass could effectively recover gold with the formation of highly crystal AuNPs without any exogeneous electron donor. Under the conditions of various initial gold concentrations (1.0, 2.0, and 3.0 mM), biomass dosage of 2.0 g/L, solution pH value of 4.0, and incubation temperature of 30°C, the uptake equilibrium established after 4, 8, and 12 h, respectively. The uptake process could be well described by pseudo-second order kinetics model (R 2 = 0.9988) and Langmuir isotherm model (R 2 = 0.9958). The maximum uptake capacity of P. sanguineus reached as high as 358.69 mg/g. Further analysis indicated that amino, carboxyl and hydroxyl groups positively contributed to the uptake process. Among them, amino group significantly favored the uptake of gold during recovery process. When P. sanguineus biomass was modified by introduction of amino group, the gold uptake process was successfully intensified by shortening the uptake period and enhancing the uptake capacity. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1314-1322, 2017. © 2017 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Panagoulia, Dionysia; Vlahogianni, Eleni I.
2018-06-01
A methodological framework based on nonlinear recurrence analysis is proposed to examine the historical data evolution of extremes of maximum and minimum daily mean areal temperature patterns over time under different climate scenarios. The methodology is based on both historical data and atmospheric General Circulation Model (GCM) produced climate scenarios for the periods 1961-2000 and 2061-2100 which correspond to 1 × CO2 and 2 × CO2 scenarios. Historical data were derived from the actual daily observations coupled with atmospheric circulation patterns (CPs). The dynamics of the temperature was reconstructed in the phase-space from the time series of temperatures. The statistically comparing different temperature patterns were based on some discriminating statistics obtained by the Recurrence Quantification Analysis (RQA). Moreover, the bootstrap method of Schinkel et al. (2009) was adopted to calculate the confidence bounds of RQA parameters based on a structural preserving resampling. The overall methodology was implemented to the mountainous Mesochora catchment in Central-Western Greece. The results reveal substantial similarities between the historical maximum and minimum daily mean areal temperature statistical patterns and their confidence bounds, as well as the maximum and minimum temperature patterns in evolution under the 2 × CO2 scenario. A significant variability and non-stationary behaviour characterizes all climate series analyzed. Fundamental differences are produced from the historical and maximum 1 × CO2 scenarios, the maximum 1 × CO2 and minimum 1 × CO2 scenarios, as well as the confidence bounds for the two CO2 scenarios. The 2 × CO2 scenario reflects the strongest shifts in intensity, duration and frequency in temperature patterns. Such transitions can help the scientists and policy makers to understand the effects of extreme temperature changes on water resources, economic development, and health of ecosystems and hence to proceed to effective proactive management of extreme phenomena. The impacts of the findings on the predictability of the extreme daily mean areal temperature patterns are also commented.
X-ray CT imaging and image-based modelling study of gas exchange in the rice rhizosphere
NASA Astrophysics Data System (ADS)
Affholder, Marie-Cecile; Keyes, Samuel David; Roose, Tiina; Heppell, James; Kirk, Guy
2016-04-01
We used X-ray computer tomography and image-based modelling to investigate CO2 uptake by rice roots growing in submerged soil, and its consequences for the chemistry and biology of the rhizosphere. From previous work, three processes are known to greatly modify the rhizophere of rice and other wetland plants: (1) oxygenation of the submerged, anoxic soil by O2 transported through the root gas channels (aerenchyma); (2) oxidation of ferrous iron and resulting accumulation of ferric oxide; and (3) pH changes due to protons formed in iron oxidation and released from the roots to balance excess intake of cations over anions. A further process, so far not much investigated, is the possibility of CO2 uptake by the roots. Large amounts of CO2 accumulate in submerged soils because CO2 formed in soil respiration escapes only slowly by diffusion through the water-saturated soil pores. There is therefore a large CO2 gradient between the soil and the aerenchyma inside the root, and CO2 may be taken up by the roots and vented to the atmosphere. The extent of this and its consequences for rhizosphere chemistry and biology are poorly understood. We grew rice plants in a submerged, strongly-reduced, Philippine rice soil contained in 10-cm diameter, 20-cm deep Perspex pots. Four-week old rice seedlings, grown in nutrient culture, were transplanted into the pots at either 1 or 4 plants per pot, planted closely together. After 3 and 4 weeks, the pots were analysed with an X-ray CT scanner (Custom Nikon/Xtek Hutch; 80 mm by 56 mm field of view and 40 μm voxel size). Gas bubbles were extracted from the data by 3D median filtering and roots using a region-growth method. The images showed prominent and abundant gas bubbles in the soil bulk, but no or very few bubbles in the soil close to roots. There was a clear relation between the absence of gas bubbles and the presence of roots, as well as an increasing concentration of bubbles with depth through the soil. Analysis of the bubbles showed they were approximately 50% CO2 by volume and 50% CH4. The corresponding concentrations of dissolved CO2 + HCO3- (NB CO2 is 20-times more soluble than CH4) in the soil bulk were of the order of 100 mM. We developed a mathematical model of CO2 generation and transport in submerged soil with uptake by and transport through rice roots, and used it to analyse the images. This showed that the observed depletion of CO2 around the roots was consistent with realistic values of parameters for the root gas permeability and rates of CO2 production and diffusion in submerged soil. Depletion of CO2 around the roots will have consequences for the chemistry of the rice rhizosphere and the extent of the root-induced pH changes and other changes listed above. In continuing work we are investigating the implications for the solubility and root uptake of soil Zn, deficiency of which is a widespread constraint to rice growth.
USDA-ARS?s Scientific Manuscript database
Midwestern US agriculture is dominated by corn and soybean production. Corn has typically higher Net Ecosystem Exchange (NEE, that is the annual sum of CO2 fluxes, the total carbon uptake minus total carbon respired by the plants-soil-ecosystem) than soybean due to increased carbon uptake efficiency...
Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems.
Forkel, Matthias; Carvalhais, Nuno; Rödenbeck, Christian; Keeling, Ralph; Heimann, Martin; Thonicke, Kirsten; Zaehle, Sönke; Reichstein, Markus
2016-02-12
Atmospheric monitoring of high northern latitudes (above 40°N) has shown an enhanced seasonal cycle of carbon dioxide (CO2) since the 1960s, but the underlying mechanisms are not yet fully understood. The much stronger increase in high latitudes relative to low ones suggests that northern ecosystems are experiencing large changes in vegetation and carbon cycle dynamics. We found that the latitudinal gradient of the increasing CO2 amplitude is mainly driven by positive trends in photosynthetic carbon uptake caused by recent climate change and mediated by changing vegetation cover in northern ecosystems. Our results underscore the importance of climate-vegetation-carbon cycle feedbacks at high latitudes; moreover, they indicate that in recent decades, photosynthetic carbon uptake has reacted much more strongly to warming than have carbon release processes. Copyright © 2016, American Association for the Advancement of Science.
Ahlström, Anders; Raupach, Michael R; Schurgers, Guy; Smith, Benjamin; Arneth, Almut; Jung, Martin; Reichstein, Markus; Canadell, Josep G; Friedlingstein, Pierre; Jain, Atul K; Kato, Etsushi; Poulter, Benjamin; Sitch, Stephen; Stocker, Benjamin D; Viovy, Nicolas; Wang, Ying Ping; Wiltshire, Andy; Zaehle, Sönke; Zeng, Ning
2015-05-22
The growth rate of atmospheric carbon dioxide (CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. Whereas the mean sink is dominated by highly productive lands (mainly tropical forests), the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature. Copyright © 2015, American Association for the Advancement of Science.
PIMIENTA‐BARRIOS, EULOGIO; GONZALEZ DEL CASTILLO‐ARANDA, MARIA EUGENIA; MUÑOZ‐URIAS, ALEJANDRO; NOBEL, PARK S.
2003-01-01
The effects of drought and the fungicide benomyl on a wild platyopuntia, Opuntia robusta Wendl., growing in a rocky semi‐arid environment were assessed. Cladode phosphorus content, cladode water potential and daily net CO2 uptake were measured monthly in 2000 and 2001 before, during and after the summer rainy period. During 2000, the formation of new roots and new cladodes was severely suppressed in response to a prolonged drought, impairing the development of the symbiotic relationship between the arbuscular mycorrhizal (AM) fungi and the roots. Hence no effect of benomyl application was observed on daily carbon assimilation by this Crassulacean acid metabolism plant. During 2001, drought was interrupted, and new cladodes and roots were formed in response to rainfall. Benomyl was highly effective in suppressing root colonization by AM‐fungi; however, daily C assimilation was reduced by benomyl application only in October. Thus, the inhibition of AM‐fungal colonization by benomyl did not affect photosynthesis, water uptake and P uptake under prolonged drought. PMID:12814956
NASA Astrophysics Data System (ADS)
Guan, Yingjie; Fang, Jun; Fu, Tao; Zhou, Huili; Wang, Xin; Deng, Zixiang; Zhao, Jinbao
2016-09-01
A new method for the preparation of the mono-sheet bipolar membrane applied to fuel cells was developed based on the pre-irradiation grafting technology. A series of bipolar membranes were successfully prepared by simultaneously grafting of styrene onto one side of the poly(ethylene-co-tetrafluoroethylene) base film and 1-vinylimidazole onto the opposite side, followed by the sulfonation and alkylation, respectively. The chemical structures and microstructures of the prepared membranes were investigated by ATR-FTIR and SEM-EDS. The TGA measurements demonstrated the prepared bipolar membranes have reasonable thermal stability. The ion exchange capacity, water uptake and ionic conductivity of the membranes were also characterized. The H2/O2 single fuel cells using these membranes were evaluated and revealed a maximum power density of 107 mW cm-2 at 35 °C with unhumidified hydrogen and oxygen. The preliminary performances suggested the great prospect of these membranes in application of bipolar membrane fuel cells.
CO2-induced changes in mineral stoichiometry of wheat grains
NASA Astrophysics Data System (ADS)
Broberg, Malin; Pleijel, Håkan; Högy, Petra
2016-04-01
A comprehensive review of experiments with elevated CO2 (eCO2) presenting data on grain mineral concentration in wheat grain was made. Data were collected both from FACE (Free-Air CO2 Enrichment) and OTC (Open-Top Chamber) experiments. Analysis was made i) by deriving response functions for the relative effect on yield and mineral concentration in relation to CO2 concentration, ii) meta-analysis to test the magnitude and significance of observed effects and iii) comparison of the CO2 effect on the accumulation of different minerals in relation to accumulation of biomass and accumulation of N. Data were obtained for the following minerals: N, Zn, Mn, K, Ca, Mg, P, Fe, S, Cr, Cu, Cd and Na. In addition, data for starch, the dominating carbohydrate of wheat grain, were extracted. The responses ranged from near zero effects to strong negative effects of eCO2 on mineral concentration. The order of effect size was the following (from largest to smallest effect) for the different elements: Fe, Ca, S, Zn, Cd, N, Mg, Mn, P, Cu, Cr, K and Na. Particularly strong negative impacts of eCO2 were found in the essential mineral elements Fe, S, Ca, Zn and Mg. Especially Fe, Zn and Mg are nutrients for which deficiency in humans is a problem in todaýs world. The rather large differences in response of different elements indicated that the CO2-induced responses cannot be explained by a simple growth dilution model. Rather, uptake and transport mechanisms may have to be considered in greater detail, as well as the link of different elements with the uptake of nitrogen, the quantitatively dominating mineral nutrient, to explain the observed pattern. No effect of eCO2 on starch concentration could be demonstrated. This substantiates the rejection of a simple dilution model, since one would expect starch concentrations to be elevated in order to explain reduced mineral concentrations by carbohydrate dilution. The concentrations of toxic Cd was negatively affected, in principle a positive environmental effect and possibly as a result of reduced transpiration under eCO2, since uptake and transport of Cd is known to be related to transpiration. For elements with substantial data the response in OTC and FACE exposure systems could be compared and no large differences were observed. Our study shows that eCO2 has a significant effect on the mineral composition of wheat grain. This has strong implications for human nutrition in a world of rising CO2 concentrations. An altered chemical composition of biomass under eCO2 is also of great importance for the biogeochemical cycling of elements in general.