Sample records for maximum compressive stress

  1. Tectonic stress in the plates

    NASA Technical Reports Server (NTRS)

    Richardson, R. M.; Solomon, S. C.; Sleep, N. H.

    1979-01-01

    In the present paper, the basic set of global intraplate stress orientation data is plotted and tabulated. Although the global intraplate stress field is complicated, several large-scale patterns can be seen. Much of stable North America is characterized by an E-W to NE-SW trend for the maximum compressive stress. South American lithosphere beneath the Andes, and perhaps farther east in the stable interior, has horizontal compressive stresses trending E-W to NW-SE. Western Europe north of the Alps is characterized by a NW-SE trending maximum horizontal compression, while Asia has the maximum horizontal compressive stress trending more nearly N-S, especially near the Himalayan front.

  2. Collateral Damage to Satellites from an EMP Attack

    DTIC Science & Technology

    2010-08-01

    peak dose is computed in an infinite half plane of silicon. The resulting in- plane stresses in silicon are shown in Figure VI.23. In- plane refers to...achieved by the SLAR coating 81 Figure VIII.6. Ratio of the peak in- plane compressive stress to the maximum compressive stress for the SLAR coating...82 Figure VIII.7. Maximum in- plane compressive stress in a SLAR coating on DMSP/NOAA subjected to the threat events 83 Figure VIII.8. Maximum in

  3. Method for selectively orienting induced fractures in subterranean earth formations

    DOEpatents

    Shuck, Lowell Z.

    1977-02-01

    The orientation of hydraulically-induced fractures in relatively deep subterranean earth formations is normally confined to vertical projections along a plane parallel to the maximum naturally occurring (tectonic) compressive stress field. It was found that this plane of maximum compressive stress may be negated and, in effect, re-oriented in a plane projecting generally orthogonal to the original tectonic stress plane by injecting liquid at a sufficiently high pressure into a wellbore fracture oriented in a plane parallel to the plane of tectonic stress for the purpose of stressing the surrounding earth formation in a plane generally orthogonal to the plane of tectonic stress. With the plane of maximum compressive stress re-oriented due to the presence of the induced compressive stress, liquid under pressure is injected into a second wellbore disposed within the zone influenced by the induced compressive stress but at a location in the earth formation laterally spaced from the fracture in the first wellbore for effecting a fracture in the second wellbore along a plane generally orthogonal to the fracture in the first wellbore.

  4. Tensile and compressive behavior of Borsic/aluminum

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Davis, J. G., Jr.; Viswanathan, C. N.

    1977-01-01

    The results of an experimental investigation of the mechanical behavior of Borsic/aluminum are presented. Composite laminates were tested in tension and compression for monotonically increasing load and also for variable loading cycles in which the maximum load was increased in each successive cycle. It is shown that significant strain-hardening, and corresponding increase in yield stress, is exhibited by the metal matrix laminates. For matrix dominated laminates, the current yield stress is essentially identical to the previous maximum stress, and unloading is essentially linear with large permanent strains after unloading. For laminates with fiber dominated behavior, the yield stress increases with increase in the previous maximum stress, but the increase in yield stress does not keep pace with the previous maximum stress. These fiber dominated laminates exhibit smaller nonlinear strains, reversed nonlinear behavior during unloading, and smaller permanent strains after unloading. Compression results from sandwich beams and flat coupons are shown to differ considerably. Results from beam specimens tend to exhibit higher values for modulus, yield stress, and strength.

  5. Parametric study on single shot peening by dimensional analysis method incorporated with finite element method

    NASA Astrophysics Data System (ADS)

    Wu, Xian-Qian; Wang, Xi; Wei, Yan-Peng; Song, Hong-Wei; Huang, Chen-Guang

    2012-06-01

    Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and resistance to corrosion fatigue, cracking, etc. Compressive residual stress and dent profile are important factors to evaluate the effectiveness of shot peening process. In this paper, the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated. Firstly, dimensionless relations of processing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were deduced by dimensional analysis method. Secondly, the influence of each dimensionless parameter on dimensionless variables was investigated by the finite element method. Furthermore, related empirical formulas were given for each dimensionless parameter based on the simulation results. Finally, comparison was made and good agreement was found between the simulation results and the empirical formula, which shows that a useful approach is provided in this paper for analyzing the influence of each individual parameter.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, K.; Jacob, K.

    Flank eruptions of polygenetic volcanoes are regarded as surface expressions of radial dikes. Therefore, the approximate pattern of radial dikes is revealed by the distribution of sites of flank eruptions. Bending of radial dikes into a preferred orientation reveals the maximum horizontal compressive stress axis. The Aleutian and Alaskan volcanoes are studied using this concept and 28 orientations of the maximum horizontal compressive stress axis are obtained. Combined with the orientation of similar quality obtained from active faults in central Alaska the trajectories of the maximum horizontal stress for the entire area during recent 10,000 to 100,000 years or longermore » is depicted. Along the Aleutian-Alaska volcanic belt, the maximum horizontal compression parallels the direction of relative motion between the North American and Pacific plates. Seven roughly east-westerly orientations are obtained from west Alaskan and Bering Sea volcanoes. In central Alaska, the trajectories spread north-westward in a fan shape with axis of symmetry in a N25/sup 0/W direction passing through the easternmost part of the Aleutian trench. The trajectories continue westward onto the Bering Sea shelf with a generally westerly trend. The overall pattern of orientations of maximum horizontal compressive stresses seems to be explained by the convergent plate motions along. An exception is the high--angle relationship between the maximum horizontal stress orientation in the central Aleutians and the immediate back-arc region, which suggests that in the back-arc region the tectonic stress system has a different origin probably at considerable depth beneath the crust.« less

  7. Discussion on the installation checking method of precast composite floor slab with lattice girders

    NASA Astrophysics Data System (ADS)

    Chen, Li; Jin, Xing; Wang, Yahui; Zhou, Hele; Gu, Jianing

    2018-03-01

    Based on the installation checking requirements of China’s current standards and the international norms for prefabricated structural precast components, it proposed an installation checking method for precast composite floor slab with lattice girders. By taking an equivalent composite beam consisted of a single lattice girder and the precast concrete slab as the checking object, compression instability stress of upper chords and yield stress of slab distribution reinforcement at the maximum positive moment, tensile yield stress of upper chords, slab normal section normal compression stress and shear instability stress of diagonal bars at the maximum negative moment were checked. And the bending stress and deflection of support beams, strength and compression stability bearing capacity of the vertical support, shear bearing capacity of the bolt and compression bearing capacity of steel tube wall at the bolt were checked at the same time. Every different checking object was given a specific load value and load combination. Application of installation checking method was given and testified by example.

  8. Laser quench hardening of steel: Effects of superimposed elastic pre-stress on the hardness and residual stress distribution

    NASA Astrophysics Data System (ADS)

    Meserve, Justin

    Cold drawn AISI 4140 beams were LASER surface hardened with a 2 kW CO2 LASER. Specimens were treated in the free state and while restrained in a bending fixture inducing surface tensile stresses of 94 and 230 MPa. Knoop hardness indentation was used to evaluate the through thickness hardness distribution, and a layer removal methodology was used to evaluate the residual stress distribution. Results showed the maximum surface hardness attained was not affected by pre-stress during hardening, and ranged from 513 to 676 kg/mm2. The depth of effective hardening varied at different magnitudes of pre-stress, but did not vary proportionately to the pre-stress. The surface residual stress, coinciding with the maximum compressive residual stress, increased as pre-stress was increased, from 1040 MPa for the nominally treated specimens to 1270 MPa for specimens pre-stressed to 230 MPa. The maximum tensile residual stress observed in the specimens decreased from 1060 MPa in the nominally treated specimens to 760 MPa for specimens pre-stressed to 230 MPa. Similarly, thickness of the compressive residual stress region increased and the depth at which maximum tensile residual stress occurred increased as the pre-stress during treatment was increased Overall, application of tensile elastic pre-stress during LASER hardening is beneficial to the development of compressive residual stress in AISI 4140, with minimal impact to the hardness attained from the treatment. The newly developed approach for LASER hardening may support efforts to increase both the wear and fatigue resistance of parts made from hardenable steels.

  9. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Mower, Timothy E.; Higgins, Jerry D.; Yang, In C.; Peters, Charles A.

    1994-01-01

    Study of the hydrologic system at Yucca Mountain, Nevada, requires the extraction of pore-water samples from welded and nonwelded, unsaturated tuffs. Two compression methods (triaxial compression and one-dimensional compression) were examined to develop a repeatable extraction technique and to investigate the effects of the extraction method on the original pore-fluid composition. A commercially available triaxial cell was modified to collect pore water expelled from tuff cores. The triaxial cell applied a maximum axial stress of 193 MPa and a maximum confining stress of 68 MPa. Results obtained from triaxial compression testing indicated that pore-water samples could be obtained from nonwelded tuff cores that had initial moisture contents as small as 13 percent (by weight of dry soil). Injection of nitrogen gas while the test core was held at the maximum axial stress caused expulsion of additional pore water and reduced the required initial moisture content from 13 to 11 percent. Experimental calculations, together with experience gained from testing moderately welded tuff cores, indicated that the triaxial cell used in this study could not apply adequate axial or confining stress to expel pore water from cores of densely welded tuffs. This concern led to the design, fabrication, and testing of a one-dimensional compression cell. The one-dimensional compression cell used in this study was constructed from hardened 4340-alloy and nickel-alloy steels and could apply a maximum axial stress of 552 MPa. The major components of the device include a corpus ring and sample sleeve to confine the sample, a piston and base platen to apply axial load, and drainage plates to transmit expelled water from the test core out of the cell. One-dimensional compression extracted pore water from nonwelded tuff cores that had initial moisture contents as small as 7.6 percent; pore water was expelled from densely welded tuff cores that had initial moisture contents as small as 7.7 percent. Injection of nitrogen gas at the maximum axial stress did not produce additional pore water from nonwelded tuff cores, but was critical to recovery of pore water from densely welded tuff cores. Gas injection reduced the required initial moisture content in welded tuff cores from 7.7 to 6.5 percent. Based on the mechanical ability of a pore-water extraction method to remove water from welded and nonwelded tuff cores, one-dimensional compression is a more effective extraction method than triaxial compression. However, because the effects that one-dimensional compression has on pore-water chemistry are not completely understood, additional testing will be needed to verify that this method is suitable for pore-water extraction from Yucca Mountain tuffs.

  10. 49 CFR 173.302a - Additional requirements for shipment of nonliquefied (permanent) compressed gases in...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... elastic expansion was determined at the time of the last test or retest by the water jacket method. (3) Either the average wall stress or the maximum wall stress does not exceed the wall stress limitation shown in the following table: Type of steel Average wall stress limitation Maximum wall stress...

  11. Stratigraphy and Stress History Recorded by a Complex Volcano-Tectonic Feature in the Nemesis Tessera Quadrangle, Venus

    NASA Technical Reports Server (NTRS)

    Doggett, T. C.; Grosfils, E. B.

    2002-01-01

    The stress history of a feature, identified as a previously uncataloged dike swarm, at 45N 191E is mapped as clockwise rotation of maximum horizontal compressive stress. It is intermediate between areas associated with compression, mantle upwelling and convection. Additional information is contained in the original extended abstract.

  12. Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China

    NASA Astrophysics Data System (ADS)

    Wan, Tianfeng

    1984-10-01

    It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.

  13. Piezoelectric properties of synthetic hydroxyapatite-based organic-inorganic hydrated materials

    NASA Astrophysics Data System (ADS)

    Rodriguez, Rogelio; Rangel, Domingo; Fonseca, Gerardo; Gonzalez, Maykel; Vargas, Susana

    Disks of synthetic hydroxyapatite agglutinated with a synthetic polymer and hydrated in a moisture fog, were prepared. A well-defined piezoelectric signal of these samples was obtained when a relative small compression stress of 35 MPa (corresponding a force of 450 daN) was applied; piezoelectric signals of up to 12 mV were obtained with this stress. Two different compression methods were followed to obtain the piezoelectric signal: (a) hold method, where the load was maintained constant once it reaches the maximum stress and (b) release method, where the load was removed rapidly when the stress reaches its maximum value. The samples were characterized using the techniques: X-ray Diffraction, Dielectric Relaxation Spectroscopy and mechanical test.

  14. Stress Study on Southern Segment of Longmenshan Fault Constrained by Focal Mechanism Data

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Liang, C.; Su, J.; Zhou, L.

    2016-12-01

    The Longmenshan fault (LMSF) lies at the eastern margin of Tibetan plateau and constitutes the boundary of the active Bayankala block and rigid Sichuan basin. This fault was misinterpreted as an inactive fault before the great Wenchuan earthquake. Five years after the devastating event, the Lushan MS 7.0 stroke the southern segment of the LMSF but fractured in a very limited scale and formed a seismic gap between the two earthquakes. In this study, we determined focal mechanisms of earthquakes with magnitude M≥3 from Jan 2008 to July 2014 in the southern segment of LMSF, and then applied the damped linear inversion to derive the regional stress field based on the focal mechanisms. Focal mechanisms of 755 earthquakes in total were determined. We further used a damped linear inversion technique to produce a 2D stress map in upper crust in the study region. A dominant thrust regime is determined south of the seismic gap, with a horizontal maximum compression oriented in NWW-SEE. But in the area to the north of the seismic gap is characterized as a much more complex stress environment. To the west of the Dujiangyan city, there appear to be a seismic gap in the Pengguan complex. The maximum compressions show the anti-clockwise and clockwise patterns to the south and north of this small gap. Thus the small gap seems to be an asperity that causes the maximum compression to rotate around it. While combined the maximum compression pattern with the focal solutions of strong earthquakes (Mw≥5) in this region, two of those strong earthquakes located near the back-range-fault have strikes parallel to the Miyaluo fault. Considering a large amount of earthquakes in Lixian branch, the Miyaluo fault may be extended to LMSF following the great Wenchuan earthquake. Investigations on the stress field of different depths indicate complex spatial variations. The Pengguan complex is almost aseismic in shallow depth in its central part. In deeper depth, the maximum compressions show the NNW-SSE and NE-SW directions to the north and south of the seismic gap respectively, this are surprisingly different from that of the shallower depth. Thus the maximum compressions vary with depth may imply the movement in depth is decoupled from the movement in shallow depth. This work was partially supported by National Natural Science Foundation of China (41340009).

  15. Experimental Study of Hybrid Fractures and the Transition From Joints to Faults

    NASA Astrophysics Data System (ADS)

    Ramsey, J. M.; Chester, F. M.

    2003-12-01

    Joints and faults are end members of a continuous spectrum of brittle fractures including the hybrid fractures, hypothesized to form under mixed compressive and tensile stress. However, unequivocal evidence for the existence of hybrid fractures has not been presented. To investigate this transition, we have conducted triaxial extension experiments on dog-bone shaped cylindrical samples of Carrara marble at room temperature, an axial extension rate of 2x10-2 mm s-1, and confining pressures between 7.5 and 170 MPa. Two parallel suites of experiments were completed, one using very weak, latex jacketing to obtain accurate failure strength, and another using copper foil jacketing to preserve fracture surfaces. The combined data set provides strong evidence for the existence of hybrid fractures on the basis of the progressive change in failure strength, fracture orientation, and fracture surface morphology from joints to faults. At the lowest confining pressures (7.5 to 60 MPa), fractures are oriented approximately parallel to the maximum principal compressive stress, form at a tensile axial stress of approximately -7.75 MPa (i.e. the uniaxial tensile strength), and display fracture surfaces characterized by many reflective grain-scale cleavage faces, consistent with jointing. At the highest confining pressures (130 to 170 MPa), fractures are oriented from 13.4 to 21.6 degrees to the maximum principal compressive stress, form under completely compressive stress states where the axial stress is between 0 and 4.3 MPa, and are characterized by short slip lineations and powdery, finely comminuted grains consistent with faulting. At intermediate confining pressures (70 to 120 MPa), fractures are oriented from 3.7 to 12.4 degrees to the maximum principal compressive stress, form under mixed stress conditions with the axial stress ranging from -10.6 to -3.0 MPa, and display both reflective cleavage faces and short slip lineations with comminuted grains, consistent with hybrid fracturing.

  16. Biomechanical Property of a Newly Designed Assembly Locking Compression Plate: Three-Dimensional Finite Element Analysis

    PubMed Central

    Liu, Da

    2017-01-01

    In this study, we developed and validated a refined three-dimensional finite element model of middle femoral comminuted fracture to compare the biomechanical stability after two kinds of plate fixation: a newly designed assembly locking compression plate (NALCP) and a locking compression plate (LCP). CT data of a male volunteer was converted to middle femoral comminuted fracture finite element analysis model. The fracture was fixated by NALCP and LCP. Stress distributions were observed. Under slow walking load and torsion load, the stress distribution tendency of the two plates was roughly uniform. The anterolateral femur was the tension stress area, and the bone block shifted toward the anterolateral femur. Maximum stress was found on the lateral border of the number 5 countersink of the plate. Under a slow walking load, the NALCP maximum stress was 2.160e+03 MPa and the LCP was 8.561e+02 MPa. Under torsion load, the NALCP maximum stress was 2.260e+03 MPa and the LCP was 6.813e+02 MPa. Based on those results of finite element analysis, the NALCP can provide adequate mechanical stability for comminuted fractures, which would help fixate the bone block and promote bone healing. PMID:29065654

  17. Effects of low-modulus coatings on pin-bone contact stresses in external fixation.

    PubMed

    Manley, M T; Hurst, L; Hindes, R; Dee, R; Chiang, F P

    1984-01-01

    The intent of this study was to investigate the stress distribution in cortical bone around fracture fixation pins and around pins coated with various polymeric and elastomeric materials. Since these interface stresses cannot be measured directly, a photoelastic technique was employed and stresses were measured in two-dimensional bone models fabricated from sheets of epoxy resin. Our results showed that when a fixation pin was loaded in compression, the compressive stress measured in the model was greatest at the pin-model interface. The magnitude of the compressive stress was found to diminish steeply away from the hole in a log decrement distribution which was asymptotic to the value of the average stress in the model. When polymeric and elastomeric materials were applied as pin coatings and the performance of the coated pins was compared to that of uncoated pins of the same overall diameter, a reduction of the maximum stress in the bone model was demonstrated. Among the coatings tested, we found that of the polymeric materials ultrahigh molecular weight polyethylene (UHMWPE) was most effective at reducing the peak cortical stress magnitude. The most effective coating material overall was found to be silicon elastomer. Computation of stress values in models loaded through stainless-steel pins and through pins coated with 1-mm silicon elastomer showed that the presence of the elastomer layer caused a reduction of about 50% in the maximum compressive stress in the model.

  18. Fatigue Characterization of Fire Resistant Syntactic Foam Core Material

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Mynul

    Eco-Core is a fire resistant material for sandwich structural application; it was developed at NC A&T State University. The Eco-Core is made of very small amount of phenolic resin and large volume of flyash by a syntactic process. The process development, static mechanical and fracture, fire and toxicity safety and water absorption properties and the design of sandwich structural panels with Eco-Core material was established and published in the literature. One of the important properties that is needed for application in transportation vehicles is the fatigue performance under different stress states. Fatigue data are not available even for general syntactic foams. The objective of this research is to investigate the fatigue performance of Eco-Core under three types of stress states, namely, cyclic compression, shear and flexure, then document failure modes, and develop empherical equations for predicting fatigue life of Eco-Core under three stress states. Compression-Compression fatigue was performed directly on Eco-Core cylindrical specimen, whereas shear and flexure fatigue tests were performed using sandwich beam made of E glass-Vinyl Ester face sheet and Eco-Core material. Compression-compression fatigue test study was conducted at two values of stress ratios (R=10 and 5), for the maximum compression stress (sigmamin) range of 60% to 90% of compression strength (sigmac = 19.6 +/- 0.25 MPa) for R=10 and 95% to 80% of compression strength for R=5. The failure modes were characterized by the material compliance change: On-set (2% compliance change), propagation (5%) and ultimate failure (7%). The number of load cycles correspond to each of these three damages were characterized as on-set, propagation and total lives. A similar approach was used in shear and flexure fatigue tests with stress ratio of R=0.1. The fatigue stress-number of load cycles data followed the standard power law equation for all three stress states. The constant of the equation were established for the three stress states and three types of the failure modes. This equation was used to estimate endurance limit (106 cycles) of the material. Like metallic materials, the compression fatigue life of Eco-Core was found to be dependent on the stress range instead of maximum or mean cyclic stress. Furthermore shear and flexural ultimate failure of the core material was found to be due to a combination of shear and tensile stress.

  19. Longitudinal residual stresses in boron fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1976-01-01

    A method of measuring the longitudinal residual stress distribution in boron fibers is presented. The residual stresses in commercial CVD boron on tungsten fibers of 102, 142, and 203 microns (4, 5.6, and 8 mil) diameters were determined. Results for the three sizes show a compressive stress at the surface 800 to -1400 MN/sq m 120 to -200 ksi), changing monotonically to a region of tensile stress within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile 600 to 1000 MN/sq m(90 to 150 ksi) and then decreases to compressive near the tungsten boride core. The core itself is under a compressive stress of approximately -1300 MN/sq m (-190 ksi). The effects of surface removal on core residual stress and core-initiated fracture are discussed.

  20. Dissipative processes under the shock compression of glass

    NASA Astrophysics Data System (ADS)

    Savinykh, A. S.; Kanel, G. I.; Cherepanov, I. A.; Razorenov, S. V.

    2016-03-01

    New experimental data on the behavior of the K8 and TF1 glasses under shock-wave loading conditions are obtained. It is found that the propagation of shock waves is close to the self-similar one in the maximum compression stress range 4-12 GPa. Deviations from a general deformation diagram, which are related to viscous dissipation, take place when the final state of compression is approached. The parameter region in which failure waves form in glass is found not to be limited to the elastic compression stress range, as was thought earlier. The failure front velocity increases with the shock compression stress. Outside the region covered by a failure wave, the glasses demonstrate a high tensile dynamic strength (6-7 GPa) in the case of elastic compression, and this strength is still very high after transition through the elastic limit in a compression wave.

  1. The fatigue behavior of composite laminates under various mean stresses

    NASA Technical Reports Server (NTRS)

    Rotem, A.

    1991-01-01

    A method is developed for predicting the S-N curve of a composite laminate which is subjected to an arbitrary stress ratio, R (minimum stress/maximum stress). The method is based on the measuring of the S-N behavior of two distinct cases, tension-tension and compression-compression fatigue loadings. Using these parameters, expressions are formulated that estimate the fatigue behavior under any stress ratio loading. Experimental results from the testing of graphite/epoxy laminates, with various structures, are compared with the predictions and show good agreement.

  2. Effect of residual stresses induced by prestressing on rolling element fatigue life

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1972-01-01

    A mechanical prestress cycle suitable to induce compressive stress beneath the surface of the inner race of radially loaded 207-size bearings was determined. Compressive residual stress in excess 0.69 x 10 to the 9th power N/sq m (100,000 psi), as measured by X-ray diffraction, were induced at the depth of maximum shearing stress. The prestress cycle consisted of running the bearings for 25 hours at 2750 rpm at a radial load which produced a maximum Hertz stress of 3.3 x 10 to the 9th power N/sq m (480,000 psi) at the contact of the inner race and the heaviest loaded ball. Bearings subjected to this prestress cycle and subsequently fatigue tested gave a 10 percent fatigue life greater than twice that of a group of baseline bearings.

  3. Twyman effect mechanics in grinding and microgrinding.

    PubMed

    Lambropoulos, J C; Xu, S; Fang, T; Golini, D

    1996-10-01

    In the Twyman effect (1905), when one side of a thin plate with both sides polished is ground, the plate bends: The ground side becomes convex and is in a state of compressive residual stress, described in terms of force per unit length (Newtons per meter) induced by grinding, the stress (Newtons per square meter) induced by grinding, and the depth of the compressive layer (micrometers). We describe and correlate experiments on optical glasses from the literature in conditions of loose abrasive grinding (lapping at fixed nominal pressure, with abrasives 4-400 μm in size) and deterministic microgrinding experiments (at a fixed infeed rate) conducted at the Center for Optics Manufacturing with bound diamond abrasive tools (with a diamond size of 3-40 μm, embedded in metallic bond) and loose abrasive microgrinding (abrasives of less than 3 μm in size). In brittle grinding conditions, the grinding force and the depth of the compressive layer correlate well with glass mechanical properties describing the fracture process, such as indentation crack size. The maximum surface residual compressive stress decreases, and the depth of the compressive layer increases with increasing abrasive size. In lapping conditions the depth of the abrasive grain penetration into the glass surface scales with the surface roughness, and both are determined primarily by glass hardness and secondarily by Young's modulus for various abrasive sizes and coolants. In the limit of small abrasive size (ductile-mode grinding), the maximum surface compressive stress achieved is near the yield stress of the glass, in agreement with finite-element simulations of indentation in elastic-plastic solids.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, J.S.; Miyamoto, Y.

    The fracture behavior of graded Al{sub 2}O{sub 3}/TiC/Ni materials with a symmetric structure was investigated using single-edge notch-bend (SENB) specimens with surface compression. The fracture toughness of the graded materials was determined according to ASTM Standard E399. The results show that the effective fracture toughness increases with an increase in notch depth in the compressive stress zone, and reaches the maximum of 39.2 MPa m{sup 1/2} at the interface of compressive/tensile stress zones. Finite elements analysis reveals that the surface compression will be intensified at the notch root once the specimen is edge-notched because of the stress concentration, and themore » digress of the compressive stress intensification increases with an increase in notch depth. The dependence of the effective fracture toughness of the graded materials on the notch depth shows a behavior similar to the R-curve that is usually associated with microstructural toughening mechanisms. This toughening behavior is caused by the intensification of the compressive stress concentration with the increase of the notch depth. A theoretical analysis based on fracture mechanics verifies that the mechanical reliability of brittle ceramics can be improved effectively by tailoring and controlling the internal stresses.« less

  5. A reassessment of the compressive strength properties of southern yellow pine bark

    Treesearch

    Thomas L. Eberhardt

    2007-01-01

    Samples of southern yellow pine outer bark and wood were tested in compression to determine values for modulus of elasticity, stress at proportional limit, and maximum crushing strength. Results reported here resolve inconsistencies in the compressive strength data previously reported by others for pine bark. Testing of solvent-treated bark blocks suggests that...

  6. Numerical simulation for the coupled thermo-mechanical performance of a lined rock cavern for underground compressed air energy storage

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-12-01

    Compressed air energy storage (CAES) is a technology that uses compressed air to store surplus electricity generated from low power consumption time for use at peak times. This paper presents a thermo-mechanical modeling for the thermodynamic and mechanical responses of a lined rock cavern used for CAES. The simulation was accomplished in COMSOL Multiphysics and comparisons of the numerical simulation and some analytical solutions validated the thermo-mechanical modeling. Air pressure and temperatures in the sealing layer and concrete lining exhibited a similar trend of ‘up-down-down-up’ in one cycle. Significant temperature fluctuation occurred only in the concrete lining and sealing layer, and no strong fluctuation was observed in the host rock. In the case of steel sealing, principal stresses in the sealing layer were larger than those in the concrete and host rock. The maximum compressive stresses of the three layers and the displacement on the cavern surface increased with the increase of cycle number. However, the maximum tensile stresses exhibited the opposite trend. Polymer sealing achieved a relatively larger air temperature and pressure compared with steel and air-tight concrete sealing. For concrete layer thicknesses of 0 and 0.1 m and an initial air pressure of 4.5 MPa, the maximum rock temperature could reach 135 °C and 123 °C respectively in a 30 day simulation.

  7. Crustal anisotropy in the forearc of the Northern Cascadia Subduction Zone, British Columbia

    NASA Astrophysics Data System (ADS)

    Balfour, N. J.; Cassidy, J. F.; Dosso, S. E.

    2012-01-01

    This paper aims to identify sources and variations of crustal anisotropy from shear-wave splitting measurements in the forearc of the Northern Cascadia Subduction Zone of southwest British Columbia. Over 20 permanent stations and 15 temporary stations were available for shear-wave splitting analysis on ˜4500 event-station pairs for local crustal earthquakes. Results from 1100 useable shear-wave splitting measurements show spatial variations in fast directions, with margin-parallel fast directions at most stations and margin-perpendicular fast directions at stations in the northeast of the region. Crustal anisotropy is often attributed to stress and has been interpreted as the fast direction being related to the orientation of the maximum horizontal compressive stress. However, studies have also shown anisotropy can be complicated by crustal structure. Southwest British Columbia is a complex region of crustal deformation and some of the stations are located near large ancient faults. To use seismic anisotropy as a stress indicator requires identifying which stations are influenced by stress and which by structure. We determine the source of anisotropy at each station by comparing fast directions from shear-wave splitting results to the maximum horizontal compressive stress orientation determined from earthquake focal mechanism inversion. Most stations show agreement between the fast direction and the maximum horizontal compressive stress. This suggests that anisotropy is related to stress-aligned fluid-filled microcracks based on extensive dilatancy anisotropy. These stations are further analysed for temporal variations to lay groundwork for monitoring temporal changes in the stress over extended time periods. Determining the sources of variability in anisotropy can lead to a better understanding of the crustal structure and stress, and in the future may be used as a monitoring and mapping tool.

  8. Stress-strain state of reinforced bimodulus beam on an elastic foundation

    NASA Astrophysics Data System (ADS)

    Beskopylny, A. N.; Kadomtseva, E. E.; Strelnikov, G. P.; Berdnik, Y. A.

    2017-10-01

    The paper provides the calculation theory of an arbitrary supported and arbitrary loaded reinforced beam filled with bimodulus material. The formulas determining normal stresses, bending moments, shear forces, rotation angles and a deflection of a rectangular crosssection beam reinforced with any number of bars aligned parallel to the beam axis have been obtained. The numerical study has been carried out to investigate an influence of a modulus of subgrade reaction on values of maximum normal stresses, maximum bending moments and a maximum deflection of a hinged supported beam loaded with a point force or uniform distributed load. The estimation is based on the method of initial parameters for a beam on elastic foundation and the Bubnov-Galerkin method. Values of maximum deflections, maximum bending moments and maximum stresses obtained by these methods coincide. The numerical studies show that taking into consideration the bimodulus of material leads to the necessity to calculate the strength analysis of both tensile stresses and compressive stresses.

  9. Numerical simulation of CO2 scroll compressor in transcritical compression cycle

    NASA Astrophysics Data System (ADS)

    Wang, Hongli; Tian, JingRui; Du, Yuanhang; Hou, Xiujuan

    2018-05-01

    Based on the theory of thermodynamics and kinetics, the mathematical model of an orbiting scroll was established and the stress deformations were employed by ANSYS software. Under the action of pressure load, the results show that the serious displacement part is located in the center of the gear head and the maximum deformation is about 7.33 μm. The maximum radial displacement is about 4.42 μm. The maximum radial stress point occurs in the center of the gear head and the maximum stress is about 40.9 MPa. The maximum axial displacement is about 2.31 μm. The maximum axial stress point occurs in the gear head and the maximum stress is about 44.7 MPa. Under the action of temperature load, the results show that the serious deformation part is located in the center of the gear head and the maximum deformation is about 6.3 μm. The maximum thermal stress occurs in the center of the gear head and the maximum thermal stress is about 86.36 MPa. Under the combined action of temperature load and pressure load, the results show that the serious deformation part and the maximum stress are located in the center of the gear head, and the value are about 7.79 μm and 74.19 MPa, respectively.

  10. Core-log integration for rock mechanics using borehole breakouts and rock strength experiments: Recent results from plate subduction margins

    NASA Astrophysics Data System (ADS)

    Saito, S.; Lin, W.

    2014-12-01

    Core-log integration has been applied for rock mechanics studies in scientific ocean drilling since 2007 in plate subduction margins such as Nankai Trough, Costa Rica margin, and Japan Trench. State of stress in subduction wedge is essential for controlling dynamics of plate boundary fault. One of the common methods to estimate stress state is analysis of borehole breakouts (drilling induced borehole wall compressive failures) recorded in borehole image logs to determine the maximum horizontal principal stress orientation. Borehole breakouts can also yield possible range of stress magnitude based on a rock compressive strength criterion. In this study, we constrained the stress magnitudes based on two different rock failure criteria, the Mohr-Coulomb (MC) criteria and the modified Wiebols-Cook (mWC) criteria. As the MC criterion is the same as that under unconfined compression state, only one rock parameter, unconfined compressive strength (UCS) is needed to constrain stress magnitudes. The mWC criterion needs the UCS, Poisson's ratio and internal frictional coefficient determined by triaxial compression experiments to take the intermediate principal stress effects on rock strength into consideration. We conducted various strength experiments on samples taken during IODP Expeditions 334/344 (Costa Rica Seismogenesis Project) to evaluate reliable method to estimate stress magnitudes. Our results show that the effects of the intermediate principal stress on the rock compressive failure occurred on a borehole wall is not negligible.

  11. Spatially varying stress state in the central U.S. from joint inversion of focal mechanism and maximum horizontal stress data

    NASA Astrophysics Data System (ADS)

    Carlson, G.; Johnson, K. M.; Rupp, J. A.

    2017-12-01

    The Midcontinental United States continues to experience anomalously high rates of seismicity and generate large earthquakes despite its location in the cratonic interior, far from any plate boundary. There is renewed interest in Midcontinent seismicity with the concern that fluid injection within the Illinois basin could induce seismicity. In order to better understand the seismic hazard and inform studies of risk mitigation, we present an assessment of the contemporary crustal stress state in the Illinois basin and surrounding region, looking specifically at how the orientation of maximum horizontal compressive stress varies throughout the region. This information will help identify which faults are critically stressed and therefore most likely to fail under increased pore pressures. We conduct a Bayesian stress inversion of focal mechanism solutions and maximum horizontal stress orientations from borehole breakout, core fracture, overcoring, hydraulic fracture, and strain gauge measurements for maximum horizontal compressive stress orientations across the Midcontinent region and produce a map of expected faulting styles. Because distinguishing the slipping fault plane from the auxiliary nodal plane is ambiguous for focal mechanisms, the choice of the fault plane and associated slip vector to use in the inversion is important in the estimation of the stress tensor. The stress inversion provides an objective means to estimate nonlinear parameters including the spatial smoothing parameter, unknown data uncertainties, as well as the selection of focal mechanism nodal planes. We find a systematic rotation of the maximum horizontal stress orientation (SHmax) across a 1000 km width of the Midcontinent. We find that SHmax rotates from N60E to E/W orientation across the southern Illinois basin and returns to N60E in the western Appalachian basin. The stress regime is largely consistent with strike-slip faulting with pockets of a reverse-faulting stress regime near the New Madrid and Wabash Valley seismic zones.

  12. Failure of Castlegate Sandstone under True Triaxial Loading

    NASA Astrophysics Data System (ADS)

    Ingraham, M. D.; Issen, K. A.; Holcomb, D. J.

    2011-12-01

    Understanding the stress conditions that cause deformation bands to form can provide insight into the geologic processes in a given location. In particular, understanding the relationship of the intermediate principal stress with respect to maximum and minimum compression when bands form, could provide useful information about the intermediate principal stress in field settings. Therefore, a series of tests were performed to investigate the effect of the intermediate principal stress on the mechanical response and failure of Castlegate sandstone under true triaxial states of stress. Constant mean stress tests were run at five different stress states ranging from: 1) intermediate principal stress equal to minimum compression to 2) intermediate principal stress equal to maximum compression. Failure occurred either through deformation band formation or apparent bulk compaction. Specimens that formed a deformation band experienced a stress drop at band formation. For a given level of intermediate principal stress, the peak stress increases with increasing mean stress. Additionally, as intermediate principal stress increases, the peak stress decreases for a given mean stress. Acoustic emissions (AE) recorded during testing were used to locate failure events in three-dimensional space within the sample. This allowed for more detailed investigation of the formation and propagation of the band(s) within the specimen. In specimens that appear to have undergone bulk compaction, AE events were randomly distributed throughout the sample. For specimens with bands, the band angles were measured as the angle between the maximum principal stress direction and the normal to the band that formed. Band angles tend to increase with increasing intermediate principal stress, and decrease with increasing mean stress. Results from the AE data shows that the band angle evolves during testing and the band that is expressed on the surface of the specimen at the conclusion of testing is not always the band that initially formed. AE results also show that low angle bands tend to be more diffuse than higher angle bands. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Characterization of Dilatant Shear Bands in Castlegate Sandstone Using Micro-Computed Tomography

    NASA Astrophysics Data System (ADS)

    Rosenthal, R. E.; Issen, K. A.; Richards, M. C.; Ingraham, M. D.

    2016-12-01

    Deformation bands in granular rock are thin tabular zones of localized shear and/or volumetric strain, which affect permeability and can impact fluid flow, extraction and storage. The present work characterizes dilatant shear bands formed in Castlegate sandstone (a high porosity reservoir analog) during true triaxial laboratory testing (Ingraham et al., 2013a) at low mean stresses. X-ray micro-computed tomography (micro-CT) scans produced 3-dimensional voxel files containing density information of tested specimens. Micro-CT data were thresholded to extract the least dense voxels, corresponding to pore space and localized dilation. Plane fits were determined by a custom algorithm that calculated the angle between the band normal and maximum compression direction. For tests at the same mean stress, the band angle is lower when intermediate principal stress approaches minimum compression and higher when it approaches maximum compression. Micro-CT band angles were compared to angles from the specimen jackets (Ingraham et al., 2013a), and band angles from plane fits through located acoustic emissions (AE) events (Ingraham et al. 2013b). For non-axisymmetric stress states (three unique principal stresses), one primary dilatant shear band formed in each specimen. Occasionally, secondary bands traversing part of the specimen were also identified. The principal band angles from the micro-CT scans were on average within 3 degrees of the jacket angles and within 9 degrees of AE angles. For axisymmetric stress states (intermediate principal stress equal to maximum or minimum compression) micro-CT results reveal multiple conjugate and/or parallel bands. Each jacket angle correlated to a micro-CT angle within 4 degrees. Micro-CT results also reveal that, regardless of stress state, each band is comprised of a network of interconnected pore space pathways meandering between grain clusters, as opposed to an opening fracture/joint. Ingraham MD, KA Issen, DJ Holcomb, 2013a, J. Geophys. Res. Solid Earth, Vol. 118, pp. 536-552, doi:10.1002/jgrb.50084. Ingraham MD, KA Issen, DJ Holcomb, 2013b, Acta Geotech., Vol. 8, Iss. 6, pp. 645-663, DOI: 10.1007/s11440-013-0275-y.

  14. An Analysis of the Stress Induced in the Periodontal Ligament during Extrusion and Rotation Movements: A Finite Element Method Linear Study Part I.

    PubMed

    Hemanth, M; Raghuveer, H P; Rani, M S; Hegde, Chathura; Kabbur, Karthik J; Vedavathi, B; Chaithra, D

    2015-09-01

    Orthodontic tooth movement occurs due to various biomechanical changes in the periodontium. Forces within the optimal range yield maximum tooth movement with minimum deleterious effects. Among various types of tooth movements, extrusion and rotational movements are seen to be associated with the least amount of root resorption and have not been studied in detail. Therefore in this study, the stress patterns in the periodontal ligament (PDL) were evaluated with extrusion and rotational movements using the finite element method FEM. A three-dimensional (3D) FEM model of the maxillary incisors was generated using SOLIDWORKS modeling software. Stresses in the PDL were evaluated with extrusive and rotational movements by a 3D FEM using ANSYS software with linear material properties. It was observed that with the application of extrusive load, the tensile stresses were seen at the apex, whereas the compressive stress was distributed at the cervical margin. With the application of rotational movements, maximum compressive stress was distributed at the apex and cervical third, whereas the tensile stress was distributed on cervical third of the PDL on the lingual surface. For extrusive movements, stress values over the periodontal ligament was within the range of optimal stress value as proposed by Lee, with a given force system by Profitt as optimum forces for orthodontic tooth movement using linear properties. During rotation there are stresses concentrated at the apex, hence due to the concentration of the compressive forces at the apex a clinician must avoid placing heavy stresses during tooth movement.

  15. Elastic-Plastic Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Barker, J. Mark; Field, Robert E. (Technical Monitor)

    2003-01-01

    The thermal stresses on a cryogenic storage tank contribute strongly to the state of stress of the tank material and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A previous preliminary elastic analysis showed that the thermal stress on the inner wall would reach approximately 1,000MPa (145,000 psi). This stress far exceeds the ASTM specified room temperature values for both yield (170MPa) and ultimate (485 MPa) strength for 304L stainless steel. The present analysis determines the thermal stresses using an elastic-plastic model. The commercial software application ANSYS was used to determine the transient spatial temperature profile and the associated spatial thermal stress profiles in a segment of a thick-walled vessel during a typical cooldown process. A strictly elastic analysis using standard material properties for 304L stainless steel showed that the maximum thermal stress on the inner and outer walls was approximately 960 MPa (tensile) and - 270 MPa (compressive) respectively. These values occurred early in the cooldown process, but at different times, An elastic-plastic analysis showed significantly reducing stress, as expected due to the plastic deformation of the material. The maximum stress for the inner wall was approximately 225 MPa (tensile), while the maximum stress for the outer wall was approximately - 130 MPa (compressive).

  16. Radial Features around Irnini Mons, Venus: Implications for Timing of Regional Compression

    NASA Astrophysics Data System (ADS)

    Buczkowski, D. L.; McGill, G. E.; Cooke, M. L.

    2003-12-01

    Flows and other deposits from Irnini Mons are superimposed on an older, regional plains material. Wrinkle ridges are generally abundant on this regional plains material and are present in at least two sets: one trending east-west and another concentric to Irnini Mons. Radial features on top of the Irnini flows are mapped as lineations or grabens, as resolution allows. High resolution mapping at 75 m/pixel also reveals ridges radial to Irnini Mons on top of the Irnini flows. These radial ridges are located from approximately N60E to N75E. Radial grabens around a volcano have been explained mathematically, with the magma chamber of a volcano simplistically described as a pressurized hole in an elastic plate. However, magma pressure alone can not explain the presence of radial ridges. The regional east-west trending wrinkle ridges imply a regional north-south compression affecting the Irnini Mons area. The regional stress field around an empty hole in an elastic plate is perturbed close to the hole, although it remains unperturbed at infinity; the change in material properties from the surrounding rock to a magma-filled chamber allows us to consider the chamber as "soft" and thus effectively empty. The perturbation of a uniaxial regional compressive stress around a pressurized hole is such that at angles of 90 and 270 degrees (east-west) the maximum principal stresses close to the hole are compressive, while at angles 0 and 180 degrees (north-south) the maximum principal stresses are tensile. The angle at which maximum principal stresses change from tension to compression depends upon the distance from the hole and the relative magnitudes of magma pressure and the regional compression. While in the simple model resultant stresses would be symmetric around the hole, structural complexities to the south and west of Irnini Mons restrict the predicted pattern of radial ridges as well as grabens to the region northeast of the volcano. Thus, the existence of radial ridges on the Irnini flows implies that the regional north-south compression that caused the east-west trending wrinkle ridges was still active during the formation of Irnini Mons. A rough timeline for events in the region could be: 1) formation of east-west wrinkle ridges on regional plains, 2) formation of graben radial to Irnini due to magma pressure coeval with formation of radial ridges due to a combination of magma pressure and ongoing regional compression, 3) cessation of magma pressure and formation of concentric grabens, and 4) formation of concentric wrinkle ridges, perhaps due to gravitational relaxation of the topographic rise.

  17. Biomechanical characteristics of fixation methods for floating pubic symphysis.

    PubMed

    Song, Wenhao; Zhou, Dongsheng; He, Yu

    2017-03-07

    Floating pubic symphysis (FPS) is a relatively rare injury caused by high-energy mechanisms. There are several fixation methods used to treat FPS, including external fixation, subcutaneous fixation, internal fixation, and percutaneous cannulated screw fixation. To choose the appropriate fixation, it is necessary to study the biomechanical performance of these different methods. The goal of this study was to compare the biomechanical characteristics of six methods by finite element analysis. A three-dimensional finite element model of FPS was simulated. Six methods were used in the FPS model, including external fixation (Ext), subcutaneous rod fixation (Sub-rod), subcutaneous plate fixation (Sub-plate), superior pectineal plate fixation (Int-sup), infrapectineal plate fixation (Int-ifa), and cannulated screw fixation (Int-scr). Compressive and rotational loads were then applied in all models. Biomechanical characteristics that were recorded and analyzed included construct stiffness, micromotion of the fracture gaps, von Mises stress, and stress distribution. The construct stiffness of the anterior pelvic ring was decreased dramatically when FPS occurred. Compressive stiffness was restored by the three internal fixation and Sub-rod methods. Unfortunately, rotational stiffness was not restored satisfactorily by the six methods. For micromotion of the fracture gaps, the displacement was reduced significantly by the Int-sup and Int-ifa methods under compression. The internal fixation methods and Sub-plate method performed well under rotation. The maximum von Mises stress of the implants was not large. For the plate-screw system, the maximum von Mises stress occurred over the region of the fracture and plate-screw joints. The maximum von Mises stress appeared on the rod-screw and screw-bone interfaces for the rod-screw system. The present study showed the biomechanical advantages of internal fixation methods for FPS from a finite element view. Superior stabilization of the anterior pelvic ring and fracture gaps was obtained by internal fixation. Subcutaneous fixation had satisfactory outcomes as well. Sub-rod fixation offered good anti-compression, while the Sub-plate fixation provided favorable anti-rotational capacity.

  18. NOLIN: A nonlinear laminate analysis program

    NASA Technical Reports Server (NTRS)

    Kibler, J. J.

    1975-01-01

    A nonlinear, plane-stress, laminate analysis program, NOLIN, was developed which accounts for laminae nonlinearity under inplane shear and transverse extensional stress. The program determines the nonlinear stress-strain behavior of symmetric laminates subjected to any combination of inplane shear and biaxial extensional loadings. The program has the ability to treat different stress-strain behavior in tension and compression, and predicts laminate failure using any or all of maximum stress, maximum strain, and quadratic interaction failure criteria. A brief description of the program is presented including discussion of the flow of information and details of the input required. Sample problems and a complete listing of the program is also provided.

  19. Alveolar bone stress around implants with different abutment angulation: an FE-analysis of anterior maxilla.

    PubMed

    Sadrimanesh, Roozbeh; Siadat, Hakimeh; Sadr-Eshkevari, Pooyan; Monzavi, Abbas; Maurer, Peter; Rashad, Ashkan

    2012-06-01

    To comparatively assess the masticatory stress distribution in bone around implants placed in the anterior maxilla with three different labial inclinations. Three-dimensional finite element models were fabricated for three situations in anterior maxilla: (1) a fixture in contact with buccal cortical plate restored by straight abutment, (2) a fixture inclined at 15 degrees, and (3) 20 degrees labially restored with corresponding angled abutment. A palatal bite force of 146 N was applied to a point 3 mm below the incisal edge. Stress distribution around the bone-fixture interface was determined using ANSYS software. The maximum compressive stress, concentrated in the labial crestal cortical bone, was measured to be 62, 108, and 122 MPa for 0-, 15-, and 20-degree labially inclined fixtures, respectively. The maximum tensile stress, concentrated in the palatal crestal cortical bone, was measured to be 60, 108, and 120 MPa for 0-, 15-, and 20-degree labially inclined fixtures, respectively. While all compressive stress values were under the cortical yield strength of 169 MPa, tensile stress values partially surpassed the yield strength (104 MPa) especially when a 20-degree inclination was followed for fixture placement.

  20. Surface temperatures and glassy state investigations in tribology, part 3. [limiting shear stress rheological model

    NASA Technical Reports Server (NTRS)

    Bair, S.; Winer, W. O.

    1980-01-01

    Research related to the development of the limiting shear stress rheological model is reported. Techniques were developed for subjecting lubricants to isothermal compression in order to obtain relevant determinations of the limiting shear stress and elastic shear modulus. The isothermal compression limiting shear stress was found to predict very well the maximum traction for a given lubricant. Small amounts of side slip and twist incorporated in the model were shown to have great influence on the rising portion of the traction curve at low slide-roll ratio. The shear rheological model was also applied to a Grubin-like elastohydrodynamic inlet analysis for predicting film thicknesses when employing the limiting shear stress model material behavior.

  1. Predicted variation of stress orientation with depth near an active fault: application to the Cajon Pass Scientific Drillhole, southern California

    USGS Publications Warehouse

    Wesson, R.L.

    1988-01-01

    Preliminary measurements of the stress orientation at a depth of 2 km interpreted to indicate that the regional orientation of the maximum compression is normal to the fault, and taken as evidence for a very weak fault. The orientation expected from plate tectonic arguments is about 66?? NE from the strike of the fault. Geodetic data indicate that the orientation of maximum compressive strain rate is about 43?? NE from the strike of the fault, and show nearly pure right-lateral shear acting parallel to the fault. These apparent conflicts in the inferred orientation of the axis of maximum compression may be explained in part by a model in which the fault zone is locked over a depth interval in the range of 2-5 to 15 km, but is very weak above and below that interval. This solution does require, however, a few mm/yr of creep at the surface on the San Andreas or nearby sub-parallel faults (such as the San Jacinto), which has not yet been observed, or a shallow zone near the faults of distributed deformation. -from Author

  2. Stress perturbation associated with the Amazonas and other ancient continental rifts

    USGS Publications Warehouse

    Zoback, M.L.; Richardson, R.M.

    1996-01-01

    The state of stress in the vicinity of old continental rifts is examined to investigate the possibility that crustal structure associated with ancient rifts (specifically a dense rift pillow in the lower crust) may modify substantially the regional stress field. Both shallow (2.0-2.6 km depth) breakout data and deep (20-45 km depth) crustal earthquake focal mechanisms indicate a N to NNE maximum horizontal compression in the vicinity of the Paleozoic Amazonas rift in central Brazil. This compressive stress direction is nearly perpendicular to the rift structure and represents a ???75?? rotation relative to a regional E-W compressive stress direction in the South American plate. Elastic two-dimensional finite element models of the density structure associated with the Amazonas rift (as inferred from independent gravity modeling) indicate that elastic support of this dense feature would generate horizontal rift-normal compressional stresses between 60 and 120 MPa, with values of 80-100 MPa probably most representative of the overall structure. The observed ???75?? stress rotation constrains the ratio of the regional horizontal stress difference to the rift-normal compressive stress to be between 0.25 and 1.0, suggesting that this rift-normal stress may be from 1 to 4 times larger than the regional horizontal stress difference. A general expression for the modification of the normalized local horizontal shear stress (relative to the regional horizontal shear stress) shows that the same ratio of the rift-normal compression relative to the regional horizontal stress difference, which controls the amount of stress rotation, also determines whether the superposed stress increases or decreases the local maximum horizontal shear stress. The potential for fault reactivation of ancient continental rifts in general is analyzed considering both the local stress rotation and modification of horizontal shear stress for both thrust and strike-slip stress regimes. In the Amazonas rift case, because the observed stress rotation only weakly constrains the ratio of the regional horizontal stress difference to the rift-normal compression to be between 0.25 and 1.0, our analysis is inconclusive because the resultant normalized horizontal shear stress may be reduced (for ratios >0.5) or enhanced (for ratios <0.5). Additional information is needed on all three stress magnitudes to predict how a change in horizontal shear stress directly influences the likelihood of faulting in the thrust-faulting stress regime in the vicinity of the Amazonas rift. A rift-normal stress associated with the seismically active New Madrid ancient rift may be sufficient to rotate the horizontal stress field consistent with strike-slip faults parallel to the axis of the rift, although this results in a 20-40% reduction in the local horizontal shear stress within the seismic zone. Sparse stress data in the vicinity of the seismically quiescent Midcontinent rift of the central United States suggest a stress state similar to that of New Madrid, with the local horizontal shear stress potentially reduced by as much as 60%. Thus the markedly different levels of seismic activity associated with these two subparallel ancient rifts is probably due to other factors than stress perturbations due to dense rift pillows. The modeling and analysis here demonstrate that rift-normal compressive stresses are a significant source of stress acting on the lithosphere and that in some cases may be a contributing factor to the association of intraplate seismicity with old zones of continental extension.

  3. Pore geometry as a control on rock strength

    NASA Astrophysics Data System (ADS)

    Bubeck, A.; Walker, R. J.; Healy, D.; Dobbs, M.; Holwell, D. A.

    2017-01-01

    The strength of rocks in the subsurface is critically important across the geosciences, with implications for fluid flow, mineralisation, seismicity, and the deep biosphere. Most studies of porous rock strength consider the scalar quantity of porosity, in which strength shows a broadly inverse relationship with total porosity, but pore shape is not explicitly defined. Here we use a combination of uniaxial compressive strength measurements of isotropic and anisotropic porous lava samples, and numerical modelling to consider the influence of pore shape on rock strength. Micro computed tomography (CT) shows that pores range from sub-spherical to elongate and flat ellipsoids. Samples that contain flat pores are weaker if compression is applied parallel to the short axis (i.e. across the minimum curvature), compared to compression applied parallel to the long axis (i.e. across the maximum curvature). Numerical models for elliptical pores show that compression applied across the minimum curvature results in relatively broad amplification of stress, compared to compression applied across the maximum curvature. Certain pore shapes may be relatively stable and remain open in the upper crust under a given remote stress field, while others are inherently weak. Quantifying the shape, orientations, and statistical distributions of pores is therefore a critical step in strength testing of rocks.

  4. Compressive Failure of Fiber Composites under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Basu, Shiladitya; Waas, Anthony M.; Ambur, Damodar R.

    2006-01-01

    This paper examines the compressive strength of a fiber reinforced lamina under multi-axial stress states. An equilibrium analysis is carried out in which a kinked band of rotated fibers, described by two angles, is sandwiched between two regions in which the fibers are nominally straight. Proportional multi-axial stress states are examined. The analysis includes the possibility of bifurcation from the current equilibrium state. The compressive strength of the lamina is contingent upon either attaining a load maximum in the equilibrium response or satisfaction of a bifurcation condition, whichever occurs first. The results show that for uniaxial loading a non-zero kink band angle beta produces the minimum limit load. For multi-axial loading, different proportional loading paths show regimes of bifurcation dominated and limit load dominated behavior. The present results are able to capture the beneficial effect of transverse compression in raising the composite compressive strength as observed in experiments.

  5. Finite element analysis of maxillary bone stress caused by Aramany Class IV obturator prostheses.

    PubMed

    Miyashita, Elcio Ricardo; Mattos, Beatriz Silva Câmara; Noritomi, Pedro Yoshito; Navarro, Hamilton

    2012-05-01

    The retention of an Aramany Class IV removable partial dental prosthesis can be compromised by a lack of support. The biomechanics of this obturator prosthesis result in an unusual stress distribution on the residual maxillary bone. This study evaluated the biomechanics of an Aramany Class IV obturator prosthesis with finite element analysis and a digital 3-dimensional (3-D) model developed from a computed tomography scan; bone stress was evaluated according to the load placed on the prosthesis. A 3-D model of an Aramany Class IV maxillary resection and prosthesis was constructed. This model was used to develop a finite element mesh. A 120 N load was applied to the occlusal and incisal platforms corresponding to the prosthetic teeth. Qualitative analysis was based on the scale of maximum principal stress; values obtained through quantitative analysis were expressed in MPa. Under posterior load, tensile and compressive stresses were observed; the tensile stress was greater than the compressive stress, regardless of the bone region, and the greatest compressive stress was observed on the anterior palate near the midline. Under an anterior load, tensile stress was observed in all of the evaluated bone regions; the tensile stress was greater than the compressive stress, regardless of the bone region. The Aramany Class IV obturator prosthesis tended to rotate toward the surgical resection when subjected to posterior or anterior loads. The amount of tensile and compressive stress caused by the Aramany Class IV obturator prosthesis did not exceed the physiological limits of the maxillary bone tissue. (J Prosthet Dent 2012;107:336-342). Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  6. Volmer-Weber growth stages of polycrystalline metal films probed by in situ and real-time optical diagnostics

    NASA Astrophysics Data System (ADS)

    Abadias, G.; Simonot, L.; Colin, J. J.; Michel, A.; Camelio, S.; Babonneau, D.

    2015-11-01

    The Volmer-Weber growth of high-mobility metal films is associated with the development of a complex compressive-tensile-compressive stress behavior as the film deposition proceeds through nucleation of islands, coalescence, and formation of a continuous layer. The tensile force maximum has been attributed to the end of the islands coalescence stage, based on ex situ morphological observations. However, microstructural rearrangements are likely to occur in such films during post-deposition, somewhat biasing interpretations solely based on ex situ analysis. Here, by combining two simultaneous in situ and real-time optical sensing techniques, based on surface differential reflectance spectroscopy (SDRS) and change in wafer curvature probed by multibeam optical stress sensor (MOSS), we provide direct evidence that film continuity does coincide with tensile stress maximum during sputter deposition of a series of metal (Ag, Au, and Pd) films on amorphous SiOx. Stress relaxation after growth interruption was testified from MOSS, whose magnitude scaled with adatom mobility, while no change in SDRS signal could be revealed, ruling out possible changes of the surface roughness at the micron scale.

  7. Application of a Reynolds stress turbulence model to the compressible shear layer

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Balakrishnan, L.

    1990-01-01

    Theoretically based turbulence models have had success in predicting many features of incompressible, free shear layers. However, attempts to extend these models to the high-speed, compressible shear layer have been less effective. In the present work, the compressible shear layer was studied with a second-order turbulence closure, which initially used only variable density extensions of incompressible models for the Reynolds stress transport equation and the dissipation rate transport equation. The quasi-incompressible closure was unsuccessful; the predicted effect of the convective Mach number on the shear layer growth rate was significantly smaller than that observed in experiments. Having thus confirmed that compressibility effects have to be explicitly considered, a new model for the compressible dissipation was introduced into the closure. This model is based on a low Mach number, asymptotic analysis of the Navier-Stokes equations, and on direct numerical simulation of compressible, isotropic turbulence. The use of the new model for the compressible dissipation led to good agreement of the computed growth rates with the experimental data. Both the computations and the experiments indicate a dramatic reduction in the growth rate when the convective Mach number is increased. Experimental data on the normalized maximum turbulence intensities and shear stress also show a reduction with increasing Mach number.

  8. Stress Induced in the Periodontal Ligament under Orthodontic Loading (Part I): A Finite Element Method Study Using Linear Analysis.

    PubMed

    Hemanth, M; Deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-08-01

    Orthodontic tooth movement is a complex procedure that occurs due to various biomechanical changes in the periodontium. Optimal orthodontic forces yield maximum tooth movement whereas if the forces fall beyond the optimal threshold it can cause deleterious effects. Among various types of tooth movements intrusion and lingual root torque are associated with causing root resoprtion, especially with the incisors. Therefore in this study, the stress patterns in the periodontal ligament (PDL) were evaluated with intrusion and lingual root torque using finite element method (FEM). A three-dimensional (3D) FEM model of the maxillary incisors was generated using SOLIDWORKS modeling software. Stresses in the PDL were evaluated with intrusive and lingual root torque movements by a 3D FEM using ANSYS software using linear stress analysis. It was observed that with the application of intrusive load compressive stresses were distributed at the apex whereas tensile stress was seen at the cervical margin. With the application of lingual root torque maximum compressive stress was distributed at the apex and tensile stress was distributed throughout the PDL. For intrusive and lingual root torque movements stress values over the PDL was within the range of optimal stress value as proposed by Lee, with a given force system by Proffit as optimum forces for orthodontic tooth movement using linear properties.

  9. Stress Induced in the Periodontal Ligament under Orthodontic Loading (Part I): A Finite Element Method Study Using Linear Analysis

    PubMed Central

    Hemanth, M; deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-01-01

    Background: Orthodontic tooth movement is a complex procedure that occurs due to various biomechanical changes in the periodontium. Optimal orthodontic forces yield maximum tooth movement whereas if the forces fall beyond the optimal threshold it can cause deleterious effects. Among various types of tooth movements intrusion and lingual root torque are associated with causing root resoprtion, especially with the incisors. Therefore in this study, the stress patterns in the periodontal ligament (PDL) were evaluated with intrusion and lingual root torque using finite element method (FEM). Materials and Methods: A three-dimensional (3D) FEM model of the maxillary incisors was generated using SOLIDWORKS modeling software. Stresses in the PDL were evaluated with intrusive and lingual root torque movements by a 3D FEM using ANSYS software using linear stress analysis. Results: It was observed that with the application of intrusive load compressive stresses were distributed at the apex whereas tensile stress was seen at the cervical margin. With the application of lingual root torque maximum compressive stress was distributed at the apex and tensile stress was distributed throughout the PDL. Conclusion: For intrusive and lingual root torque movements stress values over the PDL was within the range of optimal stress value as proposed by Lee, with a given force system by Proffit as optimum forces for orthodontic tooth movement using linear properties. PMID:26464555

  10. Measured Biaxial Residual Stress Maps in a Stainless Steel Weld

    DOE PAGES

    Olson, Mitchell D.; Hill, Michael R.; Patel, Vipul I.; ...

    2015-09-16

    Here, this paper describes a sequence of residual stress measurements made to determine a two-dimensional map of biaxial residual stress in a stainless steel weld. A long stainless steel (316L) plate with an eight-pass groove weld (308L filler) was used. The biaxial stress measurements follow a recently developed approach, comprising a combination of contour method and slitting measurements, with a computation to determine the effects of out-of-plane stress on a thin slice. The measured longitudinal stress is highly tensile in the weld- and heat-affected zone, with a maximum around 450 MPa, and compressive stress toward the transverse edges around ₋250more » MPa. The total transverse stress has a banded profile in the weld with highly tensile stress at the bottom of the plate (y = 0) of 400 MPa, rapidly changing to compressive stress (at y = 5 mm) of ₋200 MPa, then tensile stress at the weld root (y = 17 mm) and in the weld around 200 MPa, followed by compressive stress at the top of the weld at around ₋150 MPa. Finally, the results of the biaxial map compare well with the results of neutron diffraction measurements and output from a computational weld simulation.« less

  11. A three-dimensional finite element analysis of the sports mouthguard.

    PubMed

    Gialain, Ivan Onone; Coto, Neide Pena; Driemeier, Larissa; Noritomi, Pedro Yoshito; Dias, Reinaldo Brito E

    2016-10-01

    The aim of this study was to evaluate the compressive and tensile stresses on dentin and enamel in five different situations: no mouthguard and mouthguards from 1 mm thickness up to 4 mm thickness, using finite element analysis. A three-dimensional geometry of an upper right central incisor was obtained from a computed tomography and transformed into a mesh separating enamel from dentin. A mouthguard was created covering the buccal surface of the enamel in different thicknesses, and a rubber ball with a velocity of 5 m s(-1) was made as the impact object. The maximum principal stress and the minimal principal stress were evaluated in all situations on dentin and enamel. Both maximum and minimal stress on enamel had the greatest value on the control situation (no mouthguard), and their value decreased as the mouthguard thickness increased. The reduction ranged from 66.62% to 85.5% for compressive stress and from 9.76% to 33.37% for tensile stress on enamel. The results for dentin were similar among the situations with or without mouthguards. The mouthguard had beneficial effect considering the stresses on enamel, and between the mouthguard thickness of 3 and 4 mm, there was minimum difference. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Viscoelasticity of human oral mucosa: implications for masticatory biomechanics.

    PubMed

    Sawada, A; Wakabayashi, N; Ona, M; Suzuki, T

    2011-05-01

    The dynamic behavior of oral soft tissues supporting removable prostheses is not well understood. We hypothesized that the stress and strain of the mucosa exhibited time-dependent behavior under masticatory loadings. Displacement of the mucosa on the maxillary residual ridge was measured in vivo by means of a magnetic actuator/sensor under vertical loading in partially edentulous individuals. Subject-specific finite element models of homogeneous bone and mucosa were constructed based on computed tomography images. A mean initial elastic modulus of 8.0 × 10(-5) GPa and relaxation time of 494 sec were obtained from the curve adaptation of the finite element output to the in vivo time-displacement relationship. Delayed increase of the maximum compressive strain on the surface of the mucosa was observed under sustained load, while the maximum strain inside the mucosa was relatively low and uninfluenced by the duration of the load. The compressive stress showed a slight decrease with sustained load, due to stress relaxation of the mucosa. On simulation of cyclic load, the increment of the maximum strain and the evidence of residual strain were revealed after each loading. The results support our hypothesis, and suggest that sustained and repetitive loads accumulate as surface strain on the mucosa.

  13. Stress intensity factors and COD in an orthotropic strip

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1980-01-01

    The elasticity problem for an orthotropic strip or a beam with an internal or an edge crack under general loading conditions is considered. The numerical results are given for four basic loading conditions, namely, uniform tension, pure bending, three point bending, and concentrated surface shear loading. For the strip with an edge crack additional results regarding the crack opening displacements are obtained by using the plastic strip model. A critical quantity which is tabulated is the maximum compressive stress in the plane of the crack. It is shown that this stress may easily exceed the yield limit in compression and hence may severely limit the range of application of the plasticity results.

  14. Dynamic response and residual stress fields of Ti6Al4V alloy under shock wave induced by laser shock peening

    NASA Astrophysics Data System (ADS)

    Sun, Rujian; Li, Liuhe; Zhu, Ying; Zhang, Lixin; Guo, Wei; Peng, Peng; Li, Bo; Guo, Chao; Liu, Lei; Che, Zhigang; Li, Weidong; Sun, Jianfei; Qiao, Hongchao

    2017-09-01

    Laser shock peening (LSP), an innovative surface treatment technique, generates compressive residual stress on the surface of metallic components to improve their fatigue performance, wear resistance and corrosion resistance. To illustrate the dynamic response during LSP and residual stress fields after LSP, this study conducted FEM simulations of LSP in a Ti6Al4V alloy. Results showed that when power density was 7 GW cm-2, a plastic deformation occurred at 10 ns during LSP and increased until the shock pressure decayed below the dynamic yield strength of Ti6Al4V after 60 ns. A maximum tensile region appeared beneath the surface at around 240 ns, forming a compressive-tensile-compressive stress sandwich structure with a thickness of 98, 1020 and 606 μm for each layer. After the model became stabilized, the value of the surface residual compressive stress was 564 MPa at the laser spot center. Higher value of residual stress across the surface and thicker compressive residual stress layers were achieved by increasing laser power density, impact times and spot sizes during LSP. A ‘Residual stress hole’ occurred with a high laser power density of 9 GW cm-2 when laser pulse duration was 10 ns, or with a long laser pulse duration of 20 ns when laser power density was 7 GW cm-2 for Ti6Al4V. This phenomenon occurred because of the permanent reverse plastic deformation generated at laser spot center.

  15. Axial residual stresses in boron fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1978-01-01

    The axial residual stress distribution as a function of radius was determined from the fiber surface to the core including the average residual stress in the core. Such measurements on boron on tungsten (B/W) fibers show that the residual stresses for 102, 142, 203, and 366 micron diameter fibers were similar, being compressive at the surface and changing monotonically to a region of tensile within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile stress of about 860 mn/sq.m and then decreases to a compressive stress near the tungsten boride core. Data were presented for 203 micron diameter B/W fibers that show annealing above 900 C reduces the residual stresses. A comparison between 102 micron diameter B/W and boron on carbon (b/C) shows that the residual stresses were similar in the outer regions of the fibers, but that large differences near and in the core were observed. The effects of these residual stresses on the fracture of boron fibers were discussed.

  16. Relation Between Residual and Hoop Stresses and Rolling Bearing Fatigue Life

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2015-01-01

    Rolling-element bearings operated at high speed or high vibration may require a tight interference fit between the bore of the bearing and shaft to prevent rotation of the bearing bore around the shaft and fretting damage at the interfaces. Previous work showed that the hoop stresses resulting from tight interference fits can reduce bearing lives by as much as 65 percent. Where tight interference fits are required, case-carburized steel such as AISI 9310 or M50 NiL is often used because the compressive residual stresses inhibit subsurface crack formation and the ductile core inhibits inner-ring fracture. The presence of compressive residual stress and its combination with hoop stress also modifies the Hertz stress-life relation. This paper analyzes the beneficial effect of residual stresses on rolling-element bearing fatigue life in the presence of high hoop stresses for three bearing steels. These additional stresses were superimposed on Hertzian principal stresses to calculate the inner-race maximum shearing stress and the resulting fatigue life of the bearing. The load-life exponent p and Hertz stress-life exponent n increase in the presence of compressive residual stress, which yields increased life, particularly at lower stress levels. The Zaretsky life equation is described and is shown to predict longer bearing lives and greater load- and stress-life exponents, which better predicts observed life of bearings made from vacuum-processed steel.

  17. Fault strength in Marmara region inferred from the geometry of the principle stress axes and fault orientations: A case study for the Prince's Islands fault segment

    NASA Astrophysics Data System (ADS)

    Pinar, Ali; Coskun, Zeynep; Mert, Aydin; Kalafat, Dogan

    2015-04-01

    The general consensus based on historical earthquake data point out that the last major moment release on the Prince's islands fault was in 1766 which in turn signals an increased seismic risk for Istanbul Metropolitan area considering the fact that most of the 20 mm/yr GPS derived slip rate for the region is accommodated mostly by that fault segment. The orientation of the Prince's islands fault segment overlaps with the NW-SE direction of the maximum principle stress axis derived from the focal mechanism solutions of the large and moderate sized earthquakes occurred in the Marmara region. As such, the NW-SE trending fault segment translates the motion between the two E-W trending branches of the North Anatolian fault zone; one extending from the Gulf of Izmit towards Çınarcık basin and the other extending between offshore Bakırköy and Silivri. The basic relation between the orientation of the maximum and minimum principal stress axes, the shear and normal stresses, and the orientation of a fault provides clue on the strength of a fault, i.e., its frictional coefficient. Here, the angle between the fault normal and maximum compressive stress axis is a key parameter where fault normal and fault parallel maximum compressive stress might be a necessary and sufficient condition for a creeping event. That relation also implies that when the trend of the sigma-1 axis is close to the strike of the fault the shear stress acting on the fault plane approaches zero. On the other hand, the ratio between the shear and normal stresses acting on a fault plane is proportional to the coefficient of frictional coefficient of the fault. Accordingly, the geometry between the Prince's islands fault segment and a maximum principal stress axis matches a weak fault model. In the frame of the presentation we analyze seismological data acquired in Marmara region and interpret the results in conjuction with the above mentioned weak fault model.

  18. Creep Damage Analysis of a Lattice Truss Panel Structure

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchun; Li, Shaohua; Luo, Yun; Xu, Shugen

    2017-01-01

    The creep failure for a lattice truss sandwich panel structure has been predicted by finite element method (FEM). The creep damage is calculated by three kinds of stresses: as-brazed residual stress, operating thermal stress and mechanical load. The creep damage at tensile and compressive loads have been calculated and compared. The creep rate calculated by FEM, Gibson-Ashby and Hodge-Dunand models have been compared. The results show that the creep failure is located at the fillet at both tensile and creep loads. The damage rate at the fillet at tensile load is 50 times as much as that at compressive load. The lattice truss panel structure has a better creep resistance to compressive load than tensile load, because the creep and stress triaxiality at the fillet has been decreased at compressive load. The maximum creep strain at the fillet and the equivalent creep strain of the panel structure increase with the increase of applied load. Compared with Gibson-Ashby model and Hodge-Dunand models, the modified Gibson-Ashby model has a good prediction result compared with FEM. However, a more accurate model considering the size effect of the structure still needs to be developed.

  19. Fracture Property of Y-Shaped Cracks of Brittle Materials under Compression

    PubMed Central

    Zhang, Xiaoyan; Zhu, Zheming; Liu, Hongjie

    2014-01-01

    In order to investigate the properties of Y-shaped cracks of brittle materials under compression, compression tests by using square cement mortar specimens with Y-shaped crack were conducted. A true triaxial loading device was applied in the tests, and the major principle stresses or the critical stresses were measured. The results show that as the branch angle θ between the branch crack and the stem crack is 75°, the cracked specimen has the lowest strength. In order to explain the test results, numerical models of Y-shaped cracks by using ABAQUS code were established, and the J-integral method was applied in calculating crack tip stress intensity factor (SIF). The results show that when the branch angle θ increases, the SIF K I of the branch crack increases from negative to positive and the absolute value K II of the branch crack first increases, and as θ is 50°, it is the maximum, and then it decreases. Finally, in order to further investigate the stress distribution around Y-shaped cracks, photoelastic tests were conducted, and the test results generally agree with the compressive test results. PMID:25013846

  20. Ion implantation disorder in strained-layer superlattices

    NASA Astrophysics Data System (ADS)

    Arnold, G. W.; Picraux, S. T.; Peercy, P. S.; Myers, D. R.; Biefeld, R. M.; Dawson, L. R.

    Cantilever beam bending and RBS channeling measurements have been used to examine implantation induced disorder and stress buildup in InO 2GaO 8As/GaAs SLS structures. The critical fluence for saturation of compressive stress occurs prior to amorphous layer formation and is followed by stress relief. For all the ions the maximum ion induced stress scales with energy density into atomic processes and stress relief occurs above approximately 1x10 to the 20th keV/1 cubic cm. Stress relief is more pronounced for the SLSs than for bulk GaAs. Stress relief may lead to slip or other forms of inelastic material flow in SLSs, which would be undesirable for active regions in device applications. Such material flow may be avoided by limiting maximum fluences or by multiple step or simultaneous implantation and annealing for high fluences.

  1. Evaluation of In-Situ Stress Assessment from Deep Borehole in the Middle Coastal Plain and Its implication for Taiwan Tectonics

    NASA Astrophysics Data System (ADS)

    Yeh, E. C.; Li, W. C.; Chiang, T. C.; Lin, W.; Wang, T. T.; Yu, C. W.; Chiao, C. H.; Yang, M. W.

    2014-12-01

    Scientific study in deep boreholes has paid more attention as the demand of natural resources and waste disposal and risk evaluation of seismic hazard dramatically increases, such as petroleum exploitation, geothermal energy, carbon sequestration, nuclear waste disposal and seismogenic faulting. In the deep borehole geoengineering, knowledge of in-situ stress is essential for the design of drilling-casing plan. Understanding the relationship between fracture and in-situ stress is the key information to evaluate the potential of fracture seal/conduit and fracture reactivity. Also, assessment of in-situ stress can provide crucial information to investigate mechanism of earthquake faulting and stress variationfor earthquake cycles. Formations under the Coastal Plain in Taiwan have evaluated as saline-water formations with gently west-dipping and no distinct fractures endured by regional tectonics of arc-continental collision with N35W compression. The situation is characterized as a suitable place for carbon sequestration. In this study, we will integrate results from different in-situ stress determinations such as anelastic strain recovery (ASR), borehore breakout, hydraulic fracturing from a 3000m borehole of carbon sequestration testing site and further evaluate the seal feasibility and tectonic implication. Results of 30 ASR experiments between the depth of 1500m and 3000m showed the consistent normal faulting stress regime. Stress gradient of vertical stress, horizontal maximum stress and horizontal minimum stress with depth is estimated. Borehole breakout is not existed throughout 1500-3000m. The mean orientation of breakout is about 175deg and mean width of breakout is 84 deg. Based on rock mechanical data, maximum injection pressure of carbon sequestration can be evaulated. Furthermore, normal faulting stress regime is consistent with core observations and image logging, the horizontal maximum stress of 85deg inferred from breakout suggested that this place has been affected by the compression of oblique collision. The comparison of stress magnitudes estimated from ASR, breakout and hydraulic fracturing cab further verified current results.

  2. One-Dimensional and Two-Dimensional Analytical Solutions for Functionally Graded Beams with Different Moduli in Tension and Compression

    PubMed Central

    Li, Xue; Dong, Jiao

    2018-01-01

    The material considered in this study not only has a functionally graded characteristic but also exhibits different tensile and compressive moduli of elasticity. One-dimensional and two-dimensional mechanical models for a functionally graded beam with a bimodular effect were established first. By taking the grade function as an exponential expression, the analytical solutions of a bimodular functionally graded beam under pure bending and lateral-force bending were obtained. The regression from a two-dimensional solution to a one-dimensional solution is verified. The physical quantities in a bimodular functionally graded beam are compared with their counterparts in a classical problem and a functionally graded beam without a bimodular effect. The validity of the plane section assumption under pure bending and lateral-force bending is analyzed. Three typical cases that the tensile modulus is greater than, equal to, or less than the compressive modulus are discussed. The result indicates that due to the introduction of the bimodular functionally graded effect of the materials, the maximum tensile and compressive bending stresses may not take place at the bottom and top of the beam. The real location at which the maximum bending stress takes place is determined via the extreme condition for the analytical solution. PMID:29772835

  3. Electromagnetic emission memory phenomena related to LiF ionic crystal deformation

    NASA Astrophysics Data System (ADS)

    Mavromatou, C.; Tombras, G. S.; Ninos, D.; Hadjicontis, V.

    2008-04-01

    During the uniaxial compression of LiF ionic monocrystals, acoustic and electromagnetic emissions (EME) are detected. We observed that when the compression is performed in successive loading, unloading cycles and these emissions are being monitored, no new emissions will occur unless the maximum stress of the previous cycle is exceeded, meaning that the material presents memory characteristics. This is observed not only for the acoustic emission (AE), which is the well known Kaiser effect, but for the EME as well. In other words, the material appears to memorize and reveal the previously maximum stress it suffered while being deformed. The importance of an electromagnetic memory feature of a material can be related to various applications in material science, especially when the detection of AE is not feasible or gives false alert. Such cases may very well be earthquakes' predictive indications, monitoring of mines' stability, imminent landslides, etc.

  4. Biomechanical testing of bioabsorbable cannulated screws for slipped capital femoral epiphysis fixation.

    PubMed

    Kroeber, Markus W; Rovinsky, David; Haskell, Andrew; Heilmann, Moira; Llotz, Jeff; Otsuka, Norman

    2002-06-01

    This study compared cannulated 4.5-mm bioabsorbable screws made of self-reinforced poly-levolactic acid to cannulated 4.5-mm steel and titanium screws for resistance to shear stress and ability to generate compression in a polyurethane foam model of slipped capital femoral epiphysis fixation. The maximum shear stress resisted by the three screw types was similar (self-reinforced poly-levolactic acid 371 +/- 146 MPa, steel 442 +/- 43 MPa, and titanium 470 +/- 91 MPa). The maximum compression generated by both the self-reinforced poly-levolactic acid screw (68.5 +/- 3.3 N) and the steel screw (63.3 +/- 5.9 N) was greater than that for the titanium screw (3 +/- 1.4 N, P <.05). These data suggest cannulated self-reinforced poly-levolactic acid screws can be used in the treatment of slipped capital femoral epiphysis because of their sufficient biomechanical strength.

  5. Twin-variant reorientation strain in Ni-Mn-Ga single crystal during quasi-static mechanical compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pramanick, Abhijit; An, Ke; Stoica, Alexandru Dan

    2011-01-01

    Twin variant reorientation in single crystal Ni-Mn-Ga during quasi-static mechanical compression was studied using in-situ neutron diffraction. The volume fraction of reoriented twin variants for different stress amplitudes were obtained from the changes in integrated intensities of high-order neutron diffraction peaks. It is shown that during compressive loading, ~85% of the twins were reoriented parallel to the loading direction resulting in a maximum macroscopic strain of ~5.5%, which is in agreement with measured macroscopic strain.

  6. Dynamic compressive properties of bovine knee layered tissue

    NASA Astrophysics Data System (ADS)

    Nishida, Masahiro; Hino, Yuki; Todo, Mitsugu

    2015-09-01

    In Japan, the most common articular disease is knee osteoarthritis. Among many treatment methodologies, tissue engineering and regenerative medicine have recently received a lot of attention. In this field, cells and scaffolds are important, both ex vivo and in vivo. From the viewpoint of effective treatment, in addition to histological features, the compatibility of mechanical properties is also important. In this study, the dynamic and static compressive properties of bovine articular cartilage-cancellous bone layered tissue were measured using a universal testing machine and a split Hopkinson pressure bar method. The compressive behaviors of bovine articular cartilage-cancellous bone layered tissue were examined. The effects of strain rate on the maximum stress and the slope of stress-strain curves of the bovine articular cartilage-cancellous bone layered tissue were discussed.

  7. Investigation of tension-compression fatigue behavior of a cross-ply metal matrix composite at room and elevated temperatures. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyum, E.A.

    1993-12-01

    This research, the first load-controlled tension-compression fatigue testing to be performed on a MMC, extends the existing knowledge of MMC fatigue damage mechanisms to include the tension compression loading condition. To accomplish this, a (0/90)2, SCS-6/Ti-15-3 laminate was subjected to tension-tension fatigue at room temperature, and tension-compression fatigue at both room temperature and 427 deg C. Stress and strain data was taken to evaluate the macro-mechanic behavior of the material. Microscopy and fractography were performed to characterize the damage on a micro-mechanic level. On a maximum applied stress basis, the room temperature tension-tension specimens had longer fatigue lives than themore » room temperature tension-compression specimens. The room and high temperature tension-compression fatigue lives were nearly identical in the fiber-dominated high stress region of the SN curve. However, the increased ductility and diffused plasticity of the titanium matrix at 427 deg C delayed the onset and severity of matrix cracking, and thus increased the elevated temperature fatigue lives in the matrix dominated region of the SN curve. In all cases, matrix damage initiated at reaction zone cracks which nucleated both matrix plasticity and matrix cracking. Metal matrix composite, Elevated temperature, Fatigue testing, Compression, Fully-reversed, Titanium, Silicon carbide.« less

  8. Seismic Response Analysis of an Unanchored Steel Tank under Horizontal Excitation

    NASA Astrophysics Data System (ADS)

    Rulin, Zhang; Xudong, Cheng; Youhai, Guan

    2017-06-01

    The seismic performance of liquid storage tank affects the safety of people’s life and property. A 3-D finite element method (FEM) model of storage tank is established, which considers the liquid-solid coupling effect. Then, the displacement and stress distribution along the tank wall is studied under El Centro earthquake. Results show that, large amplitude sloshing with long period appears on liquid surface. The elephant-foot deformation occurs near the tank bottom, and at the elephant-foot deformation position maximum hoop stress and axial stress appear. The maximum axial compressive stress is very close to the allowable critical stress calculated by the design code, and may be local buckling failure occurs. The research can provide some reference for the seismic design of storage tanks.

  9. Method of forming a stress relieved amorphous tetrahedrally-coordinated carbon film

    DOEpatents

    Friedmann, Thomas A.; Sullivan, John P.

    2000-01-01

    A stress-relieved amorphous-diamond film is formed by depositing an amorphous diamond film with specific atomic structure and bonding on to a substrate, and annealing the film at sufficiently high temperature to relieve the compressive stress in said film without significantly softening said film. The maximum annealing temperature is preferably on the order of 650.degree. C., a much lower value than is expected from the annealing behavior of other materials.

  10. Mechanical response of unidirectional boron/aluminum under combined loading

    NASA Technical Reports Server (NTRS)

    Becker, Wolfgang; Pindera, Marek-Jerzy; Herakovich, Carl T.

    1987-01-01

    Three test methods were employed to characterize the response of unidirectional Boron/Aluminum metal matrix composite material under monotonic and cyclic loading conditions, namely, losipescu shear, off-axis tension and compression. The characterization of the elastic and plastic response includes the elastic material properties, yielding and subsequent hardening of the unidirectional composite under different stress ratios in the material principal coordinate system. Yield loci generated for different stress ratios are compared for the three different test methods, taking into account residual stresses and specimen geometry. Subsequently, the yield locus for in-plane shear is compared with the prediction of an analytical, micromechanical model. The influence of the scatter in the experimental data on the predicted yield surface is also analyzed. Lastly, the experimental material strengths in tension and compression are correlated with the maximum stress and the Tsai-Wu failure criterion.

  11. Evolution of residual stresses in micro-arc oxidation ceramic coatings on 6061 Al alloy

    NASA Astrophysics Data System (ADS)

    Shen, Dejiu; Cai, Jingrui; Guo, Changhong; Liu, Peiyu

    2013-11-01

    Most researches on micro-arc oxidation mainly focus on the application rather than discovering the evolution of residual stresses. However, residual stresses in the surface coatings of structural components have adverse effects on their properties, such as fatigue life, dimensional stability and corrosion resistance, etc. The micro-arc oxidation ceramic coatings are produced on the surfaces of 6061 aluminum alloy by a homemade asymmetric AC type of micro-arc oxidation equipment of 20 kW. A constant current density of 4.4±0.1 A/dm2 and a self-regulated composite electrolyte are used. The micro-arc oxidation treatment period ranges from 10 min to 40 min, and the thickness of the ceramic coatings is more than 20 μm. Residual stresses attributed to γ-Al2O3 constituent in the coatings at different micro-arc oxidation periods are analyzed by an X-ray diffractometer using the sin2 ψ method. The analysis results show that the residual stress in the ceramic coatings is compressive in nature, and it increases first and then decreases with micro-arc oxidation time increase. The maximum stress value is 1 667±20 MPa for period of 20 min. Through analyzing the coating thickness, surface morphology and phase composition, it is found that the residual stress in the ceramic coatings is linked closely with the coating growth, the phase composition and the micro cracks formed. It is also found that both the heat treatment and the ultrasonic action release remarkably the residual compressive stress. The heat treatment makes the residual compressive stress value decrease 1 378 MPa. The ultrasonic action even alters the nature of the residual stress, making the residual compressive stress change into a residual tensile stress.

  12. Stress-dislocation interaction mechanism in low-temperature thermo-compression sintering of Ag NPs

    NASA Astrophysics Data System (ADS)

    Wang, Fuliang; Tang, Zikai; He, Hu

    2018-04-01

    The sintering of metal nanoparticles (NPs) has been widely studied in the field of nanotechnology, and low-temperature sintering has become the industry standard. In this study, a molecular dynamics (MD) model was established to study the sintering behaviour of silver NPs during low-temperature thermo-compression. Primarily, we studied the sintering process, in which the ratio of neck radius to particle radius (x/r) changes. Under a uniaxial pressure, the maximum ratio in the temperature range 420-425 K was 1. According to the change of x/r, the process can be broken down into three stages: the neck-formation stage, neck-growth stage, and neck-stability stage. In addition, the relationship between potential energy, internal stress, and dislocation density during sintering is discussed. The results showed that cycling internal stress played an important role in sintering. Under the uniaxial pressure, the stress-dislocation interaction was found to be the major mechanism for thermo-compression sintering because the plastic deformation product dislocation intensified the diffusion of atoms. Also, the displacement vector, the mean square displacement, and the changing crystal structure during sintering were studied.

  13. Deformation driven by subduction and microplate collision: Geodynamics of Cook Inlet basin, Alaska

    USGS Publications Warehouse

    Bruhn, R.L.; Haeussler, Peter J.

    2006-01-01

    Late Neogene and younger deformation in Cook Inlet basin is caused by dextral transpression in the plate margin of south-central Alaska. Collision and subduction of the Yakutat microplate at the northeastern end of the Aleutian subduction zone is driving the accretionary complex of the Chugach and Kenai Mountains toward the Alaska Range on the opposite side of the basin. This deformation creates belts of fault-cored anticlines that are prolific traps of hydrocarbons and are also potential sources for damaging earthquakes. The faults dip steeply, extend into the Mesozoic basement beneath the Tertiary basin fill, and form conjugate flower structures at some localities. Comparing the geometry of the natural faults and folds with analog models created in a sandbox deformation apparatus suggests that some of the faults accommodate significant dextral as well as reverse-slip motion. We develop a tectonic model in which dextral shearing and horizontal shortening of the basin is driven by microplate collision with an additional component of thrust-type strain caused by plate subduction. This model predicts temporally fluctuating stress fields that are coupled to the recurrence intervals of large-magnitude subduction zone earthquakes. The maximum principal compressive stress is oriented east-southeast to east-northeast with nearly vertical least compressive stress when the basin's lithosphere is mostly decoupled from the underlying subduction megathrust. This stress tensor is compatible with principal stresses inferred from focal mechanisms of earthquakes that occur within the crust beneath Cook Inlet basin. Locking of the megathrust between great magnitude earthquakes may cause the maximum principal compressive stress to rotate toward the northwest. Moderate dipping faults that strike north to northeast may be optimally oriented for rupture in the ambient stress field, but steeply dipping faults within the cores of some anticlines are unfavorably oriented with respect to both modeled and observed stress fields, suggesting that elevated fluid pressure may be required to trigger fault rupture. ?? 2006 Geological Society of America.

  14. Effects of axial compression and rotation angle on torsional mechanical properties of bovine caudal discs.

    PubMed

    Bezci, Semih E; Klineberg, Eric O; O'Connell, Grace D

    2018-01-01

    The intervertebral disc is a complex joint that acts to support and transfer large multidirectional loads, including combinations of compression, tension, bending, and torsion. Direct comparison of disc torsion mechanics across studies has been difficult, due to differences in loading protocols. In particular, the lack of information on the combined effect of multiple parameters, including axial compressive preload and rotation angle, makes it difficult to discern whether disc torsion mechanics are sensitive to the variables used in the test protocol. Thus, the objective of this study was to evaluate compression-torsion mechanical behavior of healthy discs under a wide range of rotation angles. Bovine caudal discs were tested under a range of compressive preloads (150, 300, 600, and 900N) and rotation angles (± 1, 2, 3, 4, or 5°) applied at a rate of 0.5°/s. Torque-rotation data were used to characterize shape changes in the hysteresis loop and to calculate disc torsion mechanics. Torsional mechanical properties were described using multivariate regression models. The rate of change in torsional mechanical properties with compression depended on the maximum rotation angle applied, indicating a strong interaction between compressive stress and maximum rotation angle. The regression models reported here can be used to predict disc torsion mechanics under axial compression for a given disc geometry, compressive preload, and rotation angle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Contact Mechanics and Failure Modes of Compliant Polymeric Bearing Materials for Knee Cartilage Replacement

    NASA Astrophysics Data System (ADS)

    Tohfafarosh, Mariya Shabbir

    Osteoarthritis (OA) is the most common cause of disability affecting millions of people worldwide. Total knee replacement is the current state-of-the-art treatment to alleviate pain and improve mobility among patients in the late stage of knee OA. The current gold standard materials for total knee arthroplasty are cobalt-chromium and ultra-high molecular weight polyethylene (UHMWPE). However, wear debris and implant loosening-related revision persists; consequently, total knee replacements are not universally recommended for all patient subgroups with OA. This work explores the potential of using compliant polymeric materials in knee cartilage replacement devices, which are closer in lubrication and mechanical properties of articular cartilage, to prevent excessive removal of underlying bone and prolong the need for a total knee replacement. Two materials investigated in this thesis are polycarbonate urethane, Bionate 80A, and a novel hydrogel, Cyborgel, both of which have shown promising wear and lubrication properties under physiological loads. Polycarbonate urethane has been previously tested for the effects of gamma sterilization and has shown no significant changes in its mechanical strength or chemical bonds. Since an important aspect of medical device development is the sterilization process, this thesis first evaluated the effect of 30-35 kGy electron beam and gamma radiation on the polymer swell ratio, and the mechanical, chemical and tribological behavior of the novel hydrogel. Three different formulations were mechanically tested, and biphasic material properties were identified using finite element analysis. Fourier transform infrared spectroscopy was used to investigate chemical changes, while the wear properties were tested for 2 million cycles in bovine serum. The results showed no significant difference (p > 0.05) in the swell ratio, mechanical and tribological properties of the electron beam and gamma sterilized hydrogel sample as compared to the control samples. However, chemical spectra of electron beam sterilized samples revealed minor changes, which were absent in unsterilized and gamma sterilized samples. Upon successful sterilization evaluation, both polycarbonate urethane and the novel hydrogel were investigated for the contact mechanics of compliant-on-compliant artificial knee bearings using a finite element analysis approach. A simplified, axisymmetric, finite element model of a medial knee compartment was developed and validated, and a design of simulation experiments was carried out to evaluate the effect of implant conformity, implant thickness and material properties on the contact mechanics of compliant knee bearings under normal walking and stair climbing loads. All input parameters, namely, implant conformity, implant thickness and material properties, significantly (p<0.001) affected the maximum principal stress, Von Mises stress, maximum shear stress, maximum principal strain, maximum contact pressure and contact area. The knee implant contact mechanics demonstrated sensitivity to all the three design factors, and a correlation between resulting stresses and implant conformity as well as thickness was observed. However, the conformity had the highest effect-size on the contact mechanics. The maximum principal stress value halves and the contact area doubles when ≥ 95% implant conformity (i.e. the ratio of femoral to tibial surface’s radii of curvature) and ≥ 3mm thickness was used, hence, these parameters were recommended for the design of compliant knee bearings. Finally, a battery of mechanical tests was carried out to evaluate the failure criteria of the proposed compliant polymers under physiological loads and strain rates. Uniaxial tests, including tension and unconfined compression, and biaxial tests, such as plane strain compression, were carried out to characterize the mechanical behavior of different material formulations at physiologically relevant testing rates. The materials failed under tension between 250 - 750% true strain, while those under uniaxial and biaxial compression test sustained compression of 50 - 70% engineering strain (39 - 53% true strain) without any signs of cracking or fracture. The tension was determined to be the primary failure mode for the proposed materials, and the tensile test was used to define the failure criteria of the materials. The unconfined compression tests were used to define the yield stresses and strains under compression, which is the main mode of loading for the knee joint. The results of the plane strain compression were modeled using a finite element model and the maximum principal stress, von Mises stress, maximum shear stress, and maximum principal strain failure criteria were predicted at the corresponding yield strain of each material formulation. Upon comparing the knee model contact stress and strain prediction under normal walking and stair climbing loads with those of the empirical failure criteria at yield, the polycarbonate urethane showed better overall potential for use in compliant knee implants, while the hydrogels exhibited higher potential for delamination or fracture, especially if appropriate implant conformity and thickness are not employed. The outcome of this study and the previous parametric model results helped to determine a niche design space within which designing a knee implant with compliant bearing materials may be feasible. In summary, the potential of compliant bearing materials was thoroughly examined in this thesis, and the results provided a foundation for future testing and development of a compliant cartilage replacement implant. Such an implant would be a promising improvement and alternative to conventional total knee replacements.

  16. Investigation of Mild Steel Thin-Wall Tubes in Unfilled and Foam-Filled Triangle, Square, and Hexagonal Cross Sections Under Compression Load

    NASA Astrophysics Data System (ADS)

    Rajak, Dipen Kumar; Kumaraswamidhas, L. A.; Das, S.

    2018-02-01

    This study has examined proposed structures with mild steel-reinforced LM30 aluminum (Al) alloy having diversely unfilled and 10 wt.% SiCp composite foam-filled tubes for improving axial compression performance. This class of material has novel physical, mechanical, and electrical properties along with low density. In the present experiment, Al alloy foams were prepared by the melt route technique using metal hydride powder as a foaming agent. Crash energy phenomena for diverse unfilled and foam-filled in mild steel thin-wall tubes (triangular, square and hexagonal) were studied as well. Compression deformation investigation was conducted at strain rates of 0.001-0.1/s for evaluating specific energy absorption (SEA) under axial loading conditions. The results were examined to measure plateau stress, maximum densification strain, and deformation mechanism of the materials. Specific energy absorption and total energy absorption capacities of the unfilled and filled sections were determined from the compressive stress-strain curves, which were then compared with each other.

  17. Numerical Stress Analysis during Cooldown and Compressive Loading in an Imperfect Nb 3Sn Wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    d’Hauthuille, Luc; Zhai, Yuhu

    In this paper, high field superconductors are critical to the success of next step magnetic fusion confinement devices such as ITER and DEMO. The low-temperature superconducting material that is currently favored for these applications, Nb 3Sn, is susceptible to performance due to its brittleness and high strain-sensitivity. Under extreme loads, an irreversible degradation in the maximum critical current density has been shown to occur and believed to be strongly influenced by two factors: plasticity and cracked filaments. Cracks in filaments are induced when sufficiently high stress concentrations occur in the wire. In this paper, we explore using finite element analysismore » the impact that voids have on the stress distributions and peak stresses under two loading conditions: transverse compressive loading in a 2D model, and a full cool down phase in a 3D model.« less

  18. Numerical Stress Analysis during Cooldown and Compressive Loading in an Imperfect Nb 3Sn Wire

    DOE PAGES

    d’Hauthuille, Luc; Zhai, Yuhu

    2017-07-11

    In this paper, high field superconductors are critical to the success of next step magnetic fusion confinement devices such as ITER and DEMO. The low-temperature superconducting material that is currently favored for these applications, Nb 3Sn, is susceptible to performance due to its brittleness and high strain-sensitivity. Under extreme loads, an irreversible degradation in the maximum critical current density has been shown to occur and believed to be strongly influenced by two factors: plasticity and cracked filaments. Cracks in filaments are induced when sufficiently high stress concentrations occur in the wire. In this paper, we explore using finite element analysismore » the impact that voids have on the stress distributions and peak stresses under two loading conditions: transverse compressive loading in a 2D model, and a full cool down phase in a 3D model.« less

  19. Mid-Crustal Stress Magnitude and Rotation Transients Related to the Seismic Cycle

    NASA Astrophysics Data System (ADS)

    Nüchter, J. A.; Ellis, S.

    2008-12-01

    Seismic slip causes a stress drop in the upper crust, and a major stress increase at the lower termination of the fault in the middle crust. Previous numerical models show how these stresses relax during an episode of postseismic creep. Natural evidence for postseismic stress and strain transients at depth is provided by 1) the geological record of exhumed metamorphic rocks, and 2) from postseismic surface deformation transients. In the present study, we use numerical models to investigate the changes in the geometry of the mid-crustal stress field caused by seismic slip along normal faults within an extensional tectonic setting. We model a 100x30km crustal section, with a fault reaching down to 20km and dipping at 60°. A non-linear thermal gradient and constant elastic parameters are applied. Thermally activated creep is described by values derived from laboratory creep experiments on wet quartzite. The crust is loaded by horizontal extension at a constant rate, and earthquakes are triggered by a short term decrease in the frictional coefficient of the fault. During the interseismic period, this coefficient is set to high values to lock the fault. A sequence of 30 earthquakes with a constant recurrence interval of 500y is simulated, and the results for the last seismic cycle are analyzed. In such a tectonic setting, the Anderson theory predicts that the maximum principal stress is vertical. A stress field consistent to this theory is reached after an initial stage of 15ka extension without earthquake activity. The results for the 30th seismic cycle imply that seismic slip causes a major stress increase of at least 50MPa at a depth level below the brittle ductile transition, which is in accordance to reports on seismic stress increase derived from the record of metamorphic rocks. In the hanging wall, the stress increase results mainly from an increase in the maximum principal stress and the stress tensor rotates counter-clockwise by 10-30°. In the footwall the stress increase results mainly from a drop in the minimum principal stress, and the stress tensor rotates clockwise by 45-60°. A change in the magnitude of differential stress can be addressed by the addition of an incremental stress tensor resulting from elastic strain to the preexisting stress tensor. In an isotropic medium, the orientation of the maximum and the minimum principal stress changes are controlled by the directions of maximum compression and maximum extension, respectively. The magnitude and the orientation of the resulting stress tensor depend: 1) on the absolute magnitudes and on the ratio of the magnitudes of pre-existing stress and incremental change in the stress tensor; and 2) on the mis-orientation between existing stress and stress change principal directions. The zone of coseismic loading correlates to the interval in which seismic slip tapers off with depth. For a normal fault, the crust here is subjected to fault-parallel compression in the hanging wall, and to extension in the footwall. The resulting orientation of the seismic principal compressive stress change parallel to the fault in the hanging wall and normal to the fault in the footwall causes the particular deflection of the resulting stress tensor . During the interseismic period, the stress peak relaxes by thermally activated creep, while the deflection of the stress tensor is persistent. We show that significant mis- orientations of the stress tensor can be preserved over timescales typical for a seismic cycle, in dependence on the far field extension rate. We conclude that seismic activity causes 1) a non-steady state mid-crustal stress field, and 2) a persistent deflection of the stress tensor orientation from the predictions of the Anderson theory.

  20. Tension-Compression Fatigue of a Nextel™720/alumina Composite at 1200 °C in Air and in Steam

    NASA Astrophysics Data System (ADS)

    Lanser, R. L.; Ruggles-Wrenn, M. B.

    2016-08-01

    Tension-compression fatigue behavior of an oxide-oxide ceramic-matrix composite was investigated at 1200 °C in air and in steam. The composite is comprised of an alumina matrix reinforced with Nextel™720 alumina-mullite fibers woven in an eight harness satin weave (8HSW). The composite has no interface between the fiber and matrix, and relies on the porous matrix for flaw tolerance. Tension-compression fatigue behavior was studied for cyclical stresses ranging from 60 to 120 MPa at a frequency of 1.0 Hz. The R ratio (minimum stress to maximum stress) was -1.0. Fatigue run-out was defined as 105 cycles and was achieved at 80 MPa in air and at 70 MPa in steam. Steam reduced cyclic lives by an order of magnitude. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Specimens subjected to prior cyclic loading in air retained 100 % of their tensile strength. The steam environment severely degraded tensile properties. Tension-compression cyclic loading was considerably more damaging than tension-tension cyclic loading. Composite microstructure, as well as damage and failure mechanisms were investigated.

  1. The Lateral Stability of Equal-flanged Aluminum-alloy I-beams Subjected to Pure Bending

    NASA Technical Reports Server (NTRS)

    Dumont, C; Hill, H N

    1940-01-01

    Equal-flange beams of a special extruded I-section of 27ST aluminum alloy were tested in pure bending. Complete end fixity was not attained. Loading was continued until a definite maximum value had been reached. Tensile tests were made on specimens cut from the flanges and the web of each beam. Compressive stress-strain characteristics were determined by pack compression tests on specimens cut from the flanges. Values computed from an equation previously suggested by one of the authors for the critical stress at which such beams become unstable were found to be in good agreement with values computed from experimentally determined critically bending moments.

  2. Evidence for dike emplacement beneath Iliamna Volcano, Alaska in 1996

    USGS Publications Warehouse

    Roman, D.C.; Power, J.A.; Moran, S.C.; Cashman, K.V.; Doukas, M.P.; Neal, C.A.; Gerlach, T.M.

    2004-01-01

    Two earthquake swarms, comprising 88 and 2833 locatable events, occurred beneath Iliamna Volcano, Alaska, in May and August of 1996. Swarm earthquakes ranged in magnitude from -0.9 to 3.3. Increases in SO2 and CO2 emissions detected during the fall of 1996 were coincident with the second swarm. No other physical changes were observed in or around the volcano during this time period. No eruption occurred, and seismicity and measured gas emissions have remained at background levels since mid-1997. Earthquake hypocenters recorded during the swarms form a cluster in a previously aseismic volume of crust located to the south of Iliamna's summit at a depth of -1 to 4 km below sea level. This cluster is elongated to the NNW-SSE, parallel to the trend of the summit and southern vents at Iliamna and to the regional axis of maximum compressive stress determined through inversion of fault-plane solutions for regional earthquakes. Fault-plane solutions calculated for 24 swarm earthquakes located at the top of the new cluster suggest a heterogeneous stress field acting during the second swarm, characterized by normal faulting and strike-slip faulting with p-axes parallel to the axis of regional maximum compressive stress. The increase in earthquake rates, the appearance of a new seismic volume, and the elevated gas emissions at Iliamna Volcano indicate that new magma intruded beneath the volcano in 1996. The elongation of the 1996-1997 earthquake cluster parallel to the direction of regional maximum compressive stress and the accelerated occurrence of both normal and strike-slip faulting in a small volume of crust at the top of the new seismic volume may be explained by the emplacement and inflation of a subvertical planar dike beneath the summit of Iliamna and its southern satellite vents. ?? 2003 Elsevier B.V. All rights reserved.

  3. [Biomechanical properties of bioabsorbable cannulated screws for surgical fixation of dislocated epiphysiolysis capitis femoris].

    PubMed

    Kröber, M W; Rovinsky, D; Lotz, J; Carstens, C; Otsuka, N Y

    2002-06-01

    Bioabsorbable materials are well suited for fixation of slipped capital femoral epiphysis (SCFE) as they are resorbable, compatible with magnetic resonance imaging, and well tolerated by the pediatric population. We compared cannulated 4.5-mm bioabsorbable screws made of self-reinforced polylevolactic acid (SR-PLLA) to cannulated 4.5-mm steel and titanium screws for their resistance to shear stress and ability to generate compression in a polyurethane foam model of SCFE fixation. The maximum shear stress resisted by the three screw types was similar (SR-PLLA 371 +/- 146, steel 442 +/- 43, titanium 470 +/- 91 MPa, NS). The maximum compression generated by both the SR-PLLA screw (68.5 +/- 3.3 N) and the steel screw (63.3 +/- 5.9 N) was greater than that for the titanium screw (3.0 +/- 1.4 N, p < 0.05). These data suggest that cannulated SR-PLLA screws have sufficient biomechanical strength to be used in the treatment of SCFE.

  4. Reliability analysis of dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Ding, Shurong; Jiang, Xin; Huo, Yongzhong; Li, Lin an

    2008-03-01

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  5. High strength, low stiffness, porous NiTi with superelastic properties.

    PubMed

    Greiner, Christian; Oppenheimer, Scott M; Dunand, David C

    2005-11-01

    Near-stoichiometric NiTi with up to 18% closed porosity was produced by expansion at 1200 degrees C of argon-filled pores trapped by powder metallurgy within a NiTi billet. When optimally heat-treated, NiTi with 6-16% porosity exhibits superelasticity, with recoverable compressive strains up to 6% at a maximum compressive stress up to 1700 MPa. The apparent Young's modulus of NiTi with 16% porosity, measured during uniaxial compression, is in the range of 15-25 GPa (similar to human bone), but is much lower than measured ultrasonically (approximately 40 GPa), or predicted from continuum elastic mechanics. This effect is attributed to the reversible stress-induced transformation contributing to the linear elastic deformation of porous NiTi. The unique combination of low stiffness, high strength, high recoverable strains and large energy absorption of porous superelastic NiTi, together with the known biocompatibility of NiTi, makes this material attractive for bone-implant applications.

  6. Experimental Investigation on the Fatigue Mechanical Properties of Intermittently Jointed Rock Models Under Cyclic Uniaxial Compression with Different Loading Parameters

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng

    2018-01-01

    Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.

  7. Transverse stresses and modes of failure in tree branches and other beams.

    PubMed

    Ennos, A R; van Casteren, A

    2010-04-22

    The longitudinal stresses in beams subjected to bending also set up transverse stresses within them; they compress the cross section when the beam's curvature is being increased and stretch it when its curvature is being reduced. Analysis shows that transverse stresses rise to a maximum at the neutral axis and increase with both the bending moment applied and the curvature of the beam. These stresses can qualitatively explain the fracture behaviour of tree branches. Curved 'hazard beams' that are being straightened split down the middle because of the low transverse tensile strength of wood. By contrast, straight branches of light wood buckle when they are bent because of its low transverse compressive strength. Branches of denser wood break, but the low transverse tensile strength diverts the crack longitudinally when the fracture has only run half-way across the beam, to produce their characteristic 'greenstick fracture'. The bones of young mammals and uniaxially reinforced composite beams may also be prone to greenstick fracture because of their lower transverse tensile strength.

  8. A study on the plasticity of soda-lime silica glass via molecular dynamics simulations.

    PubMed

    Urata, Shingo; Sato, Yosuke

    2017-11-07

    Molecular dynamics (MD) simulations were applied to construct a plasticity model, which enables one to simulate deformations of soda-lime silica glass (SLSG) by using continuum methods. To model the plasticity, stress induced by uniaxial and a variety of biaxial deformations was measured by MD simulations. We found that the surfaces of yield and maximum stresses, which are evaluated from the equivalent stress-strain curves, are reasonably represented by the Mohr-Coulomb ellipsoid. Comparing a finite element model using the constructed plasticity model to a large scale atomistic model on a nanoindentation simulation of SLSG reveals that the empirical method is accurate enough to evaluate the SLSG mechanical responses. Furthermore, the effect of ion-exchange on the SLSG plasticity was examined by using MD simulations. As a result, it was demonstrated that the effects of the initial compressive stress on the yield and maximum stresses are anisotropic contrary to our expectations.

  9. A study on the plasticity of soda-lime silica glass via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Urata, Shingo; Sato, Yosuke

    2017-11-01

    Molecular dynamics (MD) simulations were applied to construct a plasticity model, which enables one to simulate deformations of soda-lime silica glass (SLSG) by using continuum methods. To model the plasticity, stress induced by uniaxial and a variety of biaxial deformations was measured by MD simulations. We found that the surfaces of yield and maximum stresses, which are evaluated from the equivalent stress-strain curves, are reasonably represented by the Mohr-Coulomb ellipsoid. Comparing a finite element model using the constructed plasticity model to a large scale atomistic model on a nanoindentation simulation of SLSG reveals that the empirical method is accurate enough to evaluate the SLSG mechanical responses. Furthermore, the effect of ion-exchange on the SLSG plasticity was examined by using MD simulations. As a result, it was demonstrated that the effects of the initial compressive stress on the yield and maximum stresses are anisotropic contrary to our expectations.

  10. Mechanism for amorphization of boron carbide under complex stress conditions

    NASA Astrophysics Data System (ADS)

    Li, Jun; Xu, Shuang; Liu, Lisheng; Wang, Zhen; Zhang, Jinyong; Liu, Qiwen

    2018-05-01

    As an excellent material, the application of boron carbide (B4C) is limited by pressure-induced amorphization. To understand the mechanism for amorphization in B4C, first-principles methods based on density functional theory were employed to investigate the mechanical behaviors and the deformation process in B4C under complex stress conditions with six different biaxial perpendicular compression directions. The angle (θ) between one of the loading directions and the [0 0 0 1] c-axis ranged from 0° to 75° with every 15° interval. We found that the maximum stress at θ = 30° is 124.5 GPa, which is the lowest among six biaxial compressions. Simulation results show that the mechanism for amorphization in B4C under complex stress conditions is complicated. We take the θ = 30° biaxial compression as an example to explain the complicated deformation process. In the elastic deformation region, sudden bending of three-atom chains occurs and results in a stress fluctuation. Then the formation of new B–B bonds between the three-atom chains and the icosahedra leads to the first stress drop. After that, the B–C bonds in the chains are broken, resulting in the second stress drop. In this process, the icosahedra are partially destroyed. The stress increases continuously and then drops at the critical failure strain. Finally, the fully destruction of icosahedra leads to amorphization in B4C. However, under other five biaxial compressions, the B–C bonds in three-atom chains are not fractured before structural failure. Understanding the deformation mechanism for amorphization of B4C in real applications is prime important for proposing how to resist amorphization and enhance the toughness of B4C.

  11. Controls on radon emission from granite as evidenced by compression testing to failure

    NASA Astrophysics Data System (ADS)

    Koike, Katsuaki; Yoshinaga, Tohru; Suetsugu, Kenta; Kashiwaya, Koki; Asaue, Hisafumi

    2015-10-01

    A set of uniaxial compression tests of granite specimens taken from five localities across Japan was conducted to identify the factors controlling the quantity of radon (Rn) emission (sum of 222Rn and 220Rn) during compression and failure. An α-scintillation detector and a gas flow unit were installed with a testing machine to enable continuous measurement of Rn emissions. Common to all specimens, Rn emissions remained at or slightly declined from the background level after the start of loading; this is similar to the natural phenomenon of decline in groundwater-dissolved Rn before an earthquake. Closure of original microcracks is the most likely cause of the initial Rn decline. Then, Rn emissions begin to increase at 46-57 per cent stress level to the uniaxial compressive strength, and continue to increase even after the failure of specimen. This commencement stress level is close to the general stress level at outbreak of acoustic emissions caused by the development and connection of microcracks. The Rn increase after failure is similar to a phenomenon observed in aftershocks, which may originate from the enhancement of Rn emanations from grains due to the large increase in total surface area and stress release. In addition to the initial radioelement content in rock, the failure pattern (conjugate shear versus longitudinal tensile type), compressive strength, and grain size are possible control factors of the maximum quantity of Rn emissions induced by failure. This maximum may also be affected by the development velocity of the emanation area, which is related to the Rn emanation fraction, associated with the fragmentation. In addition to the magnitude of an earthquake and its hypocentre distance to Rn detectors, the magnitude of increase in Rn concentration in soil gas and groundwater before, during, and after an earthquake in crystalline rocks depends on the intrinsic radioelement content, the mineral texture, and the mechanical properties of rocks. Rock fracturing and failure do not necessarily induce increase in Rn emission due to these rock properties, which can be used to understand the sensitivity of Rn concentration in soil gas or groundwater in connection with an earthquake.

  12. Geodynamics of Cenozoic deformation in central Asia

    NASA Astrophysics Data System (ADS)

    Liu, H.-S.

    1981-04-01

    This paper presents a study of the tectonic stresses in central Asia based on an interpretation of satellite gravity data for mantle convection and supplemented with published fault plane solutions of earthquakes. Northwest-southeast to north-south compressional stresses exist in the Tien Shan region where reverse faulting dominates. The maximum compressive stress is oriented approximately northeast-southwest in the regions of Altai and southern Mongolia. Farther north, compressive stress gives way to tensional stress which causes normal faulting in the Baikal rift system. It is also shown that all of the tectonic stresses in the Tibetan plateau and Himalayan frontal thrust are related to the convection-generated stress patterns inferred from satellite gravity data. These results suggest that the complex crustal deformation in central Asia can be convincingly described by the deformation of the lithosphere on top of the up- and down-welling asthenospheric material beneath it. This observational fact may not only upset the simple view of the fluid crustal model of the Tibetan plateau, but also provide some useful constraints for the future development of deformation theory of continental crust.

  13. Geodynamics of Cenozoic deformation in central Asia

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1981-01-01

    This paper presents a study of the tectonic stresses in central Asia based on an interpretation of satellite gravity data for mantle convection and supplemented with published fault plane solutions of earthquakes. Northwest-southeast to north-south compressional stresses exist in the Tien Shan region where reverse faulting dominates. The maximum compressive stress is oriented approximately northeast-southwest in the regions of Altai and southern Mongolia. Farther north, compressive stress gives way to tensional stress which causes normal faulting in the Baikal rift system. It is also shown that all of the tectonic stresses in the Tibetan plateau and Himalayan frontal thrust are related to the convection-generated stress patterns inferred from satellite gravity data. These results suggest that the complex crustal deformation in central Asia can be convincingly described by the deformation of the lithosphere on top of the up- and down-welling asthenospheric material beneath it. This observational fact may not only upset the simple view of the fluid crustal model of the Tibetan plateau, but also provide some useful constraints for the future development of deformation theory of continental crust.

  14. Static and Dynamic Compaction of CL-20 Powders

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia A.; Brundage, Aaron L.; Dudley, Evan C.

    2009-12-01

    Hexanitrohexaazaisowurtzitane (CL-20) powders were compacted under quasi-static and dynamic loading conditions. A uniaxial compression apparatus quasi-statically compressed the powders to 90% theoretical maximum density with applied stresses up to 0.4 GPa. Dynamic compaction measurements using low-density pressings approximately 64% theoretical maximum density (TMD) were obtained in a single-stage gas gun at impact velocities between 0.17-0.95 km/s. Experiments were conducted in a reverse ballistic arrangement in which the projectile contained the CL-20 powder bed and impacted a target consisting of an aluminized window. VISAR-measured particle velocities at the explosive-window interface determined the shock Hugoniot states for pressures up to 1.3 GPa. Approved for public release, SAND2009-4810C.

  15. Kinematics, mechanics, and potential earthquake hazards for faults in Pottawatomie County, Kansas, USA

    USGS Publications Warehouse

    Ohlmacher, G.C.; Berendsen, P.

    2005-01-01

    Many stable continental regions have subregions with poorly defined earthquake hazards. Analysis of minor structures (folds and faults) in these subregions can improve our understanding of the tectonics and earthquake hazards. Detailed structural mapping in Pottawatomie County has revealed a suite consisting of two uplifted blocks aligned along a northeast trend and surrounded by faults. The first uplift is located southwest of the second. The northwest and southeast sides of these uplifts are bounded by northeast-trending right-lateral faults. To the east, both uplifts are bounded by north-trending reverse faults, and the first uplift is bounded by a north-trending high-angle fault to the west. The structural suite occurs above a basement fault that is part of a series of north-northeast-trending faults that delineate the Humboldt Fault Zone of eastern Kansas, an integral part of the Midcontinent Rift System. The favored kinematic model is a contractional stepover (push-up) between echelon strike-slip faults. Mechanical modeling using the boundary element method supports the interpretation of the uplifts as contractional stepovers and indicates that an approximately east-northeast maximum compressive stress trajectory is responsible for the formation of the structural suite. This stress trajectory suggests potential activity during the Laramide Orogeny, which agrees with the age of kimberlite emplacement in adjacent Riley County. The current stress field in Kansas has a N85??W maximum compressive stress trajectory that could potentially produce earthquakes along the basement faults. Several epicenters of seismic events (

  16. States of paleostress north and south of the Periadriatic fault: Comparison of the Drau Range and the Friuli Southalpine wedge

    PubMed Central

    Bartel, Esther Maria; Neubauer, Franz; Genser, Johann; Heberer, Bianca

    2014-01-01

    This study focuses on the analysis of structures and kinematics of a N–S profile along the axis of maximum shortening of the European Eastern Alps. The area includes the southern Austroalpine unit in the north and the Southalpine unit, which is a part of the Adriatic indenter. The stratigraphically different units are separated by the Periadriatic fault, the major strike-slip fault within the Alps. In order to assess the kinematics of these units, mainly fault-slip data from north and south of the Periadriatic fault were analyzed. We distinguish a succession of five main kinematic groups in both units: (1) N–S compression; (2) NW–SE compression; (3) NE–SW compression, σ3 changes gradually from subvertical to subhorizontal; (4) N–S compression; and (5) NW–SE compression. Our study reveals that the deformation sequence on either sides of the PAF is similar. The mean orientations of the principal stress axes, however, show small, but consistent differences: The subhorizontal axes north of the Periadriatic fault plunge northward, in the south southward. A counterclockwise (CCW) rotation of the southern part in respect to the north is evident and in line with the well-known counterclockwise rotation of the Adriatic indenter as well as dextral displacement of the N-fanning stress-field along the Periadriatic fault. Opposing plunge directions are interpreted as a primary feature of the internal stress-field within an orogenic wedge further increased during ongoing compression. PMID:27064736

  17. Design and analysis of a toroidal tester for the measurement of core losses under axial compressive stress

    NASA Astrophysics Data System (ADS)

    Alatawneh, Natheer; Rahman, Tanvir; Lowther, David A.; Chromik, Richard

    2017-06-01

    Electric machine cores are subjected to mechanical stresses due to manufacturing processes. These stresses include radial, circumferential and axial components that may have significant influences on the magnetic properties of the electrical steel and hence, on the output and efficiencies of electrical machines. Previously, most studies of iron losses due to mechanical stress have considered only radial and circumferential components. In this work, an improved toroidal tester has been designed and developed to measure the core losses and the magnetic properties of electrical steel under a compressive axial stress. The shape of the toroidal ring has been verified using 3D stress analysis. Also, 3D electromagnetic simulations show a uniform flux density distribution in the specimen with a variation of 0.03 T and a maximum average induction level of 1.5 T. The developed design has been prototyped, and measurements were carried out using a steel sample of grade 35WW300. Measurements show that applying small mechanical stresses normal to the sample thickness rises the delivered core losses, then the losses decrease continuously as the stress increases. However, the drop in core losses at high stresses does not go lower than the free-stress condition. Physical explanations for the observed trend of core losses as a function of stress are provided based on core loss separation to the hysteresis and eddy current loss components. The experimental results show that the effect of axial compressive stress on magnetic properties of electrical steel at high level of inductions becomes less pronounced.

  18. Behavior of a centrally notched cross-ply and unidirectional ceramic matrix composite in tension-compression fatigue. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weidenaar, W.A.

    1992-12-01

    Centrally notched (hole), cross-ply, ((0/90) sub 2) sub s, and unidirectional, (0) sub 8 laminates of Silicon Carbide fiber-reinforced Aluminosilicate glass, SiC/1723, were fatigue tested under tension-compression loading with a load ratio of -1. Damage accumulated continuously for both lay-ups, leading to eventual failure and a reduced fatigue life. Critical damage in the cross-ply consisted of longitudinal cracks in the 90 deg plies growing and combining with transverse cracks to effectively eliminate the 90 deg plies' load carrying capability and allowing the specimen to buckle. Critical damage in the unidirectional lay-up consisted of longitudinal cracks which initiated at the shearmore » stress concentration points on the hole periphery. Reversed cyclic loading caused continued crack growth at maximum stresses below the tension-tension fatigue limit. The cross-ply lay-up appeared insensitive to the hole, while critical damage in the unidirectional lay-up was dependent on the shear stress concentrations at the hole.... Ceramic matrix composite, Tension-compression fatigue, Notched specimen.« less

  19. Influence of Stress State, Stress Orientation, and Rock Properties on the Development of Deformation-Band 'Ladder' Arrays in Porous Sandstone

    NASA Astrophysics Data System (ADS)

    Schultz, R. A.; Soliva, R.; Fossen, H.

    2013-12-01

    Deformation bands in porous rocks tend to develop into spatially organized arrays that display a variety of lengths and thicknesses, and their geometries and arrangements are of interest with respect to fluid flow in reservoirs. Field examples of deformation band arrays in layered clastic sequences suggest that the development of classic deformation band arrays, such as ladders and conjugate sets, and the secondary formation of through-going faults appear to be related to the physical properties of the host rock, the orientation of stratigraphic layers relative to the far-field stress state, and the evolution of the local stress state within the developing array. We have identified several field examples that demonstrate changes in band properties, such as type and orientation, as a function of one or more of these three main factors. Normal-sense deformation-band arrays such as those near the San Rafael Swell (Utah) develop three-dimensional ladder-style arrays at a high angle to the maximum compression direction; these cataclastic shear bands form at acute angles to the maximum compression not very different from that of the optimum frictional sliding plane, thus facilitating the eventual nucleation of a through-going fault. At Orange quarry (France), geometrically conjugate sets of reverse-sense compactional shear bands form with angles to the maximum compression direction that inhibit fault nucleation within them; the bands in this case also form at steep enough angles to bedding that stratigraphic heterogeneities within the deforming formation were apparently not important. Two exposures of thrust-sense ladders at Buckskin Gulch (Utah) demonstrate the importance of host-rock properties, bedding-plane involvement, and local stress perturbations on band-array growth. In one ladder, thrust-sense shear deformation bands nucleated along suitably oriented bedding planes, creating overprinting sets of compaction bands that can be attributed to layer properties and local stress changes near the shear-band tips. Two other ladder exposures preserve compaction bands having nearly perpendicular orientations relative the bounding shear bands that define contractional stepovers that also nucleated on bedding planes. These cases suggest that local stress changes within a deformation-band stepover may lead to either rotation of bands or changes in band type relative to bands formed outside the stepover. The development of the common geometries of deformation band arrays, such as ladders, and the deformation paths to faulting thus depend on a combination of stress state, stress orientation, and rock properties.

  20. Effect of angle-ply orientation on compression strength of composite laminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeTeresa, S J; Hoppel, C P

    1999-03-01

    An experimental program was initiated to investigate the effect of angle-ply orientations on the compressive strength (X{sub 1C}) of 0{degree} plies in fiber reinforced composite laminates. Graphite fiber-reinforced epoxy test coupons with the generic architecture [0{sub 2}/{+-}{theta}] (where {theta} varied between 0{degree} and 90{degree}) and for the quasi-isotropic architecture were evaluated. The effective compressive strength of the 0{degree} plies varied considerably. The results were related to the Poisson's ratios of the laminates with high Poisson's ratios leading to high transverse tensile strains in the test coupons and lower than expected strengths. Specimens with the [O{sub 2}/{+-}30] architecture had both themore » highest Poisson's ratio and the lowest calculated ply-level compression strength for the 0{degree} plies. This work has implications in the selection of composite failure criterion for compression performance, design of test coupons for acceptance testing, and the selection of laminate architectures for optimum combinations of compressive and shear behavior. Two commonly used composite failure criteria, the maximum stress and the Tsai-Wu, predict significantly different laminate strengths depending on the Poisson's ratio of the laminate. This implies that the biaxial stress state in the laminate needs to be carefully considered before backing out unidirectional properties.« less

  1. Biomechanical behavior of cavity configuration on micropush-out test: a finite-element-study.

    PubMed

    Cekic-Nagas, Isil; Shinya, Akikazu; Ergun, Gulfem; Vallittu, Pekka K; Lassila, Lippo V J

    2011-01-01

    The objective of this study was to simulate the micropush-out bond strength test from a biomechanical point of view. For this purpose, stress analysis using finite element (FE) method was performed. Three different occlusal cavity shapes were simulated in disc specimens (model A: 1.5 mm cervical, 2 mm occlusal diameter; model B: 1.5 mm cervical, 1.75 mm occlusal diameter; model C: 1.5 mm cervical, 1.5 mm occlusal diameter). Quarter sizes of 3D FE specimen models of 4.0 x 4.0 x 1.25 mm3 were constructed. In order to avoid quantitative differences in the stress value in the models, models were derived from a single mapping mesh pattern that generated 47.182 elements and 66.853 nodes. The materials that were used were resin composite (Filtek Z250, 3M ESPE), bonding agent (Adper Scotchbond Multi-Purpose, 3M ESPE) and dentin as an isotropic material. Loading conditions consisted of subjecting a press of 4 MPa to the top of the resin composite discs. The postprocessing files allowed the calculation of the maximum principal stress, minimum principal stress and displacement within the disc specimens and stresses at the bonding layer. FE model construction and analysis were performed on PC workstation (Precision Work Station 670, Dell Inc.) using FE analysis program (ANSYS 10 Sp, ANSYS Inc.). Compressive stress concentrations were observed equally in the bottom interface edge of dentin. Tensile stresses were observed on the top area of dentin and at the half of lower side of composite under the loading point in all of the FE models. The FE model revealed differences in displacement and stress between different cavity shaped disc specimens. As the slope of the cavity was increased, the maximum displacement, compressive and tensile stresses also increased.

  2. Compression failure of angle-ply laminates

    NASA Technical Reports Server (NTRS)

    Peel, L. D.; Hyer, M. W.; Shuart, M. J.

    1992-01-01

    Test results from the compression loading of (+ or - Theta/ - or + Theta)(sub 6s) angle-ply IM7-8551-7a specimens, 0 less than or = Theta less than or = 90 degs, are presented. The observed failure strengths and modes are discussed, and typical stress-strain relations shown. Using classical lamination theory and the maximum stress criterion, an attempt is made to predict failure stress as a function of Theta. This attempt results in poor correlation with test results and thus a more advanced model is used. The model, which is based on a geometrically nonlinear theory, and which was taken from previous work, includes the influence of observed layer waviness. The waviness is described by the wave length and the wave amplitude. The theory is briefly described and results from the theory are correlated with test results. It is shown that by using levels of waviness observed in the specimens, the correlation between predictions and observations is good.

  3. In situ neutron diffraction study of twin reorientation and pseudoplastic strain in Ni-Mn-Ga single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoica, Alexandru Dan

    2011-01-01

    Twin variant reorientation in single-crystal Ni-Mn-Ga during quasi-static mechanical compression was studied using in situ neutron diffraction. The volume fraction of reoriented twin variants for different stress amplitudes were obtained from the changes in integrated intensities of high-order neutron diffraction peaks. It is shown that, during compressive loading, {approx}85% of the twins were reoriented parallel to the loading direction resulting in a maximum pseudoplasticstrain of {approx}5.5%, which is in agreement with measured macroscopic strain.

  4. An Analysis of the Stress induced in the Periodontal Ligament during Extrusion and Rotation Movements- Part II: A Comparison of Linear vs Nonlinear FEM Study.

    PubMed

    Hemanth, M; Raghuveer, H P; Rani, M S; Hegde, Chathura; Kabbur, Karthik J; Chaithra, D; Vedavathi, B

    2015-10-01

    Optimal orthodontic forces are those which stimulate tooth movement with minimal biological trauma to the tooth, periodontal ligament (PDL) during and alveolar bone. Among various types of tooth movements, extrusion and rotational movements are seen to be associated with the least amount of root resorption and have not been studied in detail. The mechanical behavior of the PDL is known to be nonlinear elastic and thus a nonlinear simulation of the PDL provides precision to the calculated stress values. Therefore in this study, the stress patterns in the PDL were evaluated with extrusion and rotational movements using the nonlinear finite element method (FEM). A three-dimensional (3D) FEM model of the maxillary incisors was generated using SOLIDWORKS modelling software. Stresses in the PDL were evaluated with extrusive and rotational movements by a 3D FEM using ANSYS software with nonlinear material properties. It was observed that with the application of extrusive load, the tensile stresses were seen at the apex whereas the compressive stress was distributed at the cervical margin. With the application of rotational movements, maximum compressive stress was distributed at the apex and cervical third whereas the tensile stress was distributed on cervical third of the PDL on the lingual surface. For rotational and extrusion movements, stress values over the periodontal ligament was within the range of optimal stress value as proposed by Lee, with a given force system by Proffit as optimum forces for orthodontic tooth movement using nonlinear properties. During rotation there are stresses concentrated at the apex, hence due to the concentration of the compressive forces at the apex a clinician must avoid placing heavy stresses during tooth movement.

  5. [Stress change of periodontal ligament of the anterior teeth at the stage of space closure in lingual appliances: a 3-dimensional finite element analysis].

    PubMed

    Liu, D W; Li, J; Guo, L; Rong, Q G; Zhou, Y H

    2018-02-18

    To analyze the stress distribution in the periodontal ligament (PDL) under different loading conditions at the stage of space closure by 3D finite element model of customized lingual appliances. The 3D finite element model was used in ANSYS 11.0 to analyze the stress distribution in the PDL under the following loading conditions: (1) buccal sliding mechanics (0.75 N,1.00 N,1.50 N), (2) palatal sliding mechanics (0.75 N,1.00 N,1.50 N), (3) palatal-buccal combined sliding mechanics (buccal 1.00 N + palatal 0.50 N, buccal 0.75 N + palatal 0.75 N, buccal 0.50 N+ palatal 1.00 N). The maximum principal stress, minimum principal stress and von Mises stress were evaluated. (1) buccal sliding mechanics(0.75 N,1.00 N,1.50 N): maximum principal stress: at the initial of loading, maximum principal stress, which was the compressed stress, distributed in labial PDL of cervix of lateral incisor, and palatal distal PDL of cervix of canine. With increasing loa-ding, the magnitude and range of the stress was increased. Minimum principal stress: at the initial of loading, minimum principal stress which was tonsil stress, distributed in palatal PDL of cervix of lateral incisor and mesial PDL of cervix of canine. With increasing loading, the magnitude and range of minimum principal stress was increased. The area of minimum principal stress appeared in distal and mesial PDL of cervix of central incisor. von Mises stress:it distributed in labial and palatal PDL of cervix of lateral incisor and distal PDL of cervix of canine initially. With increasing loading, the magnitude and range of stress was increased towards the direction of root. Finally, there was stress concentration area at mesial PDL of cervix of canine. (2) palatal sliding mechanics(0.75 N,1.00 N,1.50 N): maximum principal stress: at the initial of loading, maximum principal stress which was the compressed stress, distributed in palatal and distal PDL of cervix of canine, and distal-buccal and palatal PDL of cervix of lateral incisor. With increasing loading, the magnitude and range of the stress was increased. Minimum principal stress: at the initial of loading, minimum principal stress which was tonsil stress, distributed in distal-interproximal PDL of cervix of lateral incisor and mesial-interproximal PDL of cervix of canine. With increasing loading, the magnitude and range of the stress was increased.von Mises stress: von Mises stress distributed in palatal and interproximal PDL of cervix of canine. With increasing loading, the magnitude and range of stress was increased. Finally, von Mises stress distributing area appeared at distal-palatal PDL of cervix of canine. (3) palatal-buccal combined sliding mechanics: maximum principal stress: maximum principal stress still distributed in distal-palatal PDL of cervix of canine. Minimum principal stress: minimum principal stress distributed in palatal PDL of cervix of lateral incisor when buccal force was more than palatal force. As palatal force increased, the stress concentrating area transferred to mesial PDL of cervix of canine.von Mises stress: it was lower and more well-distributed in palatal-buccal combined sliding mechanics than palatal or buccal sliding mechanics. Using buccal sliding mechanics,stress majorly distributed in PDL of lateral incisor and canine, and magnitude and range of stress increased with the increase of loading; Using palatal sliding mechanics, stress majorly distributed in PDL of canine, and magnitude and range of stress increased with the increase of loading; With palatal-buccal combined sliding mechanics, the maximum principal stress distributed in the distal PDL of canine. Minimum principal stress distributed in palatal PDL of cervix of lateral incisor when buccal force was more than palatal force. As palatal force was increasing, the minimum principal stress distributing area shifted to mesial PDL of cervix of canine. When using 1.00 N buccal force and 0.50 N palatal force, the von Mises stress distributed uniformly in PDL and minimal stress appeared.

  6. Data basic to the engineering of reconstituted flakeboard

    Treesearch

    Robert L. Geimer

    1979-01-01

    Flakeboards made with uniform densities throughout their thickness and different degrees of flake alignment were used to establish relationships between bending, tension, and compression values of modulus of elasticity or modulus of rupture (or stress to maximum load) and the variables of specific gravity and flake alignment. An equation using sonic velocity as an...

  7. Static Tensile and Transient Dynamic Response of Cracked Aluminum Plate Repaired with Composite Patch - Numerical Study

    NASA Astrophysics Data System (ADS)

    Khalili, S. M. R.; Shariyat, M.; Mokhtari, M.

    2014-06-01

    In this study, the central cracked aluminum plates repaired with two sided composite patches are investigated numerically for their response to static tensile and transient dynamic loadings. Contour integral method is used to define and evaluate the stress intensity factors at the crack tips. The reinforcement for the composite patches is carbon fibers. The effect of adhesive thickness and patch thickness and configuration in tensile loading case and pre-tension, pre-compression and crack length effect on the evolution of the mode I stress intensity factor (SIF) (KI) of the repaired structure under transient dynamic loading case are examined. The results indicated that KI of the central cracked plate is reduced by 1/10 to 1/2 as a result of the bonded composite patch repair in tensile loading case. The crack length and the pre-loads are more effective in repaired structure in transient dynamic loading case in which, the 100 N pre-compression reduces the maximum KI for about 40 %, and the 100 N pre-tension reduces the maximum KI after loading period, by about 196 %.

  8. Effect of additives on the tensile performance and protein solubility of industrial oilseed residual based plastics.

    PubMed

    Newson, William R; Kuktaite, Ramune; Hedenqvist, Mikael S; Gällstedt, Mikael; Johansson, Eva

    2014-07-16

    Ten chemical additives were selected from the literature for their proposed modifying activity in protein-protein interactions. These consisted of acids, bases, reducing agents, and denaturants and were added to residual deoiled meals of Crambe abyssinica (crambe) and Brassica carinata (carinata) to modify the properties of plastics produced through hot compression molding at 130 °C. The films produced were examined for tensile properties, protein solubility, molecular weight distribution, and water absorption. Of the additives tested, NaOH had the greatest positive effect on tensile properties, with increases of 105% in maximum stress and 200% in strain at maximum stress for crambe and a 70% increase in strain at maximum stress for carinata. Stiffness was not increased by any of the applied additives. Changes in tensile strength and elongation for crambe and elongation for carinata were related to changes in protein solubility. Increased pH was the most successful in improving the protein aggregation and mechanical properties within the complex chemistry of residual oilseed meals.

  9. Evolution of residual stress, free volume, and hardness in the laser shock peened Ti-based metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liang; Wang, Lu; Nie, Zhihua

    Laser shock peening (LSP) with different cycles was performed on the Ti-based bulk metallic glasses (BMGs). The sub-surface residual stress of the LSPed specimens was measured by high-energy X-ray diffraction (HEXRD) and the near-surface residual stress was measured by scanning electron microscope/focused ion beam (SEM/FIB) instrument. The sub-surface residual stress in the LSP impact direction (about-170MPa) is much lower than that perpendicular to the impact direction (about -350 MPa), exhibiting anisotropy. The depth of the compressive stress zone increases from 400 mu m to 500 mu m with increasing LSP cycles. The highest near-surface residual stress is about -750 MPa.more » LSP caused the free volume to increase and the maximum increase appeared after the first LSP process. Compared with the hardness (567 +/- 7 HV) of the as-cast BMG, the hardness (590 +/- 9 HV) on the shocked surface shows a hardening effect due to the hardening mechanism of compressive residual stress; and the hardness (420 +/- 9 HV) on the longitudinal section shows a softening effect due to the softening mechanism of free volume.« less

  10. Transverse stresses and modes of failure in tree branches and other beams

    PubMed Central

    Ennos, A. R.; van Casteren, A.

    2010-01-01

    The longitudinal stresses in beams subjected to bending also set up transverse stresses within them; they compress the cross section when the beam's curvature is being increased and stretch it when its curvature is being reduced. Analysis shows that transverse stresses rise to a maximum at the neutral axis and increase with both the bending moment applied and the curvature of the beam. These stresses can qualitatively explain the fracture behaviour of tree branches. Curved ‘hazard beams’ that are being straightened split down the middle because of the low transverse tensile strength of wood. By contrast, straight branches of light wood buckle when they are bent because of its low transverse compressive strength. Branches of denser wood break, but the low transverse tensile strength diverts the crack longitudinally when the fracture has only run half-way across the beam, to produce their characteristic ‘greenstick fracture’. The bones of young mammals and uniaxially reinforced composite beams may also be prone to greenstick fracture because of their lower transverse tensile strength. PMID:20018786

  11. The mechanical response of a polyetheretherketone femoral knee implant under a deep squatting loading condition.

    PubMed

    de Ruiter, Lennert; Janssen, Dennis; Briscoe, Adam; Verdonschot, Nico

    2017-12-01

    The current study was designed to investigate the mechanical response of a polyetheretherketone-on-polyethylene total knee replacement device during a deep squat. Application of this high-demand loading condition can identify weaknesses of the polyetheretherketone relative to cobalt-chromium. This study investigated whether the implant is strong enough for this type of loading, whether cement stresses are considerably changed and whether a polyetheretherketone femoral component is likely to lead to reduced periprosthetic bone loss as compared to a cobalt-chromium component. A finite element model of a total knee arthroplasty subjected to a deep squat loading condition, which was previously published, was adapted with an alternative total knee arthroplasty design made of either polyetheretherketone or cobalt-chromium. The maximum tensile and compressive stresses within the implant and cement mantle were analysed against their yield and fatigue stress levels. The amount of stress shielding within the bone was compared between the polyetheretherketone and cobalt-chromium cases. Relative to its material strength, tensile peak stresses were higher in the cobalt-chromium implant; compressive peak stresses were higher in the polyetheretherketone implant. The stress patterns differed substantially between polyetheretherketone and cobalt-chromium. The tensile stresses in the cement mantle supporting the polyetheretherketone implant were up to 33% lower than with the cobalt-chromium component, but twice as high for compression. Stress shielding was reduced to a median of 1% for the polyetheretherketone implant versus 56% for the cobalt-chromium implant. Both the polyetheretherketone implant and the underlying cement mantle should be able to cope with the stress levels present during a deep squat. Relative to the cobalt-chromium component, stress shielding of the periprosthetic femur was substantially less with a polyetheretherketone femoral component.

  12. Analysis of Variscan dynamics; early bending of the Cantabria-Asturias Arc, northern Spain

    NASA Astrophysics Data System (ADS)

    Kollmeier, J. M.; van der Pluijm, B. A.; Van der Voo, R.

    2000-08-01

    Calcite twinning analysis in the Cantabria-Asturias Arc (CAA) of northern Spain provides a basis for evaluating conditions of Variscan stress and constrains the arc's structural evolution. Twinning typically occurs during earliest layer-parallel shortening, offering the ability to define early conditions of regional stress. Results from the Somiedo-Correcilla region are of two kinds: early maximum compressive stress oriented layer-parallel and at high angles to bedding strike (D1 σ1) and later twin producing compression oriented sub-parallel to strike (D2 σ1). When all D1 compressions are rotated into a uniform east-west reference orientation, a quite linear, north-south trending fold-thrust belt results showing a slight deflection of the southern zone to the south-southeast. North-south-directed D2 σ1 compression was recorded prior to bending of the belt. Calcite twinning data elucidate earliest structural conditions that could not be obtained by other means, whereas the kinematics of arc tightening during D2 is constrained by paleomagnetism. A large and perhaps protracted D2 σ1 is suggested by our results, as manifested by approximately 50% arc tightening prior to acquisition of paleomagnetic remagnetizations throughout the CAA. Early east-west compression (D1 σ1) likely resulted from the Ebro-Aquitaine massif docking to Laurussia whereas the north-directed collision of Africa (D2 σ1) produced clockwise bending in the northern zone, radial folding in the hinge, and rotation of thrusts in the southern zone.

  13. SM-1 REACTOR VESSEL COVER AND FLANGE STRESS ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayre, M.F.

    1962-02-19

    The maximum stress calculated for the SMl-1 reactor vessel closure studs occurs during operation at full power. This value is 27,180 psi of which 19,800 psi is tension and 7380 psi bending. This stress does not include a stress concentration factor for effect of threads. It was eonservatively assumed the studs were initially tightened to a code allowable stress of 20,000 psi as specified in the ASME Code rather than the lesser stress obtained by the normal operating procedure. The maximum calculated stress occurs at the outside surface of the cover where the stress ranges from 318 psi in tensionmore » to 90,660 psi in compression. The alternating stress is 50,000 psi. According to the Navy Code for a stress range of 50,000 psi, the eover material ean safely undergo a maximum of 1600 cycles. It was estimated that the SM-1 will go through approximately 000 startup and shutdown cycles during a 20-yr life period, so the calculated stress is regarded as safe. For a transient eondition of 30 deg F/hr during heat-up, approximate temperature differences between the inside and outside surfaces of the cover were obtained. Temperature differentials between the inside and outside surfaces of the cover are increased by roughly 10%; above the steady state condition. More exact calculations of the transient stresses did not appear necessary siuce they would be not more than 10% greater than the steady state thermal stress. (auth)« less

  14. The characteristics of void distribution in spalled high purity copper cylinder under sweeping detonation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Jiang, Zhi; Chen, Jixinog; Guo, Zhaoliang; Tang, Tiegang; Hu, Haibo

    2018-03-01

    The effects of different peak compression stresses (2-5 GPa) on the spallation behaviour of high purity copper cylinder during sweeping detonation were examined by Electron Backscatter Diffraction Microscopy, Doppler Pins System and Optical Microscopy techniques. The velocity history of inner surface and the characteristics of void distributions in spalled copper cylinder were investigated. The results indicated that the spall strength of copper in these experiments was less than that revealed in previous reports concerning plate impact loading. The geometry of cylindrical copper and the obliquity of incident shock during sweeping detonation may be the main reasons. Different loading stresses seemed to be responsible for the characteristics of the resultant damage fields, and the maximum damage degree increased with increasing shock stress. Spall planes in different cross-sections of sample loaded with the same shock stress of 3.29 GPa were found, and the distance from the initiation end has little effect on the maximum damage degree (the maximum damage range from 12 to 14%), which means that the spallation behaviour was stable along the direction parallel to the detonation propagation direction under the same shock stress.

  15. Changes in the Orientation of Local Stresses Prior to and During Magmatic Activity at the Soufriere Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Roman, D. C.; Neuberg, J.; Luckett, R. R.; White, R. A.

    2005-12-01

    Systematic changes in the orientation of double-couple fault-plane solutions (FPS) for volcanotectonic (VT) earthquakes have been linked to stress changes induced by the dilation of the magmatic conduit system and may precede the onset of eruption by weeks to months, potentially providing advance warning of an impending eruption. To determine whether analysis of FPS for VT earthquakes recorded during the ongoing eruption of the Soufriere Hills Volcano, Montserrat, could be used to detect the arrival of magma in the mid-level conduit system, we produced a large catalog of high-quality FPS that spanned several phases of the eruption, and then analyzed this catalog to determine whether a temporal correlation exists between eruptive activity and FPS orientation. We repicked VT earthquakes recorded on the Montserrat Volcano Observatory analog and digital seismic networks from the beginning of the eruption in 1995 to May 2005 and relocated them using a 1D velocity model. We then determined well-constrained FPS for the relocated earthquakes. Well-contrained FPS for 607 VT earthquakes indicate primarily oblique strike-slip faulting. In August 1995 (prior to the onset of lava extrusion in September 1995), October 1996-June 1997 (during a period of dome-building), May-November 1999 (prior to the restart of the eruption in November 1999 following a year-long pause), and April-May 2005 (prior to the restart of the eruption in June-August 2005 following a two year pause), FPS pressure (p-) axes are oriented approximately perpendicular to the inferred direction of regional maximum compressive stress around Montserrat. In contrast, FPS p-axes for earthquakes accompanying a pause in the eruption in 1998-1999, and from December 1999-March 2005 are oriented approximately parallel to regional maximum compression. VT earthquakes with FPS p-axes oriented perpendicular to regional maximum compression are thought to reflect local stresses induced by the inflation of a dike-like magmatic conduit system beneath Soufriere Hills prior to and during episodes of eruption.

  16. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Kim, Hyung-Mok; Ryu, Dong-Woo

    We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. Wemore » analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be quickly detected using pressure monitoring outside the concrete lining.« less

  17. Active stress along the ne external margin of the Apennines: the Ferrara arc, northern Italy

    NASA Astrophysics Data System (ADS)

    Montone, Paola; Mariucci, M. Teresa

    1999-09-01

    We have analysed borehole breakout data from 12 deep wells in order to constrain the direction of the minimum and maximum horizontal stress in a part of the Po Plain, northern Italy, characterised by a ˜N-S prevailing compressional stress regime, and in order to shed light on the regional state of stress and on the correlation between the active stress field and the orientation of tectonic structures. The results have been compared with seismological data relating to 1988-1995 crustal seismicity (2.5< Md<4.8) and to the 1983 Parma ( Ms=5.0) and the 1996 Reggio Emilia ( Ms=5.1) events. Plio-Pleistocene mesostructural data are also described in order to better define the present-day stress field and to understand the active tectonic processes in particular stress provinces. The borehole breakout analysis, in accordance with the seismicity and mesostructural data, shows the presence of a predominant compression area, characterised by approximately N-S maximum horizontal stress, along the outer thrust of the Ferrara arc. Particularly, the breakout analysis indicates a minimum horizontal stress, N81W±22° relative to a total of eleven analysed wells, with 3746 m cumulative total length of breakout zones. Among these, nine wells are located in the same tectonic structure, consisting of an arc of asymmetric folds overthrust towards the NE. The breakout results for these wells are quite similar in terms of minimum horizontal stress direction (˜E-W oriented). The other two wells are located in the outside sector of the arc and one of them shows a different minimum horizontal stress direction, probably distinctive of another tectonic unit. On the basis of these new reliable stress indicators, the active compressive front in this area is located along the termination of the external northern Apenninic arc.

  18. Lithospheric flexure under the Hawaiian volcanic load: Internal stresses and a broken plate revealed by earthquakes

    NASA Astrophysics Data System (ADS)

    Klein, Fred W.

    2016-04-01

    Several lines of earthquake evidence indicate that the lithospheric plate is broken under the load of the island of Hawai`i, where the geometry of the lithosphere is circular with a central depression. The plate bends concave downward surrounding a stress-free hole, rather than bending concave upward as with past assumptions. Earthquake focal mechanisms show that the center of load stress and the weak hole is between the summits of Mauna Loa and Mauna Kea where the load is greatest. The earthquake gap at 21 km depth coincides with the predicted neutral plane of flexure where horizontal stress changes sign. Focal mechanism P axes below the neutral plane display a striking radial pattern pointing to the stress center. Earthquakes above the neutral plane in the north part of the island have opposite stress patterns; T axes tend to be radial. The M6.2 Honomu and M6.7 Kiholo main shocks (both at 39 km depth) are below the neutral plane and show radial compression, and the M6.0 Kiholo aftershock above the neutral plane has tangential compression. Earthquakes deeper than 20 km define a donut of seismicity around the stress center where flexural bending is a maximum. The hole is interpreted as the soft center where the lithospheric plate is broken. Kilauea's deep conduit is seismically active because it is in the ring of maximum bending. A simplified two-dimensional stress model for a bending slab with a load at one end yields stress orientations that agree with earthquake stress axes and radial P axes below the neutral plane. A previous inversion of deep Hawaiian focal mechanisms found a circular solution around the stress center that agrees with the model. For horizontal faults, the shear stress within the bending slab matches the slip in the deep Kilauea seismic zone and enhances outward slip of active flanks.

  19. Lithospheric flexure under the Hawaiian volcanic load: Internal stresses and a broken plate revealed by earthquakes

    USGS Publications Warehouse

    Klein, Fred W.

    2016-01-01

    Several lines of earthquake evidence indicate that the lithospheric plate is broken under the load of the island of Hawai`i, where the geometry of the lithosphere is circular with a central depression. The plate bends concave downward surrounding a stress-free hole, rather than bending concave upward as with past assumptions. Earthquake focal mechanisms show that the center of load stress and the weak hole is between the summits of Mauna Loa and Mauna Kea where the load is greatest. The earthquake gap at 21 km depth coincides with the predicted neutral plane of flexure where horizontal stress changes sign. Focal mechanism P axes below the neutral plane display a striking radial pattern pointing to the stress center. Earthquakes above the neutral plane in the north part of the island have opposite stress patterns; T axes tend to be radial. The M6.2 Honomu and M6.7 Kiholo main shocks (both at 39 km depth) are below the neutral plane and show radial compression, and the M6.0 Kiholo aftershock above the neutral plane has tangential compression. Earthquakes deeper than 20 km define a donut of seismicity around the stress center where flexural bending is a maximum. The hole is interpreted as the soft center where the lithospheric plate is broken. Kilauea's deep conduit is seismically active because it is in the ring of maximum bending. A simplified two-dimensional stress model for a bending slab with a load at one end yields stress orientations that agree with earthquake stress axes and radial P axes below the neutral plane. A previous inversion of deep Hawaiian focal mechanisms found a circular solution around the stress center that agrees with the model. For horizontal faults, the shear stress within the bending slab matches the slip in the deep Kilauea seismic zone and enhances outward slip of active flanks.

  20. Fatigue failure of dentin-composite disks subjected to cyclic diametral compression

    PubMed Central

    Li, Yuping; Carrera, Carola; Chen, Ruoqiong; Li, Jianying; Chen, Yungchung; Lenton, Patricia; Rudney, Joel. D.; Jones, Robert S.; Aparicio, Conrado; Fok, Alex

    2015-01-01

    Objective Our aim was to establish the relationship between cyclic loading and fatigue life of the dentin-composite interface using the newly developed disk in diametral compression tests. The results were then used to estimate the fatigue life of restored teeth under occlusal loading. Methods Disk specimens (5mm dia. × 2mm thick) were prepared using bovine incisors and restored with either a methacrylate-based composite Z100™ with Adper Single Bond Plus (Z100) or silorane-based composite Filtek ™ LS with LS System adhesive (LS). The dentin-composite disks were tested under cyclic diametral compression to determine the number of cycles to failure (Nf) at three load levels (n = 3 per group). Finite element analysis (FEA) was used to calculate the interfacial stresses (σ) within the specimen, to establish the σ vs. Nf curves, and those within a restored tooth under normal chewing forces (15N maximum). These were then used to estimate the lifetime of the restored tooth for the two restorative systems. Results The disks restored with LS had a higher fatigue resistance than those restored with Z100. The maximum interfacial stress in the restored tooth determined by FEA was ∼0.5MPa. Based on the estimate of 300,000 cycles of chewing per year, the predicted lifetime under occlusal loading for teeth restored with LS and Z100 was 33 and 10 years, respectively. Significance The disk in cyclic diametral compression has been used successfully to provide fatigue data which allows the lifetime of composite-restored teeth under occlusal loading to be predicted using numerical simulation. PMID:25958269

  1. Transient thermal and stress analysis of maxillary second premolar tooth using an exact three-dimensional model.

    PubMed

    Hashemipour, Maryam Alsadat; Mohammadpour, Ali; Nassab, Seiied Abdolreza Gandjalikhan

    2010-01-01

    In this paper, the temperature and stress distributions in an exact 3D-model of a restored maxillary second premolar tooth are obtained with finite element approach. The carious teeth need to restore with appropriate restorative materials. There are too many restorative materials which can be used instead of tooth structures; since tooth structures are being replaced, the restorative materials should be similar to original structure as could as possible. In the present study, a Mesial Occlusal Distal (MOD) type of restoration is chosen and applied to a sound tooth model. Four cases of restoration are investigated: two cases in which base are used under restorative materials and two cases in which base is deleted. The restorative materials are amalgam and composite and glass-inomer is used as a base material. Modeling is done in the solid works ambient by means of an exact measuring of a typical human tooth dimensions. Tooth behavior under thermal load due to consuming hot liquids is analyzed by means of a three dimensional finite element method using ANSYS software. The highest values of tensile and compressive stresses are compared with tensile and compressive strength of the tooth and restorative materials and the value of shear stress on the tooth and restoration junctions is compared with the bond strength. Also, sound tooth under the same thermal load is analyzed and the results are compared with those obtained for restored models. Temperature and stress distributions in the tooth are calculated for each case, with a special consideration in the vicinity of pulp and restoration region. Numerical results show that in two cases with amalgam, using the base material (Glass-ionomer) under the restorative material causes to decrease the maximum temperature in the restorative teeth. In the stress analysis, it is seen that the principal stress has its maximum values in composite restorations. The maximum temperatures are found in the restoration case of amalgam without base. Besides, it is found that restoration has not any influence on the stress values at DEJ, such that for all cases, these values are close to sound tooth results.

  2. Wrinkle ridges on Venusian plains: Indicators of shallow crustal stress orientations at local and regional scales

    NASA Technical Reports Server (NTRS)

    Mcgill, George E.

    1992-01-01

    The plains regions of Venus exhibit a complex array of structural features, including deformation belts of various types, wrinkle ridges, grabens, and enigmatic radar-bright linears. Probably the most pervasive of these structures are the wrinkle ridges, which appear to be morphologically identical to their counterparts on the Moon and Mars. Almost all workers agree that wrinkle ridges result from horizontal compressive stresses in the crust; they either are explained as flexural fold structures, or alternatively as scarps or folds related to reverse faults. Wrinkle ridges generally are narrow, have small amplitudes, and commonly are closely spaced as well, characteristics that imply a shallow crustal origin. If wrinkle ridges are due to horizontally directed compressive stresses in the shallow crust, as generally has been inferred, then the trends of these features provide a means to map both local and regional orientations of principal stresses in the uppermost part of the venusian crust: maximum compressive stress is normal to the ridges, minimum compressive stress is normal to the topographic surface, and thus the wrinkle ridge trends trace the orientation of the intermediate principal stress. Because there are few plains areas on Venus totally devoid of wrinkle ridges, it should be possible to establish a number of interesting relationships on a near-global scale by mapping the trends of wrinkle ridges wherever they occur. The present study is addressing three questions: (1) Do the trends of wrinkle ridges define domains that are large relative to the sizes of individual plains regions? If so, can these domains be related to large-scale topographic or geologic features? (2) Are regional trends of wrinkle ridges affected by local features such as coronae? If so, is it possible to determine the relative ages of the far-field and local stresses from detailed study of trend inheritance or superposition relationships? (3) What is the relationship between wrinkle ridges and the larger ridges that make up ridge belts?

  3. Design Issues of the Pre-Compression Rings of Iter

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Baker, W.; Bettinali, L.; Jong, C.; Mallick, K.; Nardi, C.; Rajainmaki, H.; Rossi, P.; Semeraro, L.

    2010-04-01

    The pre-compression system is the keystone of ITER. A centripetal force of ˜30 MN will be applied at cryogenic conditions on top and bottom of each TF coil. It will prevent the `breathing effect' caused by the bursting forces occurring during plasma operation that would affect the machine design life of 30000 cycles. Different alternatives have been studied throughout the years. There are two major design requirements limiting the engineering possibilities: 1) the limited available space and 2) the need to hamper eddy currents flowing in the structures. Six unidirectionally wound glass-fibre composite rings (˜5 m diameter and ˜300 mm cross section) are the final design choice. The rings will withstand the maximum hoop stresses <500 MPa at room temperature conditions. Although retightening or replacing the pre-compression rings in case of malfunctioning is possible, they have to sustain the load during the entire 20 years of machine operation. The present paper summarizes the pre-compression ring R&D carried out during several years. In particular, we will address the composite choice and mechanical characterization, assessment of creep or stress relaxation phenomena, sub-sized rings testing and the optimal ring fabrication processes that have led to the present final design.

  4. Design optimization of a radial functionally graded dental implant.

    PubMed

    Ichim, Paul I; Hu, Xiaozhi; Bazen, Jennifer J; Yi, Wei

    2016-01-01

    In this work, we use FEA to test the hypothesis that a low-modulus coating of a cylindrical zirconia dental implant would reduce the stresses in the peri-implant bone and we use design optimization and the rule of mixture to estimate the elastic modulus and the porosity of the coating that provides optimal stress shielding. We show that a low-modulus coating of a dental implant significantly reduces the maximum stresses in the peri-implant bone without affecting the average stresses thus creating a potentially favorable biomechanical environment. Our results suggest that a resilient coating is capable of reducing the maximum compressive and tensile stresses in the peri-implant bone by up to 50% and the average stresses in the peri-implant bone by up to 15%. We further show that a transitional gradient between the high-modulus core and the low-modulus coating is not necessary and for a considered zirconia/HA composite the optimal thickness of the coating is 100 µ with its optimal elastic at the lowest value considered of 45 GPa. © 2015 Wiley Periodicals, Inc.

  5. Biomechanical comparison of straight and helical compression plates for fixation of transverse and oblique bone fractures: Modeling and experiments.

    PubMed

    Sezek, Sinan; Aksakal, Bunyamin; Gürger, Murat; Malkoc, Melih; Say, Y

    2016-08-12

    Total deformation and stability of straight and helical compression plates were studied by means of the finite element method (FEM) and in vitro biomechanical experiments. Fixations of transverse (TF) and oblique (45°) bone (OF) fractures have been analyzed on sheep tibias by designing the straight compression (SP) and Helical Compression Plate (HP) models. The effects of axial compression, bending and torsion loads on both plating systems were analyzed in terms of total displacements. Numerical models and experimental models suggested that under compression loadings, bone fracture gap closures for both fracture types were found to be in the favor of helical plate designs. The helical plate (HP) fixations provided maximum torsional resistance compared to the (SP) fixations. The fracture gap closure and stability of helical plate fixation for transverse fractures was determined to be higher than that found for the oblique fractures. The comparison of average compression stress, bending and torsion moments showed that the FEM and experimental results are in good agreement and such designs are likely to have a positive impact in future bone fracture fixation designs.

  6. Thermal stress control using waste steel fibers in massive concretes

    NASA Astrophysics Data System (ADS)

    Sarabi, Sahar; Bakhshi, Hossein; Sarkardeh, Hamed; Nikoo, Hamed Safaye

    2017-11-01

    One of the important subjects in massive concrete structures is the control of the generated heat of hydration and consequently the potential of cracking due to the thermal stress expansion. In the present study, using the waste turnery steel fibers in the massive concretes, the amount of used cement was reduced without changing the compressive strength. By substituting a part of the cement with waste steel fibers, the costs and the generated hydration heat were reduced and the tensile strength was increased. The results showed that by using 0.5% turnery waste steel fibers and consequently, reducing to 32% the cement content, the hydration heat reduced to 23.4% without changing the compressive strength. Moreover, the maximum heat gradient reduced from 18.5% in the plain concrete sample to 12% in the fiber-reinforced concrete sample.

  7. A study of spectrum fatigue crack propagation in two aluminum alloys. 1: Spectrum simplification

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Antolovich, S. D.

    1985-01-01

    The fatigue crack propagation behavior of two commercial Al alloys was studied using spectrum loading conditions characteristics of those encountered at critical locations in high performance fighter aircraft. A tension dominated (TD) and tension compression (TC) spectrum were employed for each alloy. Using a mechanics-based analysis, it was suggested that negative loads could be eliminated for the TC spectrum for low to intermediate maximum stress intensities. The suggestion was verified by subsequent testing. Using fractographic evidence, it was suggested that a further similification in the spectra could be accomplished by eliminating low and intermediate peak load points resulting in near or below threshold maximum peak stress intensity values. It is concluded that load interactions become more important at higher stress intensities and more plasticity at the crack tip. These results suggest that a combined mechanics/fractographic mechanisms approach can be used to simplify other complex spectra.

  8. Synthesis of Au microwires by selective oxidation of Au–W thin-film composition spreads

    PubMed Central

    Hamann, Sven; Brunken, Hayo; Salomon, Steffen; Meyer, Robert; Savan, Alan; Ludwig, Alfred

    2013-01-01

    We report on the stress-induced growth of Au microwires out of a surrounding Au–W matrix by selective oxidation, in view of a possible application as ‘micro-Velcro’. The Au wires are extruded due to the high compressive stress in the tungsten oxide formed by oxidation of elemental W. The samples were fabricated as a thin-film materials library using combinatorial sputter deposition followed by thermal oxidation. Sizes and shapes of the Au microwires were investigated as a function of the W to Au ratio. The coherence length and stress state of the Au microwires were related to their shape and plastic deformation. Depending on the composition of the Au–W precursor, the oxidized samples showed regions with differently shaped Au microwires. The Au48W52 composition yielded wires with the maximum length to diameter ratio due to the high compressive stress in the tungsten oxide matrix. The values of wire length (35 μm) and diameter (2 μm) achieved at the Au48W52 composition are suitable for micro-Velcro applications. PMID:27877561

  9. The mechanical behaviour of NBR/FEF under compressive cyclic stress strain

    NASA Astrophysics Data System (ADS)

    Mahmoud, W. E.; El-Eraki, M. H. I.; El-Lawindy, A. M. Y.; Hassan, H. H.

    2006-06-01

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue.

  10. Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.

    PubMed

    Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko

    2014-08-28

    It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. The Mohr-Coulomb criterion for intact rock strength and friction - a re-evaluation and consideration of failure under polyaxial stresses

    NASA Astrophysics Data System (ADS)

    Hackston, A.; Rutter, E.

    2015-12-01

    Abstract Darley Dale and Pennant sandstones were tested under conditions of both axisymmetric shortening and extension normal to bedding. These are the two extremes of loading under polyaxial stress conditions. Failure under generalized stress conditions can be predicted from the Mohr-Coulomb failure criterion under axisymmetric compression conditions provided the best form of polyaxial failure criterion is known. The sandstone data are best reconciled using the Mogi (1967) empirical criterion. Fault plane orientations produced vary greatly with respect to the maximum compression direction in the two loading configurations. The normals to the Mohr-Coulomb failure envelopes do not predict the orientations of the fault planes eventually produced. Frictional sliding on variously inclined sawcuts and failure surfaces produced in intact rock samples was also investigated. Friction coefficient is not affected by fault plane orientation in a given loading configuration, but friction coefficients in extension were systematically lower than in compression for both rock types and could be reconciled by a variant on the Mogi (1967) failure criterion. Friction data for these and other porous sandstones accord well with the Byerlee (1977) generalization about rock friction being largely independent of rock type. For engineering and geodynamic modelling purposes, the stress-state dependent friction coefficient should be used for sandstones, but it is not known to what extent this might apply to other rock types.

  12. Reinforced cementitous composite with in situ shrinking microfibers

    NASA Astrophysics Data System (ADS)

    Kim, Eric S.; Lee, Jason K.; Lee, Patrick C.; Huston, Dryver R.; Tan, Ting; Al-Ghamdi, Saleh

    2017-03-01

    This paper describes an innovative fiber reinforcement technology for cementitious composite structures that employs in situ shrinking microfibers to provide supplemental strength-enhancing compressive stresses. Reinforced concrete is one of the most commonly used structural materials in construction industry, primarily due to its cost, durability, ability to be easily fabricated into a variety of shapes on site, and locally abundant raw material availability almost everywhere. Unlike incumbent passive reinforcing microfiber technology, in situ shrinking microfibers that respond to an in situ stimulus such as heat, pH, or moisture variations can induce pre-compression to matrix and create additional resistance from external loads, creating stronger composite structures. In this paper, heat-activated-shrinking (HAS) microfibers made from polyolefin, and pH-activated-shrinking (pHAS) microfibers made from chitosan powder were used to study effects of shrinking microfiber reinforcing in concrete. Shrinking ratios and tensile strengths of both microfibers were measured. Cementitious specimens with active shrinking microfibers, passive non shrinking fibers, as well as control samples were made. Mechanical properties of the samples were compared with compression and three-point bending tests. The optimum microfiber weight percentages for HAS microfibers were 0.5 wt% in compression tests, and 1.0 wt% in three-point bending tests. For pHAS microfibers, the optimum weight percentages were 0.5 wt% in three-point bending tests. Compared to heat passive microfibers specimens, 45% increase in the maximum compression strengths, and 124% increase in the maximum bending strengths were achieved at the optimum weight percentages of HAS microfibers. In addition, with 0.5 wt% of pHAS microfibers, 145% increase in the maximum bending strengths of three-point bending tests resulted compared to pH passive microfibers specimens.

  13. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression

    PubMed Central

    Qian, Suxin; Wang, Yi; Pillsbury, Thomas E.; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-01-01

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s−1 (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hysteresis at each strain were compared. The stress at the maximum recoverable strain of 4.0% for CuAlMn was 120 MPa, which is 70% smaller than that of CuAlZn. A smaller hysteresis for the CuAlMn alloy was also obtained, about 70% less compared with the CuAlZn alloy. The latent heat, determined by differential scanning calorimetry, was 4.3 J g−1 for the CuAlZn alloy and 5.0 J g−1 for the CuAlMn alloy. Potential coefficients of performance (COPmat) for these two alloys were calculated based on their physical properties of measured latent heat and hysteresis, and a COPmat of approximately 13.3 for CuAlMn was obtained. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402936

  14. Relationship Between Far Field Stresses, Fluid Flow and High-Pressure Deserpentinization in Subducting Slabs: a Case Study From the Almirez Ultramafic Massif

    NASA Astrophysics Data System (ADS)

    Dilissen, Nicole; Hidas, Károly; Garrido, Carlos J.; López Sánchez-Vizcaíno, Vicente; Kahl, Wolf-Achim; Padrón-Navarta, José Alberto; Jesús Román-Alpiste, Manuel

    2017-04-01

    Serpentinite dehydration during prograde metamorphism plays a crucial role in subduction dynamics. Observations from exhumed paleo-subduction metamorphic terranes suggest that the discharge of deserpentinization fluids from the subducting slab takes place along different pathways and mechanisms [e.g. 1-3]. Analysis of intermediate-depth focal solutions in active subduction zones indicates that slabs are subjected to different principal stress fields characterized primarily by downdip compression and downdip tension [4]. Although it is well known that far field stresses play a crucial role on fluid flow channeling, their potential impact on the kinetics of serpentinite dehydration and subsequent fluid escape in subducting slabs is still poorly understood. Here, we present a detailed structural and microstructural study to investigate the relationships between far field stresses, fluid flow and high-pressure deserpentinization in the Almirez ultramafic massif (Betic Cordillera, SE Spain) [1, 2]. This massif preserves the high-pressure breakdown of antigorite (Atg-) serpentinite to prograde chlorite (Chl-) harzburgite, which are separated by a sharp isograd [2, 5]. The Chl-harzburgite reaction products show either a granofels or spinifex-like texture indicating crystallization under different overstepping of the Atg-out reaction. The two different textural types of Chl-harzburgite occur below the Atg-out isograd as alternating, meter-wide lenses with either a granofels or spinifex texture. From field measurements, we infer that during antigorite dehydration the minimum compressive stress was subnormal to the dehydration front and the paleo-slab surface. This stress field is consistent with subduction zones with slabs under downdip compression at intermediate depths [4]. The detailed microstructural study —combining µ-CT and EBSD-SEM [6]— of Chl-harzburgite across a c. 15 m wide lens reveals that the SPO and CPO of olivines with contrasting textures are strongly correlated with the inferred paleo-stress. The SPO of opaque phases and that of granofelsic olivine are aligned and have a single maximum in each sample. Across the studied lens these maxima are distributed along a plane that corresponds to the average orientation of Atg-serpentinite foliation in a nearby outcrop, and they show a strong maximum close to the intermediate compressive stress axis. Spinifex olivines form tablet-like crystals that are elongated parallel to [001]-axes in a plane perpendicular to their [100]-axes. These growth planes are oriented at high angle to the least compressional stress axis, and the olivine growth directions (i.e., [001]-axes) are dominantly oriented at the acute angle between the maximum and intermediate compressive stress axes. These results indicate that formation of spinifex crystals is preferred at enhanced reaction rates and it occurred along hydrofractures that opened as controlled by the stress field. Our data show that overpressured fluids escaped along the slab surface towards the maximum compression direction. We therefore propose that at periods of high fluid flux due to hydrofracturing in a dehydrating slab, the development of fluid network channels strongly depends on the principal stress field. REFERENCES 1. Padrón-Navarta, J.A., Tommasi, A., Garrido, C.J., López Sánchez-Vizcaíno, V., Gómez-Pugnaire, M.T., Jabaloy, A., Vauchez, A., 2010. Fluid transfer into the wedge controlled by high-pressure hydrofracturing in the cold top-slab mantle. Earth and Planetary Science Letters 297, 271-286. doi: 10.1016/j.epsl.2010.06.029. 2. Padrón-Navarta, J.A., López Sánchez-Vizcaíno, V., Garrido, C.J., Gómez-Pugnaire, M.T., 2011. Metamorphic Record of High-pressure Dehydration of Antigorite Serpentinite to Chlorite Harzburgite in a Subduction Setting (Cerro del Almirez, Nevado-Filábride Complex, Southern Spain). Journal of Petrology 52, 2047-2078. 3. Plümper, O., John, T., Podladchikov, Y.Y., Vrijmoed, J.C., Scambelluri, M., (in press). Fluid escape from subduction zones controlled by channel-forming reactive porosity. Nature Geoscience. 4. Chen, P.-F., Bina, C.R., Okal, E.A., 2004. A global survey of stress orientations in subducting slabs as revealed by intermediate-depth earthquakes. Geophysical Journal International 159, 721-733. 5. Padrón-Navarta, J.A., Tommasi, A., Garrido, C.J., López Sánchez-Vizcaíno, V., 2012. Plastic deformation and development of antigorite crystal preferred orientation in high-pressure serpentinites. Earth and Planetary Science Letters 349-350, 75-86. doi: 10.1016/j.epsl.2012.06.049 6. Kahl, W.-A., Hidas, K., Dilissen, N., Garrido, C.J., López-Sánchez Vizcaíno, V., Román-Alpiste, M.J. 2017. Reconstruction of the 3-D shape and crystal preferred orientation of olivine: a combined µ-CT and EBSD-SEM approach. Geophysical Research Abstracts 19, EGU2017-8061. Funding: Research leading to these results was funded by the EU-FP7 Marie Curie Initial Training Network ZIP - Zooming in between plates.

  15. Delineation of tectonic provinces of New York state as a component of seismic-hazard evaluation

    USGS Publications Warehouse

    Fakundiny, R.H.

    2004-01-01

    Seismic-hazard evaluations in the eastern United States must be based on interpretations of the composition and form of Proterozoic basement-rock terranes and overlying Paleozoic strata, and on factors that can cause relative movements among their units, rather than Phanerozoic orogenic structures, which may be independent of modern tectonics. The tectonic-province concept is a major part of both probabilistic and deterministic seismic-hazard evaluations, yet those that have been proposed to date have not attempted to geographically correlate modern earthquakes with regional basement structure. Comparison of basement terrane (megablock) boundaries with the spatial pattern of modern seismicity may lead to the mechanically sound definition of tectonic provinces, and thus, better seismic-hazard evaluation capability than is currently available. Delineation of megablock boundaries will require research on the many factors that affect their structure and movement. This paper discusses and groups these factors into two broad categories-megablock tectonics in relation to seismicity and regional horizontal-compressive stresses, with megablock tectonics divided into subcategories of basement, overlying strata, regional lineaments, basement tectonic terranes, earthquake epicenter distribution, and epeirogeny, and compressive stresses divided into pop-ups and the contemporary maximum horizontal-compressive stress field. A list presenting four to nine proposed research topics for each of these categories is given at the end.

  16. Laser-excited optical emission response of CdTe quantum dot/polymer nanocomposite under shock compression

    NASA Astrophysics Data System (ADS)

    Xiao, Pan; Kang, Zhitao; Bansihev, Alexandr A.; Breidenich, Jennifer; Scripka, David A.; Christensen, James M.; Summers, Christopher J.; Dlott, Dana D.; Thadhani, Naresh N.; Zhou, Min

    2016-01-01

    Laser-driven shock compression experiments and corresponding finite element method simulations are carried out to investigate the blueshift in the optical emission spectra under continuous laser excitation of a dilute composite consisting of 0.15% CdTe quantum dots by weight embedded in polyvinyl alcohol polymer. This material is a potential candidate for use as internal stress sensors. The analyses focus on the time histories of the wavelength blue-shift for shock loading with pressures up to 7.3 GPa. The combined measurements and calculations allow a relation between the wavelength blueshift and pressure for the loading conditions to be extracted. It is found that the blueshift first increases with pressure to a maximum and subsequently decreases with pressure. This trend is different from the monotonic increase of blueshift with pressure observed under conditions of quasistatic hydrostatic compression. Additionally, the blueshift in the shock experiments is much smaller than that in hydrostatic experiments at the same pressure levels. The differences in responses are attributed to the different stress states achieved in the shock and hydrostatic experiments and the time dependence of the mechanical response of the polymer in the composite. The findings offer a potential guide for the design and development of materials for internal stress sensors for shock conditions.

  17. Preparation of Shrinkage Compensating Concrete with HCSA Expansive Agent

    NASA Astrophysics Data System (ADS)

    Li, Changcheng; Jia, Fujia

    2017-10-01

    Shrinkage compensating concrete (SCC) has become one of the best effective methods of preventing and reducing concrete cracking. SCC is prepared by HCSA high performance expansive agent for concrete which restrained expansion rate is optimized by 0.057%. Slump, compressive strength, restrained expansion rate and cracking resistance test were carried out on SCC. The results show that the initial slump of fresh SCC was about 220mm-230mm, while slump after 2 hours was 180mm-200mm. The restrained expansion rate of SCC increased with the mixing amount of expansive agent. After cured in water for 14 days, the restrained expansion rate of C35 and C40 SCC were 0.020%-0.032%. With the dosage of expansive agent increasing, restrained expansion rate of SCC increased, maximum compressive stress and cracking stress improved, cracking temperature fell, thus cracking resistance got effectively improvement.

  18. Model Estimates of Non-Hydrostatic Stresses in the Martian Crust and Mantle: 1—Two-Level Model

    NASA Astrophysics Data System (ADS)

    Gudkova, T. V.; Batov, A. V.; Zharkov, V. N.

    2017-11-01

    Regions of maximum shear and tension-compression stresses in the Martian interior have been revealed using two types of models: the elastic model and the model with an elastic lithosphere of varied thickness (150-500 km) positioned on a weak layer that has partially lost its elastic properties. The weakening is simulated by a ten-fold lower value of the shear modulus down to the core boundary. The numerical simulation applies Green's functions (load number method) with the step of 1 × 1 grade along latitude and longitude down to a depth of 1000 km. The boundary condition is the expansion of the latest data on Martian topography and the gravitational field (model MRO120D) in spherical harmonics up to the degree and order of 90 in relation to the reference surface that is assumed an equilibrium spheroid. The considered two-level compensation model assumes nonequilibrium relief and density anomalies at the crust-mantle boundary to be the sources of the anomalous gravitational field. Calculations are performed for two test models of Martian internal structure with the crust mean thicknesses of 50 to 100 km and mean density of 2900 kg/m3. Considerable tangential and simultaneously compressive stresses occur under the Tharsis region. The main regions of high shear and simultaneously extentional stresses are located in the Hellas region crust and in the lithosphere of the following regions: Argyre Planitia, Mare Acidalium, Arcadia Planitia and Valles Marineris. The zone of high maximum shear and extentional stresses has been found at the base of the lithosphere under the Olympus volcano and that under the Elysium rise.

  19. Structural fabrics, mineralization and Lamaride kinematics of the Idaho Springs-Ralston shear zone, Colorado mineral belt and central Front Range uplift

    USGS Publications Warehouse

    Caine, Jonathan S.; Nelson, E.P.; Beach, S.T.; Layer, P.W.

    2006-01-01

    The Idaho Springs and Central City mining districts form the central portion of a structurally controlled hydrothermal precious- and base-metal vein system in the Front Range of the northeast-trending Colorado Mineral Belt. Three new 40Ar/39Ar plateau ages on hydrothermal sericite indicate the veins formed during the Laramide orogeny between 65.4??1.5 - 61.9??1.3 Ma. We compile structural geologic data from surface geological maps, subsurface mine maps, and theses for analysis using modern graphical methods and integration into models of formation of economic mineral deposits. Structural data sets, produced in the 1950s and 1960s by the U.S. Geological Survey, are compiled for fabric elements, including metamorphic foliations, fold axial trends, major brittle fault zones, quartz and precious- and base-metal veins and fault veins, Tertiary dikes, and joints. These fabric elements are plotted on equal-area projections and analyzed for mean fabric orientations. Strike-slip fault-vein sets are mostly parallel or sub-parallel, and not conjugate as interpreted by previous work; late-stage, normal-slip fault veins possibly show a pattern indicative of triaxial strain. Fault-slip kinematic analysis was used to model the trend of the Laramide maximum horizontal stress axis, or compression direction, and to determine compatibility of opening and shear motions within a single stress field. The combined-model maximum compression direction for all strike slip fault veins is ???068??, which is consistent with published Laramide compression directions of ???064?? (mean of 23 regional models) and ???072?? for the Front Range uplift. The orientations of fabric elements were analyzed for mechanical and kinematic compatibility with opening, and thus permeability enhancement, in the modeled regional east-northeast, Laramide compression direction. The fabric orientation analysis and paleostress modeling show that structural permeability during mineralization was enhanced along pre-existing metamorphic foliations and fold axial planes. Large orientation dispersion in most fabric elements likely caused myriad potential pathways for permeability. The dominant orientations of opening and shear mode structures are consistent with a sub-parallel network of structures that formed in the Laramide east-northeast compression direction. The results presented demonstrate the importance of using mechanical and kinematic theory integrated with contemporary ideas of permeability structure to better understand the coupled nature of fluid flow, mineral deposition, stress, and strain. Further, the results demonstrate that there is significant internal strain within this basement-cored uplift that was localized by optimally oriented pre-existing structures in a regional stress field.

  20. Characterization of Shear Properties for APO/MBI Syntactic Foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reser, Patrick M.; Lewis, Matthew W.; Clark, Jarod

    Triaxial compression testing is a means for mechanical characterization of a material. A unique feature of the triaxial compression test is the application of two different magnitudes of compressive pressures on the material simultaneously. The material behavior under these different compressive pressures can be monitored over time. Several important characteristics of the material, such as stress yield values and the shear failure envelope may then be determined. Also mechanical properties such as Poisson’s ratio, Young’s modulus and bulk modulus can be determined from the triaxial compression test. The triaxial compression test was employed in this investigation to characterize the shearmore » behavior, shear failure envelope, and mechanical properties of a syntactic foam. Los Alamos National Laboratory (LANL) supplied a total of 36 samples of APO-BMI syntactic foam to the University of New Mexico, Department of Civil Engineering for testing between December 2003 and May 2004. Each sample had a diameter of 1.395±0.005 in. (3.543±0.013cm.) and a length of 2.796±0.004 in. (7.102±0.010 cm.). The samples had an average density of 0.295 g/cm3. Additional information about the material tested in this investigation can be found in the “Specimen Description” section contained in Chapter 1. The nomenclatures used in this study is presented in Chapter 1. In addition to designing and implementing triaxial compression tests capable of up to 2,000 psi. confining pressure (minor principal stress) and roughly 13,000 psi. in axial pressure (major principal stress), a pure tension test was designed and conducted on the foam material. The purpose of this pure tension test was to obtain maximum tensile stress values to enhance the characterization of the shear envelope in the stress space. The sampling procedure and specimen preparation for a standard test can be found in the American Society for Testing Materials (ASTM) D 5379/ D 5379 – 93. The above tests mentioned and their procedures are discussed in Chapter 2. Chapter 2 contains the types of tests performed and the apparatus used for testing the material. Chapter 2 also has a brief explanation of the equipment and the procedures used for conducting the tests. In Chapter 3, the material characteristics and mechanical properties obtained from the tests are described; composite plots of deviatoric vs. mean stress and deviatoric stress vs. longitudinal strain are also included. The plots of deviatoric stress vs. mean stress clearly identify the shear envelope for the material. Chapter 4 summarizes the vital information obtained from the tests and the conclusions made. All the necessary plots and the data generated during the testing have been included in the Appendix. The information in the appendix includes plots of: Strain vs. Time, Stress vs. Time, Stress vs. Strain, Mean Stress vs. Volumetric Strain, Lateral Strain vs. Longitudinal Strain, and q vs. p. Bulk modulus, Poisson’s ratio, and Young’s modulus are displayed in the appropriate plots in each appendix.« less

  1. Geodetic Measurement of Deformation East of the San Andreas Fault in Central California

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne M.; Lisowski, Michael; Solomon, Sean C.

    1988-01-01

    Triangulation and trilateration data from two geodetic networks located between the western edge of the Great Valley and the San Andreas fault have been used to calculate shear strain rates in the Diablo Range and to estimate the slip rate along the Calaveras and Paicines faults in Central California. Within the Diablo Range the average shear strain rate was determined for the time period between 1962 and 1982 to be 0.15 + or - 0.08 microrad/yr, with the orientation of the most compressive strain at N 16 deg E + or - 14 deg. The orientation of the principal compressive strain predicted from the azimuth of the major structures in the region is N 25 deg E. It is inferred that the measured strain is due to compression across the folds of this area: the average shear straining corresponds to a relative shortening rate of 4.5 + or - 2.4 mm/yr. From an examination of wellbore breakout orientations and the azimuths of P-axes from earthquake focal mechanisms the inferred orientation of maximum compressive stress was found to be similar to the direction of maximum compressive strain implied by the trend of local fold structures. Results do not support the hypothesis of uniform fault-normal compression within the Coast Ranges. From trilateration measurements made between 1972 and 1987 on lines that are within 10 km of the San Andreas fault, a slip rate of 10 to 12 mm/yr was calculated for the Calaveras-Paicines fault south of Hollister. The slip rate of the Paicines fault decreases to 4 mm/yr near Bitter.

  2. Residual stresses in shape memory alloy fiber reinforced aluminium matrix composite

    NASA Astrophysics Data System (ADS)

    Tsz Loong, Tang; Jamian, Saifulnizan; Ismail, Al Emran; Nur, Nik Hisyammudin Muhd; Watanabe, Yoshimi

    2017-01-01

    Process-induced residual stress in shape memory alloy (SMA) fiber reinforced aluminum (Al) matrix composite was simulated by ANSYS APDL. The manufacturing process of the composite named as NiTi/Al is start with loading and unloading process of nickel titanium (NiTi) wire as SMA to generate a residual plastic strain. Then, this plastic deformed NiTi wire would be embedded into Al to become a composite. Lastly, the composite is heated form 289 K to 363 K and then cooled back to 300 K. Residual stress is generated in composite because of shape memory effect of NiTi and mismatch of thermal coefficient between NiTi wire and Al matrix of composite. ANSYS APDL has been used to simulate the distribution of residual stress and strain in this process. A sensitivity test has been done to determine the optimum number of nodes and elements used. Hence, the number of nodes and elements used are 15680 and 13680, respectively. Furthermore, the distribution of residual stress and strain of nickel fiber reinforced aluminium matrix composite (Ni/Al) and titanium fiber reinforced aluminium matrix composite (Ti/Al) under same simulation process also has been simulated by ANSYS APDL as comparison to NiTi/Al. The simulation results show that compressive residual stress is generated on Al matrix of Ni/Al, Ti/Al and NiTi/Al during heating and cooling process. Besides that, they also have similar trend of residual stress distribution but difference in term of value. For Ni/Al and Ti/Al, they are 0.4% difference on their maximum compressive residual stress at 363K. At same circumstance, NiTi/Al has higher residual stress value which is about 425% higher than Ni/Al and Ti/Al composite. This implies that shape memory effect of NiTi fiber reinforced in composite able to generated higher compressive residual stress in Al matrix, hence able to enhance tensile property of the composite.

  3. Transform push, oblique subduction resistance, and intraplate stress of the Juan de Fuca plate

    USGS Publications Warehouse

    Wang, K.; He, J.; Davis, E.E.

    1997-01-01

    The Juan de Fuca plate is a small oceanic plate between the Pacific and North America plates. In the southernmost region, referred to as the Gorda deformation zone, the maximum compressive stress a, constrained by earthquake focal mechanisms is N-S. Off Oregon, and possibly off Washington, NW trending left-lateral faults cutting the Juan de Fuca plate indicate a a, in a NE-SW to E-W direction. The magnitude of differential stress increases from north to south; this is inferred from the plastic yielding and distribution of earthquakes throughout the Gorda deformation zone. To understand how tectonic forces determine the stress field of the Juan de Fuca plate, we have modeled the intraplate stress using both elastic and elastic-perfectly plastic plane-stress finite element models. We conclude that the right-lateral shear motion of the Pacific and North America plates is primarily responsible for the stress pattern of the Juan de Fuca plate. The most important roles are played by a compressional force normal to the Mendocino transform fault, a result of the northward push by the Pacific plate and a horizontal resistance operating against the northward, or margin-parallel, component of oblique subduction. Margin-parallel subduction resistance results in large N-S compression in the Gorda deformation zone because the force is integrated over the full length of the Cascadia subduction zone. The Mendocino transform fault serves as a strong buttress that is very weak in shear but capable of transmitting large strike-normal compressive stresses. Internal failure of the Gorda deformation zone potentially places limits on the magnitude of the fault-normal stresses being transmitted and correspondingly on the magnitude of strike-parallel subduction resistance. Transform faults and oblique subduction zones in other parts of the world can be expected to transmit and create stresses in the same manner. Copyright 1997 by the American Geophysical Union.

  4. Shear-strain energy rate distribution caused by the interplate locking along the Nankai Trough, southwest Japan: An integration analysis using stress tensor inversion and slip deficit inversion

    NASA Astrophysics Data System (ADS)

    Saito, T.; Noda, A.; Yoshida, K.; Tanaka, S.

    2017-12-01

    In the Nankai Trough, southwest Japan, the Philippine Sea Plate descends beneath the Eurasian plate. The locking, or the slip deficit, on the plate interface causes stress fluctuation in the inland area. The interplate locking does not always result in stress accumulation but also causes stress release. The stress increase/decrease is not determined only from the stress fluctuation but also depends on the background stress, in particular, its orientation. This study proposes a method to estimate the shear-strain energy increase/decrease distribution caused by the interplate locking. We at first investigated the background stress field in and around the Nankai Trough. The spatial distribution of the principal stress orientations and the stress ratio were estimated by analysis of 130,000 focal mechanisms of small earthquakes (e.g., Yoshida et al. 2015 Tectonophysics). For example, in an area called Chugoku region, the maximum and minimum compression axes were E-W and N-S directions, respectively. We also estimated the slip-deficit rate at the plate interface by analyzing GNSS data and calculated the stress fluctuation due to the deficit (e.g., Noda et al. 2013 GJI). The interplate locking causes the maximum compression in the direction of plate convergence. This is significantly different from the orientations of the background stress characterized by the E-W compressional strike-slip stress regime.. By combining the results of the background stress and the stress fluctuation, we made a map indicating the shear-strain energy change due to the interplate locking. In the Chugoku region, the shear-strain energy decreases due to the interplate locking. This is because the N-S compressional stress caused by the interplate locking compensates the N-S extensional stress in the background. The shear-strain energy increases in some parts of the analyzed areas. By statistically comparing the shear strain energy rate with the seismicity in the inland area, we found that the seismicity tends to be high where the interplate locking increases the shear-strain energy. Our results suggest that the stress fluctuation due to the interplate locking is not dominant in the background stress but surely contributes to the inland seismicity in southwest Japan.

  5. The direct-stress fatigue strength of 17S-T aluminum alloy throughout the range from 1/2 to 500,000,000 cycles of stress

    NASA Technical Reports Server (NTRS)

    Hartmann, E C; Stickley, G W

    1942-01-01

    Fatigue-test were conducted on six specimens made from 3/4-inch-diameter 17S-T rolled-and-drawn rod for the purpose of obtaining additional data on the fatigue life of the material at stresses up to the static strength. The specimens were tested in direct tension using a stress range from zero to a maximum in tension. A static testing machine was used to apply repeated loads in the case of the first three specimens; the other three specimens were tested in a direct tension-compression fatigue machine. The direct-stress fatigue curve obtained for the material indicates that, in the range of stresses above about two-thirds the tensile strength, the fatigue strength is higher than might be expected by simply extrapolating the ordinary curve of stress plotted against the number of cycles determined at lower stresses.

  6. Finite Element Analysis of Foot and Ankle Impact Injury: Risk Evaluation of Calcaneus and Talus Fracture.

    PubMed

    Wong, Duo Wai-Chi; Niu, Wenxin; Wang, Yan; Zhang, Ming

    2016-01-01

    Foot and ankle impact injury is common in geriatric trauma and often leads to fracture of rearfoot, including calcaneus and talus. The objective of this study was to assess the influence of foot impact on the risk of calcaneus and talus fracture via finite element analysis. A three-dimensional finite element model of foot and ankle was constructed based on magnetic resonance images of a female aged 28. The foot sustained a 7-kg passive impact through a foot plate. The simulated impact velocities were from 2.0 to 7.0 m/s with 1.0 m/s interval. At 5.0 m/s impact velocity, the maximum von Mises stress of the trabecular calcaneus and talus were 3.21MPa and 2.41MPa respectively, while that of the Tresca stress were 3.46MPa and 2.55MPa. About 94% and 84% of the trabecular calcaneus and talus exceeded the shear yielding stress, while 21.7% and 18.3% yielded the compressive stress. The peak stresses were distributed around the talocalcaneal articulation and the calcaneal tuberosity inferiorly, which corresponded to the common fracture sites. The prediction in this study showed that axial compressive impact at 5.0 m/s could produce considerable yielding of trabecular bone in both calcaneus and talus, dominantly by shear and compounded with compression that predispose the rearfoot in the risk of fracture. This study suggested the injury pattern and fracture mode of high energy trauma that provides insights in injury prevention and fracture management.

  7. Stress wave emission from plasmonic nanobubbles

    NASA Astrophysics Data System (ADS)

    Brujan, Emil-Alexandru

    2017-01-01

    Stress wave emission from the collapse of cavitation nanobubbles, generated after irradiation of single-spherical gold nanoparticles with laser pulses, was investigated numerically. The significant parameters of this study are the nanoparticle radius, laser pulse duration, and laser fluence. For conditions comparable to those existing during plasmonic photothermal therapy, a purely compressive pressure wave is emitted during nanobubble collapse, not a shock. In the initial stage of its propagation, the stress wave amplitude is proportional to the inverse of the stress wave radius. The maximum amplitude and the duration of the stress wave decreases with the laser fluence, laser pulse duration, and gold nanoparticle radius. The full width at half maximum duration of the stress wave is almost constant up to a distance of 50 µm from the emission center. The stress wave amplitude is smaller than 5 MPa, while the stress wave duration is smaller than 35 ns. The stress wave propagation results in minor mechanical effects on biological tissue that are restricted to very small dimensions on a cellular or sub-cellular level. The stress wave is, however, able to produce breaching of the human cell membrane and bacterial wall even at distances as large as 50 µm from the emission centre. The experimentally observed melting of gold nanoparticles comes from the large temperature reached inside the nanoparticles during laser irradiation and not from the propagation of the stress wave into the surrounding liquid during nanobubble rebound.

  8. Wrinkle ridges, stress domains, and kinematics of venusian plains

    NASA Technical Reports Server (NTRS)

    Mcgill, George E.

    1993-01-01

    Wrinkle ridges are nearly ubiquitous landforms on the plains of Venus. By analogy with similar structures on other planets, venusian wrinkle ridges are inferred to trend normal to the direction of maximum principal compression in the crust, an inference that is verified by geometrical relationships with positive and negative relief features on Venus. Because plains are the dominant terrain on Venus, wrinkle ridges provide an excellent opportunity to determine the orientations of shallow crustal principal stress trajectories over most of the planet. In most places there are two or more sets of wrinkle ridges, and commonly one of these persists over a large area, defining a regional stress domain. Intersection relationships indicate that these domains differ in age.

  9. Cracking mechanism of shale cracks during fracturing

    NASA Astrophysics Data System (ADS)

    Zhao, X. J.; Zhan, Q.; Fan, H.; Zhao, H. B.; An, F. J.

    2018-06-01

    In this paper, we set up a model for calculating the shale fracture pressure on the basis of Huang’s model by the theory of elastic-plastic mechanics, rock mechanics and the application of the maximum tensile stress criterion, which takes into account such factors as the crustal stress field, chemical field, temperature field, tectonic stress field, the porosity of shale and seepage of drilling fluid and so on. Combined with the experimental data of field fracturing and the experimental results of three axis compression of shale core with different water contents, the results show that the error between the present study and the measured value is 3.85%, so the present study can provide technical support for drilling engineering.

  10. Strength properties and structure of a submicrocrystalline Al-Mg-Mn alloy under shock compression

    NASA Astrophysics Data System (ADS)

    Petrova, A. N.; Brodova, I. G.; Razorenov, S. V.

    2017-06-01

    The results of studying the strength of a submicrocrystalline aluminum A5083 alloy (chemical composition was 4.4Mg-0.6Mn-0.11Si-0.23Fe-0.03Cr-0.02Cu-0.06Ti wt % and Al base) under shockwave compression are presented. The submicrocrystalline structure of the alloy was produced in the process of dynamic channel-angular pressing at a strain rate of 104 s-1. The average size of crystallites in the alloy was 180-460 nm. Hugoniot elastic limit σHEL, dynamic yield stress σy, and the spall strength σSP of the submicrocrystalline alloy were determined based on the free-surface velocity profiles of samples during shock compression. It has been established that upon shock compression, the σHEL and σy of the submicrocrystalline alloy are higher than those of the coarse-grained alloy and σsp does not depend on the grain size. The maximum value of σHEL reached for the submicrocrystalline alloy is 0.66 GPa, which is greater than that in the coarse-crystalline alloy by 78%. The dynamic yield stress is σy = 0.31 GPa, which is higher than that of the coarse-crystalline alloy by 63%. The spall strength is σsp = 1.49 GPa. The evolution of the submicrocrystalline structure of the alloy during shock compression was studied. It has been established that a mixed nonequilibrium grain-subgrain structure with a fragment size of about 400 nm is retained after shock compression, and the dislocation density and the hardness of the alloy are increased.

  11. Effective Size Analysis of the Diametral Compression (Brazil) Test Specimen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadaan, Osama M.; Wereszczak, Andrew A

    2009-04-01

    This study considers the finite element analysis (FEA) simulation and Weibull effective size analysis for the diametral compression (DC) or Brazil specimen loaded with three different push-rod geometries. Those geometries are a flat push-rod, a push-rod whose radius of curvature is larger than that for the DC specimen, and a push-rod whose radius of curvature matches that of the DC specimen. Such established effective size analysis recognizes that the tensile strength of structural ceramics is typically one to two orders of magnitude less than its compressive strength. Therefore, because fracture is much more apt to result from a tensile stressmore » than a compressive one, this traditional analysis only considers the first principal tensile stress field in the mechanically loaded ceramic component for the effective size analysis. The effective areas and effective volumes were computed as function of Weibull modulus using the CARES/Life code. Particular attention was devoted to the effect of mesh sensitivity and localized stress concentration. The effect of specimen width on the stress state was also investigated. The effects of push-rod geometry, the use of steel versus WC push-rods, and considering a frictionless versus no-slip interface between push-rod and specimen on the maximum stresses, where those stresses are located, and the effective area and effective volume results are described. Of the three push-rod geometries, it is concluded that the push-rod (made from WC rather than steel) whose radius of curvature matches that of the DC specimen is the most apt to cause fracture initiation within the specimen's bulk rather than at the loading interface. Therefore, its geometry is the most likely to produce a valid diametral compression strength test. However, the DC specimen remains inefficient in terms of its area and volume efficiencies; namely, the tensile strength of only a few percent of the specimen's entire area or volume is sampled. Given the high probability that a valid (or invalid) test can be proven by ceramic fractographic practices suggests that this test method and specimen is questionable for use with relatively strong structural ceramics.« less

  12. Pressure Dependence of the Peierls Stress in Aluminum

    NASA Astrophysics Data System (ADS)

    Dang, Khanh; Spearot, Douglas

    2018-03-01

    The effect of pressure applied normal to the {111} slip plane on the Peierls stress in Al is studied via atomistic simulations. Edge, screw, 30°, and 60° straight dislocations are created using the Volterra displacement fields for isotropic elasticity. For each dislocation character angle, the Peierls stress is calculated based on the change in the internal energy, which is an invariant measure of the dislocation driving force. It is found that the Peierls stress for dislocations under zero pressure is in general agreement with previous results. For screw and 60° dislocations, the Peierls stress versus pressure relationship has maximum values associated with stacking fault widths that are multiples of the Peierls period. For the edge dislocation, the Peierls stress decreases with increasing pressure from tension to compression. Compared with the Mendelev potential, the Peierls stress calculated from the Mishin potential is more sensitive to changes in pressure.

  13. The Mohr-Coulomb criterion for intact rock strength and friction - a re-evaluation and consideration of failure under polyaxial stresses

    NASA Astrophysics Data System (ADS)

    Hackston, Abigail; Rutter, Ernest

    2016-04-01

    Darley Dale and Pennant sandstones were tested under conditions of both axisymmetric shortening and extension normal to bedding. These are the two extremes of loading under polyaxial stress conditions. Failure under generalized stress conditions can be predicted from the Mohr-Coulomb failure criterion under axisymmetric shortening conditions, provided the best form of polyaxial failure criterion is known. The sandstone data are best reconciled using the Mogi (1967) empirical criterion. Fault plane orientations produced vary greatly with respect to the maximum compressive stress direction in the two loading configurations. The normals to the Mohr-Coulomb failure envelopes do not predict the orientations of the fault planes eventually produced. Frictional sliding on variously inclined saw cuts and failure surfaces produced in intact rock samples was also investigated. Friction coefficient is not affected by fault plane orientation in a given loading configuration, but friction coefficients in extension were systematically lower than in compression for both rock types. Friction data for these and other porous sandstones accord well with the Byerlee (1978) generalization about rock friction being largely independent of rock type. For engineering and geodynamic modelling purposes, the stress-state-dependent friction coefficient should be used for sandstones, but it is not known to what extent this might apply to other rock types.

  14. Multiscale modeling of growth plate cartilage mechanobiology.

    PubMed

    Gao, Jie; Williams, John L; Roan, Esra

    2017-04-01

    Growth plate chondrocytes are responsible for bone growth through proliferation and differentiation. However, the way they experience physiological loads and regulate bone formation, especially during the later developmental phase in the mature growth plate, is still under active investigation. In this study, a previously developed multiscale finite element model of the growth plate is utilized to study the stress and strain distributions within the cartilage at the cellular level when rapidly compressed to 20 %. Detailed structures of the chondron are included in the model to examine the hypothesis that the same combination of mechanoregulatory signals shown to maintain cartilage or stimulate osteogenesis or fibrogenesis in the cartilage anlage or fracture callus also performs the same function at the cell level within the chondrons of growth plate cartilage. Our cell-level results are qualitatively and quantitatively in agreement with tissue-level theories when both hydrostatic cellular stress and strain are considered simultaneously in a mechanoregulatory phase diagram similar to that proposed at the tissue level by Claes and Heigele for fracture healing. Chondrocytes near the reserve/proliferative zone border are subjected to combinations of high compressive hydrostatic stresses ([Formula: see text] MPa), and cell height and width strains of [Formula: see text] to [Formula: see text] respectively, that maintain cartilage and keep chondrocytes from differentiating and provide conditions favorable for cell division, whereas chondrocytes closer to the hypertrophic/calcified zone undergo combinations of lower compressive hydrostatic stress ([Formula: see text] MPa) and cell height and width strains as low as [Formula: see text] to +4 %, respectively, that promote cell differentiation toward osteogenesis; cells near the outer periphery of the growth plate structure experience a combination of low compressive hydrostatic stress (0 to [Formula: see text] MPa) and high maximum principal strain (20-29 %) that stimulate cell differentiation toward fibrocartilage or fibrous tissue.

  15. Propagation of the Hawaiian-Emperor volcano chain by Pacific plate cooling stress

    USGS Publications Warehouse

    Stuart, W.D.; Foulger, G.R.; Barall, M.

    2007-01-01

    The lithosphere crack model, the main alternative to the mantle plume model for age-progressive magma emplacement along the Hawaiian-Emperor volcano chain, requires the maximum horizontal tensile stress to be normal to the volcano chain. However, published stress fields calculated from Pacific lithosphere tractions and body forces (e.g., subduction pull, basal drag, lithosphere density) are not optimal for southeast propagation of a stress-free, vertical tensile crack coincident with the Hawaiian segment of the Hawaiian-Emperor chain. Here we calculate the thermoelastic stress rate for present-day cooling of the Pacific plate using a spherical shell finite element representation of the plate geometry. We use observed seafloor isochrons and a standard model for lithosphere cooling to specify the time dependence of vertical temperature profiles. The calculated stress rate multiplied by a time increment (e.g., 1 m.y.) then gives a thermoelastic stress increment for the evolving Pacific plate. Near the Hawaiian chain position, the calculated stress increment in the lower part of the shell is tensional, with maximum tension normal to the chain direction. Near the projection of the chain trend to the southeast beyond Hawaii, the stress increment is compressive. This incremental stress field has the form necessary to maintain and propagate a tensile crack or similar lithosphere flaw and is thus consistent with the crack model for the Hawaiian volcano chain.?? 2007 The Geological Society of America.

  16. Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels

    NASA Astrophysics Data System (ADS)

    Faghihi, Shahab; Gheysour, Mahsa; Karimi, Alireza; Salarian, Reza

    2014-02-01

    Hydrogels have found many practical uses in drug release, wound dressing, and tissue engineering. However, their applications are restricted due to their weak mechanical properties. The role of graphene oxide nanosheets (GONS) as reinforcement agent in poly (acrylic acid) (PAA)/Gelatin (Gel) composite hydrogels is investigated. Composite hydrogels are synthesized by thermal initiated redox polymerization method. Samples are then prepared with 20 and 40 wt. % of PAA, an increasing amount of GONS (0.1, 0.2, and 0.3 wt. %), and a constant amount of Gel. Subsequently, cylindrical hydrogel samples are subjected to a series of compression tests in order to measure their elastic modulus, maximum stress and strain. The results exhibit that the addition of GONS increases the Young's modulus and maximum stress of hydrogels significantly as compared with control (0.0 wt. % GONS). The highest Young's modulus is observed for hydrogel with GO (0.2 wt. %)/PAA (20 wt. %), whereas the highest maximum stress is detected for GO (0.2 wt. %)/PAA (40 wt. %) specimen. The addition of higher amounts of GONS leads to a decrease in the maximum stress of the hydrogel GO (0.3 wt. %)/PAA (40 wt. %). No significant differences are detected for the maximum strain among the hydrogel samples, as the amount of GONS increased. These results suggest that the application of GONS could be used to improve mechanical properties of hydrogel materials. This study may provide an alternative for the fabrication of low-cost graphene/polymer composites with enhanced mechanical properties beneficial for tissue engineering applications.

  17. Rapid-Rate Compression Testing of Sheet Materials at High Temperatures

    NASA Technical Reports Server (NTRS)

    Bernett, E. C.; Gerberich, W. W.

    1961-01-01

    This Report describes the test equipment that was developed and the procedures that were used to evaluate structural sheet-material compression properties at preselected constant strain rates and/or loads. Electrical self-resistance was used to achieve a rapid heating rate of 200 F/sec. Four materials were tested at maximum temperatures which ranged from 600 F for the aluminum alloy to 2000 F for the Ni-Cr-Co iron-base alloy. Tests at 0.1, 0.001, and 0.00001 in./in./sec showed that strain rate has a major effect on the measured strength, especially at the high temperatures. The tests, under conditions of constant temperature and constant compression stress, showed that creep deformation can be a critical factor even when the time involved is on the order of a few seconds or less. The theoretical and practical aspects of rapid-rate compression testing are presented, and suggestions are made regarding possible modifications of the equipment which would improve the over-all capabilities.

  18. Fretting Fatigue with Cylindrical-On-Flat Contact: Crack Nucleation, Crack Path and Fatigue Life

    PubMed Central

    Noraphaiphipaksa, Nitikorn; Manonukul, Anchalee; Kanchanomai, Chaosuan

    2017-01-01

    Fretting fatigue experiments and finite element analysis were carried out to investigate the influence of cylindrical-on-flat contact on crack nucleation, crack path and fatigue life of medium-carbon steel. The location of crack nucleation was predicted using the maximum shear stress range criterion and the maximum relative slip amplitude criterion. The prediction using the maximum relative slip amplitude criterion gave the better agreement with the experimental result, and should be used for the prediction of the location of crack nucleation. Crack openings under compressive bulk stresses were found in the fretting fatigues with flat-on-flat contact and cylindrical-on-flat contacts, i.e., fretting-contact-induced crack openings. The crack opening stress of specimen with flat-on-flat contact was lower than those of specimens with cylindrical-on-flat contacts, while that of specimen with 60-mm radius contact pad was lower than that of specimen with 15-mm radius contact pad. The fretting fatigue lives were estimated by integrating the fatigue crack growth curve from an initial propagating crack length to a critical crack length. The predictions of fretting fatigue life with consideration of crack opening were in good agreement with the experimental results. PMID:28772522

  19. Compressive stress system for a gas turbine engine

    DOEpatents

    Hogberg, Nicholas Alvin

    2015-03-24

    The present application provides a compressive stress system for a gas turbine engine. The compressive stress system may include a first bucket attached to a rotor, a second bucket attached to the rotor, the first and the second buckets defining a shank pocket therebetween, and a compressive stress spring positioned within the shank pocket.

  20. Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties

    PubMed Central

    Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Wauthle, Ruebn; Pouran, Behdad; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir A.

    2015-01-01

    It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morphological designs. In the present work, we studied the relationship between relative density (RD) of porous Ti6Al4V EFI alloy and five compressive properties of the material, namely elastic gradient or modulus (Es20–70), first maximum stress, plateau stress, yield stress, and energy absorption. Porous structures with different RD and six different unit cell configurations (cubic (C), diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron (RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting. Each of the compressive properties increased with increase in RD, the relationship being of a power law type. Clear trends were seen in the influence of unit cell configuration and porosity on each of the compressive properties. For example, in terms of Es20–70, the structures may be divided into two groups: those that are stiff (comprising those made using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those made using D and RD unit cell). PMID:28788037

  1. Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties.

    PubMed

    Ahmadi, Seyed Mohammad; Yavari, Saber Amin; Wauthle, Ruebn; Pouran, Behdad; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir A

    2015-04-21

    It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morphological designs. In the present work, we studied the relationship between relative density (RD) of porous Ti6Al4V EFI alloy and five compressive properties of the material, namely elastic gradient or modulus (E s20 -70 ), first maximum stress, plateau stress, yield stress, and energy absorption. Porous structures with different RD and six different unit cell configurations (cubic (C), diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron (RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting. Each of the compressive properties increased with increase in RD, the relationship being of a power law type. Clear trends were seen in the influence of unit cell configuration and porosity on each of the compressive properties. For example, in terms of E s20 -70 , the structures may be divided into two groups: those that are stiff (comprising those made using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those made using D and RD unit cell).

  2. FEM simulation of the die compaction of pharmaceutical products: influence of visco-elastic phenomena and comparison with experiments.

    PubMed

    Diarra, Harona; Mazel, Vincent; Busignies, Virginie; Tchoreloff, Pierre

    2013-09-10

    This work studies the influence of visco-elastic behavior in the finite element method (FEM) modeling of die compaction of pharmaceutical products and how such a visco-elastic behavior may improve the agreement between experimental and simulated compression curves. The modeling of the process was conducted on a pharmaceutical excipient, microcrystalline cellulose (MCC), by using Drucker-Prager cap model coupled with creep behavior in Abaqus(®) software. The experimental data were obtained on a compaction simulator (STYLCAM 200R). The elastic deformation of the press was determined by performing experimental tests on a calibration disk and was introduced in the simulation. Numerical optimization was performed to characterize creep parameters. The use of creep behavior in the simulations clearly improved the agreement between the numerical and experimental compression curves (stresses, thickness), mainly during the unloading part of the compaction cycle. For the first time, it was possible to reproduce numerically the fact that the minimum tablet thickness is not obtained at the maximum compression stress. This study proves that creep behavior must be taken into account when modeling the compaction of pharmaceutical products using FEM methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Stress-dependent crystal structure of lanthanum strontium cobalt ferrite by in situ synchrotron X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Geiger, Philipp T.; Khansur, Neamul H.; Riess, Kevin; Martin, Alexander; Hinterstein, Manuel; Webber, Kyle G.

    2018-02-01

    Lanthanum strontium cobalt ferrite La1-xSrxCo1-yFeyO3-δ (LSCF) is one of the most studied mixed ionic-electronic conductor materials due to electrical and transport properties, which are attractive for intermediate temperature solid oxide fuel cells (SOFCs), oxygen permeation membranes, and catalysis. The integration of such materials, however, depends on the thermal as well as mechanical behavior. LSCF exhibits nonlinear hysteresis during compressive stress-strain measurements, marked by a remanent strain and coercive stress, i.e., ferroelasticity. However, the origin of ferroelastic behavior has not been investigated under high compressive stress. This study, therefore, investigates the microscopic origin of stress-induced mechanical behavior in polycrystalline (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ using in situ synchrotron x-ray diffraction. The data presented here reveals that the strain response originates from the intrinsic lattice strain as well as the extrinsic domain switching strain without any apparent change in crystallographic symmetry. A comparison of the calculated microscopic strain contribution with that of a macroscopic measurement indicates a significant change in the relative contributions of intrinsic and extrinsic strain depending on the applied stress state, i.e., under maximum stress and after unloading. Direct evidence of the microscopic origin of stress-strain response outlined in this paper may assist in guiding materials design with the improved mechanical reliability of SOFCs.

  4. Failure in laboratory fault models in triaxial tests

    USGS Publications Warehouse

    Savage, J.C.; Lockner, D.A.; Byerlee, J.D.

    1996-01-01

    A model of a fault in the Earth is a sand-filled saw cut in a granite cylinder subjected to a triaxial test. The saw cut is inclined at an angle a to the cylinder axis, and the sand filling is intended to represent gouge. The triaxial test subjects the granite cylinder to a constant confining pressure and increasing axial stress to maintain a constant rate of shortening of the cylinder. The required axial stress increases at a decreasing rate to a maximum, beyond which a roughly constant axial stress is sufficient to maintain the constant rate of shortening: Such triaxial tests were run for saw cuts inclined at angles ?? of 20??, 25??, 30??, 35??, 40??, 45??, and 50?? to the cylinder axis, and the apparent coefficient of friction ??a (ratio of the shear stress to the normal stress, both stresses resolved onto the saw cut) at failure was determined. Subject to the assumption that the observed failure involves slip on Coulomb shears (orientation unspecified), the orientation of the principal compression axis within the gouge can be calculated as a function of ??a for a given value of the coefficient of internal friction ??i. The rotation of the principal stress axes within the gouge in a triaxial test can then be followed as the shear strain across the gouge layer increases. For ??i ??? 0.8, an appropriate value for highly sheared sand, the observed values ??a imply that the principal-axis of compression within the gouge rotates so as to approach being parallel to the cylinder axis for all saw cut angles (20?? < ?? < 50??). In the limiting state (principal compression axis parallel to cylinder axis) the stress state in the gouge layer would be the same as that in the granite cylinder, and the failure criterion would be independent of the saw cut angle.

  5. Static and Dynamic Compaction of CL-20 Powders

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia; Brundage, Aaron; Dudley, Evan

    2009-06-01

    Hexanitrohexaazaisowurtzitane (CL-20) powders were compacted under quasi-static and dynamic loading conditions. A uniaxial compression apparatus quasi-statically compressed the powders to 90% theoretical maximum density with applied stresses up to 0.5 GPa. Dynamic compaction measurements using low-density pressings (62-70% theoretical maximum density) were obtained in a single-stage gas gun at impact velocities between 0.17-0.70 km/s. Experiments were conducted in a reverse ballistic arrangement in which the CL-20 ladened projectile impacted a target consisting of an aluminized window. VISAR-measured particle velocities at the explosive-window interface determined the shock Hugoniot states for pressures up to 0.9 GPa. The powder compaction behavior is found to be stiffer under dynamic loading than under quasi-static loading. Additional gas gun tests were conducted in which the low-density CL-20 pressings were confined within a target cup by the aluminized window. This arrangement enabled temporal measurement of the transmitted wave profiles in which elastic wave precursors were observed.

  6. Multiscale fluid-structure interaction modelling to determine the mechanical stimulation of bone cells in a tissue engineered scaffold.

    PubMed

    Zhao, Feihu; Vaughan, Ted J; Mcnamara, Laoise M

    2015-04-01

    Recent studies have shown that mechanical stimulation, by means of flow perfusion and mechanical compression (or stretching), enhances osteogenic differentiation of mesenchymal stem cells and bone cells within biomaterial scaffolds in vitro. However, the precise mechanisms by which such stimulation enhances bone regeneration is not yet fully understood. Previous computational studies have sought to characterise the mechanical stimulation on cells within biomaterial scaffolds using either computational fluid dynamics or finite element (FE) approaches. However, the physical environment within a scaffold under perfusion is extremely complex and requires a multiscale and multiphysics approach to study the mechanical stimulation of cells. In this study, we seek to determine the mechanical stimulation of osteoblasts seeded in a biomaterial scaffold under flow perfusion and mechanical compression using multiscale modelling by two-way fluid-structure interaction and FE approaches. The mechanical stimulation, in terms of wall shear stress (WSS) and strain in osteoblasts, is quantified at different locations within the scaffold for cells of different attachment morphologies (attached, bridged). The results show that 75.4 % of scaffold surface has a WSS of 0.1-10 mPa, which indicates the likelihood of bone cell differentiation at these locations. For attached and bridged osteoblasts, the maximum strains are 397 and 177,200 με, respectively. Additionally, the results from mechanical compression show that attached cells are more stimulated (maximum strain = 22,600 με) than bridged cells (maximum strain = 10.000 με)Such information is important for understanding the biological response of osteoblasts under in vitro stimulation. Finally, a combination of perfusion and compression of a tissue engineering scaffold is suggested for osteogenic differentiation.

  7. High Compressive Stresses Near the Surface of the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Martel, S. J.; Logan, J. M.; Stock, G. M.

    2012-12-01

    Observations and stress measurements in granitic rocks of the Sierra Nevada, California reveal strong compressive stresses parallel to the surface of the range at shallow depths. New overcoring measurements show high compressive stresses at three locations along an east-west transect through Yosemite National Park. At the westernmost site (west end of Tenaya Lake), the mean compressive stress is 1.9. At the middle site (north shore of Tenaya Lake) the mean compressive stress is 6.8 MPa. At the easternmost site (south side of Lembert Dome) the mean compressive stress is 3.0 MPa. The trend of the most compressive stress at these sites is within ~30° of the strike of the local topographic surface. Previously published hydraulic fracturing measurements by others elsewhere in the Sierra Nevada indicate surface-parallel compressive stresses of several MPa within several tens of meters of the surface, with the stress magnitudes generally diminishing to the west. Both the new and the previously published compressive stress magnitudes are consistent with the presence of sheeting joints (i.e., "exfoliation joints") in the Sierra Nevada, which require lateral compressive stresses of several MPa to form. These fractures are widespread: they are distributed in granitic rocks from the north end of the range to its southern tip and across the width of the range. Uplift along the normal faults of the eastern escarpment, recently measured by others at ~1-2 mm/yr, probably contributes to these stresses substantially. Geodetic surveys reveal that normal faulting flexes a range concave upwards in response to fault slip, and this flexure is predicted by elastic dislocation models. The topographic relief of the eastern escarpment of the Sierra Nevada is 2-4 km, and since alluvial fill generally buries the bedrock east of the faults, the offset of granitic rocks is at least that much. Compressive stresses of several MPa are predicted by elastic dislocation models of the range front faults of the eastern Sierra Nevada for as little as 100m of slip. The compression is consistent with a concave up flexure of the surface of the range. Conversely, elastic models also predict that markedly lower compressive stresses or even a tension would exist on exposed bedrock on the down-dropped hanging wall east of the range front faults. To test this prediction, we measured stresses at a fourth site, in the granitic rock of the Aeolian Buttes, which is east of the range front faults. The mean compressive stress there is 0.26 MPa, more than an order of magnitude less than the average at the three Yosemite sites. The measured stress magnitudes near the topographic surface of the Sierra, the distribution of sheeting joints west of the range front faults, and elastic model predictions are broadly consistent and indicate that the high compressive stresses at the surface of the Sierra Nevada are largely associated with uplift of the range, although other contributions cannot be excluded.

  8. Performance prediction for a magnetostrictive actuator using a simplified model

    NASA Astrophysics Data System (ADS)

    Yoo, Jin-Hyeong; Jones, Nicholas J.

    2018-03-01

    Iron-Gallium alloys (Galfenol) are promising transducer materials that combine high magnetostriction, desirable mechanical properties, high permeability, and a wide operational temperature range. Most of all, the material is capable of operating under tensile stress, and is relatively resistant to shock. These materials are generally characterized using a solid, cylindrically-shaped specimen under controlled compressive stress and magnetization conditions. Because the magnetostriction strongly depends on both the applied stress and magnetization, the characterization of the material is usually conducted under controlled conditions so each parameter is varied independently of the other. However, in a real application the applied stress and magnetization will not be maintained constant during operation. Even though the controlled characterization measurement gives insight into standard material properties, usage of this data in an application, while possible, is not straight forward. This study presents an engineering modeling methodology for magnetostrictive materials based on a piezo-electric governing equation. This model suggests phenomenological, nonlinear, three-dimensional functions for strain and magnetic flux density responses as functions of applied stress and magnetic field. Load line performances as a function of maximum magnetic field input were simulated based on the model. To verify the modeling performance, a polycrystalline magnetostrictive rod (Fe-Ga alloy, Galfenol) was characterized under compressive loads using a dead-weight test setup, with strain gages on the rod and a magnetic field driving coil around the sample. The magnetic flux density through the Galfenol rod was measured with a sensing coil; the compressive loads were measured using a load cell on the bottom of the Galfenol rod. The experimental results are compared with the simulation results using the suggested model, showing good agreement.

  9. Analysis of Deformation and Equivalent Stress during Biomass Material Compression Molding

    NASA Astrophysics Data System (ADS)

    Xu, Guiying; Wei, Hetao; Zhang, Zhien; Yu, Shaohui; Wang, Congzhe; Huang, Guowen

    2018-02-01

    Ansys is adopted to analyze mold deformation and stress field distribution rule during the process of compressing biomass under pressure of 20Mpa. By means of unit selection, material property setting, mesh partition, contact pair establishment, load and constraint applying, and solver setting, the stress and strain of overall mold are analyzed. Deformation and equivalent Stress of compression structure, base, mold, and compression bar were analyzed. We can have conclusions: The distribution of stress forced on compressor is not completely uniform, where the stress at base is slightly decreased; the stress and strain of compression bar is the largest, and stress concentration my occur at top of compression bar, which goes against compression bar service life; the overall deformation of main mold is smaller; although there is slight difference between upper and lower part, the overall variation is not obvious, but the stress difference between upper and lower part of main mold is extremely large so that reaches to 10 times; the stress and strain in base decrease in circular shape, but there is still stress concentration in ledge, which goes against service life; contact stress does not distribute uniformly, there is increasing or decreasing trend in adjacent parts, which is very large in some parts. in constructing both.

  10. Plate convergence at the westernmost Philippine Sea Plate

    NASA Astrophysics Data System (ADS)

    Wu, Wen-Nan; Hsu, Shu-Kun; Lo, Chung-Liang; Chen, How-Wei; Ma, Kuo-Fong

    2009-03-01

    To understand the convergent characteristics of the westernmost plate boundary between the Philippine Sea Plate (PSP) and Eurasian Plate (EP), we have calculated the stress states of plate motion by focal mechanisms. Cataloged by the Harvard centroid moment tensor solutions (Harvard CMT) and the Broadband Array in Taiwan (BATS) moment tensor, 251 focal mechanisms are used to determine the azimuths of the principal stress axes. We first used all the data to derive the mean stress tensor of the study area. The inversion result shows that the stress regime has a maximum compression along the direction of azimuth N299°. This result is consistent with the general direction of the rigid plate motion between the PSP and EP in the study area. In order to understand the spatial variation of the regional stress pattern, we divided the study area into six sub-areas (blocks A to F) based on the feature of the free-air gravity anomaly. We compare the compressive directions obtained from the stress inversion with the plate motions calculated by the Euler pole and the Global Positioning System (GPS) analysis. As a result, the azimuth of the maximum stress axis, σ1, generally agrees with the directions of the theoretical plate motion and GPS velocity vectors except block C (Lanhsu region) and block F (Ilan plain region). The discrepancy of convergent direction near the Ilan plain region is probably caused by the rifting of the Okinawa Trough. The deviation of the σ1 azimuth in the Lanhsu region could be attributed to a southwestward extrusion of the Luzon Arc (LA) block between 21°N and 22°N whose northern boundary may be associated with the right-lateral NE-SW trending fault (i.e. Huatung Fault, HF) along the Taitung Canyon. Comparing the σ1 stress patterns between block C and block D, great strain energy along HF may not be completely released yet. Alternatively, the upper crust of block C may significantly have decoupled from its lower crust or uppermost mantle.

  11. Present-day stress tensors along the southern Caribbean plate boundary zone from inversion of focal mechanism solutions: A successful trial

    NASA Astrophysics Data System (ADS)

    Audemard M., Franck A.; Castilla, Raymi

    2016-11-01

    This paper presents a compilation of 16 present-day stress tensors along the southern Caribbean plate boundary zone (PBZ), and particularly in western and along northern Venezuela. As a trial, these new stress tensors along PBZ have been calculated from inversion of 125 focal mechanism solutions (FMS) by applying the Angelier & Mechler's dihedral method, which were originally gathered by the first author and published in 2005. These new tensors are compared to those 59 tensors inverted from fault-slip data measured only in Plio-Quaternary sedimentary rocks, compiled in Audemard et al. (2005), which were originally calculated by several researchers through the inversion methods developed by Angelier and Mechler or Etchecopar et al. The two sets of stress tensors, one derived from geological data and the other one from seismological data, compare very well throughout the PBZ in terms of both stress orientation and shape of the stress tensor. This region is characterized by a compressive strike-slip (transpressional senso lato), occasionally compressional, regime from the southern Mérida Andes on the southwest to the gulf of Paria in the east. Significant changes in direction of the maximum horizontal stress (σH = σ1) can be established along it though. The σ1 direction varies progressively from nearly east-west in the southern Andes (SW Venezuela) to between NW-SE and NNW-SSE in northwestern Venezuela; this direction remaining constant across northern Venezuela, from Colombia to Trinidad. In addition, the σV defined by inversion of focal mechanisms or by the shape of the stress ellipsoid derived from the Etchecopar et al.'s method better characterize whether the stress regime is transpressional or compressional, or even very rarely trantensional at local scale. The orientation and space variation of this regional stress field in western Venezuela results from the addition of the two major neighbouring interplate maximum horizontal stress orientations (σH): roughly east-west trending stress across the Nazca-South America type-B subduction along the pacific coast of Colombia and NNW-SSE oriented one across the southern Caribbean PBZ. Meanwhile, northern Venezuela, although dextral strike-slip (SS) is the dominant process, NW-SE to NNW-SSE compression is also taking place, which are both also supported by recent GPS results.

  12. 3D interlock design 100% PVDF piezoelectric to improve energy harvesting

    NASA Astrophysics Data System (ADS)

    Talbourdet, Anaëlle; Rault, François; Lemort, Guillaume; Cochrane, Cédric; Devaux, Eric; Campagne, Christine

    2018-07-01

    Piezoelectric textile structures based on 100% poly(vinylidene fluoride) (PVDF) were developed and characterised. Multifilaments of 246 tex were produced by melt spinning. The mechanical stretching during the process provides PVDF fibres with a piezoelectric β-phase of up to 97% has been measured by FTIR experiments. Several studies have been carried out on piezoelectric PVDF-based flexible structures (films or textiles), the aim of the study being the investigation of the differences between 2D and 3D woven fabrics from 100% optimised (by optimising piezoelectric crystalline phase) piezoelectric PVDF multifilament yarns. The textile structures were poled after the weaving process, and a maximum output voltage of 2.3 V was observed on 3D woven under compression by DMA tests. Energy harvesting is optimised in a 3D interlock thanks to the stresses of the multifilaments in the thickness. The addition of a resistor makes it possible to measure energy of 10.5 μJ.m‑2 during 10 cycles of stress in compression of 5 s each.

  13. Damage Tolerance of Sandwich Plates With Debonded Face Sheets

    NASA Technical Reports Server (NTRS)

    Sankar, Bhavani V.

    2001-01-01

    A nonlinear finite element analysis was performed to simulate axial compression of sandwich beams with debonded face sheets. The load - end-shortening diagrams were generated for a variety of specimens used in a previous experimental study. The energy release rate at the crack tip was computed using the J-integral, and plotted as a function of the load. A detailed stress analysis was performed and the critical stresses in the face sheet and the core were computed. The core was also modeled as an isotropic elastic-perfectly plastic material and a nonlinear post buckling analysis was performed. A Graeco-Latin factorial plan was used to study the effects of debond length, face sheet and core thicknesses, and core density on the load carrying capacity of the sandwich composite. It has been found that a linear buckling analysis is inadequate in determining the maximum load a debonded sandwich beam can carry. A nonlinear post-buckling analysis combined with an elastoplastic model of the core is required to predict the compression behavior of debonded sandwich beams.

  14. Dynamic fracture behavior of single and contacting Poly(methyl methacrylate) particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.

    Fracture behaviors of single, two, and multiple contacting spherical Poly (methyl methacrylate) (PMMA) particles were recorded using high speed synchrotron X-ray phase contrast imaging. A miniaturized Kolsky bar setup was used to apply dynamic compressive loading on the PMMA particles. In both single and two particle experiments, cracking initiated near the center of the particles and propagated towards the contacts. The crack bifurcated near the contact points for single particle experiments, thus forming conical fragments. The crack bifurcation and subsequent conical fragment formation was observed only at the particle-particle contact for two particle experiments. The particles were observed to fracturemore » in hemispherical fragments normal to the contact plane in the multiparticle experiments. The observed failure mechanisms strongly suggest that the maximum tensile stress near the center of the particle is the critical parameter governing fracture of the particles. Moreover, the compressive stress under the contact areas led to the bifurcation and subsequent conical fragment formation.« less

  15. Dynamic fracture behavior of single and contacting Poly(methyl methacrylate) particles

    DOE PAGES

    Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.; ...

    2017-09-19

    Fracture behaviors of single, two, and multiple contacting spherical Poly (methyl methacrylate) (PMMA) particles were recorded using high speed synchrotron X-ray phase contrast imaging. A miniaturized Kolsky bar setup was used to apply dynamic compressive loading on the PMMA particles. In both single and two particle experiments, cracking initiated near the center of the particles and propagated towards the contacts. The crack bifurcated near the contact points for single particle experiments, thus forming conical fragments. The crack bifurcation and subsequent conical fragment formation was observed only at the particle-particle contact for two particle experiments. The particles were observed to fracturemore » in hemispherical fragments normal to the contact plane in the multiparticle experiments. The observed failure mechanisms strongly suggest that the maximum tensile stress near the center of the particle is the critical parameter governing fracture of the particles. Moreover, the compressive stress under the contact areas led to the bifurcation and subsequent conical fragment formation.« less

  16. New proposal of mechanical reinforcement structures to annular REBaCuO bulk magnet for compact and cryogen-free NMR spectrometer

    NASA Astrophysics Data System (ADS)

    Fujishiro, H.; Takahashi, K.; Naito, T.; Yanagi, Y.; Itoh, Y.; Nakamura, T.

    2018-07-01

    We have proposed new reinforcement structures using an aluminum alloy ring to the annular REBaCuO bulks applicable to compact and cryogen-free 400 MHz (9.4 T) nuclear magnetic resonance (NMR) spectrometer using a numerical simulation of mechanical stress. The thermal compressive stress, σθcool, which was applied to the annular bulks during cooling due to the difference of thermal expansion coefficient between bulk and aluminum alloy, became fairly enhanced at the surface of the uppermost bulk for the new reinforcement structures, compared to the conventional reinforcement with the same height as the annular bulk, in which the compressive σθcool value was reduced. During field-cooled magnetization (FCM), the electromagnetic hoop stress, σθFCM, became the maximum at the innermost edge of the uppermost ring bulk at intermediate time step. The actual total hoop stress, σθ (= σθcool + σθFCM), due to both cooling and FCM processes was also analyzed and the new ring structures are fairly effective to reduce the σθ value and became lower than the fracture strength of the bulk. The new reinforcement structures have a possibility to avoid the fracture of the bulks and to realize a 400 MHz NMR spectrometer.

  17. Effect of laser shot peening on precipitation hardened aluminum alloy 6061-T6 using low energy laser

    NASA Astrophysics Data System (ADS)

    Sathyajith, S.; Kalainathan, S.

    2012-03-01

    Mechanical properties of engineering material can be improved by introducing compressive residual stress on the material surface and refinement of their microstructure. Variety of mechanical process such as shot peening, water jet peening, ultrasonic peening, laser shot peening were developed in the last decades on this contrast. Among these, lasers shot peening emerged as a novel industrial treatment to improve the crack resistance of turbine blades and the stress corrosion cracking (SCC) of austenic stainless steel in power plants. In this study we successfully performed laser shot peening on precipitation hardened aluminum alloy 6061-T6 with low energy (300 mJ, 1064 nm) Nd:YAG laser using different pulse densities of 22 pulses/mm 2 and 32 pulses/mm 2. Residual stress evaluation based on X-ray diffraction sin 2 ψ method indicates a maximum of 190% percentage increase on surface compressive stress. Depth profile of micro-hardness shows the impact of laser generated shock wave up to 1.2 mm from the surface. Apart from that, the crystalline size and micro-strain on the laser shot peened surfaces have been investigated and compared with the unpeened surface using X-ray diffraction in conjunction with line broadening analysis through the Williamson-Hall plot.

  18. Update on Simulating Ice-Cliff Failure

    NASA Astrophysics Data System (ADS)

    Parizek, B. R.; Christianson, K. A.; Alley, R. B.; Voytenko, D.; Vankova, I.; Dixon, T. H.; Walker, R. T.; Holland, D.

    2017-12-01

    Using a 2D full-Stokes diagnostic ice-flow model and engineering and glaciological failure criteria, we simulate the limiting physical conditions for rapid structural failure of subaerial ice cliffs. Previously, using a higher-order flowline model, we reported that the threshold height, in crevassed ice and/or under favorable conditions for hydrofracture or crack lubrication, may be only slightly above the 100-m maximum observed today and that under well-drained or low-melt conditions, mechanically-competent ice supports cliff heights up to 220 m (with a likely range of 180-275 m) before ultimately succumbing to tensional and compressive failure along a listric surface. However, proximal to calving fronts, bridging effects lead to variations in vertical normal stress from the background glaciostatic stress state that give rise to the along-flow gradients in vertical shear stress that are included within a full-Stokes momentum balance. When including all flowline stresses within the physics core, diagnostic solutions continue to support our earlier findings that slumping failure ultimately limits the upper bound for cliff heights. Shear failure still requires low cohesive strength, tensile failure leads to deeper dry-crevasse propagation (albeit, less than halfway through the cliff), and compressive failure drops the threshold height for triggering rapid ice-front retreat via slumping to 200 m (145-280 m).

  19. In situ stress, natural fracture distribution, and borehole elongation in the Auburn Geothermal Well, Auburn, New York

    USGS Publications Warehouse

    Hickman, Stephen H.; Healy, John H.; Zoback, Mark D.

    1985-01-01

    Hydraulic fracturing stress measurements and a borehole televiewer survey were conducted in a 1.6‐km‐deep well at Auburn, New York. This well, which was drilled at the outer margin of the Appalachian Fold and Thrust Belt in the Appalachian Plateau, penetrates approximately 1540 m of lower Paleozoic sedimentary rocks and terminates 60 m into the Precambrian marble basement. Analysis of the hydraulic fracturing tests indicates that the minimum horizontal principal stress increases in a nearly linear fashion from 9.9±0.2 MPa at 593 m to 30.6±0.4 MPa at 1482 m. The magnitude of the maximum horizontal principal stress increases in a less regular fashion from 13.8±1.2 MPa to 49.0±2.0 MPa over the same depth range. The magnitudes of the horizontal principal stresses relative to the calculated overburden stress are somewhat lower than is the norm for this region and are indicative of a strike‐slip faulting regime that, at some depths, is transitional to normal faulting. As expected from the relative aseismicity of central New York State, however, analysis of the magnitudes of the horizontal principal stresses indicates, at least to a depth of 1.5 km, that frictional failure on favorably oriented preexisting fault planes is unlikely. Orientations of the hydraulic fractures at 593 and 919 m indicate that the azimuth of the maximum horizontal principal stress at Auburn is N83°E±15°, in agreement with other stress field indicators for this region. The borehole televiewer log revealed a considerable number of planar features in the Auburn well, the great majority of which are subhorizontal (dips < 5°) and are thought to be bedding plane washouts or drill bit scour marks. In addition, a smaller number of distinct natural fractures were observed on the borehole televiewer log. Of these, the distinct steeply dipping natural fractures in the lower half of the sedimentary section at Auburn tend to strike approximately east‐west, while those in the upper part of the well and in the Precambrian basement exhibit no strong preferred orientation. The origin of this east‐west striking fracture set is uncertain, as it is parallel both to the contemporary direction of maximum horizontal compression and to a late Paleozoic fracture set that has been mapped to the south of Auburn. In addition to these planar features the borehole televiewer log indicates paired dark bands on diametrically opposite sides of the borehole throughout the Auburn well. Processing of the borehole televiewer data in the time domain revealed these features to be irregular depressions in the borehole wall. As these depressions were consistently oriented in a direction at right angles to the direction of maximum horizontal compression, we interpret them to be the result of stress‐induced spalling of the borehole wall (breakouts).

  20. [Characteristics of Raman spectra of minerals in the veins of Wenchuan earthquake fault zone].

    PubMed

    Xie, Chao; Zhou, Ben-gang; Liu, Lei; Zhou, Xiao-cheng; Yi, Li; Chen, Zhi; Cui, Yue-ju; Li, Jing; Chen, Zheng-wei; Du, Jian-guo

    2015-01-01

    Quartz in the veins at the Shenxigou section of Wenchuan earthquake fault zone was investigated by micro-Raman spectroscopic measurement, and the distribution of compressive stress in the fault zone was estimated by the frequency shifts of the 464 cm-1 vibrational mode of quartz grains in the veins. It was showed that the 464 cm-1 peak arising from the quartz grains in the veins near the fault plane shifts by 3. 29 cm-1 , and the corresponding compressive stress is 368. 63 MPa, which is significantly lower than the stress accumulation on both sides due to multi-stage events. Stress accumulation increased with moving away from the fault plane in the footwall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins increasing, which can reach 494. 77 MPa at a distance of 21 m with a high offset of 4. 40 cm-1 of the 464 cm-1 peak. The compressive stress gets the maximum value of 519.87 MPa at a distance of 10 m from the fault plane in the hanging wall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins being 4. 62 cm-1, followed by a sudden drop in stress accumulation, and it drops to 359. 59 MPa at a distance of 17 m. Because of moving away from the foult plane at the edge of the foult zone, the stress drops to 359. 59 MPa with a small value of 464 cm-1 peak offset 3. 21 cm-1 at a distance of 27 m from the fault plane in the hanging wall due to the little effect by the fault activity. Therefore, the stress of Wenchuan earthquake fault zone is partially released, but the rest of the stress distribution is uneven, and there is also a high stress accumulation in somewhere in the fault zone, which reflects that the mechanical properties of the rocks in the fault zone have a characteristic of unevenness in space.

  1. Finite element simulation of Reference Point Indentation on bone.

    PubMed

    Idkaidek, Ashraf; Agarwal, Vineet; Jasiuk, Iwona

    2017-01-01

    Reference Point Indentation (RPI) is a novel technique aimed to assess bone quality. Measurements are recorded by the BioDent instrument that applies multiple indents to the same location of cortical bone. Ten RPI parameters are obtained from the resulting force-displacement curves. Using the commercial finite element analysis software Abaqus, we assess the significance of the RPI parameters. We create an axisymmetric model and employ an isotropic viscoelastic-plastic constitutive relation with damage to simulate indentations on a human cortical bone. Fracture of bone tissue is not simulated for simplicity. The RPI outputs are computed for different simulated test cases and then compared with experimental results, measured using the BioDent, found in literature. The number of cycles, maximum indentation load, indenter tip radius, and the mechanical properties of bone: Young׳s modulus, compressive yield stress, and viscosity and damage constants, are varied. The trends in the RPI parameters are then investigated. We find that the RPI parameters are sensitive to the mechanical properties of bone. An increase in Young׳s modulus of bone causes the force-displacement loading and unloading slopes to increase and the total indentation distance (TID) to decrease. The compressive yield stress is inversely proportional to a creep indentation distance (CID1) and the TID. The viscosity constant is proportional to the CID1 and an average of the energy dissipated (AvED). The maximum indentation load is proportional to the TID, CID1, loading and unloading slopes, and AvED. The damage parameter is proportional to the TID, but it is inversely proportional to both the loading and unloading slopes and the AvED. The value of an indenter tip radius is proportional to the CID1 and inversely proportional to the TID. The number of load cycles is inversely proportional to an average of a creep indentation depth (AvCID) and the AvED. The indentation distance increase (IDI) is strongly inversely proportional to the compressive yield stress, and strongly proportional to the viscosity constant and maximum applied load, but has weak relation with the damage parameter, indenter tip radius, and elastic modulus. This computational study advances our understanding of the RPI outputs and provides a starting point for more comprehensive computational studies of the RPI technique. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Stability of a horizontal well and hydraulic fracture initiation in rocks of the bazhenov formation

    NASA Astrophysics Data System (ADS)

    Stefanov, Yu. P.; Bakeev, R. A.; Myasnikov, A. V.; Akhtyamova, A. I.; Romanov, A. S.

    2017-12-01

    Three-dimensional numerical modeling of the formation of the stress-strain state in the vicinity of a horizontal well in weakened rocks of the Bazhenov formation is carried out. The influence of the well orientation and plastic deformation on the stress-strain state and the possibility of hydraulic fracturing are considered. It is shown that the deviation of the well from the direction of maximum compression leads to an increase in plastic deformation and a discrepancy between tangential stresses around the well bore and principle stresses in the surrounding medium. In an elastoplastic medium, an increase in the pressure in the well can lead to a large-scale development of plastic deformation, at which no tensile stresses necessary for hydraulic fracturing according to the classical scheme arise. In this case, there occur plastic expansion and fracture of the well.

  3. The stress heat-flow paradox and thermal results from Cajon Pass

    USGS Publications Warehouse

    Lachenbruch, A.H.; Sass, J.H.

    1988-01-01

    Conventional friction models predict a substantial thermal anomaly associated with active traces of strike-slip faults, but no such anomaly is observed from over 100 heat-flow determinations along 1000 km of the San Andreas fault. The Cajon Pass well is being drilled to bring deep heat-flow and stress data to bear on this paradox. Preliminary stress results from Cajon Pass and a new interpretation of regional data by Mark D. Zoback and colleagues suggests that the maximum compressive stress near the fault is almost normal to the trace, and hence the resolved shear stress is low and the fault, weak. The heat-flow data show large variability with depth, probably from three-dimensional structure, and an overall decrease from over 90 mW/m2 in the upper kilometer to less than 80 mW/m2 in the lower 300 m with no evidence of advective heat transfer. -from Authors

  4. Experimental Study on the Anisotropic Stress-Strain Behavior of Polycrystalline Ni-Mn-Ga in Directional Solidification

    NASA Astrophysics Data System (ADS)

    Teng, Yao; Shi, Tao; Zhu, Yuping; Li, Zongbin; Deng, Tao; Bai, Guonan

    2016-03-01

    A polycrystalline Ni-Mn-Ga ferromagnetic shape memory alloy produced by directional solidification is the subject of this research paper. The compressive stress-strain curves of the material for different cutting angles to the solidification direction are tested. The martensite Young's modulus, macroscopic reorientation strain, and phase transition critical stress are analyzed experimentally. The results show that mechanical behaviors in the loading-unloading cycle of the material present nonlinear and anisotropic characteristics, which are all closely related to the material's orientation to the solidification direction. The martensite Young's modulus, macroscopic reorientation strain, and phase transition critical stress achieve maximum values in the solidification direction. A 50° orientation to the solidification direction is the cut-off direction of the mechanical properties, where the martensite Young's modulus and reorientation start critical stress reach minimum values. The present study is expected to provide sound guidance for practical applications.

  5. Effect of uniaxial stress on electroluminescence, valence band modification, optical gain, and polarization modes in tensile strained p-AlGaAs/GaAsP/n-AlGaAs laser diode structures: Numerical calculations and experimental results

    NASA Astrophysics Data System (ADS)

    Bogdanov, E. V.; Minina, N. Ya.; Tomm, J. W.; Kissel, H.

    2012-11-01

    The effects of uniaxial compression in [110] direction on energy-band structures, heavy and light hole mixing, optical matrix elements, and gain in laser diodes with "light hole up" configuration of valence band levels in GaAsP quantum wells with different widths and phosphorus contents are numerically calculated. The development of light and heavy hole mixing caused by symmetry lowering and converging behavior of light and heavy hole levels in such quantum wells under uniaxial compression is displayed. The light or heavy hole nature of each level is established for all considered values of uniaxial stress. The results of optical gain calculations for TM and TE polarization modes show that uniaxial compression leads to a significant increase of the TE mode and a minor decrease of the TM mode. Electroluminescence experiments were performed under uniaxial compression up to 5 kbar at 77 K on a model laser diode structure (p-AlxGa1-xAs/GaAs1-yPy/n-AlxGa1-xAs) with y = 0.16 and a quantum well width of 14 nm. They reveal a maximum blue shift of 27 meV of the electroluminescence spectra that is well described by the calculated change of the optical gap and the increase of the intensity being referred to a TE mode enhancement. Numerical calculations and electroluminescence data indicate that uniaxial compression may be used for a moderate wavelength and TM/TE intensity ratio tuning.

  6. New true-triaxial rock strength criteria considering intrinsic material characteristics

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Li, Cheng; Quan, Xiaowei; Wang, Yanning; Yu, Liyuan; Jiang, Binsong

    2018-02-01

    A reasonable strength criterion should reflect the hydrostatic pressure effect, minimum principal stress effect, and intermediate principal stress effect. The former two effects can be described by the meridian curves, and the last one mainly depends on the Lode angle dependence function. Among three conventional strength criteria, i.e. Mohr-Coulomb (MC), Hoek-Brown (HB), and Exponent (EP) criteria, the difference between generalized compression and extension strength of EP criterion experience a firstly increase then decrease process, and tends to be zero when hydrostatic pressure is big enough. This is in accordance with intrinsic rock strength characterization. Moreover, the critical hydrostatic pressure I_c corresponding to the maximum difference of between generalized compression and extension strength can be easily adjusted by minimum principal stress influence parameter K. So, the exponent function is a more reasonable meridian curves, which well reflects the hydrostatic pressure effect and is employed to describe the generalized compression and extension strength. Meanwhile, three Lode angle dependence functions of L_{{MN}}, L_{{WW}}, and L_{{YMH}}, which unconditionally satisfy the convexity and differential requirements, are employed to represent the intermediate principal stress effect. Realizing the actual strength surface should be located between the generalized compression and extension surface, new true-triaxial criteria are proposed by combining the two states of EP criterion by Lode angle dependence function with a same lode angle. The proposed new true-triaxial criteria have the same strength parameters as EP criterion. Finally, 14 groups of triaxial test data are employed to validate the proposed criteria. The results show that the three new true-triaxial exponent criteria, especially the Exponent Willam-Warnke criterion (EPWW) criterion, give much lower misfits, which illustrates that the EP criterion and L_{{WW}} have more reasonable meridian and deviatoric function form, respectively. The proposed new true-triaxial strength criteria can provide theoretical foundation for stability analysis and optimization of support design of rock engineering.

  7. Tensile and compressive failure modes of laminated composites loaded by fatigue with different mean stress

    NASA Technical Reports Server (NTRS)

    Rotem, Assa

    1990-01-01

    Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.

  8. Damage Tolerance of Pre-Stressed Composite Panels Under Impact Loads

    NASA Astrophysics Data System (ADS)

    Johnson, Alastair F.; Toso-Pentecôte, Nathalie; Schueler, Dominik

    2014-02-01

    An experimental test campaign studied the structural integrity of carbon fibre/epoxy panels preloaded in tension or compression then subjected to gas gun impact tests causing significant damage. The test programme used representative composite aircraft fuselage panels composed of aerospace carbon fibre toughened epoxy prepreg laminates. Preload levels in tension were representative of design limit loads for fuselage panels of this size, and maximum compression preloads were in the post-buckle region. Two main impact scenarios were considered: notch damage from a 12 mm steel cube projectile, at velocities in the range 93-136 m/s; blunt impact damage from 25 mm diameter glass balls, at velocities 64-86 m/s. The combined influence of preload and impact damage on panel residual strengths was measured and results analysed in the context of damage tolerance requirements for composite aircraft panels. The tests showed structural integrity well above design limit loads for composite panels preloaded in tension and compression with visible notch impact damage from hard body impact tests. However, blunt impact tests on buckled compression loaded panels caused large delamination damage regions which lowered plate bending stiffness and reduced significantly compression strengths in buckling.

  9. The Boulby Geoscience Project Underground Research Laboratory: Initial Results of a Rock Mechanics Laboratory Testing Programme

    NASA Astrophysics Data System (ADS)

    Brain, M. J.; Petley, D. N.; Rosser, N.; Lim, M.; Sapsford, M.; Barlow, J.; Norman, E.; Williams, A.; Pybus, D.

    2009-12-01

    The Boulby Mine, which is situated on the northeast coast of England, is a major source of potash, primarily for use as a fertiliser, with a secondary product of rock salt (halite), used in highway deicing. The deposits are part of the Zechstein formation and are found at depths of between c.1100 and 1135 m below sea level. The evaporite sequence also contains a range of further lithologies, including anhydrite, dolomite and a mixed evaporate deposit. From a scientific perspective the dry, uncontaminated nature of the deposits, the range of lithologies present and the high stress conditions at the mine provide a unique opportunity to observe rock deformation in situ in varying geological and stress environments. To this end the Boulby Geoscience Project was established to examine the feasibility of developing an underground research laboratory at the mine. Information regarding the mechanical properties of the strata at the Boulby Mine is required to develop our understanding of the strength and deformation behaviour of the rock over differing timescales in response to variations in the magnitude and duration of applied stresses. As such data are currently limited, we have developed a laboratory testing programme that examines the behaviour of the deposits during the application of differential compressive stresses. We present the initial results of this testing programme here. Experiments have been carried out using a high pressure Virtual Infinite Strain (VIS) triaxial apparatus (250 kN maximum axial load; 64 MPa maximum cell pressure) manufactured by GDS Instruments. Conventional compression tests under uniaxial and triaxial conditions have been undertaken to determine the effects of axial stress application rate, axial strain rate and confining pressure on behaviour and failure mechanisms. The experimental programme also includes advanced testing into time-dependent creep behaviour under constant deviatoric stress; the effects of variations in temperature and stress path loading on peak shear strength and deformation behaviour; and the effects of low frequency cyclic loading on evolution of material properties. We compare the results of the testing programme with similar published data on evaporite rocks and existing models of material deformation and briefly discuss the implications for the design of sub-surface excavations.

  10. Estimation of the iron loss in deep-sea permanent magnet motors considering seawater compressive stress.

    PubMed

    Xu, Yongxiang; Wei, Yanyu; Zou, Jibin; Li, Jianjun; Qi, Wenjuan; Li, Yong

    2014-01-01

    Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM). The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress.

  11. Three-dimensional local residual stress and orientation gradients near graphite nodules in ductile cast iron [3D local residual stress and orientation gradients near graphite nodules in ductile cast iron

    DOE PAGES

    Zhang, Y. B.; Andriollo, T.; Faester, S.; ...

    2016-09-14

    A synchrotron technique, differential aperture X-ray microscopy (DAXM), has been applied to characterize the microstructure and analyze the local mesoscale residual elastic strain fields around graphite nodules embedded in ferrite matrix grains in ductile cast iron. Compressive residual elastic strains are measured with a maximum strain of ~6.5–8 × 10 –4 near the graphite nodules extending into the matrix about 20 μm, where the elastic strain is near zero. The experimental data are compared with a strain gradient calculated by a finite element model, and good accord has been found but with a significant overprediction of the maximum strain. Thismore » is discussed in terms of stress relaxation during cooling or during storage by plastic deformation of the nodule, the matrix or both. Furthermore, relaxation by plastic deformation of the ferrite is demonstrated by the formation of low energy dislocation cell structure also quantified by the DAXM technique.« less

  12. Interfacial coherency stress distribution in TiN/AlN bilayer and multilayer films studied by FEM analysis

    PubMed Central

    Chawla, Vipin; Holec, David; Mayrhofer, Paul H.

    2012-01-01

    The development of interfacial coherency stresses in TiN/AlN bilayer and multilayer films was investigated by finite element method (ABAQUS) using the four-node bilinear quadrilateral axisymmetric element CAX4R. The TiN and AlN layers are always in compression and tension at the interface, respectively, as may be expected from the fact TiN has larger lattice parameter than AlN. Both, the bi-layer and the multilayer stacks bend due to the coherency stresses. For the TiN/AlN bilayer system, the curvature of the bending is largest for the TiN/AlN thickness ratios ∼0.5 and ∼2 (at which one of the two layers is fully in compression or tension), while it is smaller for the layers with the same thickness (at which both layers posses regions with compressive as well as tensile stresses). This stress distribution over the bi-layer thickness is shown to be strongly influenced by the presence and the properties of a substrate. Furthermore, the coherency stress profile and specimen curvature of a TiN/AlN multilayer system was studied as a function of the top-most layer thickness. The curvature is maximum for equal number of TiN and AlN layers, and decreases with increasing the number of TiN/AlN periods. Within the growth of an additional TiN/AlN bilayer, the curvature first decreases to zero for a vertically symmetrical geometry over the layers when the TiN layer growth is finished (e.g. for (n + 1) layers of TiN and n layers of AlN). At this stage, the coherency stresses in TiN and AlN are same in each layer type (independent on the layer position). The growth of the second half of the TiN/AlN bi-layer (i.e. the AlN) to finish the period, again bends the specimen, and generates a non-uniform stress distribution. This suggests that the top layer as well as the overall specimen geometry plays a critical role on the actual coherency stress profile. PMID:27570370

  13. Synchrotron X-ray microbeam diffraction measurements of full elastic long range internal strain and stress tensors in commercial-purity aluminum processed by multiple passes of equal-channel angular pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phan, Thien Q.; Levine, Lyle E.; Lee, I-Fang

    Synchrotron X-ray microbeam diffraction was used to measure the full elastic long range internal strain and stress tensors of low dislocation density regions within the submicrometer grain/subgrain structure of equal-channel angular pressed (ECAP) aluminum alloy AA1050 after 1, 2, and 8 passes using route B C. This is the first time that full tensors were measured in plastically deformed metals at this length scale. The maximum (most tensile or least compressive) principal elastic strain directions for the unloaded 1 pass sample for the grain/subgrain interiors align well with the pressing direction, and are more random for the 2 and 8more » pass samples. The measurements reported here indicate that the local stresses and strains become increasingly isotropic (homogenized) with increasing ECAP passes using route BC. The average maximum (in magnitude) LRISs are -0.43 σ a for 1 pass, -0.44 σ a for 2 pass, and 0.14 σ a for the 8 pass sample. Furthermore, these LRISs are larger than those reported previously because those earlier measurements were unable to measure the full stress tensor. Significantly, the measured stresses are inconsistent with the two-component composite model.« less

  14. Synchrotron X-ray microbeam diffraction measurements of full elastic long range internal strain and stress tensors in commercial-purity aluminum processed by multiple passes of equal-channel angular pressing

    DOE PAGES

    Phan, Thien Q.; Levine, Lyle E.; Lee, I-Fang; ...

    2016-04-23

    Synchrotron X-ray microbeam diffraction was used to measure the full elastic long range internal strain and stress tensors of low dislocation density regions within the submicrometer grain/subgrain structure of equal-channel angular pressed (ECAP) aluminum alloy AA1050 after 1, 2, and 8 passes using route B C. This is the first time that full tensors were measured in plastically deformed metals at this length scale. The maximum (most tensile or least compressive) principal elastic strain directions for the unloaded 1 pass sample for the grain/subgrain interiors align well with the pressing direction, and are more random for the 2 and 8more » pass samples. The measurements reported here indicate that the local stresses and strains become increasingly isotropic (homogenized) with increasing ECAP passes using route BC. The average maximum (in magnitude) LRISs are -0.43 σ a for 1 pass, -0.44 σ a for 2 pass, and 0.14 σ a for the 8 pass sample. Furthermore, these LRISs are larger than those reported previously because those earlier measurements were unable to measure the full stress tensor. Significantly, the measured stresses are inconsistent with the two-component composite model.« less

  15. Microstructure and hot compression deformation of the as-cast Mg-5.0Sn-1.5Y-0.1Zr alloy

    NASA Astrophysics Data System (ADS)

    Luo, Xiaoping; Kang, Li; Li, Qiushu; Chai, Yuesheng

    2015-08-01

    The hot compression deformation behavior and microstructure of as-cast Mg-5.0Sn-1.5Y-0.1Zr alloy were investigated by performing isothermal hot compression tests. The tests were conducted using a thermal mechanical simulator at 250-450 °C and strain rates ranging from 0.002 to 2 s-1, with a maximum deformation strain of 50 %. The effects of the deformation parameters on the microstructure evolution of the Mg-5.0Sn-1.5Y-0.1Zr alloy were discussed. The study revealed the flow behavior and the deformation mechanism of the Mg-5.0Sn-1.5Y-0.1Zr alloy. The dependence of flow stress on temperature and strain rate was described by a hyperbolic sine constitutive equation. Through regression analysis, the activation energy of 223.26 kJ mol-1 for plastic deformation was determined by considering flow stress at a strain rate of 0.2. Microstructure observation showed that dynamic recrystallization occurred extensively along grain boundaries at temperatures higher than 300 °C and strain rates lower than 0.02 s-1. This observation provides a theoretical basis for the manufacture and application of the Mg-5.0Sn-1.5Y-0.1Zr alloy.

  16. Fabrication and Compressive Properties of Low to Medium Porosity Closed-Cell Porous Aluminum Using PMMA Space Holder Technique

    PubMed Central

    Jamal, Nur Ayuni; Tan, Ai Wen; Yusof, Farazila; Katsuyoshi, Kondoh; Hisashi, Imai; Singh, S.; Anuar, Hazleen

    2016-01-01

    In recent years, closed-cell porous Aluminum (Al) has drawn increasing attention, particularly in the applications requiring reduced weight and energy absorption capability such as in the automotive and aerospace industries. In the present work, porous Al with closed-cell structure was successfully fabricated by powder metallurgy technique using PMMA as a space holder. The effects of the amount of PMMA powder on the porosity, density, microstructure and compressive behaviors of the porous specimens were systematically evaluated. The results showed that closed-cell porous Al having different porosities (12%–32%) and densities (1.6478 g/cm3, 1.5125 g/cm3 and 1.305 g/cm3) could be produced by varying the amount of PMMA (20–30 wt %). Meanwhile, the compressive behavior results demonstrated that the plateau stress decreased and the energy absorption capacity increased with increasing amount of PMMA. However, the maximum energy absorption capacity was achieved in the closed-cell porous Al with the addition of 25 wt % PMMA. Therefore, fabrication of closed-cell porous Al using 25 wt % PMMA is considered as the optimal condition in the present study since the resultant closed-cell porous Al possessed good combinations of porosity, density and plateau stress, as well as energy absorption capacity. PMID:28773377

  17. Cyclic compression response of micropillars extracted from textured nanocrystalline NiTi thin-walled tubes

    DOE PAGES

    Ghassemi-Armaki, Hassan; Leff, Asher C.; Taheri, Mitra L.; ...

    2017-06-22

    Compression-compression cyclic deformation of nanocrystalline NiTi tubes intended for medical stents and with an outer diameter of 1 mm and wall thickness of 70 μm was studied using micropillars produced by FIB with the loading axis orthogonal to the tube axis. These micropillars were cycled in a displacement-controlled mode using a nanoindenter equipped with a flat punch to strain levels of 4, 6 and 8% in each cycle and specimens were subjected to several hundred cycles. Furthermore, the cyclic response of two NiTi tubes, one with Af of 17 °C and the other with an Af of -5 °C ismore » compared. The texture of the tube with the Af of -5 °C was measured at the microscopic level using transmission electron microscopy and at the macroscopic level by X-ray diffraction and good agreement was noted. Characteristics such as i) a reduction in the forward transformation stress, ii) increase in maximum stress for a given displacement amplitude, and iii) a reduction in the hysteresis loop area, all with increasing number of cycles, observed typically during cyclic deformation of conventional macroscopic specimens, were captured in the micropillar cyclic tests. Our observations lead to the conclusion that micropillar compression testing in a cyclic mode can enable characterizing the orientation-dependent response in such small dimension components that see complex loading in service, and additionally provide an opportunity for calibrating constitutive equations in micromechanical models.« less

  18. Thermoelastic stress in oceanic lithosphere due to hotspot reheating

    NASA Technical Reports Server (NTRS)

    Zhu, Anning; Wiens, Douglas A.

    1991-01-01

    The effect of hotspot reheating on the intraplate stress field is investigated by modeling the three-dimensional thermal stress field produced by nonuniform temperature changes in an elastic plate. Temperature perturbations are calculated assuming that the lithosphere is heated by a source in the lower part of the thermal lithosphere. A thermal stress model for the elastic lithosphere is calculated by superposing the stress fields resulting from temperature changes in small individual elements. The stress in an elastic plate resulting from a temperature change in each small element is expressed as an infinite series, wherein each term is a source or an image modified from a closed-from half-space solution. The thermal stress solution is applied to midplate swells in oceanic lithosphere with various thermal structures and plate velocities. The results predict a stress field with a maximum deviatoric stress on the order of 100 MPa covering a broad area around the hotspot plume. The predicted principal stress orientations show a complicated geographical pattern, with horizontal extension perpendicular to the hotspot track at shallow depths and compression along the track near the bottom of the elastic lithosphere.

  19. Estimates of stress drop and crustal tectonic stress from the 27 February 2010 Maule, Chile, earthquake: Implications for fault strength

    USGS Publications Warehouse

    Luttrell, K.M.; Tong, X.; Sandwell, D.T.; Brooks, B.A.; Bevis, M.G.

    2011-01-01

    The great 27 February 2010 Mw 8.8 earthquake off the coast of southern Chile ruptured a ???600 km length of subduction zone. In this paper, we make two independent estimates of shear stress in the crust in the region of the Chile earthquake. First, we use a coseismic slip model constrained by geodetic observations from interferometric synthetic aperture radar (InSAR) and GPS to derive a spatially variable estimate of the change in static shear stress along the ruptured fault. Second, we use a static force balance model to constrain the crustal shear stress required to simultaneously support observed fore-arc topography and the stress orientation indicated by the earthquake focal mechanism. This includes the derivation of a semianalytic solution for the stress field exerted by surface and Moho topography loading the crust. We find that the deviatoric stress exerted by topography is minimized in the limit when the crust is considered an incompressible elastic solid, with a Poisson ratio of 0.5, and is independent of Young's modulus. This places a strict lower bound on the critical stress state maintained by the crust supporting plastically deformed accretionary wedge topography. We estimate the coseismic shear stress change from the Maule event ranged from-6 MPa (stress increase) to 17 MPa (stress drop), with a maximum depth-averaged crustal shear-stress drop of 4 MPa. We separately estimate that the plate-driving forces acting in the region, regardless of their exact mechanism, must contribute at least 27 MPa trench-perpendicular compression and 15 MPa trench-parallel compression. This corresponds to a depth-averaged shear stress of at least 7 MPa. The comparable magnitude of these two independent shear stress estimates is consistent with the interpretation that the section of the megathrust fault ruptured in the Maule earthquake is weak, with the seismic cycle relieving much of the total sustained shear stress in the crust. Copyright 2011 by the American Geophysical Union.

  20. Computational micromechanics of dynamic compressive loading of a brittle polycrystalline material using a distribution of grain boundary properties

    NASA Astrophysics Data System (ADS)

    Kraft, R. H.; Molinari, J. F.; Ramesh, K. T.; Warner, D. H.

    A two-dimensional finite element model is used to investigate compressive loading of a brittle ceramic. Intergranular cracking in the microstructure is captured explicitly by using a distribution of cohesive interfaces. The addition of confining stress increases the maximum strength and if high enough, can allow the effective material response to reach large strains before failure. Increasing the friction at the grain boundaries also increases the maximum strength until saturation of the strength is approached. Above a transitional strain rate, increasing the rate-of-deformation also increases the strength and as the strain rate increases, fragment sizes of the damaged specimen decrease. The effects of flaws within the specimen were investigated using a random distribution at various initial flaw densities. The model is able to capture an effective modulus change and degradation of strength as the initial flaw density increases. Effects of confinement, friction, and spatial distribution of flaws seem to depend on the crack coalescence and dilatation of the specimen, while strain-rate effects are result of inertial resistance to motion.

  1. Estimating zero strain states of very soft tissue under gravity loading using digital image correlation⋆,⋆⋆,★

    PubMed Central

    Gao, Zhan; Desai, Jaydev P.

    2009-01-01

    This paper presents several experimental techniques and concepts in the process of measuring mechanical properties of very soft tissue in an ex vivo tensile test. Gravitational body force on very soft tissue causes pre-compression and results in a non-uniform initial deformation. The global Digital Image Correlation technique is used to measure the full field deformation behavior of liver tissue in uniaxial tension testing. A maximum stretching band is observed in the incremental strain field when a region of tissue passes from compression and enters a state of tension. A new method for estimating the zero strain state is proposed: the zero strain position is close to, but ahead of the position of the maximum stretching band, or in other words, the tangent of a nominal stress-stretch curve reaches minimum at λ ≳ 1. The approach, to identify zero strain by using maximum incremental strain, can be implemented in other types of image-based soft tissue analysis. The experimental results of ten samples from seven porcine livers are presented and material parameters for the Ogden model fit are obtained. The finite element simulation based on the fitted model confirms the effect of gravity on the deformation of very soft tissue and validates our approach. PMID:20015676

  2. Estimation of the Iron Loss in Deep-Sea Permanent Magnet Motors considering Seawater Compressive Stress

    PubMed Central

    Wei, Yanyu; Zou, Jibin; Li, Jianjun; Qi, Wenjuan; Li, Yong

    2014-01-01

    Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM). The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress. PMID:25177717

  3. Knock-Limited Performance of Triptane and Xylidines Blended with 28-R Aviation Fuel at High Compression Ratios and Maximum-Economy Spark Setting

    NASA Technical Reports Server (NTRS)

    Held, Louis F.; Pritchard, Ernest I.

    1946-01-01

    An investigation was conducted to evaluate the possibilities of utilizing the high-performance characteristics of triptane and xylidines blended with 28-R fuel in order to increase fuel economy by the use of high compression ratios and maximum-economy spark setting. Full-scale single-cylinder knock tests were run with 20 deg B.T.C. and maximum-economy spark settings at compression ratios of 6.9, 8.0, and 10.0, and with two inlet-air temperatures. The fuels tested consisted of triptane, four triptane and one xylidines blend with 28-R, and 28-R fuel alone. Indicated specific fuel consumption at lean mixtures was decreased approximately 17 percent at a compression ratio of 10.0 and maximum-economy spark setting, as compared to that obtained with a compression ratio of 6.9 and normal spark setting. When compression ratio was increased from 6.9 to 10.0 at an inlet-air temperature of 150 F, normal spark setting, and a fuel-air ratio of 0.065, 55-percent triptane was required with 28-R fuel to maintain the knock-limited brake power level obtained with 28-R fuel at a compression ratio of 6.9. Brake specific fuel consumption was decreased 17.5 percent at a compression ratio of 10.0 relative to that obtained at a compression ratio of 6.9. Approximately similar results were noted at an inlet-air temperature of 250 F. For concentrations up through at least 20 percent, triptane can be more efficiently used at normal than at maximum-economy spark setting to maintain a constant knock-limited power output over the range of compression ratios tested.

  4. The effect of lossy image compression on image classification

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1995-01-01

    We have classified four different images, under various levels of JPEG compression, using the following classification algorithms: minimum-distance, maximum-likelihood, and neural network. The training site accuracy and percent difference from the original classification were tabulated for each image compression level, with maximum-likelihood showing the poorest results. In general, as compression ratio increased, the classification retained its overall appearance, but much of the pixel-to-pixel detail was eliminated. We also examined the effect of compression on spatial pattern detection using a neural network.

  5. Directional amorphization of boron carbide subjected to laser shock compression.

    PubMed

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A; LaSalvia, Jerry C; Wehrenberg, Christopher E; Behler, Kristopher D; Meyers, Marc A

    2016-10-25

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4 C.

  6. Experimental Study of the Flexural and Compression Performance of an Innovative Pultruded Glass-Fiber-Reinforced Polymer-Wood Composite Profile.

    PubMed

    Qi, Yujun; Xiong, Wei; Liu, Weiqing; Fang, Hai; Lu, Weidong

    2015-01-01

    The plate of a pultruded fiber-reinforced polymer or fiber-reinforced plastic (FRP) profile produced via a pultrusion process is likely to undergo local buckling and cracking along the fiber direction under an external load. In this study, we constructed a pultruded glass-fiber-reinforced polymer-light wood composite (PGWC) profile to explore its mechanical performance. A rectangular cross-sectional PGWC profile was fabricated with a paulownia wood core, alkali-free glass fiber filaments, and unsaturated phthalate resin. Three-point bending and short column axial compression tests were conducted. Then, the stress calculation for the PGWC profile in the bending and axial compression tests was performed using the Timoshenko beam theory and the composite component analysis method to derive the flexural and axial compression rigidity of the profile during the elastic stress stage. The flexural capacity for this type of PGWC profile is 3.3-fold the sum of the flexural capacities of the wood core and the glass-fiber-reinforced polymer (GFRP) shell. The equivalent flexural rigidity is 1.5-fold the summed flexural rigidity of the wood core and GFRP shell. The maximum axial compressive bearing capacity for this type of PGWC profile can reach 1.79-fold the sum of those of the wood core and GFRP shell, and its elastic flexural rigidity is 1.2-fold the sum of their rigidities. These results indicate that in PGWC profiles, GFRP and wood materials have a positive combined effect. This study produced a pultruded composite material product with excellent mechanical performance for application in structures that require a large bearing capacity.

  7. Experimental Study of the Flexural and Compression Performance of an Innovative Pultruded Glass-Fiber-Reinforced Polymer-Wood Composite Profile

    PubMed Central

    Qi, Yujun; Xiong, Wei; Liu, Weiqing; Fang, Hai; Lu, Weidong

    2015-01-01

    The plate of a pultruded fiber-reinforced polymer or fiber-reinforced plastic (FRP) profile produced via a pultrusion process is likely to undergo local buckling and cracking along the fiber direction under an external load. In this study, we constructed a pultruded glass-fiber-reinforced polymer-light wood composite (PGWC) profile to explore its mechanical performance. A rectangular cross-sectional PGWC profile was fabricated with a paulownia wood core, alkali-free glass fiber filaments, and unsaturated phthalate resin. Three-point bending and short column axial compression tests were conducted. Then, the stress calculation for the PGWC profile in the bending and axial compression tests was performed using the Timoshenko beam theory and the composite component analysis method to derive the flexural and axial compression rigidity of the profile during the elastic stress stage. The flexural capacity for this type of PGWC profile is 3.3-fold the sum of the flexural capacities of the wood core and the glass-fiber-reinforced polymer (GFRP) shell. The equivalent flexural rigidity is 1.5-fold the summed flexural rigidity of the wood core and GFRP shell. The maximum axial compressive bearing capacity for this type of PGWC profile can reach 1.79-fold the sum of those of the wood core and GFRP shell, and its elastic flexural rigidity is 1.2-fold the sum of their rigidities. These results indicate that in PGWC profiles, GFRP and wood materials have a positive combined effect. This study produced a pultruded composite material product with excellent mechanical performance for application in structures that require a large bearing capacity. PMID:26485431

  8. Fatigue life of additively manufactured Ti6Al4V scaffolds under tension-tension, tension-compression and compression-compression fatigue load.

    PubMed

    Lietaert, Karel; Cutolo, Antonio; Boey, Dries; Van Hooreweder, Brecht

    2018-03-21

    Mechanical performance of additively manufactured (AM) Ti6Al4V scaffolds has mostly been studied in uniaxial compression. However, in real-life applications, more complex load conditions occur. To address this, a novel sample geometry was designed, tested and analyzed in this work. The new scaffold geometry, with porosity gradient between the solid ends and scaffold middle, was successfully used for quasi-static tension, tension-tension (R = 0.1), tension-compression (R = -1) and compression-compression (R = 10) fatigue tests. Results show that global loading in tension-tension leads to a decreased fatigue performance compared to global loading in compression-compression. This difference in fatigue life can be understood fairly well by approximating the local tensile stress amplitudes in the struts near the nodes. Local stress based Haigh diagrams were constructed to provide more insight in the fatigue behavior. When fatigue life is interpreted in terms of local stresses, the behavior of single struts is shown to be qualitatively the same as bulk Ti6Al4V. Compression-compression and tension-tension fatigue regimes lead to a shorter fatigue life than fully reversed loading due to the presence of a mean local tensile stress. Fractographic analysis showed that most fracture sites were located close to the nodes, where the highest tensile stresses are located.

  9. Mechanical Twinning and Microstructures in Experimentally Stressed Quartzite

    NASA Astrophysics Data System (ADS)

    Minor, A.; Sintubin, M.; Wenk, H. R.; Rybacki, E.

    2015-12-01

    Since Dauphiné twins in quartz have been identified as a stress-related intracrystalline microstructure, several electron backscatter diffraction (EBSD) studies revealed that Dauphiné twins are present in naturally deformed quartz-bearing rocks in a wide range of tectono-metamorphic conditions. EBSD studies on experimentally stressed quartzite showed that crystals with particular crystallographic orientations contain many Dauphiné twin boundaries, while neighboring crystals with different orientations are largely free of twin boundaries. To understand the relationship between stress direction and orientation of Dauphiné twinned quartz crystals, a detailed EBSD study was performed on experimentally stressed quartzite samples and compared with an undeformed reference sample. We stressed 4 cylindrical samples in triaxial compression in a Paterson type gas deformation apparatus at GFZ Potsdam. Experimental conditions were 300MPa confining pressure, 500°C temperature and axial stresses of 145MPa, 250MPa and 460MPa for about 30 hours, resulting in a minor strain <0.04%. EBSD scans were obtained with a Zeiss Evo scanning electron microscope and TSL software at UC Berkeley. The EBSD maps show that Dauphiné twinning is present in the starting material as well as in experimentally stressed samples. Pole figures of the bulk orientation of the reference sample compared with stressed samples show a significant difference regarding the distribution for the r and z directions. The reference sample shows an indistinct maximum for r and z, whereas the stressed samples show a maximum for r poles and a minimum for z poles in the axial stress direction. EBSD scans of the reference and stressed samples were further analyzed manually to identify the orientations of single grains, which are free of twin boundaries and those, which contain twin boundaries. This analysis aims to quantify the relationship of crystal orientation and stress magnitude to initiate mechanical twinning.

  10. Strain localization and elastic-plastic coupling during deformation of porous sandstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewers, Thomas A.; Issen, Kathleen A.; Holcomb, David J.

    Results of axisymmetric compression tests on weak, porous Castlegate Sandstone (Cretaceous, Utah, USA), covering a range of dilational and compactional behaviors, are examined for localization behavior. Assuming isotropy, bulk and shear moduli evolve as increasing functions of mean stress and Mises equivalent shear stress respectively, and as decreasing functions of work-conjugate plastic strains. Acoustic emissions events located during testing show onset of localization and permit calculation of observed shear and low-angle compaction localization zones, or bands, as localization commences. Total strain measured experimentally partitions into: A) elastic strain with constant moduli, B) elastic strain due to stress dependence of moduli,more » C) elastic strain due to moduli degradation with increasing plastic strain, and D) plastic strain. The third term is the elastic-plastic coupling strain, and though often ignored, contributes significantly to pre-failure total strain for brittle and transitional tests. Constitutive parameters and localization predictions derived from experiments are compared to theoretical predictions. In the brittle regime, predictions of band angles (angle between band normal and maximum compression) demonstrate good agreement with observed shear band angles. Compaction localization was observed in the transitional regime in between shear localization and spatially pervasive compaction, over a small range of mean stresses. In contrast with predictions however, detailed acoustic emissions analyses in this regime show low angle, compaction-dominated but shear-enhanced, localization.« less

  11. Intrinsic Compressive Stress in Polycrystalline Films is Localized at Edges of the Grain Boundaries.

    PubMed

    Vasco, Enrique; Polop, Celia

    2017-12-22

    The intrinsic compression that arises in polycrystalline thin films under high atomic mobility conditions has been attributed to the insertion or trapping of adatoms inside grain boundaries. This compression is a consequence of the stress field resulting from imperfections in the solid and causes the thermomechanical fatigue that is estimated to be responsible for 90% of mechanical failures in current devices. We directly measure the local distribution of residual intrinsic stress in polycrystalline thin films on nanometer scales, using a pioneering method based on atomic force microscopy. Our results demonstrate that, at odds with expectations, compression is not generated inside grain boundaries but at the edges of gaps where the boundaries intercept the surface. We describe a model wherein this compressive stress is caused by Mullins-type surface diffusion towards the boundaries, generating a kinetic surface profile different from the mechanical equilibrium profile by the Laplace-Young equation. Where the curvatures of both profiles differ, an intrinsic stress is generated in the form of Laplace pressure. The Srolovitz-type surface diffusion that results from the stress counters the Mullins-type diffusion and stabilizes the kinetic surface profile, giving rise to a steady compression regime. The proposed mechanism of competition between surface diffusions would explain the flux and time dependency of compressive stress in polycrystalline thin films.

  12. Intrinsic Compressive Stress in Polycrystalline Films is Localized at Edges of the Grain Boundaries

    NASA Astrophysics Data System (ADS)

    Vasco, Enrique; Polop, Celia

    2017-12-01

    The intrinsic compression that arises in polycrystalline thin films under high atomic mobility conditions has been attributed to the insertion or trapping of adatoms inside grain boundaries. This compression is a consequence of the stress field resulting from imperfections in the solid and causes the thermomechanical fatigue that is estimated to be responsible for 90% of mechanical failures in current devices. We directly measure the local distribution of residual intrinsic stress in polycrystalline thin films on nanometer scales, using a pioneering method based on atomic force microscopy. Our results demonstrate that, at odds with expectations, compression is not generated inside grain boundaries but at the edges of gaps where the boundaries intercept the surface. We describe a model wherein this compressive stress is caused by Mullins-type surface diffusion towards the boundaries, generating a kinetic surface profile different from the mechanical equilibrium profile by the Laplace-Young equation. Where the curvatures of both profiles differ, an intrinsic stress is generated in the form of Laplace pressure. The Srolovitz-type surface diffusion that results from the stress counters the Mullins-type diffusion and stabilizes the kinetic surface profile, giving rise to a steady compression regime. The proposed mechanism of competition between surface diffusions would explain the flux and time dependency of compressive stress in polycrystalline thin films.

  13. Particulate Titanium Matrix Composites Tested--Show Promise for Space Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Ellis, J. Rodney; Arnold. Steven M.

    2004-01-01

    Uniformly distributed particle-strengthened titanium matrix composites (TMCs) can be manufactured at lower cost than many types of continuous-fiber composites. The innovative manufacturing technology combines cold and hot isostatic pressing procedures to produce near-final-shape components. Material stiffness is increased up to 26-percent greater than that of components made with conventional titanium materials at no significant increase in the weight. The improved mechanical performance and low-cost manufacturing capability motivated an independent review to assess the improved properties of ceramic titanium carbide (TiC) particulate-reinforced titanium at elevated temperature. Researchers at the NASA Glenn Research Center creatively designed and executed deformation and durability tests to reveal operating regimes where these materials could lower the cost and weight of space propulsion systems. The program compares the elevated-temperature performance of titanium alloy Ti-6Al-4V matrix material to an alloy containing 10 wt% of TiC particles. Initial experiments showed that at these relatively low particle concentrations the material stiffness of the TMC was improved 20 percent over that of the plain Ti-6Al-4V alloy when tested at 427 C. The proportional limit and ultimate strength of the composite in tension are 21- and 14-percent greater than those of the plain alloy. Compression tests showed that the proportional limit is about 30 percent greater for TMC than for the plain alloy. The enhanced deformation resistance of the TMC was also evident in a series of tensile and compressive stress relaxation tests that were made. Specimens were subjected to tensile or compressive strain amplitudes of 0.75 percent for 24 hr followed by a return to zero strain imposed for 24 hr. The stress relaxation data were normalized with respect to the maximum stress for each case and plotted as a function of time in the following graph. Tensile stresses relaxed 19 percent for the TMC and 25 percent for the plain Ti-6Al-4V alloy. Compressive stresses relaxed 25 percent for the TMC and 39 percent for the plain Ti-6Al-4V alloy. The superior deformation resistance of the TMC extends to a creep rate that is 28-percent slower for the TMC when it is loaded to stress levels that are 26-percent higher than for the plain Ti-6Al-4V alloy.

  14. Lateral drill holes decrease strength of the femur: an observational study using finite element and experimental analyses.

    PubMed

    Fox, Melanie J; Scarvell, Jennie M; Smith, Paul N; Kalyanasundaram, Shankar; Stachurski, Zbigniew H

    2013-08-30

    Internal fixation of femoral fractures requires drilling holes through the cortical bone of the shaft of the femur. Intramedullary suction reduces the fat emboli produced by reaming and nailing femoral fractures but requires four suction portals to be drilled into the femoral shaft. This work investigated the effect of these additional holes on the strength of the femur. Finite element analysis (FEA) was used to calculate compression, tension and load limits which were then compared to the results from mechanical testing. Models of intact femora and fractured femora internally fixed with intramedullary nailing were generated. In addition, four suction portals, lateral, anterior and posterior, were modelled. Stresses were used to calculate safety factors and predict fatigue. Physical testing on synthetic femora was carried out on a universal mechanical testing machine. The FEA model for stresses generated during walking showed tensile stresses in the lateral femur and compression stresses in the medial femur with a maximum sheer stress through the neck of the femur. The lateral suction portals produced tensile stresses up to over 300% greater than in the femur without suction portals. The anterior and posterior portals did not significantly increase stresses. The lateral suction portals had a safety factor of 0.7, while the anterior and posterior posts had safety factors of 2.4 times walking loads. Synthetic bone subjected to cyclical loading and load to failure showed similar results. On mechanical testing, all constructs failed at the neck of the femur. The anterior suction portals produced minimal increases in stress to loading so are the preferred site should a femur require such drill holes for suction or internal fixation.

  15. Study on the Effect of Steel Wheel and Ground on Single Steel Vibratory Roller

    NASA Astrophysics Data System (ADS)

    Li, Jiabo; You, Guanghui; Qiao, Jiabin; Ye, Min; Guo, Jin; Zhang, Hongyang

    2018-03-01

    In the compacting operation of single drum vibratory roller, the forces acting on the foundation of drum include the weight of the drum, the weight of the frame, the exciting force and so on. Based on the theoretical study of ground mechanics, this paper analyzes and calculates the forces acting on the steel wheel and the ground, and obtains the distribution of the laminar stress in the ground when the working plane vibrates. Derive the formula of dynamic compressive stress and static compressive stress in the foundation during vibration compaction. Through the compaction test of the soil trough of 20T single drum roller, the compressive stress data of the soil hydraulic field are obtained. The data of the dynamic compressive stress and the static compressive stress of each layer during the third compaction are obtained, and the theoretical research is verified.

  16. Simulated impact damage in a thick graphite/epoxy laminate using spherical indenters

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1988-01-01

    The extent of fiber damage due to low-velocity impacts was determined for very thick graphite/epoxy laminates. The impacts were simulated by pressing spherical indenters against the laminates. After the forces were applied, the laminate was cut into smaller pieces so that each piece contained a test site. Then the pieces were deplied and the individual plies were examined to determine the extent of fiber damage. Broken fibers were found in the outer layers directly beneath the contact site. The locus of broken fibers resembled cracks. The cracks were more or less oriented in the direction of the fibers in the contiguous layers. The maximum length and depth of the cracks increased with increasing contact pressure and indenter diameter. The length and depth of the cracks were also predicted using maximum compression and shear stress criteria. The internal stresses were calculated using Hertz's law and Love's solution for pressure applied on part of the boundary of a semi-infinite body. The predictions and measurements were in good agreement.

  17. A Static Burst Test for Composite Flywheel Rotors

    NASA Astrophysics Data System (ADS)

    Hartl, Stefan; Schulz, Alexander; Sima, Harald; Koch, Thomas; Kaltenbacher, Manfred

    2016-06-01

    High efficient and safe flywheels are an interesting technology for decentralized energy storage. To ensure all safety aspects, a static test method for a controlled initiation of a burst event for composite flywheel rotors is presented with nearly the same stress distribution as in the dynamic case, rotating with maximum speed. In addition to failure prediction using different maximum stress criteria and a safety factor, a set of tensile and compressive tests is carried out to identify the parameters of the used carbon fiber reinforced plastics (CFRP) material. The static finite element (FE) simulation results of the flywheel static burst test (FSBT) compare well to the quasistatic FE-simulation results of the flywheel rotor using inertia loads. Furthermore, it is demonstrated that the presented method is a very good controllable and observable possibility to test a high speed flywheel energy storage system (FESS) rotor in a static way. Thereby, a much more expensive and dangerous dynamic spin up test with possible uncertainties can be substituted.

  18. Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression

    PubMed Central

    Baeza, F. Javier; Garcés, Pedro

    2017-01-01

    Cement composites with nano-additions have been vastly studied for their functional applications, such as strain and damage sensing. The capacity of a carbon nanofiber (CNF) cement paste has already been tested. However, this study is focused on the use of CNF cement composites as sensors in regular concrete samples. Different measuring techniques and humidity conditions of CNF samples were tested to optimize the strain and damage sensing of this material. In the strain sensing tests (for compressive stresses up to 10 MPa), the response depends on the maximum stress applied. The material was more sensitive at higher loads. Furthermore, the actual load time history did not influence the electrical response, and similar curves were obtained for different test configurations. On the other hand, damage sensing tests proved the capability of CNF cement composites to measure the strain level of concrete samples, even for loads close to the material’s strength. Some problems were detected in the strain transmission between sensor and concrete specimens, which will require specific calibration of each sensor one attached to the structure. PMID:29186797

  19. Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression.

    PubMed

    Galao, Oscar; Baeza, F Javier; Zornoza, Emilio; Garcés, Pedro

    2017-11-24

    Cement composites with nano-additions have been vastly studied for their functional applications, such as strain and damage sensing. The capacity of a carbon nanofiber (CNF) cement paste has already been tested. However, this study is focused on the use of CNF cement composites as sensors in regular concrete samples. Different measuring techniques and humidity conditions of CNF samples were tested to optimize the strain and damage sensing of this material. In the strain sensing tests (for compressive stresses up to 10 MPa), the response depends on the maximum stress applied. The material was more sensitive at higher loads. Furthermore, the actual load time history did not influence the electrical response, and similar curves were obtained for different test configurations. On the other hand, damage sensing tests proved the capability of CNF cement composites to measure the strain level of concrete samples, even for loads close to the material's strength. Some problems were detected in the strain transmission between sensor and concrete specimens, which will require specific calibration of each sensor one attached to the structure.

  20. Late-Variscan Tectonic Inheritance and Salt Tectonics Interplay in the Central Lusitanian Basin

    NASA Astrophysics Data System (ADS)

    Nogueira, Carlos R.; Marques, Fernando O.

    2017-04-01

    Tectonic inheritance and salt structures can play an important role in the tectono-sedimentary evolution of basins. The Alpine regional stress field in west Iberia had a horizontal maximum compressive stress striking approximately NNW-SSE, related to the Late Miocene inversion event. However, this stress field cannot produce a great deal of the observed and mapped structures in the Lusitanian Basin. Moreover, many observed structures show a trend similar to well-known basement fault systems. The Central Lusitanian basin shows an interesting tectonic structure, the Montejunto structure, generally assigned to this inversion event. Therefore, special attention was paid to: (1) basement control of important observed structures; and (2) diapir tectonics (vertical maximum compressive stress), which can be responsible for significant vertical movements. Based on fieldwork, tectonic analysis and interpretation of geological maps (Portuguese Geological Survey, 1:50000 scale) and geophysical data, our work shows: (1) the Montejunto structure is a composite structure comprising an antiform with a curved hinge and middle Jurassic core, and bounding main faults; (2) the antiform can be divided into three main segments: (i) a northern segment with NNE-SSW trend showing W-dipping bedding bounded at the eastern border by a NNE-SSW striking fault, (ii) a curved central segment, showing the highest topography, with a middle Jurassic core and radial dipping bedding, (iii) a western segment with ENE-WSW trend comprising an antiform with a steeper northern limb and periclinal termination towards WSW, bounded to the south by ENE-WSW reverse faulting, (3) both fold and fault trends at the northern and western segments are parallel to well-known basement faults related to late-Variscan strike-slip systems with NNE-SSW and ENE-WSW trends; (4) given the orientation of Alpine maximum compressive stress, the northern segment border fault should be mostly sinistral strike-slip and the western segment border fault should be a pure thrust; (5) uplift along the northern and central segments may point out to the presence of a salt diapir at depth, aiding vertical movement and local uplift of the structure; (6) geometry of seismic units of the neighboring basins is consistent with halokinesis related to the antiform growth during the Jurassic; (7) sedimentary filling of the neighbouring basins shows relationship to antiform development and growth into a structural high before the Late Miocene Alpine event. These data suggest that: (1) pre-existing basement faults and their reactivation played important role on the development of Montejunto complex tectonic structure; (2) important vertical movements occurred as the result of regional and local (diapir) tectonics; (3) subsidence in neighbouring basins may have promoted maturation, and possible targets with strong potential for hydrocarbon trapping and accumulation may have also developed; (4) diapir tectonics initiated before the Cretaceous; (5) given the topography, and the geometry and inferred kinematics of all segments, it seems that the Montejunto structure formed in a restraining bend controlled by inherited late-Variscan basement faults.

  1. Quantification of neotectonic stress orientations and magnitudes from field observations in Finnmark, northern Norway

    NASA Astrophysics Data System (ADS)

    Pascal, Christophe; Roberts, David; Gabrielsen, Roy H.

    2005-05-01

    Fieldwork was conducted in Finnmark, northern Norway, with the purpose of detecting and measuring stress-relief features, induced by quarrying and road works, and to derive from them valuable information on the shallow-crustal stress orientations and magnitudes. Two kinds of stress-relief features were considered in this study. The first consists of drillhole offsets that were found along blasted road-cuts and which were triggered by the sudden rock unloading following the actual blasting. Vertical axial fractures found in the concave remains of boreholes represent the second kind of stress-relief feature. The axial fractures are tension fractures produced by gas overpressure inside the drillhole when the blast occurs. As such, their strike reflects the orientation of the ambient maximum horizontal stress axis. The borehole offsets show mostly reverse-slip displacements to the E-SE and the axial fractures trend NW-SE on average, in agreement with NW-SE compression induced by North Atlantic ridge-push forces. Mechanical considerations of the slip planes offsetting some of the drillholes lead to the conclusion that the magnitude of the maximum horizontal stress at the surface is in the range ˜0.1-˜1 MPa. This range of magnitudes is 1-2 orders less than the horizontal stress magnitudes measured at the surface in other post-glacial environments (e.g. Canada). It is suggested that this difference is related to the marked decline in stress that followed the tremendous post-glacial burst of earthquake activity that affected Fennoscandia but apparently not the Canadian Shield.

  2. Calculations of the Performance of a Compression-Ignition Engine-Compressor Turbine Combination I : Performance of a Highly Supercharged Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Sanders, J. C.; Mendelson, Alexander

    1945-01-01

    Small high-speed single-cylinder compression-ignition engines were tested to determine their performance characteristics under high supercharging. Calculations were made on the energy available in the exhaust gas of the compression-ignition engines. The maximum power at any given maximum cylinder pressure was obtained when the compression pressure was equal to the maximum cylinder pressure. Constant-pressure combustion was found possible at an engine speed of 2200 rpm. Exhaust pressures and temperatures were determined from an analysis of indicator cards. The analysis showed that, at rich mixtures with the exhaust back pressure equal to the inlet-air pressure, there is excess energy available for driving a turbine over that required for supercharging. The presence of this excess energy indicates that a highly supercharged compression-ignition engine might be desirable as a compressor and combustion chamber for a turbine.

  3. Modeling and Characterization of Dynamic Failure of Soda-lime Glass Under High Speed Impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenning N.; Sun, Xin; Chen, Weinong W.

    2012-05-27

    In this paper, the impact-induced dynamic failure of a soda-lime glass block is studied using an integrated experimental/analytical approach. The Split Hopkinson Pressure Bar (SHPB) technique is used to conduct dynamic failure test of soda-lime glass first. The damage growth patterns and stress histories are reported for various glass specimen designs. Making use of a continuum damage mechanics (CDM)-based constitutive model, the initial failure and subsequent stiffness reduction of glass are simulated and investigated. Explicit finite element analyses are used to simulate the glass specimen impact event. A maximum shear stress-based damage evolution law is used in describing the glassmore » damage process under combined compression/shear loading. The impact test results are used to quantify the critical shear stress for the soda-lime glass under examination.« less

  4. Tensile and pack compressive tests of some sheets of aluminum alloy, 1025 carbon steel, and chromium-nickel steel

    NASA Technical Reports Server (NTRS)

    Atchison, C S; Miller, James A

    1942-01-01

    Tensile and compressive stress-strain curves, stress-deviation curves, and secant modulus-stress curves are given for longitudinal and transverse specimens of 17S-T, 24S-T, and 24S-RT aluminum-alloy sheet in thicknesses from 0.032 to 0.081 inch, 1025 carbon steel sheet in thicknesses of 0.054 and 0.120 inch, and chromium-nickel steel sheet in thicknesses form 0.020 to 0.0275 inch. Significant differences were found between the tensile and the compressive stress-strain curves, and also the corresponding corollary curves; similarly, differences were found between the curves for the longitudinal and transverse directions. These differences are of particular importance in considering the compressive strength of aircraft structures made of thin sheet. They are explored further for the case of compression by giving tangent modulus-stress curves in longitudinal and transverse compression and dimensionless curves of the ratio of tangent modulus to Young's modulus and of the ratio of reduced modulus for a rectangular section to Young's modulus, both plotted against the ratio of stress to secant yield strength.

  5. Protein kinase C and calcineurin cooperatively mediate cell survival under compressive mechanical stress.

    PubMed

    Mishra, Ranjan; van Drogen, Frank; Dechant, Reinhard; Oh, Soojung; Jeon, Noo Li; Lee, Sung Sik; Peter, Matthias

    2017-12-19

    Cells experience compressive stress while growing in limited space or migrating through narrow constrictions. To survive such stress, cells reprogram their intracellular organization to acquire appropriate mechanical properties. However, the mechanosensors and downstream signaling networks mediating these changes remain largely unknown. Here, we have established a microfluidic platform to specifically trigger compressive stress, and to quantitatively monitor single-cell responses of budding yeast in situ. We found that yeast senses compressive stress via the cell surface protein Mid2 and the calcium channel proteins Mid1 and Cch1, which then activate the Pkc1/Mpk1 MAP kinase pathway and calcium signaling, respectively. Genetic analysis revealed that these pathways work in parallel to mediate cell survival. Mid2 contains a short intracellular tail and a serine-threonine-rich extracellular domain with spring-like properties, and both domains are required for mechanosignaling. Mid2-dependent spatial activation of the Pkc1/Mpk1 pathway depolarizes the actin cytoskeleton in budding or shmooing cells, thereby antagonizing polarized growth to protect cells under compressive stress conditions. Together, these results identify a conserved signaling network responding to compressive mechanical stress, which, in higher eukaryotes, may ensure cell survival in confined environments.

  6. Epitaxial growth of mosaic diamond: Mapping of stress and defects in crystal junction with a confocal Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shu, Guoyang; Dai, Bing; Ralchenko, V. G.; Khomich, A. A.; Ashkinazi, E. E.; Bolshakov, A. P.; Bokova-Sirosh, S. N.; Liu, Kang; Zhao, Jiwen; Han, Jiecai; Zhu, Jiaqi

    2017-04-01

    We studied defects and stress distributions in mosaic epitaxial diamond film using a confocal Raman spectroscopy, with a special attention to the junction area between the crystals. The mosaics was grown by microwave plasma CVD on closely arranged (1 0 0)-oriented HPHT type Ib substrates. The width of stress affected and defect enriched region around the junction show a tendency of extending with the film thickness, from ≈40 μm on the film-substrate interface to ≈250 μm in the layer 500 μm above the substrate, as found from the mosaics analysis in cross-section. The stress field around the junction demonstrates a complex pattern, with mixed domains of tensile and compressive stress, with maximum value of σ ≈ 0.6 GPa. A similar non-uniform pattern was observed for defect distribution as well. No sign of amorphous sp2 carbon in the junction zone was revealed.

  7. Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy.

    PubMed

    Zhong, P; Chuong, C J; Preminger, G M

    1993-07-01

    To better understand the mechanism of stone fragmentation during extracorporeal shock wave lithotripsy (ESWL), the model developed in Part I [P. Zhong and C.J. Chuong, J. Acoust. Soc. Am. 94, 19-28 (1993)] is applied to study cavitation microjet impingement and its resultant shock wave propagation in renal calculi. Impact pressure at the stone boundary and stress, strain at the propagating shock fronts in the stone were calculated for typical ESWL loading conditions. At the anterior surface of the stone, the jet induced compressive stress can vary from 0.82 approximately 4 times that of the water hammer pressure depending on the contact angles; whereas the jet-induced shear stress can achieve its maximum, with a magnitude of 30% approximately 54% of the water hammer pressure, near the detachment of the longitudinal (or P) wave in the solid. Comparison of model predictions with material failure strengths of renal calculi suggests that jet impact can lead to stone surface erosion by combined compressive and shear loadings at the jet impacting surface, and spalling failure by tensile forces at the distal surface of the stone. Comparing responses from four different stone types suggests that cystine is the most difficult stone to fragment in ESWL, as observed from clinical experience.

  8. Mechanical properties and mechanism of single crystal Cu pillar by in situ TEM compression and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Lin, Kai-Peng; Fang, Te-Hua; Lin, Ying-Jhin

    2018-02-01

    In this study, we investigate the mechanical properties of single-crystal copper (Cu) nanopillars. Critical deformation variations of Cu-nanopillared structures are estimated using in situ transmission electron microscopy compression tests and molecular dynamics simulations. The Young’s moduli of Cu nanopillars with diameters of 2-6 nm were 90.20-124.47 GPa. The contact stiffnesses of the Cu nanopillars with diameters of 400 and 500 nm were 1.33 and 3.86 N m-1, respectively; the Poisson’s ratios for these nanopillars were 0.32 and 0.33. The yield strength of the nanopillars varied from 0.25 GPa at 500 nm to 0.42 GPa at 400 nm; the yield strength of single-crystal Cu nanopillars decreased with increasing diameter. The values of the indented hardness of the Cu block were 0.27 and 1.06 GPa, respectively. Through experimental work and molecular dynamics simulations, we demonstrate that Cu nanopillars exhibit internal stress transmission during compression. When compression reaches the maximum strain, it can be observed that Cu slips. Our results are useful for understanding the mechanical properties, contact, and local deformation of Cu nanopillars.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghassemi-Armaki, Hassan; Leff, Asher C.; Taheri, Mitra L.

    Compression-compression cyclic deformation of nanocrystalline NiTi tubes intended for medical stents and with an outer diameter of 1 mm and wall thickness of 70 μm was studied using micropillars produced by FIB with the loading axis orthogonal to the tube axis. These micropillars were cycled in a displacement-controlled mode using a nanoindenter equipped with a flat punch to strain levels of 4, 6 and 8% in each cycle and specimens were subjected to several hundred cycles. Furthermore, the cyclic response of two NiTi tubes, one with Af of 17 °C and the other with an Af of -5 °C ismore » compared. The texture of the tube with the Af of -5 °C was measured at the microscopic level using transmission electron microscopy and at the macroscopic level by X-ray diffraction and good agreement was noted. Characteristics such as i) a reduction in the forward transformation stress, ii) increase in maximum stress for a given displacement amplitude, and iii) a reduction in the hysteresis loop area, all with increasing number of cycles, observed typically during cyclic deformation of conventional macroscopic specimens, were captured in the micropillar cyclic tests. Our observations lead to the conclusion that micropillar compression testing in a cyclic mode can enable characterizing the orientation-dependent response in such small dimension components that see complex loading in service, and additionally provide an opportunity for calibrating constitutive equations in micromechanical models.« less

  10. Cortical bone stress distribution in mandibles with different configurations restored with prefabricated bar-prosthesis protocol: a three-dimensional finite-element analysis.

    PubMed

    de Almeida, Erika Oliveira; Rocha, Eduardo Passos; Assunção, Wirley Gonçalves; Júnior, Amílcar Chagas Freitas; Anchieta, Rodolfo Bruniera

    2011-01-01

    To evaluate stress distribution in different horizontal mandibular arch formats restored by protocol-type prostheses using three-dimensional finite element analysis (3D-FEA). A representative model (M) of a completely edentulous mandible restored with a prefabricated bar using four interforaminal implants was created using SolidWorks 2010 software (Inovart, São Paulo, Brazil) and analyzed by Ansys Workbench 10.0 (Swanson Analysis Inc., Houston, PA) to obtain the stress fields. Three mandibular arch sizes were considered for analysis, regular (M), small (MS), and large (ML). Three unilateral posterior loads (L) (150 N) were used: perpendicular to the prefabricated bar (L1); 30° oblique in a buccolingual direction (L2); 30° oblique in a lingual-buccal direction (L3). The maximum and minimum principal stresses (σ(max), σ(min)), the equivalent von Mises (σ(vM)), and the maximum principal strain (σ(max) ) were obtained for type I (M.I) and type II (M.II) cortical bones. Tensile stress was more evident than compression stress in type I and II bone; however, type II bone showed lower stress values. The L2 condition showed highest values for all parameters (σ(vM), σ(max), σ(min), ɛ(max)). The σ(vM) was highest for the large and small mandibular arches. The large arch model had a higher influence on σ(max) values than did the other formats, mainly for type I bone. Vertical and buccolingual loads showed considerable influence on both σ(max) and σ(min) stresses. © 2010 by The American College of Prosthodontists.

  11. Stress relaxation in quasi-two-dimensional self-assembled nanoparticle monolayers

    NASA Astrophysics Data System (ADS)

    Boucheron, Leandra S.; Stanley, Jacob T.; Dai, Yeling; You, Siheng Sean; Parzyck, Christopher T.; Narayanan, Suresh; Sandy, Alec R.; Jiang, Zhang; Meron, Mati; Lin, Binhua; Shpyrko, Oleg G.

    2018-05-01

    We experimentally probed the stress relaxation of a monolayer of iron oxide nanoparticles at the water-air interface. Upon drop-casting onto a water surface, the nanoparticles self-assembled into islands of two-dimensional hexagonally close packed crystalline domains surrounded by large voids. When compressed laterally, the voids gradually disappeared as the surface pressure increased. After the compression was stopped, the surface pressure (as measured by a Wilhelmy plate) evolved as a function of the film aging time with three distinct timescales. These aging dynamics were intrinsic to the stressed state built up during the non-equilibrium compression of the film. Utilizing x-ray photon correlation spectroscopy, we measured the characteristic relaxation time (τ ) of in-plane nanoparticle motion as a function of the aging time through both second-order and two-time autocorrelation analysis. Compressed and stretched exponential fitting of the intermediate scattering function yielded exponents (β ) indicating different relaxation mechanisms of the films under different compression stresses. For a monolayer compressed to a lower surface pressure (between 20 mN/m and 30 mN/m), the relaxation time (τ ) decreased continuously as a function of the aging time, as did the fitted exponent, which transitioned from being compressed (>1 ) to stretched (<1 ), indicating that the monolayer underwent a stress release through crystalline domain reorganization. However, for a monolayer compressed to a higher surface pressure (around 40 mN/m), the relaxation time increased continuously and the compressed exponent varied very little from a value of 1.6, suggesting that the system may have been highly stressed and jammed. Despite the interesting stress relaxation signatures seen in these samples, the structural ordering of the monolayer remained the same over the sample lifetime, as revealed by grazing incidence x-ray diffraction.

  12. Long-Term Stability of Residual Stress Improvement by Water Jet Peening Considering Working Processes.

    PubMed

    Hashimoto, Tadafumi; Osawa, Yusuke; Itoh, Shinsuke; Mochizuki, Masahito; Nishimoto, Kazutoshi

    2013-06-01

    To prevent primary water stress corrosion cracking (PWSCC), water jet peening (WJP) has been used on the welds of Ni-based alloys in pressurized water reactors (PWRs). Before WJP, the welds are machined and buffed in order to conduct a penetrant test (PT) to verify the weld qualities to access, and microstructure evolution takes place in the target area due to the severe plastic deformation. The compressive residual stresses induced by WJP might be unstable under elevated temperatures because of the high dislocation density in the compressive stress layer. Therefore, the stability of the compressive residual stresses caused by WJP was investigated during long-term operation by considering the microstructure evolution due to the working processes. The following conclusions were made: The compressive residual stresses were slightly relaxed in the surface layers of the thermally aged specimens. There were no differences in the magnitude of the relaxation based on temperature or time. The compressive residual stresses induced by WJP were confirmed to remain stable under elevated temperatures. The stress relaxation at the surface followed the Johnson-Mehl equation, which states that stress relaxation can occur due to the recovery of severe plastic strain, since the estimated activation energy agrees very well with the self-diffusion energy for Ni. By utilizing the additivity rule, it was indicated that stress relaxation due to recovery is completed during the startup process. It was proposed that the long-term stability of WJP under elevated temperatures must be assessed based on compressive stresses with respect to the yield stress. Thermal elastic-plastic creep analysis was performed to predict the effect of creep strain. After 100 yr of simulated continuous operation at 80% capacity, there was little change in the WJP compressive stresses under an actual operating temperature of 623 K. Therefore, the long-term stability of WJP during actual operation was analytically predicted.

  13. Directional amorphization of boron carbide subjected to laser shock compression

    PubMed Central

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; LaSalvia, Jerry C.; Wehrenberg, Christopher E.; Behler, Kristopher D.; Meyers, Marc A.

    2016-01-01

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B4C. PMID:27733513

  14. Directional amorphization of boron carbide subjected to laser shock compression

    DOE PAGES

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; ...

    2016-10-12

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. When using high-power pulsed-laser-driven shock compression, an unprecedented high strain rates can be achieved; we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45~50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. We also propose that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversionmore » calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4C.« less

  15. A Comparative Analysis on Two Types of Oral Implants, Bone-Level and Tissue-Level, with Different Cantilever Lengths of Fixed Prosthesis.

    PubMed

    Mosavar, Alireza; Nili, Monireh; Hashemi, Sayed Raouf; Kadkhodaei, Mahmoud

    2017-06-01

    Depending on esthetic, anatomical, and functional aspects, in implant-prosthetic restoration of a completely edentulous jaw, the selection of implant type is highly important; however, bone- and tissue-level implants and their stress distribution in bone have not yet been comparatively investigated. Hence, finite element analysis was used to study the influence of cantilever length in a fixed prosthesis on stress distribution in peri-implant bone around these two types of oral implants. A 3D edentulous mandible was modeled. In simulations, a framework with four posterior cantilever lengths and two types of implants, bone-level and tissue-level, was considered. A compressive load was applied to the distal regions of the cantilevers, and the von-Mises stress of peri-implant bone was investigated. The independent t-test and the Pearson correlation coefficient analyzed the results (α = 0.05). Stresses in the cortical bone around the bone-level implants were greater than those in the tissue-level implants with the same cantilever length. In addition, by extending the cantilever length, the stress values in peri-implant bone increased. Therefore, when the cantilever was at its maximum length, the maximum stress was in cortical bone and around the bone-level distal implants. The results of the present study indicate that treatment with tissue-level implants is potentially more advantageous than with bone-level implants for implant-supported fixed prostheses. © 2015 by the American College of Prosthodontists.

  16. Molecular Dynamics Simulations of Shear Induced Transformations in Nitromethane

    NASA Astrophysics Data System (ADS)

    Larentzos, James; Steele, Brad

    2017-06-01

    Recent experiments demonstrate that NM undergoes explosive chemical initiation under compressive shear stress. The atomistic dynamics of the shear response of single-crystalline and bi-crystalline nitromethane (NM) are simulated using molecular dynamics simulations under high pressure conditions to aid in interpreting these experiments. The atomic interactions are described using a recently re-optimized ReaxFF-lg potential trained specifically for NM under pressure. The simulations demonstrate that the NM crystal transforms into a disordered state upon sufficient application of shear stress; its maximum value, shear angle, and atomic-scale dynamics being highly dependent on crystallographic orientation of the applied shear. Shear simulations in bi-crystalline NM show more complex behavior resulting in the appearance of the disordered state at the grain boundary.

  17. Molecular Dynamics Simulations of Shear Induced Transformations in Nitromethane

    NASA Astrophysics Data System (ADS)

    Larentzos, James; Steele, Brad

    Recent experiments demonstrate that NM undergoes explosive chemical initiation under compressive shear stress. The atomistic dynamics of the shear response of single-crystalline and bi-crystalline nitromethane (NM) are simulated using molecular dynamics simulations under high pressure conditions to aid in interpreting these experiments. The atomic interactions are described using a recently re-optimized ReaxFF-lg potential trained specifically for NM under pressure. The simulations demonstrate that the NM crystal transforms into a disordered state upon sufficient application of shear stress; its maximum value, shear angle, and atomic-scale dynamics being highly dependent on crystallographic orientation of the applied shear. Shear simulations in bi-crystalline NM show more complex behavior resulting in the appearance of the disordered state at the grain boundary.

  18. Effects of the implant design on peri-implant bone stress and abutment micromovement: three-dimensional finite element analysis of original computer-aided design models.

    PubMed

    Yamanishi, Yasufumi; Yamaguchi, Satoshi; Imazato, Satoshi; Nakano, Tamaki; Yatani, Hirofumi

    2014-09-01

    Occlusal overloading causes peri-implant bone resorption. Previous studies examined stress distribution in alveolar bone around commercial implants using three-dimensional (3D) finite element analysis. However, the commercial implants contained some different designs. The purpose of this study is to reveal the effect of the target design on peri-implant bone stress and abutment micromovement. Six 3D implant models were created for different implant-abutment joints: 1) internal joint model (IM); 2) external joint model (EM); 3) straight abutment (SA) shape; 4) tapered abutment (TA) shapes; 5) platform switching (PS) in the IM; and 6) modified TA neck design (reverse conical neck [RN]). A static load of 100 N was applied to the basal ridge surface of the abutment at a 45-degree oblique angle to the long axis of the implant. Both stress distribution in peri-implant bone and abutment micromovement in the SA and TA models were analyzed. Compressive stress concentrated on labial cortical bone and tensile stress on the palatal side in the EM and on the labial side in the IM. There was no difference in maximum principal stress distribution for SA and TA models. Tensile stress concentration was not apparent on labial cortical bone in the PS model (versus IM). Maximum principal stress concentrated more on peri-implant bone in the RN than in the TA model. The TA model exhibited less abutment micromovement than the SA model. This study reveals the effects of the design of specific components on peri-implant bone stress and abutment displacement after implant-supported single restoration in the anterior maxilla.

  19. Effect of Applied Stress and Temperature on Residual Stresses Induced by Peening Surface Treatments in Alloy 600

    NASA Astrophysics Data System (ADS)

    Telang, A.; Gnäupel-Herold, T.; Gill, A.; Vasudevan, V. K.

    2018-04-01

    In this study, the effects of applied tensile stress and temperature on laser shock peening (LSP) and cavitation shotless peening (CSP)-induced compressive residual stresses were investigated using neutron and x-ray diffraction. Residual stresses on the surface, measured in situ, were lower than the applied stress in LSP- and CSP-treated Alloy 600 samples (2 mm thick). The residual stress averaged over the volume was similar to the applied stress. Compressive residual stresses on the surface and balancing tensile stresses in the interior relax differently due to hardening induced by LSP. Ex situ residual stress measurements, using XRD, show that residual stresses relaxed as the applied stress exceeded the yield strength of the LSP- and CSP-treated Alloy 600. Compressive residual stresses induced by CSP and LSP decreased by 15-25% in magnitude, respectively, on exposure to 250-450 °C for more than 500 h with 10-11% of relaxation occurring in the first few hours. Further, 80% of the compressive residual stresses induced by LSP and CSP treatments in Alloy 600 were retained even after long-term aging at 350 °C for 2400 h.

  20. The 2012 Strike-slip Earthquake Sequence in Black Sea and its Link to the Caucasus Collision Zone

    NASA Astrophysics Data System (ADS)

    Tseng, T. L.; Hsu, C. H.; Legendre, C. P.; Jian, P. R.; Huang, B. S.; Karakhanian, A.; Chen, C. W.

    2016-12-01

    The Black Sea formed as a back-arc basin in Late Cretaceous to Paleogene with lots of extensional features. However, the Black Sea is now tectonically stable and absent of notable earthquakes except for the coastal region. In this study we invert regional waveforms of a new seismic array to constrain the focal mechanisms and depths of the 2012/12/23 earthquake sequence occurred in northeastern Black Sea basin that can provide unique estimates on the stress field in the region. The results show that the focal mechanisms for the main shock and 5 larger aftershocks are all strike-slip faulting and resembling with each other. The main rupture fall along the vertical dipping, NW-SE trending sinistral fault indicated by the lineation of most aftershocks. The fault strike and aftershock distribution are both consistent with the Shatsky Ridge, which is continental in nature but large normal faults was created by previous subsidence. The occurrence of 2012 earthquakes can be re-activated, as strike-slip, on one of the pre-existing normal fault cutting at depth nearly 20-30 km in the extended crust. Some of the aftershocks, including a larger one occurred 5 days later, are distributed toward NE direction 20 km away from main fault zone. Those events might be triggered by the main shock along a conjugate fault, which is surprisingly at the extension of proposed transform fault perpendicular to the rift axis of eastern Black Sea Basin. The focal mechanisms also indicate that the maximum compression in northeast Black Sea is at E-W direction, completely different from the N-S compression in the Caucasus and East Turkey controlled by Arabia-Eurasia collision. The origin of E-W maximum compression is probably the same as the secondary stress inferred from earthquakes in Racha region of the Greater Caucasus.

  1. Probabilistic Structural Evaluation of Uncertainties in Radiator Sandwich Panel Design

    NASA Technical Reports Server (NTRS)

    Kuguoglu, Latife; Ludwiczak, Damian

    2006-01-01

    The Jupiter Icy Moons Orbiter (JIMO) Space System is part of the NASA's Prometheus Program. As part of the JIMO engineering team at NASA Glenn Research Center, the structural design of the JIMO Heat Rejection Subsystem (HRS) is evaluated. An initial goal of this study was to perform sensitivity analyses to determine the relative importance of the input variables on the structural responses of the radiator panel. The desire was to let the sensitivity analysis information identify the important parameters. The probabilistic analysis methods illustrated here support this objective. The probabilistic structural performance evaluation of a HRS radiator sandwich panel was performed. The radiator panel structural performance was assessed in the presence of uncertainties in the loading, fabrication process variables, and material properties. The stress and displacement contours of the deterministic structural analysis at mean probability was performed and results presented. It is followed by a probabilistic evaluation to determine the effect of the primitive variables on the radiator panel structural performance. Based on uncertainties in material properties, structural geometry and loading, the results of the displacement and stress analysis are used as an input file for the probabilistic analysis of the panel. The sensitivity of the structural responses, such as maximum displacement and maximum tensile and compressive stresses of the facesheet in x and y directions and maximum VonMises stresses of the tube, to the loading and design variables is determined under the boundary condition where all edges of the radiator panel are pinned. Based on this study, design critical material and geometric parameters of the considered sandwich panel are identified.

  2. The effect of different torque wrenches on rotational stiffness in compressive femoral nails: a biomechanical study.

    PubMed

    Karaarslan, A A; Acar, N

    2018-02-01

    Rotation instability and locking screws failure are common problems. We aimed to determine optimal torque wrench offering maximum rotational stiffness without locking screw failure. We used 10 conventional compression nails, 10 novel compression nails and 10 interlocking nails with 30 composite femurs. We examined rotation stiffness and fracture site compression value by load cell with 3, 6 and 8 Nm torque wrenches using torsion apparatus with a maximum torque moment of 5 Nm in both directions. Rotational stiffness of composite femur-nail constructs was calculated. Rotational stiffness of composite femur-compression nail constructs compressed by 6 Nm torque wrench was 3.27 ± 1.81 Nm/angle (fracture site compression: 1588 N) and 60% more than that compressed with 3 Nm torque wrench (advised previously) with 2.04 ± 0.81 Nm/angle (inter fragmentary compression: 818 N) (P = 0.000). Rotational stiffness of composite-femur-compression nail constructs compressed by 3 Nm torque wrench was 2.04 ± 0.81 Nm/angle (fracture site compression: 818 N) and 277% more than that of interlocking nail with 0.54 ± 0.08 Nm/angle (fracture site compression: 0 N) (P = 0.000). Rotational stiffness and fracture site compression value produced by 3 Nm torque wrench was not satisfactory. To obtain maximum rotational stiffness and fracture site compression value without locking screw failure, 6 Nm torque wrench in compression nails and 8 Nm torque wrench in novel compression nails should be used.

  3. The Effect of Composite Thickness on the Stress Distribution Pattern of Restored Premolar Teeth with Cusp Reduction.

    PubMed

    Panahandeh, Narges; Torabzadeh, Hassan; Ziaee, Nargess; Mahdian, Mina; Tootiaee, Bahman; Ghasemi, Amir

    2017-07-01

    Different thicknesses of restorative material can alter the stress distribution pattern in remaining tooth structure. The assumption is that a thicker composite restoration will induce a higher fracture resistance. Therefore, the present study evaluated the effect of composite thickness on stress distribution in a restored premolar with cusp reduction. A 3D solid model of a maxillary second premolar was prepared and meshed. MOD cavities were designed with different cusp reduction thicknesses (0, 0.5, 1, 1.5, 2.5 mm). Cavities were restored with Valux Plus composite. They were loaded with 200 N force on the occlusal surface in the direction of the long axis. Von Mises stresses were evaluated with Abaqus software. Stress increased from occlusal to gingival and was maximum in the cervical region. The stressed area in the palatal cusp was more than that of the buccal cusp. Increasing the thickness of composite altered the shear stress to compressive stress in the occlusal area of the teeth. The model with 2.5 mm cusp reduction exhibited the most even stress distribution. © 2015 by the American College of Prosthodontists.

  4. Structural response of nuclear containment shield buildings with unanticipated construction openings

    NASA Astrophysics Data System (ADS)

    Mac Namara, Sinead Caitriona

    As Nuclear Power Plants age many require steam generator replacement. There is a nickel alloy in the steam generator tubes that is susceptible to stress cracking and although these cracks can be sealed the generator becomes uneconomical without 10%-15% of the tubes. The steam generator in a typical nuclear power plant is housed in the containment structure next to the reactor. The equipment hatch is not big enough to facilitate steam generator replacement, thus construction openings in the dome of the containment structure are required. To date the structural consequences of construction openings in the dome have not been examined. This thesis examines the effects of such openings. The prototype concrete dome is made up of a 2 ft thick dome atop 3 ft thick and 170 ft high cylindrical walls (radius 65.5 ft) with a tension ring 15 ft high and 8 ft thick in between. The dome of the building is cast in two layers; a lower 9 inch layer that serves as the formwork for an upper 15 inch layer. The weight of the dome is carried in axial compression along the hoops and meridians of the dome. The first finite element model uses shell elements and considers two limiting load cases; where the two layers act as one, and where the lower layer carries the weight of both. The openings interrupt the hoops and meridians and the weight of the dome must be redistributed around the openings. Without openings, the stresses due to dead load in the structure are very low when compared to the material strength. The impact of the openings is increased compression stresses near the opening. The maximum stresses are approximately four times larger than in the original structure. These results are confirmed by the second model which is made from layers of solid elements. This model shows a significant difference between the compression on the top surface of the dome, in the affected areas, and that on the bottom surface, leading to shear stresses. These shear stresses are largest around the opening but are not large enough to cause delamination.

  5. Dielectric elastomer bending tube actuators with rigid electrode structures

    NASA Astrophysics Data System (ADS)

    Wehrheim, F.; Schlaak, H. F.; Meyer, J.-U.

    2010-04-01

    The common approach for dielectric elastomer actuators (DEA) is based on the assumption that compliant electrodes are a fundamental design requirement. For tube-like applications compliant electrodes cause a change of the actuator diameter during actuation and would require additional support-structures. Focused on thinwalled actuator-tube geometries room consumption and radial stabilityr epresent crucial criteria. Following the ambition of maximum functional integration, the concept of using a rigid electrode structure arises. This structure realizes both, actuation and support characteristics. The intended rigid electrode structure is based on a stacked DEA with a non-compressible dielectric. Byactu ation, the displaced dielectric causes an overlap. This overlap serves as an indicator for geometrical limitations and has been used to extract design rules regarding the electrode size, electrode distance and maximum electrode travel. Bycons idering the strain in anydir ection, the mechanical efficiencyhas been used to define further design aspects. To verifyt he theoretic analysis, a test for determination of the compressive stress-strain-characteristics has been applied for different electrode setups. As result the geometrydep ending elastic pressure module has been formulated by implementation of a shape factor. The presented investigations consider exclusive the static behavior of a DEA-setup with rigid electrodes.

  6. Tensile Fracture of Ductile Materials. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Pai, D. M.

    1984-01-01

    For brittle materials, circular voids play an important role relative to fracture, intensifing both tensile and compressive stresses. A maximum intensified tensile stress failure criterion applies quite well to brittle materials. An attempt was made to explore the possibility of extending the approach to the tensile fracture of ductile materials. The three dimensional voids that exist in reality are modelled by circular holes in sheet metal. Mathematical relationships are sought between the shape and size of the hole, after the material is plastically deformed, and the amount of deformation induced. Then, the effect of hole shape, size and orientation on the mechanical properties is considered experimentally. The presence of the voids does not affect the ultimate tensile strength of the ductile materials because plastic flow wipes out the stress intensification caused by them. However, the shape and orientation of the defect is found to play an important role in affecting the strain at fracture.

  7. Biocalcification by halophilic bacteria for remediation of concrete structures in marine environment.

    PubMed

    Bansal, Roohi; Dhami, Navdeep Kaur; Mukherjee, Abhijit; Reddy, M Sudhakara

    2016-11-01

    Microbial carbonate precipitation has emerged as a promising technology for remediation and restoration of concrete structures. Deterioration of reinforced concrete structures in marine environments is a major concern due to chloride-induced corrosion. In the current study, halophilic bacteria Exiguobacterium mexicanum was isolated from sea water and tested for biomineralization potential under different salt stress conditions. The growth, urease and carbonic anhydrase production significantly increased under salt stress conditions. Maximum calcium carbonate precipitation was recorded at 5 % NaCl concentration. Application of E. mexicanum on concrete specimens significantly increased the compressive strength (23.5 %) and reduced water absorption about five times under 5 % salt stress conditions compared to control specimens. SEM and XRD analysis of bacterial-treated concrete specimens confirmed the precipitation of calcite. The present study results support the potential of this technology for improving the strength and durability properties of building structures in marine environments.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul, E-mail: rahul@iitmandi.ac.in

    With the advent of modern power electronics, embedded circuits and non-conventional energy harvesting, the need for high performance capacitors is bound to become indispensible. The current state-of-art employs ferroelectric ceramics and linear dielectrics for solid state capacitance. However, lead-free ferroelectric ceramics propose to offer significant improvement in the field of electrical energy storage owing to their high discharge efficiency and energy storage density. In this regards, the authors have investigated the effects of compressive stress as a means of improving the energy storage density of lead-free ferroelectric ceramics. The energy storage density of 0.91(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}-0.07BaTiO{sub 3}-0.02(K{sub 0.5}Na{sub 0.5})NbO{submore » 3} ferroelectric bulk ceramic was analyzed as a function of varying levels of compressive stress and operational temperature .It was observed that a peak energy density of 387 mJ.cm{sup -3} was obtained at 100 MPa applied stress (25{sup o}C). While a maximum energy density of 568 mJ.cm{sup -3} was obtained for the same stress at 80{sup o}C. These values are indicative of a significant, 25% and 84%, improvement in the value of stored energy compared to an unloaded material. Additionally, material's discharge efficiency has also been discussed as a function of operational parameters. The observed phenomenon has been explained on the basis of field induced structural transition and competitive domain switching theory.« less

  9. Evolution of the stress field in the southern Scotia Arc from the late Mesozoic to the present-day

    NASA Astrophysics Data System (ADS)

    Maestro, Adolfo; López-Martínez, Jerónimo; Galindo-Zaldívar, Jesús; Bohoyo, Fernando; Mink, Sandra

    2014-12-01

    The geological evolution of the Scotia Arc, which developed between Antarctica and South America, has facilitated the connection between the Pacific and Atlantic oceans and, has important global implications. To improve the knowledge of the late Mesozoic evolution of the southern Scotia Arc, over 6000 brittle mesostructures were measured over the last 20 years at different outcrops from the northern Antarctic Peninsula and the South Shetland Islands as well as the James Ross and South Orkney archipelagos. This dataset covers a length of more than 1000 km of the arc. Fault data were analysed using the Etchecopar, y-R, Right Dihedra, Stress Inversion and Search Grid Inversion Palaeostress Determination methods. A total of 275 stress tensors were obtained. The results showed that the maximum horizontal stress was in the ENE-WSW and the NW-SE orientations and that the horizontal extension tensors were oriented NE-SW and NW-SE. In addition, seismic activity and focal mechanism solutions were analysed using the Gephart method to establish the present-day stress field and characterise the active tectonics. The results obtained suggest that there is a regional NE-SW compression and a NW-SE extension regime at the present day. The Southern Scotia Arc has a complex geological history due to the different tectonic settings (transform, convergent and divergent) that have affected this sector during its geological evolution from the late Mesozoic until the present day. Six stress fields were obtained from the brittle mesostructure population analysis in the region. The NW-SE and N-S maximum horizontal stresses were related to a combination of Mesozoic oceanic subduction of the former Phoenix Plate under the Pacific margin of the Antarctic Plate, Mesozoic-Cenozoic subduction of the northern Weddell Sea and the Oligocene to the Middle Miocene dextral strike-slip movement between the Scotia and Antarctic plates along the South Scotia Ridge. The NE-SW compression was related to late Miocene to present-day sinistral transcurrent movement along the South Scotia Ridge. Finally, the NW-SE extensional stress field may be related to the development of the following back-arc basins: the Late Cretaceous-Eocene Larsen Basin, the Lower to Middle Miocene Jane Basin and the Pliocene to present-day Bransfield Basin. In addition, the NE-SW and the E-W tensional stress fields were related to the Oligocene opening of the Powell Basin.

  10. Understanding High Rate Behavior Through Low Rate Analog

    DTIC Science & Technology

    2014-04-28

    uni- axial compression over all rates tested at 20 °C; (b) True yield stress as a function of strain rate...of temperature. (a) (b) Figure 11. Representative behaviour of PPVC-2. (a) True stress-true strain response in uni- axial compression over all...pages 33 of 78 (a) (b) Figure 15. Representative behaviour of PPVC-6. (a) True stress-true strain response in uni- axial compression

  11. Compression failure of angle-ply laminates

    NASA Technical Reports Server (NTRS)

    Peel, Larry D.; Hyer, Michael W.; Shuart, Mark J.

    1991-01-01

    The present work deals with modes and mechanisms of failure in compression of angle-ply laminates. Experimental results were obtained from 42 angle-ply IM7/8551-7a specimens with a lay-up of ((plus or minus theta)/(plus or minus theta)) sub 6s where theta, the off-axis angle, ranged from 0 degrees to 90 degrees. The results showed four failure modes, these modes being a function of off-axis angle. Failure modes include fiber compression, inplane transverse tension, inplane shear, and inplane transverse compression. Excessive interlaminar shear strain was also considered as an important mode of failure. At low off-axis angles, experimentally observed values were considerably lower than published strengths. It was determined that laminate imperfections in the form of layer waviness could be a major factor in reducing compression strength. Previously developed linear buckling and geometrically nonlinear theories were used, with modifications and enhancements, to examine the influence of layer waviness on compression response. The wavy layer is described by a wave amplitude and a wave length. Linear elastic stress-strain response is assumed. The geometrically nonlinear theory, in conjunction with the maximum stress failure criterion, was used to predict compression failure and failure modes for the angle-ply laminates. A range of wave length and amplitudes were used. It was found that for 0 less than or equal to theta less than or equal to 15 degrees failure was most likely due to fiber compression. For 15 degrees less than theta less than or equal to 35 degrees, failure was most likely due to inplane transverse tension. For 35 degrees less than theta less than or equal to 70 degrees, failure was most likely due to inplane shear. For theta less than 70 degrees, failure was most likely due to inplane transverse compression. The fiber compression and transverse tension failure modes depended more heavily on wave length than on wave amplitude. Thus using a single parameter, such as a ratio of wave amplitude to wave length, to describe waviness in a laminate would be inaccurate. Throughout, results for AS4/3502, studied previously, are included for comparison. At low off-axis angles, the AS4/3502 material system was found to be less sensitive to layer waviness than IM7/8551-7a. Analytical predictions were also obtained for laminates with waviness in only some of the layers. For this type of waviness, laminate compression strength could also be considered a function of which layers in the laminate were wavy, and where those wavy layers were. Overall, the geometrically nonlinear model correlates well with experimental results.

  12. Impact of Stress on Anomalous Transport in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.

    2016-12-01

    Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the large heterogeneity of fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transport through fractured rock remains largely unexplored. The link between anomalous (non-Fickian) transport and confining stress has been shown only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of confining stress on flow and transport through discrete fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM), which can capture the deformation of matrix blocks, reactivation and propagation of cracks. We implement a joint constitutive model within the FEMDEM framework to simulate the effect of fracture roughness. We apply the model to a fracture network extracted from the geological map of an actual outcrop to obtain the aperture field at different stress conditions (Figure 1). We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture networks, and show that this anomalous behavior can be linked to the stress state of the rock. Finally, we develop an effective transport model that captures the anomalous transport through stressed fractures. Our results point to a heretofore unrecognized link between geomechanics and anomalous transport in discrete fractured networks. [1] P. K. Kang, S. Brown, and R. Juanes, Emergence of anomalous transport in stressed rough fractures. Earth and Planetary Science Letters, to appear (2016). Figure (a) Map of maximum principal stress with a vertical normal compressive stress of 3 MPa at top and bottom boundaries, and 1MPa at left and right boundaries. (b) Normal compressive stress of 15 MPa at top and bottom boundaries, and 5MPa at left and right boundaries.

  13. The fracture characteristic of three collinear cracks under true triaxial compression.

    PubMed

    Liu, Jianjun; Zhu, Zheming; Wang, Bo

    2014-01-01

    The mechanical behavior of multicracks under compression has become a very important project in the field of fracture mechanics and rock mechanics. In this paper, experimental and numerical studies on the fracture property of three collinear cracks under compression were implemented. The specimens were a square concrete plate, and the cracks were made by a very thin film. The tests were conducted by using true triaxial loading device. In the numerical study, the Abaqus code was employed. The effect of crack orientation and the confining stress on cracked specimen compressive strength were investigated. The results show that the critical stresses of cracked specimens change with crack inclination angles, and, as the angle is 45°, the critical stress is the lowest; the critical stresses increase with the confining stresses.

  14. The Fracture Characteristic of Three Collinear Cracks under True Triaxial Compression

    PubMed Central

    Liu, Jianjun; Zhu, Zheming; Wang, Bo

    2014-01-01

    The mechanical behavior of multicracks under compression has become a very important project in the field of fracture mechanics and rock mechanics. In this paper, experimental and numerical studies on the fracture property of three collinear cracks under compression were implemented. The specimens were a square concrete plate, and the cracks were made by a very thin film. The tests were conducted by using true triaxial loading device. In the numerical study, the Abaqus code was employed. The effect of crack orientation and the confining stress on cracked specimen compressive strength were investigated. The results show that the critical stresses of cracked specimens change with crack inclination angles, and, as the angle is 45°, the critical stress is the lowest; the critical stresses increase with the confining stresses. PMID:24790569

  15. Temperature Effects on the Impact Behavior of Fiberglass and Fiberglass/Kevlar Sandwich Composites

    NASA Astrophysics Data System (ADS)

    Halvorsen, Aaron; Salehi-Khojn, Amin; Mahinfalah, Mohammad; Nakhaei-Jazar, Reza

    2006-11-01

    Impact tests were performed on sandwich composites with Fiberglass and Fiberglass/Kevlar face sheets subjected to varied temperatures. A number of specimens were tested at -50 to 120 °C temperature range and at 20, 30, and 45 J low velocity energy levels. Impact properties of the sandwich composites that were evaluated include maximum normal and shear stresses, maximum energy absorption, non-dimensional parameters (AEMP, PI, and RD), and compression after impact strength. Composite specimens tested have a urethane foam filled honeycomb center sandwiched between a variation of four layered Fiberglass and Kevlar/Fiberglass face sheets in a thermoset polymer epoxy matrix. Results showed that the impact performance of these sandwich composites changed over the range of temperature considered and with the addition of a Kevlar layer.

  16. Polypyrrole RVC biofuel cells for powering medical implants.

    PubMed

    Roxby, Daniel N; Ting, S R Simon; Nguyen, Hung T

    2017-07-01

    Batteries for implanted medical devices such as pacemakers typically require surgical replacement every 5 to 10 years causing stress to the patient and their families. A Biofuel cell uses two electrodes with enzymes embedded to convert sugar into electricity. To evaluate the power producing capabilities of biofuel cells to replace battery technology, polypyrrole electrodes were fabricated by compression with Glucose oxidase and Laccase. Vitreous carbon was added to increase the conductivity, whilst glutaraldehyde acted as a crosslinking molecule. A maximum open circuit potential of 558.7 mV, short circuit current of 1.09 mA and maximum power of 0.127 mW was obtained from the fuel cells. This was able to turn on a medical thermometer through a TI BQ25504 energy harvesting circuit, hence showing the powering potential for biomedical devices.

  17. Pneumatic microfluidic cell compression device for high-throughput study of chondrocyte mechanobiology.

    PubMed

    Lee, Donghee; Erickson, Alek; You, Taesun; Dudley, Andrew T; Ryu, Sangjin

    2018-06-13

    Hyaline cartilage is a specialized type of connective tissue that lines many moveable joints (articular cartilage) and contributes to bone growth (growth plate cartilage). Hyaline cartilage is composed of a single cell type, the chondrocyte, which produces a unique hydrated matrix to resist compressive stress. Although compressive stress has profound effects on transcriptional networks and matrix biosynthesis in chondrocytes, mechanistic relationships between strain, signal transduction, cell metabolism, and matrix production remain superficial. Here, we describe development and validation of a polydimethylsiloxane (PDMS)-based pneumatic microfluidic cell compression device which generates multiple compression conditions in a single platform. The device contained an array of PDMS balloons of different sizes which were actuated by pressurized air, and the balloons compressed chondrocytes cells in alginate hydrogel constructs. Our characterization and testing of the device showed that the developed platform could compress chondrocytes with various magnitudes simultaneously with negligible effect on cell viability. Also, the device is compatible with live cell imaging to probe early effects of compressive stress, and it can be rapidly dismantled to facilitate molecular studies of compressive stress on transcriptional networks. Therefore, the proposed device will enhance the productivity of chondrocyte mechanobiology studies, and it can be applied to study mechanobiology of other cell types.

  18. Biomechanical investigation of a novel ratcheting arthrodesis nail.

    PubMed

    McCormick, Jeremy J; Li, Xinning; Weiss, Douglas R; Billiar, Kristen L; Wixted, John J

    2010-10-14

    Knee or tibiotalocalcaneal arthrodesis is a salvage procedure, often with unacceptable rates of nonunion. Basic science of fracture healing suggests that compression across a fusion site may decrease nonunion. A novel ratcheting arthrodesis nail designed to improve dynamic compression is mechanically tested in comparison to existing nails. A novel ratcheting nail was designed and mechanically tested in comparison to a solid nail and a threaded nail using sawbones models (Pacific Research Laboratories, Inc.). Intramedullary nails (IM) were implanted with a load cell (Futek LTH 500) between fusion surfaces. Constructs were then placed into a servo-hydraulic test frame (Model 858 Mini-bionix, MTS Systems) for application of 3 mm and 6 mm dynamic axial displacement (n = 3/group). Load to failure was also measured. Mean percent of initial load after 3-mm and 6-mm displacement was 190.4% and 186.0% for the solid nail, 80.7% and 63.0% for the threaded nail, and 286.4% and 829.0% for the ratcheting nail, respectively. Stress-shielding (as percentage of maximum load per test) after 3-mm and 6-mm displacement averaged 34.8% and 28.7% (solid nail), 40.3% and 40.9% (threaded nail), and 18.5% and 11.5% (ratcheting nail), respectively. In the 6-mm trials, statistically significant increase in initial load and decrease in stress-shielding for the ratcheting vs. solid nail (p = 0.029, p = 0.001) and vs. threaded nail (p = 0.012, p = 0.002) was observed. Load to failure for the ratcheting nail; 599.0 lbs, threaded nail; 508.8 lbs, and solid nail; 688.1 lbs. With significantly increase of compressive load while decreasing stress-shielding at 6-mm of dynamic displacement, the ratcheting mechanism in IM nails may clinically improve rates of fusion.

  19. Biomechanical investigation of a novel ratcheting arthrodesis nail

    PubMed Central

    2010-01-01

    Background Knee or tibiotalocalcaneal arthrodesis is a salvage procedure, often with unacceptable rates of nonunion. Basic science of fracture healing suggests that compression across a fusion site may decrease nonunion. A novel ratcheting arthrodesis nail designed to improve dynamic compression is mechanically tested in comparison to existing nails. Methods A novel ratcheting nail was designed and mechanically tested in comparison to a solid nail and a threaded nail using sawbones models (Pacific Research Laboratories, Inc.). Intramedullary nails (IM) were implanted with a load cell (Futek LTH 500) between fusion surfaces. Constructs were then placed into a servo-hydraulic test frame (Model 858 Mini-bionix, MTS Systems) for application of 3 mm and 6 mm dynamic axial displacement (n = 3/group). Load to failure was also measured. Results Mean percent of initial load after 3-mm and 6-mm displacement was 190.4% and 186.0% for the solid nail, 80.7% and 63.0% for the threaded nail, and 286.4% and 829.0% for the ratcheting nail, respectively. Stress-shielding (as percentage of maximum load per test) after 3-mm and 6-mm displacement averaged 34.8% and 28.7% (solid nail), 40.3% and 40.9% (threaded nail), and 18.5% and 11.5% (ratcheting nail), respectively. In the 6-mm trials, statistically significant increase in initial load and decrease in stress-shielding for the ratcheting vs. solid nail (p = 0.029, p = 0.001) and vs. threaded nail (p = 0.012, p = 0.002) was observed. Load to failure for the ratcheting nail; 599.0 lbs, threaded nail; 508.8 lbs, and solid nail; 688.1 lbs. Conclusion With significantly increase of compressive load while decreasing stress-shielding at 6-mm of dynamic displacement, the ratcheting mechanism in IM nails may clinically improve rates of fusion. PMID:20942976

  20. Measurements of the stress supported by the crush zone in open hole composite laminates loaded in compression

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1989-01-01

    Measurements of the stress supported by the crush zone in open hole specimens loaded in compression were carried out on two composite laminates, AS4/PEEK and IM6/HST-7, containing circular holes of three different diameters. Compression tests were conducted in a specially designed high-axial-alignment material test system machine. Results indicated that the local stress supported in the crush zone is much less than the stress required to initiate the crush, providing the reason for the finding of Guynn et al. (1987) that the Dugdale model does not accurately predict the load-damage size relationship of open hole composite specimens loaded in compression.

  1. Effect of differential speed rolling on the texture evolution of Mg-4Zn-1Gd alloy

    NASA Astrophysics Data System (ADS)

    Shim, Myeong-Shik; Suh, Byeong-Chan; Kim, Jae H.; Kim, Nack J.

    2015-05-01

    The microstructural and texture evolution during differential speed rolling process of Mg 4Zn-1Gd (wt%) alloy have been investigated by means of electron backscatter diffraction observation and texture analysis. The angular distribution of basal poles are inclined about 10° from the normal direction towards the rolling direction and the maximum intensities of basal poles are decreased, compared to the conventional rolling process. Such an inclination of angular distribution of basal poles can be induced by the operation of shear stress along the rolling direction, as much as one quarter of tensile stress along the RD and one quarter of compressive stress along the ND. When the reduction ratios in differential speed rolling increase, there is no difference in texture evolution although there is a significant change in activated twinning systems. In addition, the engineering stresses after differential speed rolling are also similar to that after conventional rolling process, while ductility and stretch formability in the former are worse than those in the latter.

  2. Explosion-induced stress changes estimated from vibrating-wire stressmeter measurements near the Mighty Epic event, Nevada Test Site

    USGS Publications Warehouse

    Ellis, William L.; Kibler, J.D.

    1983-01-01

    Explosion-induced compressive stress increases near an underground nuclear explosion are believed to contribute significantly to the containment of high-pressure gases within the explosion-produced cavity. These induced compressive stresses are predicted by computer calculations, but have never been adequately confirmed by field measurements, owing primarily to the unique difficulties of obtaining such field data. Vibrating-wire stressmeter measurements made near the Mighty Epic nuclear detonation, however, qualitatively indicate that within 150 meters of the working point, permanent compressive stress increases of several megapascals were present 15 weeks after the event. Additionally, stress-change magnitudes interpreted from the stressmeter data between the 75- and 260-meter range from the working point compare favorably with calculational predictions of the stress changes believed to be present shortly after detonation of the event. The measurements and calculations differ, however, with regard to the pattern of stress change radial and transverse to the explosion source. For the range of the field measurements from the working point, computer models predict the largest compressive-stress increase to be radial to the explosion source, while the field data indicate the transverse component of. stress change to be the most compressive. The significance of time-dependent modification of the initial explosion-induced stress distribution is, however, uncertain with regard to the comparison of the field measurements and theoretical predictions.

  3. Influence of temper condition on the nonlinear stress-strain behavior of boron-aluminum

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.; Herakovich, E. T.; Tenney, D. R.

    1977-01-01

    The influence of temper condition on the tensile and compressive stress-strain behavior for six boron-aluminum laminates was investigated. In addition to monotonic tension and compression tests, tension-tension, compression-compression, and tension--compression tests were conducted to study the effects of cyclic loading. Tensile strength results are a function of the laminate configuration; unidirectional laminates were affected considerably more than other laminates with some strength values increasing and others decreasing.

  4. Experimental and Numerical Study on the Deformation Mechanism in AZ31B Mg Alloy Sheets Under Pulsed Electric-Assisted Tensile and Compressive Tests

    NASA Astrophysics Data System (ADS)

    Lee, Jinwoo; Kim, Se-Jong; Lee, Myoung-Gyu; Song, Jung Han; Choi, Seogou; Han, Heung Nam; Kim, Daeyong

    2016-06-01

    The uniaxial tensile and compressive stress-strain responses of AZ31B magnesium alloy sheet under pulsed electric current are reported. Tension and compression tests with pulsed electric current showed that flow stresses dropped instantaneously when the electric pulses were applied. Thermo-mechanical-electrical finite element analyses were also performed to investigate the effects of Joule heating and electro-plasticity on the flow responses of AZ31B sheets under electric-pulsed tension and compression tests. The proposed finite element simulations could reproduce the measured uniaxial tensile and compressive stress-strain curves under pulsed electric currents, when the temperature-dependent flow stress hardening model and thermal properties of AZ31B sheet were properly described in the simulations. In particular, the simulation results that fit best with experimental results showed that almost 100 pct of the electric current was subject to transform into Joule heating during electrically assisted tensile and compressive tests.

  5. Summary of tectonic and structural evidence for stress orientation at the Nevada Test Site

    USGS Publications Warehouse

    Carr, Wilfred James

    1974-01-01

    A tectonic synthesis of the NTS (Nevada Test Site) region, when combined with seismic data and a few stress and strain measurements, suggests a tentative model for stress orientation. This model proposes that the NTS is undergoing extension in a N. 50 ? W.-S. 50 ? E. direction coincident with the minimum principal stress direction. The model is supported by (1) a tectonic similarity between a belt of NTS Quaternary faulting and part of the Nevada-California seismic belt, for which northwest-southeast extension has been suggested; (2) historic northeast- trending natural- and explosion-produced fractures in the NTS; (3) the virtual absence in the NTS of northwest-trending Quaternary faults; (4) the character of north-trending faults and basin configuration in the Yucca Flat area, which suggest a component of right-lateral displacement and post-10 m.y. (million year) oblique separation of the sides of the north-trending depression; (5) seismic evidence suggesting a north- to northwest-trending tension axis; (6) strain measurements, which indicate episodes of northwest-southeast extension within a net northeast-southwest compression; (7) a stress estimate based on tectonic cracking that indicates near-surface northwest-southeast-directed tension, and two stress measurements indicating an excess (tectonic) maximum principal compressive stress in a northeast-southwest direction at depths of about 1,000 feet (305 m); and (8) enlargement of some drill holes in Yucca Flat in a northwest-southeast direction. It is inferred that the stress episode resulting in the formation of deep alluvium-filled trenches began somewhere between 10 and possibly less than 4 m.y. ago in the NTS and is currently active. In the Walker Lane of western Nevada, crystallization of plutons associated with Miocene volcanism may have increased the competency and thickness of the crust and its ability to propagate stress, thereby modulating the frequency (spacing) of basin-range faults.

  6. Compression Fracture of CFRP Laminates Containing Stress Intensifications.

    PubMed

    Leopold, Christian; Schütt, Martin; Liebig, Wilfried V; Philipkowski, Timo; Kürten, Jonas; Schulte, Karl; Fiedler, Bodo

    2017-09-05

    For brittle fracture behaviour of carbon fibre reinforced plastics (CFRP) under compression, several approaches exist, which describe different mechanisms during failure, especially at stress intensifications. The failure process is not only initiated by the buckling fibres, but a shear driven fibre compressive failure beneficiaries or initiates the formation of fibres into a kink-band. Starting from this kink-band further damage can be detected, which leads to the final failure. The subject of this work is an experimental investigation on the influence of ply thickness and stacking sequence in quasi-isotropic CFRP laminates containing stress intensifications under compression loading. Different effects that influence the compression failure and the role the stacking sequence has on damage development and the resulting compressive strength are identified and discussed. The influence of stress intensifications is investigated in detail at a hole in open hole compression (OHC) tests. A proposed interrupted test approach allows identifying the mechanisms of damage initiation and propagation from the free edge of the hole by causing a distinct damage state and examine it at a precise instant of time during fracture process. Compression after impact (CAI) tests are executed in order to compare the OHC results to a different type of stress intensifications. Unnotched compression tests are carried out for comparison as a reference. With this approach, a more detailed description of the failure mechanisms during the sudden compression failure of CFRP is achieved. By microscopic examination of single plies from various specimens, the different effects that influence the compression failure are identified. First damage of fibres occurs always in 0°-ply. Fibre shear failure leads to local microbuckling and the formation and growth of a kink-band as final failure mechanisms. The formation of a kink-band and finally steady state kinking is shifted to higher compressive strains with decreasing ply thickness. Final failure mode in laminates with stress intensification depends on ply thickness. In thick or inner plies, damage initiates as shear failure and fibre buckling into the drilled hole. The kink-band orientation angle is changing with increasing strain. In outer or thin plies shear failure of single fibres is observed as first damage and the kink-band orientation angle is constant until final failure. Decreasing ply thickness increases the unnotched compressive strength. When stress intensifications are present, the position of the 0°-layer is critical for stability under compression and is thus more important than the ply thickness. Central 0°-layers show best results for OHC and CAI strength due to higher bending stiffness and better supporting effect of the adjacent layers.

  7. Compression Fracture of CFRP Laminates Containing Stress Intensifications

    PubMed Central

    Schütt, Martin; Philipkowski, Timo; Kürten, Jonas; Schulte, Karl

    2017-01-01

    For brittle fracture behaviour of carbon fibre reinforced plastics (CFRP) under compression, several approaches exist, which describe different mechanisms during failure, especially at stress intensifications. The failure process is not only initiated by the buckling fibres, but a shear driven fibre compressive failure beneficiaries or initiates the formation of fibres into a kink-band. Starting from this kink-band further damage can be detected, which leads to the final failure. The subject of this work is an experimental investigation on the influence of ply thickness and stacking sequence in quasi-isotropic CFRP laminates containing stress intensifications under compression loading. Different effects that influence the compression failure and the role the stacking sequence has on damage development and the resulting compressive strength are identified and discussed. The influence of stress intensifications is investigated in detail at a hole in open hole compression (OHC) tests. A proposed interrupted test approach allows identifying the mechanisms of damage initiation and propagation from the free edge of the hole by causing a distinct damage state and examine it at a precise instant of time during fracture process. Compression after impact (CAI) tests are executed in order to compare the OHC results to a different type of stress intensifications. Unnotched compression tests are carried out for comparison as a reference. With this approach, a more detailed description of the failure mechanisms during the sudden compression failure of CFRP is achieved. By microscopic examination of single plies from various specimens, the different effects that influence the compression failure are identified. First damage of fibres occurs always in 0°-ply. Fibre shear failure leads to local microbuckling and the formation and growth of a kink-band as final failure mechanisms. The formation of a kink-band and finally steady state kinking is shifted to higher compressive strains with decreasing ply thickness. Final failure mode in laminates with stress intensification depends on ply thickness. In thick or inner plies, damage initiates as shear failure and fibre buckling into the drilled hole. The kink-band orientation angle is changing with increasing strain. In outer or thin plies shear failure of single fibres is observed as first damage and the kink-band orientation angle is constant until final failure. Decreasing ply thickness increases the unnotched compressive strength. When stress intensifications are present, the position of the 0°-layer is critical for stability under compression and is thus more important than the ply thickness. Central 0°-layers show best results for OHC and CAI strength due to higher bending stiffness and better supporting effect of the adjacent layers. PMID:28872623

  8. 77 FR 26948 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... sliding member cracks is high compressive stress during braking at higher deceleration levels outside the regular fatigue load spectrum. Starting at deceleration stress levels somewhat below limit load, the high compressive stress locally exceeds the elasticity limit of the material, leaving a residual tensile stress at...

  9. Three-dimensional finite element modeling of a maxillary premolar tooth based on the micro-CT scanning: a detailed description.

    PubMed

    Huang, Zheng; Chen, Zhi

    2013-10-01

    This study describes the details of how to construct a three-dimensional (3D) finite element model of a maxillary first premolar tooth based on micro-CT data acquisition technique, MIMICS software and ANSYS software. The tooth was scanned by micro-CT, in which 1295 slices were obtained and then 648 slices were selected for modeling. The 3D surface mesh models of enamel and dentin were created by MIMICS (STL file). The solid mesh model was constructed by ANSYS. After the material properties and boundary conditions were set, a loading analysis was performed to demonstrate the applicableness of the resulting model. The first and third principal stresses were then evaluated. The results showed that the number of nodes and elements of the finite element model were 56 618 and 311801, respectively. The geometric form of the model was highly consistent with that of the true tooth, and the deviation between them was -0.28%. The loading analysis revealed the typical stress patterns in the contour map. The maximum compressive stress existed in the contact points and the maximum tensile stress existed in the deep fissure between the two cusps. It is concluded that by using the micro-CT and highly integrated software, construction of the 3D finite element model with high quality will not be difficult for clinical researchers.

  10. Finite element analysis of residual stress in cold expanded plate with different thickness and expansion ratio

    NASA Astrophysics Data System (ADS)

    Arifin Shariffudin, Kamarul; Karuppanan, Saravanan; Patil, Santosh S.

    2017-10-01

    Cold expansion of fastener/rivet holes is a common way to generate beneficial compressive residual stress around the fastener hole. In this study, cold expansion process was simulated by finite-element method in order to determine the residual stress field around two cold expanded holes by varying the plate thickness and expansion ratio of the hole. The model was developed in ANSYS and assigned to aluminium alloy 7475-T61 material model. The results showed that the residual stress become more compressive as the plate thickness is increased up to t/d = 2.6 and decreased for further level of thickness. In addition, the residual stress at the edge of the hole become more compressive as the expansion ratio is increased up to 4.5% and decreased for further level of expansion. This study also found that the residual stresses near the entrance and the exit face of the plate are less compressive than the residual stresses on the mid-thickness of the plate.

  11. Slow plastic strain rate compressive flow in binary CoAl intermetallics

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1985-01-01

    Constant-velocity elevated temperature compression tests have been conducted on a series of binary CoAl intermetallics produced by hot extrusion of blended prealloyed powders. The as-extruded materials were polycrystalline, and they retained their nominal 10-micron grain size after being tested between 1100 and 1400 K at strain rates ranging from 2 x 10 to the -4th to 2 x 10 to the -7th per sec. Significant plastic flow was obtained in all cases; while cracking was observed, much of this could be due to failure at matrix-oxide interfaces along extrusion stringers rather than to solely intergranular fracture. A maximum in flow strength occurs at an aluminum-to-cobalt ratio of 0.975, and the stress exponent appears to be constant for aluminum-to-cobalt ratios of 0.85 or more. It is likely that very aluminum-deficient materials deform by a different mechanism than do other compositions.

  12. Effects of lattice deformation on magnetic properties of electron-doped La0.8Hf0.2MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Wu, Z. P.; Jiang, Y. C.; Gao, J.

    2013-05-01

    The lattice deformation effects on electric and magnetic properties of electron-doped La0.8Hf0.2MnO3 (LHMO) thin films have been systematically investigated. LHMO films with various thicknesses (15 nm, 40 nm, and 80 nm) were grown on (001) SrTiO3 and (001) LaAlO3 substrates, which induces in-plane tensile and compressive biaxial stress, respectively. The metal-insulator phase transition temperature (TP) and magnetoresistance (MR) effect show a strong dependence on film thickness. TP increases with a decrease in thickness and is enhanced as the lattice strain rises, regardless of whether it is tensile or compressive. The maximum MR ratio is suppressed by reduction of the film thickness. These anomalous phenomena may be attributed to the competition between the strain induced modification of the Mn-O bond length and the eg orbital stability.

  13. Mechanics of airway and alveolar collapse in human breath-hold diving.

    PubMed

    Fitz-Clarke, John R

    2007-11-15

    A computational model of the human respiratory tract was developed to study airway and alveolar compression and re-expansion during deep breath-hold dives. The model incorporates the chest wall, supraglottic airway, trachea, branched airway tree, and elastic alveoli assigned time-dependent surfactant properties. Total lung collapse with degassing of all alveoli is predicted to occur around 235 m, much deeper than estimates for aquatic mammals. Hysteresis of the pressure-volume loop increases with maximum diving depth due to progressive alveolar collapse. Reopening of alveoli occurs stochastically as airway pressure overcomes adhesive and compressive forces on ascent. Surface area for gas exchange vanishes at collapse depth, implying that the risk of decompression sickness should reach a plateau beyond this depth. Pulmonary capillary transmural stresses cannot increase after local alveolar collapse. Consolidation of lung parenchyma might provide protection from capillary injury or leakage caused by vascular engorgement due to outward chest wall recoil at extreme depths.

  14. Flow Strength of Shocked Aluminum in the Solid-Liquid Mixed Phase Region

    NASA Astrophysics Data System (ADS)

    Reinhart, William

    2011-06-01

    Shock waves have been used to determine material properties under high shock stresses and very-high loading rates. The determination of mechanical properties such as compressive strength under shock compression has proven to be difficult and estimates of strength have been limited to approximately 100 GPa or less in aluminum. The term ``strength'' has been used in different ways. For a Von-Mises solid, the yield strength is equal to twice the shear strength of the material and represents the maximum shear stress that can be supported before yield. Many of these concepts have been applied to materials that undergo high strain-rate dynamic deformation, as in uni-axial strain shock experiments. In shock experiments, it has been observed that the shear stress in the shocked state is not equal to the shear strength, as evidenced by elastic recompressions in reshock experiments. This has led to an assumption that there is a yield surface with maximum (loading)and minimum (unloading), shear strength yet the actual shear stress lies somewhere between these values. This work provides the first simultaneous measurements of unloading velocity and flow strength for transition of solid aluminum to the liquid phase. The investigation describes the flow strength observed in 1100 (pure), 6061-T6, and 2024 aluminum in the solid-liquid mixed phase region. Reloading and unloading techniques were utilized to provide independent data on the two unknowns (τc and τo) , so that the actual critical shear strength and the shear stress at the shock state could be estimated. Three different observations indicate a change in material response for stresses of 100 to 160 GPa; 1) release wave speed (reloading where applicable) measurements, 2) yield strength measurements, and 3) estimates of Poisson's ratio, all of which provide information on the melt process including internal consistency and/or non-equilibrium and rate-dependent melt behavior. The study investigates the strength properties in the solid region and as the material transverses the solid-mixed-liquid regime. Differences observed appear to be the product of alloying and/or microstructural composition of the aluminum. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  15. Service Lifetime Estimation of EPDM Rubber Based on Accelerated Aging Tests

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Li, Xiangbo; Xu, Likun; He, Tao

    2017-04-01

    Service lifetime of ethylene propylene diene monomer (EPDM) rubber at room temperature (25 °C) was estimated based on accelerated aging tests. The study followed sealing stress loss on compressed cylinder samples by compression stress relaxation methods. The results showed that the cylinder samples of EPDM can quickly reach the physical relaxation equilibrium by using the over-compression method. The non-Arrhenius behavior occurred at the lowest aging temperature. A significant linear relationship was observed between compression set values and normalized stress decay results, and the relationship was not related to the ambient temperature of aging. It was estimated that the sealing stress loss in view of practical application would occur after around 86.8 years at 25 °C. The estimations at 25 °C based on the non-Arrhenius behavior were in agreement with compression set data from storage aging tests in natural environment.

  16. Redistribution of Welding Residual Stresses of Crack Tip Opening Displacement Specimen by Local Compression.

    PubMed

    Kim, Young-Gon; Song, Kuk-Hyun; Lee, Dong-Hoon; Joo, Sung-Min

    2018-03-01

    The demand of crack tip opening displacement (CTOD) test which evaluates fracture toughness of a cracked material is very important to ensure the stability of structure under severe service environment. The validity of the CTOD test result is judged using several criterions of the specification standards. One of them is the artificially generated fatigue pre-crack length inside the specimen. For acceptable CTOD test results, fatigue pre-crack must have a reasonable sharp crack front. The propagation of fatigue crack started from the tip of the machined notch, which might have propagated irregularly due to residual stress field. To overcome this problem, test codes suggest local compression method, reversed bending method and stepwise high-R ratio method to reduce the disparity of residual stress distribution inside the specimen. In this paper, the relation between the degree of local compression and distribution of welding residual stress has been analyzed by finite element analyses in order to determine the amount of effective local compression of the test piece. Analysis results show that initial welding residual stress is dramatically varied three-dimensionally while cutting, notch machining and local compressing due to the change of internal restraint force. From the simulation result, the authors find that there is an optimum amount of local compression to modify regularly for generating fatigue pre-crack propagation. In the case of 0.5% compressions of the model width is the most effective for uniforming residual stress distribution.

  17. [The influences of the stress distribution on the condylar cartilage surface by Herbst appliance under various bite reconstruction--a three dimensional finite element analysis].

    PubMed

    Hu, L; Zhao, Z; Song, J; Fan, Y; Jiang, W; Chen, J

    2001-02-01

    The distribution of stress on the surface of condylar cartilage was investigated. Three-dimensional model of the 'Temporomandibular joint mandible Herbst appliance system' was set up by SUPER SAP software (version 9.3). On this model, various bite reconstruction was simulated according to specified advanced displacement and vertical bite opening. The distribution of maximum and minimum principal stress on the surface of condylar cartilage were computerized and analyzed. When Herbst appliance drove the mandible forward, the anterior condyle surface was compressed while the posterior surface was drawn. The trend of stress on the same point on the condyle surface was consistent in various reconstruction conditions, but the trend of stress on various point were different in same reconstruction conditions. All five groups of bite reconstruction (3-7 mm advancement, 4-2 mm vertical bite opening of the mandible) designed by this study can be selected in clinic according to the patient's capability of adaptation, the extent of malocclusion and the potential and direction of growth.

  18. Effect of shot peening on surface fatigue life of carburized and hardened AISI 9310 spur gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Zaretsky, E. V.

    1982-01-01

    Surface fatigue tests were conducted on two groups of AISI 9310 spur gears. Both groups were manufactured with standard ground tooth surfaces, with the second group subjected to an additional shot peening process on the gear tooth flanks. The gear pitch diameter was 8.89 cm (3.5 in.). Test conditions were a gear temperature of 350 K (170 F), a maximum Hertz stress of 1.71 billion N/sq m (248,000 psi), and a speed of 10,000 rpm. The shot peened gears exhibited pitting fatigue lives 1.6 times the life of standard gears without shot peening. Residual stress measurements and analysis indicate that the longer fatigue life is the result of the higher compressive stress produced by the shot peening. The life for the shot peened gear was calculated to be 1.5 times that for the plain gear by using the measured residual stress difference for the standard and shot peened gears. The measured residual stress for the shot peened gears was much higher than that for the standard gears.

  19. 76 FR 68668 - Airworthiness Directives; Fokker Services B.V. Model F.28 Mark 0100 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... compressive stress during braking at higher deceleration levels outside the regular fatigue load spectrum. [T]he high compressive stress locally exceeds the elasticity limit of the material, leaving a residual tensile stress at release of the heavy braking load. Subsequently, this local residual tensile stress...

  20. Microstructure Evolution and Flow Stress Model of a 20Mn5 Hollow Steel Ingot during Hot Compression.

    PubMed

    Liu, Min; Ma, Qing-Xian; Luo, Jian-Bin

    2018-03-21

    20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft due to its good performance of strength, toughness and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under high temperature were not studied. In this study, the hot compression experiments under temperatures of 850-1200 °C and strain rates of 0.01/s-1/s are conducted using Gleeble thermal and mechanical simulation machine. And the flow stress curves and microstructure after hot compression are obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 hollow steel ingot.

  1. Dynamic Experiments and Constitutive Model Performance for Polycarbonate

    DTIC Science & Technology

    2014-07-01

    phase disabled. Note, positive stress is tensile and negative is compressive ....28 Figure 23. Parameter sensitivity showing numerical contours of axial ... compressive . For the no alpha and no beta cases shown in the axial stress plots of figure 23 at 40 s, an increase in radial compression as compared...traditional Taylor cylinder impact experiment, which achieves large strain and high-strain-rate deformation but under hydrostatic compression

  2. Hydromechanical Behaviour of Unconsolidated Granular Materials under Proportional Triaxial Compression Tests

    NASA Astrophysics Data System (ADS)

    Nguyen, V.; Gland, N. F.; Dautriat, J.; Guelard, J.; David, C.

    2010-12-01

    During the production of petroleum reservoirs, compaction due to depletion (pore fluid pressure reduction) can lead to emphasis of natural permeability anisotropy and significant permeability reduction. Under such effective stress increase, weakly consolidated reservoirs will undergo strong deformation inducing important modifications of the transport properties, which control the fluid flows in the reservoir and the productivity of the wells. Classically the mechanical loadings applied in the laboratory are either hydrostatic or deviatoric at constant confining pressure; however the 'in-situ' stress paths experienced by the reservoirs differ; it is thus important to perform loading tests with more appropriate conditions such as ‘proportional triaxial’ and ‘oedometric’. This study focuses on the elastoplatic behaviour of non to weakly consolidated reservoir rocks (analogues) and the influence of the stress path (K=ΔσH/ΔσV) on the evolutions of porosity and permeability. Generally, permeability of pourous rocks evolves in three stages: (1) initial decrease related to compaction (soft rocks) or closing of pre-existing microflaws (compact rocks), (2) small reduction associated to the 'linear' deformation regime, (3) drop due to a strong compaction linked to porosity collapse and grain crushing mechanisms. The intensity of this reduction depends on the stress path coefficient, the grain sharpness and the granular texture. We use a triaxial cell (maximum axial load of 80kN and maximum confinement of 69MPa) to perform proportional triaxial compression tests (0

  3. Effect of Impact Compression on the Age-Hardening of Rapidly Solidified Al-Zn-Mg Base Alloys

    NASA Astrophysics Data System (ADS)

    Horikawa, Keitaro; Kobayashi, Hidetoshi

    Effect of impact compression on the age-hardening behavior and the mechanical properties of Mesoalite aluminum alloy was examined by means of the high-velocity plane collision between a projectile and Mesoalite by using a single powder gun. By imposing the impact compression to the Meso10 and Meso20 alloys in the state of quenching after the solution heat treatment, the following age-hardening at 110 °C was highly increased, comparing with the Mesoalite without the impact compression. XRD results revealed that high plastic strain was introduced on the specimen inside after the impact compression. Compression test results also clarified that both Meso10 and Meso20 alloy specimens imposed the impact compressive stresses more than 5 GPa after the peak-aging at 110°C showed higher yield stresses, comparing with the alloys without the impact compression. It was also shown that the Meso10 and Meso20 specimens after the solution heat treatment, followed by the high-velocity impact compression (12 GPa) and the peak-aging treatment indicated the highest compressive yield stresses such as 994 GPa in Meso10 and 1091 GPa in Meso20.

  4. The International Space Station Assembly on Schedule

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As engineers continue to prepare the International Space Station (ISS) for in-orbit assembly in the year 2002, ANSYS software has proven instrumental in resolving a structural problem in the project's two primary station modules -- Nodes 1 and 2. Proof pressure tests performed in May revealed "low temperature, post-yield creep" in some of the Nodes' gussets, which were designed to reinforce ports for loads from station keeping and reboost motion of the entire space station. An extensive effort was undertaken to characterize the creep behavior of the 2219-T851 aluminum forging material from which the gussets were made. Engineers at Sverdrup Technology, Inc. (Huntsville, AL) were responsible for conducting a combined elastic-plastic-creep analysis of the gussets to determine the amount of residual compressive stress which existed in the gussets following the proof pressure tests, and to determine the stress-strain history in the gussets while on-orbit. Boeing, NASA's Space Station prime contractor, supplied the Finite Element Analysis (FEA) model geometry and developed the creep equations from the experimental data taken by NASA's Marshall Space Flight Center and Langley Research Center. The goal of this effort was to implement the uniaxial creep equations into a three dimensional finite element program, and to determine analytically whether or not the creep was something that the space station program could live with. The objective was to show analytically that either the creep rate was at an acceptable level, or that the node module had to be modified to lower the stress levels to where creep did not occur. The elastic-plastic-creep analysis was performed using the ANSYS finite element program of ANSYS, Inc. (Houston, PA). The analysis revealed that the gussets encountered a compressive stress of approximately 30,000 pounds per square inch (psi) when unloaded. This compressive residual stress significantly lowered the maximum tension stress in the gussets which decreased the creep strain rate. The analysis also showed that the gussets would not experience a great deal of creep from future pressure tests if braces or struts proposed by Boeing were installed to redistribute stress away from them. Subsequent analysis of on-orbit station keeping and reboost loads convinced Boeing that the gussets should be removed altogether.

  5. Deformation twinning in Ni–Mn–Ga micropillars with 10M martensite

    PubMed Central

    Reinhold, M.; Kiener, D.; Knowlton, W. B.; Dehm, G.; Müllner, P.

    2009-01-01

    The maximum actuation frequency of magnetic shape-memory alloys (MSMAs) significantly increases with decreasing size of the transducer making MSMAs interesting candidates for small scale actuator applications. To study the mechanical properties of Ni–Mn–Ga single crystals on small length scales, two single-domain micropillars with dimensions of 10×15×30 μm3 were fabricated from a Ni–Mn–Ga monocrystal using dual beam focused ion beam machining. The pillars were oriented such that the crystallographic c direction was perpendicular to the loading direction. The pillars were compressed to maximum stresses of 350 and 50 MPa, respectively. Atomic force microscopy and magnetic force microscopy were performed prior to fabrication of the pillars and following the deformation experiments. Both micropillars were deformed by twinning as evidenced by the stress-strain curve. For one pillar, a permanent deformation of 3.6% was observed and ac twins (10M martensite) were identified after unloading. For the other pillar, only 0.7% remained upon unloading. No twins were found in this pillar after unloading. The recovery of deformation is discussed in the light of pseudoelastic twinning and twin-substrate interaction. The twinning stress was higher than in similar macroscopic material. However, further studies are needed to substantiate a size effect. PMID:19859577

  6. Deformation twinning in Ni-Mn-Ga micropillars with 10M martensite.

    PubMed

    Reinhold, M; Kiener, D; Knowlton, W B; Dehm, G; Müllner, P

    2009-09-01

    The maximum actuation frequency of magnetic shape-memory alloys (MSMAs) significantly increases with decreasing size of the transducer making MSMAs interesting candidates for small scale actuator applications. To study the mechanical properties of Ni-Mn-Ga single crystals on small length scales, two single-domain micropillars with dimensions of 10x15x30 mum(3) were fabricated from a Ni-Mn-Ga monocrystal using dual beam focused ion beam machining. The pillars were oriented such that the crystallographic c direction was perpendicular to the loading direction. The pillars were compressed to maximum stresses of 350 and 50 MPa, respectively. Atomic force microscopy and magnetic force microscopy were performed prior to fabrication of the pillars and following the deformation experiments. Both micropillars were deformed by twinning as evidenced by the stress-strain curve. For one pillar, a permanent deformation of 3.6% was observed and ac twins (10M martensite) were identified after unloading. For the other pillar, only 0.7% remained upon unloading. No twins were found in this pillar after unloading. The recovery of deformation is discussed in the light of pseudoelastic twinning and twin-substrate interaction. The twinning stress was higher than in similar macroscopic material. However, further studies are needed to substantiate a size effect.

  7. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.

    PubMed

    Gao, Li-Lan; Wei, Chao-Lei; Zhang, Chun-Qiu; Gao, Hong; Yang, Nan; Dong, Li-Min

    2017-08-01

    The quasi-static and ratcheting properties of trabecular bone were investigated by experiments and theoretical predictions. The creep tests with different stress levels were completed and it is found that both the creep strain and creep compliance increase rapidly at first and then increase slowly as the creep time goes by. With increase of compressive stress the creep strain increases and the creep compliance decreases. The uniaxial compressive tests show that the applied stress rate makes remarkable influence on the compressive behaviors of trabecular bone. The Young's modulus of trabecular bone increases with increase of stress rate. The stress-strain hysteresis loops of trabecular bone under cyclic load change from sparse to dense with increase of number of cycles, which agrees with the change trend of ratcheting strain. The ratcheting strain rate rapidly decreases at first, and then exhibits a relatively stable and small value after 50cycles. Both the ratcheting strain and ratcheting strain rate increase with increase of stress amplitude or with decrease of stress rate. The creep model and the nonlinear viscoelastic constitutive model of trabecular bone were proposed and used to predict its creep property and rate-dependent compressive property. The results show that there are good agreements between the experimental data and predictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mathematical Model Relating Uniaxial Compressive Behavior of Manufactured Sand Mortar to MIP-Derived Pore Structure Parameters

    PubMed Central

    Tian, Zhenghong; Bu, Jingwu

    2014-01-01

    The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed. PMID:25133257

  9. Mathematical model relating uniaxial compressive behavior of manufactured sand mortar to MIP-derived pore structure parameters.

    PubMed

    Tian, Zhenghong; Bu, Jingwu

    2014-01-01

    The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed.

  10. Three-dimensional finite element analyses of four designs of a high-strength silicon nitride implant.

    PubMed

    Lin, S; Shi, S; LeGeros, R Z; LeGeros, J P

    2000-01-01

    The effects of implant shape and size on the stress distribution around high-strength silicon nitride implants under vertical and oblique forces were determined using a three-dimensional finite element analysis. Finite element models were designed using as a basis the serial sections of the mandible. Using Auto-CAD software, the model simulated the placement of implants in the molar region of the left mandible. Results of the analyses demonstrated that mainly the implant root shape and the directions of bite forces influence the stress distributions in the supporting bone around each implant. Implant size is a lesser factor. The serrated implants presented a larger surface area to the bone than either the cylindrical or tapered implants, which resulted in lower compressive stress around the serrated implants. With increasing implant diameter and length, compressive stress decreased. The mean compressive stress distribution on the serrated implants was more flat (platykurtic) than on either the cylindrical or tapered implants. Results of studies on two load directions (vertical and oblique) showed that, in either case, the compressive stress in the cortical bone around the neck of the implant was higher than in the cancellous bone along the length of the implant. The most extreme principal compressive stress was found with oblique force. This study provides the first information on the relationship between shape of the silicon nitride implant and stress on the supporting bone.

  11. Stress in Lumbar Intervertebral Discs during Distraction

    PubMed Central

    Gay, Ralph E.; Ilharreborde, Brice; Zhao, Kristin D.; Berglund, Lawrence J.; Bronfort, Gert; An, Kai-Nan

    2008-01-01

    BACKGROUND CONTEXT The intervertebral disc is a common source of low back pain. Prospective studies suggest that treatments that intermittently distract the disc might be beneficial for chronic low back pain. Although the potential exists for distraction therapies to affect the disc biomechanically their effect on intradiscal stress is debated. PURPOSE To determine if distraction alone, distraction combined with flexion or distraction combined with extension can reduce nucleus pulposus pressure and posterior anulus compressive stress in cadaveric lumbar discs compared to simulated standing or lying. STUDY DESIGN Laboratory study using single cadaveric motion segments. OUTCOME MEASURES Strain gauge measures of nucleus pulposus pressure and compressive stress in the anterior and posterior annulus fibrosus METHODS Intradiscal stress profilometry was performed on 15 motion segments during 5 simulated conditions: standing, lying, and 3 distracted conditions. Disc degeneration was graded by inspection from 1 (normal) to 4 (severe degeneration). RESULTS All distraction conditions markedly reduced nucleus pressure compared to either simulated standing or lying. There was no difference between distraction with flexion and distraction with extension in regard to posterior annulus compressive stress. Discs with little or no degeneration appeared to distributed compressive stress differently than those with moderate or severe degeneration. CONCLUSIONS Distraction appears to predictably reduce nucleus pulposus pressure. The effect of distraction therapy on the distribution of compressive stress may be dependent in part on the health of the disc. PMID:17981092

  12. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers

    PubMed Central

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-01-01

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred. PMID:28773285

  13. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers.

    PubMed

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-03-04

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  14. Tomographic Image Compression Using Multidimensional Transforms.

    ERIC Educational Resources Information Center

    Villasenor, John D.

    1994-01-01

    Describes a method for compressing tomographic images obtained using Positron Emission Tomography (PET) and Magnetic Resonance (MR) by applying transform compression using all available dimensions. This takes maximum advantage of redundancy of the data, allowing significant increases in compression efficiency and performance. (13 references) (KRN)

  15. Guided elastic waves in a pre-stressed compressible interlayer

    PubMed

    Sotiropoulos

    2000-03-01

    The propagation of guided elastic waves in a pre-stressed elastic compressible layer embedded in a different compressible material is examined. The waves propagate parallel to the planar layer interfaces as a superposed dynamic stress state on the statically pre-stressed layer and host material. The underlying stress condition in the two materials is characterized by equibiaxial in-plane deformations with common principal axes of strain, one of the axes being perpendicular to the layering. Both materials have arbitrary strain energy functions. The dispersion equation is derived in explicit form. Analysis of the dispersion equation reveals the propagation characteristics and their dependence on frequency, material parameters and stress parameters. Combinations of these parameters are also defined for which guided waves cannot propagate.

  16. A coupled creep plasticity model for residual stress relaxation of a shot-peened nickel-based superalloy

    NASA Astrophysics Data System (ADS)

    Buchanan, Dennis J.; John, Reji; Brockman, Robert A.; Rosenberger, Andrew H.

    2010-01-01

    Shot peening is a commonly used surface treatment process that imparts compressive residual stresses into the surface of metal components. Compressive residual stresses retard initiation and growth of fatigue cracks. During component loading history, shot-peened residual stresses may change due to thermal exposure, creep, and cyclic loading. In these instances, taking full credit for compressive residual stresses would result in a nonconservative life prediction. This article describes a methodical approach for characterizing and modeling residual stress relaxation under elevated temperature loading, near and above the monotonic yield strength of INI 00. The model incorporates the dominant creep deformation mechanism, coupling between the creep and plasticity models, and effects of prior plastic strain to simulate surface treatment deformation.

  17. A New Cluster Analysis-Marker-Controlled Watershed Method for Separating Particles of Granular Soils.

    PubMed

    Alam, Md Ferdous; Haque, Asadul

    2017-10-18

    An accurate determination of particle-level fabric of granular soils from tomography data requires a maximum correct separation of particles. The popular marker-controlled watershed separation method is widely used to separate particles. However, the watershed method alone is not capable of producing the maximum separation of particles when subjected to boundary stresses leading to crushing of particles. In this paper, a new separation method, named as Monash Particle Separation Method (MPSM), has been introduced. The new method automatically determines the optimal contrast coefficient based on cluster evaluation framework to produce the maximum accurate separation outcomes. Finally, the particles which could not be separated by the optimal contrast coefficient were separated by integrating cuboid markers generated from the clustering by Gaussian mixture models into the routine watershed method. The MPSM was validated on a uniformly graded sand volume subjected to one-dimensional compression loading up to 32 MPa. It was demonstrated that the MPSM is capable of producing the best possible separation of particles required for the fabric analysis.

  18. On stress-state optimization in steel-concrete composite structures

    NASA Astrophysics Data System (ADS)

    Brauns, J.; Skadins, U.

    2017-10-01

    The plastic resistance of a concrete-filled column commonly is given as a sum of the components and taking into account the effect of confinement. The stress state in a composite column is determined by taking into account the non-linear relationship of modulus of elasticity and Poisson’s ratio on the stress level in the concrete core. The effect of confinement occurs at a high stress level when structural steel acts in tension and concrete in lateral compression. The stress state of a composite beam is determined taking into account non-linear dependence on the position of neutral axis. In order to improve the stress state of a composite element and increase the safety of the construction the appropriate strength of steel and concrete has to be applied. The safety of high-stressed composite structures can be achieved by using high-performance concrete (HPC). In this study stress analysis of the composite column and beam is performed with the purpose of obtaining the maximum load-bearing capacity and enhance the safety of the structure by using components with the appropriate strength and by taking into account the composite action. The effect of HPC on the stress state and load carrying capacity of composite elements is analysed.

  19. Development, characterization, and modeling of ballistic impact on composite laminates under compressive pre-stress

    NASA Astrophysics Data System (ADS)

    Kerr-Anderson, Eric

    Structural composite laminates were ballistically impacted while under in-plane compressive pre-stress. Residual properties, damage characterization, and energy absorption were compared to determine synergistic effects of in-plane compressive pre-stress and impact velocity. A fixture was developed to apply in-plane compressive loads up to 30 tons to structural composites during an impact event using a single-stage light-gas gun. Observed failure modes included typical conical delamination, the development of an impact initiated shear crack (IISC), and the shear failure of a pre-stressed composite due to impact. It was observed that the compressive failure threshold quadratically decreased in relation to the impact velocity up to velocities that caused partial penetration. For all laminates impacted at velocities causing partial or full penetration up to 350 ms-1, the failure threshold was consistent and used as an experimental normalization. Samples impacted below 65% of the failure threshold witnessed no significant change in damage morphology or residual properties when compared to typical conical delamination. Samples impacted above 65% of the failure threshold witnessed additional damage in the form of a shear crack extending perpendicular to the applied load from the point of impact. The presence of an IISC reduced the residual properties and even caused failure upon impact at extreme combinations. Four failure envelopes have been established as: transient failure, steady state failure, impact initiated shear crack, and conical damage. Boundaries and empirically based equations for residual compressive strength have been developed for each envelope with relation to two E-glass/vinyl ester laminate systems. Many aspects of pre-stressed impact have been individually examined, but there have been no comprehensive examinations of pre-stressed impact. This research has resulted in the exploration and characterization of compressively pre-stressed damage for impact velocities resulting in reflection, partial penetration, and penetration at pre-stress levels resulting in conical damage, shear cracking, and failure.

  20. Stress-anneal-induced magnetic anisotropy in highly textured Fe-Ga and Fe-Al magnetostrictive strips for bending-mode vibrational energy harvesters

    NASA Astrophysics Data System (ADS)

    Park, Jung Jin; Na, Suok-Min; Raghunath, Ganesh; Flatau, Alison B.

    2016-05-01

    Magnetostrictive Fe-Ga and Fe-Al alloys are promising materials for use in bending-mode vibrational energy harvesters. For this study, 50.8 mm × 5.0 mm × 0.5 mm strips of Fe-Ga and Fe-Al were cut from 0.50-mm thick rolled sheet. An atmospheric anneal was used to develop a Goss texture through an abnormal grain growth process. The anneal lead to large (011) grains that covered over 90% of sample surface area. The resulting highly-textured Fe-Ga and Fe-Al strips exhibited saturation magnetostriction values (λsat = λ∥ - λ⊥) of ˜280 ppm and ˜130 ppm, respectively. To maximize 90° rotation of magnetic moments during bending of the strips, we employed compressive stress annealing (SA). Samples were heated to 500°C, and a 100-150 MPa compressive stress was applied while at 500°C for 30 minutes and while being cooled. The effectiveness of the SA on magnetic moment rotation was inferred by comparing post-SA magnetostriction with the maximum possible yield of rotated magnetic moments, which is achieved when λ∥ = λsat and λ⊥ = 0. The uniformity of the SA along the sample length and the impact of the SA on sensing/energy harvesting performance were then assessed by comparing pre- and post-SA bending-stress-induced changes in magnetization at five different locations along the samples. The SA process with a 150 MPa compressive load improved Fe-Ga actuation along the sample length from 170 to 225 ppm (from ˜60% to within ˜80% of λsat). The corresponding sensing/energy harvesting performance improved by as much as a factor of eight in the best sample, however the improvement was not at all uniform along the sample length. The SA process with a 100 MPa compressive load improved Fe-Al actuation along the sample length from 60 to 73 ppm (from ˜46% to ˜56% of λsat, indicating only a marginally effective SA and suggesting the need for modification of the SA protocol. In spite of this, the SA was effective at improving the sensing/energy harvesting performance by a factor of ˜2.5 in the best sample. As with the Fe-Ga strip, improvement in performance was quite varied along the strip length.

  1. The Use of Sphere Indentation Experiments to Characterize Ceramic Damage Models

    DTIC Science & Technology

    2011-09-01

    state having two equal eigenvalues. For TXC, the axial stress (single eigenvalue) is more compressive than the lateral stresses (dual eigenvalues). For...parameters. These dynamic experiments supplement traditional characterization experiments such as tension, triaxial compression , Brazilian, and...These dynamic experiments supplement traditional characterization experiments such as tension, triaxial compression , Brazilian, and plate impact, which

  2. Evaluation of shear-compressive strength properties for laminated GFRP composites in electromagnet system

    NASA Astrophysics Data System (ADS)

    Song, Jun Hee; Kim, Hak Kun; Kim, Sam Yeon

    2014-07-01

    Laminated fiber-reinforced composites can be applied to an insulating structure of a nuclear fusion device. It is necessary to investigate the interlaminar fracture characteristics of the laminated composites for the assurance of design and structural integrity. The three methods used to prepare the glass fiber reinforced plastic composites tested in this study were vacuum pressure impregnation, high pressure laminate (HPL), and prepreg laminate. We discuss the design criteria for safe application of composites and the shear-compressive test methods for evaluating mechanical properties of the material. Shear-compressive tests could be performed successfully using series-type test jigs that were inclined 0°, 30°, 45°, 60°, and 75° to the normal axis. Shear strength depends strongly on the applied compressive stress. The design range of allowable shear stress was extended by use of the appropriate composite fabrication method. HPL had the largest design range, and the allowable interlaminar shear stress was 0.254 times the compressive stress.

  3. Critical contribution of RIPK1 mediated mitochondrial dysfunction and oxidative stress to compression-induced rat nucleus pulposus cells necroptosis and apoptosis.

    PubMed

    Chen, Songfeng; Lv, Xiao; Hu, Binwu; Zhao, Lei; Li, Shuai; Li, Zhiliang; Qing, Xiangcheng; Liu, Hongjian; Xu, Jianzhong; Shao, Zengwu

    2018-04-28

    The aim of this study was to investigate whether RIPK1 mediated mitochondrial dysfunction and oxidative stress contributed to compression-induced nucleus pulposus (NP) cells necroptosis and apoptosis, together with the interplay relationship between necroptosis and apoptosis in vitro. Rat NP cells underwent various periods of 1.0 MPa compression. To determine whether compression affected mitochondrial function, we evaluated the mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP), mitochondrial ultrastructure and ATP content. Oxidative stress-related indicators reactive oxygen species, superoxide dismutase and malondialdehyde were also assessed. To verify the relevance between oxidative stress and necroptosis together with apoptosis, RIPK1 inhibitor necrostatin-1(Nec-1), mPTP inhibitor cyclosporine A (CsA), antioxidants and small interfering RNA technology were utilized. The results established that compression elicited a time-dependent mitochondrial dysfunction and elevated oxidative stress. Nec-1 and CsA restored mitochondrial function and reduced oxidative stress, which corresponded to decreased necroptosis and apoptosis. CsA down-regulated mitochondrial cyclophilin D expression, but had little effects on RIPK1 expression and pRIPK1 activation. Additionally, we found that Nec-1 largely blocked apoptosis; whereas, the apoptosis inhibitor Z-VAD-FMK increased RIPK1 expression and pRIPK1 activation, and coordinated regulation of necroptosis and apoptosis enabled NP cells survival more efficiently. In contrast to Nec-1, SiRIPK1 exacerbated mitochondrial dysfunction and oxidative stress. In summary, RIPK1-mediated mitochondrial dysfunction and oxidative stress play a crucial role in NP cells necroptosis and apoptosis during compression injury. The synergistic regulation of necroptosis and apoptosis may exert more beneficial effects on NP cells survival, and ultimately delaying or even retarding intervertebral disc degeneration.

  4. Microstructure Evolution and Flow Stress Model of a 20Mn5 Hollow Steel Ingot during Hot Compression

    PubMed Central

    Liu, Min; Ma, Qing-Xian; Luo, Jian-Bin

    2018-01-01

    20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft due to its good performance of strength, toughness and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under high temperature were not studied. In this study, the hot compression experiments under temperatures of 850–1200 °C and strain rates of 0.01/s–1/s are conducted using Gleeble thermal and mechanical simulation machine. And the flow stress curves and microstructure after hot compression are obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 hollow steel ingot. PMID:29561826

  5. Hydrostatic, uniaxial, and triaxial compression tests on unpoled "Chem-prep" PZT 95/5-2Nb ceramic within temperature range of -55 to 75 degrees C.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeuch, David Henry; Montgomery, Stephen Tedford; Lee, Moo Yul

    Sandia is currently developing a lead-zirconate-titanate ceramic 95/5-2Nb (or PNZT) from chemically prepared ('chem-prep') precursor powders. Previous PNZT ceramic was fabricated from the powders prepared using a 'mixed-oxide' process. The specimens of unpoled PNZT ceramic from batch HF803 were tested under hydrostatic, uniaxial, and constant stress difference loading conditions within the temperature range of -55 to 75 C and pressures to 500 MPa. The objective of this experimental study was to obtain mechanical properties and phase relationships so that the grain-scale modeling effort can develop and test its models and codes using realistic parameters. The stress-strain behavior of 'chem-prep' PNZTmore » under different loading paths was found to be similar to that of 'mixed-oxide' PNZT. The phase transformation from ferroelectric to antiferroelectric occurs in unpoled ceramic with abrupt increase in volumetric strain of about 0.7 % when the maximum compressive stress, regardless of loading paths, equals the hydrostatic pressure at which the transformation otherwise takes place. The stress-volumetric strain relationship of the ceramic undergoing a phase transformation was analyzed quantitatively using a linear regression analysis. The pressure (P{sub T1}{sup H}) required for the onset of phase transformation with respect to temperature is represented by the best-fit line, P{sub T1}{sup H} (MPa) = 227 + 0.76 T (C). We also confirmed that increasing shear stress lowers the mean stress and the volumetric strain required to trigger phase transformation. At the lower bound (-55 C) of the tested temperature range, the phase transformation is permanent and irreversible. However, at the upper bound (75 C), the phase transformation is completely reversible as the stress causing phase transformation is removed.« less

  6. Allowable compressive stress at prestress transfer.

    DOT National Transportation Integrated Search

    2008-12-01

    In 2004, The Texas Department of Transportation initiated Project 5197 to investigate the feasibility of : increasing the allowable compressive stress limit at prestress transfer. Initially, the live load performance of 36 : specimens was evaluated b...

  7. 49 CFR 173.315 - Compressed gases in cargo tanks and portable tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... liquefied petroleum gas are as follows: Maximum specific gravity of the liquid material at 60 °F. Maximum... 49 Transportation 2 2010-10-01 2010-10-01 false Compressed gases in cargo tanks and portable tanks. 173.315 Section 173.315 Transportation Other Regulations Relating to Transportation PIPELINE AND...

  8. Elastic-plastic finite-element analyses of thermally cycled single-edge wedge specimens

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1982-01-01

    Elastic-plastic stress-strain analyses were performed for single-edge wedge alloys subjected to thermal cycling in fluidized beds. Three cases (NASA TAZ-8A alloy under one cycling condition and 316 stainless steel alloy under two cycling conditions) were analyzed by using the MARC nonlinear, finite-element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions that used the NASTRAN and ISO3DQ computer programs. The NASA TAZ-8A case exhibited no plastic strains, and the elastic and elastic-plastic analyses gave identical results. Elastic-plastic analyses of the 316 stainless steel alloy showed plastic strain reversal with a shift of the mean stresses in the compressive direction. The maximum equivalent total strain ranges for these cases were 13 to 22 percent greater than that calculated from elastic analyses.

  9. Aero-Thermo-Structural Analysis of Inlet for Rocket Based Combined Cycle Engines

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Challa, Preeti; Sree, Dave; Reddy, Dhanireddy R. (Technical Monitor)

    2000-01-01

    NASA has been developing advanced space transportation concepts and technologies to make access to space less costly. One such concept is the reusable vehicles with short turn-around times. The NASA Glenn Research Center's concept vehicle is the Trailblazer powered by a rocket-based combined cycle (RBCC) engine. Inlet is one of the most important components of the RBCC engine. This paper presents fluid flow, thermal, and structural analysis of the inlet for Mach 6 free stream velocity for fully supersonic and supercritical with backpressure conditions. The results concluded that the fully supersonic condition was the most severe case and the largest stresses occur in the ceramic matrix composite layer of the inlet cowl. The maximum tensile and the compressive stresses were at least 3.8 and 3.4, respectively, times less than the associated material strength.

  10. Permeability of Concrete with Recycled Concrete Aggregate and Pozzolanic Materials under Stress

    PubMed Central

    Wang, Hailong; Sun, Xiaoyan; Wang, Junjie; Monteiro, Paulo J.M.

    2016-01-01

    The research reported herein studied the permeability of concrete containing recycled-concrete aggregate (RA), superfine phosphorous slag (PHS), and ground granulated blast-furnace slag (GGBS) with and without stress. Test results showed that the chloride diffusion coefficient of RA concrete (RAC) without external loads decreased with time, and the permeability of RAC is much lower than that of the reference concrete due to the on-going hydration and the pozzolanic reaction provided by the PHS and GGBS additives in the RAC mixture. The permeability of chloride under flexural load is much more sensitive than that under compressive load due to the differences in porosity and cracking pattern. At low compressive stress levels, the permeability of chloride decreased by the closing of pores and microcracks within RAC specimens. However, in a relatively short time the chloride diffusion coefficient and the chloride content increased rapidly with the increase of compressive stress when it exceeded a threshold stress level of approximate 35% of the ultimate compressive strength. Under flexural stress, the chloride transport capability increased with the increase of stress level and time. At high compressive and flexural stress levels, creep had a significant effect on the permeability of chloride in the RAC specimens due to the damage from the nucleation and propagation of microcracks over time. It is apparent that mortar cracking has more of a significant effect on the chloride transport in concrete than cracking in the interfacial transition zone (ITZ). PMID:28773376

  11. Permeability of Concrete with Recycled Concrete Aggregate and Pozzolanic Materials under Stress.

    PubMed

    Wang, Hailong; Sun, Xiaoyan; Wang, Junjie; Monteiro, Paulo J M

    2016-03-30

    The research reported herein studied the permeability of concrete containing recycled-concrete aggregate (RA), superfine phosphorous slag (PHS), and ground granulated blast-furnace slag (GGBS) with and without stress. Test results showed that the chloride diffusion coefficient of RA concrete (RAC) without external loads decreased with time, and the permeability of RAC is much lower than that of the reference concrete due to the on-going hydration and the pozzolanic reaction provided by the PHS and GGBS additives in the RAC mixture. The permeability of chloride under flexural load is much more sensitive than that under compressive load due to the differences in porosity and cracking pattern. At low compressive stress levels, the permeability of chloride decreased by the closing of pores and microcracks within RAC specimens. However, in a relatively short time the chloride diffusion coefficient and the chloride content increased rapidly with the increase of compressive stress when it exceeded a threshold stress level of approximate 35% of the ultimate compressive strength. Under flexural stress, the chloride transport capability increased with the increase of stress level and time. At high compressive and flexural stress levels, creep had a significant effect on the permeability of chloride in the RAC specimens due to the damage from the nucleation and propagation of microcracks over time. It is apparent that mortar cracking has more of a significant effect on the chloride transport in concrete than cracking in the interfacial transition zone (ITZ).

  12. The role of cross-sectional geometry, curvature, and limb posture in maintaining equal safety factors: a computed tomography study.

    PubMed

    Brassey, Charlotte A; Kitchener, Andrew C; Withers, Philip J; Manning, Phillip L; Sellers, William I

    2013-03-01

    The limb bones of an elephant are considered to experience similar peak locomotory stresses as a shrew. "Safety factors" are maintained across the entire range of body masses through a combination of robusticity of long bones, postural variation, and modification of gait. The relative contributions of these variables remain uncertain. To test the role of shape change, we undertook X-ray tomographic scans of the leg bones of 60 species of mammals and birds, and extracted geometric properties. The maximum resistible forces the bones could withstand before yield under compressive, bending, and torsional loads were calculated using standard engineering equations incorporating curvature. Positive allometric scaling of cross-sectional properties with body mass was insufficient to prevent negative allometry of bending (F(b) ) and torsional maximum force (F(t) ) (and hence decreasing safety factors) in mammalian (femur F(b) ∞M(b) (0.76) , F(t) ∞M(b) (0.80) ; tibia F(b) ∞M(b) (0.80) , F(t) ∞M(b) (0.76) ) and avian hindlimbs (tibiotarsus F(b) ∞M(b) (0.88) , F(t) ∞M(b) (0.89) ) with the exception of avian femoral F(b) and F(t) . The minimum angle from horizontal a bone must be held while maintaining a given safety factor under combined compressive and bending loads increases with M(b) , with the exception of the avian femur. Postural erectness is shown as an effective means of achieving stress similarity in mammals. The scaling behavior of the avian femur is discussed in light of unusual posture and kinematics. Copyright © 2013 Wiley Periodicals, Inc.

  13. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering.

    PubMed

    Rennerfeldt, Deena A; Renth, Amanda N; Talata, Zsolt; Gehrke, Stevin H; Detamore, Michael S

    2013-11-01

    Hydrogels are attractive for tissue engineering applications due to their incredible versatility, but they can be limited in cartilage tissue engineering applications due to inadequate mechanical performance. In an effort to address this limitation, our team previously reported the drastic improvement in the mechanical performance of interpenetrating networks (IPNs) of poly(ethylene glycol) diacrylate (PEG-DA) and agarose relative to pure PEG-DA and agarose networks. The goal of the current study was specifically to determine the relative importance of PEG-DA concentration, agarose concentration, and PEG-DA molecular weight in controlling mechanical performance, swelling characteristics, and network parameters. IPNs consistently had compressive and shear moduli greater than the additive sum of either single network when compared to pure PEG-DA gels with a similar PEG-DA content. IPNs withstood a maximum stress of up to 4.0 MPa in unconfined compression, with increased PEG-DA molecular weight being the greatest contributing factor to improved failure properties. However, aside from failure properties, PEG-DA concentration was the most influential factor for the large majority of properties. Increasing the agarose and PEG-DA concentrations as well as the PEG-DA molecular weight of agarose/PEG-DA IPNs and pure PEG-DA gels improved moduli and maximum stresses by as much as an order of magnitude or greater compared to pure PEG-DA gels in our previous studies. Although the viability of encapsulated chondrocytes was not significantly affected by IPN formulation, glycosaminoglycan (GAG) content was significantly influenced, with a 12-fold increase over a three-week period in gels with a lower PEG-DA concentration. These results suggest that mechanical performance of IPNs may be tuned with partial but not complete independence from biological performance of encapsulated cells. © 2013 Elsevier Ltd. All rights reserved.

  14. Effect of load introduction on graphite epoxy compression specimens

    NASA Technical Reports Server (NTRS)

    Reiss, R.; Yao, T. M.

    1981-01-01

    Compression testing of modern composite materials is affected by the manner in which the compressive load is introduced. Two such effects are investigated: (1) the constrained edge effect which prevents transverse expansion and is common to all compression testing in which the specimen is gripped in the fixture; and (2) nonuniform gripping which induces bending into the specimen. An analytical model capable of quantifying these foregoing effects was developed which is based upon the principle of minimum complementary energy. For pure compression, the stresses are approximated by Fourier series. For pure bending, the stresses are approximated by Legendre polynomials.

  15. Volcanism on Mercury (dikes, lava flows, pyroclastics): Crust/mantle density contrasts, the evolution of compressive stress and the presence of mantle volatiles

    NASA Astrophysics Data System (ADS)

    Wilson, L.; Head, J. W., III

    2008-09-01

    Background. There is great uncertainty about the internal structure of Mercury and the composition of the mantle [e.g., 1, 2]. The high mean density of the body suggests that it may have lost parts of its crust and mantle in a giant impact at some stage after most of its initial accretion was sufficiently complete that at least partial separation of a core had occurred. It is the uncertainty about the timing of the giant impact, and hence the physico-chemical state of proto-Mercury at the time that it occurred, that leads to difficulties in predicting the interior structure and mantle composition. However, it seems reasonable to assume that the Mercury we see today has some combination of a relatively low-density crust and a relatively highdensity mantle; uncertainty remains about the presence and types of volatiles [2]. The second uncertainty is the nature of the surface plains units, specifically, are these lava flows and pyroclastics erupted from the interior, or impact-reworked earlier crust [3-5] (Figs. 1-2)? The detection of candidate pyroclastic deposits [4] has very important implications for mantle volatiles. Furthermore, whatever the surface composition, the presence of planet-wide systems of wrinkle ridges and thrust faults implies that a compressive crustal stress regime became dominant at some stage in the planet's history [3, 6]. If the plains units are indeed lava flows, then the fact that the products of the compressive regime deform many plains units suggests that the development of the compressive stresses may have played a vital role in determining when and if surface eruptions of mantle-derived magmas could occur. This would be analogous to the way in which the change with time from extensional to compressive global stresses in the lithosphere of the Moon influenced the viability of erupting magmas from deep mantle sources [7-9]. Analysis: To investigate the relationship between lithospheric stresses and magma eruption conditions [e.g., 9-11] we have assumed a series of permutations of crustal density, crustal thickness, mantle density, magma density, source depth in mantle of melt generation, and crustal compressive stress, and investigated which permutations will allow the transfer of magma from source to surface. With so many variables it is easiest to illustrate the results by choosing one set of densities and varying the depths and stresses. We begin with crustal density of 2700 kg m-3, a mantle density of 3400 kg m-3 and a melt density of 3000 kg m-3. Table 1 then shows, as a function of the thickness of the crust (Hc), the minimum depth below the surface (Hm) from which mantle melts must be derived if their positive buoyancy in the mantle is to just compensate for their negative buoyancy in the crust and so enable them to reach the surface and erupt. For the values of Hm in Table 1 to be valid, the stress conditions in the crust must be such that a dike can remain open at all depths. However, this may not be possible in the presence of a horizontal compressive stress. The third and fourth columns of the table show the maximum horizontal compressive stress allowed if a dike is to remain open when the compressive stress is either uniform, i.e. the same at all depths in the crust (Su), or variable, specifically decreasing from the value given (Sv) at the surface to zero at the base of the crust. We now increase the crustal density slightly to 2800 kg m-3 but keep the mantle and melt densities the same. The results in Table 2 show, as expected, that the reduced amount of negative buoyancy of magma in the crust means that mantle melt sources need not be quite as deep as before. However, if a pathway is to remain open at all depths, significantly smaller compressive stresses are needed than in the previous case. Implications: This comparison demonstrates the major trend that we find: as the crust becomes denser it is easier, in terms of magma buoyancy alone, to erupt magma from a given depth in the mantle. Given that all intrusions and eruptions emplace magma at some level into the crust, and therefore increase its density with time, this at first sight implies that surface eruptions of magma coming directly from the mantle could have become commoner with time on Mercury. However, the fact that the thermal history of the planet is likely to dictate that crustal compressive stresses increased with time, together with our finding that such an increase progressively suppresses the possibility of maintaining continuously open pathways between the mantle and the surface, suggests that conditions were much more finely balanced. By analogy with the Moon's thermal history [12, 13], compressive stresses at least a factor of two greater than those found here to suppress stable dikes must have been reached about half way through Mercury's lifetime, with even greater compressive stresses being needed to cause the observed thrust faults. Thus deepseated eruptive activity must eventually have ceased on Mercury, with the timing of its cessation being very finely tuned by its density and stress structure. As our knowledge of the surface composition and internal structure of Mercury improves with future exploration by MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) [14] and BepiColombo [15, 16], it will become possible to greatly refine the models presented here. Furthermore, the distribution of suspected pyroclastic deposits [4] can be used to assess mantle volatile content. References: [1] M. T. Zuber et al. (2007) SSR, 131. 105- 132. [2] W. V. Boynton et al. (2007) SSR, 131, 85-104. [3] J. W. Head et al. (2007) SSR, 131, 41-84. [4] M. Robinson and P. Lucey (1997) Science, 275, 197-200. [5] J. W. Head et al. (2008) Science, in press. [6] R. G. Strom et al. (1975) JGR, 80, 2478-2507. [7] S. C. Solomon and J. W. Head (1979) JGR, 84, 1667-1682. [8] S. C. Solomon and J. W. Head (1989) RGSP, 18, 107-141. [9] J. W. Head and L. Wilson (1992) G&CA, 55, 2155-2175. [10] J. W. Head and L. Wilson (2001) Workshop on Mercury: Space Environment, Surface and Interior (LPI), 44-45. [11] L. Wilson and J. W. Head (2008) LPSC 39, #1104. [12] M.A. Wieczorek et al. (2007) New Views of the Moon, MSA-RMG 60, 221-364. [13] C. K. Shearer et al. (2007) New Views of the Moon, MSARMG 60, 365-518. [14] S. C. Solomon et al. (2007) SSR, 131, 3-39. [15] R. Grard et al. (2000) ESA Bull., 103, 11-19. [16] A. Anselmi and G. Scoon (2001) PSS, 49, 1409-1420.

  16. Electromechanical Apparatus Measures Residual Stress

    NASA Technical Reports Server (NTRS)

    Chern, Engmin J.; Flom, Yury

    1993-01-01

    Nondestructive test exploits relationship between stress and eddy-current-probe resistance. Yields data on residual stress or strain in metal tension/compression specimen (stress or strain remaining in specimen when no stress applied from without). Apparatus is assembly of commercial equipment: tension-or-compression testing machine, eddy-current probe, impedance gain-and-phase analyzer measuring impedance of probe coil, and desktop computer, which controls other equipment and processes data received from impedance gain-and-phase analyzer.

  17. Influence of residual welding stresses, overload and specimen preparation on fatigue crack growth under axial compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greasley, A.

    1995-02-01

    Double edge notched axial compression specimens taken from thick welded steel joints have been used to grow fatigue cracks under pulsating compressive loads at mean stresses up to 55% of that needed for general yielding. The redistribution of residual stresses during specimen preparation and during crack growth influences the nucleation, growth rate and extent of fatigue cracks. Crack growth rates which are comparable to the equivalent tensile situation have been observed in as-welded, welded plus overloaded and stress relieved plus overloaded joints. Multiple nucleation and curved crack profiles have been observed in all cases. 5 refs.

  18. Minimization of Residual Stress in an Al-Cu Alloy Forged Plate by Different Heat Treatments

    NASA Astrophysics Data System (ADS)

    Dong, Ya-Bo; Shao, Wen-Zhu; Jiang, Jian-Tang; Zhang, Bao-You; Zhen, Liang

    2015-06-01

    In order to improve the balance of mechanical properties and residual stress, various quenching and aging treatments were applied to Al-Cu alloy forged plate. Residual stresses determined by the x-ray diffraction method and slitting method were compared. The surface residual stress measured by x-ray diffraction method was consistent with that measured by slitting method. The residual stress distribution of samples quenched in water with different temperatures (20, 60, 80, and 100 °C) was measured, and the results showed that the boiling water quenching results in a 91.4% reduction in residual stress magnitudes compared with cold water quenching (20 °C), but the tensile properties of samples quenched in boiling water were unacceptably low. Quenching in 80 °C water results in 75% reduction of residual stress, and the reduction of yield strength is 12.7%. The residual stress and yield strength level are considerable for the dimensional stability of aluminum alloy. Quenching samples into 30% polyalkylene glycol quenchants produced 52.2% reduction in the maximum compressive residual stress, and the reduction in yield strength is 19.7%. Moreover, the effects of uphill quenching and thermal-cold cycling on the residual stress were also investigated. Uphill quenching and thermal-cold cycling produced approximately 25-40% reduction in residual stress, while the effect on tensile properties is quite slight.

  19. Reduction of oxidative stress by compression stockings in standing workers.

    PubMed

    Flore, Roberto; Gerardino, Laura; Santoliquido, Angelo; Catananti, Cesare; Pola, Paolo; Tondi, Paolo

    2007-08-01

    Healthy workers who stand for prolonged periods show enhanced production of reactive oxygen species (ROS) in their systemic circulation. Oxidative stress is thought to be a risk factor for chronic venous insufficiency and other systemic diseases. To evaluate the effectiveness of compression stockings in the prevention of oxidative stress at work. ROS and venous pressure of the lower limbs were measured in 55 theatre nurses who stood in the operating theatre for >6 h, 23 industrial ironers who stood for up to 5 h during their shift and 65 outpatient department nurses and 35 laundry workers who acted as controls. Subjects and controls were examined on two consecutive days before and after work and with and without compression stockings. Without compression stockings, lower limb venous pressure increased significantly after work in all subjects and controls (P < 0.001), while only operating theatre nurses showed significantly higher mean levels of ROS (P < 0.001). There was no significant difference in venous pressures and ROS levels after work in subjects or controls when wearing compression stockings. Our data suggest a preventive role of compression stockings against oxidative stress in healthy workers with a standing occupation.

  20. Numerical simulation on the deformation and failure of the goaf surrounding rock in Heiwang mine

    NASA Astrophysics Data System (ADS)

    Shang, Yandong; Guo, Yanpei; Zhang, Wenquan

    2018-02-01

    The stability of overlying rock mass of mined-out area was simulated using finite difference software FLAC3D according to the gob distribution of Heiwang iron mine. The deformation, failure characteristics of surrounding rock was obtained. The subsidence of strata above the middle mined-out area was the biggest. The maximum subsidence of ground surface was 12.4mm. The farther away from the central goaf was, the smaller the vertical subsidence value was. There was almost no subsidence on the two lateral surrounding rock near mined-out area. There exists the potential danger when cutting along the boundary of goaf. The tensile stress appeared at the top and bottom of the mined-out area. The maximum of tensile stress was 34.7kPa. There was the compressive stress concentration phenomenon in the lateral boundary of mined-out area. The stress concentration coefficient was about 1.5 on both sides of gob. The upper section of the middle goaf was subjected to the tensile failure, and the upper rock mass of both sides was mainly subjected to the tensile-shear failure. The ore pillars on the inner side of the goaf were mainly subjected to the shear failure. When the overlying strata were complete, the possibility of sudden instability of the ore pillar and the sudden subsidence of the ground surface could not occur. The achievements can provide theoretical basis for the processing of the goaf.

  1. Dynamic finite element simulation of dental prostheses during chewing using muscle equivalent force and trajectory approaches.

    PubMed

    Razaghi, Reza; Biglari, Hasan; Karimi, Alireza

    2017-05-01

    The long-term application of dental prostheses inside the bone has a narrow relation to its biomechanical performance. Chewing is the most complicated function of a dental implant as it implements different forces to the implant at various directions. Therefore, a suitable holistic modelling of the jaw bone, implant, food, muscles, and their forces would be deemed significant to figure out the durability as well as functionality of a dental implant while chewing. So far, two approaches have been proposed to employ the muscle forces into the Finite Element (FE) models, i.e. Muscle Equivalent Force (MEF) and trajectory. This study aimed at propounding a new three-dimensional dynamic FE model based on two muscle forces modelling approaches in order to investigate the stresses and deformations in the dental prosthesis as well as maxillary bone during the time of chewing a cornflakes bio. The results revealed that both contact and the maximum von Mises stress in the implant and bones for trajectory approach considerably exceed those of the MEF. The maximum stresses, moreover, are located around the neck of implant which should be both clinically and structurally strong enough to functionally maintain the bone-implant interface. In addition, a higher displacement due to compressive load is observed for the implant head in trajectory approach. The results suggest the benefits provided by trajectory approach since MEF approach would significantly underestimate the stresses and deformations in both the dental prosthesis and bones.

  2. A Thermostructural Analysis of a Diboride Composite Leading Edge

    NASA Technical Reports Server (NTRS)

    Kowalski, Tom; Buesking, Kent; Kolodziej, Paul; Bull, Jeff

    1996-01-01

    In an effort to support the design of zirconium diboride composite leading edges for hypersonic vehicles, a finite element model (FEM) of a prototype leading edge was created and finite element analysis (FEA) was employed to assess its thermal and structural response to aerothermal boundary conditions. Unidirectional material properties for the structural components of the leading edge, a continuous fiber reinforced diboride composite, were computed with COSTAR. These properties agree well with those experimentally measured. To verify the analytical approach taken with COSMOS/M, an independent FEA of one of the leading edge assembly components was also done with COSTAR. Good agreement was obtained between the two codes. Both showed that a unidirectional lay-up had the best margin of safety for a simple loading case. Both located the maximum stress in the same region and ply. The magnitudes agreed within 4 percent. Trajectory based aerothermal heating was then applied to the leading edge assembly FEM created with COSMOS/M to determine steady state temperature response, displacement, stresses, and contact forces due to thermal expansion and thermal strains. Results show that the leading edge stagnation line temperature reached 4700 F. The maximum computed failure index for the laminated composite components peaks at 4.2, and is located at the bolt flange in layer 2 of the side bracket. The temperature gradient in the tip causes a compressive stress of 279 ksi along its width and substantial tensile stresses within its depth.

  3. The Strength Analysis of Differential Planetary Gears of Gearbox for Concrete Mixer Truck

    NASA Astrophysics Data System (ADS)

    Bae, M. H.; Bae, T. Y.; Kim, D. J.

    2018-03-01

    The power train of mixer gearbox for concrete mixer truck includes differential planetary gears to get large reduction ratio for operating mixer a drum and simple structure. The planetary gears are very important part of a mixer gearbox where strength problems namely gear bending stress, gear compressive stress and scoring failure are the main concern. In the present study, calculating specifications of the differential planetary gears and analyzing the gear bending and compressive stresses as well as scoring factor of the differential planetary gears gearbox for an optimal design of the mixer gearbox in respect to cost and reliability are investigated. The analyses of actual gear bending and compressive stresses of the differential planetary gears using Lewes & Hertz equation and verifications of the calculated specifications of the differential planetary gears evaluate the results with the data of allowable bending and compressive stress from the Stress-No. of cycles curves of gears. In addition, we also analyze actual gear scoring factor as well as evaluate the possibility of scoring failure of the differential planetary gear.

  4. The mechanical properties of fluoride salts at elevated temperatures. [candidate thermal energy storage materials for solar dynamic systems

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Whittenberger, J. D.

    1989-01-01

    The deformation behavior of CaF2 and LiF single crystals compressed in the 111 and the 100 line directions, respectively, are compared with the mechanical properties of polycrystalline LiF-22 (mol pct) CaF2 eutectic mixture in the temperature range 300 to 1275 K for strain rates varying between 7 x 10 to the -7th and 0.2/s. The true stress-strain curves for the single crystals were found to exhibit three stages in an intermediate range of temperatures and strain rates, whereas those for the eutectic showed negative work-hardening rates after a maximum stress. The true stress-strain rate data for CaF2 and LiF-22 CaF2 could be represented by a power-law relation with the strain rate sensitivities lying between 0.05 and 0.2 for both materials. A similar relation was found to be unsatisfactory in the case of LiF.

  5. High Strain Rate Response of 7055 Aluminum Alloy Subject to Square-spot Laser Shock Peening

    NASA Astrophysics Data System (ADS)

    Sun, Rujian; Zhu, Ying; Li, Liuhe; Guo, Wei; Peng, Peng

    2017-12-01

    The influences of laser pulse energy and impact time on high strain rate response of 7055 aluminum alloy subject to square-spot laser shock peening (SLSP) were investigate. Microstructural evolution was characterized by OM, SEM and TEM. Microhardness distribution and in-depth residual stress in 15 J with one and two impacts and 25 J with one and two impacts were analyzed. Results show that the original rolling structures were significantly refined due to laser shock induced recrystallization. High density of microdefects was generated, such as dislocation tangles, dislocation wall and stacking faults. Subgrains and nanograins were induced in the surface layer, resulting in grain refinement in the near surface layer after SLSP. Compressive residual stresses with maximum value of more than -200 MPa and affected depths of more than 1 mm can be generated after SLSP. Impact time has more effectiveness than laser pulse energy in increasing the magnitude of residual stress and achieving thicker hardening layer.

  6. Deformation behavior of TC6 alloy in isothermal forging

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Li, Miaoquan; Zhu, Dasong; Xiong, Aiming

    2005-10-01

    Isothermal compression of the TC6 alloy was carried out in a Thermecmaster-Z (Wuhan Iron and Steel Corporation, P.R. China) simulator at deformation temperatures of 800˜1040 °C, strain rates of 0.001˜50.0 s-1, and maximum height reduction of 50%. The deformation behavior of the TC6 alloy in isothermal forging was characterized based on stress-strain behavior and kinetic analysis. The activation energy of deformation obtained in the isothermal forging of the TC6 alloy was 267.49 kJ/mol in the β phase region and 472.76 kJ/mol in the α+β phase region. The processing map was constructed based on the dynamic materials model, and the optimal deformation parameters were obtained. Constitutive equations describing the flow stress as a function of strain rate, strain, and deformation temperature were proposed for the isothermal forging of the TC6 alloy, and a good agreement between the predicted and experimental stress-strain curves was achieved.

  7. The Role of Tectonic Stress in Triggering Large Silicic Caldera Eruptions

    NASA Astrophysics Data System (ADS)

    Cabaniss, Haley E.; Gregg, Patricia M.; Grosfils, Eric B.

    2018-05-01

    We utilize 3-D temperature-dependent viscoelastic finite element models to investigate the mechanical response of the host rock supporting large caldera-size magma reservoirs (volumes >102 km3) to local tectonic stresses. The mechanical stability of the host rock is used to determine the maximum predicted repose intervals and magma flux rates that systems may experience before successive eruption is triggered. Numerical results indicate that regional extension decreases the stability of the roof rock overlying a magma reservoir, thereby promoting early-onset caldera collapse. Alternatively, moderate amounts of compression (≤10 mm/year) on relatively short timescales (<104 years) increases roof rock stability. In addition to quantifying the affect of tectonic stresses on reservoir stability, our models indicate that the process of rejuvenation and mechanical failure is likely to take place over short time periods of hundreds to thousands of years. These findings support the short preeruption melt accumulation timescales indicated by U series disequilibrium studies.

  8. Carbon Nanotube/Polymer Nanocomposites Flexible Stress and Strain Sensors

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Scholl, Jonathan A.; Lowther, Sharon E.; Harrison, Joycelyn S.

    2008-01-01

    Conformable stress and strain sensors are required for monitoring the integrity of airframe structures as well as for sensing the mechanical stimuli in prosthetic arms. For this purpose, we have developed a series of piezoresistive single-wall carbon nanotube (SWCNT)/polymer nanocomposites. The electromechanical coupling of pressure with resistance changes in these nanocomposites is exceptionally greater than that of metallic piezoresistive materials. In fact, the piezoresistive stress coefficient (pi) of a SWCNT/polymer nanocomposite is approximately two orders of magnitude higher than that of a typical metallic piezoresistive. The piezoresistive stress coefficient is a function of the nanotube concentration wherein the maximum value occurs at a concentration just above the percolation threshold concentration (phi approx. 0.05 %). This response appears to originate from a change in intrinsic resistivity under compression/tension. A systematic study of the effect of the modulus of the polymer matrix on piezoresistivity allowed us to make flexible and conformable sensors for biomedical applications. The prototype haptic sensors using these nanocomposites are demonstrated. The piezocapacitive properties of SWCNT/polymer are also characterized by monitoring the capacitance change under pressure.

  9. Force sensitive carbon nanotube arrays for biologically inspired airflow sensing

    NASA Astrophysics Data System (ADS)

    Maschmann, Matthew R.; Dickinson, Ben; Ehlert, Gregory J.; Baur, Jeffery W.

    2012-09-01

    The compressive electromechanical response of aligned carbon nanotube (CNT) arrays is evaluated for use as an artificial hair sensor (AHS) transduction element. CNT arrays with heights of 12, 75, and 225 µm are examined. The quasi-static and dynamic sensitivity to force, response time, and signal drift are examined within the range of applied stresses predicted by a mechanical model applicable to the conceptual CNT array-based AHS (0-1 kPa). Each array is highly sensitive to compressive loading, with a maximum observed gauge factor of 114. The arrays demonstrate a repeatable response to dynamic cycling after a break-in period of approximately 50 cycles. Utilizing a four-wire measurement electrode configuration, the change in contact resistance between the array and the electrodes is observed to dominate the electromechanical response of the arrays. The response time of the CNT arrays is of the order of 10 ms. When the arrays are subjected to constant stress, mechanical creep is observed that results in a signal drift that generally diminishes the responsiveness of the arrays, particularly at stress approaching 1 kPa. The results of this study serve as a preliminary proof of concept for utilizing CNT arrays as a transduction mechanism for a proposed artificial hair sensor. Such a low profile and light-weight flow sensor is expected to have application in a number of applications including navigation and state awareness of small air vehicles, similar in function to natural hair cell receptors utilized by insects and bats.

  10. The glass and jamming transitions in dense granular matter

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Candelier, Raphaël; Dauchot, Olivier

    2013-06-01

    Everyday life tells us that matter acquires rigidity either when it cools down, like lava flows which turn into solid rocks, or when it is compacted, like tablets simply formed by powder compression. As suggested by these examples, solidification is not the sole privilege of crystals but also happens for disordered media such as glass formers, granular media, foams, emulsions and colloidal suspensions. Fifteen years ago the "Jamming paradigm" emerged to encompass in a unique framework the glass transition and the emergence of yield stress, two challenging issues in modern condensed matter physics. One must realize how bold this proposal was, given that the glass transition is a finite temperature transition governing the dynamical properties of supercooled liquids, while Jamming is essentially a zero temperature, zero external stress and purely geometric transition which occurs when a given packing of particles reaches the maximum compression state above which particles start to overlap. More recently, the observation of remarkable scaling properties on the approach to jamming led to the conjecture that this zero temperature "critical point" could determine the properties of dense particle systems within a region of the parameter space to be determined, which in principle could include thermal and stressed systems. Fifteen years of intense theoretical and experimental work later, what have we learned about Jamming and glassy dynamics? In this paper, we discuss these issues in the light of the experiments we have been conducting with vibrated grains.

  11. Stress analysis of mandibular implant overdenture with locator and bar/clip attachment: Comparative study with differences in the denture base length.

    PubMed

    Yoo, Jin Suk; Kwon, Kung-Rock; Noh, Kwantae; Lee, Hyeonjong; Paek, Janghyun

    2017-06-01

    The design of the attachment must provide an optimum stress distribution around the implant. In this study, for implant overdentures with a bar/clip attachment or a locator attachment, the stress transmitted to the implant in accordance with the change in the denture base length and the vertical pressure was measured and analyzed. Test model was created with epoxy resin. The strain gauges made a tight contact with implant surfaces. A universal testing machine was used to exert a vertical pressure on the mandibular implant overdenture and the strain rate of the implants was measured. Means and standard deviations of the maximum micro-deformation rates were determined. 1) Locator attachment: The implants on the working side generally showed higher strain than those on the non-working side. Tensile force was observed on the mesial surface of the implant on the working side, and the compressive force was applied to the buccal surface and on the surfaces of the implant on the non-working side. 2) Bar/clip attachment: The implants on the both non-working and working sides showed high strain; all surfaces except the mesial surface of the implant on the non-working side showed a compressive force. To minimize the strain on implants in mandibular implant overdentures, the attachment of the implant should be carefully selected and the denture base should be extended as much as possible.

  12. Fibrocartilage tissue engineering: the role of the stress environment on cell morphology and matrix expression.

    PubMed

    Thomopoulos, Stavros; Das, Rosalina; Birman, Victor; Smith, Lester; Ku, Katherine; Elson, Elliott L; Pryse, Kenneth M; Marquez, Juan Pablo; Genin, Guy M

    2011-04-01

    Although much is known about the effects of uniaxial mechanical loading on fibrocartilage development, the stress fields to which fibrocartilaginous regions are subjected to during development are mutiaxial. That fibrocartilage develops at tendon-to-bone attachments and in compressive regions of tendons is well established. However, the three-dimensional (3D) nature of the stresses needed for the development of fibrocartilage is not known. Here, we developed and applied an in vitro system to determine whether fibrocartilage can develop under a state of periodic hydrostatic tension in which only a single principal component of stress is compressive. This question is vital to efforts to mechanically guide morphogenesis and matrix expression in engineered tissue replacements. Mesenchymal stromal cells in a 3D culture were exposed to compressive and tensile stresses as a result of an external tensile hydrostatic stress field. The stress field was characterized through mechanical modeling. Tensile cyclic stresses promoted spindle-shaped cells, upregulation of scleraxis and type one collagen, and cell alignment with the direction of tension. Cells experiencing a single compressive stress component exhibited rounded cell morphology and random cell orientation. No difference in mRNA expression of the genes Sox9 and aggrecan was observed when comparing tensile and compressive regions unless the medium was supplemented with the chondrogenic factor transforming growth factor beta3. In that case, Sox9 was upregulated under static loading conditions and aggrecan was upregulated under cyclic loading conditions. In conclusion, the fibrous component of fibrocartilage could be generated using only mechanical cues, but generation of the cartilaginous component of fibrocartilage required biologic factors in addition to mechanical cues. These studies support the hypothesis that the 3D stress environment influences cell activity and gene expression in fibrocartilage development.

  13. Fibrocartilage Tissue Engineering: The Role of the Stress Environment on Cell Morphology and Matrix Expression

    PubMed Central

    Das, Rosalina; Birman, Victor; Smith, Lester; Ku, Katherine; Elson, Elliott L.; Pryse, Kenneth M.; Marquez, Juan Pablo; Genin, Guy M.

    2011-01-01

    Although much is known about the effects of uniaxial mechanical loading on fibrocartilage development, the stress fields to which fibrocartilaginous regions are subjected to during development are mutiaxial. That fibrocartilage develops at tendon-to-bone attachments and in compressive regions of tendons is well established. However, the three-dimensional (3D) nature of the stresses needed for the development of fibrocartilage is not known. Here, we developed and applied an in vitro system to determine whether fibrocartilage can develop under a state of periodic hydrostatic tension in which only a single principal component of stress is compressive. This question is vital to efforts to mechanically guide morphogenesis and matrix expression in engineered tissue replacements. Mesenchymal stromal cells in a 3D culture were exposed to compressive and tensile stresses as a result of an external tensile hydrostatic stress field. The stress field was characterized through mechanical modeling. Tensile cyclic stresses promoted spindle-shaped cells, upregulation of scleraxis and type one collagen, and cell alignment with the direction of tension. Cells experiencing a single compressive stress component exhibited rounded cell morphology and random cell orientation. No difference in mRNA expression of the genes Sox9 and aggrecan was observed when comparing tensile and compressive regions unless the medium was supplemented with the chondrogenic factor transforming growth factor beta3. In that case, Sox9 was upregulated under static loading conditions and aggrecan was upregulated under cyclic loading conditions. In conclusion, the fibrous component of fibrocartilage could be generated using only mechanical cues, but generation of the cartilaginous component of fibrocartilage required biologic factors in addition to mechanical cues. These studies support the hypothesis that the 3D stress environment influences cell activity and gene expression in fibrocartilage development. PMID:21091338

  14. Influence of deformation on dolomite rim growth kinetics

    NASA Astrophysics Data System (ADS)

    Helpa, Vanessa; Rybacki, Erik; Grafulha Morales, Luiz Fernando; Dresen, Georg

    2015-04-01

    Using a gas-deformation apparatus stacks of oriented calcite (CaCO3) and magnesite (MgCO3) single crystals were deformed at T = 750° C and P = 400 MPa to examine the influence of stress and strain on magnesio-calcite and dolomite (CaMg[CO3]2) growth kinetics. Triaxial compression and torsion tests performed at constant stresses between 7 and 38 MPa and test durations between 4 and 171 hours resulted in bulk strains of 0.03-0.2 and maximum shear strains of 0.8-5.6, respectively. The reaction rims consist of fine-grained (2-7 μm) dolomite with palisade-shaped grains growing into magnesite reactants and equiaxed granular dolomite grains next to calcite. In between dolomite and pure calcite, magnesio-calcite grains evolved with an average grain size of 20-40 μm. Grain boundaries tend to be straighter at high bulk strains and equilibrium angles at grain triple junctions are common within the magnesio-calcite layer. Transmission electron microscopy shows almost dislocation free palisades and increasing dislocation density within granular dolomite towards the magnesio-calcite boundary. Within magnesio-calcite grains, dislocations are concentrated at grain boundaries. Variation of time at fixed stress (˜17 MPa) yields a parabolic time dependence of dolomite rim width, indicating diffusion-controlled growth, similar to isostatic rim growth behavior. In contrast, the magnesio-calcite layer growth is enhanced compared to isostatic conditions. Triaxial compression at given time shows no significant change of dolomite rim thickness (11±2 μm) and width of magnesio-calcite layers (33±5 μm) with increasing stress. In torsion experiments, reaction layer thickness and grain size decrease from the center (low stress/strain) to the edge (high strain/stress) of samples. Chemical analysis shows nearly stoichiometric composition of dolomite palisades, but enhanced Ca content within granular grains, indicating local disequilibrium with magnesio-calcite, in particular for twisted samples. The shift from local equilibrium is ˜3 mol% in triaxial compression and ˜7 mol% in torsion. Electron backscatter diffraction analysis reveals a crystallographic preferred orientation (CPO) within the reaction layers with [0001] axes parallel to the compression/rotation axis and poles of {2-1-10} and {10-10} prismatic planes parallel to the reaction interface. Compared to isostatic annealing, the CPO is more pronounced and the amount of low-angle grain boundaries is increased. At the imposed experimental conditions, most of the bulk deformation is accommodated by calcite single, which is stronger than magnesite. Application of flow laws for magnesio-calcite and dolomite suggest that the fine-grained reaction products should deform by grain boundary diffusion creep, resulting in lower flow strength than the single crystal reactants. However, microstructural observations indicate that deformation of granular dolomite and magnesio-calcite is at least partially assisted by dislocation creep, which would result in an almost similar strength to calcite. Therefore, flattening of the reaction layers during triaxial compression may be counterbalanced by enhanced reaction rates, resulting in almost constant layer thickness, independent of the applied stress. For simple shear, the reduced reaction kinetics in the high stress/strain region of twisted samples may be related to increased nucleation rates, resulting in a lower grain size and rim thickness.

  15. Hot Deformation Behavior and a Two-Stage Constitutive Model of 20Mn5 Solid Steel Ingot during Hot Compression

    PubMed Central

    Liu, Min; Ma, Qing-Xian; Luo, Jian-Bin

    2018-01-01

    20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft forging due to its strength, toughness, and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under a high temperature were not studied. For this article, hot compression experiments under temperatures of 850–1200 °C and strain rates of 0.01 s−1–1 s−1 were conducted using a Gleeble-1500D thermo-mechanical simulator. Flow stress-strain curves and microstructure after hot compression were obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relationship and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 solid steel ingot. PMID:29547570

  16. Contour forming of metals by laser peening

    DOEpatents

    Hackel, Lloyd; Harris, Fritz

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  17. In situ stress variations at the Variscan deformation front — Results from the deep Aachen geothermal well

    NASA Astrophysics Data System (ADS)

    Trautwein-Bruns, Ute; Schulze, Katja C.; Becker, Stephan; Kukla, Peter A.; Urai, Janos L.

    2010-10-01

    In 2004 the 2544 m deep RWTH-1 well was drilled in the city centre of Aachen to supply geothermal heat for the heating and cooling of the new student service centre "SuperC" of RWTH Aachen University. Aachen is located in a complex geologic and tectonic position at the northern margin of the Variscan deformation front at the borders between the Brabant Massif, the Hohes Venn/Eifel areas and the presently active rift zone of the Lower Rhine Embayment, where existing data on in situ stress show complex changes over short distances. The borehole offers a unique opportunity to study varying stress regimes in this area of complex geodynamic evolution. This study of the in situ stresses is based on the observation of compressive borehole breakouts and drilling-induced tensile fractures in electrical and acoustic image logs. The borehole failure analysis shows that the maximum horizontal stress trends SE-NW which is in accordance with the general West European stress trend. Stress magnitudes modelled in accordance to the Mohr-Coulomb Theory of Sliding Friction indicate minimum and maximum horizontal stress gradients of 0.019 MPa/m and 0.038 MPa/m, respectively. The occurrence of drilling-induced tensile failure and the calculated in situ stress magnitudes are consistent with a model of strike-slip deformation. The observed strike-slip faulting regime supports the extension of the Brabant Shear Zone proposed by Ahorner (1975) into the Aachen city area, where it joins the major normal faulting set of the Roer Valley Graben zone. This intersection of the inherited Variscan deformation grain and the Cenozoic deformation resulting in recent strike-slip and normal faulting activity proves the tectonically different deformation responses over a short distance between the long-lived Brabant Massif and the Cenozoic Rhine Rift System.

  18. Development of a stress-mode sensitive viscoelastic constitutive relationship for asphalt concrete: experimental and numerical modeling

    NASA Astrophysics Data System (ADS)

    Karimi, Mohammad M.; Tabatabaee, Nader; Jahanbakhsh, H.; Jahangiri, Behnam

    2017-08-01

    Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery's nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.

  19. A critical state model for mudrock behavior at high stress levels

    NASA Astrophysics Data System (ADS)

    Heidari, M.; Nikolinakou, M. A.; Flemings, P. B.

    2016-12-01

    Recent experimental work has documented that the compression behavior, friction angle, and lateral stress ratio (k0) of mudrocks vary over the stress range of 1 to 100 MPa. We integrate these observations into a critical state model. The internal friction angle and the slope of the compression curve are key parameters in a mudrock critical state model. Published models assume that these parameters do not depend on the stress level, and hence predict lateral stress and normalized strength ratios that do not change with the stress level. However, recent experimental data on resedimented mudrock samples from Eugene Island, Gulf of Mexico, demonstrate that all these parameters vary considerably with the stress level (Casey and Germaine, 2013; Casey et al., 2015). To represent these variations, we develop an enhanced critical state model that uses a stress-level-dependent friction angle and a curvilinear compression curve. We show that this enhanced model predicts the observed variations of the lateral stress and strength ratios. The successful performance of our model indicates that the critical state theory developed for soil can predict mudrock nonlinear behavior at high stress levels and thus can be used in modeling geologic systems. Casey, B., Germaine, J., 2013. Stress Dependence of Shear Strength in Fine-Grained Soils and Correlations with Liquid Limit. J. Geotech. Geoenviron. Eng. 139, 1709-1717. Casey, B., Germaine, J., Flemings, P.B., Fahy, B.P., 2015. Estimating horizontal stresses for mudrocks under one-dimensional compression. Mar. Pet. Geol. 65, 178-186.

  20. Surface mechanical property and residual stress of peened nickel-aluminum bronze determined by in-situ X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Wang, Chengxi; Jiang, Chuanhai; Zhao, Yuantao; Chen, Ming; Ji, Vincent

    2017-10-01

    As one of the most important surface strengthening method, shot peening is widely used to improve the fatigue and stress corrosion crack resistance of components by introducing the refined microstructure and compressive residual stress in the surface layer. However, the mechanical properties of this thin layer are different from the base metal and are difficult to be characterized by conventional techniques. In this work, a micro uniaxial tensile tester equipped with in-situ X-ray stress analyzer was employed to make it achievable on a nickel-aluminum bronze with shot peening treatment. According to the equivalent stress-strain relationship based on Von Mises stress criterion, the Young's modulus and yield strength of the peened layer were calculated. The results showed that the Young's modulus was the same as the bulk material, and the yield strength corresponding to the permanent plastic strain of 0.2% was increased by 21% after SP. But the fractographic analysis showed that the fracture feature of the surface layer was likely to transform from the dimple to the cleavage, indicating the improved strength might be attained at the expense of ductility. The monotonic and cyclic loading were also performed via the same combined set-up. In addition, the specific relaxation behavior of compressive residual stress was quantified by linear logarithm relationship between residual stress and cycle numbers. It was found that the compressive residual stress mainly relaxed in the first few cycles, and then reached steady state with further cycles. The relaxation rate and the stable value were chiefly depended on the stress amplitude and number of cycles. The retained residual stress kept in compressive under all given applied stress levels, suggesting that the shot peening could introduce a more stable surface layer of compressive residual stress other than the elevated strength of nickel-aluminum bronze alloy.

  1. In situ stress evolution during magnetron sputtering of transition metal nitride thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abadias, G.; Guerin, Ph.

    2008-09-15

    Stress evolution during reactive magnetron sputtering of TiN, ZrN, and TiZrN layers was studied using real-time wafer curvature measurements. The presence of stress gradients is revealed, as the result of two kinetically competing stress generation mechanisms: atomic peening effect, inducing compressive stress, and void formation, leading to a tensile stress regime predominant at higher film thickness. No stress relaxation is detected during growth interrupt in both regimes. A change from compressive to tensile stress is evidenced with increasing film thickness, Ti content, sputtering pressure, and decreasing bias voltage.

  2. Stress path dependent hydromechanical behaviour of heterogeneous carbonate rock

    NASA Astrophysics Data System (ADS)

    Gland, N.; Dautriat, J.; Dimanov, A.; Raphanel, J.

    2010-06-01

    The influence of stress paths, representative of reservoir conditions, on the hydromechanical behavior of a moderately heterogeneous carbonate has been investigated. Multiscale structural heterogeneities, common for instance in carbonate rocks, can strongly alter the mechanical response and significantly influence the evolution of flow properties with stress. Using a triaxial cell, the permeability evolutions during compression and the effects of brittle (fracture) and plastic (pore collapse) deformations at yield, were measured. A strong scattering was observed on the mechanical response both in term of compressibility and failure threshold. Using the porosity scaling predicted by an adapted effective medium theory (based on crack growth under Hertzian contact), we have rescaled the critical pressures by the normalized porosity deviation. This procedure reduces efficiently the scattering, revealing in the framework of proportional stress path loading, a linear relation between the critical pressures and the stress path parameter through all the deformation regimes. It leads to a new formulation for the critical state envelope in the 'mean stress, deviatoric stress' diagram. The attractive feature of this new yield envelope formulation relies on the fact that only the two most common different mechanical tests 'Uniaxial Compression' and 'Hydrostatic Compression', are needed to define entirely the yield envelope. Volumic strains and normalized permeabilities are finally mapped in the stresses diagram and correlated.

  3. Blended-Wing-Body Structural Technology Study

    NASA Technical Reports Server (NTRS)

    Starnes, James H.

    1998-01-01

    In most studies of stability of plates, the axial stress has been taken as uniform compression throughout flat rectangular plates. Buckling of isotropic plates under a compressive stress that varies linearly from one loaded edge to the other has been studied by Libove et al. Cases of practical interest exist, however, in which the axial stress is not uniform but varies from tension at both loaded edges to compression in the middle. An example is the stability of the crown of the hat stiffened panel, a candidate configuration of the upper and lower skin of the Blended Wing Body (BWB) Aircraft. The BWB Aircraft is an advanced long-range ultra-high-capacity airliner with the principal feature being the pressurized wide double-deck body which is blended into the wing. In the present research, analytical methods are used to investigate the local stability of the crown in order to minimize its weight while optimizing its buckling strength. The crown is modeled as a rectangular laminated composite plate subjected to a second degree parabolic variation of axial stresses in the longitudinal direction. A varying tension-compression- tension axial stresses are induced in the crown of the stiffeners due to bending. The change in axial stresses is equilibrated by nonuniform shear stresses along the plate edges and transverse normal stresses.

  4. Fabrication and mechanical properties of Al2O3/SiC/ZrO2 functionally graded material by electrophoretic deposition.

    PubMed

    Askari, E; Mehrali, M; Metselaar, I H S C; Kadri, N A; Rahman, Md M

    2012-08-01

    This study describes the synthesis of Al(2)O(3)/SiC/ZrO(2) functionally graded material (FGM) in bio-implants (artificial joints) by electrophoretic deposition (EPD). A suitable suspension that was based on 2-butanone was applied for the EPD of Al(2)O(3)/SiC/ZrO(2), and a pressureless sintering process was applied as a presintering. Hot isostatic pressing (HIP) was used to densify the deposit, with beneficial mechanical properties after 2 h at 1800 °C in Ar atmosphere. The maximum hardness in the outer layer (90 vol.% Al(2)O(3)+10 vol.% SiC) and maximum fracture toughness in the core layer (75 vol.% Al(2)O(3)+10 vol.% SiC + 15 vol.% ZrO(2)) composite were 20.8±0.3 GPa and 8±0.1 MPa m(1/2), respectively. The results, when compared with results from Al(2)O(3)/ZrO(2) FGM, showed that SiC increased the compressive stresses in the outer layers, while the inner layers were under a residual tensile stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Improving the drug release of Naproxen Sodium tablets by preparing granules and tablets with a preferred mixing ratio of hydrates.

    PubMed

    Bär, David; Debus, Heiko; Grune, Christian; Tosch, Stephan; Fischer, Wolfgang; Mäder, Karsten; Imming, Peter

    2017-12-01

    Naproxen is a typical and well-known analgesic classified as non-steroidal anti-inflammatory drug (NSAID) and is commercialized as tablets or liquid-filled capsules. Naproxen is typically used asa sodium salt because of its better processability compared to Naproxen free acid. This entails hygroscopicity and gives rise to the existence of four different hydrates, which show polymorphic and pseudopolymorphic properties. Solid dosage forms containing Naproxen Sodium often have to be processed in an applicable dosage form by granulation and tablet compression. During granulation, Naproxen Sodium will be in contact with water and is exposed to the drop and rise in temperature and to mechanical stress. The result could be a mixture of different hydrates of Naproxen Sodium. This study showed that a modified designed fluid bed granulation was not affected by differences in the mixing ratio of hydrates when using different water contents after spraying and at the end with the finished granules. Here, X-ray diffraction combined with Rietveld refinement was used to analyze the ratio of the hydrates and its identity. All granulation batches showed a large amount of Naproxen Sodium Monohydrate (>87%) and no differences could be observed during tablet compression. Quantities of other hydrates were negligibly small. Furthermore, this study also demonstrated the influence of tablet compression by transforming the hydrates of the granules. In addition to Naproxen Sodium Monohydrate, a large quantity of amorphous structures has also been found. Rietveld evaluation combined with the preliminary studies of the raw hydrates provided conclusions on the drug release of the tablets containing hydrates of Naproxen Sodium which were influenced by tablet compression. Fast drug release was obtained when a maximum water content of about 21% was used after spraying during granulation, independently of the final water content of the finished granules. A maximum water content of less than 21% after spraying yielded a high quantity of amorphous components after tablet compression and thus worsened the drug release. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A New Approach to Fibrous Composite Laminate Strength Prediction

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1990-01-01

    A method of predicting the strength of cross-plied fibrous composite laminates is based on expressing the classical maximum-shear-stress failure criterion for ductile metals in terms of strains. Starting with such a formulation for classical isotropic materials, the derivation is extended to orthotropic materials having a longitudinal axis of symmetry, to represent the fibers in a unidirectional composite lamina. The only modification needed to represent those same fibers with properties normalized to the lamina rather than fiber is a change in axial modulus. A mirror image is added to the strain-based lamina failure criterion for fiber-dominated failures to reflect the cutoffs due to the presence of orthogonal fibers. It is found that the combined failure envelope is now identical with the well-known maximum-strain failure model in the tension-tension and compression-compression quadrants but is truncated in the shear quadrants. The successive application of this simple failure model for fibers in the 0/90 degree and +/- 45 degree orientations, in turn, is shown to be the necessary and sufficient characterization of the fiber-dominated failures of laminates made from fibers having the same tensile and compressive strengths. When one such strength is greater than the other, the failure envelope is appropriately truncated for the lesser direct strain. The shear-failure cutoffs are now based on the higher axial strain to failure since they occur at lower strains than and are usually not affected by such mechanisms as microbuckling. Premature matrix failures can also be covered by appropriately truncating the fiber failure envelope. Matrix failures are excluded from consideration for conventional fiber/polymer composites but the additional features needed for a more rigorous analysis of exotic materials are covered. The new failure envelope is compared with published biaxial test data. The theory is developed for unnotched laminates but is easily shrunk to incorporate reductions to allow for bolt holes, cutouts, reduced compressive strength after impact, and the like.

  7. Physical controls and depth of emplacement of igneous bodies: A review

    NASA Astrophysics Data System (ADS)

    Menand, Thierry

    2011-03-01

    The formation and growth of magma bodies are now recognised as involving the amalgamation of successive, discrete pulses such as sills. Sills would thus represent the building blocks of larger plutons ( sensu lato). Mechanical and thermal considerations on the incremental development of these plutons raise the issue of the crustal levels at which magma can stall and accumulate as sills. Reviewing the mechanisms that could a priori explain sill formation, it is shown that principal physical controls include: rigidity contrast, where sills form at the interface between soft strata overlaid by comparatively stiffer strata; rheology anisotropy, where sills form within the weakest ductile zones; and rotation of deviatoric stress, where sills form when the minimum compressive stress becomes vertical. Comparatively, the concept of neutral buoyancy is unlikely to play a leading control in the emplacement of sills, although it could assist their formation. These different controls on sill formation, however, do not necessarily operate on the same length scale. The length scale associated with the presence of interfaces separating upper stiffer layers from lower softer ones determines the depth at which rigidity-controlled sills will form. On another hand, the emplacement depths for rheology-controlled sills are likely to be determined by the distribution of the weakest ductile zones. Whereas the emplacement depth of stress-controlled sills is determined by a balance between the horizontal maximum compressive stress, which favours sill formation, and the buoyancy of their feeder dykes, which drives magma vertically. Ultimately, the depth at which a sill forms depends on whether crustal anisotropy or stress rotation is the dominant control, i.e. which of these processes operates at the smallest length scale. Using dimensional analysis, it is shown that sill formation controlled by remote stress rotation would occur on length scales of hundreds of meters or greater. This therefore suggests that crustal heterogeneities and their associated anisotropy are likely to play a larger role than remote stress rotation in controlling sill emplacement, unless these heterogeneities are several hundred meters or more apart. This also reinforces the role of local stress barriers, owing to interactions between deviatoric stress and crustal heterogeneities, in the formation of sills.

  8. A computational study of crimping and expansion of bioresorbable polymeric stents

    NASA Astrophysics Data System (ADS)

    Qiu, T. Y.; Song, M.; Zhao, L. G.

    2018-05-01

    This paper studied the mechanical performance of four bioresorbable PLLA stents, i.e., Absorb, Elixir, Igaki-Tamai and RevaMedical, during crimping and expansion using the finite element method. Abaqus CAE was used to create the geometrical models for the four stents. A tri-folded balloon was created using NX software. For the stents, elastic-plastic behaviour was used, with hardening implemented by considering the increase of yield stress with the plastic strain. The tri-folded balloon was treated as linear elastic. To simulate the crimping of stents, a set of 12 rigid plates were generated around the stents with a radially enforced displacement. During crimping, the stents were compressed from a diameter of 3 mm to 1.2 mm, with the maximum stress developed at both inner and outer sides of the U-bends. During expansion, the stent inner diameter increased to 3 mm at the peak pressure and then recoiled to different final diameters after balloon deflation due to different stent designs. The maximum stress was found again at the U-bends of stents. Diameter change, recoiling effect and radial strength/stiffness were also compared for the four stents to assess the effect of design variation on stent performance. The effect of loading rate on stent deformation was also simulated by considering the time-dependent plastic behaviour of polymeric material.

  9. Development of Low Cost Soil Stabilization Using Recycled Material

    NASA Astrophysics Data System (ADS)

    Ahmad, F.; Yahaya, A. S.; Safari, A.

    2016-07-01

    Recycled tyres have been used in many geotechnical engineering projects such as soil improvement, soil erosion and slope stability. Recycled tyres mainly in chip and shredded form are highly compressible under low and normal pressures. This characteristic would cause challenging problems in some applications of soil stabilization such as retaining wall and river bank projects. For high tensile stress and low tensile strain the use of fiberglass would be a good alternative for recycled tyre in some cases. To evaluate fiberglass as an alternative for recycled tyre, this paper focused on tests of tensile tests which have been carried out between fiberglass and recycled tyre strips. Fibreglass samples were produced from chopped strand fibre mat, a very low-cost type of fibreglass, which is cured by resin and hardener. Fibreglass samples in the thickness of 1 mm, 2 mm, 3 mm and 4 mm were developed 100 mm x 300 mm pieces. It was found that 3 mm fibreglass exhibited the maximum tensile load (MTL) and maximum tensile stress (MTS) greater than other samples. Statistical analysis on 3 mm fibreglass indicated that in the approximately equal MTL fibreglass samples experienced 2% while tyre samples experienced 33.9% ultimate tensile strain (UTST) respectively. The results also showed an approximately linear relationship between stress and strain for fibreglass samples and Young's modulus (E), ranging from 3581 MPa to 4728 MPa.

  10. A computational study of crimping and expansion of bioresorbable polymeric stents

    NASA Astrophysics Data System (ADS)

    Qiu, T. Y.; Song, M.; Zhao, L. G.

    2017-10-01

    This paper studied the mechanical performance of four bioresorbable PLLA stents, i.e., Absorb, Elixir, Igaki-Tamai and RevaMedical, during crimping and expansion using the finite element method. Abaqus CAE was used to create the geometrical models for the four stents. A tri-folded balloon was created using NX software. For the stents, elastic-plastic behaviour was used, with hardening implemented by considering the increase of yield stress with the plastic strain. The tri-folded balloon was treated as linear elastic. To simulate the crimping of stents, a set of 12 rigid plates were generated around the stents with a radially enforced displacement. During crimping, the stents were compressed from a diameter of 3 mm to 1.2 mm, with the maximum stress developed at both inner and outer sides of the U-bends. During expansion, the stent inner diameter increased to 3 mm at the peak pressure and then recoiled to different final diameters after balloon deflation due to different stent designs. The maximum stress was found again at the U-bends of stents. Diameter change, recoiling effect and radial strength/stiffness were also compared for the four stents to assess the effect of design variation on stent performance. The effect of loading rate on stent deformation was also simulated by considering the time-dependent plastic behaviour of polymeric material.

  11. Distribution of stress on TMJ disc induced by use of chincup therapy: assessment by the finite element method.

    PubMed

    Calçada, Flávio Siqueira; Guimarães, Antônio Sérgio; Teixeira, Marcelo Lucchesi; Takamatsu, Flávio Atsushi

    2017-01-01

    To assess the distribution of stress produced on TMJ disc by chincup therapy, by means of the finite element method. a simplified three-dimensional TMJ disc model was developed by using Rhinoceros 3D software, and exported to ANSYS software. A 4.9N load was applied on the inferior surface of the model at inclinations of 30, 40, and 50 degrees to the mandibular plane (GoMe). ANSYS was used to analyze stress distribution on the TMJ disc for the different angulations, by means of finite element method. The results showed that the tensile and compressive stresses concentrations were higher on the inferior surface of the model. More presence of tensile stress was found in the middle-anterior region of the model and its location was not altered in the three directions of load application. There was more presence of compressive stress in the middle and mid-posterior regions, but when a 50o inclined load was applied, concentration in the middle region was prevalent. Tensile and compressive stresses intensities progressively diminished as the load was more vertically applied. stress induced by the chincup therapy is mainly located on the inferior surface of the model. Loads at greater angles to the mandibular plane produced distribution of stresses with lower intensity and a concentration of compressive stresses in the middle region. The simplified three-dimensional model proved useful for assessing the distribution of stresses on the TMJ disc induced by the chincup therapy.

  12. Compression deformation of WC: atomistic description of hard ceramic material

    NASA Astrophysics Data System (ADS)

    Feng, Qing; Song, Xiaoyan; Liu, Xuemei; Liang, Shuhua; Wang, Haibin; Nie, Zuoren

    2017-11-01

    The deformation characteristics of WC, as a typical hard ceramic material, were studied on the nanoscale using atomistic simulations for both the single-crystal and polycrystalline forms under uniaxial compression. In particular, the effects of crystallographic orientation, grain boundary coordination and grain size on the origin of deformation were investigated. The deformation behavior of the single-crystal and polycrystalline WC both depend strongly on the orientation towards the loading direction. The grain boundaries play a significant role in the deformation coordination and the potential high fracture toughness of the nanocrystalline WC. In contrast to conventional knowledge of ceramics, maximum strength was obtained at a critical grain size corresponding to the turning point from a Hall-Petch to an inverse Hall-Petch relationship. For this the mechanism of the combined effect of dislocation motion within grains and the coordination of stress concentration at the grain boundaries were proposed. The present work has moved forward our understanding of plastic deformability and the possibility of achieving a high strength of nanocrystalline ceramic materials.

  13. Compression deformation of WC: atomistic description of hard ceramic material.

    PubMed

    Feng, Qing; Song, Xiaoyan; Liu, Xuemei; Liang, Shuhua; Wang, Haibin; Nie, Zuoren

    2017-11-24

    The deformation characteristics of WC, as a typical hard ceramic material, were studied on the nanoscale using atomistic simulations for both the single-crystal and polycrystalline forms under uniaxial compression. In particular, the effects of crystallographic orientation, grain boundary coordination and grain size on the origin of deformation were investigated. The deformation behavior of the single-crystal and polycrystalline WC both depend strongly on the orientation towards the loading direction. The grain boundaries play a significant role in the deformation coordination and the potential high fracture toughness of the nanocrystalline WC. In contrast to conventional knowledge of ceramics, maximum strength was obtained at a critical grain size corresponding to the turning point from a Hall-Petch to an inverse Hall-Petch relationship. For this the mechanism of the combined effect of dislocation motion within grains and the coordination of stress concentration at the grain boundaries were proposed. The present work has moved forward our understanding of plastic deformability and the possibility of achieving a high strength of nanocrystalline ceramic materials.

  14. An Experimental Study of the Influence of in-Plane Fiber Waviness on Unidirectional Laminates Tensile Properties

    NASA Astrophysics Data System (ADS)

    Zhao, Cong; Xiao, Jun; Li, Yong; Chu, Qiyi; Xu, Ting; Wang, Bendong

    2017-12-01

    As one of the most common process induced defects of automated fiber placement, in-plane fiber waviness and its influences on mechanical properties of fiber reinforced composite lack experimental studies. In this paper, a new approach to prepare the test specimen with in-plane fiber waviness is proposed in consideration of the mismatch between the current test standard and actual fiber trajectory. Based on the generation mechanism of in-plane fiber waviness during automated fiber placement, the magnitude of in-plane fiber waviness is characterized by axial compressive strain of prepreg tow. The elastic constants and tensile strength of unidirectional laminates with in-plane fiber waviness are calculated by off-axis and maximum stress theory. Experimental results show that the tensile properties infade dramatically with increasing magnitude of the waviness, in good agreement with theoretical analyses. When prepreg tow compressive strain reaches 1.2%, the longitudinal tensile modulus and strength of unidirectional laminate decreased by 25.5% and 57.7%, respectively.

  15. Interaction between regional and magma-induced stresses and their impact on volcano-tectonic seismicity

    NASA Astrophysics Data System (ADS)

    Vargas-Bracamontes, D. M.; Neuberg, J. W.

    2012-10-01

    Recent seismological observations have reported volcano-tectonic (VT) earthquakes with fault-plane solutions exhibiting a change of ~ 90° in their pressure axes relative to the regional stress field. Interestingly, they are recorded mainly during periods preceding eruptive activity and coexisting with those VTs showing a regional trend. This study explains the occurrence of such trends in VT seismicity and discusses the possible patterns of earthquake locations related to the interaction of regional and magma-induced stresses caused by pressurization or depressurization of magmatic sources. Our analysis shows that in the presence of a dominant regional stress field, faulting will occur on faults whose associated slip direction is close to or in agreement with the background regional stress. Failure on faults with an opposite slip direction is unlikely to occur. As magma pressure starts counter-acting the regional stresses, the likelihood of faults to slip in either a regional or opposite sense of slip relative to regional maximum compression increases, allowing the co-existence of possible failure with both slip tendencies, however the spatial distribution of possible faulting differs. As the pressure is progressively increased, the stress patterns gradually approach those corresponding to the absence of a regional stress field. The presented modeling results have implications for volcanic monitoring routines aiming to detect changes in stress patterns. They will ultimately help to improve the correct interpretation of volcano-tectonic seismicity.

  16. Fatigue Analysis of Notched Laminates: A Time-Efficient Macro-Mechanical Approach

    NASA Technical Reports Server (NTRS)

    Naghipour, P.; Pineda, E. J.; Bednarcyk, B. A.; Arnold, S. M.; Waas, A. M.

    2016-01-01

    A coupled transversely isotropic deformation and damage fatigue model is implemented within the finite element method and was utilized along with a static progressive damage model to predict the fatigue life, stiffness degradation as a function of number of cycles, and post-fatigue tension and compression response of notched, multidirectional laminates. Initially, the material parameters for the fatigue model were obtained utilizing micromechanics simulations and the provided [0], [90] and [plus or minus 45] experimental composite laminate S-N (stress-cycle) data. Within the fatigue damage model, the transverse and shear properties of the plies were degraded with an isotropic scalar damage variable. The damage in the longitudinal (fiber) ply direction was suppressed, and only the strength of the fiber was degraded as a function of fatigue cycles. A maximum strain criterion was used to capture the failure in each element, and once this criterion was satisfied, the longitudinal stiffness of the element was decreased by a factor of 10 (sup 4). The resulting, degraded properties were then used to calculate the new stress state. This procedure was repeated until final failure of the composite laminate was achieved or a specified number of cycles reached. For post-fatigue tension and compression behavior, four internal state variables were used to control the damage and failure. The predictive capability of the above-mentioned approach was assessed by performing blind predictions of the notched multidirectional IM7/977-3 composite laminates response under fatigue and post-fatigue tensile and compressive loading, followed by a recalibration phase. Although three different multidirectional laminates were analyzed in the course of this study, only detailed results (i.e., stiffness degradation and post-fatigue stress-train curves as well as damage evolution states for a single laminate ([30/60/90/minus 30/minus 60] (sub 2s)) are discussed in detail here.

  17. Mechanism for amorphization of boron carbide B{sub 4}C under uniaxial compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryal, Sitaram; Rulis, Paul; Ching, W. Y.

    2011-11-01

    Boron carbide undergoes an amorphization transition under high-velocity impacts, causing it to suffer a catastrophic loss in strength. The failure mechanism is not clear and this limits the ways to improve its resistance to impact. To help uncover the failure mechanism, we used ab initio methods to carry out large-scale uniaxial compression simulations on two polytypes of stoichiometric boron carbide (B{sub 4}C), B{sub 11}C-CBC, and B{sub 12}-CCC, where B{sub 11}C or B{sub 12} is the 12-atom icosahedron and CBC or CCC is the three-atom chain. The simulations were performed on large supercells of 180 atoms. Our results indicate that themore » B{sub 11}C-CBC (B{sub 12}-CCC) polytype becomes amorphous at a uniaxial strain s = 0.23 (0.22) and with a maximum stress of 168 (151) GPa. In both cases, the amorphous state is the consequence of structural collapse associated with the bending of the three-atom chain. Careful analysis of the structures after amorphization shows that the B{sub 11}C and B{sub 12} icosahedra are highly distorted but still identifiable. Calculations of the elastic coefficients (C{sub ij}) at different uniaxial strains indicate that both polytypes may collapse under a much smaller shear strain (stress) than the uniaxial strain (stress). On the other hand, separate simulations of both models under hydrostatic compression up to a pressure of 180 GPa show no signs of amorphization, in agreement with experimental observation. The amorphized nature of both models is confirmed by detailed analysis of the evolution of the radial pair distribution function, total density of states, and distribution of effective charges on atoms. The electronic structure and bonding of the boron carbide structures before and after amorphization are calculated to further elucidate the mechanism of amorphization and to help form the proper rationalization of experimental observations.« less

  18. Experimental and computational correlation of fracture parameters KIc, JIc, and GIc for unimodular and bimodular graphite components

    NASA Astrophysics Data System (ADS)

    Bhushan, Awani; Panda, S. K.

    2018-05-01

    The influence of bimodularity (different stress ∼ strain behaviour in tension and compression) on fracture behaviour of graphite specimens has been studied with fracture toughness (KIc), critical J-integral (JIc) and critical strain energy release rate (GIc) as the characterizing parameter. Bimodularity index (ratio of tensile Young's modulus to compression Young's modulus) of graphite specimens has been obtained from the normalized test data of tensile and compression experimentation. Single edge notch bend (SENB) testing of pre-cracked specimens from the same lot have been carried out as per ASTM standard D7779-11 to determine the peak load and critical fracture parameters KIc, GIc and JIc using digital image correlation technology of crack opening displacements. Weibull weakest link theory has been used to evaluate the mean peak load, Weibull modulus and goodness of fit employing two parameter least square method (LIN2), biased (MLE2-B) and unbiased (MLE2-U) maximum likelihood estimator. The stress dependent elasticity problem of three-dimensional crack progression behaviour for the bimodular graphite components has been solved as an iterative finite element procedure. The crack characterizing parameters critical stress intensity factor and critical strain energy release rate have been estimated with the help of Weibull distribution plot between peak loads versus cumulative probability of failure. Experimental and Computational fracture parameters have been compared qualitatively to describe the significance of bimodularity. The bimodular influence on fracture behaviour of SENB graphite has been reflected on the experimental evaluation of GIc values only, which has been found to be different from the calculated JIc values. Numerical evaluation of bimodular 3D J-integral value is found to be close to the GIc value whereas the unimodular 3D J-value is nearer to the JIc value. The significant difference between the unimodular JIc and bimodular GIc indicates that GIc should be considered as the standard fracture parameter for bimodular brittle specimens.

  19. Fracture mechanics analyses of partial crack closure in shell structures

    NASA Astrophysics Data System (ADS)

    Zhao, Jun

    2007-12-01

    This thesis presents the theoretical and finite element analyses of crack-face closure behavior in shells and its effect on the stress intensity factor under a bending load condition. Various shell geometries, such as spherical shell, cylindrical shell containing an axial crack, cylindrical shell containing a circumferential crack and shell with double curvatures, are all studied. In addition, the influence of material orthotropy on the crack closure effect in shells is also considered. The theoretical formulation is developed based on the shallow shell theory of Delale and Erdogan, incorporating the effect of crack-face closure at the compressive edges. The line-contact assumption, simulating the crack-face closure at the compressive edges, is employed so that the contact force at the closure edges is introduced, which can be translated to the mid-plane of the shell, accompanied by an additional distributed bending moment. The unknown contact force is computed by solving a mixed-boundary value problem iteratively, that is, along the crack length, either the normal displacement of the crack face at the compressive edges is equal to zero or the contact pressure is equal to zero. It is found that due to the curvature effects crack closure may not always occur on the entire length of the crack, depending on the direction of the bending load and the geometry of the shell. The crack-face closure influences significantly the magnitude of the stress intensity factors; it increases the membrane component but decreases the bending component. The maximum stress intensity factor is reduced by the crack-face closure. The significant influence of geometry and material orthotropy on rack closure behavior in shells is also predicted based on the analytical solutions. Three-dimensional FEA is performed to validate the theoretical solutions. It demonstrates that the crack face closure occurs actually over an area, not on a line, but the theoretical solutions of the stress intensity factor and the FEA solutions are in good agreement, because the contact area is very small compared with the shell thickness.

  20. Tensile overpressure compartments on low-angle thrust faults

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    2017-08-01

    Hydrothermal extension veins form by hydraulic fracturing under triaxial stress (principal compressive stresses, σ 1 > σ 2 > σ 3) when the pore-fluid pressure, P f, exceeds the least compressive stress by the rock's tensile strength. Such veins form perpendicular to σ 3, their incremental precipitation from hydrothermal fluid often reflected in `crack-seal' textures, demonstrating that the tensile overpressure state, σ 3' = ( σ 3 - P f) < 0, was repeatedly met. Systematic arrays of extension veins develop locally in both sub-metamorphic and metamorphic assemblages defining tensile overpressure compartments where at some time P f > σ 3. In compressional regimes ( σ v = σ 3), subhorizontal extension veins may develop over vertical intervals <1 km or so below low-permeability sealing horizons with tensile strengths 10 < T o < 20 MPa. This is borne out by natural vein arrays. For a low-angle thrust, the vertical interval where the tensile overpressure state obtains may continue down-dip over distances of several kilometres in some instances. The overpressure condition for hydraulic fracturing is comparable to that needed for frictional reshear of a thrust fault lying close to the maximum compression, σ 1. Under these circumstances, especially where the shear zone material has varying competence (tensile strength), affecting the failure mode, dilatant fault-fracture mesh structures may develop throughout a tabular rock volume. Evidence for the existence of fault-fracture meshes around low-angle thrusts comes from exhumed ancient structures and from active structures. In the case of megathrust ruptures along subduction interfaces, force balance analyses, lack of evidence for shear heating, and evidence of total shear stress release during earthquakes suggest the interfaces are extremely weak ( τ < 40 MPa), consistent with weakening by near-lithostatically overpressured fluids. Portions of the subduction interface, especially towards the down-dip termination of the seismogenic megathrust, are prone to episodes of slow-slip, non-volcanic tremor, low-frequency earthquakes, very-low-frequency earthquakes, etc., attributable to the activation of tabular fault-fracture meshes at low σ 3' around the thrust interface. Containment of near-lithostatic overpressures in such settings is precarious, fluid loss curtailing mesh activity.[Figure not available: see fulltext.

  1. Effect of Multi-Pass Ultrasonic Surface Rolling on the Mechanical and Fatigue Properties of HIP Ti-6Al-4V Alloy

    PubMed Central

    Li, Gang; Qu, Shengguan; Xie, Mingxin; Ren, Zhaojun; Li, Xiaoqiang

    2017-01-01

    The main purpose of this paper was to investigate the effect of a surface plastic deformation layer introduced by multi-pass ultrasonic surface rolling (MUSR) on the mechanical and fatigue properties of HIP Ti-6Al-4V alloys. Some microscopic analysis methods (SEM, TEM and XRD) were used to characterize the modified microstructure in the material surface layer. The results indicated that the material surface layer experienced a certain extent plastic deformation, accompanied by some dense dislocations and twin generation. Moreover, surface microhardness, residual stress and roughness values of samples treated by MUSR were also greatly improved compared with that of untreated samples. Surface microhardness and compressive residual stress were increased to 435 HV and −1173 MPa, respectively. The minimum surface roughness was reduced to 0.13 μm. The maximum depth of the surface hardening layer was about 55 μm. However, the practical influence depth was about 450 μm judging from the tensile and fatigue fracture surfaces. The ultimate tensile strength of the MUSR-treated sample increased to 990 MPa from the initial 963 MPa. The fatigue strength of the MUSR-treated sample was increased by about 25% on the base of 107 cycles, and the lifetime was prolonged from two times to two orders of magnitude at the applied stress amplitudes of 650–560 MPa. The improved mechanical and fatigue properties of MUSR-treated samples should be attributed to the combined effects of the increased microhardness and compressive residual stress, low surface roughness, grain refinement and micro-pore healing in the material surface-modified layer. PMID:28772494

  2. In vitro degradation kinetics of pure PLA and Mg/PLA composite: Effects of immersion temperature and compression stress.

    PubMed

    Li, Xuan; Chu, Chenglin; Wei, Yalin; Qi, Chenxi; Bai, Jing; Guo, Chao; Xue, Feng; Lin, Pinghua; Chu, Paul K

    2017-01-15

    The effects of the immersion temperature and compression stress on the in vitro degradation behavior of pure poly-lactic acid (pure-PLA) and PLA-based composite unidirectionally reinforced with micro-arc oxidized magnesium alloy wires (Mg/PLA or MAO-MAWs/PLA) are investigated. The degradation kinetics of pure-PLA and the PLA matrix in MAO-MAWs/PLA exhibit an Arrhenius-type behavior. For the composite, the synergic degradation of MAO-MAWs maintains a steady pH and mitigates the degradation of PLA matrix during immersion. However, the external compression stress decreases the activation energy (E a ) and pre-exponential factor (k 0 ) consequently increasing the degradation rate of PLA. Under a compression stress of 1MPa, E a and k 0 of pure PLA are 57.54kJ/mol and 9.74×10 7 day -1 , respectively, but 65.5kJ/mol and 9.81×10 8 day -1 for the PLA matrix in the composite. Accelerated tests are conducted in rising immersion temperature in order to shorten the experimental time. Our analysis indicates there are well-defined relationships between the bending strength of the specimens and the PLA molecular weight during immersion, which are independent of the degradation temperature and external compression stress. Finally, a numerical model is established to elucidate the relationship of bending strength, the PLA molecular weight, activation energy, immersion time and temperature. We systematically evaluate the effects of compression stress and temperature on the degradation properties of two materials: (pure-PLA) and MAO-MAWs/PLA (or Mg/PLA). The initial in vitro degradation kinetics of the unstressed or stressed pure-PLA and MAO-MAWs/PLA composite is confirmed to be Arrhenius-like. MAO-MAWs and external compression stress would influence the degradation activation energy (E a ) and pre-exponential factor (k 0 ) of PLA, and we noticed there is a linear relationship between E a and ln k 0 . Thereafter, we noticed that Mg 2+ , not H + , plays a significant role on the mitigation of the PLA degradation and external compression stress brings the molecular structure change of PLA. Finally, we proposed a model to predict the bending strength of the specimens versus immersion time at different immersion temperatures. This fundamental study could provide some scientific basis in our understanding for the evaluations and biomedical applications of these biodegradable materials. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Deformation behavior of open-cell dry natural rubber foam: Effect of different concentration of blowing agent and compression strain rate

    NASA Astrophysics Data System (ADS)

    Samsudin, M. S. F.; Ariff, Z. M.; Ariffin, A.

    2017-04-01

    Compression and deformation behavior of partially open cell natural rubber (NR) foam produced from dry natural rubber (DNR), were investigated by performing compressive deformation at different strains and strain rates. Different concentrations of sodium bicarbonate as a blowing agent (BA) were utilized, from 4 to 16 phr in order to produce foams with range of cell size and morphology. Overall, increasing of blowing agent concentration had significantly changed relative foam density. Compression stress-strain curves of the foams exhibited that the compression behavior was directly correlated to the foam cells morphology and physical density. Pronounced changes were noticed for foams with bigger cells particularly at 4 phr concentration of BA where the compression stress at plateau region was greater compared to those with higher concentration of BA. Cell deformation progressive images confirmed that the foams demonstrated small degree of struts bending at 15% of strain and followed by continuous severe struts bending and elastic buckling up to 50% of strain. Compression test at different strain rates revealed that the strain rate factor only affected the foams with 4 phr of BA by causing immediate increment in the compression stress value when higher strain rate was applied.

  4. The stress relaxation of cement clinkers under high temperature

    NASA Astrophysics Data System (ADS)

    Wang, Xiufang; Bao, Yiwang; Liu, Xiaogen; Qiu, Yan

    2015-12-01

    The energy consumption of crushing is directly affected by the mechanical properties of cement materials. This research provides a theoretical proof for the mechanism of the stress relaxation of cement clinkers under high temperature. Compression stress relaxation under various high temperatures is discussed using a specially developed load cell, which can measure stress and displacement under high temperatures inside an autoclave. The cell shows that stress relaxation dramatically increases and that the remaining stress rapidly decreases with an increase in temperature. Mechanical experiments are conducted under various temperatures during the cooling process to study the changes in the grinding resistance of the cement clinker with temperature. The effects of high temperature on the load-displacement curve, compressive strength, and elastic modulus of cement clinkers are systematically studied. Results show that the hardening phenomenon of the clinker becomes apparent with a decrease in temperature and that post-peak behaviors manifest characteristics of the transformation from plasticity to brittleness. The elastic modulus and compressive strength of cement clinkers increase with a decrease in temperature. The elastic modulus increases greatly when the temperature is lower than 1000 °C. The compressive strength of clinkers increases by 73.4% when the temperature drops from 1100 to 800 °C.

  5. Large strain dynamic compression for soft materials using a direct impact experiment

    NASA Astrophysics Data System (ADS)

    Meenken, T.; Hiermaier, S.

    2006-08-01

    Measurement of strain rate dependent material data of low density low strength materials like polymeric foams and rubbers still poses challenges of a different kind to the experimental set up. For instance, in conventional Split Hopkinson Pressure Bar tests the impedance mismatch between the bars and the specimen makes strain measurement almost impossible. Application of viscoelastic bars poses new problems with wave dispersion. Also, maximum achievable strains and strain rates depend directly on the bar lengths, resulting in large experimental set ups in order to measure relevant data for automobile crash applications. In this paper a modified SHPB will be presented for testing low impedance materials. High strains can be achieved with nearly constant strain rate. A thin film stress measurement has been applied to the specimen/bar interfaces to investigate the initial sample ring up process. The process of stress homogeneity within the sample was investigated on EPDM and PU rubber.

  6. Efficient hybrid evolutionary algorithm for optimization of a strip coiling process

    NASA Astrophysics Data System (ADS)

    Pholdee, Nantiwat; Park, Won-Woong; Kim, Dong-Kyu; Im, Yong-Taek; Bureerat, Sujin; Kwon, Hyuck-Cheol; Chun, Myung-Sik

    2015-04-01

    This article proposes an efficient metaheuristic based on hybridization of teaching-learning-based optimization and differential evolution for optimization to improve the flatness of a strip during a strip coiling process. Differential evolution operators were integrated into the teaching-learning-based optimization with a Latin hypercube sampling technique for generation of an initial population. The objective function was introduced to reduce axial inhomogeneity of the stress distribution and the maximum compressive stress calculated by Love's elastic solution within the thin strip, which may cause an irregular surface profile of the strip during the strip coiling process. The hybrid optimizer and several well-established evolutionary algorithms (EAs) were used to solve the optimization problem. The comparative studies show that the proposed hybrid algorithm outperformed other EAs in terms of convergence rate and consistency. It was found that the proposed hybrid approach was powerful for process optimization, especially with a large-scale design problem.

  7. Experimentally quantifying critical stresses associated with basal slip and twinning in magnesium using micro-pillars

    DOE PAGES

    Liu, Yue; Li, Nan; Mariyappan, Arul Kumar; ...

    2017-06-07

    Basal slip and {01more » $$\\bar{1}$$2} twinning are two major plastic deformation mechanisms in hexagonal closed-packed magnesium. Here in this paper, we quantify the critical stresses associated with basal slip and twinning in single-crystal and bi-crystal magnesium samples by performing in situ compression of micropillars with different diameters in a scanning electron microscope. The micropillars are designed to favor either slip or twinning under uniaxial compression. Compression tests imply a negligible size effect related to basal slip and twinning as pillar diameter is greater than 10 μm. The critical resolved shear stresses are deduced to be 29 MPa for twinning and 6 MPa for basal slip from a series of micropillar compression tests. Employing full-field elasto-visco-plastic simulations, we further interpret the experimental observations in terms of the local stress distribution associated with multiple twinning, twin nucleation, and twin growth. Our simulation results suggest that the twinning features being studied should not be close to the top surface of the micropillar because of local stress perturbations induced by the hard indenter.« less

  8. Experimentally Derived Mechanical and Flow Properties of Fine-grained Soil Mixtures

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Peets, C. S.; Flemings, P. B.; Day-Stirrat, R. J.; Germaine, J. T.

    2009-12-01

    As silt content in mudrocks increases, compressibility linearly decreases and permeability exponentially increases. We prepared mixtures of natural Boston Blue Clay (BBC) and synthetic silt in the ratios of 100:0, 86:14, 68:32, and 50:50, respectively. To recreate natural conditions yet remove variability and soil disturbance, we resedimented all mixtures to a total stress of 100 kPa. We then loaded them to approximately 2.3 MPa in a CRS (constant-rate-of-strain) uniaxial consolidation device. The analyses show that the higher the silt content in the mixture, the stiffer the material is. Compression index as well as liquid and plastic limits linearly decrease with increasing silt content. Vertical permeability increases exponentially with porosity as well as with silt content. Fabric alignment determined through High Resolution X-ray Texture Goniometry (HRXTG) expressed as maximum pole density (m.r.d.) decreases with silt content at a given stress. However, this relationship is not linear instead there are two clusters: the mixtures with higher clay contents (100:0, 84:16) have m.r.d. around 3.9 and mixtures with higher silt contents (68:32, 50:50) have m.r.d. around 2.5. Specific surface area (SSA) measurements show a positive correlation to the total clay content. The amount of silt added to the clay reduces specific surface area, grain orientation, and fabric alignment; thus, it affects compression and fluid flow behavior on a micro- and macroscale. Our results are comparable with previous studies such as kaolinite / silt mixtures (Konrad & Samson [2000], Wagg & Konrad [1990]). We are studying this behavior to understand how fine-grained rocks consolidate. This problem is important to practical and fundamental programs. For example, these sediments can potentially act as either a tight gas reservoir or a seal for hydrocarbons or geologic storage of CO2. This study also provides a systematic approach for developing models of permeability and compressibility behavior needed as inputs for basin modeling.

  9. Study on Relationships between Internal Stress and Photodecomposition Properties of Thin Film Titanium Dioxide Photocatalyst

    NASA Astrophysics Data System (ADS)

    Miyamura, Amica; Kaneda, Kenji; Sato, Yasushi; Shigesato, Yuzo

    Photocatalytic activities of titanium dioxide (TiO2) films deposited by rf sputtering were investigated from view points of their internal stress. TiO2 films were deposited on fused quartz glass or 100 μm thick micro-sheet glass substrates at room temperature, 200 or 400°C under various total gas pressures (Ptot) of 0.3~5.0 Pa with oxygen flow ratio [O2/(O2+Ar)] of 60% using a Ti metal target. Photocatalytic activity was evaluated by photodecomposition of acetaldehyde (CH3CHO) under UV illumination (black light lamp, 0.4 mW/cm2). Compressive internal stress was estimated by cantilever method using the micro-sheet glass, which clearly decreased from -2.1 to -0.1 GPa with the increase in the Ptot from 0.3 to 3.0 Pa. The films with the compressive stress less than -0.5 GPa performed the photocatalytic activity. Furthermore, compressive or tensile stress was applied by external force on the TiO2 films deposited on the curved micro sheet glasses by flattening these substrates after the deposition. The photodecomposition activity of the films with the slight compressive stress improved clearly, whereas the one of the films with the tensile stress degraded.

  10. A Correction to the Stress-Strain Curve During Multistage Hot Deformation of 7150 Aluminum Alloy Using Instantaneous Friction Factors

    NASA Astrophysics Data System (ADS)

    Jiang, Fulin; Tang, Jie; Fu, Dinfa; Huang, Jianping; Zhang, Hui

    2018-04-01

    Multistage stress-strain curve correction based on an instantaneous friction factor was studied for axisymmetric uniaxial hot compression of 7150 aluminum alloy. Experimental friction factors were calculated based on continuous isothermal axisymmetric uniaxial compression tests at various deformation parameters. Then, an instantaneous friction factor equation was fitted by mathematic analysis. After verification by comparing single-pass flow stress correction with traditional average friction factor correction, the instantaneous friction factor equation was applied to correct multistage stress-strain curves. The corrected results were reasonable and validated by multistage relative softening calculations. This research provides a broad potential for implementing axisymmetric uniaxial compression in multistage physical simulations and friction optimization in finite element analysis.

  11. Magnetically-tunable rebound property for variable elastic devices made of magnetic elastomer and polyurethane foam

    NASA Astrophysics Data System (ADS)

    Oguro, Tsubasa; Endo, Hiroyuki; Kawai, Mika; Mitsumata, Tetsu

    2017-12-01

    A device consisting of a phase of magnetic elastomer, a phase of polyurethane foam (PUF), and permanent magnet was fabricated and the stress-strain curves for the two-phase magnetic elastomer were measured by a uniaxial compression measurement. A disk of magnetic elastomer was adhered on a disk of PUF by an adhesive agent. The PUF thickness was varied from 1 mm to 5 mm while the thickness of magnetic elastomers was constant at 5 mm. The stress at a strain of 0.15 for the two-phase magnetic elastomers was evaluated in the absence and in the presence of a magnetic field of 410 mT. The stress at 0 mT decreased remarkably with the PUF thickness due to the deformation of the PUF phase. On the other hand, the stress at 410 mT slightly decreased with the thickness; however, it kept high values even at high thickness. When the PUF thickness was 5 mm, the maximum stress increment with 45 times to the off-field stress was observed. An experiment using ping-pong balls demonstrated that the coefficient of restitution for the two-phase magnetic elastomers can be dramatically altered by the magnetic field.

  12. Pre-loading of components during laser peenforming

    DOEpatents

    Hackel, Lloyd A [Livermore, CA; Halpin, John M [Tracy, CA; Harris, Fritz B [Rocklin, CA

    2003-12-30

    A method and apparatus are provided for forming shapes and contours in metal sections by prestressing a workpiece and generating laser induced compressive stress on the surface of the metal workpiece. The step of prestressing the workpiece is carried out with a jig. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts.

  13. Permanently densified SiO2 glasses: a structural approach.

    PubMed

    Martinet, C; Kassir-Bodon, A; Deschamps, T; Cornet, A; Le Floch, S; Martinez, V; Champagnon, B

    2015-08-19

    Densified silica can be obtained by different pressure and temperature paths and for different stress conditions, hydrostatic or including shear. The density is usually the macroscopic parameter used to characterize the different compressed silica samples. The aim of our present study is to compare structural modifications for silica glass, densified from several routes. For this, densified silica glasses are prepared from cold and high temperature (up to 1020 °C) compressions. The different densified glasses obtained in our study are characterized by micro-Raman spectroscopy. Intertetrahedral angles from the main band relative to the bending mode decrease and their values are larger for densified samples from high temperature compression than those samples from cold compression. The relative amount of 3-membered rings deduced from the D2 line area increases as a function of density for cold compression. The temperature increase during the compression process induces a decrease of the 3 fold ring population. Moreover, 3 fold rings are more deformed and stressed for densified samples at room temperature at the expense of those densified at high temperature. Temperature plays a main role in the reorganization structure during the densification and leads to obtaining a more relaxed structure with lower stresses than glasses densified from cold compression. The role of hydrostatic or non-hydrostatic applied stresses on the glass structure is discussed. From the Sen and Thorpe central force model, intertetrahedral angle average value and their distribution are estimated.

  14. A New Cluster Analysis-Marker-Controlled Watershed Method for Separating Particles of Granular Soils

    PubMed Central

    Alam, Md Ferdous

    2017-01-01

    An accurate determination of particle-level fabric of granular soils from tomography data requires a maximum correct separation of particles. The popular marker-controlled watershed separation method is widely used to separate particles. However, the watershed method alone is not capable of producing the maximum separation of particles when subjected to boundary stresses leading to crushing of particles. In this paper, a new separation method, named as Monash Particle Separation Method (MPSM), has been introduced. The new method automatically determines the optimal contrast coefficient based on cluster evaluation framework to produce the maximum accurate separation outcomes. Finally, the particles which could not be separated by the optimal contrast coefficient were separated by integrating cuboid markers generated from the clustering by Gaussian mixture models into the routine watershed method. The MPSM was validated on a uniformly graded sand volume subjected to one-dimensional compression loading up to 32 MPa. It was demonstrated that the MPSM is capable of producing the best possible separation of particles required for the fabric analysis. PMID:29057823

  15. [Contact characteristics research of acetabular weight-bearing area with different internal fixation methods after compression fracture of acetabular dome].

    PubMed

    Xu, Bowen; Zhang, Qingsong; An, Siqi; Pei, Baorui; Wu, Xiaobo

    2017-08-01

    To establish the model of compression fracture of acetabular dome, and to measure the contact characteristics of acetabular weight-bearing area of acetabulum after 3 kinds of internal fixation. Sixteen fresh adult half pelvis specimens were randomly divided into 4 groups, 4 specimens each group. Group D was the complete acetabulum (control group), and the remaining 3 groups were prepared acetabular dome compression fracture model. The fractures were fixed with reconstruction plate in group A, antegrade raft screws in group B, and retrograde raft screws in group C. The pressure sensitive films were attached to the femoral head, and the axial compression test was carried out on the inverted single leg standing position. The weight-bearing area, average stress, and peak stress were measured in each group. Under the loading of 500 N, the acetabular weight-bearing area was significantly higher in group D than in other 3 groups ( P <0.05), and the average stress and peak stress were significantly lower than in other 3 groups ( P <0.05). The acetabular weight-bearing area were significantly higher in group B and group C than in group A, and the average stress and peak stress were significantly lower than in group A ( P <0.05). There was no significant difference in the above indexes between group B and group C ( P >0.05). For the compression fracture of the acetabular dome, the contact characteristics of the weight-bearing area can not restore to the normal level, even if the anatomical reduction and rigid internal fixation were performed; compared with the reconstruction plate fixation, antegrade and retrograde raft screws fixations can increase the weight-bearing area, reduce the average stress and peak stress, and reduce the incidence of traumatic arthritis.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. Y.; Choo, Hahn; Liaw, Peter K

    The combined effects of overload-induced enlarged compressive residual stresses and crack tip blunting with secondary cracks are suggested to be responsible for the observed changes in the crack opening load and resultant post-overload transient crack growth behavior [Lee SY, Liaw PK, Choo H, Rogge RB, Acta Mater 2010;59:485-94]. In this article, in situ neutron diffraction experiments were performed to quantify the influence of the combined effects by investigating the internal-stress evolution at various locations away from the crack tip. In the overload-retardation period, stress concentration occurs in the crack blunting region (an overload point) until a maximum crack arrest loadmore » is reached. The stress concentration is then transferred from the blunting region to the propagating crack tip (following the overload), requiring a higher applied load, as the closed crack is gradually opened. The transfer phenomena of the stress concentration associated with a crack opening process account for the nonlinearity of strain response in the vicinity of the crack tip. The delaying action of stress concentration at the crack tip is understood in conjunction with the concept of a critical stress (i.e. the stress required to open the closed crack behind the crack tip). A linear relationship between {Delta}{var_epsilon}{sub eff} and {Delta}K{sub eff} provides experimental support for the hypothesis that {Delta}K{sub eff} can be considered as the fatigue crack tip driving force.« less

  17. Crustal stress and structure at Kīlauea Volcano inferred from seismic anisotropy: Chapter 12

    USGS Publications Warehouse

    Johnson, Jessica H.; Swanson, Donald; Roman, Diana C.; Poland, Michael P.; Thelen, Weston A.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Seismic anisotropy, measured through shear wave splitting (SWS) analysis, can be indicative of the state of stress in Earth's crust. Changes in SWS at Kīlauea Volcano, Hawai‘i, associated with the onset of summit eruptive activity in 2008 hint at the potential of the technique for tracking volcanic activity. To use SWS observations as a monitoring tool, however, it is important to understand the cause of seismic anisotropy at the volcano throughout the eruptive cycle. To address this need, we analyzed SWS results from across Kīlauea in combination with macroscopic surface structures (mapped fractures, faults, and fissures) and stress orientations inferred from fault plane solutions. Seismic anisotropy seems to be due to pervasive aligned structures in most regions of the volcano. The upper East and Southwest Rift Zones, however, show a bimodality in stress and SWS, suggesting a stress discontinuity with depth, perhaps related to magma conduits that trend obliquely to the dominant structure. Other areas in and around Kīlauea Caldera display principal stresses of similar magnitudes, indicating that small stress perturbations can rotate the maximum horizontal compressive stress direction by up to 90°. In these locations, static structures generally control SWS, but dynamic conditions due to magmatic activity can override the structural control. Monitoring of SWS may therefore provide important signs of impending volcanism.

  18. The ambient stress field in the continental margin around the Korean Peninsula and Japanese islands

    NASA Astrophysics Data System (ADS)

    Lee, J.; Hong, T. K.; Chang, C.

    2016-12-01

    The ambient stress field is mainly influenced by regional tectonics. The stress field composition is crucial information for seismic hazard assessment. The Korean Peninsula, Japanese Islands and East Sea comprise the eastern margin of the Eurasian plate. The regions are surrounded by the Okhotsk, Pacific, and Philippine Sea plates. We investigate the regional stress field around the Korean Peninsula and Japanese islands using the focal mechanism solutions of regional earthquakes. Complex lateral and vertical variations of regional crustal stress fields are observed around a continental margin. The dominant compression directions are ENE-WSW around the Korean Peninsula and eastern China, E-W in the central East Sea and northern and southern Japan, NW-SE in the central Japan, and N-S around the northern Nankai trough. The horizontal compression directions are observed to be different by fault type, suggesting structure-dependent stress field distortion. The regional stress field change by depth and location, suggesting that the compression and tension stress may alternate in local region. The stress field and structures affect mutually, causing stress field distortion and reactivation of paleo-structures. These observation may be useful for understanding of local stress-field perturbation for seismic hazard mitigation of the region.

  19. Tensile and Compressive Constitutive Response of 316 Stainless Steel at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Muralidharan, U.; Halford, G. R.

    1983-01-01

    Creep rate in compression is lower by factors of 2 to 10 than in tension if the microstructure of the two specimens is the same and are tested at equal temperatures and equal but opposite stresses. Such behavior is characteristic for monotonic creep and conditions involving cyclic creep. In the latter case creep rate in both tension and compression progressively increases from cycle to cycle, rendering questionable the possibility of expressing a time stabilized constitutive relationship. The difference in creep rates in tension and compression is considerably reduced if the tension specimen is first subjected to cycles of tensile creep (reversed by compressive plasticity), while the compression specimen is first subjected to cycles of compressive creep (reversed by tensile plasticity). In both cases, the test temperature is the same and the stresses are equal and opposite. Such reduction is a reflection of differences in microstructure of the specimens resulting from different prior mechanical history.

  20. A hierarchical storage management (HSM) scheme for cost-effective on-line archival using lossy compression.

    PubMed

    Avrin, D E; Andriole, K P; Yin, L; Gould, R G; Arenson, R L

    2001-03-01

    A hierarchical storage management (HSM) scheme for cost-effective on-line archival of image data using lossy compression is described. This HSM scheme also provides an off-site tape backup mechanism and disaster recovery. The full-resolution image data are viewed originally for primary diagnosis, then losslessly compressed and sent off site to a tape backup archive. In addition, the original data are wavelet lossy compressed (at approximately 25:1 for computed radiography, 10:1 for computed tomography, and 5:1 for magnetic resonance) and stored on a large RAID device for maximum cost-effective, on-line storage and immediate retrieval of images for review and comparison. This HSM scheme provides a solution to 4 problems in image archiving, namely cost-effective on-line storage, disaster recovery of data, off-site tape backup for the legal record, and maximum intermediate storage and retrieval through the use of on-site lossy compression.

  1. Numerical estimation of deformation energy of selected bulk oilseeds in compression loading

    NASA Astrophysics Data System (ADS)

    Demirel, C.; Kabutey, A.; Herak, D.; Gurdil, G. A. K.

    2017-09-01

    This paper aimed at the determination of the deformation energy of some bulk oilseeds or kernels namely oil palm, sunflower, rape and flax in linear pressing applying the trapezoidal rule which is characterized by the area under the force and deformation curve.The bulk samples were measured at the initial pressing height of 60 mm with the vessel diameter of 60 mm where they were compressed under the universal compression machine at a maximum force of 200 kN and speed of 5 mm/min.Based on the compression test, the optimal deformation energy for recovering the oil was observed at a force of 163 kN where there was no seed/kernel cake ejection in comparison to the initial maximum force used particularly for rape and flax bulk oilseeds.This information is needed for analyzing the energy efficiency of the non-linear compression process involving a mechanical screw press or expeller.

  2. Residual stress profiles in veneering ceramic on Y-TZP, alumina and ZTA frameworks: measurement by hole-drilling.

    PubMed

    Fukushima, K A; Sadoun, M J; Cesar, P F; Mainjot, A K

    2014-02-01

    The residual stress profile developed within the veneering ceramic during the manufacturing process is an important predicting factor in chipping failures, which constitute a well-known problem with yttria-tetragonal-zirconia polycrystal (Y-TZP) based restorations. The objectives of this study are to measure and to compare the residual stress profile in the veneering ceramic layered on three different polycrystalline ceramic framework materials: Y-TZP, alumina polycrystal (AL) and zirconia toughened alumina (ZTA). The stress profile was measured with the hole-drilling method in bilayered disk samples of 19 mm diameter with a 0.7 mm thick Y-TZP, AL or ZTA framework and a 1.5mm thick layer of the corresponding veneering ceramic. The AL samples exhibited increasing compressive stresses with depth, while compressive stresses switching into interior tensile stresses were measured in Y-TZP samples. ZTA samples exhibited compressive stress at the ceramic surface, decreasing with depth up to 0.6mm from the surface, and then becoming compressive again near the framework. Y-TZP samples exhibited a less favorable stress profile than those of AL and ZTA samples. Results support the hypothesis of the occurrence of structural changes within the Y-TZP surface in contact with the veneering ceramic to explain the presence of tensile stresses. Even if the presence of Y-TZP in the alumina matrix seems to negatively affect the residual stress profiles in ZTA samples in comparison with AL samples, the registered profiles remain positive in terms of veneer fracture resistance. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Non-destructive measurement and role of surface residual stress monitoring in residual life assessment of a steam turbine blading material

    NASA Astrophysics Data System (ADS)

    Prabhu-Gaunkar, Gajanana; Rawat, M. S.; Prasad, C. R.

    2014-02-01

    Steam turbine blades in power generation equipment are made from martensitic stainless steels having high strength, good toughness and corrosion resistance. However, these steels are susceptible to pitting which can promote early failures of blades in the turbines, particularly in the low pressure dry/wet areas by stress corrosion and corrosion fatigue. Presence of tensile residual stresses is known to accelerate failures whereas compressive stresses can help in delaying failures. Shot peening has been employed as an effective tool to induce compressive residual stresses which offset a part of local surface tensile stresses in the surface layers of components. Maintaining local stresses at stress raisers, such as pits formed during service, below a threshold level can help in preventing the initiation microcracks and failures. The thickness of the layer in compression will, however, depend of the shot peening parameters and should extend below the bottom of corrosion pits. The magnitude of surface compressive drops progressively during service exposure and over time the effectiveness of shot peening is lost making the material susceptible to micro-crack initiation once again. Measurement and monitoring of surface residual stress therefore becomes important for assessing residual life of components in service. This paper shows the applicability of surface stress monitoring to life assessment of steam turbine blade material based on data generated in laboratory on residual surface stress measurements in relation to fatigue exposure. An empirical model is proposed to calculate the remaining life of shot peened steam turbine blades in service.

  4. Flow-through compression cell for small-angle and ultra-small-angle neutron scattering measurements

    NASA Astrophysics Data System (ADS)

    Hjelm, Rex P.; Taylor, Mark A.; Frash, Luke P.; Hawley, Marilyn E.; Ding, Mei; Xu, Hongwu; Barker, John; Olds, Daniel; Heath, Jason; Dewers, Thomas

    2018-05-01

    In situ measurements of geological materials under compression and with hydrostatic fluid pressure are important in understanding their behavior under field conditions, which in turn provides critical information for application-driven research. In particular, understanding the role of nano- to micro-scale porosity in the subsurface liquid and gas flow is critical for the high-fidelity characterization of the transport and more efficient extraction of the associated energy resources. In other applications, where parts are produced by the consolidation of powders by compression, the resulting porosity and crystallite orientation (texture) may affect its in-use characteristics. Small-angle neutron scattering (SANS) and ultra SANS are ideal probes for characterization of these porous structures over the nano to micro length scales. Here we show the design, realization, and performance of a novel neutron scattering sample environment, a specially designed compression cell, which provides compressive stress and hydrostatic pressures with effective stress up to 60 MPa, using the neutron beam to probe the effects of stress vectors parallel to the neutron beam. We demonstrate that the neutron optics is suitable for the experimental objectives and that the system is highly stable to the stress and pressure conditions of the measurements.

  5. Unweaving the joints in Entrada Sandstone, Arches National Park, Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Cruikshank, Kenneth M.; Aydin, Atilla

    1995-03-01

    On the southwest limb of Salt Valley Anticline, Arches National Park, Utah three sets of joints are developed in the Entrada Sandstone covering an area of about 6 km 2. Within the 20 m thick Moab Member, a single joint set is is found in three distinct areas, separated by a second set of joints at a 35° angle to the first set. Joint interaction features show that the second set is younger than the first. This illustrates that joints of a single set do not have to fill the entire area across which the stresses that formed the joints were acting. The underlying Slickrock Member contains a third set of joints, which is at an angle of 5°-35° to joints in the Moab Member. The Slickrock set nucleated from the lower edges of joints of all orientations in the overlying Moab Member. Thus, the fracture pattern evolved both horizontally, within the same unit, and vertically between units. The sequence of jointing is determined by establishing the relative ages of each joint set. Each joint orientation is best interpreted as representing a direction of maximum compression, ruling out the possibility that the joints are a conjugate set. The joints, and an earlier set of deformation bands, record a 95° counterclockwise rotation of the direction of maximum compression.

  6. Effect of thermal fatigue on the structure and properties of Ni3Al-based alloy single crystals

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Drozdov, A. A.; Bazyleva, O. A.; Bulakhtina, M. A.; Alad'ev, N. A.; Antonova, A. V.; Arginbaeva, E. G.; Morozov, A. E.

    2014-05-01

    The effect of thermal fatigue during tests of <001> and <111> single crystals according to the schedules 100 ai 850°C, 100 ai 1050°C, 100 ai 1100°C at a peak-to-peak stress Δσtc = 700-1000 MPa (sum of the maximum tensile and compressive stresses in a thermal cycle) on the structure, the fracture, and the fatigue life of an Ni3Al-based VKNA-1V alloy is studied. It is found that, at 103 thermal cycles, the <111> single crystals have the maximum thermal fatigue resistance at the maximum cycle temperature of 850 and 1050°C, and the properties of the <001> and <111> samples are almost the same at the maximum thermal cycle temperature of 1100°C. After thermal cycling at the maximum temperature of 850°C, the γ layers in the two-phase γ' + γ region in dendrites remain a single-phase structure, as in the as-cast material, and the layer thickness is 100-150 nm. When the maximum thermal cycle temperature increases to 1050 or 1100°C, the discontinuous γ-phase layers in the γ'(Ni3Al) matrix change their morphology and become shorter and wider (their thickness is 300-700 nm). The nickel-based supersaturated solid solution in these layers decomposes with the formation of secondary γ'(Ni3Al)-phase (γ'sec) precipitates in the form of cuboids 50 and 100 nm in size at the maximum cycle temperature of 1050 and 1100°C, respectively. The alternating stresses that appear during thermal cycling cause plastic deformation. As in nickel superalloys, this deformation at the first stage proceeds via the slip of screw dislocations along octahedral {111} planes. Networks of 60° dislocation segments form at γ'/γ interfaces in this case. Fracture begins at the lines of intersection of the slip planes of the {111} octahedron with the sample surface. During fractional, a crack passes from one octahedral plane to another and forms terraces and steps (crystallographic fracture); as a result, the fracture surface bends and becomes curved. In all cases, the fracture surfaces have a mixed brittle-ductile character with a combination of crystallographic and ductile (dimple) fracture elements.

  7. Modelling Fault Zone Evolution: Implications for fluid flow.

    NASA Astrophysics Data System (ADS)

    Moir, H.; Lunn, R. J.; Shipton, Z. K.

    2009-04-01

    Flow simulation models are of major interest to many industries including hydrocarbon, nuclear waste, sequestering of carbon dioxide and mining. One of the major uncertainties in these models is in predicting the permeability of faults, principally in the detailed structure of the fault zone. Studying the detailed structure of a fault zone is difficult because of the inaccessible nature of sub-surface faults and also because of their highly complex nature; fault zones show a high degree of spatial and temporal heterogeneity i.e. the properties of the fault change as you move along the fault, they also change with time. It is well understood that faults influence fluid flow characteristics. They may act as a conduit or a barrier or even as both by blocking flow across the fault while promoting flow along it. Controls on fault hydraulic properties include cementation, stress field orientation, fault zone components and fault zone geometry. Within brittle rocks, such as granite, fracture networks are limited but provide the dominant pathway for flow within this rock type. Research at the EU's Soultz-sous-Forệt Hot Dry Rock test site [Evans et al., 2005] showed that 95% of flow into the borehole was associated with a single fault zone at 3490m depth, and that 10 open fractures account for the majority of flow within the zone. These data underline the critical role of faults in deep flow systems and the importance of achieving a predictive understanding of fault hydraulic properties. To improve estimates of fault zone permeability, it is important to understand the underlying hydro-mechanical processes of fault zone formation. In this research, we explore the spatial and temporal evolution of fault zones in brittle rock through development and application of a 2D hydro-mechanical finite element model, MOPEDZ. The authors have previously presented numerical simulations of the development of fault linkage structures from two or three pre-existing joints, the results of which compare well to features observed in mapped exposures. For these simple simulations from a small number of pre-existing joints the fault zone evolves in a predictable way: fault linkage is governed by three key factors: Stress ratio of s1 (maximum compressive stress) to s3(minimum compressive stress), original geometry of the pre-existing structures (contractional vs. dilational geometries) and the orientation of the principle stress direction (σ1) to the pre-existing structures. In this paper we present numerical simulations of the temporal and spatial evolution of fault linkage structures from many pre-existing joints. The initial location, size and orientations of these joints are based on field observations of cooling joints in granite from the Sierra Nevada. We show that the constantly evolving geometry and local stress field perturbations contribute significantly to fault zone evolution. The location and orientations of linkage structures previously predicted by the simple simulations are consistent with the predicted geometries in the more complex fault zones, however, the exact location at which individual structures form is not easily predicted. Markedly different fault zone geometries are predicted when the pre-existing joints are rotated with respect to the maximum compressive stress. In particular, fault surfaces range from evolving smooth linear structures to producing complex ‘stepped' fault zone geometries. These geometries have a significant effect on simulations of along and across-fault flow.

  8. Heritability of Lumbar Trabecular Bone Mechanical Properties in Baboons

    PubMed Central

    Havill, L.M.; Allen, M.R.; Bredbenner, T.L.; Burr, D.B.; Nicolella, D.P.; Turner, C.H.; Warren, D.M.; Mahaney, M.C.

    2010-01-01

    Genetic effects on mechanical properties have been demonstrated in rodents, but not confirmed in primates. Our aim was to quantify the proportion of variation in vertebral trabecular bone mechanical properties that is due to the effects of genes. L3 vertebrae were collected from 110 females and 46 male baboons (6–32 years old) from a single extended pedigree. Cranio-caudally oriented trabecular bone cores were scanned with microCT then tested in monotonic compression to determine apparent ultimate stress, modulus, and toughness. Age and sex effects and heritability (h2) were assessed using maximum likelihood-based variance components methods. Additive effects of genes on residual trait variance were significant for ultimate stress (h2=0.58), toughness (h2=0.64), and BV/TV (h2=0.55). When BV/TV was accounted for, the residual variance in ultimate stress accounted for by the additive effects of genes was no longer significant. Toughness, however, showed evidence of a non-BV/TV-related genetic effect. Overall, maximum stress and modulus show strong genetic effects that are nearly entirely due to bone volume. Toughness shows strong genetic effects related to bone volume and shows additional genetic effects (accounting for 10% of the total trait variance) that are independent of bone volume. These results support continued use of bone volume as a focal trait to identify genes related to skeletal fragility, but also show that other focal traits related to toughness and variation in the organic component of bone matrix will enhance our ability to find additional genes that are particularly relevant to fatigue-related fractures. PMID:19900599

  9. 49 CFR 230.24 - Maximum allowable stress.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the ultimate...

  10. 49 CFR 230.24 - Maximum allowable stress.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the ultimate...

  11. 49 CFR 230.24 - Maximum allowable stress.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the ultimate...

  12. 49 CFR 230.24 - Maximum allowable stress.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the ultimate...

  13. 49 CFR 230.24 - Maximum allowable stress.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the ultimate...

  14. Neogene ongoing tectonics in the Southern Ecuadorian Andes: analysis of the evolution of the stress field

    NASA Astrophysics Data System (ADS)

    Lavenu, A.; Noblet, C.; Winter, T. H.

    1995-01-01

    Microtectonic analysis of infilling deposits in South Ecuadorian Neogene basins brings to light a compressive stress field with σ1 along a NNE-SSW to NE-SW direction in the early Miocene, changing to an E-W direction in the Middle and Late Miocene. The syn-sedimentary deformations which affect the deposits of the basins suggest similar stress regimes due to a compressive ongoing tectonic system in the Miocene, for at least 15 Ma. There is a good correlation between rapid convergence in the Neogene and the time period during which the continental South Ecuadorian basins were deformed by compression (Quechua period).

  15. Effect of Stress and Strain Path on Cavity Closure During Hot Working of an Alpha/Beta Titanium Alloy (Preprint)

    DTIC Science & Technology

    2007-07-01

    damage totally. 15. SUBJECT TERMS Ti- 6Al - 4V , strain, stress, cavity closure, hot working, titanium alloy 16. SECURITY CLASSIFICATION OF: 17...stress state on deformation and cavitation during hot working of Ti- 6Al - 4V was established via torsion-compression and reversed-torsion tests...strain path and stress state on deformation and cavitation during hot working of Ti- 6Al - 4V was established via torsion-compression and reversed

  16. Effects of increasing the allowable compressive stress at release on the shear strength of prestressed concrete girders.

    DOT National Transportation Integrated Search

    2008-09-01

    In recent years, several research projects have been conducted to study the feasibility of increasing the allowable : compressive stress in concrete at prestress transfer, currently defined as 0.60f'ci in the AASHTO LRFD Bridge : Design Specification...

  17. Creep-induced residual stress strengthening in a Nicalon-fiber-reinforced BMAS-glass-ceramic-matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widjaja, S.; Jakus, K.; Ritter, J.E.

    The feasibility of inducing a compressive residual stress in the matrix of a Nicalon-fiber-reinforced BMAS-glass-ceramic-matrix composite through a creep-load transfer treatment was studied. Specimens were crept at 1100 C under constant tensile load to cause load transfer from the matrix to the fibers, then cooled under load. Upon removal of the load at room temperature, the matrix was put into compression by the elastic recovery of the fibers. This compressive residual stress in the matrix increased the room-temperature proportional limit stress of the composite. The increase in the proportional limit stress was found to be dependent upon the applied creepmore » stress, with an increase in creep stress resulting in an increase in the proportional limit stress. Acoustic emission results showed that the onset of significant matrix cracking correlated closely to the proportional limit stress. Changes in the state of residual stress in the matrix were supported by X-ray diffraction results. Fracture surfaces of all specimens exhibited fiber pullout behavior, indicating that the creep-load transfer process did not embrittle the fiber/matrix interface.« less

  18. Elevated temperature creep properties of NiAl cryomilled with and without Y2O3

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Luton, Michael J.

    1995-01-01

    The creep properties of lots of NiAl cryomilled with and without Y2O3 have been determined in compression and tension. Although identical cryomilling procedures were used, differences in composition were found between the lot ground with 0.5 vol% yttria and the lot ground without Y2O3. Compression testing between 1000 and 1300 K yielded similar creep strengths for both materials, while tensile creep rupture testing indicated that the yttria-containing alloy was slightly stronger than the Y2O3-free version. Both compression and tensile testing showed two deformation regimes; whereas the stress state did not affect the high stress exponent (n approximately equals 10) mechanism, the low stress exponent regime n was approximately 6 in tension and approximately 2 in compression. The strengths in tension were somewhat less than those measured in compression, but the estimated activation energies (Q) of approximately 600 kJ/mol for tensile testing were closer to the previously measured values (approximately 700 kJ/mol) for NiAl-AlN and very different from the Q's of 400 and 200 kJ/mol for compression tests in the high and low stress exponent regimes, respectively. A Larson-Miller comparison indicated that cryomilling can produce an alloy with long-term, high-temperature strength at least equal to conventional superalloys.

  19. Improvement of Strength and Energy Absorption Properties of Porous Aluminum Alloy with Aligned Unidirectional Pores Using Equal-Channel Angular Extrusion

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomonori; Muto, Daiki; Tamai, Tomoya; Suzuki, Shinsuke

    2018-04-01

    Porous aluminum alloy with aligned unidirectional pores was fabricated by dipping A1050 tubes into A6061 semi-solid slurry. The porous aluminum alloy was processed through Equal-channel Angular Extrusion (ECAE) while preventing cracking and maintaining both the pore size and porosity by setting the insert material and loading back pressure. The specific compressive yield strength of the sample aged after 13 passes of ECAE was approximately 2.5 times higher than that of the solid-solutionized sample without ECAE. Both the energy absorption E V and energy absorption efficiency η V after four passes of ECAE were approximately 1.2 times higher than that of the solid-solutionized sample without ECAE. The specific yield strength was improved via work hardening and precipitation following dynamic aging during ECAE. E V was improved by the application of high compressive stress at the beginning of the compression owing to work hardening via ECAE. η V was improved by a steep increase of stress at low compressive strain and by a gradual increase of stress in the range up to 50 pct of compressive strain. The gradual increase of stress was caused by continuous shear fracture in the metallic part, which was due to the high dislocation density and existence of unidirectional pores parallel to the compressive direction in the structure.

  20. Improvement of Strength and Energy Absorption Properties of Porous Aluminum Alloy with Aligned Unidirectional Pores Using Equal-Channel Angular Extrusion

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomonori; Muto, Daiki; Tamai, Tomoya; Suzuki, Shinsuke

    2018-06-01

    Porous aluminum alloy with aligned unidirectional pores was fabricated by dipping A1050 tubes into A6061 semi-solid slurry. The porous aluminum alloy was processed through Equal-channel Angular Extrusion (ECAE) while preventing cracking and maintaining both the pore size and porosity by setting the insert material and loading back pressure. The specific compressive yield strength of the sample aged after 13 passes of ECAE was approximately 2.5 times higher than that of the solid-solutionized sample without ECAE. Both the energy absorption E V and energy absorption efficiency η V after four passes of ECAE were approximately 1.2 times higher than that of the solid-solutionized sample without ECAE. The specific yield strength was improved via work hardening and precipitation following dynamic aging during ECAE. E V was improved by the application of high compressive stress at the beginning of the compression owing to work hardening via ECAE. η V was improved by a steep increase of stress at low compressive strain and by a gradual increase of stress in the range up to 50 pct of compressive strain. The gradual increase of stress was caused by continuous shear fracture in the metallic part, which was due to the high dislocation density and existence of unidirectional pores parallel to the compressive direction in the structure.

  1. The Intracratonic Caraibas-Itacarambi Earthquake of December 9, 2007 (4.9 mb), Minas Gerais, Brazil: predominance of compressional stresses in the middle of the San Francisco craton.

    NASA Astrophysics Data System (ADS)

    Chimpliganond, C. N.; Franca, G. S.; Barros, L. V.; Assumpcao, M.; Carvalho, J.

    2008-05-01

    An earthquake with magnitude 4.9 mb, in the central part of the San Francisco craton, shook the village of Caraibas, Minas Gerais state, on December 9, 2007 at 00:03 (local time). The epicentral area is near the city of Itacarambi. This event was the first to cause a fatal victim in Brazil (a little girl 6 years old). The maximum intensity reached VII Modified Mercalli and the isoseismal of VI MM intensity comprise an area of about 100 square kilometers. Since May 25, 2007, when a 3.5 mb magnitude event was widely felt by the population, this region has been shaken by small earthquakes. A field campaign was taken during October 23-28 to implement a local seismographic network composed by 6 tri-axial broadband stations that is operating until now. A seismic gap was observed some days before the main shock of December 9. Two imminent foreshocks preceded the main shock by some minutes, and 162 aftershocks followed the main event during the first day. The earthquakes with clear onset times for P and S waves were located with Hypo71 using a local velocity model with a Vp/Vs ratio of 1.72, obtained with a composite Wadati diagram. The events show a trend in the NE-SW direction, with very shallow depths, less than about 2 kilometers. The aftershocks were distributed over an area about 3 kilometers long in the NE-SW direction. A composite focal mechanism, determined using P-wave polarities with the clearest waveforms at local stations, shows a reverse faulting mechanism. This solution, consistent with P-wave polarity data for the main shock recorded at regional and teleseismic stations, shows a near horizontal P-axis trending E- W, similar to an earthquake swarm occurred 50 km to the north in 1990. Stress inversion using five different focal mechanisms in this part of the San Francisco craton indicates compressional stresses with EW maximum compression (S1) and a NS intermediate compression (S2).

  2. Finite element modelling versus classic beam theory: comparing methods for stress estimation in a morphologically diverse sample of vertebrate long bones

    PubMed Central

    Brassey, Charlotte A.; Margetts, Lee; Kitchener, Andrew C.; Withers, Philip J.; Manning, Phillip L.; Sellers, William I.

    2013-01-01

    Classic beam theory is frequently used in biomechanics to model the stress behaviour of vertebrate long bones, particularly when creating intraspecific scaling models. Although methodologically straightforward, classic beam theory requires complex irregular bones to be approximated as slender beams, and the errors associated with simplifying complex organic structures to such an extent are unknown. Alternative approaches, such as finite element analysis (FEA), while much more time-consuming to perform, require no such assumptions. This study compares the results obtained using classic beam theory with those from FEA to quantify the beam theory errors and to provide recommendations about when a full FEA is essential for reasonable biomechanical predictions. High-resolution computed tomographic scans of eight vertebrate long bones were used to calculate diaphyseal stress owing to various loading regimes. Under compression, FEA values of minimum principal stress (σmin) were on average 142 per cent (±28% s.e.) larger than those predicted by beam theory, with deviation between the two models correlated to shaft curvature (two-tailed p = 0.03, r2 = 0.56). Under bending, FEA values of maximum principal stress (σmax) and beam theory values differed on average by 12 per cent (±4% s.e.), with deviation between the models significantly correlated to cross-sectional asymmetry at midshaft (two-tailed p = 0.02, r2 = 0.62). In torsion, assuming maximum stress values occurred at the location of minimum cortical thickness brought beam theory and FEA values closest in line, and in this case FEA values of τtorsion were on average 14 per cent (±5% s.e.) higher than beam theory. Therefore, FEA is the preferred modelling solution when estimates of absolute diaphyseal stress are required, although values calculated by beam theory for bending may be acceptable in some situations. PMID:23173199

  3. Biomechanical simulation of eye-airbag impacts during vehicle accidents.

    PubMed

    Shirzadi, Hooman; Zohoor, Hassan; Naserkhaki, Sadegh

    2018-06-01

    Airbags are safety devices in vehicles effectively suppressing passengers' injuries during accidents. Although there are still many cases of eye injuries reported due to eye-airbag impacts in recent years. Biomechanical approaches are now feasible and can considerably help experts to investigate the issue without ethical concerns. The eye-airbag impact-induced stresses/strains in various components of the eye were found to investigate the risk of injury in different conditions (impact velocity and airbag pressure). Three-dimensional geometry of the eyeball, fat and bony socket as well as the airbag were developed and meshed to develop a finite element model. Nonlinear material properties of the vitreous body and sclera were found through the in vitro tests on ovine samples and for the other components were taken from the literature. The eye collided the airbag due to the velocity field in the dynamic explicit step in Abaqus. Results of compression tests showed a nonlinear curve for vitreous body with average ultimate stress of 22 (18-25) kPa. Tensile behavior of sclera was viscoelastic nonlinear with ultimate stresses changing from 2.51 (2.3-2.7) to 4.3 (4-4.6) MPa when loading strain rate increased from 10 to 600 mm/min. Sclera, ciliary body, cornea and lens were the eye components with highest stresses (maximum stress reached up to 9.3 MPa). Cornea, retina and choroid experienced the highest strains with the maximum up to 14.1%. According to the previously reported injury criteria for cornea, it was at high risk of injury considering both stress and strains. Reduced pressure of the airbag was beneficial decreased stress of all components. Comprehensive investigations in this area can disclose biomechanical behavior of the eye during eye-airbag impact. Effective guidelines can be drawn for airbag design for instance the airbag pressure which reduces risk of eye injury.

  4. Multiscale Static Analysis of Notched and Unnotched Laminates Using the Generalized Method of Cells

    NASA Technical Reports Server (NTRS)

    Naghipour Ghezeljeh, Paria; Arnold, Steven M.; Pineda, Evan J.; Stier, Bertram; Hansen, Lucas; Bednarcyk, Brett A.; Waas, Anthony M.

    2016-01-01

    The generalized method of cells (GMC) is demonstrated to be a viable micromechanics tool for predicting the deformation and failure response of laminated composites, with and without notches, subjected to tensile and compressive static loading. Given the axial [0], transverse [90], and shear [+45/-45] response of a carbon/epoxy (IM7/977-3) system, the unnotched and notched behavior of three multidirectional layups (Layup 1: [0,45,90,-45](sub 2S), Layup 2: [0,60,0](sub 3S), and Layup 3: [30,60,90,-30, -60](sub 2S)) are predicted under both tensile and compressive static loading. Matrix nonlinearity is modeled in two ways. The first assumes all nonlinearity is due to anisotropic progressive damage of the matrix only, which is modeled, using the multiaxial mixed-mode continuum damage model (MMCDM) within GMC. The second utilizes matrix plasticity coupled with brittle final failure based on the maximum principle strain criteria to account for matrix nonlinearity and failure within the Finite Element Analysis--Micromechanics Analysis Code (FEAMAC) software multiscale framework. Both MMCDM and plasticity models incorporate brittle strain- and stress-based failure criteria for the fiber. Upon satisfaction of these criteria, the fiber properties are immediately reduced to a nominal value. The constitutive response for each constituent (fiber and matrix) is characterized using a combination of vendor data and the axial, transverse, and shear responses of unnotched laminates. Then, the capability of the multiscale methodology is assessed by performing blind predictions of the mentioned notched and unnotched composite laminates response under tensile and compressive loading. Tabulated data along with the detailed results (i.e., stress-strain curves as well as damage evolution states at various ratios of strain to failure) for all laminates are presented.

  5. Fixed and mobile-bearing total ankle prostheses: Effect on tibial bone strain.

    PubMed

    Terrier, Alexandre; Fernandes, Caroline Sieger; Guillemin, Maïka; Crevoisier, Xavier

    2017-10-01

    Total ankle replacement is associated to a high revision rate. To improve implant survival, the potential advantage of prostheses with fixed bearing compared to mobile bearing is unclear. The objective of this study was to test the hypothesis that fixed and mobile bearing prostheses are associated with different biomechanical quantities typically associated to implant failure. With a validated finite element model, we compared three cases: a prosthesis with a fixed bearing, a prosthesis with a mobile bearing in a centered position, and a prosthesis with mobile bearing in an eccentric position. Both prostheses were obtained from the same manufacturer. They were tested on seven tibias with maximum axial compression force during walking. We tested the hypothesis that there was a difference of bone strain, bone-implant interfacial stress, and bone support between the three cases. We also evaluated, for the three cases, the correlations between bone support, bone strain and bone-implant interfacial stress. There were no statistically significant differences between the three cases. Overall, bone support was mainly trabecular, and less effective in the posterior side. Bone strain and bone-implant interfacial stress were strongly correlated to bone support. Even if slight differences are observed between fixed and mobile bearing, it is not enough to put forward the superiority of one of these implants regarding their reaction to axial compression. When associated to the published clinical results, our study provides no argument to warn surgeons against the use of two-components fixed bearing implants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The role of surface roughness on dislocation bending and stress evolution in low mobility AlGaN films during growth

    NASA Astrophysics Data System (ADS)

    Bardhan, Abheek; Mohan, Nagaboopathy; Chandrasekar, Hareesh; Ghosh, Priyadarshini; Sridhara Rao, D. V.; Raghavan, Srinivasan

    2018-04-01

    The bending and interaction of threading dislocations are essential to reduce their density for applications involving III-nitrides. Bending of dislocation lines also relaxes the compressive growth stress that is essential to prevent cracking on cooling down due to tensile thermal expansion mismatch stress while growing on Si substrates. It is shown in this work that surface roughness plays a key role in dislocation bending. Dislocations only bend and relax compressive stresses when the lines intersect a smooth surface. These films then crack. In rough films, dislocation lines which terminate at the bottom of the valleys remain straight. Compressive stresses are not relaxed and the films are relatively crack-free. The reasons for this difference are discussed in this work along with the implications on simultaneously meeting the requirements of films being smooth, crack free and having low defect density for device applications.

  7. A kinematic hardening constitutive model for the uniaxial cyclic stress-strain response of magnesium sheet alloys at room temperature

    NASA Astrophysics Data System (ADS)

    He, Zhitao; Chen, Wufan; Wang, Fenghua; Feng, Miaolin

    2017-11-01

    A kinematic hardening constitutive model is presented, in which a modified form of von Mises yield function is adopted, and the initial asymmetric tension and compression yield stresses of magnesium (Mg) alloys at room temperature (RT) are considered. The hardening behavior was classified into slip, twinning, and untwinning deformation modes, and these were described by two forms of back stress to capture the mechanical response of Mg sheet alloys under cyclic loading tests at RT. Experimental values were obtained for AZ31B-O and AZ31B sheet alloys under both tension-compression-tension (T-C-T) and compression-tension (C-T) loadings to calibrate the parameters of back stresses in the proposed model. The predicted parameters of back stresses in the twinning and untwinning modes were expressed as a cubic polynomial. The predicted curves based on these parameters showed good agreement with the tests.

  8. Geometry of slab, intraslab stress field and its tectonic implication in the Nankai trough, Japan

    NASA Astrophysics Data System (ADS)

    Xu, J.; Kono, Y.

    2002-07-01

    The characteristics of geometry of slabs and the intraslab stress field in the Nankai subduction zone, Japan, were analyzed based on highly accurate hypocentral data and focal mechanism solutions. The results suggest that the shallow seismic zone of the Philippine Sea slab subducts with dip angels between 10 and 22 degrees beneath Shikoku and the Kii peninsula, and between 11 and 40 degrees beneath Kyushu. Two types of seismogenic stress field exist within the slab. The stress field of down-dip compression type can be seen in the slab beneath Shikoku and the Kii peninsula, where the horizontal component of regional compression stress is NNW. On the other hand the stress field of down-dip extension type within the slab is dominant in the region from western Shikoku to Kyushu, where the direction of horizontal compressive stress is near WWN. The existence of the two types of stress field is related to the differences of slab geometry and slab age of the subduciton zone. These properties imply that slab beneath Kyushu (40 Ma) probably is older than that beneath Shikoku and the Kii peninsula (11-20 Ma). The young slab of the oceanic Philippine Sea plate subducts with a shallow angle beneath the Eurasian plate in Shikoku and the Kii peninsula. The subduction has encountered strong resistance there, resulting in a down-dip compression stress field. The down-dip extension stress field may be related to the older slab of the Philippine Sea plate which subducts beneath Kyushu with a steeper dip angle.

  9. Tracking mechanical Dauphiné twin evolution with applied stress in axial compression experiments on a low-grade metamorphic quartzite

    NASA Astrophysics Data System (ADS)

    Minor, Alexander; Rybacki, Erik; Sintubin, Manuel; Vogel, Sven; Wenk, Hans-Rudolf

    2018-07-01

    The stress-dependent evolution of mechanical Dauphiné twinning has been investigated in axial compression experiments on a low-grade metamorphic quartzite, applying both time-of-flight neutron diffraction and electron backscatter diffraction. The data of the experimentally stressed quartzite samples were compared with those of the naturally deformed starting material to monitor Dauphiné twinning in relation to different experimental stress states. This comparison shows that in the experimental conditions of 500 °C temperature and 300 MPa confining pressure, Dauphiné twinning initiates below 145 MPa differential stress and saturates between 250 MPa and 460 MPa differential stress. A single grain orientation analysis (SGOA) has been developed based on the distinction of quartz grains free of Dauphiné twin boundaries (DTBs) and containing Dauphiné twin boundaries. Comparing pole figures and inverse pole figures of DTB-free grains of the starting material with those of the experimentally stressed samples shows a significantly different orientation distribution of the positive {10 1 bar 1} (r) and the negative {01 1 bar 1} (z) rhombs. In DTB-containing grains, the SGOA allows to distinguish between host and twin domains. Using DTB-free grains, the SGOA furthermore reveals a particular pattern, with one of the r rhomb maxima parallel to the axial compressive stress direction and a girdle with two r rhomb submaxima perpendicular to it. We believe that this relationship between the axial compressive stress direction and the rhomb orientation distribution shows the potential of the SGOA in the reconstruction of the paleostress state in naturally stressed quartz-bearing rocks.

  10. Computation of turbulent high speed mixing layers using a two-equation turbulence model

    NASA Technical Reports Server (NTRS)

    Narayan, J. R.; Sekar, B.

    1991-01-01

    A two-equation turbulence model was extended to be applicable for compressible flows. A compressibility correction based on modelling the dilational terms in the Reynolds stress equations were included in the model. The model is used in conjunction with the SPARK code for the computation of high speed mixing layers. The observed trend of decreasing growth rate with increasing convective Mach number in compressible mixing layers is well predicted by the model. The predictions agree well with the experimental data and the results from a compressible Reynolds stress model. The present model appears to be well suited for the study of compressible free shear flows. Preliminary results obtained for the reacting mixing layers are included.

  11. Study on the Aging Behaviors of Rubber Materials in Tension and Compression Loads

    NASA Astrophysics Data System (ADS)

    Jiang, Can; Wang, Hongyu; Ma, Xiaobing

    Rubber materials are widely used in aviation, aerospace, shipbuilding, automobile and other military field. However, rubber materials are easy to aging, which largely restricts its using life. In working environment, due to the combined effect of heat and oxygen, vulcanized rubber will undergo degradation and crosslinking reaction which will cause elasticity decease and permanent deformation, so mostly rubber products are used under stress state. Due to the asymmetric structure and asymmetric stress distribution, mechanical stress may cause serious damage to molecular structure; therefore, this paper is aimed to analyze the aging behavior of rubber materials under tensile and compressive loadings, through analyzing experiment data, and adopting Gauss function to describe stress relaxation coefficient, to build an aging equation containing compression ratio parameter and aging time.

  12. Preparation of a Strong Gelatin-Short Linear Glucan Nanocomposite Hydrogel by an in Situ Self-Assembly Process.

    PubMed

    Ge, Shengju; Li, Man; Ji, Na; Liu, Jing; Mul, Hongyan; Xiong, Liu; Sun, Qingjie

    2018-01-10

    Gelatin hydrogels exhibit excellent biocompatibility, nonimmunogenicity, and biodegradability, but they have limited applications in the food and medical industries because of their poor mechanical properties. Herein, we first developed an in situ self-assembly process for the preparation of gelatin-short linear glucan (SLG) nanocomposite hydrogels with enhanced mechanical strength. The microstructure, dynamic viscoelasticity, compression behavior, and thermal characteristics of the gelatin-SLG nanocomposite hydrogels were determined using scanning electron microscopy (SEM), dynamic rheological experiments, compression tests, and texture profile analysis tests. The SEM images revealed that nanoparticles were formed by the in situ self-assembly of SLG in the gelatin matrix and that the size of these nanoparticles ranged between 200 and 600 nm. The pores of the nanocomposite hydrogels were smaller than those of the pure gelatin hydrogels. Transmission electron microscopy images and X-ray diffraction further confirmed the presence of SLG nanoparticles with spherical shapes and B-type structures. Compared with pure gelatin hydrogels, the nanocomposite hydrogels exhibited improved mechanical behavior. Notably, the hardness and maximum values of the compressive stress of gelatin-SLG nanocomposites containing 5% SLG increased by about 2-fold and 3-fold, respectively, compared to the corresponding values of pure gelatin hydrogels.

  13. Focal mechanism and stress analyses for main tectonic zones in Albania

    NASA Astrophysics Data System (ADS)

    Dushi, Edmond; Koçi, Rexhep; Begu, Enkela; Bozo, Rrezart

    2017-04-01

    In this study, a number of 33 moderate earthquakes for the period 2013-2015, ranging in magnitude within 2.2 ≤ MW ≤ 4.9 and located within the Albanian territory, have been analyzed. As an earthquake prone country, situated at the frontal collision boundary between Adria microplate and Eurasian tectonic plate, Albania is characterized frequently by micro earthquakes, many moderate and seldom by strong ones. It is evidenced that the whole territory is divided in two different tectonic domains, correspondingly the outer and the inner domain, showing different stress regime as clearly evidenced based on earthquake focal mechanism and geodetic studies. Although strong earthquakes are clearly related to faults in tectonically active areas, moderate events are more frequent revealing valuable information on this purpose. All the studied events are selected to be well-recorded by a maximum possible number of the local broadband (BB) seismological stations of Albanian Seismological Network (ASN), although regional stations have been used as well to constrain the solution. Earthquakes are grouped according to their location, within three well-defined tectonic zones, namely: Adriatic-Ionian (AI), Lushnja-Elbasani-Dibra (LED) and Ohrid-Korça (OK). For each event, the seismic moment M0is determined, through spectral analyses. Moment values vary ranging 1012 - 1015 Nm, for the Adriatic-Ionian (AI) outer zone; 1013 - 1016 Nm, for the Lushnja-Elbasani-Dibra (LED) transversal zone, which cuts through both the outer and the inner domains and 1012 - 1014 Nm, for the Ohrid-Korça (OK), north-south trending inner zone. Focal mechanism solutions (FMS) have been determined for each earthquake, based on the robust first motion polarities method, as applied in the FOCMEC (Seisan 10.1) routine. Using the Michael's linear bootstrap invertion on FMS, a stress analysis is applied. Results show the minimum compressional stress directions variation: σ1 370/270, σ23030/80 and σ31980/620 (μ = 0.4) for AI zone; σ1830/90, σ22040/730and σ33500/140 (μ = 0.4) for LED zone and σ13060/430, σ21860/280 and σ3750/340 (μ = 0.65) for OK zone. Based on final results, according to Zoback (1992), the Adriatic-Ionian (AI) zone is characterized mainly by thrust (TF) faulting, although normal and oblique ones take place as well. This outer zone is under a compressive stress regime, where the maximum horizontal stress lies in the direction of P axes. Meanwhile, the Lushnja-Elbasani-Dibra (LED) transversal zone, is characterized by normal-oblique faulting (NF-NS), undergoing an oblique transform to extensional stress regime, where the maximum horizontal stress extends at the (T + 900) direction. The Ohrid-Korça (OK) zone is characterized by oblique-normal faults, undergoing and extensional stress regime, where the maximum horizontal stress lies in the of T axes direction. Keywords: moderate earthquakes, focal mechanism, stress

  14. Viscoelasticity of Axisymmetric Composite Structures: Analysis and Experimental Validation

    DTIC Science & Technology

    2013-02-01

    compressive stress at the interface between the composite and steel prior to the sheath’s cut-off. Accordingly, the viscoelastic analysis is used...The hoop-stress profile in figure 6 shows the steel region is in compression , resulting from the winding tension of composite overwrap. The stress...mechanical and thermal loads. Experimental validation of the model is conducted using a high- tensioned composite overwrapped on a steel cylinder. The creep

  15. Thermoelastic Stress Analysis: An NDE Tool for the Residual Stress Assessment of Metallic Alloys

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Baaklini, George Y.

    2000-01-01

    During manufacturing, certain propulsion components that will be used in a cyclic fatigue environment are fabricated to contain compressive residual stresses on their surfaces because these stresses inhibit the nucleation of cracks. Overloads and elevated temperature excursions cause the induced residual stresses to dissipate while the component is still in service, lowering its resistance to crack initiation. Research at the NASA Glenn Research Center at Lewis Field has focused on employing the Thermoelastic Stress Analysis technique (TSA, also recognized as SPATE: Stress Pattern Analysis by Thermal Emission) as a tool for monitoring the residual stress state of propulsion components. TSA is based on the fact that materials experience small temperature changes when they are compressed or expanded. When a structure is cyclically loaded (i.e., cyclically compressed and expanded), the resulting surface-temperature profile correlates to the stress state of the structure s surface. The surface-temperature variations resulting from a cyclic load are measured with an infrared camera. Traditionally, the temperature amplitude of a TSA signal has been theoretically defined to be linearly dependent on the cyclic stress amplitude. As a result, the temperature amplitude resulting from an applied cyclic stress was assumed to be independent of the cyclic mean stress.

  16. Modeling the Effect of Glass Microballoon (GMB) Volume Fraction on Behavior of Sylgard/GMB Composites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Judith Alice; Long, Kevin Nicholas

    2017-05-01

    This work was done to support customer questions about whether a Sylgard/Glass Microballoon (GMB) potting material in current use could be replaced with pure Sylgard and if this would significantly change stresses imparted to internal components under thermal cycling conditions. To address these questions, we provide micromechanics analysis of Sylgard/GMB materials using both analytic composite theory and finite element simulations to better understand the role of the GMB volume fraction in determining thermal expansion coefficient, elastic constants, and behavior in both confined and unconfined compression boundary value problems. A key finding is that damage accumulation in the material from breakagemore » of GMBs significantly limits the global stress magnitude and results in a plateau stress behavior over large ranges of compressive strain. The magnitude of this plateau stress is reduced with higher volume fractions of GMBs. This effect is particularly pronounced in confined compression, which we estimate bears the most similarity to the application of interest. This stress-limiting damage mechanism is not present in pure Sylgard, however, and the result is much higher stresses under confined compression. Thus, we recommend that some volume fraction greater than 10% GMBs be used for confined deformation applications.« less

  17. Stiffness of the endplate boundary layer and endplate surface topography are associated with brittleness of human whole vertebral bodies

    PubMed Central

    Nekkanty, Srikant; Yerramshetty, Janardhan; Kim, Do-Gyoon; Zauel, Roger; Johnson, Evan; Cody, Dianna D.; Yeni, Yener N.

    2013-01-01

    Stress magnitude and variability as estimated from large scale finite element (FE) analyses have been associated with compressive strength of human vertebral cancellous cores but these relationships have not been explored for whole vertebral bodies. In this study, the objectives were to investigate the relationship of FE-calculated stress distribution parameters with experimentally determined strength, stiffness, and displacement based ductility measures in human whole vertebral bodies, investigate the effect of endplate loading conditions on vertebral stiffness, strength, and ductility and test the hypothesis that endplate topography affects vertebral ductility and stress distributions. Eighteen vertebral bodies (T6-L3 levels; 4 female and 5 male cadavers, aged 40-98 years) were scanned using a flat panel CT system and followed with axial compression testing with Wood’s metal as filler material to maintain flat boundaries between load plates and specimens. FE models were constructed using reconstructed CT images and filler material was added digitally. Two different FE models with different filler material modulus simulating Wood’s metal and intervertebral disc (W-layer and D-layer models) were used. Element material modulus to cancellous bone was based on image gray value. Average, standard deviation, and coefficient of variation of von Mises stress in vertebral bone for W-layer and D-layer models and also the ratios of FE parameters from the two models (W/D) were calculated. Inferior and superior endplate surface topographical distribution parameters were calculated. Experimental stiffness, maximum load and work to fracture had the highest correlation with FE-calculated stiffness while experimental ductility measures had highest correlations with FE-calculated average von Mises stress and W-layer to D-layer stiffness ratio. Endplate topography of the vertebra was also associated with its structural ductility and the distribution parameter that best explained this association was kurtosis of inferior endplate topography. Our results indicate that endplate topography variations may provide insight into the mechanisms responsible for vertebral fractures. PMID:20633709

  18. Structural, petrophysical and geomechanical characterization of the Becancour CO2 storage pilot site (Quebec, Canada)

    NASA Astrophysics Data System (ADS)

    Konstantinovskaya, E.; Malo, M.; Claprood, M.; Tran-Ngoc, T. D.; Gloaguen, E.; Lefebvre, R.

    2012-04-01

    The Paleozoic sedimentary succession of the St. Lawrence Platform was characterized to estimate the CO2 storage capacity, the caprock integrity and the fracture/fault stability at the Becancour pilot site. Results are based on the structural interpretation of 25 seismic lines and analysis of 11 well logs and petrophysical data. The three potential storage units of Potsdam, Beekmantown and Trenton saline aquifers are overlain by a multiple caprock system of Utica shales and Lorraine siltstones. The NE-SW regional normal faults dipping to the SE affect the subhorizontal sedimentary succession. The Covey Hill (Lower Potsdam) was found to be the only unit with significant CO2 sequestration potential, since these coarse-grained poorly-sorted fluvial-deltaic quartz-feldspar sandstones are characterized by the highest porosity, matrix permeability and net pay thickness and have the lowest static Young modulus, Poisson's ratio and compressive strength relative to other units. The Covey Hill is located at depths of 1145-1259 m, thus injected CO2 would be in supercritical state according to observed salinity, temperature and fluid pressure. The calcareous Utica shale of the regional seal is more brittle and has higher Young modulus and lower Poisson's ratio than the overlying Lorraine shale. The 3D geological model is kriged using the tops of the geological formations recorded at wells and picked travel times as external drift. The computed CO2 storage capacity in the Covey Hill sandstones is estimated by the volumetric and compressibility methods as 0.22 tons/km2 with storage efficiency factor E 2.4% and 0.09 tons/km2 with E 1%, respectively. A first set of numerical radial simulations of CO2 injection into the Covey Hill were carried out with TOUGH2/ECO2N. A geomechanical analysis of the St. Lawrence Platform sedimentary basin provides the maximum sustainable fluid pressures for CO2 injection that will not induce tensile fracturing and shear reactivation along pre-existing fractures and faults in the caprock. The regional stresses/pressure gradients estimated for the Paleozoic sedimentary basin (depths < 4 km) indicate a strike-slip stress regime. The average maximum horizontal stress orientation (SHmax) is estimated N62.8°E±4.0° in the Becancour-Notre Dame area. The high-angle NE-SW Yamaska normal fault is oriented at 16.7° to the SHmax orientation in the Becancour site. The slip tendency along the fault in this area is estimated to be 0.47 based on the stress magnitude and rock strength evaluations for the borehole breakout intervals in local wells. The regional pore pressure-stress coupling ratio under assumed parameters is about 0.5-0.65 and may contribute to reduce the risk of shear reactivation of faults and fractures. The maximum sustainable fluid pressure that would not cause opening of vertical tensile fractures during CO2 operations is about 18.5-20 MPa at a depth of 1 km.

  19. A primary study on the performance of piezoceramic based smart aggregate under various compressive stresses

    NASA Astrophysics Data System (ADS)

    Zou, Dujian; Liu, Tiejun; Yang, Antai; Zhao, Yanru; Du, Chengcheng

    2017-10-01

    The reliability of piezoceramic based smart aggregate (SA) used for damage detection of concrete structures has already been validated by laboratory tests. However, the in situ concrete members are generally under a big range of stress levels, and the performance of SA under various compressive stresses is still unclear. In this study, an electronic universal testing machine was employed to apply different stresses on the SAs. The received signals of SA sensor accompanying with different drive signals were recorded. The experimental results show that the amplitude of received signals increases firstly, and then tends to be stable with stress. This enhancement is mainly induced by the decrease in thickness of epoxy resin layer caused by compressive stress. It indicates that the change of load applied on monitored concrete members embedded with SAs may lead to a change in monitoring signal amplitude even in elastic range, but it does not stand for the change of health state of monitored concrete member.

  20. Effects of oxidative stress-induced changes in the actin cytoskeletal structure on myoblast damage under compressive stress: confocal-based cell-specific finite element analysis.

    PubMed

    Yao, Yifei; Lacroix, Damien; Mak, Arthur F T

    2016-12-01

    Muscle cells are frequently subjected to both mechanical and oxidative stresses in various physiological and pathological situations. To explore the mechanical mechanism of muscle cell damage under loading and oxidative stresses, we experimentally studied the effects of extrinsic hydrogen peroxides on the actin cytoskeletal structure in C2C12 myoblasts and presented a finite element (FE) analysis of how such changes in the actin cytoskeletal structure affected a myoblast's capability to resist damage under compression. A confocal-based cell-specific FE model was built to parametrically study the effects of stress fiber density, fiber cross-sectional area, fiber tensile prestrain, as well as the elastic moduli of the stress fibers, actin cortex, nucleus and cytoplasm. The results showed that a decrease in the elastic moduli of both the stress fibers and actin cortex could increase the average tensile strain on the actin cortex-membrane structure and reduce the apparent cell elastic modulus. Assuming the cell would die when a certain percentage of membrane elements were strained beyond a threshold, a lower elastic modulus of actin cytoskeleton would compromise the compressive resistance of a myoblast and lead to cell death more readily. This model was used with a Weibull distribution function to successfully describe the extent of myoblasts damaged in a monolayer under compression.

  1. Characterization of the constitutive behavior of municipal solid waste considering particle compressibility.

    PubMed

    Lü, Xilin; Zhai, Xinle; Huang, Maosong

    2017-11-01

    This paper presents a characterization of the mechanical behavior of municipal solid waste (MSW) under consolidated drained and undrained triaxial conditions. The constitutive model was established based on a deviatoric hardening plasticity model. A power form function and incremental hyperbolic form function were proposed to describe the shear strength and the hardening role of MSW. The stress ratio that corresponds to the zero dilatancy was not fixed but depended on mean stress, making the Rowe's rule be able to describe the stress-dilatancy of MSW. A pore water pressure reduction coefficient, which attributed to the compressibility of a particle and the solid matrix, was introduced to the effective stress formulation to modify the Terzaghi's principle. The effects of particle compressibility and solid matrix compressibility on the undrained behavior of MSW were analyzed by parametric analysis, and the changing characteristic of stress-path, stress-strain, and pore-water pressure were obtained. The applicability of the proposed model on MSW under drained and undrained conditions was verified by model predictions of three triaxial tests. The comparison between model simulations and experiments indicated that the proposed model can capture the observed different characteristics of MSW response from normal soil, such as nonlinear shear strength, pressure dependent stress dilatancy, and the reduced value of pore water pressure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Creep analysis of solid oxide fuel cell with bonded compliant seal design

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchun; Zhang, Yucai; Luo, Yun; Gong, J. M.; Tu, S. T.

    2013-12-01

    Solid oxide fuel cell (SOFC) requires good sealant because it works in harsh conditions (high temperature, thermal cycle, oxidative and reducing gas environments). Bonded compliant seal (BCS) is a new sealing method for planar SOFC. It uses a thin foil metal to bond the window frame and cell, achieving the seal between window frame and cell. At high temperature, a comprehensive evaluation of its creep strength is essential for the adoption of BCS design. In order to characterize the creep behavior, the creep induced by thermal stresses in SOFC with BCS design is simulated by finite element method. The results show that the foil is compressed and large thermal stresses are generated. The initial peak thermal stress is located in the thin foil because the foil acts as a spring stores the thermal stresses by elastic and plastic deformation in itself. Serving at high temperature, initial thermal displacement is partially recovered because of the creep relaxation, which becomes a new discovered advantage for BCS design. It predicts that the failures are likely to happen in the middle of the cell edge and BNi-2 filler metal, because the maximum residual displacement and creep strain are located.

  3. Applications and Engineering Analysis of Lotus Roots under External Water Pressure

    PubMed Central

    Wang, Chang Jiang; Mynors, Diane

    2016-01-01

    Engineers can learn from nature for inspirations to create new designs. The internal structure of lotus roots with several oval holes was studied in this paper for engineering inspirations. The structural performance of lotus roots under outside water pressure was simulated and compared with various cross-sectional areas. The distribution of stresses in the cross-sectional area of lotus roots was analysed and presented. It was found that the maximum compressive stresses in the cross-sectional area of lotus roots were occurring at the long axis ends of the holes. This was very different from that of circular holes. Further analysis on the triaxiality factors revealed that the cross-sectional area of the lotus root resulted in large areas of high triaxiality factors. The resulting hydrostatic stress in the cross-sectional area of lotus root ranges from zero to 2.7 times the applied outside pressure. In contrast, the hydrostatic stress in a cylindrical cross-sectional area is a fixed value. The study showed that the lotus root and the orientation of the oval holes could be mimicked in the design of new structures, for example, underwater pipes and vessels. PMID:28127228

  4. Accumulation of p62 in degenerated spinal cord under chronic mechanical compression

    PubMed Central

    Tanabe, Fumito; Yone, Kazunori; Kawabata, Naoya; Sakakima, Harutoshi; Matsuda, Fumiyo; Ishidou, Yasuhiro; Maeda, Shingo; Abematsu, Masahiko; Komiya, Setsuro

    2011-01-01

    Intracellular accumulation of altered proteins, including p62 and ubiquitinated proteins, is the basis of most neurodegenerative disorders. The relationship among the accumulation of altered proteins, autophagy, and spinal cord dysfunction by cervical spondylotic myelopathy has not been clarified. We examined the expression of p62 and autophagy markers in the chronically compressed spinal cord of tiptoe-walking Yoshimura mice. In addition, we examined the expression and roles of p62 and autophagy in hypoxic neuronal cells. Western blot analysis showed the accumulation of p62, ubiquitinated proteins, and microtubule-associated protein 1 light chain 3 (LC3), an autophagic marker, in the compressed spinal cord. Immunohistochemical examinations showed that p62 accumulated in neurons, axons, astrocytes, and oligodendrocytes. Electron microscopy showed the expression of autophagy markers, including autolysosomes and autophagic vesicles, in the compressed spinal cord. These findings suggest the presence of p62 and autophagy in the degenerated compressed spinal cord. Hypoxic stress increased the expression of p62, ubiquitinated proteins, and LC3-II in neuronal cells. In addition, LC3 turnover assay and GFP-LC3 cleavage assay showed that hypoxic stress increased autophagy flux in neuronal cells. These findings suggest that hypoxic stress induces accumulation of p62 and autophagy in neuronal cells. The forced expression of p62 decreased the number of neuronal cells under hypoxic stress. These findings suggest that p62 accumulation under hypoxic stress promotes neuronal cell death. Treatment with 3-methyladenine, an autophagy inhibitor decreased the number of neuronal cells, whereas lithium chloride, an autophagy inducer increased the number of cells under hypoxic stress. These findings suggest that autophagy promotes neuronal cell survival under hypoxic stress. Our findings suggest that pharmacological inducers of autophagy may be useful for treating cervical spondylotic myelopathy patients. PMID:22082874

  5. Effect of socioemotional stress on the quality of cardiopulmonary resuscitation during advanced life support in a randomized manikin study.

    PubMed

    Bjørshol, Conrad Arnfinn; Myklebust, Helge; Nilsen, Kjetil Lønne; Hoff, Thomas; Bjørkli, Cato; Illguth, Eirik; Søreide, Eldar; Sunde, Kjetil

    2011-02-01

    The aim of this study was to evaluate whether socioemotional stress affects the quality of cardiopulmonary resuscitation during advanced life support in a simulated manikin model. A randomized crossover trial with advanced life support performed in two different conditions, with and without exposure to socioemotional stress. The study was conducted at the Stavanger Acute Medicine Foundation for Education and Research simulation center, Stavanger, Norway. Paramedic teams, each consisting of two paramedics and one assistant, employed at Stavanger University Hospital, Stavanger, Norway. A total of 19 paramedic teams performed advanced life support twice in a randomized fashion, one control condition without socioemotional stress and one experimental condition with exposure to socioemotional stress. The socioemotional stress consisted of an upset friend of the simulated patient who was a physician, spoke a foreign language, was unfamiliar with current Norwegian resuscitation guidelines, supplied irrelevant clinical information, and repeatedly made doubts about the paramedics' resuscitation efforts. Aural distractions were supplied by television and cell telephone. The primary outcome was the quality of cardiopulmonary resuscitation: chest compression depth, chest compression rate, time without chest compressions (no-flow ratio), and ventilation rate after endotracheal intubation. As a secondary outcome, the socioemotional stress impact was evaluated through the paramedics' subjective workload, frustration, and feeling of realism. There were no significant differences in chest compression depth (39 vs. 38 mm, p = .214), compression rate (113 vs. 116 min⁻¹, p = .065), no-flow ratio (0.15 vs. 0.15, p = .618), or ventilation rate (8.2 vs. 7.7 min⁻¹, p = .120) between the two conditions. There was a significant increase in the subjective workload, frustration, and feeling of realism when the paramedics were exposed to socioemotional stress. In this advanced life support manikin study, the presence of socioemotional stress increased the subjective workload, frustration, and feeling of realism, without affecting the quality of cardiopulmonary resuscitation.

  6. Numerical simulation of electromagnetic surface treatment

    NASA Astrophysics Data System (ADS)

    Sonde, Emmanuel; Chaise, Thibaut; Nelias, Daniel; Robin, Vincent

    2018-01-01

    Surface treatment methods, such as shot peening or laser shock peening, are generally used to introduce superficial compressive residual stresses in mechanical parts. These processes are carried out during the manufacturing steps or for the purpose of repairing. The compressive residual stresses prevent the initiation and growth of cracks and thus improve the fatigue life of mechanical components. Electromagnetic pulse peening (EMP) is an innovative process that could be used to introduce compressive residual stresses in conductive materials. It acts by generating a high transient electromagnetic field near the working surface. In this paper, the EMP process is presented and a sequentially coupled electromagnetic and mechanical model is developed for its simulation. This 2D axisymmetric model is set up with the commercial finite element software SYSWELD. After description and validation, the numerical model is used to simulate a case of introducing residual stresses of compression in a nickel-based alloy 690 thick sample, by the means of electromagnetic pulses. The results are presented in terms of effective plastic strain and residual mean stress. The influence of the process parameters, such as current intensity and frequency, on the results is analyzed. Finally, the predictability of the process is shown by several correlation studies.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Li; Thompson, Gregory, E-mail: gthompson@eng.ua.edu

    A series of 40–2 nm bilayer spacing Ti/Fe multilayers were sputter-deposited. As the length scale of individual Ti layers equaled to 2 nm, Ti phase transforms from a hexagonal close packed (hcp)-to-body centered cubic (bcc) crystal structures for equal layer thicknesses in Ti/Fe multilayers. Further equal reductions in bilayer spacing to less than 1 nm resulted in an additional transformation from a crystalline to amorphous structure. Atom probe tomography reveals significant intermixing between layers which contributes to the observed phase transformations. Real-time, intrinsic growth stress measurements were also performed to relate the adatom mobility to these phase transformations. For the hcp Ti/bcc Femore » multilayers of equivalent volume fractions, the multilayers undergo an overall tensile stress state to a compressive stress state with decreasing bilayer thickness for the multilayers. When the above phase transformations occurred, a modest reduction in the overall compressive stress of the multilayer was noted. Depending on the Fe thickness, the Ti growth was observed to be a tensile to compressive growth change to a purely compressive growth for thinner bilayer spacing. Fe retained a tensile growth stress regardless of the bilayer spacing studied.« less

  8. Contributions of gravity and field data on the structural scheme updating of the Tellian domain and its foreland (Nefza-Bizerte region, northern Tunisia)

    NASA Astrophysics Data System (ADS)

    Essid, El Mabrouk; Kadri, Ali; Balti, Hadhemi; Gasmi, Mohamed; Zargouni, Fouad

    2018-03-01

    The Nefza-Bizerte region, eastern part of the Tunisian Alpine chain, covers the thrust sheets domain called the Tell and its Atlassic foreland. The deep structures under the Tellian thrust sheets are not enough explored. The structural interpretation of magmatic rocks, Triassic outcrops and the depressions are still a subject of discussion. In this work, we intend to investigate deep faults and their eventual role in magmatism and Triassic salt setting up and to explain the depression genesis. Analysis of the Bouguer anomaly map and its derivatives reveals the main gravity lineaments, organized in major NE- and NW-trending systems. The NE-trending system, dipping towards the NW, is the main component of the structural scheme and has controlled the tectonic evolution of this area. After the immobilization of the Tellian thrust sheets during the uppermost Langhian, the Tell and its Atlassic foreland were affected by the Tortonian compressive event with a NW-trending maximum horizontal stress. The reverse kinematics of the NE-trending deep-seated faults created at their front continental environments filled later by post-nappes Neogene deposits. After the early Pleistocene, a NNW-directed compressional stress regime deformed the post-nappes Neogene series and generated NW-trending grabens. This coexistence of compression-extension continues until present day.

  9. Evaluation of the Carrying Capacity of Rectangular Steel-Concrete Columns

    NASA Astrophysics Data System (ADS)

    Vatulia, Glib; Rezunenko, Maryna; Petrenko, Dmytro; Rezunenko, Sergii

    2018-06-01

    Experimental studies of rectangular steel-concrete columns under centric compression with random eccentricity were conducted. The stress-strain state and the carrying capacity exhaustion have been assessed. The regression dependence is proposed to determine the maximum carrying capacity of such columns. The mathematical model takes into account the combined influence of the physical and geometric characteristics of the columns, such as their length, crosssectional area, casing thickness, prism strength of concrete, yield strength of steel, modulus of elasticity of both steel and concrete. The correspondence of the obtained model to the experimental data, as well as the significance of the regression parameters are confirmed by the Fisher and Student criteria.

  10. Assessing the local mechanical environment in medial opening wedge high tibial osteotomy using finite element analysis.

    PubMed

    Pauchard, Yves; Ivanov, Todor G; McErlain, David D; Milner, Jaques S; Giffin, J Robert; Birmingham, Trevor B; Holdsworth, David W

    2015-03-01

    High-tibial osteotomy (HTO) is a surgical technique aimed at shifting load away from one tibiofemoral compartment, in order the reduce pain and progression of osteoarthritis (OA). Various implants have been designed to stabilize the osteotomy and previous studies have been focused on determining primary stability (a global measure) that these designs provide. It has been shown that the local mechanical environment, characterized by bone strains and segment micromotion, is important in understanding healing and these data are not currently available. Finite element (FE) modeling was utilized to assess the local mechanical environment provided by three different fixation plate designs: short plate with spacer, long plate with spacer and long plate without spacer. Image-based FE models of the knee were constructed from healthy individuals (N = 5) with normal knee alignment. An HTO gap was virtually added without changing the knee alignment and HTO implants were inserted. Subsequently, the local mechanical environment, defined by bone compressive strain and wedge micromotion, was assessed. Furthermore, implant stresses were calculated. Values were computed under vertical compression in zero-degree knee extension with loads set at 1 and 2 times the subject-specific body weight (1 BW, 2 BW). All studied HTO implant designs provide an environment for successful healing at 1 BW and 2 BW loading. Implant von Mises stresses (99th percentile) were below 60 MPa in all experiments, below the material yield strength and significantly lower in long spacer plates. Volume fraction of high compressive strain ( > 3000 microstrain) was below 5% in all experiments and no significant difference between implants was detected. Maximum vertical micromotion between bone segments was below 200 μm in all experiments and significantly larger in the implant without a tooth. Differences between plate designs generally became apparent only at 2 BW loading. Results suggest that with compressive loading of 2 BW, long spacer plates experience the lowest implant stresses, and spacer plates (long or short) result in smaller wedge micromotion, potentially beneficial for healing. Values are sensitive to subject bone geometry, highlighting the need for subject-specific modeling. This study demonstrates the benefits of using image-based FE modeling and bone theory to fine-tune HTO implant design.

  11. Evaluation of Full Reynolds Stress Turbulence Models in FUN3D

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.; Carlson, Jan-Renee

    2017-01-01

    Full seven-equation Reynolds stress turbulence models are a relatively new and promising tool for todays aerospace technology challenges. This paper uses two stress-omega full Reynolds stress models to evaluate challenging flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSGLRR full second-moment Reynolds stress models are evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST) two-equation models.

  12. Piezoresistance and solar cell efficiency

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.

    1987-01-01

    Diffusion-induced stresses in silicon are shown to result in large localized changes in the minority-carrier mobility which in turn can have a significant effect on cell output. Evidence is given that both compressive and tensile stresses can be generated in either the emitter or the base region. Tensile stresses in the base appear to be much more effective in altering cell performance than do compressive stresses. While most stress-related effects appear to degrade cell efficiency, this is not always the case. Evidence is presented showing that arsenic-induced stresses can result in emitter characteristics comparable to those found in the MINP cell without requiring a high degree of surface passivation.

  13. Measurement of the through thickness compression of a battery separator

    NASA Astrophysics Data System (ADS)

    Yan, Shutian; Huang, Xiaosong; Xiao, Xinran

    2018-04-01

    The mechanical integrity of the separator is critical to the reliable operation of a battery. Due to its minimal thickness, compression experiments with a single/a few layers of separator are difficult to perform. In this work, a capacitance based displacement set-up has been developed for the measurement of the through thickness direction (TTD) compression stress-strain behavior of the separator and the investigation of its interaction with the electrode. The experiments were performed for a stack of two layers of Celgard 2400 separator, NMC cathode, and separator/NMC cathode/separator stack in both dry and wet (i.e. submersed in dimethyl carbonate DMC) conditions. The experimental results reveal that the separator compression modulus can be significantly affected by the presence of DMC. The iso-stress based rule of mixtures was used to compute the compressive stress-strain curve for the stack from that of the separator and NMC layer. The computed curve agreed with the experimental curve reasonably well up to about 0.16 strain but deviated significantly to a softer response at higher strains. The results suggest that, in the stack, the TTD compressive deformation of the separator is influenced by the NMC cathode.

  14. A theoretical approach to quantify the effect of random cracks on rock deformation in uniaxial compression

    NASA Astrophysics Data System (ADS)

    Zhou, Shuwei; Xia, Caichu; Zhou, Yu

    2018-06-01

    Cracks have a significant effect on the uniaxial compression of rocks. Thus, a theoretically analytical approach was proposed to assess the effects of randomly distributed cracks on the effective Young’s modulus during the uniaxial compression of rocks. Each stage of the rock failure during uniaxial compression was analyzed and classified. The analytical approach for the effective Young’s modulus of a rock with only a single crack was derived while considering the three crack states under stress, namely, opening, closure-sliding, and closure-nonsliding. The rock was then assumed to have many cracks with randomly distributed direction, and the effect of crack shape and number during each stage of the uniaxial compression on the effective Young’s modulus was considered. Thus, the approach for the effective Young’s modulus was used to obtain the whole stress-strain process of uniaxial compression. Afterward, the proposed approach was employed to analyze the effects of related parameters on the whole stress-stain curve. The proposed approach was eventually compared with some existing rock tests to validate its applicability and feasibility. The proposed approach has clear physical meaning and shows favorable agreement with the rock test results.

  15. Finite element Analysis of Semi-Grouting Sleeve Connection Member Based on ABAQUS

    NASA Astrophysics Data System (ADS)

    Bao, Longsheng; Fan, Qianyu; Wang, Ling

    2018-05-01

    This paper use investigates the force transfer mechanism and failure form of semi-grouting sleeve members under axial load, analyze the weak points of structural bearing capacity and verify the reliability of the connection of steel bars through finite element analysis software. The results show that adding the axial load to semi-grouting sleeve forms a 45°oblique compression zone, which help to transfer stress between reinforcement, grouting material and sleeve. Because the maximum stress of sleeve doesn’t reach its tensile resistance and the deformation of the sleeve is located at the junction of the grouting and the threaded section when the stress value of steel bars at each end of the semi-grouting sleeve reach its ultimate tensile strength, we conclude that the semi-grouting sleeve members can meet the construction quality requirements and be used to connect the steel bars at the joints of the assembled structures. It is necessary to avoid breaking down, since the deformation section will accumulate large plastic deformation during the processing of the sleeve.

  16. Direct Observations of In Situ Stress State in a 3 Kilometer Deep Borehole in the Upper Plate, Nankai Trough Subduction Zone: IODP Site C0002

    NASA Astrophysics Data System (ADS)

    Tobin, H. J.; Saffer, D. M.; Castillo, D. A.; Hirose, T.

    2016-12-01

    During IODP Expedition 348, borehole C0002F/N/P was advanced to a depth of 3058 m below the seafloor (mbsf) into the inner forearc accretionary wedge of the Nankai subduction zone (SW Japan), now the deepest scientific drilling ever into the ocean floor. The goals were to investigate the physical properties, structure, and state of stress deep within the hanging wall of a seismogenic subduction plate boundary. Mud pressure and gas monitoring, injection tests, leak-off tests (LOT), logging-while-drilling (LWD) measurements, and observations of mud losses and hole conditions provide both direct and indirect information about in situ pore pressure and stress state. The LOTs show that the minimum principal stress is consistently less than the vertical stress defined by the overburden, ruling out a thrust faulting stress state throughout the drilled section, and define a nearly linear gradient in Shmin from the seafloor to the base of the hole. Observations of mud loss and the lack of observed gas shows indicate that formation pore fluid pressure is not significantly (< 10 MPa) greater than hydrostatic. The maximum horizontal stress, estimated from borehole breakout width and pressure spikes during pack-off events, is close in magnitude to the vertical stress. Therefore the accretionary prism lies in either a normal or strike-slip faulting regime, or is transitional between the two, from 1 to 3 km depth. At 3002 mbsf we estimate that the effective stresses are: Sv' = 33 MPa; SHmax' = 25-36 MPa; and Shmin' = 18.5-21 MPa. Differential stresses are therefore low, on the order of 10-12 MPa, in the hanging wall of the subduction thrust. We conclude that (1) the inner wedge is not critically stressed in horizontal compression; (2) basal traction along the megathrust must be low in order to permit concurrent locking of the fault and low differential stresses deep within the upper plate; and (3) although low differential stresses may persist down to the plate boundary at 5000 mbsf, the maximum horizontal stress SHmax must transition to become greater than the vertical stress, either spatially below the base of the borehole, or temporally leading up to megathrust fault rupture, in order to drive slip on the megathrust.

  17. Nanoindentation data analysis of loading curve performed on DLC thin films: Effect of residual stress on the elasto-plastic properties

    NASA Astrophysics Data System (ADS)

    Ouchabane, M.; Dublanche-Tixier, Ch.; Dergham, D.

    2017-11-01

    The present work is a contribution to the understanding of the mechanical behavior of DLC thin films through nanoindentation tests. DLC films of different thicknesses deposited by the PECVD process on a silicon substrate contain high residual compressive stresses when they are very thin and the stresses become relatively low and more relaxed as the film thickens. These different levels of residual stress influence the values of hardness (H) and Young's modulus (E) obtained when probing the film-substrate system by nanoindentation. It is observed that the DLC layers exhibit different mechanical behaviors even when they are deposited under the same conditions. It is proposed that the compressive stress induces structural modifications resulting in modifying the elasto-plastic properties of each thin film-substrate system. Data analysis of the loading curve can provide information on the elasto-plastic properties of DLC thin films, particularly the stiffness (S) and Er2/H, as a function of residual compressive stresses. The structural changes induced by residual stresses were probed by using Raman spectroscopy and correlated to the mechanical properties.

  18. Thermophysical property and pore structure evolution in stressed and non-stressed neutron irradiated IG-110 nuclear graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Lance; Contescu, Christian I.; Byun, Thak Sang

    2016-08-01

    The nuclear graphite, IG-110, was irradiated with and without a compressive load of 5 MPa at ~400 *C up to 9.3E25 n/m2 (E > 0.1 MeV). Following irradiation physical properties were studied to compare the effect of graphite irradiation on microstructure developed under compression and in stress-free conditions. Properties included: dimensional change, thermal conductivity, dynamic modulus, and CTE. The effect of stress on open internal porosity was determined through nitrogen adsorption. The IG-110 graphite experienced irradiation-induced creep that is differentiated from irradiation-induced swelling. Irradiation under stress resulted in somewhat greater thermal conductivity and coefficient of thermal expansion. While a significantmore » increase in dynamic modulus occurs, no differentiation between materials irradiated with and without compressive stress was observed. Nitrogen adsorption analysis suggests a difference in pore evolution in the 0.3e40 nm range for graphite irradiated with and without stress, but this evolution is seen to be a small contributor to the overall dimensional change.« less

  19. Thermophysical property and pore structure evolution in stressed and non-stressed neutron irradiated IG-110 nuclear graphite

    DOE PAGES

    Snead, Lance L.; Contescu, C. I.; Byun, T. S.; ...

    2016-04-23

    The nuclear graphite, IG-110, was irradiated with and without a compressive load of 5 MPa at ~400 C up to 9.3x10 25 n/m 2 (E>0.1 MeV.) Following irradiation physical properties were studied to compare the effect of graphite irradiation on microstructure developed under compression and in stress-free condition. Properties included: dimensional change, thermal conductivity, dynamic modulus, and CTE. The effect of stress on open internal porosity was determined through nitrogen adsorption. The IG-110 graphite experienced irradiation-induced creep that is differentiated from irradiation-induced swelling. Irradiation under stress resulted in somewhat greater thermal conductivity and coefficient of thermal expansion. While a significantmore » increase in dynamic modulus occurs, no differentiation between materials irradiated with and without compressive stress was observed. Nitrogen adsorption analysis suggests a difference in pore evolution in the 0.3-40 nm range for graphite irradiated with and without stress, but this evolution is seen to be a small contributor to the overall dimensional change.« less

  20. Compression-compression fatigue of selective electron beam melted cellular titanium (Ti-6Al-4V).

    PubMed

    Hrabe, Nikolas W; Heinl, Peter; Flinn, Brian; Körner, Carolin; Bordia, Rajendra K

    2011-11-01

    Regular 3D periodic porous Ti-6Al-4V structures intended to reduce the effects of stress shielding in load-bearing bone replacement implants (e.g., hip stems) were fabricated over a range of relative densities (0.17-0.40) and pore sizes (approximately 500-1500 μm) using selective electron beam melting (EBM). Compression-compression fatigue testing (15 Hz, R = 0.1) resulted in normalized fatigue strengths at 10(6) cycles ranging from 0.15 to 0.25, which is lower than the expected value of 0.4 for solid material of the same acicular α microstructure. The three possible reasons for this reduced fatigue lifetime are stress concentrations from closed porosity observed within struts, stress concentrations from observed strut surface features (sintered particles and texture lines), and microstructure (either acicular α or martensite) with less than optimal high-cycle fatigue resistance. 2011 Wiley Periodicals, Inc.

  1. An Experimental Investigation of Mechanical Properties in Clay Brick Masonry by Partial Replacement of Fine Aggregate with Clay Brick Waste

    NASA Astrophysics Data System (ADS)

    Kumavat, Hemraj Ramdas

    2016-09-01

    The compressive stress-strain behavior and mechanical properties of clay brick masonry and its constituents clay bricks and mortar, have been studied by several laboratory tests. Using linear regression analysis, a analytical model has been proposed for obtaining the stress-strain curves for masonry that can be used in the analysis and design procedures. The model requires only the compressive strengths of bricks and mortar as input data, which can be easily obtained experimentally. Development of analytical model from the obtained experimental results of Young's modulus and compressive strength. Simple relationships have been identified for obtaining the modulus of elasticity of bricks, mortar, and masonry from their corresponding compressive strengths. It was observed that the proposed analytical model clearly demonstrates a reasonably good prediction of the stress-strain curves when compared with the experimental curves.

  2. Superposed ruptile deformational events revealed by field and VOM structural analysis

    NASA Astrophysics Data System (ADS)

    Kumaira, Sissa; Guadagnin, Felipe; Keller Lautert, Maiara

    2017-04-01

    Virtual outcrop models (VOM) is becoming an important application in the analysis of geological structures due to the possibility of obtaining the geometry and in some cases kinematic aspects of analyzed structures in a tridimensional photorealistic space. These data are used to gain quantitative information on the deformational features which coupled with numeric models can assist in understands deformational processes. Old basement units commonly register superposed deformational events either ductile or ruptile along its evolution. The Porongos Belt, located at southern Brazil, have a complex deformational history registering at least five ductile and ruptile deformational events. In this study, we presents a structural analysis of a quarry in the Porongos Belt, coupling field and VOM structural information to understand process involved in the last two deformational events. Field information was acquired using traditional structural methods for analysis of ruptile structures, such as the descriptions, drawings, acquisition of orientation vectors and kinematic analysis. VOM was created from the image-based modeling method through photogrammetric data acquisition and orthorectification. Photogrammetric data acquisition was acquired using Sony a3500 camera and a total of 128 photographs were taken from ca. 10-20 m from the outcrop in different orientations. Thirty two control point coordinates were acquired using a combination of RTK dGPS surveying and total station work, providing a precision of few millimeters for x, y and z. Photographs were imported into the Photo Scan software to create a 3D dense point cloud from structure from-motion algorithm, which were triangulated and textured to generate the VOM. VOM was georreferenced (oriented and scaled) using the ground control points, and later analyzed in OpenPlot software to extract structural information. Data was imported in Wintensor software to obtain tensor orientations, and Move software to process and interpret geometrical and kinematic data. Planar and linear structural orientations and kinematic indicators revealed superposition of three deformational events: i) compressive, ii) transtensional, and iii) extensional paleostress regimes. The compressive regime was related to a radial to pure compression with N-S horizontal maximum compression vector. This stress regime corresponds mainly to the development of dextral tension fractures and NE-SW reverse faults. The transtensional regime has NW-SE sub-horizontal extension, NE-SW horizontal compressional, and sub-vertical intermediate tensors, generating mainly shear fractures by reactivation of the metamorphic foliation (anisotropy), NE-SW reverse faults and NE-vertical veins and gashes. The extensional regime of strike-slip type presents a NE-SW sub-horizontal extension and NW-SE trending sub-vertical maximum compression vector. Structures related to this regime are sub-vertical tension gashes, conjugate fractures and NW-SE normal faults. Cross-cutting relations show that compression was followed by transtension, which reactivate the ductile foliation, and in the last stage, extension dominated. Most important findings show that: i) local stress fields can modify expected geometry and ii) anisotropy developed by previous structures control the nucleation of new fractures and reactivations. Use of field data integrated in a VOM has great potential as analogues for structured reservoirs.

  3. Law of damage accumulation and fracture criteria in highly filled polymer materials

    NASA Astrophysics Data System (ADS)

    Bykov, D. L.; Kazakov, A. V.; Konovalov, D. N.; Mel'nikov, V. P.; Milyokhin, Yu. M.; Peleshko, V. A.; Sadovnichii, D. N.

    2014-09-01

    We present the results of a large series of experiments aimed at the study of laws of damage accumulation and fracture in highly filled polymer materials under loading conditions of various types: monotone, repeated, low- and high-cycle, with varying type of stress state, dynamic (in general, more than 50 programs implemented on specimens from one lot of material). The data obtained in these test allow one to make conclusions about the constitutive role of the attained maximum of strain intensity when estimating the accumulated damage in the process of uniaxial tension by various programs (in particular, an additional cyclic deformation below the preliminary attained strain maximum does not affect the limit values of strain and stress in the subsequent active extension), about the strong influence of the stress state on the deformation and fracture, about the specific features of the nonlinear behavior of the material under the shock loading conditions and its influence on the repeated deformation. All tests are described (with an accuracy acceptable in practical calculations, both with respect to stresses and strains in the process of loading and at the moment of fracture) in the framework of the same model of nonlinear viscoelasticity with the same set of constants. The constants of the proposed model are calculated according to a relatively simple algorithm by using the results of standard uniaxial tension tests with constant values of the strain rate and hydrostatic pressure (each test for 2-3 levels of these parameters chosen from the ranges proposed in applications, each loading lasts until the fracture occurs, and one of the tests contains an intermediate interval of total loading and repeated loading) and one axial shock compression test if there are dynamic problems in the applications. The model is based on the use of the criterion fracture parameter which, in the class of proportional loading processes, is the sum of partial increments of the strain intensity on active segments of the process (where the strain intensity is at its historical maximum) with the form of the stress state and the intensity of strain rates taken into account.

  4. The problem of a finite strip compressed between two rough rigid stamps

    NASA Technical Reports Server (NTRS)

    Gupta, G. D.

    1975-01-01

    A finite strip compressed between two rough rigid stamps is considered. The elastostatic problem is formulated in terms of a singular integral equation from which the proper stress singularities at the corners are determined. The singular integral equation is solved numerically to determine the stresses along the fixed ends of the strip. The effect of material properties and strip geometry on the stress-intensity factor is presented graphically.

  5. CHRONIC PERIPHERAL NERVE COMPRESSION DISRUPTS PARANODAL AXOGLIAL JUNCTIONS

    PubMed Central

    Otani, Yoshinori; Yermakov, Leonid M.; Dupree, Jeffrey L.; Susuki, Keiichiro

    2016-01-01

    Introduction Peripheral nerves are often exposed to mechanical stress leading to compression neuropathies. The pathophysiology underlying nerve dysfunction by chronic compression is largely unknown. Methods We analyzed molecular organization and fine structures at and near nodes of Ranvier in a compression neuropathy model in which a silastic tube was placed around the mouse sciatic nerve. Results Immunofluorescence study showed that clusters of cell adhesion complex forming paranodal axoglial junctions were dispersed with frequent overlap with juxtaparanodal components. These paranodal changes occurred without internodal myelin damage. The distribution and pattern of paranodal disruption suggests that these changes are the direct result of mechanical stress. Electron microscopy confirmed loss of paranodal axoglial junctions. Discussion Our data show that chronic nerve compression disrupts paranodal junctions and axonal domains required for proper peripheral nerve function. These results provide important clues toward better understanding of the pathophysiology underlying nerve dysfunction in compression neuropathies. PMID:27463510

  6. An Experimental Study of Mortars with Recycled Ceramic Aggregates: Deduction and Prediction of the Stress-Strain.

    PubMed

    Cabrera-Covarrubias, Francisca Guadalupe; Gómez-Soberón, José Manuel; Almaral-Sánchez, Jorge Luis; Arredondo-Rea, Susana Paola; Gómez-Soberón, María Consolación; Corral-Higuera, Ramón

    2016-12-21

    The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε); therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%), such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content) are those of: σ (elastic ranges and failure maximum), ε (elastic ranges and failure maximum), and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications.

  7. An Experimental Study of Mortars with Recycled Ceramic Aggregates: Deduction and Prediction of the Stress-Strain

    PubMed Central

    Cabrera-Covarrubias, Francisca Guadalupe; Gómez-Soberón, José Manuel; Almaral-Sánchez, Jorge Luis; Arredondo-Rea, Susana Paola; Gómez-Soberón, María Consolación; Corral-Higuera, Ramón

    2016-01-01

    The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε); therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%), such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content) are those of: σ (elastic ranges and failure maximum), ε (elastic ranges and failure maximum), and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications. PMID:28774151

  8. Torque Limits for Fasteners in Composites

    NASA Technical Reports Server (NTRS)

    Zhao, Yi

    2002-01-01

    The two major classes of laminate joints are bonded and bolted. Often the two classes are combined as bonded-bolted joints. Several characteristics of fiber reinforced composite materials render them more susceptible to joint problems than conventional metals. These characteristics include weakness in in-plane shear, transverse tension/compression, interlaminar shear, and bearing strength relative to the strength and stiffness in the fiber direction. Studies on bolted joints of composite materials have been focused on joining assembly subject to in-plane loads. Modes of failure under these loading conditions are net-tension failure, cleavage tension failure, shear-out failure, bearing failure, etc. Although the studies of torque load can be found in literature, they mainly discussed the effect of the torque load on in-plane strength. Existing methods for calculating torque limit for a mechanical fastener do not consider connecting members. The concern that a composite member could be crushed by a preload inspired the initiation of this study. The purpose is to develop a fundamental knowledge base on how to determine a torque limit when a composite member is taken into account. Two simplified analytical models were used: a stress failure analysis model based on maximum stress criterion, and a strain failure analysis model based on maximum strain criterion.

  9. Elastic and Plastic Behavior of an Ultrafine-Grained Mg Reinforced with BN Nanoparticles

    NASA Astrophysics Data System (ADS)

    Trojanová, Zuzanka; Dash, Khushbu; Máthis, Kristián; Lukáč, Pavel; Kasakewitsch, Alla

    2018-04-01

    Pure microcrystalline magnesium (µMg) was reinforced with hexagonal boron nitride (hBN) nanoparticles and was fabricated by powder metallurgy process followed by hot extrusion. For comparison pure magnesium powder was consolidated by hot extrusion too. Both materials exhibited a significant fiber texture. Mg-hBN nanocomposites (nc) and pure Mg specimens were deformed between room temperature and 300 °C under tension and compression mode. The yield strength and ultimate tensile and compression strength as well as characteristic stresses were evaluated and reported. The tensile and compressive strengths of Mg-hBN nc are quiet superior in values compared to monolithic counterpart as well as Mg alloys. The compressive yield strength of µMg was recorded as 90 MPa, whereas the Mg-hBN nancomposite shows 125 MPa at 200 °C. The tensile yield strength of µMg was computed as 67 MPa which is quite lower as compared to Mg-hBN nanocomposite's value which was recorded as 157 MPa at 200 °C. Under tensile stress the true stress-strain curves are flat in nature, whereas the stress-strain curves observed in compression at temperatures up to 100 °C exhibited small local maxima at the onset of deformation followed by a significant work hardening.

  10. Tensile and compressive constitutive response of 316 stainless steel at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Muralidharan, U.; Halford, G. R.

    1982-01-01

    It is demonstrated that creep rate of 316 SS is lower by factors of 2 to 10 in compression than in tension if the microstructure is the same and tests are conducted at identical temperatures and equal but opposite stresses. Such behavior was observed for both monotonic creep and conditions involving cyclic creep. In the latter case creep rate in both tension and compression progressively increases from cycle to cycle, rendering questionable the possibility of expressing a time-stabilized constitutive relationship. The difference in creep rates in tension and compression is considerably reduced if the tension specimen is first subjected to cycles of tensile creep (reversed by compressive plasticity), while the compression specimen is first subjected to cycles of compressive creep (reversed by tensile plasticity). In both cases, the test temperature is the same and the stresses are equal and opposite. Such reduction is a reflection of differences in microstructure of the specimens resulting from different prior mechanical history.

  11. Identification marking by means of laser peening

    DOEpatents

    Hackel, Lloyd A.; Dane, C. Brent; Harris, Fritz

    2002-01-01

    The invention is a method and apparatus for marking components by inducing a shock wave on the surface that results in an indented (strained) layer and a residual compressive stress in the surface layer. One embodiment of the laser peenmarking system rapidly imprints, with single laser pulses, a complete identification code or three-dimensional pattern and leaves the surface in a state of deep residual compressive stress. A state of compressive stress in parts made of metal or other materials is highly desirable to make them resistant to fatigue failure and stress corrosion cracking. This process employs a laser peening system and beam spatial modulation hardware or imaging technology that can be setup to impress full three dimensional patterns into metal surfaces at the pulse rate of the laser, a rate that is at least an order of magnitude faster than competing marking technologies.

  12. Effects of Ultrasonic Nanocrystal Surface Modification on the Residual Stress, Microstructure, and Corrosion Resistance of 304 Stainless Steel Welds

    NASA Astrophysics Data System (ADS)

    Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.

    2018-03-01

    In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.

  13. Numerical Prediction of Residual Stresses in an Autofrettaged Tube of Compressible Material

    DTIC Science & Technology

    1981-05-01

    2 LEVEL TECHNICAL REPORT ARLCB-TR- 81019 NUMERICAL PREDICTION OF RESIDUAL STRESSES IN AN AUTOFRETTAGED TUBE OF COMPRESSIBLE MATERIAL 7 P. C. T. Chen...DOCUMENTATION PAGE READ INSTRUCTIONS BEFORE COMPLETING FORM I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER ARLCB-TR- 81019 At

  14. Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue.

    PubMed

    Kelly, Nicola; McGarry, J Patrick

    2012-05-01

    The inelastic pressure dependent compressive behaviour of bovine trabecular bone is investigated through experimental and computational analysis. Two loading configurations are implemented, uniaxial and confined compression, providing two distinct loading paths in the von Mises-pressure stress plane. Experimental results reveal distinctive yielding followed by a constant nominal stress plateau for both uniaxial and confined compression. Computational simulation of the experimental tests using the Drucker-Prager and Mohr-Coulomb plasticity models fails to capture the confined compression behaviour of trabecular bone. The high pressure developed during confined compression does not result in plastic deformation using these formulations, and a near elastic response is computed. In contrast, the crushable foam plasticity models provide accurate simulation of the confined compression tests, with distinctive yield and plateau behaviour being predicted. The elliptical yield surfaces of the crushable foam formulations in the von Mises-pressure stress plane accurately characterise the plastic behaviour of trabecular bone. Results reveal that the hydrostatic yield stress is equal to the uniaxial yield stress for trabecular bone, demonstrating the importance of accurate characterisation and simulation of the pressure dependent plasticity. It is also demonstrated in this study that a commercially available trabecular bone analogue material, cellular rigid polyurethane foam, exhibits similar pressure dependent yield behaviour, despite having a lower stiffness and strength than trabecular bone. This study provides a novel insight into the pressure dependent yield behaviour of trabecular bone, demonstrating the inadequacy of uniaxial testing alone. For the first time, crushable foam plasticity formulations are implemented for trabecular bone. The enhanced understanding of the inelastic behaviour of trabecular bone established in this study will allow for more realistic simulation of orthopaedic device implantation and failure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Residual-stress-induced grain growth of twinned grains and its effect on formability of magnesium alloy sheet at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Se-Jong; Kim, Daeyong, E-mail: daeyong@kims.re.kr; Lee, Keunho

    2015-11-15

    A magnesium alloy sheet was subjected to in-plane compression along with a vertical load to avoid buckling during compression. Pre-compressed specimens machined from the sheet were annealed at different temperatures and the changes in microstructure and texture were observed using electron back scattered diffraction (EBSD). Twinned grains preferentially grew during annealing at 300 °C, so that a strong texture with the < 0001 > direction parallel to the transverse direction developed. EBSD analysis confirmed that the friction caused by the vertical load induced inhomogeneous distribution of residual stress, which acted as an additional driving force for preferential grain growth ofmore » twinned grain during annealing. The annealed specimen showed excellent formability. - Highlights: • A magnesium alloy sheet subjected to in-plane compression under a vertical load • The vertical load induced inhomogeneous distribution of the residual stress. • The residual stress acted as an additional driving force for grain growth. • The annealed specimen with strong non-basal texture showed excellent formability.« less

  16. Charts relating the compressive buckling stress of longitudinally supported plates to the effective deflectional and rotational stiffness of the supports

    NASA Technical Reports Server (NTRS)

    Anderson, Roger A; Semonian, Joseph W

    1954-01-01

    A stability analysis is made of a long flat rectangular plate subjected to a uniform longitudinal compressive stress and supported along its longitudinal edges and along one or more longitudinal lines by elastic line supports. The elastic supports possess deflectional and rotational stiffness. Such configuration is an idealization of the compression cover skin and internal structure of a wing and tail surfaces. The results of the analysis are presented in the form of charts in which the buckling-stress coefficient is plotted against the buckle length of the plate for a wide range of support stiffnesses. The charts make possible the determination of the compressive buckling stress of plates supported by members whose stiffness may or may not be defined by elementary beam bending and twisting theory but yet whose effective restraint is amenable to evaluation. The deflectional and rotational stiffness provided by longitudinal stiffeners and full-depth webs is discussed and numerical examples are given to illustrate the application of the charts to the design of wing structures.

  17. Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Sano, Yuji; Kimura, Motohiko; Mukai, Naruhiko; Yoda, Masaki; Obata, Minoru; Ogisu, Tatsuki

    2000-02-01

    The authors have developed a new process of laser-induced shock compression to introduce a residual compressive stress on material surface, which is effective for prevention of stress corrosion cracking (SCC) and enhancement of fatigue strength of metal materials. The process developed is unique and beneficial. It requires no pre-conditioning for the surface, whereas the conventional process requires that the so-called sacrificial layer is made to protect the surface from damage. The new process can be freely applied to water- immersed components, since it uses water-penetrable green light of a frequency-doubled Nd:YAG laser. The process developed has the potential to open up new high-power laser applications in manufacturing and maintenance technologies. The laser-induced shock compression process (LSP) can be used to improve a residual stress field from tensile to compressive. In order to understand the physics and optimize the process, the propagation of a shock wave generated by the impulse of laser irradiation and the dynamic response of the material were analyzed by time-dependent elasto-plastic calculations with a finite element program using laser-induced plasma pressure as an external load. The analysis shows that a permanent strain and a residual compressive stress remain after the passage of the shock wave with amplitude exceeding the yield strength of the material. A practical system materializing the LSP was designed, manufactured, and tested to confirm the applicability to core components of light water reactors (LWRs). The system accesses the target component and remotely irradiates laser pulses to the heat affected zone (HAZ) along weld lines. Various functional tests were conducted using a full-scale mockup facility, in which remote maintenance work in a reactor vessel could be simulated. The results showed that the system remotely accessed the target weld lines and successfully introduced a residual compressive stress. After sufficient training for operational personnel, the system was applied to the core shroud of an existing nuclear power plant.

  18. Evolution of Mudstone Porosity, Permeability, and Microstructure in the Presence of Microorganisms During Vertical Compression

    NASA Astrophysics Data System (ADS)

    Mills, T.; Reece, J. S.

    2016-12-01

    Here we investigate the influence of microbial activity on the mechanical and transport properties of mudstones during early diagenesis. Despite the proven presence of microbial communities in marine sediments to depths of >500 meters below sea floor (mbsf), little is known about the interactions between microorganisms and sediments, especially during the early stages of burial and compression. To characterize and quantify the impact of microbial activity on mudstone properties, we compare natural mudstone samples treated with iron reducing bacteria Shewanella Oneidensis MR-1 and those without bacteria. Two bulk mudstones are experimentally prepared using sediments from Integrated Ocean Drilling Program Sites U1319 and U1324 in the Gulf of Mexico. The sediments originated from 4-13 mbsf in the Brazos-Trinity Basin and from three depth intervals (3-14 mbsf, 23-32 mbsf, and 493-502 mbsf) in the Ursa Basin. The sediments are dried and ground to clay- and silt-sized particles and homogenized into two natural mudstone powders. These powders are then used to make reproducible mudstone samples through a process called resedimentation, which replicates natural deposition and burial. Changes in microstructure, porosity, compressibility, and permeability are measured while the biotic (with bacteria) and abiotic (without bacteria) mudstones are being uniaxially compressed over several weeks to a maximum stress of 100 kPa. We anticipate that biofilm growth in pore spaces will decrease porosity, compressibility, and permeability, and the resultant microstructural changes created by microorganisms will be evident in high-resolution scanning electron microscope (SEM) images. Recognition of the micro-scale processes that take place during the early stages of mudstone diagenesis, especially those mediated by microbial activity, and their long-term effects on mudstone properties can lead to better identification and more effective production of unconventional hydrocarbon reservoirs.

  19. Experimental and Theoretical Research on the Compression Performance of CFRP Sheet Confined GFRP Short Pipe

    PubMed Central

    Zhao, Qilin; Chen, Li; Shao, Guojian

    2014-01-01

    The axial compressive strength of unidirectional FRP made by pultrusion is generally quite lower than its axial tensile strength. This fact decreases the advantages of FRP as main load bearing member in engineering structure. A theoretical iterative calculation approach was suggested to predict the ultimate axial compressive stress of the combined structure and analyze the influences of geometrical parameters on the ultimate axial compressive stress of the combined structure. In this paper, the experimental and theoretical research on the CFRP sheet confined GFRP short pole was extended to the CFRP sheet confined GFRP short pipe, namely, a hollow section pole. Experiment shows that the bearing capacity of the GFRP short pipe can also be heightened obviously by confining CFRP sheet. The theoretical iterative calculation approach in the previous paper is amended to predict the ultimate axial compressive stress of the CFRP sheet confined GFRP short pipe, of which the results agree with the experiment. Lastly the influences of geometrical parameters on the new combined structure are analyzed. PMID:24672288

  20. FE Analysis of Buckling Behavior Caused by Welding in Thin Plates of High Tensile Strength Steel

    NASA Astrophysics Data System (ADS)

    Wang, Jiangchao; Rashed, Sherif; Murakawa, Hidekazu

    2014-12-01

    The target of this study was to investigate buckling behavior during the entire welding process which consists of the heating and the cooling processes. For thin plate structures made of high tensile strength steel, not only residual buckling during or after cooling down but also transient buckling during heating may occur. The thermal elastic plastic FE analysis to investigate welding-induced buckling during the entire welding process is presented. Because of the high yield stress of high tensile strength steel, larger longitudinal compressive thermal stress is produced near the welding line compared with that in the case of carbon steel. Therefore, the plate may buckle due to thermal expansion, before the material nears yielding. During cooling down, the longitudinal compressive thermal stress close to the welding line disappears, and longitudinal tensile residual stress is produced due to contraction. Meanwhile, longitudinal compressive residual stress occurs far from the welding line to balance the tensile stress close to the welding line. This distribution of longitudinal residual stress would change the deformed dish shape of transient buckling into a saddle buckling type when the stress exceeds the critical buckling condition.

  1. A priori evaluation of the Pantano and Sarkar model in compressible homogeneous shear flows

    NASA Astrophysics Data System (ADS)

    Khlifi, Hechmi; Abdallah, J.; Aïcha, H.; Taïeb, L.

    2011-01-01

    In this study, a Reynolds stress closure, including the Pantano and Sarkar model of the mean part of the pressure-strain correlation is used for the computation of compressible homogeneous at high-speed shear flow. Several studies concerning the compressible homogeneous shear flow show that the changes of the turbulence structures are principally due to the structural compressibility effects which significantly affect the pressure field and then the pressure-strain correlation. Eventually, this term appears as the main term responsible for the changes in the magnitude of the Reynolds stress anisotropies. The structure of the gradient Mach number is similar to that of turbulence, therefore this parameter may be appropriate to study the changes in turbulence structures that arise from structural compressibility effects. Thus, the incompressible model of the pressure strain correlation and its corrected form by using the turbulent Mach turbulent only, fail to correctly evaluate the compressibility effects at high shear flow. An extension of the widely used incompressible Launder, Reece and Rodi model on compressible homogeneous shear flow is the major aim of the present work. From this extension, the standard coefficients C become a function of the extra compressibility parameters (the turbulent Mach number M and the gradient Mach number M) through the Pantano and Sarkar model. Application of the model on compressible homogeneous shear flow by considering various initial conditions shows reasonable agreement with the DNS results of Simone et al. and Sarkar. The observed trend of the dramatic increase in the normal Reynolds stress anisotropies, the significant decrease in the Reynolds shear stress anisotropy and the increase of the turbulent kinetic energy amplification rate with increasing the gradient Mach number are well predicted by the model. The ability of the model to predict the equilibrium states for the flow in cases A to A from DNS results of Sarkar is examined, the results appear to be very encouraging. Thus, both parameters M and M should be used to model significant structural compressibility effects at high-speed shear flow.

  2. Hydromechanics in dentine: role of dentinal tubules and hydrostatic pressure on mechanical stress-strain distribution.

    PubMed

    Kishen, A; Vedantam, S

    2007-10-01

    This investigation is to understand the role of free water in the dentinal tubules on the mechanical integrity of bulk dentine. Three different experiments were conducted in this study. In experiment 1, three-dimensional models of dentine with gradient elastic modulus, homogenous elastic modulus, and with and without hydrostatic pressure were simulated using the finite element method. Static compressive loads of 15, 50 and 100 N were applied and the distribution of the principal stresses, von Mises stresses, and strains in loading direction were determined. In experiment 2, experimental compression testing of fully hydrated and partially dehydrated dentine (21 degrees C for 72 h) was conducted using a Universal testing machine. In experiment 3, Fourier transform infrared spectroscopic analysis of hydrated and partially dehydrated dentine was carried out. The finite element analysis revealed that the dentine model with simulated hydrostatic pressure displayed residual tensile stresses and strains in the inner region adjacent to the root canal. When external compressive loads were applied to the model, the residual stresses and strains counteracted the applied loads. Similarly the hydrated specimens subjected to experimental compression loads showed greater toughness when compared to the partially dehydrated specimens. The stress at fracture was significantly higher in partially dehydrated specimens (p=0.014), while the strain at fracture was significantly higher in hydrated dentine specimens (p=0.037). These experiments highlighted the distinct role of free water in the dentinal tubules and hydrostatic pressure on the stress-strain distribution within the bulk dentine.

  3. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors

    PubMed Central

    Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.; Tahir, M. M.

    2016-01-01

    This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed. PMID:27478894

  4. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors.

    PubMed

    Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N H; Tahir, M M

    2016-01-01

    This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed.

  5. Estimation of shear stress by using a myocardial bridge-mural coronary artery simulating device.

    PubMed

    Ding, Hao; Yang, Qian; Shang, Kun; Lan, Hailian; Lv, Jie; Liu, Zhilin; Liu, Yang; Sheng, Lixing; Zeng, Yanjun

    2017-01-01

    This study was aimed at developing a myocardial bridge-mural coronary artery simulative device and analyzing the relationship between shear stress on the mural coronary artery and atherosclerosis. A myocardial bridge-mural coronary artery simulative device was used to simulate experiments in vitro. In the condition of maintaining any related parameters such as system temperature, average flow rate, and heart rate, we calculated and observed changes in proximal and distal mean values, and oscillatory value of shear stress on the mural coronary artery by regulating the compression level of the myocardial bridge to the mural coronary artery. Under 0% compression, no significant differences were observed in distal and proximal mean values and oscillatory value of the shear stress on the mural coronary artery. With the increase in the degree of compression, the mean shear stress at the distal end was greater than that at the proximal end, but the oscillatory value of the shear stress at the proximal end was greater than that at the distal end. The experimental results of this study indicate that myocardial bridge compression leads to abnormal hemodynamics at the proximal end of the mural coronary artery. This abnormal phenomenon is of great significance in the study of atherosclerosis hemodynamic pathogenesis, which has potential clinical value for pathological effects and treatments of myocardial bridge.

  6. Deterioration of the mechanical properties of calcium phosphate cements with Poly (γ-glutamic acid) and its strontium salt after in vitro degradation.

    PubMed

    Liang, Ting; Gao, Chun-Xia; Yang, Lei; Saijilafu; Yang, Hui-Lin; Luo, Zong-Ping

    2017-11-01

    The mechanical reliability of calcium phosphate cements has restricted their clinical application in load-bearing locations. Although their mechanical strength can be improved using a variety of strategies, their fatigue properties are still unclear, especially after degradation. The evolutions of uniaxial compressive properties and the fatigue behavior of calcium phosphate cements incorporating poly (γ-glutamic acid) and its strontium salt after different in vitro degradation times were investigated in the present study. Compressive strength decreased from the 61.2±5.4MPa of the original specimen, to 51.1±4.4, 42.2±3.8, 36.8±2.4 and 28.9±3.2MPa following degradation for one, two, three and four weeks, respectively. Fatigue life under same loading condition also decreased with increasing degradation time. The original specimens remained intact for one million cycles (run-out) under a maximum stress of 30MPa. After degradation for one to four weeks, the specimens were able to withstand maximum stress of 20, 15, 10 and 10MPa, respectively until run-out. Defect volume fraction within the specimens increased from 0.19±0.021% of the original specimen to 0.60±0.19%, 1.09±0.04%, 2.68±0.64% and 7.18±0.34% at degradation time of one, two, three and four weeks, respectively. Therefore, we can infer that the primary cause of the deterioration of the mechanical properties was an increasing in micro defects induced by degradation, which promoted crack initiation and propagation, accelerating the final mechanical failure of the bone cement. This study provided the data required for enhancing the mechanical reliability of the calcium phosphate cements after different degradation times, which will be significant for the modification of load-bearing biodegradable bone cements to match clinical application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Microstructural variation through weld thickness and mechanical properties of peened friction stir welded 6061 aluminum alloy joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulstaar, Mustafa A., E-mail: mustafa.abdulstaar

    The current study examined the effect of microstructure variation on the development of mechanical properties in friction stir welded joints of 6061-T6 aluminum alloy, which were subsequently processed by shot peening (SP). Following to FSW, fatigue specimens were extracted perpendicularly to the welding direction. Surface Skimming to 0.5 mm from crown and root sides of the joint was made and SP was later applied on the two sides using ceramic shots of two different Almen intensities of 0.18 mmA and 0.24 mmA. Microstructural examination by electron back scattered diffraction (EBSD) indicated variation in the grain refinement of the weld zone,more » with coarsest grains (5 μm) at the crown side and finest grains (2 μm) at the root side. Reduction of microhardness to 60 HV occurred in the weld zone for samples in FSW condition. Application of SP promoted significant strain hardening at the crown side, with Almen intensities of 0.24 mmA providing maximum increase in microhardness to 120 HV. On the contrary, only a maximum microhardness of 75 HV was obtained at the root side. The difference in strain hardening capability at the two sides was strongly dependent on grain size. The two Almen intensities produced similar distribution of compressive residual stresses in the subsurface regions that led to enhance the fatigue strength to the level of base metal for N ≥ 10{sup 5} cycles. Yet, the increase in fatigue strength was more pronounced with increasing Almen intensity to 0.24 mmA, demonstrating further enhancement by strain hardening. - Highlights: • Grain refinement was observed after friction stir welding of AA 6061-T6. • Reduction in microhardness and fatigue strength were obtained after welding. • Variation in grain refinement led to different hardening behavior after peening. • Shot peening induced beneficial compressive residual stresses. • Shot peening and surface skimming markedly improved the fatigue performance.« less

  8. Contribution a l'etude du comportement en fatigue des aciers inoxydables 13%Cr-4%Ni: Contraintes residuelles de soudage et transformation sous contrainte de l'austenite de reversion

    NASA Astrophysics Data System (ADS)

    Thibault, Denis

    The objectives of the present study are to characterize some of the main parameters affecting fatigue behaviour of 13%Cr-4%Ni martensitic stainless steels used for hydraulic turbines manufacturing. Two aspects are studied: the residual stresses left after autogenous welding of these steels and the stress-assisted transformation of the reformed austenite contained in this alloy. The residual stresses induced by welding were characterized by four different methods: the hole-drilling method, X-ray diffraction, neutron diffraction and the contour method. The state of stress was characterized in two different joints geometries, both using 41ONiMo weld filler metal. The characterization was made before and after post-weld heat treatment. A stress distribution completely different of the stress distribution commonly found in structural steels was measured. Triaxial compression was found in the last bead with a maximum value of approximately 400 MPa. Tensile stress was measured around the heat-affected zone and just below the last weld layer. The low temperature martensitic transformation occuring during weld cooling (˜300°C) explains this unusual stress distribution. The results also showed that the post-weld heat treatment commonly used in the industry is efficient in lowering residual stresses. A maximum stress of about 150 MPa was found after heat treament. The austenite formed during this post-weld heat treatment is mechanically unstable. The results presented in this thesis show that after fatigue crack propagation testing, all the reformed austenite found near the fracture surface has transformed to martensite under cyclic stress loading. These measurements made by X-ray diffraction are confirmed by low-cycle fatigue tests showing that the reformed austenite found in this alloy transforms gradually to martensite during strain cycling. The transformation is completed after 100 cycles. The fatigue crack growth behaviour of the tested alloys does not seem to be influenced by this phenomenon occuring at all values of stress intensity factor. The practical implications of this work on fabrication and repair of hydraulic turbines made of 13%Cr-4%Ni are also discussed in this thesis. Keywords: martensitic stainless steel, fatigue, residual stress, welding

  9. Dynamic rupture modeling of the transition from thrust to strike-slip motion in the 2002 Denali fault earthquake, Alaska

    USGS Publications Warehouse

    Aagaard, Brad T.; Anderson, G.; Hudnut, K.W.

    2004-01-01

    We use three-dimensional dynamic (spontaneous) rupture models to investigate the nearly simultaneous ruptures of the Susitna Glacier thrust fault and the Denali strike-slip fault. With the 1957 Mw 8.3 Gobi-Altay, Mongolia, earthquake as the only other well-documented case of significant, nearly simultaneous rupture of both thrust and strike-slip faults, this feature of the 2002 Denali fault earthquake provides a unique opportunity to investigate the mechanisms responsible for development of these large, complex events. We find that the geometry of the faults and the orientation of the regional stress field caused slip on the Susitna Glacier fault to load the Denali fault. Several different stress orientations with oblique right-lateral motion on the Susitna Glacier fault replicate the triggering of rupture on the Denali fault about 10 sec after the rupture nucleates on the Susitna Glacier fault. However, generating slip directions compatible with measured surface offsets and kinematic source inversions requires perturbing the stress orientation from that determined with focal mechanisms of regional events. Adjusting the vertical component of the principal stress tensor for the regional stress field so that it is more consistent with a mixture of strike-slip and reverse faulting significantly improves the fit of the slip-rake angles to the data. Rotating the maximum horizontal compressive stress direction westward appears to improve the fit even further.

  10. Spatially extensive uniform stress fields on Venus inferred from radial dike swarm geometries: The Aphrodite Terra example

    NASA Technical Reports Server (NTRS)

    Grosfils, Eric B.; Head, James W.

    1993-01-01

    The high resolution and near global coverage of Magellan radar images is facilitating attempts to systematically investigate the stresses that have deformed the venusian crust. Here we continue earlier efforts to utilize approximately 170 large, radially lineated structures interpreted as dike swarms to assess the orientation of the regional maximum horizontal compressive stress (MHCS) which existed in their vicinities during emplacement. Examination of swarms near the equator reveals a link to broad scale regional structures, such as Aphrodite Terra, across distances in excess of 1000 km, suggesting the existence of first order stress fields which affect areas of more than 10(exp 6) sq km in a uniform fashion. Focusing further upon the Aphrodite Terra region, the MHCS field in the surrounding lowlands inferred from radial swarms is oriented approximately normal to the slope of the highland topography. This stress configuration appears, at a simple level, to be incompatible with that expected during either upwelling or downwelling construction of the highlands. In addition, the relatively undeformed geometry of the radial structures within the highlands implies that these dike swarm features formed more recently than their highly deformed surroundings. We conclude that the differential stresses which existed during emplacement of the dike swarms within and adjacent to the Aphrodite Terra highlands are related to the gravitational relaxation of pre-existing topography.

  11. Welding induced residual stress evaluation using laser-generated Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Ye, Chong; Zhou, Yuanlai; Reddy, Vishnu V. B.; Mebane, Aaron; Ume, I. Charles

    2018-04-01

    Welding induced residual stress could affect the dimensional stability, fatigue life, and chemical resistance of the weld joints. Ultrasonic method serves as an important non-destructive tool for the residual stress evaluation due to its easy implementation, low cost and wide application to different materials. Residual stress would result in the ultrasonic wave velocity variation, which is the so called acoustoelastic effect. In this paper, Laser/EMAT ultrasonic technique was proposed to experimentally study the relative velocity variation ΔV/V of Rayleigh wave, which has the potential to evaluate surface/subsurface longitudinal residual stress developed during the Gas Metal Arc Welding process. Broad band ultrasonic waves were excited by pulsed Q-Switched Nd: YAG laser. An electromagnetic acoustic transducer (EMAT) attached to the welded plates was used to capture the Rayleigh wave signals propagating along the weld seam direction. Different time of flight measurements were conducted by varying the distance between the weld seam and Rayleigh wave propagating path in the range of 0 to 45 mm. The maximum relative velocity difference was found on the weld seam. With the increasing distance away from the weld seam, the relative velocity difference sharply decreased to negative value. With further increase in distance, the relative velocity difference slowly increased and approached zero. The distribution of relative velocity variations indicates that tensile stress appears in the melted zone as it becomes compressive near the heat-affected zone.

  12. Inner Ear Barotrauma After Underwater Pool Competency Training Without the Use of Compressed Air Case and Review.

    PubMed

    McIntire, Sean; Boujie, Lee

    2016-01-01

    Inner ear barotrauma can occur when the gas-filled chambers of the ear have difficulty equalizing pressure with the outside environment after changes in ambient pressure. This can transpire even with small pressure changes. Hypobaric or hyperbaric environments can place significant stress on the structures of the middle and inner ear. If methods to equalize pressure between the middle ear and other connected gas-filled spaces (i.e., Valsalva maneuver) are unsuccessful, middle ear overpressurization can occur. This force can be transmitted to the fluid-filled inner ear, making it susceptible to injury. Damage specifically to the structures of the vestibulocochlear system can lead to symptoms of vertigo, hearing loss, and tinnitus. This article discusses the case of a 23-year-old male Marine who presented with symptoms of nausea and gait instability after performing underwater pool competency exercises to a maximum depth of 13 feet, without breathing compressed air. Diagnosis and management of inner ear barotrauma are reviewed, as is differentiation from inner ear decompression sickness. 2016.

  13. The nonlinear bending response of thin-walled laminated composite cylinders

    NASA Technical Reports Server (NTRS)

    Fuchs, Hannes P.; Hyer, Michael W.

    1992-01-01

    The geometrically nonlinear Donnell shell theory is applied to the problem of stable bending of thin-walled circular cylinders. Responses are computed for cylinders with a radius-to-thickness ratio of 50 and length-to-radius ratios of 1 and 5. Four laminated composite cylinders and an aluminum cylinder are considered. Critical moment estimates are presented for short cylinders for which compression-type buckling behavior is important, and for very long cylinders for which the cross-section flattening, i.e., Brazier effect, is important. A finite element analysis is used to estimate the critical end rotation in addition to establishing the range of validity of the prebuckling analysis. The radial displacement response shows that the character of the boundary layer is significantly influenced by the geometric nonlinearities. Application of a first ply failure analysis using the maximum stress criterion suggests that in nearly all instances material failure occurs before buckling. Failure of the composite cylinders can be attributed to fiber breakage. Striking similarities are seen between the prebuckling displacements of the bending problem and axial compression problem for short cylinders.

  14. A Fiber-Optic System Generating Pulses of High Spectral Density

    NASA Astrophysics Data System (ADS)

    Abramov, A. S.; Zolotovskii, I. O.; Korobko, D. A.; Fotiadi, A. A.

    2018-03-01

    A cascade fiber-optic system that generates pulses of high spectral density by using the effect of nonlinear spectral compression is proposed. It is demonstrated that the shape of the pulse envelope substantially influences the degree of compression of its spectrum. In so doing, maximum compression is achieved for parabolic pulses. The cascade system includes an optical fiber exhibiting normal dispersion that decreases along the fiber length, thereby ensuring that the pulse envelope evolves toward a parabolic shape, along with diffraction gratings and a fiber spectral compressor. Based on computer simulation, we determined parameters of cascade elements leading to maximum spectral density of radiation originating from a subpicosecond laser pulse of medium energy.

  15. Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials

    DOE PAGES

    MacDonald, M. J.; Vorberger, J.; Gamboa, E. J.; ...

    2016-06-07

    Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate lattice strains for all initial crystallite orientations, enablingmore » elastic anisotropy and sample texture effects to be modeled directly. Furthermore, the effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.« less

  16. Tension and compression fatigue response of unnotched 3D braided composites

    NASA Technical Reports Server (NTRS)

    Portanova, M. A.

    1992-01-01

    The unnotched compression and tension fatigue response of a 3-D braided composite was measured. Both gross compressive stress and tensile stress were plotted against cycles to failure to evaluate the fatigue life of these materials. Damage initiation and growth was monitored visually and by tracking compliance change during cycle loading. The intent was to establish by what means the strength of a 3-D architecture will start to degrade, at what point will it degrade beyond an acceptable level, and how this material will typically fail.

  17. Mechanics of graded glass composites and zinc oxide thin films grown at 90 degrees Celsius in water

    NASA Astrophysics Data System (ADS)

    Fillery, Scott Pierson

    2007-06-01

    The purpose of this research was to study the mechanical stability of two different material systems. The glass laminate system, exhibiting a threshold strength when placed under an applied load and ZnO thin films grown on GaN buffered Al2O3 substrates, exhibiting variations in film stability with changes to the Lateral Epitaxial Overgrowth architecture. The glass laminates were fabricated to contain periodic thin layers containing biaxial compressive stresses using ion exchange treatments to create residual compressive stresses at the surface of soda lime silicate glass sheets. Wafer direct bonding of the ion exchanged glass sheets resulted in the fabrication of glass laminates with thin layers of compressive stress adjacent to the glass interfaces. The threshold flexural strength of the ion exchanged glass laminates was determined to be 112 MPa after the introduction of indentation cracks with indent loads ranging from 1kg to 5kg and the laminates were found to exhibit a threshold strength, i.e., a stress below which failure will not occur. Contrary to similar ceramic laminates where cracks either propagate across the compressive layer or bifurcate within the compressive layer, the cracks in the glass laminates were deflected along the interface between the bonded sheets. ZnO films were grown on (0001) GaN buffered Al2O3 substrates by aqueous solution routes at 90°C. The films were found to buckle under compressive residual stresses at film thicknesses greater than 4mum. Lateral epitaxial overgrowth techniques using hexagonal hole arrays showed an increasing film stability with larger array spacing, resulting in film thicknesses up to 92mum. Stress determinations using Raman spectroscopy indicated that stress relaxation at the free surface during film growth played a major role in film stability. Investigations using Finite Element Analysis and Raman spectroscopy demonstrated that the strain energy within the film/substrate system decreased with increasing array spacing. ZnO films grown on III-nitride LED devices for use as transparent conducting layers showed intrinsic n-type doping, high transparency and adequate electrical contact resistance, resulting in linear light output with forward bias current and improved light extraction.

  18. Induced seismicity constraints on subsurface geological structure, Paradox Valley, Colorado

    NASA Astrophysics Data System (ADS)

    Block, Lisa V.; Wood, Christopher K.; Yeck, William L.; King, Vanessa M.

    2015-02-01

    Precise relative hypocentres of seismic events induced by long-term fluid injection at the Paradox Valley Unit (PVU) brine disposal well provide constraints on the subsurface geological structure and compliment information available from deep seismic reflection and well data. We use the 3-D spatial distribution of the hypocentres to refine the locations, strikes, and throws of subsurface faults interpre­ted previously from geophysical surveys and to infer the existence of previously unidentified subsurface faults. From distinct epicentre lineations and focal mechanism trends, we identify a set of conjugate fracture orientations consistent with shear-slip reactivation of late-Palaeozoic fractures over a widespread area, as well as an additional fracture orientation present only near the injection well. We propose simple Mohr-Coulomb fracture models to explain these observations. The observation that induced seismicity preferentially occurs along one of the identified conjugate fracture orientations can be explained by a rotation in the direction of the regional maximum compressive stress from the time when the fractures were formed to the present. Shear slip along the third fracture orientation observed near the injection well is inconsistent with the current regional stress field and suggests a local rotation of the horizontal stresses. The detailed subsurface model produced by this analysis provides important insights for anticipating spatial patterns of future induced seismicity and for evaluation of possible additional injection well sites that are likely to be seismically and hydrologically isolated from the current well. In addition, the interpreted fault patterns provide constraints for estimating the maximum magnitude earthquake that may be induced, and for building geomechanical models to simulate pore pressure diffusion, stress changes and earthquake triggering.

  19. Morphological changes in polycrystalline Fe after compression and release

    NASA Astrophysics Data System (ADS)

    Gunkelmann, Nina; Tramontina, Diego R.; Bringa, Eduardo M.; Urbassek, Herbert M.

    2015-02-01

    Despite a number of large-scale molecular dynamics simulations of shock compressed iron, the morphological properties of simulated recovered samples are still unexplored. Key questions remain open in this area, including the role of dislocation motion and deformation twinning in shear stress release. In this study, we present simulations of homogeneous uniaxial compression and recovery of large polycrystalline iron samples. Our results reveal significant recovery of the body-centered cubic grains with some deformation twinning driven by shear stress, in agreement with experimental results by Wang et al. [Sci. Rep. 3, 1086 (2013)]. The twin fraction agrees reasonably well with a semi-analytical model which assumes a critical shear stress for twinning. On reloading, twins disappear and the material reaches a very low strength value.

  20. A compressible Navier-Stokes solver with two-equation and Reynolds stress turbulence closure models

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.

    1992-01-01

    This report outlines the development of a general purpose aerodynamic solver for compressible turbulent flows. Turbulent closure is achieved using either two equation or Reynolds stress transportation equations. The applicable equation set consists of Favre-averaged conservation equations for the mass, momentum and total energy, and transport equations for the turbulent stresses and turbulent dissipation rate. In order to develop a scheme with good shock capturing capabilities, good accuracy and general geometric capabilities, a multi-block cell centered finite volume approach is used. Viscous fluxes are discretized using a finite volume representation of a central difference operator and the source terms are treated as an integral over the control volume. The methodology is validated by testing the algorithm on both two and three dimensional flows. Both the two equation and Reynolds stress models are used on a two dimensional 10 degree compression ramp at Mach 3, and the two equation model is used on the three dimensional flow over a cone at angle of attack at Mach 3.5. With the development of this algorithm, it is now possible to compute complex, compressible high speed flow fields using both two equation and Reynolds stress turbulent closure models, with the capability of eventually evaluating their predictive performance.

  1. Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography

    PubMed Central

    Kennedy, Kelsey M.; Chin, Lixin; McLaughlin, Robert A.; Latham, Bruce; Saunders, Christobel M.; Sampson, David D.; Kennedy, Brendan F.

    2015-01-01

    Probing the mechanical properties of tissue on the microscale could aid in the identification of diseased tissues that are inadequately detected using palpation or current clinical imaging modalities, with potential to guide medical procedures such as the excision of breast tumours. Compression optical coherence elastography (OCE) maps tissue strain with microscale spatial resolution and can delineate microstructural features within breast tissues. However, without a measure of the locally applied stress, strain provides only a qualitative indication of mechanical properties. To overcome this limitation, we present quantitative micro-elastography, which combines compression OCE with a compliant stress sensor to image tissue elasticity. The sensor consists of a layer of translucent silicone with well-characterized stress-strain behaviour. The measured strain in the sensor is used to estimate the two-dimensional stress distribution applied to the sample surface. Elasticity is determined by dividing the stress by the strain in the sample. We show that quantification of elasticity can improve the ability of compression OCE to distinguish between tissues, thereby extending the potential for inter-sample comparison and longitudinal studies of tissue elasticity. We validate the technique using tissue-mimicking phantoms and demonstrate the ability to map elasticity of freshly excised malignant and benign human breast tissues. PMID:26503225

  2. Speech perception in older listeners with normal hearing:conditions of time alteration, selective word stress, and length of sentences.

    PubMed

    Cho, Soojin; Yu, Jyaehyoung; Chun, Hyungi; Seo, Hyekyung; Han, Woojae

    2014-04-01

    Deficits of the aging auditory system negatively affect older listeners in terms of speech communication, resulting in limitations to their social lives. To improve their perceptual skills, the goal of this study was to investigate the effects of time alteration, selective word stress, and varying sentence lengths on the speech perception of older listeners. Seventeen older people with normal hearing were tested for seven conditions of different time-altered sentences (i.e., ±60%, ±40%, ±20%, 0%), two conditions of selective word stress (i.e., no-stress and stress), and three different lengths of sentences (i.e., short, medium, and long) at the most comfortable level for individuals in quiet circumstances. As time compression increased, sentence perception scores decreased statistically. Compared to a natural (or no stress) condition, the selectively stressed words significantly improved the perceptual scores of these older listeners. Long sentences yielded the worst scores under all time-altered conditions. Interestingly, there was a noticeable positive effect for the selective word stress at the 20% time compression. This pattern of results suggests that a combination of time compression and selective word stress is more effective for understanding speech in older listeners than using the time-expanded condition only.

  3. Effects of Cutting Edge Microgeometry on Residual Stress in Orthogonal Cutting of Inconel 718 by FEM.

    PubMed

    Shen, Qi; Liu, Zhanqiang; Hua, Yang; Zhao, Jinfu; Lv, Woyun; Mohsan, Aziz Ul Hassan

    2018-06-14

    Service performance of components such as fatigue life are dramatically influenced by the machined surface and subsurface residual stresses. This paper aims at achieving a better understanding of the influence of cutting edge microgeometry on machined surface residual stresses during orthogonal dry cutting of Inconel 718. Numerical and experimental investigations have been conducted in this research. The cutting edge microgeometry factors of average cutting edge radius S¯, form-factor K , and chamfer were investigated. An increasing trend for the magnitudes of both tensile and compressive residual stresses was observed by using larger S¯ or introducing a chamfer on the cutting edges. The ploughing depth has been predicted based on the stagnation zone. The increase of ploughing depth means that more material was ironed on the workpiece subsurface, which resulted in an increase in the compressive residual stress. The thermal loads were leading factors that affected the surface tensile residual stress. For the unsymmetrical honed cutting edge with K = 2, the friction between tool and workpiece and tensile residual stress tended to be high, while for the unsymmetrical honed cutting edge with K = 0.5, the high ploughing depth led to a higher compressive residual stress. This paper provides guidance for regulating machine-induced residual stress by edge preparation.

  4. Do mesoscale faults near the tip of an active strike-slip fault indicate regional or local stress?

    NASA Astrophysics Data System (ADS)

    Yamaji, Atsushi

    2017-04-01

    Fault-slip analysis is used in Japan after the Great Tohoku Earthquake (2011) to judge the stability of fractures in the foundations of nuclear power plants. In case a fault-slip datum from a fracture surface is explained by the present stress condition, the fracture is thought to have a risk to be activated as a fault. So, it is important to understand the relative significance of regional and local stresses. To answer the question whether mesoscale faults indicate regional or local stress, fault-slip data were collected from the walls of a trenching site of the Nojima Fault in central Japan—an active, dextral, strike-slip fault. The fault gave rise to the 1995 Kobe earthquake, which killed more than 6000 people. The trench was placed near the fault tip, which produced compressional and extensional local stress conditions on the sides of the fault near the tip. A segment of the fault, which ruptured the surface in 1995, bounded Cretaceous granite and latest Pliocene sediments in the trench. As a result, the stress inversion of the data from the mesoscale faults observed in the trench showed both the local stresses. The present WNW-ESE regional compression was found from the compressive side, but was not in the extensional side, probably because local extension surpassed the regional compression. Instead, the regional N-S compression of the Early Pleistocene was found from the extensional side. From this project, we got the lesson that fault-slip analysis reveals regional and local stresses, and that local stress sometimes masks regional one. This work was supported by a science project of "Drilling into Fault Damage Zone" (awarded to A. Lin) of the Secretariat of Nuclear Regulation Authority (Japan).

  5. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale

    PubMed Central

    Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.

    2016-01-01

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties. PMID:27725722

  6. Near-wall modelling of compressible turbulent flows

    NASA Technical Reports Server (NTRS)

    So, Ronald M. C.

    1990-01-01

    Work was carried out to formulate near-wall models for the equations governing the transport of the temperature-variance and its dissipation rate. With these equations properly modeled, a foundation is laid for their extension together with the heat-flux equations to compressible flows. This extension is carried out in a manner similar to that used to extend the incompressible near-wall Reynolds-stress models to compressible flows. The methodology used to accomplish the extension of the near-wall Reynolds-stress models is examined and the actual extension of the models for the Reynolds-stress equations and the near-wall dissipation-rate equation to compressible flows is given. Then the formulation of the near-wall models for the equations governing the transport of the temperature variance and its dissipation rate is discussed. Finally, a sample calculation of a flat plate compressible turbulent boundary-layer flow with adiabatic wall boundary condition and a free-stream Mach number of 2.5 using a two-equation near-wall closure is presented. The results show that the near-wall two-equation closure formulated for compressible flows is quite valid and the calculated properties are in good agreement with measurements. Furthermore, the near-wall behavior of the turbulence statistics and structure parameters is consistent with that found in incompressible flows.

  7. An alternative approach for modeling strength differential effect in sheet metals with symmetric yield functions

    NASA Astrophysics Data System (ADS)

    Kurukuri, Srihari; Worswick, Michael J.

    2013-12-01

    An alternative approach is proposed to utilize symmetric yield functions for modeling the tension-compression asymmetry commonly observed in hcp materials. In this work, the strength differential (SD) effect is modeled by choosing separate symmetric plane stress yield functions (for example, Barlat Yld 2000-2d) for the tension i.e., in the first quadrant of principal stress space, and compression i.e., third quadrant of principal stress space. In the second and fourth quadrants, the yield locus is constructed by adopting interpolating functions between uniaxial tensile and compressive stress states. In this work, different interpolating functions are chosen and the predictive capability of each approach is discussed. The main advantage of this proposed approach is that the yield locus parameters are deterministic and relatively easy to identify when compared to the Cazacu family of yield functions commonly used for modeling SD effect observed in hcp materials.

  8. Experimental investigation of fatigue behavior of carbon fiber composites using fully-reversed four-point bending test

    NASA Astrophysics Data System (ADS)

    Amiri, Ali

    Carbon fiber reinforced polymers (CFRP) have become an increasingly notable material for use in structural engineering applications. Some of their advantages include high strength-to-weight ratio, high stiffness-to-weight ratio, and good moldability. Prediction of the fatigue life of composite laminates has been the subject of various studies due to the cyclic loading experienced in many applications. Both theoretical studies and experimental tests have been performed to estimate the endurance limit and fatigue life of composite plates. One of the main methods to predict fatigue life is the four-point bending test. In most previous works, the tests have been done in one direction (load ratio, R, > 0). In the current work, we have designed and manufactured a special fixture to perform a fully reversed bending test (R = -1). Static four-point bending tests were carried out on three (0°/90°)15 and (± 45°)15 samples to measure the mechanical properties of CFRP. Testing was displacement-controlled at the rate of 10 mm/min until failure. In (0°/90°)15 samples, all failed by cracking/buckling on the compressive side of the sample. While in (± 45°)15 all three tests, no visual fracture or failure of the samples was observed. 3.4 times higher stresses were reached during four-point static bending test of (0° /90°)15 samples compared to (± 45°)15. Same trend was seen in literature for similar tests. Four-point bending fatigue tests were carried out on (0° /90°)15 sample with stress ratio, R = -1 and frequency of 5 Hz. Applied maximum stresses were approximately 45%, 56%, 67%, 72% and 76% of the measured yield stress for (0° /90°)15 samples. There was visible cracking through the thickness of the samples. The expected downward trend in fatigue life with increasing maximum applied stress was observed in S-N curves of samples. There appears to be a threshold for ‘infinite’ life, defined as 1.7 million cycles in the current work, at a maximum stress of about 200 MPa. The decay in flexural modulus of the beam as it goes under cyclic loading was calculated and it was seen that flexural modulus shows an exponential decay which can be expressed as: E = E0e AN. Four-point bending fatigue tests were carried out on three (±45°)15 samples with stress ratio, R = -1 and frequency of 5 Hz. Maximum applied stress was 85% of the measured yield stress of (±45°)15 samples. None of the samples failed, nor any sign of crack was seen. Tests were stopped once the number of cycles passed 1.7×106. In general, current study provided additional insight into the fatigue and static behavior of polymer composites and effect of fiber orientation in their mechanical behavior.

  9. Effects of gas sorption-induced swelling/shrinkage on the cleat compressibility of coal under different bedding directions.

    PubMed

    Peng, Shoujian; Fang, Zhiming; Shen, Jian; Xu, Jiang; Wang, Geoff

    2017-10-30

    The cleat compressibility of coal is a key parameter that is extensively used in modeling the coal reservoir permeability for Coal Bed Methane (CBM) recovery. Cleat compressibility is often determined from the permeability measurement made at different confining pressures but with a constant pore pressure. Hence, this parameter ignores the sorption strain effects on the cleat compressibility. By using the transient pulse decay (TPD) technique, this study presents the results from a laboratory characterization program using coal core drilled from different bedding directions to estimate gas permeability and coal cleat compressibility under different pore pressures while maintaining effective stress constant. Cleat compressibility was determined from permeability and sorption strain measurements that are made at different pore pressures under an effective stress constant. Results show that the cleat compressibility of coal increases slightly with the increase of pore pressure. Moreover, the cleat compressibility of Sample P (representing the face cleats in coal) is larger than that of Sample C (representing the butt cleats in coal). This result suggests that cleat compressibility should not be regarded as constant in the modeling of the CBM recovery. Furthermore, the compressibility of face cleats is considerably sensitive to the sorption-induced swelling/shrinkage and offers significant effects on the coal permeability.

  10. Variations in Compressive Strength of Geopolymer due to the CaO Added Fly Ash

    NASA Astrophysics Data System (ADS)

    Zhao, Yuqing; Koumoto, Tatsuya; Kondo, Fumiyoshi

    Recently, geopolymer has been a noteworthy material which can be used as a replacement for portland cement. The mechanical characteristics and consistency of the geopolymer are strongly affected by its chemical components of fly ash. The variations in compressive strength of geopolymer due to the CaO added fly ash were investigated in this paper. The compressive strengths of geopolymer were increased with an increase in the curing period, and the characteristics changed from the one of plastic soil material to brittle material such as concrete, regardless of CaO content. Also, the results of compressive strength and modulus of deformation showed their maximum value in the case of 8-10% CaO content. From this result, the maximum characteristics of the strengths were assumed to be exerted in case which the water draining process of geopolymer was balanced with the water absorbing process of additional CaO.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, B.B.

    The object of the study reported in this paper was to investigate the possibility of using the blend of kerosene with petrol in a gasoline engines, without much losses in performance. The authors carried out experiments on a four-stroke cycle Briggs and Stratton S. I. Engine using five blends of kerosene with petrol at a compression ratios 5.3 and 7.47 to 1 with and without surge chambers, at a constant engine speed of 1500 rev/min with the following conclusions: 1. At part-load and the lower compression ratio the brake thermal efficiency is improved with percentage increase of kerosene but atmore » the higher compression ratio it is improved only upto 50% kerosene blend with petrol. 2. The knock-free maximum bhp is reduced with (a) the percentage increase of kerosene, (b) the increase of compression ratio. 3. Use of a surge chamber increase the knock-free maximum bhp, and reduces the brake thermal efficiency.« less

  12. Signal Recovery and System Calibration from Multiple Compressive Poisson Measurements

    DOE PAGES

    Wang, Liming; Huang, Jiaji; Yuan, Xin; ...

    2015-09-17

    The measurement matrix employed in compressive sensing typically cannot be known precisely a priori and must be estimated via calibration. One may take multiple compressive measurements, from which the measurement matrix and underlying signals may be estimated jointly. This is of interest as well when the measurement matrix may change as a function of the details of what is measured. This problem has been considered recently for Gaussian measurement noise, and here we develop this idea with application to Poisson systems. A collaborative maximum likelihood algorithm and alternating proximal gradient algorithm are proposed, and associated theoretical performance guarantees are establishedmore » based on newly derived concentration-of-measure results. A Bayesian model is then introduced, to improve flexibility and generality. Connections between the maximum likelihood methods and the Bayesian model are developed, and example results are presented for a real compressive X-ray imaging system.« less

  13. Effect of Brake Forming on the Strength of 24S-T Aluminum-alloy Sheet

    NASA Technical Reports Server (NTRS)

    Heimerl, George J; Woods, Walter

    1946-01-01

    Tests were made to determine the effect of brake forming on the strength of 24S-T aluminum alloy sheet that had been formed to an inside bend radius of three times the sheet thickness. The results for both directions of the grain of the material showed that the compressive yield stresses were appreciably increased, that the tensile yield stresses were moderately increased, that the ultimate tensile stresses were only slightly increased, that the elongations were considerably reduced, and that the shapes of the tensile and compressive stress-strain curves were markedly changed.

  14. Preparation, optimization and property of PVA-HA/PAA composite hydrogel.

    PubMed

    Chen, Kai; Liu, Jinlong; Yang, Xuehui; Zhang, Dekun

    2017-09-01

    PVA-HA/PAA composite hydrogel is prepared by freezing-thawing, PEG dehydration and annealing method. Orthogonal design method is used to choose the optimization combination. Results showed that HA and PVA have the maximum effect on water content. PVA and freezing-thawing cycles have the maximum effect on creep resistance and stress relaxation rate of hydrogel. Annealing temperature and freezing-thawing cycles have the maximum effect on compressive elastic modulus of hydrogel. Comparing with the water content and mechanical properties of 16 kinds of combination, PVA-HA/PAA composite hydrogel with freezing-thawing cycles of 3, annealing temperature of 120°C, PVA of 16%, HA of 2%, PAA of 4% has the optimization comprehensive properties. PVA-HA/PAA composite hydrogel has a porous network structure. There are some interactions between PVA, HA and PAA in hydrogel and the properties of hydrogel are strengthened. The annealing treatment improves the crystalline and crosslinking of hydrogel. Therefore, the annealing PVA-HA/PAA composite hydrogel has good thermostability, strength and mechanical properties. It also has good lubrication property and its friction coefficient is relative low. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everett, J.R.; Russell, O.R.; Staskowski, R.J.

    Analysis of 38 contiguous Landsat Multispectral Scanner scenes acquired over Myanmar (Burma) reveals numerous large-scale features associated with margins of the Burman plate, previously unidentified northeast-southwest-trending discontinuities, important extensions of previously mapped fault trends, and numerous structural features that appear favorable for petroleum exploration. A mosaic of these scenes at 1:1,000,000 scale shows a large number of tectonic elements and their spatial relationships. Within the area of investigation are portions of the Indian, Burman, Lhasa, and Shan-Thai plates, and perhaps other, smaller plates. The Himalayan front and Indo-Burman Ranges manifest effects of current and recently past plate movement. The complexitymore » of the kinematic history accounts for the diversity of structural features in the area. The last major event in this long and violent saga, which began in middle Miocene (approximately 11 Ma) time and continues to the present, is the recent change from a collisional to a right-lateral strike-slip transform margin between the Indian and Burman plates. The complexity of the structures visible is the product of multiple plate collisions, rotation of the Indian plate and parts of the Asian plate, and long-continued convergence that changed velocity and direction tbrough time. The most obvious evidence of this complexity, which is immediately apparent on geologic maps or the Landsat mosaic of the region, is the almost right-angle relationship of the folds of the Indo-Burman Ranges and the frontal thrusts and suture zones of the Himalaya. These two sets of compressive features imply maximum compressive stress axes that lie at right angles to each other. The implications are either that the orientation of the stress field changes rapidly over a short distance or that the stress field has changed through time. Both occurrences seem to be true.« less

  16. Thermal Volume Changes and Creep in the Callovo-Oxfordian Claystone

    NASA Astrophysics Data System (ADS)

    Belmokhtar, Malik; Delage, Pierre; Ghabezloo, Siavash; Conil, Nathalie

    2017-09-01

    The Callovo-Oxfordian (COx) claystone is considered as a potential host rock for high-level radioactive waste disposal at great depth in France. Given the exothermic nature of radioactive wastes, a temperature elevation planned to be smaller than 100 °C will affect the host rock around the disposal cells. To gain better understanding of the thermal volumetric response of the COx claystone, a new thermal isotropic compression cell was developed with particular attention devoted to monitoring axial and radial strains. To do so, a high-precision LVDTs system ensuring direct contact between the LVDT stem and the claystone sample through the membrane was developed. A short drainage length (10 mm) was also ensured so as to allow full saturation of the sample under stress conditions close to in situ, and fully drained conditions during compression. High-precision strain monitoring allowed to observe a volumetric creep under stress conditions close to in situ. A drained heating test under constant stress carried out afterwards up to 80 °C exhibited a thermoelastic expansion up to a temperature of 48 °C, followed by thermoplastic contraction at higher temperature. Creep volume changes, that appeared to be enhanced by temperature, were modelled by using a simple Kelvin-Voigt model, so as to estimate the instantaneous response of the COx claystone and to determine its thermal expansion coefficient. The temperature at which the transition between thermal expansion and contraction appeared is close to the maximum burial temperature of the Callovo-Oxfordian claystone, estimated at 50 °C. This is in agreement with what has been already observed on the Opalinus Clay by Monfared et al. (2012) that was interpreted as a thermal hardening phenomenon, showing that the material kept the memory of the highest temperature supported during its geological history.

  17. Sterically controlled mechanochemistry under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Yang, Fan; Pan, Ding; Lin, Yu; Hohman, J. Nathan; Solis-Ibarra, Diego; Li, Fei Hua; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Tkachenko, Boryslav A.; Fokin, Andrey A.; Schreiner, Peter R.; Galli, Giulia; Mao, Wendy L.; Shen, Zhi-Xun; Melosh, Nicholas A.

    2018-02-01

    Mechanical stimuli can modify the energy landscape of chemical reactions and enable reaction pathways, offering a synthetic strategy that complements conventional chemistry. These mechanochemical mechanisms have been studied extensively in one-dimensional polymers under tensile stress using ring-opening and reorganization, polymer unzipping and disulfide reduction as model reactions. In these systems, the pulling force stretches chemical bonds, initiating the reaction. Additionally, it has been shown that forces orthogonal to the chemical bonds can alter the rate of bond dissociation. However, these bond activation mechanisms have not been possible under isotropic, compressive stress (that is, hydrostatic pressure). Here we show that mechanochemistry through isotropic compression is possible by molecularly engineering structures that can translate macroscopic isotropic stress into molecular-level anisotropic strain. We engineer molecules with mechanically heterogeneous components—a compressible (‘soft’) mechanophore and incompressible (‘hard’) ligands. In these ‘molecular anvils’, isotropic stress leads to relative motions of the rigid ligands, anisotropically deforming the compressible mechanophore and activating bonds. Conversely, rigid ligands in steric contact impede relative motion, blocking reactivity. We combine experiments and computations to demonstrate hydrostatic-pressure-driven redox reactions in metal-organic chalcogenides that incorporate molecular elements that have heterogeneous compressibility, in which bending of bond angles or shearing of adjacent chains activates the metal-chalcogen bonds, leading to the formation of the elemental metal. These results reveal an unexplored reaction mechanism and suggest possible strategies for high-specificity mechanosynthesis.

  18. 49 CFR 230.25 - Maximum allowable stress on stays and braces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Maximum allowable stress on stays and braces. 230... Boilers and Appurtenances Allowable Stress § 230.25 Maximum allowable stress on stays and braces. The maximum allowable stress per square inch of net cross sectional area on fire box and combustion chamber...

  19. Trunk Muscle Activation and Estimating Spinal Compressive Force in Rope and Harness Vertical Dance.

    PubMed

    Wilson, Margaret; Dai, Boyi; Zhu, Qin; Humphrey, Neil

    2015-12-01

    Rope and harness vertical dance takes place off the floor with the dancer suspended from his or her center of mass in a harness attached to a rope from a point overhead. Vertical dance represents a novel environment for training and performing in which expected stresses on the dancer's body are different from those that take place during dance on the floor. Two male and eleven female dancers with training in vertical dance performed six typical vertical dance movements with electromyography (EMG) electrodes placed bilaterally on rectus abdominus, external oblique, erector spinae, and latissimus dorsi. EMG data were expressed as a percentage of maximum voluntary isometric contraction (MVIC). A simplified musculoskeletal model based on muscle activation for these four muscle groups was used to estimate the compressive force on the spine. The greatest muscle activation for erector spinae and latissimus dorsi and the greatest trunk compressive forces were seen in vertical axis positions where the dancer was moving the trunk into a hyper-extended position. The greatest muscle activation for rectus abdominus and external oblique and the second highest compressive force were seen in a supine position with the arms and legs extended away from the center of mass (COM). The least muscle activation occurred in positions where the limbs were hanging below the torso. These movements also showed relatively low muscle activation compression forces. Post-test survey results revealed that dancers felt comfortable in these positions; however, observation of some positions indicated insufficient muscular control. Computing the relative contribution of muscles, expressed as muscle activation and estimated spinal compression, provided a measure of how much the muscle groups were working to support the spine and the rest of the dancer's body in the different movements tested. Additionally, identifying typical muscle recruitment patterns in each movement will help identify key exercises for training that should promote injury prevention.

  20. Comparison of Open-Hole Compression Strength and Compression After Impact Strength on Carbon Fiber/Epoxy Laminates for the Ares I Composite Interstage

    NASA Technical Reports Server (NTRS)

    Hodge, Andrew J.; Nettles, Alan T.; Jackson, Justin R.

    2011-01-01

    Notched (open hole) composite laminates were tested in compression. The effect on strength of various sizes of through holes was examined. Results were compared to the average stress criterion model. Additionally, laminated sandwich structures were damaged from low-velocity impact with various impact energy levels and different impactor geometries. The compression strength relative to damage size was compared to the notched compression result strength. Open-hole compression strength was found to provide a reasonable bound on compression after impact.

Top