Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...
40 CFR Table 2 to Subpart Dddd of... - Operating Requirements
Code of Federal Regulations, 2012 CFR
2012-07-01
... THC concentration a in the thermal oxidizer exhaust below the maximum concentration established during... average THC concentration a in the catalytic oxidizer exhaust below the maximum concentration established... the range established according to § 63.2262(m) Maintain the 24-hour block average THC concentration a...
40 CFR Table 2 to Subpart Dddd of... - Operating Requirements
Code of Federal Regulations, 2013 CFR
2013-07-01
... THC concentration a in the thermal oxidizer exhaust below the maximum concentration established during... average THC concentration a in the catalytic oxidizer exhaust below the maximum concentration established... the range established according to § 63.2262(m) Maintain the 24-hour block average THC concentration a...
40 CFR Table 2 to Subpart Dddd of... - Operating Requirements
Code of Federal Regulations, 2014 CFR
2014-07-01
... THC concentration a in the thermal oxidizer exhaust below the maximum concentration established during... average THC concentration a in the catalytic oxidizer exhaust below the maximum concentration established... the range established according to § 63.2262(m) Maintain the 24-hour block average THC concentration a...
Wells, Frank C.; Jackson, Gerry A.; Rogers, William J.
1988-01-01
Toxaphene was detected in 11 fish samples; detectable concentrations ranged from 0.98 to 5.1 micrograms per gram, wet weight. DOT also was detected in 11 fish samples with concentrations ranging from 0.021 to 0.066 micrograms per gram, wet weight. ODD was detected in 21 fish samples; concentrations ranged from 0.015 to 0.16 micrograms per gram, wet weight. DDE was detected in all 22 fish samples, and concentrations ranged from 0.36 to 9.9 micrograms per gram, wet weight. The maximum concentrations of DOT and ODD exceeded the 1980-81 baseline concentrations. The median and maximum concentrations of toxaphene and DDE exceeded the 1980-81 baseline concentrations. The largest concentrations of toxaphene, ODD, and DDE in fish were all measured in samples collected at the Main Floodway near Progreso.
Tarai, Madhumita; Mishra, Ashok Kumar
2016-10-12
The phenomenon of concentration dependent red shift, often observed in synchronous fluorescence spectra (SFS) of monofluorophoric as well as multifluorophoric systems at high chromophore concentrations, is known to have good analytical advantages. This was previously understood in terms of large inner filter effect (IFE) through the introduction of a derived absorption spectral profile that closely corresponds to the SFS profile. Using representative monofluorophoric and multifluorophoric systems, it is now explained how the SF spectral maximum changes with concentration of the fluorophore. For dilute solutions of monofluorophores the maximum is unchanged as expected. It is shown here that the onset of red shift of SFS maximum of both the mono as well as the multifluorophoric systems must occur at the derived absorption spectral parameter value of 0.32 that corresponds to the absorbance value of 0.87. This value is unique irrespective of the nature of the fluorophore under study. For monofluorophoric systems, the wavelength of derived absorption spectral maximum and the wavelength of synchronous fluorescence spectral maximum closely correspond with each other in the entire concentration range. In contrast, for multifluorophoric systems like diesel and aqueous humic acid, large deviations were noted that could be explained as to be due to the presence of non-fluorescing chromophores in the system. This work bridges the entire fluorophore concentration range over which the red shift of SFS maximum sets in; and in the process it establishes the importance of the derived absorption spectral parameter in understanding the phenomenon of concentration dependent red shift of SFS maximum. Copyright © 2016 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Measurements Required, and Maximum Discrepancy Specification C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges..., June 22, 2010, table C-1 to subpart C was revised, effective Aug. 23, 2010. For the convenience of the...
Zhang, Qi; Li, Wei; Lin, Da-Chao; He, Ning; Duan, Yun
2011-01-30
The aim of this paper is to provide new experimental data of the minimum ignition energy (MIE) of gaseous nitromethane/air mixtures to discuss the explosion pressure and the flame temperature as a function of nitromethane concentration. Observations on the influence of nitromethane concentration on combustion pressure and temperature through the pressure and temperature measure system show that peak temperature (the peak of combustion temperature wave) is always behind peak pressure (the peak of the combustion pressure wave) in arrival time, the peak combustion pressure of nitromethane increases in the range of its volume fraction 10-40% as the concentration of nitromethane increases, and it slightly decreases in the range of 40-50%. The maximum peak pressure is equal to 0.94 MPa and the minimum peak pressure 0.58 MPa. Somewhat similar to the peak pressure, the peak combustion temperature increases with the volume fraction of nitromethane in the range of 10-40%, and slightly decreases in 40-50%. The maximum peak temperature is 1340 °C and the minimum 860 °C. The combustion temperature rise rate increases with the concentration of nitromethane in 10-30%, while decreases in 30-50% and its maximum value of combustion temperature rise rate in 10-50% is 4200 °C/s at the volume fraction of 30%. Influence of the concentration of nitromethane on the combustion pressure rise rate is relatively complicated, and the maximum value of rise rate of combustion pressure wave in 10-50% is 11 MPa/s at the concentration 20%. Copyright © 2010 Elsevier B.V. All rights reserved.
Pérez-Castilla, Alejandro; Comfort, Paul; McMahon, John J; Pestaña-Melero, Francisco Luis; García-Ramos, Amador
2018-01-17
The aim of this study was to compare the temporal and mechanical variables between the concentric-only and eccentric-concentric bench press (BP) variants. Twenty-one men (age: 22.0±4.2 years, body mass: 73.4±7.7 kg, height: 177.2±8.0 cm; one-repetition maximum [1RM]: 1.12±0.12 kg⋅kg) were evaluated during the concentric-only and eccentric-concentric BP variants using 80% 1RM. Temporal (concentric phase duration, propulsive phase duration, and time to reach the maximum values of force, velocity, and power) and mechanical variables (force, velocity, and power), determined using a linear velocity transducer, were compared between both BP variants. All temporal variables were significantly lower during the eccentric-concentric BP compared to the concentric-only BP (P < 0.05; effect size [ES] range: 0.80-2.52). Maximum force as well as the mean values of velocity and power were significantly higher for the eccentric-concentric BP compared to the concentric-only BP (all P < 0.001; ES range: 2.87-3.58). However, trivial to small differences between both BP variants were observed for mean force (ES: 0.00-0.36) as well as for maximum velocity (ES: 0.40) and power (ES: 0.41). The stretch-shortening cycle (i.e., eccentric-concentric BP) mainly enhanced force production at the early portion of the concentric phase, but this potentiation effect gradually reduced over the latter part of the movement. Finally, force was higher for the concentric-only BP during 49% of the concentric phase duration. These results suggest that both BP variants should be included during resistance training programs in order to optimize force output at different points of the concentric phase.
Code of Federal Regulations, 2011 CFR
2011-07-01
... finishing water processes at a point source times the following pollutant concentrations: Subpart C [Finishing water] Concentration used to calculate BPT effluent limitations Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) TSS 130 37 pH (1) (1) 1 Within the range...
Zheljazkov, Valtcho D; Gawde, Archana; Cantrell, Charles L; Astatkie, Tess; Schlegel, Vicki
2015-01-01
A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14-0.5% concentration range), β-pinene (3.7-10.3% range), γ-cymene (5-7.3% range), γ-terpinene (1.8-7.2% range), cumin aldehyde (50-66% range), α-terpinen-7-al (3.8-16% range), and β-terpinen-7-al (12-20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5-60 min DT, and low in the oils obtained at 240-600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0-5 and at 5-7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant capacity of the oil was highest in the oil obtained at 30 min DT and lowest in the oil from 360 min DT. The Michaelis-Menton and the Power nonlinear regression models developed in this study can be utilized to predict essential oil yield and composition of cumin seed at any given duration of DT and may also be useful to compare previous reports on cumin oil yield and composition. DT can be utilized to obtain cumin seed oil with improved antimalarial activity, improved antioxidant capacity, and with various compositions.
Ferree, D.M.; Christenson, S.C.; Rea, A.H.; Mesander, B.A.
1992-01-01
This report presents data collected from 202 wells between June 1987 and September 1990 as part of the Central Oklahoma aquifer pilot study of the National Water-Quality Assessment Program. The report describes the sampling networks, the sampling procedures, and the results of the ground-water quality and quality-assurance sample analyses. The data tables consist of information about the wells sampled and the results of the chemical analyses of ground water and quality-assurance sampling. Chemical analyses of ground-water samples in four sampling networks are presented: A geochemical network, a low-density survey bedrock network, a low-density survey alluvium and terrace deposits network, and a targeted urban network. The analyses generally included physical properties, major ions, nutrients, trace substances, radionuclides, and organic constituents. The chemical analyses of the ground-water samples are presented in five tables: (1) Physical properties and concentrations of major ions, nutrients, and trace substances; (2) concentrations of radionuclides and radioactivities; (3) carbon isotope ratios and delta values (d-values) of selected isotopes; (4) concentrations of organic constituents; and (5) organic constituents not reported in ground-water samples. The quality of the ground water sampled varied substantially. The sum of constituents (dissolved solids) concentrations ranged from 71 to 5,610 milligrams per liter, with 38 percent of the wells sampled exceeding the Secondary Maximum Contaminant Level of 500 milligrams per liter established under the Safe Drinking Water Act. Values of pH ranged from 5.7 to 9.2 units with 20 percent of the wells outside the Secondary Maximum Contaminant Level of 6.5 to 8.5 units. Nitrite plus nitrate concentrations ranged from less than 0.1 to 85 milligrams per liter with 8 percent of the wells exceeding the proposed Maximum Contaminant Level of 10 milligrams per liter. Concentrations of trace substances were highly variable, ranging from below the reporting level to concentrations over the Maximum Contaminant Levels for several constituents (arsenic, barium, cadmium, chromium, lead, and selenium). Radionuclide activities also were highly variable. Gross alpha radioactivity ranged from 0.1 to 210 picocuries per liter as 230thorium. Of the wells sampled, 20 percent exceeded the proposed Maximum Contaminant Level of 15 picocuries per liter for gross alpha radioactivity. Organic constituents were detected in 39 percent of the 170 wells sampled for organic constituents; in most cases concentrations were at or near the laboratory minimum reporting levels. Ten of the wells sampled for organic constituents had one or more constituents (chlordane, dieldrin, heptachlor epoxide, trichloroethylene, 1,1-dichloroethylene, 1,1,1-trichloroethane) at concentrations equal to or greater than the Maximum Contaminant Level or acceptable concentrations as suggested in the Environmental Protection Agency's Health Advisory Summaries. Quality-assurance sampling included duplicate samples, repeated samples, blanks, spikes, and blind samples. These samples proved to be essential in evaluating the accuracy of the data, particularly in the case of volatile organic constituents.
Zheljazkov, Valtcho D.; Gawde, Archana; Cantrell, Charles L.; Astatkie, Tess; Schlegel, Vicki
2015-01-01
A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14–0.5% concentration range), β-pinene (3.7–10.3% range), γ-cymene (5–7.3% range), γ-terpinene (1.8–7.2% range), cumin aldehyde (50–66% range), α-terpinen-7-al (3.8–16% range), and β-terpinen-7-al (12–20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5–60 min DT, and low in the oils obtained at 240–600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0–5 and at 5–7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant capacity of the oil was highest in the oil obtained at 30 min DT and lowest in the oil from 360 min DT. The Michaelis-Menton and the Power nonlinear regression models developed in this study can be utilized to predict essential oil yield and composition of cumin seed at any given duration of DT and may also be useful to compare previous reports on cumin oil yield and composition. DT can be utilized to obtain cumin seed oil with improved antimalarial activity, improved antioxidant capacity, and with various compositions. PMID:26641276
Anderholm, Scott K.
2002-01-01
As part of the National Water-Quality Assessment Program, surface-water and ground-water samples were collected in 1994 and 1995 for analysis of common constituents, nutrients, dissolved organic carbon, trace elements, radioactivity, volatile organic compounds, and pesticides to characterize surface- water quality and shallow ground-water quality and to determine factors affecting water quality in the Rincon Valley, south-central New Mexico. Samples of surface water were collected from three sites on the Rio Grande and from sites on three agricultural drains in the Rincon Valley in January 1994 and 1995, April 1994, and October 1994. Ground-water samples were collected in late April and early May 1994 from 30 shallow wells that were installed during the investigation. Dissolved-solids concentrations in surface water ranged from 434 to 1,510 milligrams per liter (mg/L). Dissolved-solids concentrations were smallest in water from the Rio Grande below Caballo Dam and largest in the drains. Nitrite plus nitrate concentrations ranged from less than 0.05 to 3.3 mg/L as nitrogen, and ammonia concentrations ranged from less than 0.015 to 0.33 mg/L as nitrogen in surface-water samples. Trace-element concentrations in surface water were significantly smaller than the acute-fisheries standards. One or more pesticides were detected in 34 of 37 surface-water samples. DCPA (dacthal) and metolachlor were the most commonly detected pesticides. No standards have been established for the pesticides analyzed for in this study. Dissolved-solids concentrations in shallow ground water ranged from 481 to 3,630 mg/L. All but 2 of 30 samples exceeded the secondary maximum contaminant level for dissolved solids of 500 mg/L. Water from about 73 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for sulfate, and water from about 7 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for chloride. Nitrite plus nitrate concentrations ranged from less than 0.05 to 33 mg/L as nitrogen in shallow ground water. Water from about 17 percent of the well samples exceeded the maximum contaminant level of 10 mg/L as nitrogen for nitrite plus nitrate. Trace-element concentrations in shallow ground water generally were small (1 to 10 micrograms per liter). The proposed maximum contaminant level of 20 micrograms per liter for uranium was exceeded in about 13 percent of the samples. The secondary maximum contaminant level of 300 micrograms per liter for iron was exceeded in about 17 percent of the samples and of 50 micrograms per liter for manganese was exceeded in about 83 percent of the samples. Samples from about 23 percent of the wells exceeded the maximum contaminant level of 15 picocuries per liter for gross alpha activity. One or more pesticides were detected in water from 12 of 30 wells sampled. The pesticides or pesticide metabolites diazinon, metolachlor, napropamide, p,p'-DDE, and prometon were detected in one or more samples. Metolachlor and prometon were the most commonly detected pesticides. Health advisories for the pesticides detected in shallow ground water (no maximum contaminant levels have been established for the pesticides detected) are 10 to 300 times larger than the concentrations detected. Infiltration, evaporation, and transpiration of irrigation water are important factors affecting the concentrations of common constituents in shallow ground water in the Rincon Valley. Dissolution and precipitation of minerals and mixing of shallow ground water and inflow of ground water from adjacent areas also affect the composition of shallow ground water and water in the drains. Relatively large nitrite plus nitrate concentrations in several shallow ground-water samples indicate leaching of fertilizers in some areas of th
Distillation time effect on lavender essential oil yield and composition.
Zheljazkov, Valtcho D; Cantrell, Charles L; Astatkie, Tess; Jeliazkova, Ekaterina
2013-01-01
Lavender (Lavandula angustifolia Mill.) is one of the most widely grown essential oil crops in the world. Commercial extraction of lavender oil is done using steam distillation. The objective of this study was to evaluate the effect of the length of the distillation time (DT) on lavender essential oil yield and composition when extracted from dried flowers. Therefore, the following distillation times (DT) were tested in this experiment: 1.5 min, 3 min, 3.75 min, 7.5 min, 15 min, 30 min, 60 min, 90 min, 120 min, 150 min, 180 min, and 240 min. The essential oil yield (range 0.5-6.8%) reached a maximum at 60 min DT. The concentrations of cineole (range 6.4-35%) and fenchol (range 1.7-2.9%) were highest at the 1.5 min DT and decreased with increasing length of the DT. The concentration of camphor (range 6.6-9.2%) reached a maximum at 7.5-15 min DT, while the concentration of linalool acetate (range 15-38%) reached a maximum at 30 min DT. Results suggest that lavender essential oil yield may not increase after 60 min DT. The change in essential oil yield, and the concentrations of cineole, fenchol and linalool acetate as DT changes were modeled very well by the asymptotic nonlinear regression model. DT may be used to modify the chemical profile of lavender oil and to obtain oils with differential chemical profiles from the same lavender flowers. DT must be taken into consideration when citing or comparing reports on lavender essential oil yield and composition.
Pondel, Joanna; Krajewski, Piotr; Królikowska, Natalia; Tobiasz, Aleksandra; Augustyniak-Bartosik, Hanna; Hurkacz, Magdalena
2017-04-21
Therapeutic Drug Monitoring is a recognized method of personalizing treatment, having particular application in patients with chronic kidney disease who have frequent infections, requiring administration of vancomycin. International guidelines indicate the need to adjust the dose of the drug to the state of renal function. The recommended therapeutic ranges of minimum and maximum levels should be achieved in order to increase the effectiveness and safety of treatment. The aim of this study was to evaluate the usefulness of measuring the concentration of vancomycin in patients with chronic kidney disease due to bacterial infection. The study included 96 adult patients with chronic kidney disease of varying severity treated with vancomycin Patients were divided into 3 groups: treated by haemodialysis (hd), after renal transplantations (ktx), do not require renal replacement therapy (nef). In subjects were examined the minimum and maximum concentrations of vancomycin in steady-state and were compared with recommended therapeutic ranges. Statistically significant decrease of inflammatory markers was observed only in patients treated with dialysis. In the other groups not significant changes in values of inflammatory parameters were confirmed. Trough concentrations of vancomycin marked in patients were consistent with the recommendation of EUCAST, but exceeded the value recommended by the manufacturers of the drug. Considering absolute values of the minimum concentrations, only about 50% of patients achieved the therapeutic range (58% for recommendation EUCAST and 36% for the manufacturer's instructions). Peak concentration values indicated in dialyzed patients were below the prescribed range of 20-50 mg/l and averaged 17.7 mg / l. In the other subgroups they were correct. The rating of the absolute values of the peak concentrations of vancomycin also showed that only 46% (64% in the ktx, 30% - hd and 53% - nef) was within the recommended range, while 50% were classified as concentrations of sub-therapeutic (36% in the ktx, 42% of the nef group and 65% in hd). Vancomycin concentrations measured in patients with chronic kidney disease, both minimum and maximum, were not fully comply with the recommended therapeutic ranges, despite the use of doses determined based on a calculation of glomerular filtration rate. This points to the need for particularly careful monitoring of therapy and analysis of antibiotic concentrations to improve the effectiveness and reduce the incidence of undesirable consequences of treatment.
NASA Astrophysics Data System (ADS)
Schipper, F. J. M.; Hollander, J. G.; Leyte, J. C.
1998-10-01
The self-diffusion coefficient of tetra-methylammonium counterion in solutions of polymethacrylic acid in 0953-8984/10/41/004/img1 has been measured over a broad polyion concentration range at a constant degree of neutralization and at different ratios of added monovalent or bivalent salt to polyions. A maximum counterion self-diffusion coefficient was observed as a function of polyion concentration. The value of the self-diffusion coefficient at the maximum did not depend on the valency of the added salt. The maximum was found at lower polymer concentrations and with a higher value, when the ratio of added salt to polyions was increased, as predicted by the Poisson-Boltzmann-Smoluchowski equation in the cylindrical cell model for polyelectrolytes. At higher polyion concentrations a maximum counterion self-diffusion coefficient against the ratio of added salt and polyions was observed, which has not been reported before. Upon increasing this ratio the electrostatic potential of the polyelectrolyte gets screened, leading to an increase of the counterion self-diffusion coefficient. Concentration effects of the added salt on the other hand ultimately lead to a decrease of the counterion self-diffusion coefficient, which explains the occurrence of a maximum.
Becker, Carol J.
2013-01-01
From 1999 to 2007, the Indian Health Service reported that gross alpha-particle activities and concentrations of uranium exceeded the Maximum Contaminant Levels for public drinking-water supplies in water samples from six private wells and two test wells in a rural residential neighborhood in the Kickapoo Tribe of Oklahoma Jurisdictional Area, in central Oklahoma. Residents in this rural area use groundwater from Quaternary-aged terrace deposits and the Permian-aged Garber-Wellington aquifer for domestic purposes. Uranium and other trace elements, specifically arsenic, chromium, and selenium, occur naturally in rocks composing the Garber-Wellington aquifer and in low concentrations in groundwater throughout its extent. Previous studies have shown that pH values above 8.0 from cation-exchange processes in the aquifer cause selected metals such as arsenic, chromium, selenium, and uranium to desorb (if present) from mineral surfaces and become mobile in water. On the basis of this information, the U.S. Geological Survey, in cooperation with the Kickapoo Tribe of Oklahoma, conducted a study in 2011 to describe the occurrence of selected trace elements and radionuclides in groundwater and to determine if pH could be used as a surrogate for laboratory analysis to quickly and inexpensively identify wells that might contain high concentrations of uranium and other trace elements. The pH and specific conductance of groundwater from 59 private wells were measured in the field in an area of about 18 square miles in Lincoln and Pottawatomie Counties. Twenty of the 59 wells also were sampled for dissolved concentrations of major ions, trace elements, gross alpha-particle and gross beta-particle activities, uranium, radium-226, radium-228, and radon-222 gas. Arsenic concentrations exceeded the Maximum Contaminant Level of 10 micrograms per liter in one sample having a concentration of 24.7 micrograms per liter. Selenium concentrations exceeded the Maximum Contaminant Level of 50 micrograms per liter in one sample having a concentration of 147 micrograms per liter. Both samples had alkaline pH values, 8.0 and 8.4, respectively. Uranium concentrations ranged from 0.02 to 383 micrograms per liter with 5 of 20 samples exceeding the Maximum Contaminant Level of 30 micrograms per liter; the five wells with uranium concentrations exceeding 30 micrograms per liter had pH values ranging from 8.0 to 8.5. Concentrations of uranium and radon-222 and gross alpha-particle activity showed a positive relation to pH, with the highest concentrations and activity in samples having pH values of 8.0 or above. The groundwater samples contained dissolved oxygen and high concentrations of bicarbonate; these characteristics are also factors in increasing uranium solubility. Concentrations of radium-226 and radium-228 (combined) ranged from 0.03 to 1.7 picocuries per liter, with a median concentration of 0.45 picocuries per liter for all samples. Radon-222 concentrations ranged from 95 to 3,600 picocuries per liter with a median concentration of 261 picocuries per liter. Eight samples having pH values ranging from 8.0 to 8.7 exceeded the proposed Maximum Contaminant Level of 300 picocuries per liter for radon-222. Eight samples exceeded the 15 picocuries per liter Maximum Contaminant Level for gross alpha-particle activity at 72 hours (after sample collection) and at 30 days (after the initial count); those samples had pH values ranging from 8.0 to 8.5. Gross beta-particle activity increased in 15 of 21 samples during the interval from 72 hours to 30 days. The increase in gross beta-particle activity over time probably was caused by the ingrowth and decay of uranium daughter products that emit beta particles. Water-quality data collected for this study indicate that pH values above 8.0 are associated with potentially high concentrations of uranium and radon-222 and high gross alpha-particle activity in the study area. High pH values also are associated with potentially high concentrations of arsenic, chromium, and selenium in groundwater when these elements occur in the aquifer matrix along groundwater-flow paths.
Perchlorate in Turfgrass Systems, Suffolk County, Long Island, NY
NASA Astrophysics Data System (ADS)
Munster, J. E.; Hanson, G. N.; Jackson, W. A.
2007-12-01
Perchlorate concentrations in precipitation, grass clippings, and soil water were analyzed at nine turfgrass sites in Suffolk County, NY. The samples were collected monthly between June, 2006 and January, 2007. The soil water was collected from suction lysimeters at 100 cm depth. Four of these sites were treated with chemical fertilizer, three with organic fertilizer and two were not fertilized. Concentrations of ClO4 in grass clippings and soil water, at the sites treated with chemical fertilizer or not treated with fertilizer, are found to increase when spikes of ClO4 concentrations in precipitation are observed. We believe that the spikes in perchlorate in precipitation collected shortly after the Fourth of July are due to firework displays. The concentration of ClO4 in soil water are 1 to 3 times higher than the maximum perchlorate concentrations in precipitation, with maximum soil water concentrations ranging from 0.5 to 3.0 ppb. At the sites treated with organic fertilizer, grass clippings and soil water ClO4 concentrations increase after the fertilizer application in May. The organic fertilizer that was applied has nine mg ClO4 per kg (9,000 ppb). Soil water concentrations at the sites treated with organic fertilizer increase 100 to 300 times the maximum ClO4 concentration observed in precipitation, with maximum soil water concentrations ranging from 120 to 625 ppb. The increase in ClO4 concentrations in the soil water cannot be explained by evaporation alone since the Cl to ClO4 ratios decrease in the soil water relative to precipitation. This decrease in the Cl to ClO4 ratio suggests another source of perchlorate besides precipitation. We postulate that this additional source is associated with the decomposition of mulched grass left after mowing. Grass takes only a few weeks to decompose after mulching, thus providing a continuous source of perchlorate throughout the mowing season. The Cl to ClO4 ratio of the grass is unknown.
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Emerson, B. R., Jr.; Hudgins, C. H.
1978-01-01
Airborne chlorine and hydrogen chloride measurements were made in the tropospheric ground cloud following the Voyager launches of August 20 and September 5, 1977. The maximum observed hydrogen chloride concentration for both launches was about 25 to 30 parts per million (ppm) occurring typically 2 to 6 minutes after launch. By completion of the sampling mission (1-1/2 hours for August, 4-1/2 hours for September), the maximum in-cloud concentration decayed to about 1 to 2 ppm. Maximum observed chlorine concentrations were about 40 to 55 parts per billion (ppb) about 2 to 8 minutes after launch; by about 15 minutes after launch, chlorine concentrations were less than 10 ppb (detection limit). In-cloud chlorine concentrations were well below 1 percent of hydrogen chloride concentrations. The appendix of the report discusses the chlorine instrument and the laboratory evaluation of the detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghaly, A.E.; El-Taweel, A.A.
1995-07-01
The effect of lactose concentration on growth of Candida pseudotropicalis and ethanol production from cheese whey under batch conditions was investigated. Four initial lactose concentrations ranging from 50 to 200 g/L (5 to 20% wt/vol) were used. High concentration of lactose had an inhibitory effect on the specific growth rate, lactose utilization rate, and ethanol production rate. The maximum cell concentration was influenced by the initial substrate concentration as well as ethanol concentration. Inhibition of ethanol production was more pronounced at higher initial lactose concentrations. The maximum ethanol yield (96.6% of the theoretical yield) was achieved with the 100 g/Lmore » initial substrate concentration. The results indicated that pH control during alcohol fermentation of cheese whey is not necessary. 41 refs., 12 figs., 1 tab.« less
40 CFR 463.14 - New source performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... concentrations: Subpart A [Contact cooling and heating water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) BOD5 26 Oil and grease 29 TSS 19 pH (1) 1 Within the range...
40 CFR 463.14 - New source performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... concentrations: Subpart A [Contact cooling and heating water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) BOD5 26 Oil and grease 29 TSS 19 pH (1) 1 Within the range...
Szabo, Zoltan; Jacobsen, Eric; Kraemer, Thomas F; Parsa, Bahman
2008-06-01
Concentrations of Ra in liquid and solid wastes generated from 15 softeners treating domestic well waters from New Jersey Coastal Plain aquifers (where combined Ra ((226)Ra plus (228)Ra) concentrations commonly exceed 0.185 Bq L(-1)) were determined. Softeners, when maintained, reduced combined Ra about 10-fold (<0.024 Bq L(-1)). Combined Ra exceeded 0.185 Bq L(-1) at 1 non-maintained system. Combined Ra was enriched in regeneration brine waste (maximum, 81.2 Bq L(-1)), but concentrations in septic-tank effluents receiving brine waste were less than in the untreated ground waters. The maximum combined Ra concentration in aquifer sands (40.7 Bq kg(-1) dry weight) was less than that in sludge from the septic tanks (range, 84-363 Bq kg(-1)), indicating Ra accumulation in sludge from effluent. The combined Ra concentration in sludge from the homeowners' septic systems falls within the range reported for sludge samples from publicly owned treatment works within the region.
Szabo, Z.; Jacobsen, E.; Kraemer, T.F.; Parsa, B.
2008-01-01
Concentrations of Ra in liquid and solid wastes generated from 15 softeners treating domestic well waters from New Jersey Coastal Plain aquifers (where combined Ra (226Ra plus 228Ra) concentrations commonly exceed 0.185 Bq L-1) were determined. Softeners, when maintained, reduced combined Ra about 10-fold (<0.024 Bq L-1). Combined Ra exceeded 0.185 Bq L-1 at 1 non-maintained system. Combined Ra was enriched in regeneration brine waste (maximum, 81.2 Bq L-1), but concentrations in septic-tank effluents receiving brine waste were less than in the untreated ground waters. The maximum combined Ra concentration in aquifer sands (40.7 Bq kg-1 dry weight) was less than that in sludge from the septic tanks (range, 84-363 Bq kg-1), indicating Ra accumulation in sludge from effluent. The combined Ra concentration in sludge from the homeowners' septic systems falls within the range reported for sludge samples from publicly owned treatment works within the region.
Escherichia coli Concentrations in the Mill Creek Watershed, Cleveland, Ohio, 2001-2004
Brady, Amie M.G.
2007-01-01
Mill Creek in Cleveland, Ohio, receives discharges from combined-sewer overflows (CSOs) and other sanitary-sewage inputs. These discharges affect the water quality of the creek and that of its receiving stream, the Cuyahoga River. In an effort to mitigate this problem, the Northeast Ohio Regional Sewer District implemented a project to eliminate or control (by reducing the number of overflows) all of the CSOs in the Mill Creek watershed. This study focused on monitoring the microbiological water quality of the creek before and during sewage-collection system modifications. Routine samples were collected semimonthly from August 2001 through September 2004 at a site near a U.S. Geological Survey stream gage near the mouth of Mill Creek. In addition, event samples were collected September 19 and 22, 2003, when rainfall accumulations were 0.5 inches (in.) or greater. Concentrations of Escherichia coli (E. coli) were determined and instantaneous discharges were calculated. Streamflow and water-quality characteristics were measured at the time of sampling, and precipitation data measured at a nearby precipitation gage were obtained from the National Oceanic and Atmospheric Administration. Concentrations of E. coli were greater than Ohio's single-sample maximum for primary-contact recreation (298 colony-forming units per 100 milliliters (CFU/100 mL)) in 84 percent of the routine samples collected. In all but one routine sample E. coli concentrations in samples collected when instantaneous streamflows were greater than 20 cubic feet per second (ft3/s) were greater than Ohio's single-sample maximum. When precipitation occurred in the 24-hour period before routine sample collection, concentrations were greater than the maximum in 89 percent of the samples as compared to 73 percent when rainfall was absent during the 24 hours prior to routine sample collection. Before modifications to the sewage-collection system in the watershed began, E. coli concentrations in Mill Creek ranged from 220 to 29,000 CFU/100 mL. After major modifications, E. coli concentrations ranged from 110 to 80,000 CFU/100 mL. The percentage of sample E. coli concentrations in the former group greater than Ohio's single-sample maximum was 88 percent, whereas 85 percent of sample concentrations was greater than the maximum after major modifications occurred. Instantaneous discharges of E. coli were calculated for each of the modification periods. No statistically significant difference was observed between the median instantaneous discharges of E. coli for the premodification and minor-modification periods (5.1 ? 106 and 3.6 ? 106 CFU per second, respectively). During rainfall events in September 2003, samples were collected every 15 to 30 minutes. E. coli concentrations in all of these samples (n = 34) were greater than Ohio's single-sample maximum for primary-contact recreation. On September 19, total accumulated rainfall was 1.7 in., and streamflow reached a peak of 1,040 ft3/s. Sample collection started after 0.8 in. of precipitation had fallen and continued throughout the remainder of the storm. For these samples, E. coli concentrations ranged from 32,000 to 140,000 CFU/100 mL. On September 22, total accumulated rainfall was 0.5 in., and streamflow reached a peak of 497 ft3/s. Sample collection began before the start of the rain and continued throughout the storm. E. coli concentrations ranged from 450 to 260,000 CFU/100 mL.
Modelling the maximum voluntary joint torque/angular velocity relationship in human movement.
Yeadon, Maurice R; King, Mark A; Wilson, Cassie
2006-01-01
The force exerted by a muscle is a function of the activation level and the maximum (tetanic) muscle force. In "maximum" voluntary knee extensions muscle activation is lower for eccentric muscle velocities than for concentric velocities. The aim of this study was to model this "differential activation" in order to calculate the maximum voluntary knee extensor torque as a function of knee angular velocity. Torque data were collected on two subjects during maximal eccentric-concentric knee extensions using an isovelocity dynamometer with crank angular velocities ranging from 50 to 450 degrees s(-1). The theoretical tetanic torque/angular velocity relationship was modelled using a four parameter function comprising two rectangular hyperbolas while the activation/angular velocity relationship was modelled using a three parameter function that rose from submaximal activation for eccentric velocities to full activation for high concentric velocities. The product of these two functions gave a seven parameter function which was fitted to the joint torque/angular velocity data, giving unbiased root mean square differences of 1.9% and 3.3% of the maximum torques achieved. Differential activation accounts for the non-hyperbolic behaviour of the torque/angular velocity data for low concentric velocities. The maximum voluntary knee extensor torque that can be exerted may be modelled accurately as the product of functions defining the maximum torque and the maximum voluntary activation level. Failure to include differential activation considerations when modelling maximal movements will lead to errors in the estimation of joint torque in the eccentric phase and low velocity concentric phase.
Chlorophyll maxima in mountain ponds and lakes, Mount Rainier National Park, Washington State, USA
Larson, Gary L.
2000-01-01
Hypolimnetic chlorophyll maxima are common in clear lakes and often occur at depths with between 1 and 0.1% of the surface incident light. Little is known, however, about the concentrations of chlorophyll in thermally unstratified mountain ponds and how these concentrations compare to epilimnetic and hypolimnetic concentrations in mountain lakes. The objectives of this study were to document the concentrations of chlorophyll in thermally unstratified ponds and stratified lakes in Mount Rainier National Park (MORA) and to compare the results with concentrations and distributions of chlorophyll in clear-deep lakes in the Oregon Cascade Range and the Sierra Nevada Range. Thirty-two ponds (<2.5 m deep) and 14 lakes(>9.9 m deep) were sampled primarily during the summers of 1992 to 1996 at MORA. Water samples from near the surface (0.1–0.5 m) of ponds and near the surface and near the bottom of lakes were collected over the deepest part of each system. One exception, Mowich Lake, was sampled at seven depths between the surface and 50 m (Z=58.6 m). Chlorophyll concentrations were low in all systems, but higher in ponds (average 1.8 μg·L−1) than in lakes. Chlorophyll concentrations were higher in hypolimnetic lake samples (average 0.7 μg·L−1) than in epilimnetic lake samples (average 0.2 μg·L−1). Elevated concentrations of chlorophyll in mountain ponds, relative to those in hypolimnetic lake samples, may have been influenced by increased nutrient availability from interactions at the mud-water interface and, in this park, defecation by elk that used many of the ponds as wallows. Mowich Lake showed a chlorophyll maximum (~1.5 μg·L−1) near the lake bottom. Based on Secchi disk clarity readings, the depth of 1.0% incident surface solar radiation was greater than the maximum depths of the ponds and lakes. Comparative data from other clear-deep lakes in the Oregon Cascade Range and Sierra Nevada Range suggested that deep-chlorophyll maxima (~1.5 μg·L−1) occurred at <1.0% and > 0.1% of the incident surface solar radiation, and that the typical maximum depths ranged between 75 and 140 m during thermal stratification.
Impact of downward-mixing ozone on surface ozone accumulation in southern Taiwan.
Lin, Ching-Ho
2008-04-01
The ozone that initially presents in the previous day's afternoon mixing layer can remain in the nighttime atmosphere and then be carried over to the next morning. Finally, this ozone can be brought to the ground by downward mixing as mixing depth increases during the daytime, thereby increasing surface ozone concentrations. Variation of ozone concentration during each of these periods is investigated in this work. First, ozone concentrations existing in the daily early morning atmosphere at the altitude range of the daily maximum mixing depth (residual ozone concentrations) were measured using tethered ozonesondes on 52 experimental days during 2004-2005 in southern Taiwan. Daily downward-mixing ozone concentrations were calculated by a box model coupling the measured daily residual ozone concentrations and daily mixing depth variations. The ozone concentrations upwind in the previous day's afternoon mixing layer were estimated by the combination of back air trajectory analysis and known previous day's surface ozone distributions. Additionally, the relationship between daily downward-mixing ozone concentration and daily photochemically produced ozone concentration was examined. The latter was calculated by removing the former from daily surface maximum ozone concentration. The measured daily residual ozone concentrations distributed at 12-74 parts per billion (ppb) with an average of 42 +/- 17 ppb are well correlated with the previous upwind ozone concentration (R2 = 0.54-0.65). Approximately 60% of the previous upwind ozone was estimated to be carried over to the next morning and became the observed residual ozone. The daily downward-mixing ozone contributes 48 +/- 18% of the daily surface maximum ozone concentration, indicating that the downward-mixing ozone is as important as daily photochemically produced ozone to daily surface maximum ozone accumulation. The daily downward-mixing ozone is poorly correlated with the daily photochemically produced ozone and contributes significantly to the daily variation of surface maximum ozone concentrations (R2 = 0.19). However, the contribution of downward-mixing ozone to daily ozone variation is not included in most existing statistical models developed for predicting daily ozone variation. Finally, daily surface maximum ozone concentration is positively correlated with daily afternoon mixing depth, attributable to the downward-mixing ozone.
Maage, Amund; Nilsen, Bente M; Julshamn, Kaare; Frøyland, Livar; Valdersnes, Stig
2017-08-01
Meat samples of 84 minke whales (Balaenoptera acutorostrata) mainly from the Barents Sea, collected between 1 May and 16 August 2011, were analyzed for total mercury, methylmercury, cadmium, lead, total arsenic, inorganic arsenic and selenium. The average total mercury concentration found was 0.15 ± 0.09 mg/kg, with a range from 0.05 to 0.49 mg/kg. The molar ratio of selenium to mercury varied between 1.0 and 10.3. Cadmium content ranged from 0.002 to 0.036 mg/kg, while the content of lead in whale meat ranged from <0.01 to 0.09 mg/kg. None of the whale samples exceeded established EU maximum levels for metals in fish muscle, but 4.8% and 6.8% of the samples exceeded Japanese maximum levels for total mercury and methylmercury, respectively, in whale meat. There was only minor variations in element concentrations between whales from different geographical areas, and cadmium was the only element were the concentration increased with increasing length.
Ground-water quality in the Chemung River Basin, New York, 2003
Hetcher-Aguila, Kari K.
2005-01-01
Water samples were collected from 24 public-supply wells and 13 private residential wells during the summer of 2003 and analyzed to describe the chemical quality of ground water throughout the Chemung River basin, upgradient from Waverly, N.Y, on the Pennsylvania border. Wells were selected to represent areas of heaviest ground-water use and greatest vulnerability to contamination, and to obtain a geographical distribution across the 1,130 square-mile basin. Samples were analyzed for physical properties, inorganic constituents, nutrients, metals and radionuclides, pesticides, volatile organic compounds, and bacteria.The cations that were detected in the highest concentrations were calcium and sodium; the anions that were detected in the greatest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrient was nitrate. Nitrate concentrations in samples from wells finished in sand and gravel were greater than in those from wells finished in bedrock, except for one bedrock well, which had the highest nitrate concentration of any sample in this study. The most commonly detected metals were aluminum, barium, iron, manganese, and strontium. The range of tritium concentrations (0.6 to 12.5 tritium units) indicates that the water ages ranged from less than 10 years old to more than 50 years old. All but one of the 15 pesticides detected were herbicides; those detected most frequently were atrazine, deethylatrazine, and two degradation products of metolachlor (metachlor ESA and metachlor OA), which were the pesticides detected at the highest concentrations. Not every sample collected was analyzed for pesticides, and pesticides were detected only in wells finished in sand and gravel. Volatile organic compounds were detected in 15 samples, and the concentrations were at or near the analytical detection limits. Total coliform were detected in 12 samples; fecal coliform were detected in 7 samples; and Escherichia coli was detected in 6 samples. These bacteria were detected in water from bedrock as well as sand-and-gravel aquifers.Federal and State water-quality standards were exceeded in several samples. Two samples exceeded the chloride U.S. Environmental Protection Agency Secondary Maximum Contaminant Level of 250 milligrams per liter. The U.S. Environmental Protection Agency Drinking Water Advisory for sodium (30 to 60 milligrams per liter) was exceeded in 11 samples. The upper limit of the Secondary Maximum Contaminant Level range for aluminum (200 micrograms per liter) was exceeded in one sample. The Maximum Contaminant Level for barium (2,000 micrograms per liter) was exceeded in one sample. The Secondary Maximum Contaminant Level for iron (300 micrograms per liter) was exceeded in 11 samples. The Secondary Maximum Contaminant Level for manganese (50 micrograms per liter) was exceeded in 20 samples. The proposed Maximum Contaminant Level for radon (300 picocuries per liter) was exceeded in 34 samples.
Cai, Xiao-Bo; Yang, Yi; Sun, Yan-Ping; Zhang, Liang; Xiao, Yao; Zhao, Hai
2010-10-01
Air cathode microbial fuel cell (MFC) were investigated for electricity production from sweet potato fuel ethanol wastewater containing 5000 mg/L of chemical oxygen demand (COD). Maximum power density of 334.1 mW/m2, coulombic efficiency (CE) of 10.1% and COD removal efficiency of 92.2% were approached. The effect of phosphate buffer solution (PBS) and COD concentration on the performance of MFC was further examined. The addition of PBS from 50 mmol/L to 200 mmol/L increased the maximum power density and CE by 33.4% and 26.0%, respectively. However, the COD removal efficiency was not relative to PBS concentration in the wastewater. When the COD increased from 625 mg/L to 10 000 mg/L, the maximum value of COD removal efficiency and the maximum power density were gained at the wastewater strength of 5 000 mg/L. But the CE ranged from 28.9% to 10.3% with a decreasing trend. These results demonstrate that sweet potato fuel ethanol wastewater can be used for electricity generation in MFC while at the same time achieving wastewater treatment. The increasing of PBS concentration can improve the power generation of MFC. The maximum power density of MFC increases with the rise of COD concentration, but the electricity generation will decrease for the acidification of high wastewater concentration.
Schaap, Bryan D.; Bartholomay, Roy C.
2006-01-01
During June and July 2005, water and bottom-sediment samples were collected from selected Yankton Sioux Tribe wetlands within the historic Reservation area of eastern Charles Mix County as part of a reconnaissance-level assessment by the U.S. Geological Survey and Yankton Sioux Tribe. The water samples were analyzed for pesticides and mercury species. In addition, the water samples were analyzed for physical properties and chemical constituents that might help further characterize the water quality of the wetlands. The bottom-sediment samples were analyzed for mercury species. During June 2005, water samples were collected from 19 wetlands and were analyzed for 61 widely used pesticide compounds. Many pesticides were not detected in any of the water samples and many others were detected only at low concentrations in a few of the samples. Thirteen pesticides were detected in water samples from at least one of the wetlands. Atrazine and de-ethyl atrazine were detected at each of the 19 wetlands. The minimum, maximum, and median dissolved atrazine concentrations were 0.056, 0.567, and 0.151 microgram per liter (?g/L), respectively. Four pesticides (alachlor, carbaryl, chlorpyrifos, and dicamba) were detected in only one wetland each. The number of pesticides detected in any of the 19 wetlands ranged from 3 to 8, with a median of 6. In addition to the results for this study, recent previous studies have frequently found atrazine in Lake Andes and the Missouri River, but none of the atrazine concentrations have been greater than 3 ?g/L, the U.S. Environmental Protection Agency's Maximum Contaminant Level for atrazine in drinking water. During June and July 2005, water and bottom-sediment samples were collected from 10 wetlands. Water samples from each of the wetlands were analyzed for major ions, organic carbon, and mercury species, and bottom-sediment samples were analyzed for mercury species. For the whole-water samples, the total mercury concentrations ranged from 1.11 to 29.65 nanograms per liter (ng/L), with a median of 10.56 ng/L. The methylmercury concentrations ranged from 0.45 to 14.03 ng/L, with a median of 2.28 ng/L. For the bottom-sediment samples, the total mercury concentration ranged from 21.3 to 74.6 nanograms per gram (ng/g), with a median of 54.2 ng/g. The methylmercury concentrations ranged from <0.11 to 2.04 ng/g, with a median of 0.78 ng/g. The total mercury concentrations in the water samples were all much less than 2 ?g/L (2,000 ng/L), the U.S. Environmental Protection Agency's Maximum Contaminant Level for mercury in drinking water. However, water samples from four of the wetlands had concentrations larger than 0.012 ?g/L (12 ng/L), the State of South Dakota's chronic standard for surface waters, including wetlands. Maximum methylmercury concentrations for this study are larger than reported concentrations for wetlands in North Dakota and concentrations reported for the Cheyenne River Indian Reservation in South Dakota.
Morotti, Karine; Ramirez, Antonio Avalos; Jones, J Peter; Heitz, Michèle
2011-12-01
This study analyses the performance of ethanol biofiltration with percolation (biotrickling filtration, BTF) comparing to a conventional biofilter (biofiltration, BF). Two biofilters packed with clay balls were operated in a range of inlet concentrations of ethanol in the air varying from 0.47 to 2.36 g m(-3). For both the BF and BTF, the specific growth rate (mu) and the elimination capacity (EC) decreased with the ethanol inlet concentration, presenting a kinetic of substrate inhibition. A Haldane-type model was adjusted for both biofilters in order to model both EC and mu as a function of the ethanol inlet concentration in the gas. The maximum EC was similar for both biofilters, at around 46 g m(-3) h(-1), whereas the maximum mu was 0.0057 h(-1) for the BF and 0.0103 h(-1) for the BTF. The maximum of ethanol removed, occurred at the lowest inlet concentration of (0.47 gm(-3)), and reached 86% for the BF and 74% for the BTF.
Williams, Shannon D.; Harris, Robin M.
1996-01-01
In 1989, the U.S. Geological Survey began a cooperative study with the Tennessee Department of Agriculture to assess the impact of agricultural activities on water quality in the Beaver Creek watershed in West Tennessee. Quantification of the transport of nutrients, sediment, and pesticides from agricultural fields was one of the objectives of the study. This report presents nutrient, sediment, and pesticide data collected during selected storm events from 1990 through 1995 at four relatively small, agricultural basins (28 to 422 acres) in the Beaver Creek watershed. Approximately 3,000 water samples (500 to 1,000 at each site) were analyzed for nitrogen and phosphorus species. Total nitrogen (N) concentrations ranged from 0.2 to 41.2 milligrams per liter (mg/L). Median concentrations for samples from each site ranged from 2.0 to 2.7 mg/L for total nitrogen, 1.2 to 1.9 mg/L for organic nitrogen, 0.05 to 0.14 mg/L for ammonia (measured as N), and 0.2 to 0.8 mg/L for nitrate plus nitrite (measured as N). Total phosphorus (P) concentrations ranged from 0.03 to 16.0 mg/L. Median concentrations for samples from each site ranged from 0.80 to 1.2 mg/L for total phosphorus and 0.15 to 0.72 for orthophosphate (measured as P). Approximately 6,000 water samples (1,300 to 1,800 at each site) were analyzed for suspended sediment. Suspended-sediment concentrations ranged from 8.0 to 98,353 mg/L. Concentrations exceeded 1,000 mg/L in 33 percent of the samples collected and exceeded 10,000 mg/L in 6 percent of the samples. Median concentrations ranged from 347 to 713 mg/L at the four sites. Several herbicides and insecticides were detected in water samples. Maximum concentrations detected were 37 micrograms per liter for metolachlor, 3.2 for trifluralin, 150 for fluometuron, and 430 for aldicarb. Aldicarb metabolites were also detected in several samples. The maximum aldicarb sulfoxide and aldicarb sulfone concentrations detected were 68.4 and 14.3 micrograms per liter, respectively.
Winchell, Michael F; Peranginangin, Natalia; Srinivasan, Raghavan; Chen, Wenlin
2018-05-01
Recent national regulatory assessments of potential pesticide exposure of threatened and endangered species in aquatic habitats have led to increased need for watershed-scale predictions of pesticide concentrations in flowing water bodies. This study was conducted to assess the ability of the uncalibrated Soil and Water Assessment Tool (SWAT) to predict annual maximum pesticide concentrations in the flowing water bodies of highly vulnerable small- to medium-sized watersheds. The SWAT was applied to 27 watersheds, largely within the midwest corn belt of the United States, ranging from 20 to 386 km 2 , and evaluated using consistent input data sets and an uncalibrated parameterization approach. The watersheds were selected from the Atrazine Ecological Exposure Monitoring Program and the Heidelberg Tributary Loading Program, both of which contain high temporal resolution atrazine sampling data from watersheds with exceptionally high vulnerability to atrazine exposure. The model performance was assessed based upon predictions of annual maximum atrazine concentrations in 1-d and 60-d durations, predictions critical in pesticide-threatened and endangered species risk assessments when evaluating potential acute and chronic exposure to aquatic organisms. The simulation results showed that for nearly half of the watersheds simulated, the uncalibrated SWAT model was able to predict annual maximum pesticide concentrations within a narrow range of uncertainty resulting from atrazine application timing patterns. An uncalibrated model's predictive performance is essential for the assessment of pesticide exposure in flowing water bodies, the majority of which have insufficient monitoring data for direct calibration, even in data-rich countries. In situations in which SWAT over- or underpredicted the annual maximum concentrations, the magnitude of the over- or underprediction was commonly less than a factor of 2, indicating that the model and uncalibrated parameterization approach provide a capable method for predicting the aquatic exposure required to support pesticide regulatory decision making. Integr Environ Assess Manag 2018;14:358-368. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Patil, Lakkanagouda; Kaliwal, Basappa
2017-05-01
Photosynthetic mitigation of CO 2 through microalgae is gaining great importance due to its higher photosynthetic ability compared to plants, and the biomass can be commercially exploited for various applications. CO 2 fixation capability of the newly isolated freshwater microalgae Scenedesmus bajacalifornicus BBKLP-07 was investigated using a 1-l photobioreactor. The cultivation was carried at varying concentration of CO 2 ranging from 5 to 25%, and the temperature and light intensities were kept constant. A maximum CO 2 fixation rate was observed at 15% CO 2 concentration. Characteristic growth parameters such as biomass productivity, specific growth rate, and maximum biomass yield, and biochemical parameters such as carbohydrate, protein, lipid, chlorophyll, and carotenoid were determined and discussed. It was observed that the effect of CO 2 concentration on growth and biochemical composition was quite significant. The maximum biomass productivity was 0.061 ± 0.0007 g/l/day, and the rate of CO 2 fixation was 0.12 ± 0.002 g/l/day at 15% CO 2 concentration. The carbohydrate and lipid content were maximum at 25% CO 2 with 26.19 and 25.81% dry cell weight whereas protein, chlorophyll, and carotenoid contents were 32.89% dry cell weight, 25.07 μg/ml and 6.15 μg/ml respectively at 15% CO 2 concentration.
Rare earths recovery and gypsum upgrade from Florida phosphogypsum
Liang, Haijun; Zhang, Patrick; Jin, Zhen; ...
2017-11-01
Phosphogypsum is a byproduct created during the production of industrial wet-process phosphoric acid. This study focused on recovering rare earth elements (REEs) from a Florida phosphogypsum sample and investigated the effects of removing detrimental impurities such as phosphorus pentoxide (P 2O 5), uranium (U) and fluorine (F) during the leaching process. Experimental results indicated that REE leaching efficiency increased rapidly, reached a maximum and then began to decrease with sulfuric acid concentrations ranging from 0 to 10 percent and temperatures ranging from 20 to 70 °C. At a sulfuric acid concentration of 5 percent and leaching temperature of 50 °C,more » REE leaching efficiency obtained a maximum value of approximately 43 percent. Increasing the leaching time or liquid/solid ratio increased the leaching efficiency. The leaching efficiencies of P 2O 5, U and F consistently increased with sulfuric acid concentration, temperature, leaching time and liquid/solid ratio within the testing ranges. A fine-grain gypsum concentrate, sized smaller than 40 μm, was separated from leached phosphogypsum through elutriation, in which the P 2O 5, U and F content levels were reduced by 99, 70 and 83 percent, respectively, from their content levels in fresh phosphogypsum.« less
Rare earths recovery and gypsum upgrade from Florida phosphogypsum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Haijun; Zhang, Patrick; Jin, Zhen
Phosphogypsum is a byproduct created during the production of industrial wet-process phosphoric acid. This study focused on recovering rare earth elements (REEs) from a Florida phosphogypsum sample and investigated the effects of removing detrimental impurities such as phosphorus pentoxide (P 2O 5), uranium (U) and fluorine (F) during the leaching process. Experimental results indicated that REE leaching efficiency increased rapidly, reached a maximum and then began to decrease with sulfuric acid concentrations ranging from 0 to 10 percent and temperatures ranging from 20 to 70 °C. At a sulfuric acid concentration of 5 percent and leaching temperature of 50 °C,more » REE leaching efficiency obtained a maximum value of approximately 43 percent. Increasing the leaching time or liquid/solid ratio increased the leaching efficiency. The leaching efficiencies of P 2O 5, U and F consistently increased with sulfuric acid concentration, temperature, leaching time and liquid/solid ratio within the testing ranges. A fine-grain gypsum concentrate, sized smaller than 40 μm, was separated from leached phosphogypsum through elutriation, in which the P 2O 5, U and F content levels were reduced by 99, 70 and 83 percent, respectively, from their content levels in fresh phosphogypsum.« less
Mercury distribution in Douro estuary (Portugal).
Ramalhosa, E; Pereira, E; Vale, C; Válega, M; Monterroso, P; Duarte, A C
2005-11-01
Determinations of dissolved reactive and total dissolved mercury, particulate and sedimentary mercury, dissolved organic carbon (DOC), particulate organic carbon (POC) and suspended particulate matter (SPM) have been made in the estuary of river Douro, in northern Portugal. The estuary was stratified by salinity along most of its length, it had low concentrations of SPM, typically <20 mg dm(-3), and concentrations of DOC in the range <1.0-1.8 mg dm(-3). The surface waters had a maximum dissolved concentration of reactive mercury of about 10 ng dm(-3), whereas for the more saline bottom waters it was about 65 ng dm(-3). The surface waters had maximum concentrations of total suspended particulate mercury of approximately 7 microg g(-1) and the bottom waters were always <1 microg g(-1). Concentrations of mercury in sediments was low and in the range from 0.06 to 0.18 microg g(-1). The transport of mercury in surface waters was mainly associated with organic-rich particulate matter, while in bottom waters the dissolved phase transport of mercury is more important. Lower particulate organic matter, formation of chlorocomplexes in more saline waters and eventually the presence of colloids appear to explain the difference of mercury partitioning in Douro estuarine waters.
NASA Technical Reports Server (NTRS)
Carter, Gregory A.; Knapp, Alan K.
2000-01-01
A number of studies have linked responses in leaf spectral reflectance, transmittance or absorptance to physiological stress. A variety of stressors including dehydration, flooding,freezing, ozone, herbicides, competition, disease, insects and deficiencies in ectomycorrhizal development and N fertilization have been imposed on species ranging from grasses to conifers and deciduous trees. In this cases, the maximum difference in reflectance within the 400 - 850 nm wavelength range between control and stressed states occurred as a reflectance increase at wavelength near 700 nm. In studies that included transmittance and absorptance as well as reflectance, maximum differences occurred as increases and decreases, respectively, near 700 nm. This common optical response to stress could be simulated closely by varying the chlorophyll concentrations in senescent leaves of five species. The optical response to stress near 700 nm, as well as corresponding changes in reflectance that occur in the green-yellow spectrum, can be explained by the general tendency of stress to reduce leaf chlorophyll concentration.
Seasonality of diel cycles of dissolved trace-metal concentrations in a Rocky Mountain stream
Nimick, D.A.; Cleasby, T.E.; McCleskey, R. Blaine
2005-01-01
Substantial diel (24-h) cycles in dissolved (0.1-??m filtration) metal concentrations were observed during summer low flow, winter low flow, and snowmelt runoff in Prickly Pear Creek, Montana. During seven diel sampling episodes lasting 34-61.5 h, dissolved Mn and Zn concentrations increased from afternoon minimum values to maximum values shortly after sunrise. Dissolved As concentrations exhibited the inverse timing. The magnitude of diel concentration increases varied in the range 17-152% for Mn and 70-500% for Zn. Diel increases of As concentrations (17-55%) were less variable. The timing of minimum and maximum values of diel streamflow cycles was inconsistent among sampling episodes and had little relation to the timing of metal concentration cycles, suggesting that geochemical rather than hydrological processes are the primary control of diel metal cycles. Diel cycles of dissolved metal concentrations should be assumed to occur at any time of year in any stream with dissolved metals and neutral to alkaline pH. ?? Springer-Verlag 2005.
Houser, J.N.; Mulholland, P.J.; Maloney, K.O.
2006-01-01
Because catchment characteristics determine sediment and nutrient inputs to streams, upland disturbance can affect stream chemistry. Catchments at the Fort Benning Military Installation (near Columbus, Georgia) experience a range of upland disturbance intensities due to spatial variability in the intensity of military training. We used this disturbance gradient to investigate the effects of upland soil and vegetation disturbance on stream chemistry. During baseflow, mean total suspended sediment (TSS) concentration and mean inorganic suspended sediment (ISS) concentration increased with catchment disturbance intensity (TSS: R2 = 0.7, p = 0.005, range = 4.0-10.1 mg L-1; ISS: R2 = 0.71, p = 0.004, range = 2.04-7.3 mg L-1); dissolved organic carbon (DOC) concentration (R2 = 0.79, p = 0.001, range = 1.5-4.1 mg L-1) and soluble reactive phosphorus (SRP) concentration (R2 = 0.75, p = 0.008, range = 1.9-6.2 ??g L-1) decreased with increasing disturbance intensity; and ammonia (NH 4+), nitrate (NO3-), and dissolved inorganic nitrogen (DIN) concentrations were unrelated to disturbance intensity. The increase in TSS and ISS during storms was positively correlated with disturbance (R2 = 0.78 and 0.78, p = 0.01 and 0.01, respectively); mean maximum change in SRP during storms increased with disturbance (r = 0.7, p = 0.04); and mean maximum change in NO3- during storms was marginally correlated with disturbance (r = 0.58, p = 0.06). Soil characteristics were significant predictors of baseflow DOC, SRP, and Ca 2+, but were not correlated with suspended sediment fractions, any nitrogen species, or pH. Despite the largely intact riparian zones of these headwater streams, upland soil and vegetation disturbances had clear effects on stream chemistry during baseflow and stormflow conditions. ?? ASA, CSSA, SSSA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houser, Jeffrey N
2006-01-01
Because catchment characteristics determine sediment and nutrient inputs to streams, upland disturbance can affect stream chemistry. Catchments at the Fort Benning Military Installation (near Columbus, Georgia) experience a range of upland disturbance intensities due to spatial variability in the intensity of military training. We used this disturbance gradient to investigate the effects of upland soil and vegetation disturbance on stream chemistry. During baseflow, mean total suspended sediment (TSS) concentration and mean inorganic suspended sediment (ISS) concentration increased with catchment disturbance intensity (TSS: R 2 = 0.7, p = 0.005, range = 4.0-10.1 mg L-1; ISS: R 2 = 0.71, pmore » = 0.004, range = 2.04-7.3 mg L-1); dissolved organic carbon (DOC) concentration (R 2 = 0.79, p = 0.001, range = 1.5-4.1 mg L-1) and soluble reactive phosphorus (SRP) concentration (R 2 = 0.75, p = 0.008, range = 1.9-6.2 {micro}g L-1) decreased with increasing disturbance intensity; and ammonia (NH4 +), nitrate (NO3 -), and dissolved inorganic nitrogen (DIN) concentrations were unrelated to disturbance intensity. The increase in TSS and ISS during storms was positively correlated with disturbance (R 2 = 0.78 and 0.78, p = 0.01 and 0.01, respectively); mean maximum change in SRP during storms increased with disturbance (r = 0.7, p = 0.04); and mean maximum change in NO3 - during storms was marginally correlated with disturbance (r = 0.58, p = 0.06). Soil characteristics were significant predictors of baseflow DOC, SRP, and Ca2+, but were not correlated with suspended sediment fractions, any nitrogen species, or pH. Despite the largely intact riparian zones of these headwater streams, upland soil and vegetation disturbances had clear effects on stream chemistry during baseflow and stormflow conditions.« less
Wik, Anna; Dave, Göran
2009-01-01
This review summarizes the existing knowledge on the occurrence of tire wear particles in the environment, and their ecotoxicological effects. A meta-analysis on tire components in the environment revealed that tire wear particles are present in all environmental compartments, including air, water, soils/sediments, and biota. The maximum Predicted Environmental Concentrations (PECs) of tire wear particles in surface waters range from 0.03 to 56 mg l(-1) and the maximum PECs in sediments range from 0.3 to 155 g kg(-1) d.w. The results from our previous long-term studies with Ceriodaphnia dubia and Pseudokirchneriella subcapitata were used to derive Predicted No Effect Concentrations (PNECs). The upper ranges for PEC/PNEC ratios in water and sediment were >1, meaning that tire wear particles present potential risks for aquatic organisms. We suggest that management should be directed towards development and production of more environmentally friendly tires and improved road runoff treatment.
Effects of load on ground reaction force and lower limb kinematics during concentric squats.
Kellis, Eleftherios; Arambatzi, Fotini; Papadopoulos, Christos
2005-10-01
The purpose of this study was to examine the effects of external load on vertical ground reaction force, and linear and angular kinematics, during squats. Eight males aged 22.1 +/- 0.8 years performed maximal concentric squats using loads ranging from 7 to 70% of one-repetition maximum on a force plate while linear barbell velocity and the angular kinematics of the hip, knee and ankle were recorded. Maximum, average and angle-specific values were recorded. The ground reaction force ranged from 1.67 +/- 0.20 to 3.21 +/- 0.29 times body weight and increased significantly as external load increased (P < 0.05). Bar linear velocity ranged from 0.54 +/- 0.11 to 2.50 +/- 0.50 m x s(-1) and decreased significantly with increasing external load (P < 0.05). Hip, knee and ankle angles at maximum ground reaction force were affected by external load (P < 0.05). The force-barbell velocity curves were fitted using linear models with coefficients (r2) ranging from 0.59 to 0.96. The results suggest that maximal force exertion during squat exercises is not achieved at the same position of the lower body as external load is increased. In contrast, joint velocity coordination does not change as load is increased. The force-velocity relationship was linear and independent from the set of data used for its determination.
40 CFR 463.14 - New source performance standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... contact cooling and heating water processes at a new source times the following pollutant concentrations: Subpart A [Contact cooling and heating water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) BOD5 26 Oil and grease 29 TSS 19 pH (1) 1 Within the range of 6.0 to...
Yuan, Fenglin; Zhang, Yanwen; Weber, William J.
2015-05-19
In this paper, molecular dynamics simulations and molecular static calculations have been used to systematically study oxygen vacancy transport in undoped nonstoichiometric ceria. A strong oxygen diffusivity enhancement appears in the vacancy concentration range of 2–4% over the temperature range from 1000 to 2000 K. An Arrhenius ion diffusion mechanism by vacancy hopping along the (100) direction is unambiguously identified, and an increasing trend of both the oxygen migration barrier and the prefactor with increasing vacancy concentration is observed. Within the framework of classical diffusion theory, a weak concentration dependence of the prefactor in oxygen vacancy migration is shown tomore » be crucial for explaining the unusual fast oxygen ion migration in the low concentration range and consequently the appearance of a maximum in oxygen diffusivity. Finally, a representative (100) direction interaction model is constructed to identify long-range vacancy–vacancy interaction as the structural origin of the positive correlation between oxygen migration barrier and vacancy concentration.« less
Pharmacology of 13-cis-retinoic acid in humans.
Kerr, I G; Lippman, M E; Jenkins, J; Myers, C E
1982-05-01
Vitamin A and its analogs (retinoids) have shown great promise for the chemoprevention of cancer as well as being a possible new class of chemotherapeutic agents. A Phase I and II trial of 13-cis-retinoic acid in advanced cancers was initiated, and the clinical pharmacology of the drug was studied. All patients received p.o. 13-cis-retinoic acid starting at 0.5 mg/kg/day, escalating over 4 weeks to a maximum dose of 8 mg/kg/day in divided doses. Although there was a linear correlation of plasma concentration with dose escalation, large inter-individual variations in peak plasma concentrations were noted. At the maximum drug dose, the mean peak plasma concentration was 4 X 10(-6) M. There was little drug accumulation on this schedule, as trough concentrations between p.o. doses often dropped below 1 X 10(-6) M. The drug was metabolized extensively to a metabolite, the concentrations of which exceeding parent 13-cis-retinoic acid concentrations with chronic dosing. Retinol concentrations were below the normal range.
Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.
2016-01-01
We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2–53 μm) and sand (53–2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg−1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg−1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation. PMID:27251365
NASA Astrophysics Data System (ADS)
Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.
2016-06-01
We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg-1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg-1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.
Marcano, Mariano; Layton, Anita T; Layton, Harold E
2010-02-01
In a mathematical model of the urine concentrating mechanism of the inner medulla of the rat kidney, a nonlinear optimization technique was used to estimate parameter sets that maximize the urine-to-plasma osmolality ratio (U/P) while maintaining the urine flow rate within a plausible physiologic range. The model, which used a central core formulation, represented loops of Henle turning at all levels of the inner medulla and a composite collecting duct (CD). The parameters varied were: water flow and urea concentration in tubular fluid entering the descending thin limbs and the composite CD at the outer-inner medullary boundary; scaling factors for the number of loops of Henle and CDs as a function of medullary depth; location and increase rate of the urea permeability profile along the CD; and a scaling factor for the maximum rate of NaCl transport from the CD. The optimization algorithm sought to maximize a quantity E that equaled U/P minus a penalty function for insufficient urine flow. Maxima of E were sought by changing parameter values in the direction in parameter space in which E increased. The algorithm attained a maximum E that increased urine osmolality and inner medullary concentrating capability by 37.5% and 80.2%, respectively, above base-case values; the corresponding urine flow rate and the concentrations of NaCl and urea were all within or near reported experimental ranges. Our results predict that urine osmolality is particularly sensitive to three parameters: the urea concentration in tubular fluid entering the CD at the outer-inner medullary boundary, the location and increase rate of the urea permeability profile along the CD, and the rate of decrease of the CD population (and thus of CD surface area) along the cortico-medullary axis.
Whitmore, Colin D.; Essaka, David; Dovichi, Norman J.
2009-01-01
An ultrasensitive laser-induced fluorescence detector was used with capillary electrophoresis for the study of 5-carboxy-tetramethylrhodamine. The raw signal from the detector provided roughly three orders of magnitude dynamic range. The signal saturated at high analyte concentrations due to the dead time associated with the single-photon counting avalanche photodiode employed in the detector. The signal can be corrected for the detector dead time, providing an additional order of magnitude dynamic range. To further increase dynamic range, two fiber-optic beam-splitters were cascaded to generate a primary signal and two attenuated signals, each monitored by a single-photon counting avalanche photodiode. The combined signals from the three photodiodes are reasonably linear from the concentration detection limit of 3 pM to 10 μM, the maximum concentration investigated, a range of 3,000,000. Mass detection limits were 150 yoctomoles injected onto the capillary. PMID:19836546
Appraisal of water-quality conditions, lower Black River, Windsor County, Vermont
Toppin, K.W.
1983-01-01
Six hydroelectric power dams are planned along a 22-mile reach of the lower Black River in southeastern Windsor County, Vermont. Data were collected at 10 stations, during water years 1977-81, to appraise quality conditions before construction. Average specific conductance of Black River is 101 micromhos indicating low concentrations of dissolved solids. Concentrations of common constituents and minor elements were generally low and within safe levels for aquatic life. Near-saturated dissolved oxygen concentrations and relatively low mean total organic carbon concentrations indicate little oxygen-consuming substances in Black River. Mean total nitrogen concentrations ranged from 0.31 mg/L (milligrams per liter) to 0.61 mg/L. The highest concentrations were most likely due to secondary waste discharges entering the river. Nitrate was the primary form of inorganic nitrogen, mean concentrations ranged from 0.13 to 0.27 mg/L. Concentrations seem high enough to promote excessive algal growth in the proposed Hawks Mountain Reservoir. Mean concentrations of total phosphorus ranged from 0.014 to 0.112 mg/L as P. Maximum concentrations at all stations generally exceeded U.S. Environmental Protection Agency suggested levels for water entering lakes and reservoirs. Mean orthophosphorus concentrations ranged from 0.005 to 0.029 mg/L, suggesting a potential for nuisance algal conditions to develop in the proposed reservoir. Mean algal growth potential concentrations ranged from 1.3 to 8.8 mg/L, falling within the moderately high to high productivity range. No pesticides and polychlorinated biphenyls were detected. (USGS)
Short term serum pharmacokinetics of diammine silver fluoride after oral application.
Vasquez, Elsa; Zegarra, Graciela; Chirinos, Edgar; Castillo, Jorge L; Taves, Donald R; Watson, Gene E; Dills, Russell; Mancl, Lloyd L; Milgrom, Peter
2012-12-31
There is growing interest in the use of diammine silver fluoride (DSF) as a topical agent to treat dentin hypersensitivity and dental caries as gauged by increasing published research from many parts of the world. While DSF has been available in various formulations for many years, most of its pharmacokinetic aspects within the therapeutic concentration range have never been fully characterized. This preliminary study determined the applied doses (3 teeth treated), maximum serum concentrations, and time to maximum serum concentration for fluoride and silver in 6 adults over 4 h. Fluoride was determined using the indirect diffusion method with a fluoride selective electrode, and silver was determined using inductively coupled plasma-mass spectrometry. The mean amount of DSF solution applied to the 3 teeth was 7.57 mg (6.04 μL). Over the 4 hour observation period, the mean maximum serum concentrations were 1.86 μmol/L for fluoride and 206 nmol/L for silver. These maximums were reached 3.0 h and 2.5 h for fluoride and silver, respectively. Fluoride exposure was below the U.S. Environmental Protection Agency (EPA) oral reference dose. Silver exposure exceeded the EPA oral reference dose for cumulative daily exposure over a lifetime, but for occasional use was well below concentrations associated with toxicity. This preliminary study suggests that serum concentrations of fluoride and silver after topical application of DSF should pose little toxicity risk when used in adults. NCT01664871.
Short term serum pharmacokinetics of diammine silver fluoride after oral application
2012-01-01
Background There is growing interest in the use of diammine silver fluoride (DSF) as a topical agent to treat dentin hypersensitivity and dental caries as gauged by increasing published research from many parts of the world. While DSF has been available in various formulations for many years, most of its pharmacokinetic aspects within the therapeutic concentration range have never been fully characterized. Methods This preliminary study determined the applied doses (3 teeth treated), maximum serum concentrations, and time to maximum serum concentration for fluoride and silver in 6 adults over 4 h. Fluoride was determined using the indirect diffusion method with a fluoride selective electrode, and silver was determined using inductively coupled plasma-mass spectrometry. The mean amount of DSF solution applied to the 3 teeth was 7.57 mg (6.04 μL). Results Over the 4 hour observation period, the mean maximum serum concentrations were 1.86 μmol/L for fluoride and 206 nmol/L for silver. These maximums were reached 3.0 h and 2.5 h for fluoride and silver, respectively. Conclusions Fluoride exposure was below the U.S. Environmental Protection Agency (EPA) oral reference dose. Silver exposure exceeded the EPA oral reference dose for cumulative daily exposure over a lifetime, but for occasional use was well below concentrations associated with toxicity. This preliminary study suggests that serum concentrations of fluoride and silver after topical application of DSF should pose little toxicity risk when used in adults. Clinical trials registration NCT01664871. PMID:23272643
Landmeyer, J.E.
1994-01-01
Ground-water samples were collected from four shallow water-table aquifer observation wells beneath the Small-Arms Firing Range study area at Shaw Air Force Base. Water-chemistry analyses indicated that total lead concentrations in shallow ground water beneath the study area do not exceed the U.S. Environmental Protection Agency maximum contaminant level established for lead in drinking water (0.05 milligrams per liter). All other trace element total concentrations in ground water beneath the study area were at or below the detection limit of the analytical methodology.
Yozova, Ivayla D; Howard, Judith; Adamik, Katja N
2017-10-01
Objectives The objective was to determine survival and changes in creatinine concentrations after administration of 6% tetrastarch (hydroxyethyl starch [HES] 130/0.4) vs crystalloids in critically ill cats. Methods The medical records were reviewed for cats admitted to the intensive care unit with at least two plasma creatinine measurements and initial concentrations not exceeding the upper reference interval. Cats were excluded if they had received HES prior to admission or if they had received fluid therapy for <24 h between initial and subsequent measurements. Changes in creatinine concentrations were evaluated as the percentage change from initial values to the maximum subsequent measurements. Cats receiving only crystalloids were assigned to the crystalloid group; cats receiving only HES or HES and crystalloids were assigned to the HES group. Results Ninety-three cats were included in the study (62 in the crystalloid group, 31 in the HES group). The total median cumulative HES dose was 94 ml/kg (range 26-422 ml/kg) and 24 ml/kg/day (range 16-42 ml/kg/day). No difference was detected between the groups for age, sex, body weight or mortality. The HES group had a significantly longer length of hospitalisation ( P = 0.012), lower albumin concentrations ( P <0.001), higher Acute Patient Physiologic and Laboratory Evaluation scores ( P = 0.037) and higher incidence of systemic inflammatory response syndrome ( P = 0.009) and sepsis ( P = 0.013). There was no significant difference in initial, maximum or maximum change in creatinine concentrations between the groups. Moreover, there was no significant difference in maximum change in creatinine concentrations in the subgroups of cats with systemic inflammatory response syndrome or sepsis. Conclusions and relevance In this population of cats, the administration of HES did not result in a significantly greater increase in creatinine from values measured on admission or higher mortality compared with administration of crystalloids. Further prospective studies are needed to assess both safety and efficacy of HES in cats before recommendations can be made.
Tuning the electrocaloric effect by varying Sr concentration in ferroelectric Ba1 -xSrxTiO3
NASA Astrophysics Data System (ADS)
Lisenkov, S.; Ponomareva, I.
2018-05-01
The electrocaloric effect is investigated systematically in Ba1 -xSrxTiO3 ferroelectrics using a semiclassical direct computational approach. The data are reported for the technologically important range of Sr concentrations of 0.0-0.6, electric fields up to 1000 kV/cm, and temperatures ranging from 5 to 600 K. A detailed comparison of computational data with experimental data from the literature reveals semiquantitative agreement and suggests the origin of discrepancies. The electrocaloric change in temperature Δ T shows strong dependence on Sr concentration which offers a way to tune electrocaloric response. In particular, the maximum electrocaloric Δ T is found to decrease with the increase in Sr concentration, whereas the location of the maximum shifts towards lower temperatures following the Curie point of the ferroelectric. Surprisingly, the width of the peak in the dependence of Δ T on the initial temperature is independent of the Sr concentration but shows a strong dependence on the applied electric field. Computational data are used to propose a compositionally graded ferroelectric Ba0.70Sr0.30TiO3/Ba0.55Sr0.45TiO3/Ba0.50Sr0.50TiO3/Ba0.45Sr0.55TiO3 whose Δ T shows almost no temperature dependence in the technologically important range of temperatures and electric fields. Such a desirable feature could potentially lead to the enhancement of relative cooling power.
Statistical summaries of water-quality data for two coal areas of Jackson County, Colorado
Kuhn, Gerhard
1982-01-01
Statistical summaries of water-quality data are compiled for eight streams in two separate coal areas of Jackson County, Colo. The quality-of-water data were collected from October 1976 to September 1980. For inorganic constituents, the maximum, minimum, and mean concentrations, as well as other statistics are presented; for minor elements, only the maximum, minimum, and mean values are included. Least-squares equations (regressions) are also given relating specific conductance of the streams to the concentration of the major ions. The observed range of specific conductance was 85 to 1,150 micromhos per centimeter for the eight sites. (USGS)
Improved thermal conductivity of TiO2-SiO2 hybrid nanofluid in ethylene glycol and water mixture
NASA Astrophysics Data System (ADS)
Hamid, K. A.; Azmi, W. H.; Nabil, M. F.; Mamat, R.
2017-10-01
The need to study hybrid nanofluid properties such as thermal conductivity has increased recently in order to provide better understanding on nanofluid thermal properties and behaviour. Due to its ability to improve heat transfer compared to conventional heat transfer fluids, nanofluids as a new coolant fluid are widely investigated. This paper presents the thermal conductivity of TiO2-SiO2 nanoparticles dispersed in ethylene glycol (EG)-water. The TiO2-SiO2 hybrid nanofluids is measured for its thermal conductivity using KD2 Pro Thermal Properties Analyzer for concentration ranging from 0.5% to 3.0% and temperature of 30, 50 and 70°C. The results show that the increasing in concentration and temperature lead to enhancement in thermal conductivity at range of concentration studied. The maximum enhancement is found to be 22.1% at concentration 3.0% and temperature 70°C. A new equation is proposed based on the experiment data and found to be in good agreement where the average deviation (AD), standard deviation (SD) and maximum deviation (MD) are 1.67%, 1.66% and 5.13%, respectively.
Qu, Xueyin; Su, Chuanyou; Zheng, Nan; Li, Songli; Meng, Lu; Wang, Jiaqi
2017-01-01
In recent years, high levels of hormone residue in food, capable of damaging the health of consumers, have been recorded frequently. In this study, 195 raw milk samples were obtained from Tangshan City, China, and the concentrations of 22 steroid hormones were measured by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Cortisol was detected in 12.5% of raw milk samples (mean 0.61 µg/kg; range:
Stoner, Kimberly A.; Eitzer, Brian D.
2013-01-01
Analysis of pollen trapped from honey bees as they return to their hives provides a method of monitoring fluctuations in one route of pesticide exposure over location and time. We collected pollen from apiaries in five locations in Connecticut, including urban, rural, and mixed agricultural sites, for periods from two to five years. Pollen was analyzed for pesticide residues using a standard extraction method widely used for pesticides (QuEChERS) and liquid chromatography/mass spectrometric analysis. Sixty pesticides or metabolites were detected. Because the dose lethal to 50% of adult worker honey bees (LD50) is the only toxicity parameter available for a wide range of pesticides, and among our pesticides there were contact LD50 values ranging from 0.006 to >1000 μg per bee (range 166,000X), and even among insecticides LD50 values ranged from 0.006 to 59.8 μg/bee (10,000X); therefore we propose that in studies of honey bee exposure to pesticides that concentrations be reported as Hazard Quotients as well as in standard concentrations such as parts per billion. We used both contact and oral LD50 values to calculate Pollen Hazard Quotients (PHQ = concentration in ppb ÷ LD50 as μg/bee) when both were available. In this study, pesticide Pollen Hazard Quotients ranged from over 75,000 to 0.01. The pesticides with the greatest Pollen Hazard Quotients at the maximum concentrations found in our study were (in descending order): phosmet, Imidacloprid, indoxacarb, chlorpyrifos, fipronil, thiamethoxam, azinphos-methyl, and fenthion, all with at least one Pollen Hazard Quotient (using contact or oral LD50) over 500. At the maximum rate of pollen consumption by nurse bees, a Pollen Hazard Quotient of 500 would be approximately equivalent to consuming 0.5% of the LD50 per day. We also present an example of a Nectar Hazard Quotient and the percentage of LD50 per day at the maximum nectar consumption rate. PMID:24143241
Stoner, Kimberly A; Eitzer, Brian D
2013-01-01
Analysis of pollen trapped from honey bees as they return to their hives provides a method of monitoring fluctuations in one route of pesticide exposure over location and time. We collected pollen from apiaries in five locations in Connecticut, including urban, rural, and mixed agricultural sites, for periods from two to five years. Pollen was analyzed for pesticide residues using a standard extraction method widely used for pesticides (QuEChERS) and liquid chromatography/mass spectrometric analysis. Sixty pesticides or metabolites were detected. Because the dose lethal to 50% of adult worker honey bees (LD50) is the only toxicity parameter available for a wide range of pesticides, and among our pesticides there were contact LD50 values ranging from 0.006 to >1000 μg per bee (range 166,000X), and even among insecticides LD50 values ranged from 0.006 to 59.8 μg/bee (10,000X); therefore we propose that in studies of honey bee exposure to pesticides that concentrations be reported as Hazard Quotients as well as in standard concentrations such as parts per billion. We used both contact and oral LD50 values to calculate Pollen Hazard Quotients (PHQ = concentration in ppb ÷ LD50 as μg/bee) when both were available. In this study, pesticide Pollen Hazard Quotients ranged from over 75,000 to 0.01. The pesticides with the greatest Pollen Hazard Quotients at the maximum concentrations found in our study were (in descending order): phosmet, Imidacloprid, indoxacarb, chlorpyrifos, fipronil, thiamethoxam, azinphos-methyl, and fenthion, all with at least one Pollen Hazard Quotient (using contact or oral LD50) over 500. At the maximum rate of pollen consumption by nurse bees, a Pollen Hazard Quotient of 500 would be approximately equivalent to consuming 0.5% of the LD50 per day. We also present an example of a Nectar Hazard Quotient and the percentage of LD50 per day at the maximum nectar consumption rate.
Impact of particle concentration and out-of-range sizes on the measurements of the LISST
NASA Astrophysics Data System (ADS)
Zhao, Lin; Boufadel, Michel C.; King, Thomas; Robinson, Brian; Conmy, Robyn; Lee, Kenneth
2018-05-01
The instrument LISST (laser in situ scattering and transmissiometry) has been widely used for measuring the size of oil droplets in relation to oil spills and sediment particles. Major concerns associated with using the instrument include the impact of high concentrations and/or out-of-range particle (droplet) sizes on the LISST reading. These were evaluated experimentally in this study using monosized microsphere particles. The key findings include: (1) When high particle concentration reduced the optical transmission (OT) to below 30%, the measured peak value tended to underestimate the true peak value, and the accuracy of the LISST decreased by ~8% to ~28%. The maximum concentration to reach the 30% OT was about 50% of the theoretical values, suggesting a lower concentration level should be considered during the instrument deployment. (2) The out-of-range sizes of particles affected the LISST measurements when the sizes were close to the LISST measurement range. Fine below-range sizes primarily affected the data in the lowest two bins of the LISST with >75% of the volume at the smallest bin. Large out-of-range particles affected the sizes of the largest 8–10 bins only when very high concentration was present. The out-of-range particles slightly changed the size distribution of the in-range particles, but their concentration was conserved. An approach to interpret and quantify the effects of the out-of-range particles on the LISST measurement was proposed.
Aflatoxin and ochratoxin A content of spices in Hungary.
Fazekas, B; Tar, A; Kovács, M
2005-09-01
In October and November 2004, 91 spice samples (70 ground red pepper, six black pepper, five white pepper, five spice mix and five chilli samples), the majority of which originated from commercial outlets, were analysed for aflatoxins B1, B2, G1 and G2 (AFB1, AFB2, AFG1, AFG2) and ochratoxin A (OTA) content by high-performance liquid chromatography (HPLC) after immunoaffinity column clean-up. Eighteen of the 70 ground red pepper samples contained AFB1, seven of them in a concentration exceeding the 'maximum level' of 5 microg kg(-1) (range 6.1-15.7 microg kg(-1)). Of the other spices assayed, the AFB1 contamination of one chilli sample exceeded 5 microg kg(-1) (8.1 microg kg(-1)). Thirty-two of the 70 ground red pepper samples contained OTA, eight of them in a concentration exceeding the 10 microg kg(-1) 'maximum level' (range 10.6-66.2 microg kg(-1)). One chilli sample was contaminated with OTA at 2.1 microg kg(-1). The AFB1 and OTA contamination of ground red pepper exceeding the 'maximum level' (5 and 10 microg kg(-1), respectively) was obviously the consequence of mixing imported ground red pepper batches heavily contaminated with AFB1 and OTA with red pepper produced in Hungary. This case calls attention to the importance of consistently screening imported batches of ground red pepper for aflatoxin and ochratoxin A content and strictly prohibiting the use of batches containing mycotoxin concentrations exceeding the maximum permitted level.
Using tsunami deposits to determine the maximum depth of benthic burrowing
Shirai, Kotaro; Murakami-Sugihara, Naoko
2017-01-01
The maximum depth of sediment biomixing is directly related to the vertical extent of post-depositional environmental alteration in the sediment; consequently, it is important to determine the maximum burrowing depth. This study examined the maximum depth of bioturbation in a natural marine environment in Funakoshi Bay, northeastern Japan, using observations of bioturbation structures developed in an event layer (tsunami deposits of the 2011 Tohoku-Oki earthquake) and measurements of the radioactive cesium concentrations in this layer. The observations revealed that the depth of bioturbation (i.e., the thickness of the biomixing layer) ranged between 11 and 22 cm, and varied among the sampling sites. In contrast, the radioactive cesium concentrations showed that the processing of radioactive cesium in coastal environments may include other pathways in addition to bioturbation. The data also revealed the nature of the bioturbation by the heart urchin Echinocardium cordatum (Echinoidea: Loveniidae), which is one of the important ecosystem engineers in seafloor environments. The maximum burrowing depth of E. cordatum in Funakoshi Bay was 22 cm from the seafloor surface. PMID:28854254
Using tsunami deposits to determine the maximum depth of benthic burrowing.
Seike, Koji; Shirai, Kotaro; Murakami-Sugihara, Naoko
2017-01-01
The maximum depth of sediment biomixing is directly related to the vertical extent of post-depositional environmental alteration in the sediment; consequently, it is important to determine the maximum burrowing depth. This study examined the maximum depth of bioturbation in a natural marine environment in Funakoshi Bay, northeastern Japan, using observations of bioturbation structures developed in an event layer (tsunami deposits of the 2011 Tohoku-Oki earthquake) and measurements of the radioactive cesium concentrations in this layer. The observations revealed that the depth of bioturbation (i.e., the thickness of the biomixing layer) ranged between 11 and 22 cm, and varied among the sampling sites. In contrast, the radioactive cesium concentrations showed that the processing of radioactive cesium in coastal environments may include other pathways in addition to bioturbation. The data also revealed the nature of the bioturbation by the heart urchin Echinocardium cordatum (Echinoidea: Loveniidae), which is one of the important ecosystem engineers in seafloor environments. The maximum burrowing depth of E. cordatum in Funakoshi Bay was 22 cm from the seafloor surface.
Krösser, S; Tillner, J; Fluck, M; Ungethüm, W; Wolna, P; Kovar, A
2007-05-01
Sarizotan is a 5-HTIA receptor agonist with high affinity for D3 and D4 receptors. Here we report the pharmacokinetic and tolerability results from four Phase 1 studies. Two single-dose (5 -25 mg, n = 25, 0.5 - 5 mg, n = 16) and two multiple-dose (10 and 20 mg b.i.d., n = 30, 5 mg b.i.d., n = 12) studies with orally administered sarizotan HCl were carried out in healthy subjects. Plasma sarizotan HCl concentrations were measured using a validated HPLC method and fluorescence or MS/MS detection. Pharmacokinetic parameters were obtained using standard non-compartmental methods. Sarizotan was rapidly absorbed, group-median times to reach maximum concentration (tmax) ranged from 0.5 -2.25 h after single doses and during steady state. Maximum plasma concentration (Cmax) and tmax were slightly dependent on formulation and food intake, whereas area under the curve (AUC) was unaffected by these factors. AUC and Cmax increased dose-proportionally over the tested dose range. Independently of dose and time, sarizotan HCl plasma concentrations declined polyexponentially with a terminal elimination half-life (t1/2) of 5 - 7 h. Accumulation factors corresponded to t1/2 values, and steady state was reached within 24 h. Plasma metabolite concentrations were considerably lower than those of the parent drug. The ratio metabolite AUC : parent drug AUC was time- and dose-independent for all three metabolites suggesting that the metabolism of sarizotan is non-saturable in the tested dose range. The pharmacokinetics of sarizotan were dose-proportional and time-independent for the dose range 0.5 -25 mg). The drug was well-tolerated by healthy subjects up to a single dose of 20 mg.
Equilibrium and kinetic modelling of chromium(III) sorption by animal bones.
Chojnacka, Katarzyna
2005-04-01
The paper discusses sorption of Cr(III) ions from aqueous solutions by animal bones. Animal bones were found to be an efficient sorbent with the maximum experimentally determined sorption capacity in the range 29-194 mg g(-1) that depended on pH and temperature. The maximum experimentally determined sorption capacity was obtained at 50 degrees C, pH 5. Batch kinetics and equilibrium experiments were performed in order to investigate the influence of contact time, initial concentration of sorbate and sorbent, temperature and pH. It was found that sorption capacity increased with increase of Cr(III) concentration, temperature and initial pH of metal solution. Mathematical models describing kinetics and statics of sorption were proposed. It was found that process kinetics followed the pseudo-second-order pattern. The influence of sorbent concentration was described with Langmuir-type equation and the influence of sorbate concentration was described with empirical dependence. The models were positively verified.
Effects of environmental conditions on growth and survival of Salmonella in pasteurized whole egg.
Jakočiūnė, Džiuginta; Bisgaard, Magne; Hervé, Gaëlle; Protais, Jocelyne; Olsen, John Elmerdahl; Chemaly, Marianne
2014-08-01
This study investigated the influence of three parameters (time, temperature and NaCl concentration) on survival and four parameters (temperature, NaCl and lysozyme concentrations and pH) on growth of Salmonella enterica serovar Enteritidis (S. Enteritidis) in pasteurized whole egg (PWE). Doehlert uniform shell design was employed to choose conditions for trials and data was fitted to polynomial models and were presented as estimated response surfaces. A model for prediction of reduction of S. Enteritidis in PWE within temperatures between 50 and 58°C, NaCl concentrations of 0-12%, and heating times between 30 and 210s and a model for prediction of growth rate of S. Enteritidis in PWE in the temperature range of 1-25°C, NaCl concentration of 0-12%, pH between 5 and 9, and lysozyme concentrations of 107-1007 U/mg proteins were developed. The maximum reduction condition was 58°C, 0% of NaCl at a fixed heating time of 120s, while maximum growth rate was estimated at 25°C and 0% of NaCl. pH and lysozyme concentration were shown not to influence growth performance significantly in the range of values studied. Results inform industry of the optimal pasteurization and storage parameters for liquid whole egg. Copyright © 2014 Elsevier B.V. All rights reserved.
Land, Larry F.; Shipp, Allison A.
1996-01-01
Water samples collected from streams draining an agricultural area in the west-central part of the Trinity River Basin upstream from the Richland-Chambers Reservoir and from streams draining an urban area in the Dallas-Fort Worth metropolitan area during March 1993 - September 1995 were analyzed for nutrients (nitrogen and phosphorus compounds). A comparison of the data for agricultural and urban streams shows the maximum concentration of total nitrogen is from an urban stream and the maximum concentration of total phosphorus is from an agricultural stream. One-half of the samples have total nitrogen concentrations equal to or less than 1.1 and 1.0 milligrams per liter in the agricultural and urban streams, respectively; and one-half of the samples have total phosphorous concentrations equal to or less than 0.04 and 0.05 milligram per liter in the agricultural and urban streams, respectively. The highest concentrations of total nitrogen in both types of streams are in the spring. The minimum concentrations of total nitrogen are during the summer in the agricultural streams and during the winter in the urban streams. Concentrations of total phosphorus in agricultural streams show negligible seasonal variability. The highest concentrations of total phosphorus are in spring and possibly late summer in the urban streams. In the midrange of streamflow in the urban streams and throughout the range of streamflow in the agricultural streams, concentrations of total nitrogen increase. Concentrations of total phosphorus increase with streamflow in the middle and upper ranges of streamflow in both agricultural and urban streams.
Yalcin, Seda Karasu; Yesim Ozbas, Z.
2008-01-01
The study was performed in a batch system in order to determine the effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine yeast strains Saccharomyces cerevisiae Kalecik 1 and Narince 3. The highest values of dry mass and specific growth rate were obtained at pH 4.00 for both of the strains. Maximum specific glycerol production rates were obtained at pH 5.92 and 6.27 for the strains Kalecik 1 and Narince 3, respectively. Kalecik 1 strain produced maximum 8.8 gL−1 of glycerol at pH 6.46. Maximum glycerol concentration obtained by the strain Narince 3 was 9.1 gL−1 at pH 6.48. Both yeasts reached maximum specific growth rate at 30°C. Optimum temperature range for glycerol production was determined as 25-30°C for the strain Kalecik 1. The strain Narince 3 reached maximum specific glycerol production rate at 30°C. Maximum glycerol concentrations at 30°C were obtained as 8.5 and 7.6 gL−1 for Kalecik 1 and Narince 3, respectively. PMID:24031225
Total lead concentration in new decorative enamel paints in Lebanon, Paraguay and Russia.
Clark, C Scott; Speranskaya, Olga; Brosche, Sara; Gonzalez, Hebe; Solis, Daniela; Kodeih, Naji; Roda, Sandy; Lind, Caroline
2015-04-01
Lead concentrations in new enamel decorative paints were determined in three countries in different areas of the world where data were not previously available. The average total lead concentration of the enamel decorative paints purchased in Lebanon, Paraguay and Russia was 24,500ppm (ppm, dry weight), more than 270 times the current limit of 90ppm in Canada and in the United States. Sixty-three percent of these paints contained concentrations greater than 90ppm. Fifty-nine percent contained concentrations greater than 600ppm, the current limit in some countries. The maximum concentrations found were 236,000ppm in Lebanon, 169,000ppm in Paraguay and 52,900ppm in Russia. An average of 29% of the samples contained exceedingly high lead concentrations, >=10,000ppm. Five brands of paint were sampled in each of Lebanon and Paraguay and seven in Russia. Three colors from each brand were analyzed. For five of the six samples of the two brands in Lebanon with affiliations outside the country, the lead concentrations ranged from 1360ppm to 135,000ppm. In Lebanon the maximum concentration in the Egypt-affiliated brand (Sipes) was 135,000ppm and the maximum for the USA-affiliated brand (Dutch Boy) was 32,400ppm. Lead was not detected in any paints from the three of the four brands of paint purchased in Paraguay that had headquarters/affiliations in other countries (Brazil-Coralit), Germany (Suvinil) and USA (Novacor)). Two of the three paints from each of the other Paraguay brands contained high levels of lead with the maximum concentrations of 108,000 and 168,000ppm; one of these brands was manufactured under a license from ICI in the Netherlands. All of the paints purchased in Russia were from Russian brands and were manufactured in Russia. All three paints from one brand contained below detection levels of lead. The maximum levels of lead in the other six brands in Russia ranged from 3230 to 52,900ppm. The two brands with the highest lead concentration, TEKS and LAKRA, were produced by companies in the top three in market share.. Overall, lead concentrations were much higher in the colored paints such as red and yellow than in white paints. In each of the three countries a brand based in that country had a colored paint that either met a 90ppm limit or was close to meeting the limit-demonstrating that practical technology was available in each of these countries to produce low lead bright colored enamel decorative paints. Even though technology for producing paint without added lead existed in each of these countries, twenty-nine (29) percent of the paints analyzed contained exceedingly high concentrations (>=10,000ppm) of lead. Copyright © 2015 Elsevier Inc. All rights reserved.
Dhevahi, B; Gurusamy, R
2014-11-01
Lipases are biocatalyst having wide applications in industries due to their versatile properties. In the present study, a lipolytic bacterial strain, Bacillus subtilis BDG-8 was isolated from an oil based industrial soil. The effect of selenium and nickel as a media supplement on enhancement of lipase production, was studied individually with the isolated strain by varying the concentration of selected metal. 60 μg l(-1) selenium enhanced lipase production to an enzyme activity measuring 7.8 U ml(-1) while 40 μgI(-1) nickel gave the maximum enzyme activity equivalent to 7.5 U ml(-1). However, nickel and selenium together at a range of concentration with an equal w/v ratio, at 60 μg l(-1) each, showed the maximum lipase activity of 8.5 U ml(-1). The effect of pH and temperature on lipase production showed maximum enzyme activity in the presence of each of the metals at pH 7 and 35°C among the other tested ranges. After optimisation of the parameters such as metal concentration, pH and temperature lipase production by Bacillus subtilis BDG-8 had increased several folds. This preliminary investigation may consequently lead as to various industrial applications such as treatment of wastewater contaminated with metal or oil with simultaneous lipase production.
Evans, Erika E; Emery, Lee C; Cox, Sherry K; Souza, Marcy J
2013-06-01
To determine pharmacokinetics after oral administration of a single dose of terbinafine hydrochloride to Hispaniolan Amazon parrots (Amazona ventralis). 6 healthy adult Hispaniolan Amazon parrots. A single dose of terbinafine hydrochloride (60 mg/kg) was administered orally to each bird, which was followed immediately by administration of a commercially available gavage feeding formula. Blood samples were collected at the time of drug administration (time 0) and 0.25, 0.5, 1, 2, 4, 8, 12, and 24 hours after drug administration. Plasma concentrations of terbinafine were determined via high-performance liquid chromatography. Data from 1 bird were discarded because of a possible error in the dose of drug administered. After oral administration of terbinafine, the maximum concentration for the remaining 5 fed birds ranged from 109 to 671 ng/mL, half-life ranged from 6 to 13.5 hours, and time to the maximum concentration ranged from 2 to 8 hours. No adverse effects were observed. Analysis of the results indicated that oral administration of terbinafine at a dose of 60 mg/kg to Amazon parrots did not result in adverse effects and may be potentially of use in the treatment of aspergillosis. Additional studies are needed to determine treatment efficacy and safety.
Becker, Carol J.; Smith, S. Jerrod; Greer, James R.; Smith, Kevin A.
2010-01-01
The U.S. Geological Survey well profiler was used to describe arsenic-related water quality with well depth and identify zones yielding water with high arsenic concentrations in two production wells in central and western Oklahoma that yield water from the Permian-aged Garber-Wellington and Rush Springs aquifers, respectively. In addition, well-head samples were collected from 12 production wells yielding water with historically large concentrations of arsenic (greater than 10 micrograms per liter) from the Garber-Wellington aquifer, Rush Springs aquifer, and two minor aquifers: the Arbuckle-Timbered Hills aquifer in southern Oklahoma and a Permian-aged undefined aquifer in north-central Oklahoma. Three depth-dependent samples from a production well in the Rush Springs aquifer had similar water-quality characteristics to the well-head sample and did not show any substantial changes with depth. However, slightly larger arsenic concentrations in the two deepest depth-dependent samples indicate the zones yielding noncompliant arsenic concentrations are below the shallowest sampled depth. Five depth-dependent samples from a production well in the Garber-Wellington aquifer showed increases in arsenic concentrations with depth. Well-bore travel-time information and water-quality data from depth-dependent and well-head samples showed that most arsenic contaminated water (about 63 percent) was entering the borehole from perforations adjacent to or below the shroud that overlaid the pump. Arsenic concentrations ranged from 10.4 to 124 micrograms per liter in 11 of the 12 production wells sampled at the well head, exceeding the maximum contaminant level of 10 micrograms per liter for drinking water. pH values of the 12 well-head samples ranged from 6.9 to 9. Seven production wells in the Garber-Wellington aquifer had the largest arsenic concentrations ranging from 18.5 to 124 micrograms per liter. Large arsenic concentrations (10.4-18.5) and near neutral to slightly alkaline pH values (6.9-7.4) were detected in samples from one well in the Garber-Wellington aquifer, three production wells in the Rush Springs aquifer, and one well in an undefined Permian-aged aquifer. All well-head samples were oxic and arsenate was the only species of arsenic in water from 10 of the 12 production wells sampled. Arsenite was measured above the laboratory reporting level in water from a production well in the Garber-Wellington aquifer and was the only arsenic species measured in water from the Arbuckle-Timbered Hills aquifer. Fluoride and uranium were the only trace elements, other than arsenic, that exceeded the maximum contaminant level for drinking water in well-head samples collected for the study. Uranium concentrations in four production wells in the Garber-Wellington aquifer ranged from 30.2 to 99 micrograms per liter exceeding the maximum contaminant level of 30 micrograms per liter for drinking water. Water from these four wells also had the largest arsenic concentrations measured in the study ranging from 30 to 124 micrograms
Control of Growth Rate by Initial Substrate Concentration at Values Below Maximum Rate
Gaudy, Anthony F.; Obayashi, Alan; Gaudy, Elizabeth T.
1971-01-01
The hyperbolic relationship between specific growth rate, μ, and substrate concentration, proposed by Monod and used since as the basis for the theory of steady-state growth in continuous-flow systems, was tested experimentally in batch cultures. Use of a Flavobacterium sp. exhibiting a high saturation constant for growth in glucose minimal medium allowed direct measurement of growth rate and substrate concentration throughout the growth cycle in medium containing a rate-limiting initial concentration of glucose. Specific growth rates were also measured for a wide range of initial glucose concentrations. A plot of specific growth rate versus initial substrate concentration was found to fit the hyperbolic equation. However, the instantaneous relationship between specific growth rate and substrate concentration during growth, which is stated by the equation, was not observed. Well defined exponential growth phases were developed at initial substrate concentrations below that required for support of the maximum exponential growth rate and a constant doubling time was maintained until 50% of the substrate had been used. It is suggested that the external substrate concentration initially present “sets” the specific growth rate by establishing a steady-state internal concentration of substrate, possibly through control of the number of permeation sites. PMID:5137579
Turnquist, Madeline A; Driscoll, Charles T; Schulz, Kimberly L; Schlaepfer, Martin A
2011-10-01
Mercury (Hg) deposited onto the landscape can be transformed into methylmercury (MeHg), a neurotoxin that bioaccumulates up the aquatic food chain. Here, we report on Hg concentrations in snapping turtles (Chelydra serpentina) across New York State, USA. The objectives of this study were to: (1) test which landscape, water, and biometric characteristics correlate with total Hg (THg) concentrations in snapping turtles; and (2) determine whether soft tissue THg concentrations correlate with scute (shell) concentrations. Forty-eight turtles were sampled non-lethally from ten lakes and wetlands across New York to observe patterns under a range of ecosystem variables and water chemistry conditions. THg concentrations ranged from 0.041 to 1.50 μg/g and 0.47 to 7.43 μg/g wet weight of muscle tissue and shell, respectively. The vast majority of mercury (~94%) was in the MeHg form. Sixty-one percent of turtle muscle samples exceeded U.S. Environmental Protection Agency (U.S. EPA) consumption advisory limit of 0.3 μg Hg/g for fish. Muscle THg concentrations were significantly correlated with sulfate in water and the maximum elevation of the watershed. Shell THg concentrations were significantly correlated with the acid neutralizing capacity (ANC) of water, the maximum elevation of the watershed, the percent open water in the watershed, the lake to watershed size, and various forms of atmospheric Hg deposition. Thus, our results demonstrate that THg concentrations in snapping turtles are spatially variable, frequently exceed advisory limits, and are significantly correlated with several landscape and water characteristics.
García-Ramos, Amador; Haff, Guy Gregory; Pestaña-Melero, Francisco Luis; Pérez-Castilla, Alejandro; Rojas, Francisco Javier; Balsalobre-Fernández, Carlos; Jaric, Slobodan
2017-09-05
This study compared the concurrent validity and reliability of previously proposed generalized group equations for estimating the bench press (BP) one-repetition maximum (1RM) with the individualized load-velocity relationship modelled with a two-point method. Thirty men (BP 1RM relative to body mass: 1.08 0.18 kg·kg -1 ) performed two incremental loading tests in the concentric-only BP exercise and another two in the eccentric-concentric BP exercise to assess their actual 1RM and load-velocity relationships. A high velocity (≈ 1 m·s -1 ) and a low velocity (≈ 0.5 m·s -1 ) was selected from their load-velocity relationships to estimate the 1RM from generalized group equations and through an individual linear model obtained from the two velocities. The directly measured 1RM was highly correlated with all predicted 1RMs (r range: 0.847-0.977). The generalized group equations systematically underestimated the actual 1RM when predicted from the concentric-only BP (P <0.001; effect size [ES] range: 0.15-0.94), but overestimated it when predicted from the eccentric-concentric BP (P <0.001; ES range: 0.36-0.98). Conversely, a low systematic bias (range: -2.3-0.5 kg) and random errors (range: 3.0-3.8 kg), no heteroscedasticity of errors (r 2 range: 0.053-0.082), and trivial ES (range: -0.17-0.04) were observed when the prediction was based on the two-point method. Although all examined methods reported the 1RM with high reliability (CV≤5.1%; ICC≥0.89), the direct method was the most reliable (CV<2.0%; ICC≥0.98). The quick, fatigue-free, and practical two-point method was able to predict the BP 1RM with high reliability and practically perfect validity, and therefore we recommend its use over generalized group equations.
McCarthy, M M; Mann, S; Nydam, D V; Overton, T R; McArt, J A A
2015-09-01
The objective was to use longitudinal data of blood nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHBA) concentrations to describe the relationship between NEFA and BHBA in dairy cows during the periparturient period. Blood NEFA and BHBA concentration data collected from d 21 prepartum to 21 postpartum for 269 multiparous Holstein cows were selected from 4 different studies carried out within our research groups. Overall, NEFA concentrations were increased beginning near parturition with a relatively steady elevation of NEFA through d 9, after which concentrations gradually decreased. Prepartum BHBA concentrations began to increase beginning several days before parturition, continued to increase during the first week after parturition, and remained elevated through d 21 postpartum. Of the 269 cows included in the data set, 117 cows (43.5%) had at least one postpartum hyperketonemic event (BHBA ≥1.2mmol/L), and 202 cows (75.1%) had at least one event of elevated postpartum NEFA concentrations (≥0.70mmol/L) between 3 and 21 d in milk. Area under the curve (AUC) was used to investigate relationships between metabolites over time. Overall, the correlations between transition period NEFA and BHBA AUC were weak. We detected a negative correlation between prepartum BHBA AUC and postpartum NEFA AUC (r=-0.26). A positive correlation existed between postpartum NEFA AUC and postpartum BHBA AUC; however, the correlation coefficient was low (r=0.26). Large variation was found between the day of maximum NEFA concentration within the first 21 d in milk and day of maximum BHBA concentration for the same period. The mean and median times of maximum NEFA concentration were 6.8 and 6 d, respectively, whereas the mean and median times of maximum BHBA were 9.6 and 8 d, respectively; however, the range in days for both the mean and median day of maximum concentrations was very large. Overall, our data set indicates a weak relationship between blood concentrations of NEFA and BHBA during the periparturient period of dairy cows, suggesting that elevated concentrations of one should not be extrapolated to suggest elevated concentrations of the other metabolite. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Rheology of concentrated suspensions of non-colloidal rigid fibers
NASA Astrophysics Data System (ADS)
Guazzelli, Elisabeth; Tapia, Franco; Shaikh, Saif; Butler, Jason E.; Pouliquen, Olivier
2017-11-01
Pressure and volume-imposed rheology is used to study suspensions of non-colloidal, rigid fibers in the concentrated regime for aspect ratios ranging from 3 to 15. The suspensions exhibit yield-stresses. Subtracting these apparent yield-stresses reveals a viscous scaling for both the shear and normal stresses. The variation in aspect ratio does not affect the friction coefficient (ratio of shear and normal stresses), but increasing the aspect ratio lowers the maximum volume fraction at which the suspension flows. Constitutive laws are proposed for the viscosities and the friction coefficient close to this maximum flowable fraction. The scaling of the stresses near this jamming transition are found to differ substantially from that of a suspension of spheres.
Chung, Jinwook; Shim, Hojae; Park, Seong-Jun; Kim, Seung-Jin; Bae, Wookeun
2006-03-01
A shortcut biological nitrogen removal (SBNR) utilizes the concept of a direct conversion of ammonium to nitrite and then to nitrogen gas. A successful SBNR requires accumulation of nitrite in the system and inhibition of the activity of nitrite oxidizers. A high concentration of free ammonia (FA) inhibits nitrite oxidizers, but unfortunately decreases the ammonium removal rate as well. Therefore, the optimal range of FA concentration is necessary not only to stabilize nitrite accumulation but also to achieve maximum ammonium removal. In order to derive such optimal FA concentrations, the specific substrate utilization rates of ammonium and nitrite oxidizers were measured. The optimal FA concentration range appeared to be 5-10 mg/L for the adapted sludge. The simulated results from the modified inhibition model expressed by FA and ammonium/nitrite concentrations were shown very similar to the experimental results.
Beckwith, Michael A.
2003-01-01
Water-quality samples were collected at 10 sites in the Clark Fork-Pend Oreille and Spokane River Basins in water years 1999 – 2001 as part of the Northern Rockies Intermontane Basins (NROK) National Water-Quality Assessment (NAWQA) Program. Sampling sites were located in varied environments ranging from small streams and rivers in forested, mountainous headwater areas to large rivers draining diverse landscapes. Two sampling sites were located immediately downstream from the large lakes; five sites were located downstream from large-scale historical mining and oreprocessing areas, which are now the two largest “Superfund” (environmental remediation) sites in the Nation. Samples were collected during a wide range of streamflow conditions, more frequently during increasing and high streamflow and less frequently during receding and base-flow conditions. Sample analyses emphasized major ions, nutrients, and selected trace elements. Streamflow during the study ranged from more than 130 percent of the long-term average in 1999 at some sites to 40 percent of the long-term average in 2001. River and stream water in the study area exhibited small values for specific conductance, hardness, alkalinity, and dissolved solids. Dissolved oxygen concentrations in almost all samples were near saturation. Median total nitrogen and total phosphorus concentrations in samples from most sites were smaller than median concentrations reported for many national programs and other NAWQA Program study areas. The only exceptions were two sites downstream from large wastewater-treatment facilities, where median concentrations of total nitrogen exceeded the national median. Maximum concentrations of total phosphorus in samples from six sites exceeded the 0.1 milligram per liter threshold recommended for limiting nuisance aquatic growth. Concentrations of arsenic, cadmium, copper, lead, mercury, and zinc were largest in samples from sites downstream from historical mining and ore-processing areas in the upper Clark Fork in Montana and the South Fork Coeur d’Alene River in Idaho. Concentrations of dissolved lead in all 32 samples from the South Fork Coeur d’Alene River exceeded the Idaho chronic criterion for the protection of aquatic life at the median hardness level measured during the study. Concentrations of dissolved zinc in all samples collected at this site exceeded both the chronic and acute criteria at all hardness levels measured. When all data from all NROK sites were combined, median concentrations of dissolved arsenic, dissolved and total recoverable copper, total recoverable lead, and total recoverable zinc in the NROK study area appeared to be similar to or slightly smaller than median concentrations at sites in other NAWQA Program study areas in the Western United States affected by historical mining activities. Although the NROK median total recoverable lead concentration was the smallest among the three Western study areas compared, concentrations in several NROK samples were an order of magnitude larger than the maximum concentrations measured in the Upper Colorado River and Great Salt Lake Basins. Dissolved cadmium, dissolved lead, and total recoverable zinc concentrations at NROK sites were more variable than in the other study areas; concentrations ranged over almost three orders of magnitude between minimum and maximum values; the range of dissolved zinc concentrations in the NROK study area exceeded three orders of magnitude.
Anderson, H.W.
1989-01-01
Four of eight wells sampled for herbicides in west-central Minnesota had detectable concentrations of the triazine herbicide atrazine that ranged from 0.2 to 0.6 micrograms per liter. These concentrations were well below the water-quality guidelines published by the Canadian Inland Waters Directorate, Water Quality Branch, which specify 100 micrograms per liter as the maximum permissible concentration for the group of triazine herbicides in a raw drinking-water supply.
Parker, Suzanne L; Lipman, Jeffrey; Roberts, Jason A; Wallis, Steven C
2015-02-01
A high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, using hydrophilic interaction liquid chromatography (HILIC) chromatography for the analysis of fosfomycin in human plasma and urine, has been developed and validated. The plasma method uses a simple protein precipitation using a low volume sample (10 μL) and is suitable for the concentration range of 1 to 2000 μg/mL. The urine method involves a simple dilution of 10 μL of sample and is suitable for a concentration range of 0.1 to 10 mg/mL. The plasma and urine results, reported, respectively, are for recovery (68, 72%), inter-assay precision (≤9.1%, ≤8.1%) and accuracy (range -7.2 to 3.3%, -1.9 to 1.6%), LLOQ precision (4.7%, 3.1%) and accuracy (1.7% and 1.2%), and includes investigations into the linearity, stability and matrix effects. The method was used in a pilot pharmacokinetic study of a critically ill patient receiving i.v. fosfomycin, which measured a maximum and minimum plasma concentration of 222 μg/mL and 172 μg/mL, respectively, after the initial dose, and a maximum and minimum plasma concentration of 868 μg/mL and 591μg/mL, respectively, after the fifth dose. The urine concentration was 2.03 mg/mL after the initial dose and 0.29 mg/mL after the fifth dose. Copyright © 2014 Elsevier B.V. All rights reserved.
Lo, Justin C; Allard, Gayatri N; Otton, S Victoria; Campbell, David A; Gobas, Frank A P C
2015-12-01
In vitro bioassays to estimate biotransformation rate constants of contaminants in fish are currently being investigated to improve bioaccumulation assessments of hydrophobic contaminants. The present study investigates the relationship between chemical substrate concentration and in vitro biotransformation rate of 4 environmental contaminants (9-methylanthracene, pyrene, chrysene, and benzo[a]pyrene) in rainbow trout (Oncorhynchus mykiss) liver S9 fractions and methods to determine maximum first-order biotransformation rate constants. Substrate depletion experiments using a series of initial substrate concentrations showed that in vitro biotransformation rates exhibit strong concentration dependence, consistent with a Michaelis-Menten kinetic model. The results indicate that depletion rate constants measured at initial substrate concentrations of 1 μM (a current convention) could underestimate the in vitro biotransformation potential and may cause bioconcentration factors to be overestimated if in vitro biotransformation rates are used to assess bioconcentration factors in fish. Depletion rate constants measured using thin-film sorbent dosing experiments were not statistically different from the maximum depletion rate constants derived using a series of solvent delivery-based depletion experiments for 3 of the 4 test chemicals. Multiple solvent delivery-based depletion experiments at a range of initial concentrations are recommended for determining the concentration dependence of in vitro biotransformation rates in fish liver fractions, whereas a single sorbent phase dosing experiment may be able to provide reasonable approximations of maximum depletion rates of very hydrophobic substances. © 2015 SETAC.
Metal-contaminated potato crops and potential human health risk in Bolivian mining highlands.
Garrido, Alan E; Strosnider, William H J; Wilson, Robin Taylor; Condori, Janette; Nairn, Robert W
2017-06-01
This study assessed metals in irrigation water, soil and potato crops impacted by mining discharges, as well as potential human health risk in the high desert near the historic mining center of Potosí, Bolivia. Metal concentrations were compared with international concentration limit guidelines. In addition, an ingested average daily dose and minimum risk level were used to determine the hazard quotient from potato consumption for adults and children. Irrigation water maximum concentrations of Cd, Pb and Zn in mining-impacted sites were elevated 20- to 1100-fold above international concentration limit guidelines. Agricultural soils contained total metal concentrations of As, Cd, Pb and Zn that exceeded concentration limits in agricultural soil guidelines by 22-, 9-, 3- and 12-fold, respectively. Potato tubers in mining-impacted sites had maximum concentrations of As, Cd, Pb and Zn that exceeded concentration limits in commercially sold vegetables by 9-, 10-, 16- and fourfold, respectively. Using conservative assumptions, hazard quotients (HQ) for potatoes alone were elevated for As, Cd and Pb among children (range 1.1-71.8), in nearly all of the mining-impacted areas; and for As and Cd among adults (range 1.2-34.2) in nearly all of the mining-impacted areas. Only one mining-impacted area had a Pb adult HQ for potatoes above 1 for adults. Toxic trace elements in a major regional dietary staple may be a greater concern than previously appreciated. Considering the multitude of other metal exposure routes in this region, it is likely that total HQ values for these metals may be substantially higher than our estimates.
Wang, Jing; Lu, Xiao-Lan; Yang, Gui-Peng; Xu, Guan-Qiu
2014-11-01
Carbon monoxide (CO) concentration distribution, sea-to-air flux and microbial consumption rate constant, along with atmospheric CO mixing ratio, were measured in the East China Sea and the South Yellow Sea in summer. Atmospheric CO mixing ratios varied from 68 x 10(-9) -448 x 10(-9), with an average of 117 x 10(-9) (SD = 68 x 10(-9), n = 36). Overall, the concentrations of atmospheric CO displayed a decreasing trend from the coastal stations to the offshore stations. The surface water CO concentrations in the investigated area ranged from 0.23-7.10 nmol x L(-1), with an average of 2.49 nmol x L(-1) (SD = 2.11, n = 36). The surface water CO concentrations were significantly affected by sunlight. Vertical profiles showed that CO concentrations rapidly declined with depth, with the maximum values appearing in the surface water. CO concentrations exhibited obvious diurnal variations in the study area, with the maximum values being 6-40 folds higher than the minimum values. Minimal concentrations of CO all occurred before dawn. However, the maximal concentrations of CO occurred at noon. Marked diurnal variation in the concentrations of CO in the water column indicated that CO was produced primarily by photochemistry. The surface CO concentrations were oversaturated relative to the atmospheric concentrations and the saturation factors ranged from 1.99-99.18, with an average of 29.36 (SD = 24.42, n = 29). The East China Sea and the South Yellow Sea was a net source of atmospheric CO. The sea-to-air fluxes of CO in the East China Sea and the South Yellow Sea ranged 0.37-44.84 μmol x (m2 x d)(-1), with an average of 12.73 μmol x (m2 x d)(-1) (SD = 11.40, n = 29). In the incubation experiments, CO concentrations decreased exponentially with incubation time and the processes conformed to the first order reaction characteristics. The microbial CO consumption rate constants (K(co)) in the surface water ranged from 0.12 to 1.45 h(-1), with an average of 0.47 h(-1) (SD = 0.55, n = 5). A negative correlation between K(co) and salinity was observed in the present study.
2010-01-01
Facilities involved in the manufacture of pharmaceutical products are an under-investigated source of pharmaceuticals to the environment. Between 2004 and 2009, 35 to 38 effluent samples were collected from each of three wastewater treatment plants (WWTPs) in New York and analyzed for seven pharmaceuticals including opioids and muscle relaxants. Two WWTPs (NY2 and NY3) receive substantial flows (>20% of plant flow) from pharmaceutical formulation facilities (PFF) and one (NY1) receives no PFF flow. Samples of effluents from 23 WWTPs across the United States were analyzed once for these pharmaceuticals as part of a national survey. Maximum pharmaceutical effluent concentrations for the national survey and NY1 effluent samples were generally <1 μg/L. Four pharmaceuticals (methadone, oxycodone, butalbital, and metaxalone) in samples of NY3 effluent had median concentrations ranging from 3.4 to >400 μg/L. Maximum concentrations of oxycodone (1700 μg/L) and metaxalone (3800 μg/L) in samples from NY3 effluent exceeded 1000 μg/L. Three pharmaceuticals (butalbital, carisoprodol, and oxycodone) in samples of NY2 effluent had median concentrations ranging from 2 to 11 μg/L. These findings suggest that current manufacturing practices at these PFFs can result in pharmaceuticals concentrations from 10 to 1000 times higher than those typically found in WWTP effluents. PMID:20521847
Antovic, Ivanka; Antovic, Nevenka M
2011-07-01
Concentration factors for Cs-137 and Ra-226 transfer from seawater, and dried sediment or mud with detritus, have been determined for whole, fresh weight, Chelon labrosus individuals and selected organs. Cesium was detected in 5 of 22 fish individuals, and its activity ranged from 1.0 to 1.6 Bq kg(-1). Radium was detected in all fish, and ranged from 0.4 to 2.1 Bq kg(-1), with an arithmetic mean of 1.0 Bq kg(-1). In regards to fish organs, cesium activity concentration was highest in muscles (maximum - 3.7 Bq kg(-1)), while radium was highest in skeletons (maximum - 25 Bq kg(-1)). Among cesium concentration factors, those for muscles were the highest (from seawater - an average of 47, from sediment - an average of 3.3, from mud with detritus - an average of 0.8). Radium concentration factors were the highest for skeleton (from seawater - an average of 130, from sediment - an average of 1.8, from mud with detritus - an average of 1.5). Additionally, annual intake of cesium and radium by human adults consuming muscles of this fish species has been estimated to provide, in aggregate, an effective dose of about 4.1 μSv y(-1). 2011 Elsevier Ltd. All rights reserved.
Du Preez, L.H.; Jansen Van Rensburg, P.J.; Jooste, A.M.; Carr, J.A.; Giesy, J.P.; Gross, T.S.; Kendall, R.J.; Smith, E.E.; Van Der Kraak, G.; Solomon, K.R.
2005-01-01
The objective of this study was to characterize concentrations of atrazine, terbuthylazine, and other pesticides in amphibian habitats in surface waters of a corn-production area of the western Highveld region (North-West Province) of South Africa. The study was conducted from November 2001 to June 2002, coinciding with the corn-production season. Pesticide residues were measured at regular intervals in surface water from eight ponds, three in a non-corn-growing area (NCGA) and five within the corn-growing area (CGA). Measured atrazine concentrations differed significantly among sites and between samples. In the five CGA sites, the maximum atrazine concentrations measured during the study ranged from 1.2 to 9.3 ??g/L. Although no atrazine was recorded as being applied in the catchment of the three NCGA sites, maximum concentrations from 0.39 to 0.84 ??g/L were measured during the study, possibly as a result of atmospheric transport. Maximum measured concentrations of terbuthylazine ranged from 1.22 to 2.1 ??g/L in the NCGA sites and from 1.04 to 4.1 ??g/L in the CGA sites. The source of terbuthylazine in the NCGA sites may have been in use other than in corn. The triazine degradation products, deisopropylatrazine (DIA) and deethylatrazine (DEA) and diaminochlorotriazine (DACT) were also found in water from both the CGA and NCGA sites. Concentrations of DIA were ??? 1 ??g/L throughout the season, while DEA concentrations were mostly 2 ??g/L in some locations. Concentrations of DACT were highly variable (LOD to 8 ??g/L) both before and after planting and application, suggesting that they resulted from historical use of triazines in the area. Other herbicides such as simazine and acetochlor were only detected infrequently and pesticides such as S-metolachlor, cypermethrin, monocrotophos, and terbuphos, known to be used in the CGA, were not detected in any of the samples. Because of dilution by higher than normal rainfall in the study period, these concentrations may not be predictive of those in years of normal rainfall. ?? 2004 Elsevier Ltd. All rights reserved.
Baks, Tim; Janssen, Anja E M; Boom, Remko M
2006-06-20
The effect of the presence of several small carbohydrates on the measurement of the alpha-amylase activity was determined over a broad concentration range. At low carbohydrate concentrations, a distinct maximum in the alpha-amylase activity versus concentration curves was observed in several cases. At higher concentrations, all carbohydrates show a decreasing alpha-amylase activity at increasing carbohydrate concentrations. A general kinetic model has been developed that can be used to describe and explain these phenomena. This model is based on the formation of a carbohydrate-enzyme complex that remains active. It is assumed that this complex is formed when a carbohydrate binds to alpha-amylase without blocking the catalytic site and its surrounding subsites. Furthermore, the kinetic model incorporates substrate inhibition and substrate competition. Depending on the carbohydrate type and concentration, the measured alpha-amylase activity can be 75% lower than the actual alpha-amylase activity. The model that has been developed can be used to correct for these effects in order to obtain the actual amount of active enzyme. 2006 Wiley Periodicals, Inc.
Potentiation by cholinesterase inhibitors of cholinergic activity in rat isolated stomach and colon.
Jarvie, Emma M; Cellek, Selim; Sanger, Gareth J
2008-01-01
Acetylcholinesterase (AChE) inhibitors stimulate gastrointestinal (GI) motility and are potential treatments of conditions associated with inadequate GI motility. The ability of itopride to facilitate neuronally (predominantly cholinergic) mediated contractions of rat isolated stomach, evoked by electrical field stimulation (EFS), has been compared with other cholinesterase inhibitors and with tegaserod, a clinically effective prokinetic and non-selective 5-HT(4) receptor agonist which also facilitates GI cholinergic function. Neostigmine greatly increased EFS-evoked contractions over a narrow concentration range (0.01-1 microM; 754+/-337% facilitation at 1 microM); higher concentrations (1, 3 microM) also increased muscle tension. Donepezil increased EFS-evoked contractions gradually over the full range of concentrations (0.01-10 microM; maximum increase 516+/-20% at 10 microM). Itopride increased the contractions even more gradually, rising to 188+/-84% at 10 microM. The butyrylcholinesterase inhibitor iso-OMPA 0.01-10 microM also increased EFS-evoked contractions, to a maximum of 36+/-5.0% at 10 microM, similar to that caused by tegaserod (35+/-5.2% increase at 1 microM). The effects of tegaserod, but not itopride were inhibited by the 5-HT(4) receptor antagonist SB-204070A 0.3 microM. In rat isolated colon, neostigmine was again the most efficacious, causing a defined maximum increase in EFS-evoked contractions (343+/-82% at 10 microM), without changing muscle tension. Maximum increases caused by donepezil and itopride were, respectively, 57.6+/-20 and 43+/-15% at 10 microM. These data indicate that the abilities of different AChE inhibitors to increase GI cholinergic activity differ markedly. Understanding the reasons is essential if AChE inhibitors are to be optimally developed as GI prokinetics.
Badoer, S; Miana, P; Della Sala, S; Marchiori, G; Tandoi, V; Di Pippo, F
2015-12-01
In this study, monthly variations in biomass of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were analysed over a 1-year period by fluorescence in situ hybridization (FISH) at the full-scale Fusina WWTP. The nitrification capacity of the plant was also monitored using periodic respirometric batch tests and by an automated on-line titrimetric instrument (TITrimetric Automated ANalyser). The percentage of nitrifying bacteria in the plant was the highest in summer and was in the range of 10-15 % of the active biomass. The maximum nitrosation rate varied in the range 2.0-4.0 mg NH4 g(-1) VSS h(-1) (0.048-0.096 kg TKN kg(-1) VSS day(-1)): values obtained by laboratory measurements and the on-line instrument were similar and significantly correlated. The activity measurements provided a valuable tool for estimating the maximum total Kjeldahl nitrogen (TKN) loading possible at the plant and provided an early warning of whether the TKN was approaching its limiting value. The FISH analysis permitted determination of the nitrifying biomass present. The main operational parameter affecting both the population dynamics and the maximum nitrosation activity was mixed liquor volatile suspended solids (MLVSS) concentration and was negatively correlated with ammonia-oxidizing bacteria (AOB) (p = 0.029) and (NOB) (p = 0.01) abundances and positively correlated with maximum nitrosation rates (p = 0.035). Increases in concentrations led to decreases in nitrifying bacteria abundance, but their nitrosation activity was higher. These results demonstrate the importance of MLVSS concentration as key factor in the development and activity of nitrifying communities in wastewater treatment plants (WWTPs). Operational data on VSS and sludge volume index (SVI) values are also presented on 11-year basis observations.
NASA Astrophysics Data System (ADS)
Asher, Elizabeth; Dacey, John W.; Ianson, Debby; Peña, Angelica; Tortell, Philippe D.
2017-04-01
Concentrations of dimethylsulfide (DMS), measured in the Subarctic Pacific during summer 2010 and 2011, ranged from ˜1 to 40 nM, while dissolved dimethylsulfoxide (DMSO) concentrations (range 13-23 nM) exceeded those of dissolved dimethyl sulfoniopropionate (DMSP) (range 1.3-8.8 nM). Particulate DMSP dominated the reduced sulfur pool, reaching maximum concentrations of 100 nM. Coastal and off shore waters exhibited similar overall DMS concentration ranges, but sea-air DMS fluxes were lower in the oceanic waters due to lower wind speeds. Surface DMS concentrations showed statistically significant correlations with various hydrographic variables including the upwelling intensity (r2 = 0.52, p < 0.001) and the Chlorophyll a/mixed layer depth ratio (r2 = 0.52, p < 0.001), but these relationships provided little predictive power at small scales. Stable isotope tracer experiments indicated that the DMSP cleavage pathway always exceeded the DMSO reduction pathway as a DMS source, leading to at least 85% more DMS production in each experiment. Gross DMS production rates were positively correlated with the upwelling intensity, while net rates of DMS production were significantly correlated to surface water DMS concentrations. This latter result suggests that our measurements captured dominant processes driving surface DMS accumulation across a coastal-oceanic gradient.
Jiang, Binbin; Qiu, Pengfei; Chen, Hongyi; Zhang, Qihao; Zhao, Kunpeng; Ren, Dudi; Shi, Xun; Chen, Lidong
2017-10-24
We report a ternary argyrodite-type Ag 9 GaSe 6 compound as a promising thermoelectric material in a moderate temperature range. Due to high carrier mobility and ultralow lattice thermal conductivity, a maximum ZT of 1.1 was obtained with stoichiometric Ag 9 GaSe 6 at 800 K. Via introducing slight Se-deficiency to optimize the carrier concentration, the maximum ZT is further enhanced to 1.3.
Milatou, Niki; Dassenakis, Manos; Megalofonou, Persefoni
2015-01-01
The objective of this study was to determine the current levels of heavy metals and trace elements in Atlantic bluefin tuna muscle tissues and how they are influenced by the fattening process and various life history parameters to ascertain whether the concentrations in muscle tissue exceed the maximum levels defined by the European Commission Decision and to evaluate the health risk posed by fish consumption. A total of 20 bluefin tuna reared in sea cages, ranging from 160 to 295 cm in length and from 80 to 540 kg in weight, were sampled from a bluefin tuna farm in the Ionian Sea. The condition factor K of each specimen was calculated and their age was estimated. Heavy metal and trace element (Hg, Zn, Fe and Cu) contents were determined in muscle tissue using cold vapour atomic absorption spectrometry and flame and graphite furnace atomic absorption spectrometry. The total Hg concentrations ranged from 0.28 to 1.28 mg kg(-1) w/w, Zn from 5.81 to 76.37 mg kg(-1) w/w, Fe from 12.14 to 39.58 mg kg(-1) w/w, and Cu from 0.36 to 0.94 mg kg(-1) w/w. Only 5% of the muscle samples of tuna contained Hg above the maximum level laid down by the European Commission Decision. Moreover, 15% of the muscle samples contained Zn above the maximum level, while Fe and Cu concentrations were within the acceptable tolerable guideline values. The reared bluefin tuna had lower concentrations of Hg than the wild ones from the Mediterranean Sea. Hg and Fe concentrations showed a positive relationship with size and age of bluefin tuna, whereas negative relationships were found for the concentrations of Zn and Cu. The estimated dietary intake values of the analysed metals were mostly below the derived guidelines.
Anderholm, S.K.
1996-01-01
This report describes the quality of shallow ground water in an agricultural area in the San Luis Valley, Colorado, and discusses how natural and human factors affect the quality of shallow ground water. Thirty-five wells were installed, and water samples were collected from these wells and analyzed for selected dissolved common constituents, nutrients, trace elements, radionuclides, and synthetic organic compounds. The San Luis Valley is a high intermontane valley that is partially drained by the Rio Grande. The San Luis Valley land-use study area was limited to a part of the valley where the depth to water is generally less than 25 feet. The area where the 35 monitor wells were installed was further limited to the part of the study area where center-pivot overhead sprinklers are used to irrigate crops. Precipitation, runoff from adjacent mountainous areas, and ground-water inflow from the adjacent mountainous areas are the main sources of water to the aquifers in the San Luis Valley. Discharge of water from the shallow, unconfined aquifer in the valley is mainly from evapotranspiration. The dominant land use in the San Luis Valley is agriculture, although nonirrigated land and residential land are interspersed with agricultural land. Alfalfa, native hay, barley, wheat, potatoes, and other vegetables are the main crops. Dissolved-solids concentrations in shallow ground water sampled ranged from 75 to 1,960 milligrams per liter. The largest median concentration of cations was for calcium, and the largest median concentration of anions was for bicarbonate in shallow ground water in the San Luis Valley. Calcium concentrations ranged from 7.5 to 300 milligrams per liter, and bicarbonate concentrations ranged from 28 to 451 milligrams per liter. Nitrite plus nitrate concentrations ranged from less than 0.1 to 58 milligrams per liter as N; water from 11 wells had nitrite plus nitrate concentrations greater than 10 milligrams per liter as N. With the exception of the following trace elements--aluminum, barium, iron, manganese, molybdenum, and uranium--the concentrations of trace elements were less than 10 micrograms per liter in 90 percent of the samples. All trace-element concentrations measured were below the maximum contaminant levels set by the U.S. Environmental Protection Agency. Five samples exceeded the proposed maximum contaminant level of 0.02 milligram per liter for uranium. All samples collected exceeded the proposed maximum contaminant level for radon-222. The volatile organic compound methyltertbutylether was detected in one sample at a concentration of 0.6 microgram per liter. Of the pesticides analyzed for, one or more were detected in water from 5 of the 35 wells sampled. Metribuzin was the most commonly detected pesticide and was detected in water from three wells at concentrations ranging from an estimated 0.005 to 0.017 microgram per liter. Metolachlor (detected in one sample at a concentration of 0.072 microgram per liter), prometon (detected in one sample at a concentration of 0.01 microgram per liter), and p,p'-DDE (detected in one sample at an estimated concentration of 0.002 microgram per liter) were the other pesticides detected. The U.S. Environmental Protection Agency lifetime health advisory for metolachlor, metribuzin, and prometon is 100 micrograms per liter, which is much larger than the concentrations measured in the shallow ground water sampled for this study. The elevated nitrite plus nitrate concentrations in shallow ground water are indicative of leaching of fertilizers from the land surface. This conclusion is consistent with conclusions made in other investigations of the San Luis Valley. On the basis of areal distribution and range of trace-element concentrations, human activities have not caused widespread trace-element contamination in the shallow grou
A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell.
Chen, Zhengjun; Niu, Yongyan; Zhao, Shuai; Khan, Aman; Ling, Zhenmin; Chen, Yong; Liu, Pu; Li, Xiangkai
2016-11-15
P-nitrophenol is one of the most common contaminants in chemical industrial wastewater, and in situ real-time monitoring of PNP cannot be achieved by conventional analytical techniques. Here, a two-chamber microbial fuel cell with an aerobic anode chamber was tested as a biosensor for in situ real-time monitoring of PNP. Pseudomonas monteilii LZU-3, which was used as the biological recognition element, can form a biofilm on the anode electrode using PNP as a sole substrate. The optimal operation parameters of the biosensor were as follows: external resistance 1000Ω, pH 7.8, temperature 30°C, and maximum PNP concentration 50mgL(-1). Under these conditions, the maximum voltages showed a linear relationship with PNP concentrations ranging from 15±5 to 44±4.5mgL(-1). Furthermore, we developed a novel portable device for in situ real-time monitoring of PNP. When the device was applied to measure PNP in wastewater containing various additional aromatic compounds and metal ions, the performance of the biosensor was not affected and the correlation between the maximum voltages and the PNP concentrations ranging from 9±4mgL(-1) to 36 ± 5mgL(-1) was conserved. The results demonstrated that the MFC biosensor provides a rapid and cost-efficient analytical method for real-time monitoring of toxic and recalcitrant pollutants in environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Formation mechanism of human serum albumin monolayers on positively charged polymer microparticles.
Nattich-Rak, Małgorzata; Sadowska, Marta; Adamczyk, Zbigniew; Cieśla, Michał; Kąkol, Małgorzata
2017-11-01
Human serum albumin (HSA) adsorption on positively and negatively charged polystyrene microparticles was studied at various pHs and NaCl concentrations. Thorough electrophoretic mobility measurements were carried out that enabled to monitor in situ the progress of protein adsorption. The maximum coverage of irreversibly adsorbed HSA on microparticles was determined by different concentration depletion methods, one of them involving AFM imaging of residual molecules. An anomalous adsorption of HSA on the positive microparticles was observed at pH 3.5 where the maximum coverage attained 1.0mgm -2 for NaCl concentrations of 0.05M despite that the molecules were on average positively charged. For comparison, the maximum coverage of HSA on negatively charged microparticles was equal to 1.3mgm -2 at this pH and NaCl concentration. At pH 7.4 the maximum coverage on positive microparticles was equal to 2.1mgm -2 for 0.05M NaCl concentration. On the other hand, for negative microparticles, negligible adsorption of HSA was observed at pH 7.4 and 9.7. These experimental data were adequately interpreted in terms of the random sequential adsorption approach exploiting the bead model of the HSA molecule. Different orientations of adsorbed molecules, inert alia, the edge-on orientation prevailing for positively charged microparticles at pH 7.4, were confirmed. This was explained in terms of a heterogeneous charge distribution over the HSA molecule prevailing for a wide range of pHs. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Il Ok; Kim, Young Sung; Chang, Hae Wone; Kim, Heezoo; Lim, Byung Gun; Lee, Mido
2018-05-24
Previous studies have shown that sugammadex resulted in the prolongation of prothrombin time and activated partial thromboplastin time. In this study, we aimed to investigate the in vitro effects of exogenous sugammadex on the coagulation variables of whole blood in healthy patients who underwent orthopedic surgery. The effects of sugammadex on coagulations were assessed using thromboelastography (TEG) in kaolin-activated citrated blood samples taken from 14 healthy patients who underwent orthopedic surgery. The in vitro effects of three different concentrations of sugammadex (42, 193, and 301 μg mL - 1 ) on the TEG profiles were compared with those of the control (0 μg mL - 1 ). Previous studies indicated that these exogenous concentrations correspond to the approximate maximum plasma concentrations achieved after the administration of 4, 16, and 32 mg kg - 1 sugammadex to healthy subjects. Increased sugammadex concentrations were significantly associated with reduced coagulation, as evidenced by increases in reaction time (r), coagulation time, and time to maximum rate of thrombus generation (TMRTG), and decreases in the angle, maximum amplitude, and maximum rate of thrombus generation. Compared with the control, the median percentage change (interquartile range) in the TEG values of the samples treated with the highest exogenous sugammadex concentration was the greatest for r, 53% (26, 67.3%), and TMRTG, 48% (26, 59%). This in vitro study suggests that supratherapeutic doses of exogenous sugammadex might be associated with moderate hypocoagulation in the whole blood of healthy subjects. identifier: UMIN000029081 , registered 11 September 2017.
40 CFR 434.55 - New source performance standards (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... consecutive days Concentrations in mg/1 Iron, total 6.0 3.0 TSS 70.0 35.0 pH (1) (1) 1 Within the range 6.0 to... property Limitations Settleable Solids 0.5 ml/1 maximum not to be exceeded. pH (1) (1) Within the range 6.0..., total 4.0 2.0 TSS 70.0 35.0 pH (1) (1) 1 Within the range 6.0 to 9.0 at all times. (2) Except as...
Monkos, Karol
2013-03-01
The paper presents the results of viscosity determinations on aqueous solutions of human serum albumin (HSA) at isoelectric point over a wide range of concentrations and at temperatures ranging from 5°C to 45°C. On the basis of a modified Arrhenius equation and Mooney's formula some hydrodynamic parameters were obtained. They are compared with those previously obtained for HSA in solutions at neutral pH. The activation energy and entropy of viscous flow and the intrinsic viscosity reach a maximum value, and the effective specific volume, the self-crowding factor and the Huggins coefficient a minimum value in solutions at isoelectric point. Using the dimensionless parameter [η]c, the existence of three ranges of concentrations: diluted, semi-diluted and concentrated, was shown. By applying Lefebvre's relation for the relative viscosity in the semi-dilute regime, the Mark-Houvink-Kuhn-Sakurada (MHKS) exponent was established. The analysis of the results obtained from the three ranges of concentrations showed that both conformation and stiffness of HSA molecules in solutions at isoelectric point and at neutral pH are the same.
Kelly, Brian P.
2002-01-01
A detailed ground-water sampling plan was developed and executed for 64 monitoring wells in the city of Independence well field to characterize ground-water quality in the 10-year zone of contribution. Samples were collected from monitoring wells, combined Independence well field pumpage, and the Missouri River at St. Joseph, Missouri, from 1998 through 2000. In 328 ground-water samples from the 64 monitoring wells and combined well field pumpage samples, specific conductance values ranged from 511 to 1,690 microsiemens per centimeter at 25 degrees Celsius, pH values ranged from 6.4 to 7.7, water temperature ranged from 11.3 to 23.6 degrees Celsius, and dissolved oxygen concentrations ranged from 0 to 3.3 milligrams per liter. In 12 samples from the combined well field pumpage samples, specific conductance values ranged from 558 to 856 microsiemens per centimeter at 25 degrees Celsius, pH values ranged from 6.9 to 7.7, water temperature ranged from 5.8 to 22.9 degrees Celsius, and dissolved oxygen concentrations ranged from 0 to 2.4 milligrams per liter. In 45 Missouri River samples, specific conductance values ranged from 531 to 830 microsiemens per centimeter at 25 degrees Celsius, pH ranged from 7.2 to 8.7, water temperature ranged from 0 to 30 degrees Celsius, and dissolved oxygen concentrations ranged from 5.0 to 17.6 milligrams per liter. The secondary maximum contaminant level for sulfate in drinking water was exceeded once in samples from two monitoring wells, the maximum contaminant level (MCL) for antimony was exceeded once in a sample from one monitoring well, and the MCL for barium was exceeded once in a sample from one monitoring well. The MCL for iron was exceeded in samples from all monitoring wells except two. The MCL for manganese was exceeded in all samples from monitoring wells and combined well field pumpage. Enzyme linked immunoassay methods indicate total benzene, toluene, ethyl benzene, and xylene (BTEX) was detected in samples from five wells. The highest total BTEX concentration was less than the MCL of toluene, ethyl benzene, or xylene but greater than the MCL for benzene. Total BTEX was not detected in samples from any well more than once. Atrazine was detected in samples from nine wells, and exceeded the MCL once in a sample from one well. Alachlor was detected in samples from 22 wells but the MCL was never exceeded in any sample. Samples from five wells analyzed for a large number of organic compounds indicate concentrations of volatile organic compounds did not exceed the MCL for drinking water. No semi-volatile organic compounds were detected; dieldrin was detected in one well sample, and no other pesticides, herbicides, polychlorinated biphenyls, or polychlorinated napthalenes were detected. Dissolved ammonia, dissolved nitrite plus nitrate, dissolved orthophosphorus, alachlor, and atrazine analyses were used to determine the spatial and temporal variability of agricultural chemicals in ground water. Detection frequencies for dissolved ammonia increased with well depth, decreased with depth for dissolved nitrite plus nitrate, and remained relatively constant with depth for dissolved orthophosphorus. Maximum concentrations of dissolved ammonia, dissolved nitrite plus nitrate, and dissolved orthophosphorus were largest in the shallowest wells and decreased with depth, which may indicate the land surface as the source. However, median concentrations increased with depth for dissolved ammonia, were less than the detection limit for dissolved nitrite plus nitrate, and decreased with depth for dissolved orthophosphorus. This pattern does not indicate a well-defined single source for these constituents. Dissolved orthophosphorus median concentrations were similar, but decreased slightly with depth, and may indicate the land surface as the source. Seasonal variability of dissolved ammonia, dissolved nitrite plus nitrate, a
Pope, Larry M.
1998-01-01
An examination of Cheney Reservoir bottom sediment was conducted in August 1997 to describe long-term trends and document the occurrence of selected constituents at concentrations that may be detrimental to aquatic organisms. Average concentrations of total phosphorus in bottom-sediment cores ranged from 94 to 674 milligrams per kilogram and were statistically related to silt- and (or) clay-size particles. Results from selected sampling sites in Cheney Reservoir indicate an increasing trend in total phosphorus concentrations. This trend is probably of nonpoint-source origin and may be related to an increase in fertilizer sales in the area, which more than doubled between 1965 and 1996, and to livestock production. Few organochlorine compounds were detected in bottom-sediment samples from Cheney Reservoir. DDT, its degradation products DDD and DDE, and dieldrin had detectable concentrations in the seven samples that were analyzed. DDT and DDD were each detected in one sample at concentrations of 1.0 and 0.65 microgram per kilogram, respectively. By far, the most frequently detected organochlorine insecticide was DDE, which was detected in all seven samples, ranging in concentration from 0.31 to 1.3 micrograms per kilogram. A decreasing trend in DDE concentrations was evident in sediment-core data from one sampling site. Dieldrin was detected in one sample from each of two sampling sites at concentrations of 0.21 and 0.22 micrograms per kilogram. Polychlorinated biphenyls were not detected in any bottom-sediment sample analyzed. Selected organophosphate, chlorophenoxy-acid, triazine, and acetanilide pesticides were analyzed in 18 bottom-sediment samples. Of the 23 pesticides analyzed, only the acetanilide herbicide metolachlor was detected (in 22 percent of the samples). Seven bottom-sediment samples were analyzed for major metals and trace elements. The median and maximum concentrations of arsenic and chromium, the maximum concentration of copper, and all concentrations of nickel in the seven samples were in the range where adverse effects to aquatic organisms occasionally occur. No time trends in trace elements were discernable in the August 1997 data.
NASA Astrophysics Data System (ADS)
Xiang, Longhao; Pan, Juyi; Chen, Songying
2018-06-01
The influence of pit shape and size on local stress concentration in the tensile specimen and the stress corrosion cracks inception was studied by employing the element remove technique. The maximum stress located in the bottom of pit on FV520B tensile specimen. The location of maximum strain was near the mouth of the pit or the shoulder and plastic strain existed in this region. Stress concentration factor and plastic deformation on four different geometrical shape pits of hemisphere, semi-ellipsoid, bullet and butterfly were numerically investigated, respectively. The simulation results showed that butterfly pit got the biggest stress concentration factor. The plastic strain rate during pit growth was in the sensitivity range of stress corrosion cracks inception, indicating that stress corrosion cracks were more likely to nucleate near the pit tip or the shoulder.
Effects of experimental design on calibration curve precision in routine analysis
Pimentel, Maria Fernanda; Neto, Benício de Barros; Saldanha, Teresa Cristina B.
1998-01-01
A computational program which compares the effciencies of different experimental designs with those of maximum precision (D-optimized designs) is described. The program produces confidence interval plots for a calibration curve and provides information about the number of standard solutions, concentration levels and suitable concentration ranges to achieve an optimum calibration. Some examples of the application of this novel computational program are given, using both simulated and real data. PMID:18924816
Relationship Between Topography and the Eastern Equatorial Hydrogen Signal on Mars
NASA Astrophysics Data System (ADS)
Clevy, J. R.; Elphic, R. C.; Feldman, W. C.; Kattenhorn, S. A.
2005-12-01
Epithermal neutron flux data received from the Neutron Spectrometer, part of the Gamma Ray Spectrometer suite on board NASA's Mars Odyssey, indicates elevated equatorial hydrogen deposits partially encircle the Schiaparelli Basin. Deconvolution of the hydrogen signal statistically increased the resolution over the spectrometer's original 600 km footprint. The resulting map of hydrogen concentrations was further refined by ignoring all data <8.9% Water Equivalent Hydrogen (WEH). In so doing, this study provides the most detailed map to date of the hydrogen concentration maxima in this region and serves as a guide for future exploration. Projecting the Eastern Equatorial Hydrogen map onto the digital elevation model for the Schiaparelli Basin reveals several areas of interest. For simplification, these areas are identified by clock position relative to Schiaparelli. At the twelve o'clock position, a maximum exceeding 10% WEH occupies the upper, northern slope of a saddle between Henry Crater and unnamed craters west of Henry. Viking images of the nameless craters demonstrate wind streaks from the north veer to the southwest here, following topography. Surface drainage channels are apparent on the slope below the local WEH maximum. The 2:30 maximum lies over Tuscaloosa Crater and Verde Vallis. This >10% WEH maximum has the greatest aerial extent, roughly 200 km in diameter. At 5 o'clock, the fringing range adjacent to Brazos Valles lies within the surficially dark region called Sinus Sabaeus. It should be noted that projection of the albedo map over the terrain reveals dark grains concentrating in low areas, presumably having moved short distances by wind and gravity. The absence or presence of these grains does not seem to affect the measured WEH concentration as the signal's local maximum, about 10.2%, crosses areas of high and low albedo without an increase or decrease in signal strength. At 6 o'clock, two 10.4% WEH maxima line the north-facing slope of another mountain range. Both maxima are elongated, east to west. The maximum at the top of the peak overlaps the cirque-like bowl of an unnamed, degraded crater. Below the collapsed north wall of this crater sits another maximum, 100 km long by 50 km wide. The eastern end of this lower maximum contains a crater with a 6 km wide, 40 km long drainage channel leading out of the crater and down the slope toward Schiaparelli. The final WEH maximum, at 6:30, is 150 km wide by 180 km long and is centered over Evros Vallis. The maximum extends beyond Sabaeus into Noachis Terra without visibly increasing or decreasing at the albedo boundary. From this study it is clear that albedo features do not control the hydrogen signal. WEH concentrations were found both within and outside Sabaeus. It is also apparent that drainage channels are present near each maximum. This proximity may implicate areas of high WEH as the source of channel-carving fluids. Finally, WEH is not tied to a specific stratigraphic layer. The locations of the maxima can be grouped into north-facing slopes, both peaks and saddles, and broad plains containing well-developed drainage systems flowing away from the WEH maxima. The former could indicate up-slope orographic deposition of hydrogen in the form of water ice as air masses rise and cool, preferentially coating north-facing slopes. High signals in low plains may be related to subsequent drainage when temperatures were warm enough to permit flow without immediate sublimation.
Lindgren, T; Norbäck, D
2002-12-01
The aim was to determine cabin air quality and in-flight exposure for cabin attendants of specific pollutants during intercontinental flights. Measurements of air humidity, temperature, carbon dioxide (CO2), respirable particles, ozone (O3), nitrogen dioxide (NO2) and formaldehyde were performed during 26 intercontinental flights with Boeing 767-300 with and without tobacco smoking onboard. The mean temperature in cabin was 22.2 degrees C (range 17.4-26.8 degrees C), and mean relative air humidity was 6% (range 1-27%). The CO2 concentration during cruises was below the recommended limit of 1000 ppm during 96% of measured time. Mean indoor concentration of NO2 and O3, were 14.1 and 19.2 micrograms/m3, with maximum values of 37 and 66 micrograms/m3, respectively. The concentration of formaldehyde was below the detection limit (< 5 micrograms/m3), in most samples (77%), and the maximum value was 15 micrograms/m3. The mean concentration of respirable particles in the rear part of the aircraft (AFT galley area) was much higher (49 micrograms/m3) during smoking as compared with non-smoking conditions (3 micrograms/m3) (P < 0.001), with maximum values of 253 and 7 micrograms/m3. In conclusion, air humidity is very low on intercontinental flights, and the large variation of temperature shows a need for better temperature control. Tobacco smoking onboard leads to a significant pollution of respirable particles, particularly in the rear part of the cabin. The result supports the view that despite the high air exchange rate and efficient air filtration, smoking in commercial aircraft leads to a significant pollution and should be prohibited.
Opie, L H; Tuschmidt, R; Bricknell, O; Girardier, L
1980-01-01
1. Changing substrates from glucose to pyruvate in paced isolated rat hearts, perfused by the Langendorff technique at 65 cm H2O with a Krebs-Henseleit bicarbonate buffer, produced effects which are opposite to those of ouabain treatment: negative inotropy, decreased work efficiency, hyperpolarization, increased maximum rate of rise and amplitude of the action potential, increased conduction velocity. 2. All the effects resulting from perfusion with pyruvate can be reversed by adding ouabain at a concentration of 100 microM. 3. The correlation between various tissue metabolises and change in contractile force (delta F), rate of tension development [maximum + (dF/dt)] and rate of relaxation [maximum -(dF/dt)] was studied by multiple linear regression. No significant correlation was found with either glycogen content and tissue lactate or with cAMP and cGMP. A weak negative correlation was found with ATP and phosphocreatine. The strongest correlation was found 76 to 807 nM/g in passing from glucose- to pyruvate-containing perfusion solution. 4. In vitro tests performed with a solution containing high energy phosphates and magnesium at concentrations equal to their calculated values in the cytosol (pH 7.0) showed that a significant negative correlation exists between citrate concentration (range: 1 and 1500 M) and free calcium concentration in the micromole range. 5. It is concluded that the effects of pyruvate (non glucose substrate) perfusion could be mediated by a decrease in cytosolic-free calcium resulting from an increase in intracellular citrate. The observation that all these effects can be reversed by ouabain is taken as a circumstantial evidence of a common mechanism.
Orlando, James L.; Kuivila, Kathryn
2006-01-01
The Sacramento-San Joaquin Delta (Delta) of California is an ecologically rich and hydrologically complex region that receives runoff from nearly one-quarter of the state. Water-quality studies of surface water in the region have found dissolved pesticides in winter storm runoff at concentrations toxic to some aquatic invertebrates. However, scientists have little information on pesticide concentrations in the Delta on a seasonal timescale or the importance of pesticide contributions from within-Delta sources. Consequently, the U.S. Geological Survey conducted a study from 1994 to 1996 during which water samples were collected seasonally from 31 sites located within the Delta and on major tributaries to the Delta. Water samples were analyzed for 20 current-use pesticides and dissolved organic carbon. During the study, 11 current-use pesticides were detected; maximum concentrations ranging from 17 ng/L (for trifluralin) to 1,160 ng/L (for metolachlor). The highest concentrations of five pesticides (carbaryl, carbofuran, metolachlor, molinate, and simazine) were greater than 900 ng/L. The greatest number of pesticides was detected in the summer of 1994, whereas the least number were detected in the winter of 1994. The herbicides metolachlor and simazine were the most frequently detected pesticides and were detected in five of the six sampling seasons. The herbicides molinate and EPTC were detected only during the three summer sampling seasons. A comparison of pesticides detected during the spring and summer of 1995 showed some seasonal variability. Comparison of the three summer seasons sampled showed that a larger number of pesticides were detected, and with generally higher maximum concentrations, in 1994 than in 1995 or 1996. Dissolved organic carbon (DOC) concentrations ranged, over the course of the study, from 1.4 mg/L to 10.4 mg/L, and had a median concentration of 3.8 mg/L. On a seasonal basis, the lowest maximum DOC concentrations occurred during the summer and winter of 1994. The highest median DOC concentration on a seasonal basis occurred in the spring of 1995. This previously unreported data is being published now to provide historical information on pesticide concentrations in the Delta to water managers and the scientific community.
Evaporative cooling by a pulsed jet spray of binary ethanol-water mixture
NASA Astrophysics Data System (ADS)
Karpov, P. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.
2015-07-01
We have experimentally studied the heat transfer under conditions of pulsed multinozzle jet spray impact onto a vertical surface. The working coolant fluid was aqueous ethanol solution in a range of concentrations K 1 = 0-96%. The duration of spray pulses was τ = 2, 4, and 10 ms at a repetition frequency of 10 Hz. The maximum heat transfer coefficient was achieved at an ethanol solution concentration within 50-60%. The thermal efficiency of pulsed spray cooling grows with increasing ethanol concentration and decreasing jet spray pulse duration.
Reconnaissance for radioactive deposits in eastern Alaska, 1952
Nelson, Arthur Edward; West, Walter S.; Matzko, John J.
1954-01-01
Reconnaissance for radioactive deposits was conducted in selected areas of eastern Alaska during 1952. Examination of copper, silver, and molybdenum occurrences and of a reported nickel prospect in the Slana-Nabesna and Chisana districts in the eastern Alaska Range revealed a maximum radioactivity of about 0.003 percent equivalent uranium. No appreciable radioactivity anomolies were indicated by aerial and foot traverses in the area. Reconnaissance for possible lode concentrations of uranium minerals in the vicinity of reported fluoride occurrences in the Hope Creek and Miller House-Circle Hot Springs areas of the Circle quadrangle and in the Fortymile district found a maximum of 0.055 percent equivalent uranium in a float fragment of ferruginous breccia in the Hope Creek area; analysis of samples obtained in the vicinity of the other fluoride occurrences showed a maximum of only 0.005 percent equivalent uranium. No uraniferous loads were discovered in the Koyukuk-Chandalar region, nor was the source of the monazite, previously reported in the placer concentrates from the Chandalar mining district, located. The source of the uranotheorianite in the placers at Gold Bench on the South Fork of the Koyukuk River was not found during a brief reconaissance, but a placer concentrate was obtained that contains 0.18 percent equivalent uranium. This concentrate is about ten times more radioactive than concentrates previously available from the area.
Running, Steven W.; Gower, Stith T.
1991-01-01
A new version of the ecosystem process model FOREST-BGC is presented that uses stand water and nitrogen limitations to alter the leaf/root/stem carbon allocation fraction dynamically at each annual iteration. Water deficit is defined by integrating a daily soil water deficit fraction annually. Current nitrogen limitation is defined relative to a hypothetical optimum foliar N pool, computed as maximum leaf area index multiplied by maximum leaf nitrogen concentration. Decreasing availability of water or nitrogen, or both, reduces the leaf/root carbon partitioning ratio. Leaf and root N concentrations, and maximum leaf photosynthetic capacity are also redefined annually as functions of nitrogen availability. Test simulations for hypothetical coniferous forests were performed for Madison, WI and Missoula, MT, and showed simulated leaf area index ranging from 4.5 for a control stand at Missoula, to 11 for a fertilized stand at Madison, with Year 50 stem carbon biomasses of 31 and 128 Mg ha(-1), respectively. Total nitrogen incorporated into new tissue ranged from 34 kg ha(-1) year(-1) for the unfertilized Missoula stand, to 109 kg ha(-1) year(-1) for the fertilized Madison stand. The model successfully showed dynamic annual carbon partitioning controlled by water and nitrogen limitations.
Selamat, S Norleela; Abdullah, S Rozaimah Sheikh; Idris, M
2014-01-01
This study was conducted to investigate the uptake of lead (Pb) and arsenic (As) from contaminated soil using Melastoma malabathricum L. species. The cultivated plants were exposed to As and Pb in separate soils for an observation period of 70 days. From the results of the analysis, M. malabathricum accumulated relatively high range of As concentration in its roots, up to a maximum of 2800 mg/kg. The highest accumulation of As in stems and leaves was 570 mg/kg of plant. For Pb treatment, the highest concentration (13,800 mg/kg) was accumulated in the roots of plants. The maximum accumulation in stems was 880 mg/kg while maximum accumulation in leaves was 2,200 mg/kg. Only small amounts of Pb were translocated from roots to above ground plant parts (TF < 1). However, a wider range of TF values (0.01-23) for As treated plants proved that the translocation of As from root to above ground parts was greater. However, the high capacity of roots to take up Pb and As (BF > 1) is indicative this plants is a good bioaccumulator for these metals. Therefore, phytostabilisation is the mechanism at work in M. malabathricum's uptake of Pb, while phytoextraction is the dominant mechanism with As.
Size-selective toxicity effects of the antimicrobial tylosin on estuarine phytoplankton communities.
Kline, Allison; Pinckney, James L
2016-09-01
The purpose of this study was to determine the lethal and sublethal effects of the antimicrobial tylosin on natural estuarine phytoplankton communities. Bioassays were used in experimental treatments with final concentrations of 5 to 1000 μg tylosin l(-1). Maximum percent inhibition ranged from 57 to 85% at concentrations of 200-400 μg tylosin l(-1). Half maximum inhibition concentrations of tylosin were ca. 5x lower for small phytoplankton (<20 μm) relative to larger phytoplankton (>20 μm) and suggests that small phytoplankton are more sensitive to tylosin exposure. Sublethal effects occurred at concentrations as low as 5 μg tylosin l(-1). Environmental concentrations of tylosin (e.g., 0.2-3 μg l(-1)) may have a significant sublethal effect that alters the size structure and composition of phytoplankton communities. The results of this study highlight the potential importance of cell size on toxicity responses of estuarine phytoplankton. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bak, Geonyoung; Kim, Bongju; Choi, Nagchoul; Park*, Cheonyoung
2015-04-01
In this study, in order to obtain the maximum Au leaching rate, an invisible gold concentrate sample was microwave-treated and a thiourea leaching experiment was performed. It is found that gold exists as invisible as a result of observation with an optical microscope and an electron microscope. As the invisible gold concentrate sample was exposed to microwave longer, its temperature and weight loss were increased together and its S content was decreased. The conditions for the maximum Au leaching rate and the fast leaching effect were a particle size of -325×400 mesh, exposure to microwave for 70 minutes, 1.0 g of thiourea, 0.0504 g of sodium sulfite and 0.425 g of ferric sulfate. However, the condition under which Au was leached out to the maximum was applied to the control sample, but its Au leaching rate was just in a range of 78% to 88%. Such results suggest that the effect of sodium sulfite and ferric sulfate was more effective in the microwave-treated sample than in the control sample. Therefore, it was confirmed that the complete and very fast Au leaching can be achieved by means of the microwave pretreatment of invisible gold concentrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, D.F.; Hewes, K.A.
1984-01-01
Water hyacinths survive atmospheric carbon dioxide concentrations ranging from ambient to 15% (v/v). The optimum growth during a one-week period with continuous laboratory lighting (200 ..mu..Es/m/sup 2//sec) appeared to be about 10%. Under these conditions, the equation defining inorganic carbon fixed as a function of the atmospheric concentration of carbon dioxide indicated a maximum of about 75% of available carbon was fixed over the range 1-10% CO/sub 2/. Under a typical light cycle, the percent fixed was reduced to about 60%. The implications of the results are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, E.; Rendo, R.; Sanjurjo, B.
1998-11-01
The surface tension of aqueous solutions of N-methyldiethanolamine and diethanolamine + N-methyldiethanolamine, monoethanolamine + N-methyldiethanolamine and 2-amino-2-methyl-1-propanol + N-methyldiethanolamine was measured at temperatures from 25 C to 50 C. For binary mixtures the concentration range was 0--50 mass % N-methyldiethanolamine, and for the tertiary mixtures the concentration range for each amine was 0--50 mass %. The experimental values were correlated with temperature and mole fraction. The maximum deviation in both cases was always less than 0.5%.
Tollett, Roland W.; Fendick, Robert B.; Simmons, Lane B.
2003-01-01
In 2000-2001, water-quality data were collected from 60 randomly selected domestic wells in the Acadian-Pontchartrain Study Unit, as part of the National Water-Quality Assessment Program. The data were collected from wells screened in shallow sands (less than 350 feet below land surface) in two major aquifer systems--the Chicot aquifer system in southwestern Louisiana and the Chicot equivalent aquifer system in southeastern Louisiana and southwestern Mississippi. The Chicot equivalent aquifer system is part of the Southern Hills regional aquifer system, and both the Chicot aquifer system and the Southern Hills regional aquifer systems are designated as sole-source aquifers by the U.S. Environmental Protection Agency (USEPA). The well depths ranged from 40 to 340 feet below land surface with a median depth of 120 feet. The ground-water-quality data included 5 physiochemical properties, dissolved solids, 9 major inorganic ions, 24 trace elements, 6 nutrients, dissolved organic carbon, 109 pesticides and degradation products, and 85 volatile organic compounds (VOC's); and a subset of the wells were sampled for radon, chlorofluorocarbons, and stable isotopes. Water from 35 of the 60 domestic wells sampled had pH values less than the USEPA Seconday Maximum Contaminant Level (SMCL) range of 6.5 to 8.5 standard units. Specific conductance ranged from 17 to 1,420 microsiemens per centimeter at 25 degrees Celsius. Dissolved-solids concentrations in water from two wells exceeded the SMCL of 500 mg/L (milligrams per liter); the maximum concentration was 858 mg/L. Sodium and calcium were the dominant cations, and bicarbonate and chloride were the dominant anions. One chloride concentration (264 mg/L) exceeded the SMCL of 250 mg/L. One arsenic concentration (55.3 micrograms per liter) exceeded the USEPA Maximum Contaminant Level (MCL) of 10 micrograms per liter. Iron concentrations in water from 22 wells exceeded the SMCL of 300 micrograms per liter; the maximum concentration was 8,670 micrograms per liter. Manganese concentrations in water from 26 wells exceeded the SMCL of 50 micrograms per liter; the maximum concentration was 481 micrograms per liter. Health Advisories have been established for six of the trace elements analyzed; no concentrations were greater than these nonenforceable standards. Radon concentrations in water from 9 of 50 wells sampled were greater thanthe proposed USEPA MCL of 300 picocuries per liter. Concentrations of ammonia, ammonia plus organic nitrogen, and nitrite plus nitrate in water from four wells were greater than 2 mg/L, a level that might indicate anthropogenic influences. The median dissolved organic carbon concentration was an estimated 0.30 mg/L, which indicated naturally occurring dissolved organic carbon conditions in the study area. Eight pesticides and two degradation products were detected in water from five wells. Twenty-four VOC's were detected in water from 44 wells. All concentrations of pesticides and VOC's were less than USEPA drinking-water standards. Quality-control samples, which included field-blank samples, replicates, and field and laboratory spikes, indicated no bias in ground-water data from collection procedures or analyses. VAriance between the environmental sampls and he corresponding replicate samples was typically less than 5 percent, indicating and acceptable degree of laboratory precision and data collection reproducibility. The Mann-Whitney rank-sum test was used to compare depth to top of screen and selected physicochemical properties and chemical constituents between six groups of wells. Values for selected physicochemical and chemical constituents were typically greater in wells located in the Chicot aquifer system than in the Chicot equivalent aquifer system. Values for specific conductance, pH, calcium, sodium, bicarbonate, chloride, dis
Ward, Timothy J; Boeri, Robert L; Hogstrand, Christer; Kramer, James R; Lussier, Suzanne M; Stubblefield, William A; Wyskiel, Derek C; Gorsuch, Joseph W
2006-07-01
Tests were conducted with mysids (Americamysis bahia) and silversides (Menidia beryllina) to evaluate the influence of salinity and organic carbon on the chronic toxicity of silver. During 7- and 28-d tests conducted at 10, 20, and 30% per hundred salinity, higher concentrations of dissolved silver generally were required to cause a chronic effect as the salinity of the seawater was increased. The 28-d mysid and silverside 20%-effective concentration values (expressed as dissolved silver) ranged from 3.9 to 60 and from 38 to 170 microg/L, respectively, over the salinity range. This pattern was not observed when the same test results were evaluated against the concentrations of free ionic silver (measured directly during toxicity tests), as predicted by the free-ion activity model. Increasing the concentration of dissolved organic carbon from 1 mg/L to the apparent maximum achievable concentration of 6 mg/L in seawater caused a slight decrease in chronic toxicity to silversides but had no effect on the chronic toxicity to mysids. The possible additive toxicity of silver in both food and water also was investigated. Even at the maximum achievable foodborne concentration, the chronic toxicity of silver added to the water was not affected when silver was also added to the food, based on the most sensitive endpoint (growth). However, although fecundity was unaffected at all five tested concentrations during the test with silver in water only, it was significantly reduced at the two highest waterborne silver concentrations (12 and 24 microg/L) during the test with silver dosed into food and water.
McCarthy, Peter M.
2006-01-01
The Yellowstone River is very important in a variety of ways to the residents of southeastern Montana; however, it is especially vulnerable to spilled contaminants. In 2004, the U.S. Geological Survey, in cooperation with Montana Department of Environmental Quality, initiated a study to develop a computer program to rapidly estimate instream travel times and concentrations of a potential contaminant in the Yellowstone River using regression equations developed in 1999 by the U.S. Geological Survey. The purpose of this report is to describe these equations and their limitations, describe the development of a computer program to apply the equations to the Yellowstone River, and provide detailed instructions on how to use the program. This program is available online at [http://pubs.water.usgs.gov/sir2006-5057/includes/ytot.xls]. The regression equations provide estimates of instream travel times and concentrations in rivers where little or no contaminant-transport data are available. Equations were developed and presented for the most probable flow velocity and the maximum probable flow velocity. These velocity estimates can then be used to calculate instream travel times and concentrations of a potential contaminant. The computer program was developed so estimation equations for instream travel times and concentrations can be solved quickly for sites along the Yellowstone River between Corwin Springs and Sidney, Montana. The basic types of data needed to run the program are spill data, streamflow data, and data for locations of interest along the Yellowstone River. Data output from the program includes spill location, river mileage at specified locations, instantaneous discharge, mean-annual discharge, drainage area, and channel slope. Travel times and concentrations are provided for estimates of the most probable velocity of the peak concentration and the maximum probable velocity of the peak concentration. Verification of estimates of instream travel times and concentrations for the Yellowstone River requires information about the flow velocity throughout the 520 mi of river in the study area. Dye-tracer studies would provide the best data about flow velocities and would provide the best verification of instream travel times and concentrations estimated from this computer program; however, data from such studies does not currently (2006) exist and new studies would be expensive and time-consuming. An alternative approach used in this study for verification of instream travel times is based on the use of flood-wave velocities determined from recorded streamflow hydrographs at selected mainstem streamflow-gaging stations along the Yellowstone River. The ratios of flood-wave velocity to the most probable velocity for the base flow estimated from the computer program are within the accepted range of 2.5 to 4.0 and indicate that flow velocities estimated from the computer program are reasonable for the Yellowstone River. The ratios of flood-wave velocity to the maximum probable velocity are within a range of 1.9 to 2.8 and indicate that the maximum probable flow velocities estimated from the computer program, which corresponds to the shortest travel times and maximum probable concentrations, are conservative and reasonable for the Yellowstone River.
Boughton, Gregory K.
2014-01-01
Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron, manganese, boron, and selenium exceeded WDEQ Class II agriculture groundwater standards in some samples. Measurements of pH and concentrations of sulfate, dissolved solids, aluminum, boron, and selenium exceeded WDEQ Class III livestock groundwater standards in some samples. The concentrations of dissolved solids in two samples exceeded the WDEQ Class IV industry groundwater standard. Measurements of pH and concentrations of dissolved solids, aluminum, iron, manganese, and selenium exceeded WDEQ Class special (A) fish and aquatic life groundwater standards in some samples. Stable isotopes of hydrogen and oxygen measured in water samples were compared to the Global Meteoric Water Line and Local Meteoric Water Lines. Results indicated that recharge to all of the wells was derived from precipitation and that the water has undergone some fractionation, possibly because of evaporation. Concentrations of organic compounds did not exceed any State or Federal water-quality standards. Few volatile organic compounds were detected in samples, whereas gasoline range organics, diesel range organics, and methane were detected most frequently. Concentrations of wastewater compounds did not exceed any State or Federal water-quality standards. The compounds N,N-diethyl-meta-toluamide (DEET), benzophenone, and phenanthrene were detected most frequently. Bacteria samples were collected, processed, incubated, and enumerated in the field or at the U.S. Geological Survey Wyoming-Montana Water Science Center. Total coliforms and Escherichia coli were detected in some samples.
Han, Yi; Ayalasomayajula, Surya; Pan, Wei; Yang, Fan; Yuan, Yaozong; Langenickel, Thomas; Hinder, Markus; Kalluri, Sampath; Pal, Parasar; Sunkara, Gangadhar
2017-02-01
Sacubitril/valsartan (LCZ696) is a first-in-class angiotensin receptor neprilysin inhibitor (ARNI) and has been recently approved in several countries for the treatment of patients with heart failure and reduced ejection fraction. This was the first study conducted to characterise the pharmacokinetics of LCZ696 analytes (pro-drug sacubitril, active neprilysin inhibitor LBQ657 and valsartan) after single-dose administration of LCZ696 in healthy Chinese subjects. In this open-label, randomised, parallel-group study, following screening and baseline evaluation, eligible healthy subjects received single oral doses of LCZ696 50, 100, 200 or 400 mg. The pharmacokinetics, safety and tolerability of LCZ696 were assessed up to 72 h after dosing. A total of 40 healthy male subjects were enrolled, and all completed the study. Following oral administration, LCZ696 delivered systemic exposure to sacubitril, LBQ657 and valsartan with a median time to reach maximum plasma concentration (T max ) ranging from 0.50 to 1.25, 2.00 to 3.00 and 1.50 to 2.50 h, respectively, over the investigated dose range. The mean terminal elimination half-life (T 1/2 ) ranged from 0.89 to 1.35, 8.57 to 9.24 and 5.33 to 7.91 h for sacubitril, LBQ657 and valsartan, respectively. The area under the plasma concentration-time curve from time zero to the time of the last quantifiable concentration (AUC 0-last ), and maximum plasma concentration (C max ) for LBQ657 increased dose proportionally over the entire dose range. Dose linear increase in the exposure was observed across the dose range for sacubitril and valsartan. LCZ696 was safe and well tolerated at all doses in this study. Adverse events of only mild intensity, which required no treatment, were reported in 6 (15 %) subjects. The pharmacokinetic profiles of LCZ696 analytes in Chinese subjects are similar to those reported previously in Caucasian subjects.
Phelps, Kenneth R; Stern, Marc; Slingerland, Alice; Heravi, Mahin; Strogatz, David S; Haqqie, Syed S
2002-01-01
Secondary hyperparathyroidism commonly evolves, as the glomerular filtration rate falls. The metabolic and skeletal effects of a possible remedy, calcium acetate, have not been studied in patients with preterminal chronic renal failure. Men with a mean creatinine clearance of approximately 30 ml/min took calcium acetate for 24 weeks at doses which provided 507 or 1,521 mg calcium/day with meals. Metabolic determinations were made at intervals of 4-8 weeks, and the bone mineral density (BMD) was measured at the beginning and at the end of the trial. The low-dose regimen produced no metabolic or skeletal effect. In subjects prescribed the high-dose regimen, the 24-hour urine phosphorus excretion fell from 0.53 mg/mg creatinine to values ranging from 0.34 to 0.41 mg/mg creatinine. The theoretical phosphorus threshold concentration rose by a maximum of 38.6%, and the serum phosphorus concentration did not change. The mean serum calcium concentration rose by a maximum of 7.2%. The mean fractional changes in parathyroid hormone and 1,25-dihydroxyvitamin D concentrations ranged from -27.0 to -39.6% and from -5.0 to -20.3%, respectively. The BMD increased at L1, L3, and L4. Calcium acetate prescribed to deliver 1,521 mg calcium/day with meals reduced parathyroid hormone and 1,25-dihydroxyvitamin D concentrations and increased lumbar BMD in men with preterminal chronic renal failure. Copyright 2002 S. Karger AG, Basel
System Design Verification for Closed Loop Control of Oxygenation With Concentrator Integration.
Gangidine, Matthew M; Blakeman, Thomas C; Branson, Richard D; Johannigman, Jay A
2016-05-01
Addition of an oxygen concentrator into a control loop furthers previous work in autonomous control of oxygenation. Software integrates concentrator and ventilator function from a single control point, ensuring maximum efficiency by placing a pulse of oxygen at the beginning of the breath. We sought to verify this system. In a test lung, fraction of inspired oxygen (FIO2) levels and additional data were monitored. Tests were run across a range of clinically relevant ventilator settings in volume control mode, for both continuous flow and pulse dose flow oxygenation. Results showed the oxygen concentrator could maintain maximum pulse output (192 mL) up to 16 breaths per minute. Functionality was verified across ranges of tidal volumes and respiratory rates, with and without positive end-expiratory pressure, in continuous flow and pulse dose modes. For a representative test at respiratory rate 16 breaths per minute, tidal volume 550 mL, without positive end-expiratory pressure, pulse dose oxygenation delivered peak FIO2 of 76.83 ± 1.41%, and continuous flow 47.81 ± 0.08%; pulse dose flow provided a higher FIO2 at all tested setting combinations compared to continuous flow (p < 0.001). These tests verify a system that provides closed loop control of oxygenation while integrating time-coordinated pulse-doses from an oxygen concentrator. This allows the most efficient use of resources in austere environments. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Measurements of Ozone Precursors in the Lake Tahoe Basin, USA
NASA Astrophysics Data System (ADS)
Zielinska, B.; Bytnerowicz, A.; Gertler, A.; McDaniel, M.; Rayne, S.; Burley, J. D.
2014-12-01
Lake Tahoe, located at 6,225 ft. (1,897 m) in the Sierra Nevada mountain range, is the largest alpine lake in North America. Known for the clarity of its water and the panorama of surrounding mountains on all sides, Lake Tahoe is a prime tourist attraction in the California - Nevada area. However, the Lake Tahoe Basin is facing significant environmental pollution problems, including declining water clarity and air quality issues. During the period of July 21 - 26, 2012, we conducted a field study in the Basin designed to characterize the precursors and pathways of secondary pollutant formation, including ozone and secondary organic aerosol (SOA). Four sites were selected; two were located at high elevations (one each on the western and eastern sides of the Basin) and two were positioned near the Lake level. Ozone and NO/NO2 concentrations were continuously measured. With a resolution of several hours over a 6-day sampling period canister samples were collected for detailed speciation of volatile organic compounds (VOC), 2,4-dinitrophenylhydrazine (DNPH) impregnated Sep-Pak cartridges for analysis of carbonyl compounds, PM2.5 Teflon and quartz filter samples for determination of mass, organic and elemental carbon (OC/EC) concentrations and speciation of organic compounds. Whereas the concentrations of lower molecular weight (mw) C2 - C3 hydrocarbons were generally the highest at all sampling sites, ranging from 25 to 76% of the total measured VOC (over 70 species from C2 to C10), the concentrations of biogenic hydrocarbons, isoprene and α-pinene were significant, ranging from 1.4 to 26% and 1.5 to 30%, respectively, of the total VOC. For comparison, the sum of benzene, toluene, ethylbenzene and xylenes (BTEX) constituted from 2.5 to 37% of the total VOC. All four sites showed maximum ozone concentrations in the range of 60 ppb. However, the lower sites show a pronounced diurnal pattern (i.e. maximum concentrations during the daytime hours, 0900 to 1700, with minimum values at night and in the early morning hours), whereas the upper sites shows much less variability over the 24-hour diurnal period. NO/NO2 concentrations were generally low, in the range of a few ppb. This presentation will discuss VOC and NOx patterns at these four sites in terms of their relevance to local ozone formation and/or regional transport.
Blondeau, Joseph M; Shebelski, Shantelle D; Hesje, Christine K
2015-10-01
To determine bactericidal effects of enrofloxacin, florfenicol, tilmicosin, and tulathromycin on clinical isolates of Mannheimia haemolytica at various bacterial densities and drug concentrations. 4 unique isolates of M haemolytica recovered from clinically infected cattle. Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) were determined for each drug and isolate. Mannheimia haemolytica suspensions (10(6) to 10(9) CFUs/mL) were exposed to the determined MIC and MPC and preestablished maximum serum and tissue concentrations of each drug. Log10 reduction in viable cells (percentage of cells killed) was measured at various points. Bacterial killing at the MIC was slow and incomplete. After 2 hours of isolate exposure to the MPC and maximum serum and tissue concentrations of the tested drugs, 91% to almost 100% cell killing was achieved with enrofloxacin, compared with 8% growth to 93% cell killing with florfenicol, 199% growth to 63% cell killing with tilmicosin, and 128% growth to 43% cell killing with tulathromycin over the range of inoculum tested. For all drugs, killing of viable organisms was evident at all bacterial densities tested; however, killing was more substantial at the MPC and maximum serum and tissue drug concentrations than at the MIC and increased with duration of drug exposure. Rank order of drugs by killing potency was enrofloxacin, florfenicol, tilmicosin, and tulathromycin. Findings suggested that antimicrobial doses that equaled or exceeded the MPC provided rapid killing of M haemolytica by the tested drugs, decreasing opportunities for antimicrobial-resistant subpopulations of bacteria to develop during drug exposure.
Vanadium Requirements and Uptake Kinetics in the Dinitrogen-Fixing Bacterium Azotobacter vinelandii▿
Bellenger, J. P.; Wichard, T.; Kraepiel, A. M. L.
2008-01-01
Vanadium is a cofactor in the alternative V-nitrogenase that is expressed by some N2-fixing bacteria when Mo is not available. We investigated the V requirements, the kinetics of V uptake, and the production of catechol compounds across a range of concentrations of vanadium in diazotrophic cultures of the soil bacterium Azotobacter vinelandii. In strain CA11.70, a mutant that expresses only the V-nitrogenase, V concentrations in the medium between 10−8 and 10−6 M sustain maximum growth rates; they are limiting below this range and toxic above. A. vinelandii excretes in its growth medium micromolar concentrations of the catechol siderophores azotochelin and protochelin, which bind the vanadate oxoanion. The production of catechols increases when V concentrations become toxic. Short-term uptake experiments with the radioactive isotope 49V show that bacteria take up the V-catechol complexes through a regulated transport system(s), which shuts down at high V concentrations. The modulation of the excretion of catechols and of the uptake of the V-catechol complexes allows A. vinelandii to precisely manage its V homeostasis over a range of V concentrations, from limiting to toxic. PMID:18192412
Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.; Alpers, Charles N.
2010-01-01
This study examined mercury concentrations in whole fish from Camp Far West Reservoir, an 830-ha reservoir in northern California, USA, located downstream from lands mined for gold during and following the Gold Rush of 1848–1864. Total mercury (reported as dry weight concentrations) was highest in spotted bass (mean, 0.93 μg/g; range, 0.16–4.41 μg/g) and lower in bluegill (mean, 0.45 μg/g; range, 0.22–1.96 μg/g) and threadfin shad (0.44 μg/g; range, 0.21–1.34 μg/g). Spatial patterns for mercury in fish indicated high concentrations upstream in the Bear River arm and generally lower concentrations elsewhere, including downstream near the dam. These findings coincided with patterns exhibited by methylmercury in water and sediment, and suggested that mercury-laden inflows from the Bear River were largely responsible for contaminating the reservoir ecosystem. Maximum concentrations of mercury in all three fish species, but especially bass, were high enough to warrant concern about toxic effects in fish and consumers of fish.
Isotretinoin kinetics after 80 to 320 mg oral doses.
Colburn, W A; Gibson, D M
1985-04-01
Twelve healthy male subjects received 80, 160, 240, and 320 mg doses of oral isotretinoin as multiples of 40 mg capsules separated by 2-week washout periods in a randomized, crossover design. Blood samples were drawn at specific times over a 72-hour period after dosing. Blood concentrations of isotretinoin as well as its major metabolite, 4-oxo-isotretinoin, were determined by a specific HPLC method. In addition to the normal laboratory battery of tests, serum triglyceride levels were determined before the first dose and again 72 hours after each of the four doses. Mean (+/- SD) maximum concentrations after 80 to 320 mg doses were 366 +/- 159, 820 +/- 474, 1056 +/- 547, and 981 +/- 381 ng/ml, whereas the respective AUC0-infinity values were 3690 +/- 1280, 7030 +/- 4140, 9780 +/- 6080, and 9040 +/- 2900 ng X hr/ml. The observed apparent elimination t1/2 remained approximately the same (14.7 hours) for each dose. The maximum concentration and AUC values for isotretinoin appear to be dose proportional from 80 to 240 mg but plateau at the 320 mg dose level. Therefore, because isotretinoin blood concentrations may not increase with higher doses in the fasting state, single, oral doses in excess of 240 mg should be used with caution. The data also suggest that elevated triglyceride levels are not a simple function of isotretinoin blood concentrations across the entire study population and dose range studied, but that in subjects with triglyceride levels in excess of the normal range triglyceride levels were positively related to isotretinoin blood concentrations.
Polyfluorinated compounds in ambient air from ship- and land-based measurements in northern Germany
NASA Astrophysics Data System (ADS)
Dreyer, Annekatrin; Ebinghaus, Ralf
Neutral volatile and semi-volatile polyfluorinated organic compounds (PFC) and ionic perfluorinated compounds were determined in air samples collected at two sites in the vicinity of Hamburg, Germany, and onboard the German research vessel Atair during a cruise in the German Bight, North Sea, in early November 2007. PUF/XAD-2/PUF cartridges and glass fiber filters as sampling media were applied to collect several fluorotelomer alcohols (FTOH), fluorotelomer acrylates (FTA), perfluoroalkyl sulfonamides (FASA), and perfluoroalkyl sulfonamido ethanols (FASE) in the gas- and particle-phase as well as a set of perfluorinated carboxylates (PFCA) and sulfonates (PFSA) in the particle-phase. This study presents the distribution of PFC in ambient air of the German North Sea and in the vicinity of Hamburg for the first time. Average total PFC concentrations in and around Hamburg (180 pg m -3) were higher than those observed in the German Bight (80 pg m -3). In the German Bight, minimum-maximum gas-phase concentrations of 17-82 pg m -3 for ΣFTOH, 2.6-10 pg m -3 for ΣFTA, 10-15 pg m -3 for ΣFASA, and 2-4.4 pg m -3 for ΣFASE were determined. In the vicinity of Hamburg, minimum-maximum gas-phase concentrations of 32-204 pg m -3 for ΣFTOH, 3-26 pg m -3 for ΣFTA, 3-18 pg m -3 for ΣFASA, and 2-15 pg m -3 for ΣFASE were detected. Concentrations of perfluorinated acids were in the range of 1-11 pg m -3. FTOH clearly dominated the substance spectrum; 8:2 FTOH occurred in maximum proportions. Air mass back trajectories, cluster, and correlation analyses revealed that the air mass origin and thus medium to long range atmospheric transport was the governing parameter for the amount of PFC in ambient air. Southwesterly located source regions seemed to be responsible for elevated PFC concentrations, local sources appeared to be of minor importance.
Li, J T; Liao, B; Lan, C Y; Qiu, J W; Shu, W S
2007-12-15
Carambola (Averrhoa carambola L.) is a popular juicy fruit throughout the tropical and subtropical world. This study was designed to quantify the levels of zinc (Zn), nickel (Ni) and cadmium (Cd) in carambolas marketed in southern China, and further to evaluate the potential health risk of human consumption of carambola. Zinc concentrations, ranging from 1.471 to 2.875 mg/kg (on fresh weight basis), were below the maximum permissible concentration for Zn in fruit of China (5 mg/kg). However, Ni concentrations (0.134-0.676 mg/kg) were considerably higher than the related recommendation values. Furthermore, Cd concentrations in 51% of the carambolas purchased from Guangzhou exceeded the maximum permissible concentration for Cd in fruit of China (0.03 mg/kg). Our results implicated that the consumption of 0.385 kg carambola contaminated by Cd per day would cause the tolerable daily intake (TDI) of Cd by the consumer to be exceeded. In addition, the remarkably high Ni concentrations in carambolas should also be of concern. The status of heavy metal contamination of carambola products marketed in the other regions and their implications for human health should be identified urgently by in-depth studies.
Selenium in soil, water, sediment, and biota of the lower Sun River area, West-Central Montana
Nimick, David A.; Lambing, John H.; Palawski, Donald U.
1993-01-01
A U.S. Department of the Interior study started in 1990 examined the source, movement, fate, and possible biological effects of selenium associated with irrigation drainage from the Sun River Irrigation Project in west-central Montana. Concentrations of total selenium in soil samples ranged from 0.1 to 8.5 micrograms per gram; the maximum concentrations were measured in nonirrigated areas overlying geologic formations containing seleniferous shale. In irrigated areas, concentrations of dissolved selenium in ground water flowing toward Freezeout Lake ranged from less than 1 to 18 micrograms per liter (??g/L) in terrace gravel and from 1 to 190 ??g/L in glacial deposits derived from seleniferous shale. Concentrations of total selenium ranged from less than 1 to 180 ??g/L in surface irrigation drainage, and from less than 1 to 1,000 ??g/L in natural flows from nonirrigated land. Selenium concentrations in water from lakes generally were less than the aquatic-life criterion for chronic toxicity. The range of selenium concentrations in bottom sediment of lakes was similar to that of local soils. However, biological samples indicate that selenium is accumulating through the aquatic food chain. Selenium concentrations indicative of biological risk were exceeded in at least 80 percent of the freshwater-invertebrate, bird-egg, and bird-liver samples collected from all wetland sites.
Observational and modeling studies of chemical species concentrations as a function of raindrop size
NASA Astrophysics Data System (ADS)
Wai, K. M.; Tam, C. W. F.; Tanner, P. A.
The Guttalgor method has been used to determine the chemical species concentrations in size-selected raindrops in nine rain events at Hong Kong from 1999 to 2001. The curve (concentration against raindrop radius) patterns for all the species are similar but depend on the starting time of sampling within a rain event. In these plots, the maximum concentration occurs at the same range of droplet radius, irrespective of the species, and this indicates the importance of coalescence and breakup processes. The maximum is located at a smaller droplet radius than was found in previous studies in Germany. All results show almost constant concentrations with size for large raindrops, and these indicate the in-cloud contributions. The pH of raindrops of similar size is linearly correlated with a function of the sulfate, nitrate, acetate, formate, calcium and ammonium ion species concentrations. Within a single raindrop, chloride depletion is not significant, and sulfate, ammonium and hydrogen ions are found in ratios compatible with the precursor solid-phase mixture of ammonium sulfate and ammonium bisulphate. When simulated by a below-cloud model, good agreement between the modeled and measured sodium and sulfate concentrations has been found. Below-cloud sulfur dioxide scavenging contributes at most 60% of the sulfate concentration in a single raindrop.
Granieri, Domenico; Vita, Fabio; Inguaggiato, Salvatore
2017-12-01
Sulfur dioxide (SO 2 ) is a major component of magmatic gas discharges. Once emitted in the atmosphere it can affect the air and land environment at different spatial and temporal scales, with harmful effects on human health and plant communities. We used a dense dataset of continuous SO 2 flux and meteorological measurements collected at Vulcano over an 8-year period spanning from May 2008 to February 2016 to model air SO 2 concentrations over the island. To this end, we adopted the DISGAS (DISpersion of GAS) numerical code coupled with the Diagnostic Wind Model (DWM). SO 2 concentrations in air were determined for three different SO 2 emission rates: a reference SO 2 flux of ∼18 t/d (the median of more than 800 measurements), an enhanced SO 2 flux of 40 t/d (average of all measurements plus 1 σ), and a maximum SO 2 flux of 106 t/d (maximum value measured in the investigated period). Maximum SO 2 concentrations in air were estimated at the crater, near the high-T fumarole field that is the source of the gas, and ranged from 2000 ppb to ∼24,000 ppb for the reference flux, from 2000 ppb to 51,000 ppb for the enhanced flux and from 5000 ppb to 136,000 ppb for the maximum flux, with peak values in limited areas at the bottom of the crater. These concentrations pose a hazard for people visiting the crater, for sensitive individuals in particular. Based on estimated SO 2 concentrations in air, we also consider the phytotoxic effects of SO 2 on local vegetation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Al-Baldawi, Israa Abdul Wahab; Sheikh Abdullah, Siti Rozaimah; Abu Hasan, Hassimi; Suja, Fatihah; Anuar, Nurina; Mushrifah, Idris
2014-07-01
This study investigated the optimum conditions for total petroleum hydrocarbon (TPH) removal from diesel-contaminated water using phytoremediation treatment with Scirpus grossus. In addition, TPH removal from sand was adopted as a second response. The optimum conditions for maximum TPH removal were determined through a Box-Behnken Design. Three operational variables, i.e. diesel concentration (0.1, 0.175, 0.25% Vdiesel/Vwater), aeration rate (0, 1 and 2 L/min) and retention time (14, 43 and 72 days), were investigated by setting TPH removal and diesel concentration as the maximum, retention time within the given range, and aeration rate as the minimum. The optimum conditions were found to be a diesel concentration of 0.25% (Vdiesel/Vwater), a retention time of 63 days and no aeration with an estimated maximum TPH removal from water and sand of 76.3 and 56.5%, respectively. From a validation test of the optimum conditions, it was found that the maximum TPH removal from contaminated water and sand was 72.5 and 59%, respectively, which was a 5 and 4.4% deviation from the values given by the Box-Behnken Design, providing evidence that S. grossus is a Malaysian native plant that can be used to remediate wastewater containing hydrocarbons. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cheema-Dhadli, Surinder; Halperin, Mitchell L
2002-01-01
Rats normally excrete 20-25 mmol of sodium (Na+) + potassium (K+) per kilogram per day. To minimize the need for a large water intake, they must excrete urine with a very high electrolyte concentration (tonicity). Our objective was to evaluate two potential factors that could influence the maximum urine tonicity, hypernatraemia and the rate of urea excretion. Balance studies were carried out in vasopressin-treated rats fed a low-electrolyte diet. In the first series, the drinking solution contained an equivalent sodium chloride (NaCl) load at 150 or 600 mmol l−1. In the second series, the maximum urine tonicity was evaluated in rats consuming 600 mmol l−1 NaCl with an 8-fold range of urea excretion. Hypernatraemia (148 ± 1 mmol l−1) developed in all rats that drank 600 mmol l−1 saline. Although the rate of Na+ + K+ excretion was similar in both saline groups, the maximum urine total cation concentration was significantly higher in the hypernatraemic group (731 ± 31 vs. 412 ± 37 mmol l−1). Only when the rate of excretion of urea was very low, was there a further increase in the maximum urine total cation concentration (1099 ± 118 mmol l−1). Thus hypernatraemia was the most important factor associated with a higher urine tonicity. PMID:12068051
Water quality of Cedar Creek reservoir in northeast Texas, 1977 to 1984
Leibbrand, Norman F.; Gibbons, Willard J.
1987-01-01
The concentrations of total inorganic nitrogen, total nitrogen, and total phosphorus were largest during summer stagnation in water near the bottom at the deepest sites. At site Ac, the largest total phosphorus concentration was 5.3 milligrams per liter for a bottom sample. The maximum total inorganic nitrogen concentration for the same sample was 2.5 milligrams per liter. Water near the surface of Cedar Creek Reservoir during summer stagnation and throughout the reservoir during winter circulation had total phosphorus and total inorganic nitrogen concentrations of less than 0.1 milligram per liter. Total nitrogen concentrations near the surface ranged from 0.3 to 1.1 milligrams per liter from January 1980 to August 1984.
NASA Astrophysics Data System (ADS)
Pochanart, Pakpong; Hirokawa, Jun; Kajii, Yoshizumi; Akimoto, Hajime; Nakao, Makoto
1999-02-01
Surface O3 and CO measurements were carried out at Oki, Japan during March 1994 to February 1996 in order to elucidate the processes determining temporal variations of O3 and CO in the northeast Asian Pacific rim region. The isentropic trajectory analysis was applied to sort out the influences of the air mass exchange under the Asian monsoon system and the regional-scale photochemical buildup of O3. The trajectories were categorized into five groups which cover background and regionally polluted air masses. The seasonal cycles of O3 and CO in the background continental air mass revealed spring maximum-summer minimum with averaged concentrations ranging from 32 and 120 ppb to 45 and 208 ppb, respectively. In contrast, O3 concentrations in the regionally polluted continental air mass ranged from 44 to 57 ppb and showed a winter minimum and a spring-summer-autumn broad maximum, which was characterized by photochemical O3 production due to anthropogenic activities in northeast Asia. CO concentrations in the same air mass showed a spring maximum of 271 ppb and a summer-autumn minimum of 180 ppb. The photochemical buildup of O3 resulting from anthropogenic activities in this region was estimated to be 21 ppb in summer, while its production was insignificant, an average 3 ppb, in winter. A comparison between data in northeast Asia and in Europe shows many similarities, supporting the contention that photochemical buildup of O3 from large-scale precursor emissions in both regions is very significant.
NASA Astrophysics Data System (ADS)
Siregar, N.; Indrayana, I. P. T.; Suharyadi, E.; Kato, T.; Iwata, S.
2017-05-01
Mn0.5Zn0.5Fe2O4 nanoparticles have been successfully synthesized through coprecipitation method by varying NaOH concentrations from 0.5 M to 6 M and synthesis temperatures from 30 to 120 °C. The X-ray diffraction (XRD) pattern indicates samples consisting of multiphase structures such as spinel of Mn0.5Zn0.5Fe2O4, α-MnO2, ZnO, λ-MnO2, and γ-Fe2O3. The crystallite size of Mn0.5Zn0.5Fe2O4 is in the range of 14.1 to 26.7 nm. The Transmission electron microscope (TEM) image shows that sample was agglomerate. The hysteresis loops confirm that nanoparticles are soft magnetic materials with low coercivity (H c) in the range of 45.9 to 68.5 Oe. Those values increased relatively with increasing particles size. For NaOH concentration variation, the maximum magnetization of the sample increased from 10.4 emu/g to 11.6 emu/g with increasing ferrite content. Meanwhile, the maximum magnetization increased from 7.9 to 15.7 emu/g for samples with various synthesis temperature. The highest coercivity of 68.5 Oe was attained for a sample of 6 M NaOH under 90 °C. The highest magnetization of 15.7 emu/g was achieved for a sample of 1.5 M NaOH under 120 °C caused by the maximum crystallinity of sample.
Electrical conductivity of high-purity germanium crystals at low temperature
NASA Astrophysics Data System (ADS)
Yang, Gang; Kooi, Kyler; Wang, Guojian; Mei, Hao; Li, Yangyang; Mei, Dongming
2018-05-01
The temperature dependence of electrical conductivity of single-crystal and polycrystalline high-purity germanium (HPGe) samples has been investigated in the temperature range from 7 to 100 K. The conductivity versus inverse of temperature curves for three single-crystal samples consist of two distinct temperature ranges: a high-temperature range where the conductivity increases to a maximum with decreasing temperature, and a low-temperature range where the conductivity continues decreasing slowly with decreasing temperature. In contrast, the conductivity versus inverse of temperature curves for three polycrystalline samples, in addition to a high- and a low-temperature range where a similar conductive behavior is shown, have a medium-temperature range where the conductivity decreases dramatically with decreasing temperature. The turning point temperature ({Tm}) which corresponds to the maximum values of the conductivity on the conductivity versus inverse of temperature curves are higher for the polycrystalline samples than for the single-crystal samples. Additionally, the net carrier concentrations of all samples have been calculated based on measured conductivity in the whole measurement temperature range. The calculated results show that the ionized carrier concentration increases with increasing temperature due to thermal excitation, but it reaches saturation around 40 K for the single-crystal samples and 70 K for the polycrystalline samples. All these differences between the single-crystal samples and the polycrystalline samples could be attributed to trapping and scattering effects of the grain boundaries on the charge carriers. The relevant physical models have been proposed to explain these differences in the conductive behaviors between two kinds of samples.
Gutiérrez, M C; Siles, J A; Diz, J; Chica, A F; Martín, M A
2017-01-01
The composting process of six different compostable substrates and one of these with the addition of bacterial inoculums carried out in a dynamic respirometer was evaluated. Despite the heterogeneity of the compostable substrates, cumulative oxygen demand (OD, mgO 2 kgVS) was fitted adequately to an exponential regression growing until reaching a maximum in all cases. According to the kinetic constant of the reaction (K) values obtained, the wastes that degraded more slowly were those containing lignocellulosic material (green wastes) or less biodegradable wastes (sewage sludge). The odor emissions generated during the composting processes were also fitted in all cases to a Gaussian regression with R 2 values within the range 0.8-0.9. The model was validated representing real odor concentration near the maximum value against predicted odor concentration of each substrate, (R 2 =0.9314; 95% prediction interval). The variables of maximum odor concentration (ou E /m 3 ) and the time (h) at which the maximum was reached were also evaluated statistically using ANOVA and a post-hoc Tukey test taking the substrate as a factor, which allowed homogeneous groups to be obtained according to one or both of these variables. The maximum oxygen consumption rate or organic matter degradation during composting was directly related to the maximum odor emission generation rate (R 2 =0.9024, 95% confidence interval) when only the organic wastes with a low content in lignocellulosic materials and no inoculated waste (HRIO) were considered. Finally, the composting of OFMSW would produce a higher odor impact than the other substrates if this process was carried out without odor control or open systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emily M. White; Gerald J. Keeler; Matthew S. Landis
2009-07-01
Extensive exploration of event precipitation data in the Ohio River Valley indicates that coal combustion emissions play an important role in mercury (Hg) wet deposition. During July-September 2006, an intensive study was undertaken to discern the degree of local source influence. Source-receptor relationships were explored by establishing a set of wet deposition sites in and around Steubenville, Ohio. For the three month period of study, volume-weighted mean Hg concentrations observed at the eight sites ranged from 10.2 to 22.3 ng L{sup -1}, but this range increased drastically on an event basis with a maximum concentration of 89.4 ng L{sup -1}more » and a minimum concentration of 4.1 ng L{sup -1}. A subset of events was explored in depth, and the degree of variability in Hg concentrations between sites was linked to the degree of local source enhancement. Samples collected at sites less than 1 km from coal-fired utility stacks (near-field) exhibited up to 72% enhancement in Hg concentrations over regionally representative samples on an event basis. Air mass transport and precipitating cell histories were traced in order to evaluate relationships between local point sources and receptor sites. It was found that the interaction of several dynamic atmospheric parameters combined to favor local Hg concentration enhancement over the more regional contribution. When significant meteorological factors (wind speed at time of maximum rain rate, wind speed 24 h prior to precipitation, mixing height, and observed ceiling) were explored, it was estimated that during summertime precipitation, 42% of Hg concentration in near-field samples could be attributed to the adjacent coal-fired utility source. 28 refs., 3 figs., 2 tabs.« less
Variation in absorption and half-life of hydrocortisone influence plasma cortisol concentrations.
Hindmarsh, Peter C; Charmandari, Evangelia
2015-04-01
Hydrocortisone therapy should be individualized in congenital adrenal hyperplasia (CAH) patients to avoid over and under replacement. We have assessed how differences in absorption and half-life of cortisol influence glucocorticoid exposure. Forty-eight patients (21 M) aged between 6·1 and 20·3 years with CAH due to CYP21A2 deficiency were studied. Each patient underwent a 24-h plasma cortisol profile with the morning dose used to calculate absorption parameters along with an intravenous (IV) hydrocortisone (15 mg/m(2) body surface area) bolus assessment of half-life. Parameters derived were maximum plasma concentration (Cmax ), time of maximum plasma concentration (tmax ), time to attaining plasma cortisol concentration <100 nmol/l and half-life of cortisol. Mean half-life was 76·5 ± 5·2 (range 40-225·3) min, Cmax 780·7 ± 61·6 nmol/l and tmax 66·7 (range 20-118) min. Time taken to a plasma cortisol concentration less than 100 nmol/l was 289 (range 140-540) min. Those with a fast half-life and slow tmax took longest to reach a plasma cortisol concentration less than 100 nmol/l (380 ± 34·6 min), compared to those with a slow half-life and fast tmax (298 ± 34·8 min) and those with a fast half-life and fast tmax (249·5 ± 14·4 min) (One-way anovaF = 4·52; P = 0·009). Both rate of absorption and half-life of cortisol in the circulation play important roles in determining overall exposure to oral glucocorticoid. Dose regimens need to incorporate estimates of these parameters into determining the optimum dosing schedule for individuals. © 2014 John Wiley & Sons Ltd.
Amoozegar, Mohammad Ali; Salehghamari, Ensieh; Khajeh, Khosro; Kabiri, Mahbube; Naddaf, Saied
2008-06-01
Fifty strains of moderately halophilic bacteria were isolated from various salty environments in Iran. A strain designated as SA-2 was shown to be the best producer of extracellular lipase and was selected for further studies. Biochemical and physiological characterization along with 16S rDNA sequence analysis placed SA-2 in the genus Salinivibrio. The optimum salt, pH, temperature and aeration for enzyme production were 0.1 M KCl, pH 8, 35 degrees C and 150 rpm, respectively. The enzyme production was synchronized bacterial growth and reached a maximum level during the early-stationary phase in the basal medium containing 1 M NaCl. Triacylglycerols enhanced lipase production, while carbohydrates had inhibitory effects on it. The maximum lipase activity was obtained at pH 7.5, 50 degrees C and CaCl(2) concentration of 0.01 M. The enzyme was stable at pH range of 7.5-8 and retained 90% of its activity at 80 degrees C for 30 min. Different concentrations of NaNO(3), Na(2)SO(4), KCl and NaCl had no affect on lipase stability for 3 h. These results suggest that the lipase secreted by Salinivibrio sp. strain SA-2 is industrially important from the perspective of its tolerance to a broad temperature range, its moderate thermoactivity and its high tolerance to a wide range of salt concentrations (0-3 M NaCl).
High 400 °C operation temperature blue spectrum concentration solar junction in GaInN/GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Liang; Detchprohm, Theeradetch; Wetzel, Christian
2014-12-15
Transparent wide gap junctions suitable as high temperature, high flux topping cells have been achieved in GaInN/GaN by metal-organic vapor phase epitaxy. In structures of 25 quantum wells (QWs) under AM1.5G illumination, an open circuit voltage of 2.1 V is achieved. Of the photons absorbed in the limited spectral range of <450 nm, 64.2% are converted to electrons collected at the contacts under zero bias. At a fill factor of 45%, they account for a power conversion efficiency of38.6%. Under concentration, the maximum output power density per sun increases from 0.49 mW/cm{sup 2} to 0.51 mW/cm{sup 2} at 40 suns and then falls 0.42 mW/cm{sup 2}more » at 150 suns. Under external heating, a maximum of 0.59 mW/cm{sup 2} is reached at 250 °C. Even at 400 °C, the device is fully operational and exceeds room temperature performance. A defect analysis suggests that significantly higher fill factors and extension into longer wavelength ranges are possible with further development. The results prove GaInN/GaN QW solar junctions a viable and rugged topping cell for concentrator photovoltaics with minimal cooling requirements. By capturing the short range spectrum, they reduce the thermal load to any conventional cells stacked behind.« less
Uptake of Nickel by Synthetic Mackinawite
The uptake of aqueous Ni(II) by synthetic mackinawite (FeS) was examined in anaerobic batch experiments at near-neutral pH (5.2 to 8.4). Initial molar ratios of Ni(II) to FeS ranged from 0.008 to 0.83 and maximum Ni concentrations in mackinawite, expressed as the cation mol fract...
Calibration methods influence quantitative material decomposition in photon-counting spectral CT
NASA Astrophysics Data System (ADS)
Curtis, Tyler E.; Roeder, Ryan K.
2017-03-01
Photon-counting detectors and nanoparticle contrast agents can potentially enable molecular imaging and material decomposition in computed tomography (CT). Material decomposition has been investigated using both simulated and acquired data sets. However, the effect of calibration methods on material decomposition has not been systematically investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on quantitative material decomposition. A commerciallyavailable photon-counting spectral micro-CT (MARS Bioimaging) was used to acquire images with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material basis matrix values were determined using multiple linear regression models and material decomposition was performed using a maximum a posteriori estimator. The accuracy of quantitative material decomposition was evaluated by the root mean squared error (RMSE), specificity, sensitivity, and area under the curve (AUC). An increased maximum concentration (range) in the calibration significantly improved RMSE, specificity and AUC. The effects of an increased number of concentrations in the calibration were not statistically significant for the conditions in this study. The overall results demonstrated that the accuracy of quantitative material decomposition in spectral CT is significantly influenced by calibration methods, which must therefore be carefully considered for the intended diagnostic imaging application.
Optimization of CO₂ bio-mitigation by Chlorella vulgaris.
Anjos, Mariana; Fernandes, Bruno D; Vicente, António A; Teixeira, José A; Dragone, Giuliano
2013-07-01
Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of CO2 fixation ( [Formula: see text] ) by the green microalga Chlorella vulgaris P12 cultivated photoautotrophically in bubble column photobioreactors under different CO2 concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to 0.7 vvm). Results showed that the maximum [Formula: see text] (2.22 gL(-1)d(-1)) was obtained by using 6.5% CO2 and 0.5 vvm after 7 days of cultivation at 30°C. Although final biomass concentration and maximum biomass productivity of microalgae were affected by the different cultivation conditions, no significant differences were obtained in the biochemical composition of microalgal cells for the evaluated levels of aeration and CO2. The present study demonstrated that optimization of microalgal cultivation conditions can be considered a useful strategy for maximizing CO2 bio-mitigation by C. vulgaris. Copyright © 2013 Elsevier Ltd. All rights reserved.
Saleh, Abolfazl; Molaei, Saeideh; Sheijooni Fumani, Neda; Abedi, Ehsan
2016-04-15
In the present study, antifouling paint booster biocides, Irgarol 1051 and diuron were measured in ports and marinas of Bushehr, Iran. Results showed that in seawater samples taken from ports and marinas, Irgarol was found at the range of less than LOD to 63.4ngL(-1) and diuron was found to be at the range of less than LOD to 29.1ngL(-1) (in Jalali marina). 3,4-dichloroaniline (3,4-DCA), as a degradation product of diuron, was also analyzed and its maximum concentration was 390ngL(-1). Results for analysis of Irgarol 1051 in sediments showed a maximum concentration of 35.4ngg(-1) dry weight in Bandargah marina. A comparison between the results of this study and those of other published works showed that Irgarol and diuron pollutions in ports and marinas of Bushehr located in the Persian Gulf were less than the average of reports from other parts of the world. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shubhashish, Kumar; Pandey, Richa; Pandey, Jitendra
2012-08-01
The role of woody perennials in the Ganga river basin in modifying the run-off quality as influenced by atmospheric deposition of pollutant aerosols was investigated. The concentration of seven nutrients and eight metals were measured in atmospheric deposits as well as in run-off water under the influence of five woody perennials. Nutrient retention was recorded maximum for Bougainvillea spectabilis ranged from 4.30 % to 33.70 %. Metal retention was recorded highest for Ficus benghalensis ranged from 5.15 % to 36.98 %. Although some species showed nutrient enrichment, all the species considered in the study invariably contribute to reduce nutrients and metal concentration in run-off water. Reduction in run off was recorded maximum for B. spectabilis (nutrient 6.48 %-40.66 %; metal 7.86 %-22.85 %) and minimum for Ficus religiosa (nutrient 1.68 %-27.19 %; metal 6.55 %-31.55 %). The study forms the first report on the use of woody perennials in reducing input of atmospheric pollutants to Ganga river and has relevance in formulating strategies for river basin management.
Hydrologic and water-quality data from Mountain Island Lake, North Carolina, 1994-97
Sarver, K.M.; Steiner, B.C.
1998-01-01
Continuous-record water-level gages were established at three sites on Mountain Island Lake and one site downstream from Mountain Island Dam. The water level of Mountain Island Lake is controlled by Duke Power Company releases at Cowans Ford Dam (upstream) and Mountain Island Dam (downstream). Water levels on Mountain Island Lake measured just downstream from Cowans Ford Dam fluctuated 11.15 feet during the study. Water levels just upstream from the Mountain Island Lake forebay fluctuated 6.72 feet during the study. About 3 miles downstream from Mountain Island Dam, water levels fluctuated 5.31 feet. Sampling locations included 14 sites in Mountain Island Lake, plus one downstream river site. At three sites, automated instruments recorded water temperature, dissolved-oxygen concentration, and specific conductance at 15-minute intervals throughout the study. Water temperatures recorded continuously during the study ranged from 4.2 to 35.2 degrees Celsius, and dissolved-oxygen concentrations ranged from 2.1 to 11.8 milligrams per liter. Dissolved-oxygen concentrations generally were inversely related to water temperature, with lowest dissolved-oxygen concentrations typically recorded in the summer. Specific conductance values recorded continuously during the study ranged from 33 to 89 microsiemens per centimeter; however, mean monthly values were fairly consistent throughout the study at all sites (50 to 61 microsiemens per centimeter). In addition, vertical profiles of water temperature, dissolved-oxygen concentration, specific conductance, and pH were measured at all sampling locations during 24 site visits. Water-quality constituent concentrations were determined for seven reservoir sites and the downstream river site during 17 sampling trips. Water-quality samples were routinely analyzed for biochemical oxygen demand, fecal coliform bacteria, hardness, alkalinity, total and volatile suspended solids, nutrients, total organic carbon, chlorophyll, iron, calcium, and magnesium; the samples were analyzed less frequently for trace metals, volatile organic compounds, semivolatile organic compounds, and pesticides. Maximum dissolved nitrite plus nitrate concentrations determined during the study were 0.348 milligram per liter in the mainstem sites and 2.77 milligrams per liter in the coves. Maximum total phosphorus concentrations were 0.143 milligram per liter in the mainstem sites and 0.600 milligram per liter in the coves. Fecal coliform and chlorophyll a concentrations were less than or equal to 160 colonies per 100 milliliters and 13 micrograms per liter, respectively, in all samples. Trace metals detected in at least one sample included arsenic, chromium, copper, lead, nickel, zinc, and antimony. Concentrations of all trace metals (except zinc) were 5.0 micrograms per liter or less; the maximum zinc concentration was 80 micrograms per liter. One set of bottom material samples was collected from Gar Creek and McDowell Creek for chemical analysis and analyzed for nutrients, trace metals, organochlorine pesticides, and semivolatile organic compounds. The only organochlorine pesticide identified in either sample was p,p'-DDE at an estimated concentration of 0.8 microgram per kilogram. Twenty semivolatile organic compounds, mainly polyaromatic hydrocarbons and plasticizers, were identified.
Ground-water quality, Cook Inlet Basin, Alaska, 1999
Glass, Roy L.
2001-01-01
As part of the U.S. Geological Survey?s National Water-Quality Assessment Program, ground-water samples were collected from 34 existing wells in the Cook Inlet Basin in south-central Alaska during 1999. All ground-water samples were from aquifers composed of glacial or alluvial sediments. The water samples were used to determine the occurrence and distribution of selected major ions, nutrients, trace elements, volatile organic compounds, pesticides, radioisotopes, and environmental isotopes. Of 34 samples, 29 were from wells chosen by using a grid-based random-selection process. Water samples from five major public-supply wells also were collected. Radon-222 and arsenic concentrations exceeded drinking-water standards proposed by the U.S. Environmental Protection Agency in 39 and 18 percent of sampled wells, respectively. The highest radon concentration measured during this study was 610 picocuries per liter; 12 of 31 samples exceeded the proposed maximum contaminant level of 300 picocuries per liter. The highest arsenic concentration was 29 micrograms per liter; 6 of 34 samples exceeded the proposed maximum contaminant level of 10 micrograms per liter. Human activities may be increasing the concen- tration of nitrate in ground water, but nitrate concentrations in all samples were less than the maximum contaminant level of 10 milligrams per liter as nitrogen. Concentrations of nitrate were highest in Anchorage and were as great as 4.8 milligrams per liter as nitrogen. Dissolved-solids concentrations ranged from 77 to 986 milligrams per liter; only 2 of 34 wells yielded water having greater than 500 milligrams per liter. Iron and manganese concentrations exceeded secondary maximum contaminant levels in 18 and 42 percent of samples, respectively. Concentrations of all pesticides and volatile organic compounds detected in ground-water samples were very low, less than 1 microgram per liter. No pesticide or volatile organic compounds were detected at concentrations exceeding drinking-water standards or guidelines. Water samples from one-half of the wells sampled had no detectable concentrations of pesticides or volatile organic carbons, at the parts-per-billion level. Concentrations of stable isotopes of hydrogen and oxygen in ground-water samples were similar to concentrations expected for modern precipitation and for water that has been affected by evaporation. Tritium activities and concentrations of chlorofluorocarbons indicated that the water samples collected from most wells were recharged less than 50 years ago.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izbicki, J.A.; Harms, T.F.
1986-01-01
Leaf material from selenium accumulating plants was collected and analyzed for selenium to obtain a relative indication of selenium concentrations in soils and identify sites suitable for further soil study. Selenium concentrations of 14 samples of leaf material from Astragalus oxyphysus ranged from 0.08 to 3.5 microg/g dry weight and had a median concentration of 0.25 microg/g. Five replicate samples of A. oxyphysus had a mean selenium concentration of 0.22 microg/g and a standard deviation of 0.07. Selenium concentrations of 17 samples of leaf material from Atriplex lentiformis ranged from 0.08 to 7.5 microg/g and had a median concentration ofmore » 0.35 microg/g. As a general guideline, the National Academy of Sciences recommends a maximum safe tolerance level of 2 microg/g of selenium in animal feeds. One sample of A. oxyphysus, collected in the Panoche Creek drainage, exceeded 2 microg/g. Three samples of A. lentiformis, collected in Klipstein Canyon, Tumey Fan, and Panoche Fan, equaled or exceeded 2 microg/g. These sites may be suitable. 34 refs., 5 figs., 2 tabs.« less
Risch, M.R.
1994-01-01
More than 1 pesticide was present in 16 of the 51 samples that had detections, for a total of 90 individual pesticide detections. Concentrations of the detected pesticides ranged from 0.04 to 49 micrograms per liter, and two-thirds of the detected concentrations were less than 1 microgram per liter. In about 29 percent of all detections, the concentration of 9 pesticides alachlor, aldrin, atrazine, dieldrin, EDB, heptachlor, heptachlor epoxide, simazine, and terbufos exceeded either the U.S. Environmental Protection Agency's Maximum Contaminant Level or adult lifetime Health Advisory.
Hafez, A F; Hussein, A S
2001-09-01
Radon concentrations and equilibrium factors were measured in three pharaonic tombs during the year 1998. The tombs, which are open to the public are located in a limestone wadi on the West Bank of the River Nile at Luxor, 650 km south of Cairo. The radon activity concentration and equilibrium factor were measured monthly by two-integral nuclear track detectors (bare and diffusion detectors). Seasonal variation of radon concentrations, with summer maximum and winter minimum were observed in all tombs investigated. The yearly mean radon activity concentrations insidc the tombs ranged from 540 to 3115 Bq m(-3). The mean equilibrium factor over a year was found to be 0.25 and 0.32 inside and at the entrance, respectively. Estimated annual effective doses to tour guides ranged from 0.33 to 1.90 mSv, visitors receive doses from 0.65 to 3.80 microSv per visit. The effective dose to tomb workers did not exceed the 20 mSv yr(-1) limit.
Thompson, L A; Ikenaka, Y; Yohannes, Y B; van Vuren, J J; Wepener, V; Smit, N J; Darwish, W S; Nakayama, S M M; Mizukawa, H; Ishizuka, M
2017-11-01
Organochlorine pesticides such as dichlorodiphenyltrichloroethane (DDT) have been used in agriculture and for disease control purposes over many decades. Reports suggest that DDT exposure may result in a number of adverse effects in humans. In the KwaZulu-Natal Province of South Africa, DDT is sprayed annually in homes (indoor residual spraying) to control the mosquito vector of malaria. In the northern part of the Province, samples of free-range chicken meat (n = 48) and eggs (n = 13), and commercially produced chicken meat (n = 6) and eggs (n = 11), were collected and analysed. Of the free-range chicken meat samples, 94% (45/48) contained DDTs (ΣDDTs median 6.1 ng/g wet weight [ww], maximum 79.1 ng/g ww). Chicken egg contents were also contaminated (ΣDDTs in free-range eggs median 9544 ng/g ww, maximum 96.666 ng/g ww; and in commercial eggs median 1.3 ng/g ww, maximum 4.6 ng/g ww). The predominant DDT congener detected was p,p'-DDE in both free-range meat (>63%) and eggs (>66%), followed by p,p'-DDT and then p,p'-DDD. Based on estimated daily intake values, calculated human risk ratio (carcinogenic) values were >1 for DDTs detected in both free-range chicken products. Consumption of free-range eggs poses a particularly high health risk.
Concentrations of methoxyflurane and nitrous oxide in veterinary operating rooms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, G.S.; Byland, R.R.
1982-02-01
The surgical rooms of 14 private veterinary practices were monitored to determined methoxyflurane (MOF) concentrations during surgical procedure under routine working conditions. The average room volume for these 14 rooms was 29 m3. The average MOF value for all rooms was 2.3 ppm, with a range of 0.7 to 7.4 ppm. Four of the 14 rooms exceeded the maximum recommended concentration of 2 ppm. Six rooms which had 6 or more air changes/hr averaged 1.1 ppm, whereas 8 rooms with less than 6 measurable air changes/hr averaged 3.2 ppm. Operating rooms that had oxygen flows of more than 1,000 cm3/minmore » averaged 4.4 ppm, whereas those with flows of less than 1,000 cm3/min averaged 1.5 ppm. The average time spent during a surgical procedure using MOF, for all 14 facilities, was 2 hours. Nitrous oxide (N/sub 2/O) concentrations were determined in 4 veterinary surgical rooms. The average N/sub 2/O concentration for 3 rooms without waste anesthetic gas scavenging was 138 ppm. Concentration of N/sub 2/O in the waste anesthetic gas-scavenged surgical room was 14 ppm, which was below the maximum recommended concentration of 25 ppm.« less
Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.
2008-01-01
Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize the probable levels of atrazine for comparison to specific water-quality benchmarks. Sites with a high probability of exceeding a benchmark for human health or aquatic life can be prioritized for monitoring.
Al-Wabel, Mohammad I; El-Saeid, Mohamed H; Usman, Adel R A; Al-Turki, Ali M; Ahmad, Mahtab; Hassanin, Ashraf S; El-Naggar, Ahmed H; Alenazi, Khaled K H
2016-05-01
This study was conducted to identify and quantify polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in soil samples collected from selected industrial areas in the central and eastern regions of Saudi Arabia. All the investigated compounds of PCDDs/PCDFs were identified in the studied locations. The average concentrations of PCDDs (sum of seven congeners measured) ranged from 11.5 to 59.6 pg g(-1), with a maximum concentration of 125.7 pg g(-1) at an oil refinery station followed by 100.9 pg g(-1) at a cement factory. The average concentrations of PCDFs (sum of 10 congeners measured) accounted for 11.68-19.35 pg g(-1), with a maximum concentration of 38.67 pg g(-1) at the cement factory. It was generally observed that the soil samples collected from industrial areas have substantially high toxicity equivalence (TEQ) values of PCDDs/PCDFs compared to soils of remote areas. Principal component analysis revealed that the cement factories and oil refineries were the primary sources of PCDDs and PCDFs.
Recombinant albumin monolayers on latex particles.
Sofińska, Kamila; Adamczyk, Zbigniew; Kujda, Marta; Nattich-Rak, Małgorzata
2014-01-14
The adsorption of recombinant human serum albumin (rHSA) on negatively charged polystyrene latex micro-particles was studied at pH 3.5 and the NaCl concentration range of 10(-3) to 0.15 M. The electrophoretic mobility of latex monotonically increased with the albumin concentration in the suspension. The coverage of adsorbed albumin was quantitatively determined using the depletion method, where the residual protein concentration was determined by electrokinetic measurements and AFM imaging. It was shown that albumin adsorption was irreversible. Its maximum coverage on latex varied between 0.7 mg m(-2) for 10(-3) M NaCl to 1.3 mg m(-2) for 0.15 M NaCl. The latter value matches the maximum coverage previously determined for human serum albumin on mica using the streaming potential method. The increase in the maximum coverage was interpreted in terms of reduced electrostatic repulsion among adsorbed molecules. These facts confirm that albumin adsorption at pH 3.5 is governed by electrostatic interactions and proceeds analogously to colloid particle deposition. The stability of albumin monolayers was measured in additional experiments where changes in the latex electrophoretic mobility and the concentration of free albumin in solutions were monitored over prolonged time periods. Based on these experimental data, a robust procedure of preparing albumin monolayers on latex particles of well-controlled coverage and molecule distribution was proposed.
Volatile organic compounds in a multi-storey shopping mall in guangzhou, South China
NASA Astrophysics Data System (ADS)
Tang, Jianhui; Chan, C. Y.; Wang, Xinming; Chan, L. Y.; Sheng, Guoying; Fu, Jiamo
Volatile organic compounds (VOCs) specified in the USEPA TO-14 list were analysed in microenvironments of a multi-storey shopping mall in Guangzhou city, South China. The microenvironments studied include both indoor (department store, supermarket, fast-food court, electronic games room, children's playground, gallery and book store) and outdoor ones (rooftop and ground level entrance). The characteristics and concentration of VOCs varied widely in differing microenvironments. The average concentrations of the total VOCs in the indoor microenvironments ranged from 178.5 to 457.7 μg m -3 with a maximum of 596.8 μg m -3. The fast-food court and a leather products department store had the highest concentrations of benzene, toluene, ethylbenzene, xylenes and chlorinated hydrocarbons. A high level of 1,4-dichlorobenzene was found in all indoor microenvironments with an average of 12.3 μg m -3 and a maximum of 44.3 μg m -3. The ratios of average indoor to outdoor concentrations (I/O ratio) in all indoor microenvironments fell between 1 and 3, except an average of 24.6 and a maximum of 77.8 in the fashion department store for 1,4-dichlorobenzene. Indoor emission sources of monocyclic aromatic hydrocarbons in the shopping mall might include cooking stoves, leather products and building materials. Chlorinated hydrocarbons, however, were possibly connected with their use as cleaning agents or deodorizers.
Levels of major and trace elements, including rare earth elements, and ²³⁸U in Croatian tap waters.
Fiket, Željka; Rožmarić, Martina; Krmpotić, Matea; Benedik, Ljudmila
2015-05-01
Concentrations of 46 elements, including major, trace, and rare earth elements, and (238)U in Croatian tap waters were investigated. Selected sampling locations include tap waters from various hydrogeological regions, i.e., different types of aquifers, providing insight into the range of concentrations of studied elements and (238)U activity concentrations in Croatian tap waters. Obtained concentrations were compared with the Croatian maximum contaminant levels for trace elements in water intended for human consumption, as well as WHO and EPA drinking water standards. Concentrations in all analyzed tap waters were found in accordance with Croatian regulations, except tap water from Šibenik in which manganese in concentration above maximum permissible concentration (MPC) was measured. Furthermore, in tap water from Osijek, levels of arsenic exceeded the WHO guidelines and EPA regulations. In general, investigated tap waters were found to vary considerably in concentrations of studied elements, including (238)U activity concentrations. Causes of variability were further explored using statistical methods. Composition of studied tap waters was found to be predominately influenced by hydrogeological characteristics of the aquifer, at regional and local level, the existing redox conditions, and the household plumbing system. Rare earth element data, including abundances and fractionation patterns, complemented the characterization and facilitated the interpretation of factors affecting the composition of the analyzed tap waters.
Wilkinson, John L; Swinden, Julian; Hooda, Peter S; Barker, James; Barton, Stephen
2016-09-01
An effective, specific and accurate method is presented for the quantification of 13 markers of anthropogenic contaminants in water using solid phase extraction (SPE) followed by high performance liquid chromatography (HPLC) tandem mass spectrometry (MS/MS). Validation was conducted according to the International Conference on Harmonisation (ICH) guidelines. Method recoveries ranged from 77 to 114% and limits of quantification between 0.75 and 4.91 ng/L. A study was undertaken to quantify the concentrations and loadings of the selected contaminants in 6 sewage treatment works (STW) effluent discharges as well as concentrations in 5 rain-driven street runoffs and field drainages. Detection frequencies in STW effluent ranged from 25% (ethinylestradiol) to 100% (benzoylecgonine, bisphenol-A (BPA), bisphenol-S (BPS) and diclofenac). Average concentrations of detected compounds in STW effluents ranged from 3.62 ng/L (ethinylestradiol) to 210 ng/L (BPA). Levels of perfluorinated compounds (PFCs) perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) as well as the plasticiser BPA were found in street runoff at maximum levels of 1160 ng/L, 647 ng/L and 2405 ng/L respectively (8.52, 3.09 and 2.7 times more concentrated than maximum levels in STW effluents respectively). Rain-driven street runoff may have an effect on levels of PFCs and plasticisers in receiving rivers and should be further investigated. Together, this method with the 13 selected contaminants enables the quantification of various markers of anthropogenic pollutants: inter alia pharmaceuticals, illicit drugs and their metabolites from humans and improper disposal of drugs, while the plasticisers and perfluorinated compounds may also indicate contamination from industrial and transport activity (street runoff). Copyright © 2016 Elsevier Ltd. All rights reserved.
A Phase I study of bizelesin (NSC 615291) in patients with advanced solid tumors.
Pitot, Henry C; Reid, Joel M; Sloan, Jeff A; Ames, Matthew M; Adjei, Alex A; Rubin, Joseph; Bagniewski, Pamela G; Atherton, Pamela; Rayson, Daniel; Goldberg, Richard M; Erlichman, Charles
2002-03-01
To evaluate the toxicities, characterize the pharmacokinetics, and determine the maximum-tolerated dose of bizelesin administered once every 4 weeks. Patients with advanced solid tumors received escalating doses of bizelesin as an i.v. push every 4 weeks. Pharmacokinetic studies were performed with the first treatment cycle. Nineteen eligible patients received a total of 54 courses of bizelesin at doses ranging from 0.1 to 1 microg/m(2). Dose-limiting toxicity of neutropenia was seen in 2 of 4 patients treated at the 1 microg/m(2) dose level. Nonhematological toxicity was generally mild with maximum toxicity being
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maze, Grace M.
STREAM II is the aqueous transport model of the Weather Information Display (WIND) emergency response system at Savannah River Site. It is used to calculate transport in the event of a chemical or radiological spill into the waterways on the Savannah River Site. Improvements were made to the code (STREAM II V7) to include flow from all site tributaries to the Savannah River total flow and utilize a 4 digit year input. The predicted downstream concentrations using V7 were generally on the same order of magnitude as V6 with slightly lower concentrations and quicker arrival times when all onsite streammore » flows are contributing to the Savannah River flow. The downstream arrival time at the Savannah River Water Plant ranges from no change to an increase of 8.77%, with minimum changes typically in March/April and maximum changes typically in October/November. The downstream concentrations are generally no more than 15% lower using V7 with the maximum percent change in January through April and minimum changes in June/July.« less
Levashov, P. A.; Matolygina, D. A.; Ovchinnikova, E. D.; Atroshenko, D. L.; Savin, S. S.; Belogurova, N. G.; Smirnov, S. A.; Tishkov, V. I.; Levashov, A. V.
2017-01-01
The bacteriolytic activity of interleukin-2 and chicken egg lysozyme in the presence of various substances has been studied. Glycine and lysine do not affect the activity of interleukin-2 but increase that of lysozyme, showing a bell-shape concentration dependence peaking at 1.5 mM glycine and 18 mM lysine. Arginine and glutamate activate both interleukin-2 and lysozyme with a concentration dependence of the saturation type. Aromatic amino acids have almost no effect on the activity of both interleukin-2 and lysozyme. Aromatic amines, tryptamine, and tyramine activate interleukin-2 but inhibit lysozyme. Peptide antibiotics affect interleukin and lysozyme similarly and exhibit maximum activity in the micromolar range of antibiotics. Taurine has no effect on the activity of interleukin-2 and lysozyme. Mildronate showed no influence on lysozyme, but it activated interleukin-2 with the activity maximum at 3 mM. EDTA activates both interleukin-2 and lysozyme at concentrations above 0.15 mM. PMID:28740730
Contribution to a bio-optical model for remote sensing of Lena River water
NASA Astrophysics Data System (ADS)
Örek, H.; Doerffer, R.; Röttgers, R.; Boersma, M.; Wiltshire, K. H.
2013-11-01
Bio-optical measurements and sampling were carried out in the delta of the Lena River (northern Siberia, Russia) between 26 June and 4 July 2011. The aim of this study was to determine the inherent optical properties of the Lena water, i.e., absorption, attenuation, and scattering coefficients, during the period of maximum runoff. This aimed to contribute to the development of a bio-optical model for use as the basis for optical remote sensing of coastal water of the Arctic. In this context the absorption by CDOM (colored dissolved organic matter) and particles, and the concentrations of total suspended matter, phytoplankton-pigments, and carbon were measured. CDOM was found to be the most dominant parameter affecting the optical properties of the river, with an absorption coefficient of 4.5-5 m-1 at 442 nm, which was almost four times higher than total particle absorption values at visible wavelength range. The wavelenght-dependence of absorption of the different water constituents was chracterized by determining the semi logarithmic spectral slope. Mean CDOM, and detritus slopes were 0.0149 nm-1(standard deviation (stdev) = 0.0003, n = 18), and 0.0057 nm-1 (stdev = 0.0017, n = 19), respectively, values which are typical for water bodies with high concentrations of dissolved and particulate carbon. Mean chlorophyll a and total suspended matter were 1.8 mg m-3 (stdev = 0.734 n = 18) and 31.9 g m-3 (stdev = 19.94, n = 27), respectively. DOC (dissolved organic carbon) was in the range 8-10 g m-3 and the total particulate carbon (PC) in the range 0.25-1.5 g m-3. The light penetration depth (Secchi disc depth) was in the range 30-90 cm and was highly correlated with the suspended matter concentration. The period of maximum river runoff in June was chosen to obtain bio-optical data when maximum water constituents are transported into the Laptev Sea. However, we are aware that more data from other seasons and other years need to be collected to establish a general bio-optical model of the Lena water and conclusively characterize the light climate with respect to primary production.
Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA
Hladik, Michelle; Corsi, Steven; Kolpin, Dana W.; Baldwin, Austin K.; Blackwell, Brett R.; Cavallin, Jenna E.
2018-01-01
To better characterize the transport of neonicotinoid insecticides to the world's largest freshwater ecosystem, monthly samples (October 2015–September 2016) were collected from 10 major tributaries to the Great Lakes, USA. For the monthly tributary samples, neonicotinoids were detected in every month sampled and five of the six target neonicotinoids were detected. At least one neonicotinoid was detected in 74% of the monthly samples with up to three neonicotinoids detected in an individual sample (10% of all samples). The most frequently detected neonicotinoid was imidacloprid (53%), followed by clothianidin (44%), thiamethoxam (22%), acetamiprid (2%), and dinotefuran (1%). Thiacloprid was not detected in any samples. The maximum concentration for an individual neonicotinoid was 230 ng L−1 and the maximum total neonicotinoids in an individual sample was 400 ng L−1. The median detected individual neonicotinoid concentrations ranged from non-detect to 10 ng L−1. The detections of clothianidin and thiamethoxam significantly increased as the percent of cultivated crops in the basins increased (ρ = 0.73, P = .01; ρ = 0.66, P = .04, respectively). In contrast, imidacloprid detections significantly increased as the percent of the urbanization in the basins increased (ρ = 0.66, P = .03). Neonicotinoid concentrations generally increased in spring through summer coinciding with the planting of neonicotinoid-treated seeds and broadcast applications of neonicotinoids. More spatially intensive samples were collected in an agriculturally dominated basin (8 sites along the Maumee River, Ohio) twice during the spring, 2016 planting season to provide further information on neonicotinoid inputs to the Great Lakes. Three neonicotinoids were ubiquitously detected (clothianidin, imidacloprid, thiamethoxam) in all water samples collected within this basin. Maximum individual neonicotinoid concentrations was 330 ng L−1 and maximum total neonicotinoid concentration was 670 ng L−1; median detected individual neonicotinoid concentrations were 7.0 to 39 ng L−1.
Glyphosate, other herbicides, and transformation products in Midwestern streams, 2002
Battaglin, W.A.; Kolpin, D.W.; Scribner, E.A.; Kuivila, K.M.; Sandstrom, M.W.
2005-01-01
The use of glyphosate has increased rapidly, and there is limited understanding of its environmental fate. The objective of this study was to document the occurrence of glyphosate and the transformation product aminomethylphosphonic acid (AMPA) in Midwestern streams and to compare their occurrence with that of more commonly measured herbicides such as acetochlor, atrazine, and metolachlor. Water samples were collected at sites on 51 streams in nine Midwestern states in 2002 during three runoff events: after the application of pre-emergence herbicides, after the application of post-emergence herbicides, and during harvest season. All samples were analyzed for glyphosate and 20 other herbicides using gas chromatography/mass spectrometry or high performance liquid chromatography/mass spectrometry. The frequency of glyphosate and AMPA detection, range of concentrations in runoff samples, and ratios of AMPA to glyphosate concentrations did not vary throughout the growing season as substantially as for other herbicides like atrazine, probably because of different seasonal use patterns. Glyphosate was detected at or above 0.1 μg/1 in 35 percent of pre-emergence, 40 percent of post-emergence, and 31 percent of harvest season samples, with a maximum concentration of 8.7 μg/1. AMPA was detected at or above 0.1 μg/1 in 53 percent of pre-emergence, 83 percent of post-emergence, and 73 percent of harvest season samples, with a maximum concentration of 3.6 μg/1. Glyphosate was not detected at a concentration at or above the U.S. Environmental Protection Agency's maximum contamination level (MCL) of 700 μg/1 in any sample. Atrazine was detected at or above 0.1 μg/1 in 94 percent of pre-emergence, 96 percent of post-emergence, and 57 percent of harvest season samples, with a maximum concentration of 55 μg/1. Atrazine was detected at or above its MCL (3 μg/1) in 57 percent of pre-emergence and 33 percent of post-emergence samples
Glyphasate, other herbicides, and transformation products in midwestern streams, 2002
Battaglin, William A.; Koplin, Dana W.; Scribner, Elizabeth A.; Kuivila, Kathryn; Sandstrom, Mark W.
2005-01-01
The use of glyphosate has increased rapidly, and there is limited understanding of its environmental fate. The objective of this study was to document the occurrence of glyphosate and the transformation product aminomethylphosphonic acid (AMPA) in Midwestern streams and to compare their occurrence with that of more commonly measured herbicides such as acetochlor, atrazine, and metolachlor. Water samples were collected at sites on 51 streams in nine Midwestern states in 2002 during three runoff events: after the application of pre-emergence herbicides, after the application of post-emergence herbicides, and during harvest season. All samples were analyzed for glyphosate and 20 other herbicides using gas chromatography/mass spectrometry or high performance liquid chromatography/mass spectrometry. The frequency of glyphosate and AMPA detection, range of concentrations in runoff samples, and ratios of AMPA to glyphosate concentrations did not vary throughout the growing season as substantially as for other herbicides like atrazine, probably because of different seasonal use patterns. Glyphosate was detected at or above 0.1 μg/1 in 35 percent of pre-emergence, 40 percent of post-emergence, and 31 percent of harvest season samples, with a maximum concentration of 8.7 μg/1. AMPA was detected at or above 0.1 μg/1 in 53 percent of pre-emergence, 83 percent of post-emergence, and 73 percent of harvest season samples, with a maximum concentration of 3.6 μg/1. Glyphosate was not detected at a concentration at or above the U.S. Environmental Protection Agency's maximum contamination level (MCL) of 700 μg/1 in any sample. Atrazine was detected at or above 0.1 μg/1 in 94 percent of pre-emergence, 96 percent of post-emergence, and 57 percent of harvest season samples, with a maximum concentration of 55 μg/1. Atrazine was detected at or above its MCL (3 μg/1) in 57 percent of pre-emergence and 33 percent of post-emergence samples.
Fogwater chemistry at Riverside, California
NASA Astrophysics Data System (ADS)
Munger, J. William; Collett, Jeff; Daube, Bruce; Hoffmann, Michael R.
Fog, aerosol, and gas samples were collected during the winter of 1986 at Riverside, California. The dominant components of the aerosol were NH 4+, NO 3-, and SO 42-. Gaseous NH 3 was frequently present at levels equal to or exceeding the aerosol NH 4+. Maximum level were 3800, 3100, 690 and 4540 neq m -3 for NH 4+, NO 32- and NH 3(g), respectively. The fogwater collected at Riverside had very high concentrations, particularly of the major aerosol components. Maximum concentrations were 26,000 29,000 and 6200 μM for NH 4+, NO 3- and SO 42-, respectively. pH values in fogwater ranged from 2.3 to 5.7. Formate and acetate concentrations as high as 1500 and 580 μM, respectively, were measured. The maximum CH 2O concentration was 380 μM. Glyoxal and methylglyoxal were found in all the samples; their maximum concentrations were 280 and 120 μM, respectively. Comparison of fogwater and aerosol concentrations indicates that scavenging of precursor aerosol by fog droplets under the conditions at Riverside is less than 100% efficient. The chemistry at Riverside is controlled by the balance between HNO 3 production from NO x emitted throughout the Los Angeles basin and NH 3 emitted from dairy cattle feedlots just west of Riverside. The balance is controlled by local mixing. Acid fogs result at Riverside when drainage flows from the surrounding mountains isolate the site from the NH 3 source. Continued formation of HNO 3(g) in this air mass eventually depletes the residual NH 3(g). A simple box model that includes deposition, fog scavenging, and dilution is used to assess the effect of curtailing the dairy cattle feedlot operations. The calculations suggest that the resulting reduction of NH 3 levels would decrease the total NO 3- in the atmosphere, but nearly all remaining NO 3- would exist as HNO 3. Fogwater in the basin would be uniformly acidic.
Hydrology and land use in Grand Traverse County, Michigan
Cummings, T.R.; Gillespie, J.L.; Grannemann, N.G.
1990-01-01
Glacial deposits are the sole source of ground-water supplies in Grand Traverse County. These deposits range in thickness from 100 to 900 feet and consist of till, outwash, and materials of lacustrine and eolian origin. In some areas, the deposits fill buried valleys that are 500 feet deep. Sedimentary rocks of Paleozoic age, which underlie the glacial deposits, are mostly shale and are not used for water supply. Of the glacial deposits, outwash and lacustrine sand are the most productive aquifers. Most domestic wells obtain water from sand and gravel at depths ranging from 50 to 150 feet and yield at least 20 gallons per minute. Irrigation, municipal, and industrial wells capable of yielding 250 gallons per minute or more are generally greater than 150 feet deep. At places in the county where moranial deposits contain large amounts of interbedded silt and clay, wells are generally deeper and yields are much lower. Areal variations in the chemical and physical characteristics of ground and surface water are related to land use and chemical inputs to the hydrologic system. Information on fertilizer application, septic-tank discharges, animal wastes, and precipitation indicate that 40 percent of nitrogen input is from precipitation, 6 percent from septic tanks, 14 percent from animal wastes, and 40 percent from fertilizers. Streams and lakes generally have a calcium bicarbonate-type water. The dissolved-solids concentration of streams ranged from 116 to 380 milligrams per liter, and that of lakes, from 47 to 170 milligrams per liter. Water of streams is hard to very hard; water of lakes ranges from soft to hard. The maximum total nitrogen concentration found in streams was 4.4 milligrams per liter. Water of lakes have low nitrogen concentrations; the median nitrate concentration is less than 0.01 milligrams per liter. Pesticides (Parathion and Simazine) were detected in low concentrations at six stream sites; 2,4-D was detected in low concentrations in water of two lakes. Relationships between land use and the yield of dissolved and suspended substances could not be established for most stream basins. Calcium and bicarbonate are the principal dissolved substances in ground water. Dissolved-solids concentrations ranged from 70 to 700 milligrams per liter; the countywide mean concentration is 230 milligrams per liter. The mean nitrate concentration is 1.3 milligrams per liter; about 1.6 percent of the county's ground water has nitrate concentrations that exceed the U.S. Environmental Protection Agency's maximum drinking water level of 10 milligrams per liter. An effect of fertilizer applications on ground-water quality is evident in some parts of the county.
Szabo, Zoltan; Keller, Elizabeth A.; Defawe, Rose M.
2006-01-01
Pore water was extracted from clay-silt core samples collected from a borehole at Ocean View, west of Sea Isle City, in northeastern Cape May County, New Jersey. The borehole intersects the lower Miocene Kirkwood Formation, which includes a thick sand and gravel unit between two clay-silt units. The sand and gravel unit forms a major confined aquifer in the region, known as the Atlantic City 800-foot sand, the major source of potable water along the Atlantic Coast of southern New Jersey. The pore water from the core is of interest because the borehole intersects the aquifer in an area where the ground water is sodium-rich and sulfidic. Locally in the aquifer in central and southern Cape May County, sodium concentrations are near the New Jersey secondary drinking-water standard of 50 mg/L (milligrams per liter), and typically are greater than 30 mg/L, but chloride and sulfate do not approach their respective secondary drinking-water standards except in southernmost Cape May County. Pore waters from the confining units are suspected to be a source of sodium, sulfur, and chloride to the aquifer. Constituent concentrations in filtered pore-water samples were determined using the inductively coupled plasma-mass spectrometry analytical technique to facilitate the determination of low-level concentrations of many trace constituents. Calcium-sodium-sulfate-bicarbonate, calcium-chloride-sulfate, calcium-sulfate, and sodium-sulfate-chloride-bicarbonate type waters characterize samples from the deepest part of the confining unit directly overlying the aquifer (termed the 'lower' confining unit). A sodium-chloride-sulfate type water is dominant in the composite confining unit below the aquifer. Sodium, chloride, and sulfate became increasingly dominant with depth. Pore water from the deepest sample recovered (1,390 ft (feet) below land surface) was brackish, with concentrations of sodium, chloride, and sulfate of 5,930, 8,400, and 5,070 mg/L, respectively. Pore-water samples from 900 ft or less below land surface, although mineralized, were fresh, not brackish. Sodium concentrations ranged from 51.3 to 513 mg/L, with the maximum concentration found at 882 ft below land surface in the composite confining unit below the aquifer. Chloride concentrations ranged from 46.4 to 757 mg/L, with the maximum concentration found at 596 ft below land surface in the 'lower' confining unit, and were higher than those in pore water from the same units at Atlantic City, N.J. Concentrations of chloride in the composite confining unit below the aquifer were consistently greater than 250 mg/L, indicating that the confining unit can be a source of chloride at depth. Of the major anions, sulfate was the constituent whose concentration varied most, ranging from 42 to 799 mg/L. The maximum concentration was found at 406 ft below land surface, in the upper part of the confining unit overlying the aquifer and the Rio Grande water-bearing zone (termed the 'upper' confining unit). Sulfide was not detected in any pore-water sample despite the presence of abundant quantities of sulfate and sulfide in the aquifer. The absence of sulfide in the pore waters is consistent with the hypothesis that sulfate is reduced in the aquifer. The presence of arsenic, at concentrations ranging from 0.0062 to 0.0374 mg/L, is consistent with the absence of sulfide and the possible presence of iron in the pore water.
Assessment of heavy metal pollution in Republic of Macedonia using a plant assay.
Gjorgieva, Darinka; Kadifkova-Panovska, Tatjana; Bačeva, Katerina; Stafilov, Trajče
2011-02-01
Different plant organs (leaves, flowers, stems, or roots) from four plant species-Urtica dioica L. (Urticaceae), Robinia pseudoacacia L. (Fabaceae), Taraxacum officinale (Asteraceae), and Matricaria recutita (Asteraceae)-were evaluated as possible bioindicators of heavy-metal pollution in Republic of Macedonia. Concentrations of Pb, Cu, Cd, Mn, Ni, and Zn were determined in unwashed plant parts collected from areas with different degrees of metal pollution by ICP-AES. All these elements were found to be at high levels in samples collected from an industrial area. Maximum Pb concentration was 174.52 ± 1.04 mg kg⁻¹ in R. pseudoacacia flowers sampled from the Veles area, where lead and zinc metallurgical activities were present. In all control samples, the Cd concentrations were found to be under the limit of detection (LOD <0.1 mg kg⁻¹) except for R. pseudoacacia flowers and T. officinale roots. The maximum Cd concentration was 7.97 ± 0.15 mg kg⁻¹ in R. pseudoacacia flowers from the Veles area. Nickel concentrations were in the range from 1.90 ± 0.04 to 5.74 ± 0.03 mg kg⁻¹. For U. dioica leaves and R. pseudoacacia flowers sampled near a lead-smelting plant, concentrations of 465.0 ± 0.55 and 403.56 ± 0.34 mg kg⁻¹ Zn were detected, respectively. In all control samples, results for Zn were low, ranging from 10.2 ± 0.05 to 38.70 ± 0.18 mg kg⁻¹. In this study, it was found that the flower of R. pseudoacacia was a better bioindicator of heavy-metal pollution than other plant parts. Summarizing the results, it can be concluded that T. officinale, U. dioica, and R. pseudoacacia were better metal accumulators and M. recutita was a metal avoider.
Riobóo, R J; Philipp, M; Ramos, M A; Krüger, J K
2009-09-01
The temperature and concentration dependence of the refractive index, nD(x, T), in ethanol-water mixtures agrees with previous data in the ethanol-rich concentration range. The refractive index versus concentration x determined at 20 degrees C shows the expected maximum at about 41 mol% water (22 mass% water). The temperature derivative of the refractive index, dnD/dT, shows anomalies at lower water concentrations at about 10 mol% water but no anomaly at 41 mol% water. Both anomalies are related to intermolecular interactions, the one in nD seems to be due to molecular segregation and cluster formation while the origin of the second one in dnD/dT is still not clear.
García-de la Parra, Luz María; Cervantes-Mojica, L Juleny; González-Valdivia, Carolina; Martínez-Cordero, Francisco J; Aguilar-Zárate, Gabriela; Bastidas-Bastidas, Pedro; Betancourt-Lozano, Miguel
2012-10-01
Agriculture is one of the most important economic activities in Sinaloa, Mexico. The Culiacan Valley is an extensive agricultural region characterized by a variety of crops with high-yield productions. In this study, concentrations of organochlorine (OCPs) and organophosphorus (OPs) pesticides and polychlorobiphenyls (PCBs) were determined in sediments of the agricultural drainage system of Culiacan Valley. Overall, 32 compounds were detected, with concentrations widely ranging from 0.03 to 1 294 ng g(-1) dry weight. OCP concentrations (15) ranged from 0.1 to 20.19 ng g(-1) dw. OP concentrations (8) ranged from 0.03 to 1294 ng g(-1) dw, and diazinon was the compound with the highest concentration. PCB concentrations were also determined and varied from 0.05 to 3.29 ng g(-1) dw. Other compounds detected included permethrin, triadimefon, and fipronil. The central zone registered the higher concentrations and the greatest number of compounds, which could be related to the occurrence of horticultural fields in this zone. According to sediment quality guidelines, the compounds exceeding the probable effect level were γ-HCH, p,p'-DDT and p,p'-DDE, while the pesticides above the maximum permissible concentration were endosulfan, azinphos methyl, diazinon, dichlorvos, and permethrin. Although Sinaloa is an important agricultural crop producer in northwest Mexico, there are not many studies dealing with pesticide distribution in agricultural areas.
Arsenic in ground water in selected parts of southwestern Ohio, 2002-03
Thomas, Mary Ann; Schumann, Thomas L.; Pletsch, Bruce A.
2005-01-01
Arsenic concentrations were measured in 57 domestic wells in Preble, Miami, and Shelby Counties, in southwestern Ohio. The median arsenic concentration was 7.1 ?g/L (micrograms per liter), and the maximum was 67.6 ?g/L. Thirty-seven percent of samples had arsenic concentrations greater than the U.S. Environmental Protection Agency drinking-water standard of 10 ?g/L. Elevated arsenic concentrations (>10 ?g/L) were detected over the entire range of depths sampled (42 to 221 feet) and in each of three aquifer types, Silurian carbonate bedrock, glacial buried-valley deposits, and glacial till with interbedded sand and gravel. One factor common in all samples with elevated arsenic concentrations was that iron concentrations were greater than 1,000 ?g/L. The observed correlations of arsenic with iron and alkalinity are consistent with the hypothesis that arsenic was released from iron oxides under reducing conditions (by reductive dissolution or reductive desorption). Comparisons among the three aquifer types revealed some differences in arsenic occurrence. For buried-valley deposits, the median arsenic concentration was 4.6 ?g/L, and the maximum was 67.6 ?g/L. There was no correlation between arsenic concentrations and depth; the highest concentrations were at intermediate depths (about 100 feet). Half of the buried-valley samples were estimated to be methanic. Most of the samples with elevated arsenic concentrations also had elevated concentrations of dissolved organic carbon and ammonia. For carbonate bedrock, the median arsenic concentration was 8.0 ?g/L, and the maximum was 30.7 ?g/L. Arsenic concentrations increased with depth. Elevated arsenic concentrations were detected in iron- or sulfate-reducing samples. Arsenic was significantly correled with molybdenum, strontium, fluoride, and silica, which are components of naturally ocurring minerals. For glacial till with interbedded sand and gravel, half of the samples had elevated arsenic concentrations. The median was 11.4 ?g/L, and the maximum was 27.6 ?g/L. At shallow depths (<100 feet), this aquifer type had higher arsenic and iron concentrations than carbonate bedrock. It is not known whether these observed differences among aquifer types are related to variations in (1) arsenic content of the aquifer material, (2) organic carbon content of the aquifer material, (3) mechanisms of arsenic mobilization (or uptake), or (4) rates of arsenic mobilization (or uptake). A followup study that includes solid-phase analyses and geochemical modeling was begun in 2004 in northwestern Preble County.
Davis, Tracy A.; Shelton, Jennifer L.
2014-01-01
Results for constituents with nonregulatory benchmarks set for aesthetic concerns showed that iron concentrations greater than the CDPH secondary maximum contaminant level (SMCL-CA) of 300 μg/L were detected in samples from 19 grid wells. Manganese concentrations greater than the SMCL-CA of 50 μg/L were detected in 27 grid wells. Chloride was detected at a concentration greater than the SMCL-CA upper benchmark of 500 mg/L in one grid well. TDS concentrations in three grid wells were greater than the SMCL-CA upper benchmark of 1,000 mg/L.
Li, H; Bacic, A; Read, S M
1997-01-01
In pollen tubes of Nicotiana alata, a membrane-bound, Ca(2+)-independent callose synthase (CalS) is responsible for the biosynthesis of the (1,3)-beta-glucan backbone of callose, the main cell wall component. Digitonin increases CalS activity 3- to 4-fold over a wide range of concentrations, increasing the maximum initial velocity without altering the Michaelis constant for UDP-glucose. The CalS activity that requires digitonin for assay (the latent CalS activity) is not inhibited by the membrane-impermeant, active site-directed reagent UDP-pyridoxal when the reaction is conducted in the absence of digitonin. This is consistent with digitonin increasing CalS activity by the permeabilization of membrane vesicles. A second group of detergents, including 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate (CHAPS), Zwittergent 3-16, and 1-alpha-lysolecithin, activate pollen tube CalS 10- to 15-fold, but only over a narrow range of concentrations just below their respective critical micellar concentrations. This activation could not be attributed to any particular chemical feature of these detergents. CHAPS increases maximum initial velocity and decreases the Michaelis constant for UDP-glucose and activates CalS even in the presence of permeabilizing concentrations of digitonin. Inhibition studies with UDP-pyridoxal indicate that activation by CHAPS occurs by recruitment of previously inactive CalS molecules to the pool of active enzyme. The activation of pollen tube CalS by these detergents therefore resembles activation of the enzyme by trypsin. PMID:9276948
NASA Astrophysics Data System (ADS)
Hagan, Nicole; Robins, Nicholas; Hsu-Kim, Heileen; Halabi, Susan; Morris, Mark; Woodall, George; Zhang, Tong; Bacon, Allan; Richter, Daniel De B.; Vandenberg, John
2011-12-01
Detailed Spanish records of mercury use and silver production during the colonial period in Potosí, Bolivia were evaluated to estimate atmospheric emissions of mercury from silver smelting. Mercury was used in the silver production process in Potosí and nearly 32,000 metric tons of mercury were released to the environment. AERMOD was used in combination with the estimated emissions to approximate historical air concentrations of mercury from colonial mining operations during 1715, a year of relatively low silver production. Source characteristics were selected from archival documents, colonial maps and images of silver smelters in Potosí and a base case of input parameters was selected. Input parameters were varied to understand the sensitivity of the model to each parameter. Modeled maximum 1-h concentrations were most sensitive to stack height and diameter, whereas an index of community exposure was relatively insensitive to uncertainty in input parameters. Modeled 1-h and long-term concentrations were compared to inhalation reference values for elemental mercury vapor. Estimated 1-h maximum concentrations within 500 m of the silver smelters consistently exceeded present-day occupational inhalation reference values. Additionally, the entire community was estimated to have been exposed to levels of mercury vapor that exceed present-day acute inhalation reference values for the general public. Estimated long-term maximum concentrations of mercury were predicted to substantially exceed the EPA Reference Concentration for areas within 600 m of the silver smelters. A concentration gradient predicted by AERMOD was used to select soil sampling locations along transects in Potosí. Total mercury in soils ranged from 0.105 to 155 mg kg-1, among the highest levels reported for surface soils in the scientific literature. The correlation between estimated air concentrations and measured soil concentrations will guide future research to determine the extent to which the current community of Potosí and vicinity is at risk of adverse health effects from historical mercury contamination.
Tadayon, Saeid; King, K.A.; Andrews, Brenda; Roberts, William
1997-01-01
Because of concerns expressed by the U.S. Congress and the environmental community, the Department of the Interior began a program in late 1985 to identify the nature and extent of water-quality problems induced by irrigation that might exist in the western States. Surface water, bottom sediment, and biota were collected from March through September 1995 along the lower Colorado River and in agricultural drains at nine sites in the Yuma Valley, Arizona, and analyzed for selected inorganic and organic constituents. Analyses of water, bottom sediment, and biota were completed to determine if irrigation return flow has caused, or has the potential to cause, harmful effects on human health, fish, and wildlife in the study area. Concentrations of dissolved solids in surface-water samples collected in March generally did not vary substantially from surface-water samples collected in June. Concentrations of dissolved solids ranged from 712 to 3,000 milligrams per liter and exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 500 milligrams per liter for drinking water. Concentrations of chloride in 9 of 18 water samples and concentrations of sulfate in 16 of 18 water samples exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 250 milligrams per liter for drinking water. Calcium and sodium were the dominant cations, and chloride and sulfate were the dominant anions. The maximum selenium concentration of 8 micrograms per liter exceeded the U.S. Environmental Protection Agency aquatic-life chronic criterion of 5 micrograms per liter. Concentrations of lead in 7 of 18 water samples and concentrations of mercury in 4 of 18 water samples exceeded the aquatic-life cronic criteria of 3.2 and 0.012 micrograms per liter, respectively. Concentrations of antimony, beryllium, cadmium, and silver in the water samples were below analytical reporting limits. Arsenic was detected in 3 of 9 bottom-sediment samples, and concentrations ranged from 11 to 16 micrograms per gram. Concentrations ofaluminum, beryllium, boron, copper, lead, and zinc were highest in samples from Main Drain at southerly international boundary near San Luis, Arizona. Selenium was detected in all bottom-sediment samples, and concentrations ranged from 0.1 to 0.7 micrograms per gram. Concentrations of cadmium, europium, homium, mercury, molybdenum, silver, tantalum, tin, and uranium were below analytical reporting limits in the bottom-sediment samples. Concentrations of trace elements in bottom-sediment samples were within the ranges found in a study of soils of the western United States and did not indicate a significant accumulation of these constituents. p,p'Dichlorodiphenyldichloroethylene (commonly referred to as p,-p'-DDE) was detected in one bottom-sediment sample at a concentration of 1.4 micrograms per gram. No other organochlorine compounds were detected in the bottom-sediment samples. DDE was present in all fish and bird samples. Almost one-half of the fish samples contained DDE residues that were two times higher than the mean calculated for a national study in 1984-85. Twenty-tree percent of the fish contained more than three times the national mean. Fish from downstream parts of the Main Drain had the highest concentrations of DDE. Although concentrations of DDE in fish and in bird carcasses and eggs were above background levels, residues generally were below thresholds associated with chronic poisoning and reproductive problems in figh and wildlife. Concentrations of 18 trace elements were detected in cattail (Typha sp.) roots, freshwater clam (Corbicula fluminea), fish, and bird samples. Selenium in most fish and in livers of red-winged (Agelaius phoeniceus) and yellow-headed (Xanthocephalus xanthocephalus) blackbirds was above background concentrations but below toxic concentrations. In contrast, selenium was present in a killdeer (Charadrium vociferus) liver sample at potentially toxic con
Microgravity Droplet Combustion in CO2 Enriched Environments at Elevated Pressures
NASA Technical Reports Server (NTRS)
Hicks, Michael C.; Nayagam, V.; Williams, F. A.
2007-01-01
Microgravity droplet combustion experiments were performed in elevated concentrations of CO2 at pressures of 1.0 atm, 3.0 atm, and 5.0 atm to examine the effects of a radiatively participating suppression agent in space applications. Methanol and n-heptane droplets, with an initial diameter of 2.0 mm supported on a quartz fiber, were used in these experiments. The ambient O2 concentration was held constant at 21% and the CO2 concentrations ranged from 0% to a maximum of 70%, by volume with the balance consisting of N2 . Results from the methanol tests showed slight decreases in burning rates with increased CO2 concentrations at all ambient pressures. The n-heptane tests show slight increases in burning rates with increasing CO2 concentrations at each pressure level. Instantaneous radiative heat flux was also measured using both a broadband radiometer (i.e., wavelengths from 0.6 microns to 40.0 microns) and a narrowband radiometer (i.e., centered at 5.6 microns with a filter width at half maximum of 1.5 microns). Radiative exchanges between the droplet and surrounding gases as well as the soot field produce departures from the classical quasisteady theory which would predict a decrease in burning rates with increasing CO2 concentrations in microgravity.
Moody, J.A.; Butman, B.; Bothner, Michael H.
1987-01-01
A laboratory calibration of Sea Tech and Montedoro-Whitney beam transmissometers shows a linear relation between light attenuation coefficient (cp) and suspended matter concentration (SMC) for natural sediments and for glass beads. However the proportionality constant between cp and SMC depends on the particle diameter and particle type. Thus, to measure SMC, observations of light attenuation must be used with a time-variable calibration when suspended particle characteristics change with time. Because of this variable calibration, time series of light attenuation alone may not directly reflect SMC and must be interpreted with care.The near-bottom concentration of suspended matter during winter storms on the U.S. East Coast Continental Shelf is estimated from light transmission measurements made 2 m above the bottom and from the size distribution of suspended material collected simultaneously in sediment traps 3 m above the bottom. The average concentrations during six storms between December 1979 and February 1980 in the Middle Atlantic Bight ranged from 2 to 4 mg l1 (maximum concentration of 7 mg l1) and 8 to 12 mg l1 (maximum concentration of 22 mg l1) on the south flank of Georges Bank.
Journey, Celeste A.; Arrington, Jane M.; Beaulieu, Karen M.; Graham, Jennifer L.; Bradley, Paul M.
2011-01-01
Limnological conditions and the occurrence of taste-and-odor compounds were studied in two reservoirs in Spartanburg County, South Carolina, from May 2006 to June 2009. Lake William C. Bowen and Municipal Reservoir #1 are relatively shallow, meso-eutrophic, warm monomictic, cascading impoundments on the South Pacolet River. Overall, water-quality conditions and phytoplankton community assemblages were similar between the two reservoirs but differed seasonally. Median dissolved geosmin concentrations in the reservoirs ranged from 0.004 to 0.006 microgram per liter. Annual maximum dissolved geosmin concentrations tended to occur between March and May. In this study, peak dissolved geosmin production occurred in April and May 2008, ranging from 0.050 to 0.100 microgram per liter at the deeper reservoir sites. Peak dissolved geosmin production was not concurrent with maximum cyanobacterial biovolumes, which tended to occur in the summer (July to August), but was concurrent with a peak in the fraction of genera with known geosmin-producing strains in the cyanobacteria group. Nonetheless, annual maximum cyanobacterial biovolumes rarely resulted in cyanobacteria dominance of the phytoplankton community. In both reservoirs, elevated dissolved geosmin concentrations were correlated to environmental factors indicative of unstratified conditions and reduced algal productivity, but not to nutrient concentrations or ratios. With respect to potential geosmin sources, elevated geosmin concentrations were correlated to greater fractions of genera with known geosmin-producing strains in the cyanobacteria group and to biovolumes of a specific geosmin-producing cyanobacteria genus (Oscillatoria), but not to actinomycetes concentrations. Conversely, environmental factors that correlated with elevated cyanobacterial biovolumes were indicative of stable water columns (stratified conditions), warm water temperatures, reduced nitrogen concentrations, longer residence times, and high phosphorus concentrations in the hypolimnion. Biovolumes of Cylindrospermopsis, Planktolyngbya, Synechococcus, Synechocystis, and Aphanizomenon correlated with the greater cyanobacteria biovolumes and were the dominant taxa in the cyanobacteria group. Related environmental variables were selected as input into multiple logistic regression models to evaluate the likelihood that geosmin concentrations could exceed the threshold level for human detection. In Lake William C. Bowen, the likelihood that dissolved geosmin concentrations exceeded the human detection threshold was estimated by greater mixing zone depths and differences in the 30-day prior moving window averages of overflow and flowthrough at Lake Bowen dam and by lower total nitrogen concentrations. At the R.B. Simms Water Treatment Plant, the likelihood that total geosmin concentrations in the raw water exceeded the human detection threshold was estimated by greater outflow from Reservoir #1 and lower concentrations of dissolved inorganic nitrogen. Overall, both models indicated greater likelihood that geosmin could exceed the human detection threshold during periods of lower nitrogen concentrations and greater water movement in the reservoirs.
Chiesa, L M; Ceriani, F; Caligara, M; Di Candia, D; Malandra, R; Panseri, S; Arioli, F
2018-03-01
Seafood is associated with many beneficial effects on human health. However, the overall level of contaminants in biota has increased over the last two centuries and seafood is one of the source of oral exposition to contaminants. Therefore, this work aimed to evaluate cadmium, lead, mercury, arsenic, chromium and nickel presence in mussels and clams, from the Italian market, and the associated risk. The samples were from five different FAO areas. Analyses were carried out using inductively-coupled plasms-mass spectrometry. The sample concentrations were below the maximum levels stated by Commission Regulation (EC) 1881/2006, except one mussel sample, which was non-compliant for cadmium (2.13 ± 0.20 mg kg -1 ). For arsenic, nickel and chromium, maximum levels are not stated by the European Union. In this study, arsenic ranged from 1.29 to 13.35 mg kg -1 and nickel ranged from
NASA Astrophysics Data System (ADS)
Afnizan, W. M. W.; Hamdan, R.; Othman, N.
2016-07-01
The high content of uncontrolled phosphorus concentration in wastewater has emerged as a major problem recently. The excessive amount of phosphorus that is originated from domestic waste, unproper treated waste from septic tanks, as well as agricultural activities have led to the eutrophication problem. Therefore, a laboratory experiment was initiated to evaluate the potential of the Electric Arc Furnace Slag (EAFS), a by-product waste from steel making industry in removing phosphorus concentrations in aqueous solutions. In this work several particle sizes ranging from (9.5-12.4 mm, 12.5-15.9 mm, 16.0-19.9 mm, 20.0-24.9 mm, 25-37.4 mm) with a known weight (20±0.28 g, 40±0.27 g, 60±0.30 g, 80±0.29 g and 100±0.38 g) were used to study the effect of different particle sizes towards phosphorus removal. Each particle size of EAFS was shaken in synthetic phosphorus solutions (10 mg/l, 20 mg/l, 30 mg/l, 40 mg/l and 50 mg/l) at a contact time of 2 hours. Final concentrations of phosphorus were sampled and the measurement was made using WESTCO Discrete Analyzer equipment. Results showed that the highest of the maximum uptake capacity of each EAFS particle size distribution achieved at 0.287, 0.313, 0.266, 0.241 and 0.25 mg/g as particle size range was varied from 9.5-12.4 mm to 25-37.4 mm. In conclusion, the maximum uptake capacity of each EAFS mostly was determined to occur at adsorbent weight of 20 to 40 g in most conditions.
Archer, David F; Stanczyk, Frank Z; Rubin, Arkady; Foegh, Marie
2013-02-01
This study compares the pharmacokinetic profile, adhesion and safety of the AG200-15 Agile Patch (AP), a novel contraceptive patch releasing low-dose ethinyl estradiol (EE) and levonorgestrel (LNG), during wear under external conditions of heat, humidity and exercise versus normal activities. This open-label, three-period, five-treatment, crossover study randomized 24 healthy women to one of six external condition sequences. Each sequence included one normal wear and two external conditions periods. Participants wore the AP for 7 days under normal conditions or conditions of daily sauna, treadmill, whirlpool or cool water immersion, with a 7-day washout between treatments. Blood samples were collected for pharmacokinetic evaluations. Twenty-four subjects completed the study. For EE, the mean maximum concentration level (Cmax), area under the plasma concentration-time curve from time 0 to 168 h (AUC(0-168)) and area under the plasma concentration-time curve from time 0 to infinity (AUC(0-inf)) were higher during normal conditions compared with all external conditions (geometric means ratio range: 80%-93%), except cool water. Mean steady-state concentrations (C(ss)) of EE were highest under normal conditions, followed by cool water, sauna, whirlpool and treadmill. The LNG mean C(max), AUC(0-168), AUC(0-inf) and C(ss) were higher under normal wear versus all other conditions (geometric means ratios: 75%-82%), with the exception of AUC(0-168), AUC(0-inf) and C(ss) for cold water. Median times to maximum concentration (Tmax) for EE and LNG were comparable across conditions. Patch adhesion was excellent under all conditions. Adverse events were mild, with none serious or leading to discontinuation. Although slightly lower mean drug concentration levels were observed for whirlpool, treadmill and sauna, drug concentrations under all conditions were well within therapeutic ranges established for the AP during normal wear and within ranges reported for low-dose combination oral contraceptives. Patch adhesion was excellent; the AP was safe and well tolerated under all conditions. Copyright © 2013 Elsevier Inc. All rights reserved.
Pope, Larry M.; Bruce, Breton W.; Rasmussen, Patrick P.; Milligan, Chad R.
2002-01-01
Water samples from 30 randomly distributed monitoring wells in areas of recent residential and commercial development (1960-96), Wichita, Kansas, were collected in 2000 as part of the High Plains Regional Ground-Water Study conducted by the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. The samples were analyzed for about 170 water-quality constituents that included chlorofluorocarbons, physical properties, dissolved solids and major ions, nutrients and dissolved organic carbon, trace elements, pesticide compounds, and volatile organic compounds. The purpose of this report is to provide an assessment of water quality in recharge to shallow ground water underlying areas of recent residential and commercial development and to determine the relation of ground-water quality to overlying urban land use. Analyses of water from the 30 monitoring wells for chlorofluorocarbons were used to estimate apparent dates of recharge. Water from 18 wells with nondegraded and uncontaminated chlorofluorocarbon concentrations had calculated apparent recharge dates that ranged from 1979 to 1990 with an average date of 1986. Water from 14 monitoring wells (47 percent) exceeded the 500-milligrams-per-liter Secondary Maximum Contaminant Level established by the U.S. Environmental Protection Agency for dissolved solids in drinking water. The Secondary Maximum Contaminant Levels of 250 milligrams per liter for chloride and sulfate were exceeded in water from one well. The source of the largest concentrations of dissolved solids and associated ions, such as chloride and sulfate, in shallow ground water in the study area probably is highly mineralized water moving out of the Arkansas River into the adjacent, unconsolidated deposits and mixing with the dominant calcium bicarbonate water in the deposits. Concentrations of most nutrients in water from the sampled wells were small, with the exception of nitrate. Although water from the sampled wells did not have nitrate concentrations larger than the 10-milligram-per-liter Maximum Contaminant Level for drinking water, water from 50 percent of the sampled wells showed nitrate enrichment (concentrations greater than 2.0 milligrams per liter). Most trace elements in water from the sampled wells were detected only in small concentrations, and few exceeded respective water-quality standards. Twenty percent of iron concentrations, 40 percent of manganese concentrations, 3 percent of arsenic concentrations, and 13 percent of uranium concentrations exceeded respective Maximum Contaminant Levels or Secondary Maximum Contaminant Levels. A total of 47 pesticide compounds were analyzed in ground-water samples during this study. Water from 73 percent of the wells sampled had detectable concentrations of one or more of 8 of these 47 compounds. The herbicide atrazine or its degradation product deethylatrazine were detected most frequently (in water from 70 percent of the sampled wells). Metolachlor was detected in water from 10 percent of the wells, and simazine was detected in water from 30 percent of the wells sampled. Other pesticides detected included dieldrin, pendimethalin, prometon, and tebuthiuron (each in water from 3 percent of the wells). All concentrations of these compounds were less than established Maximum Contaminant Levels. A total of 85 volatile organic compounds (VOCs) were analyzed in ground-water samples during this study. Water from 43 percent of the wells had a detectable concentration of one or more VOCs. Chloroform was the most frequently detected VOC (23 percent of the wells sampled).Seven other VOCs were detected in water at frequencies of 13 percent or less in the wells sampled. Concentrations of VOCs were less than respective Maximum Contaminant Levels, except one sample with a concentration of 9.0 micrograms per liter for tetrachloroethylene (Maximum Contaminant Level of 5.0 micrograms per liter). An analysis of hydraulic gradient, flow velocity
Garn, Herbert S.; Scudder, Barbara C.; Richards, Kevin D.; Sullivan, Daniel J.
2001-01-01
Analyses and interpretation of water quality, sediment, and biological data from water years 1986 through 1998 indicated that land use and other human activities have had only minimal effects on water quality in the Wolf River upstream from and within the Menominee Indian Reservation in northeastern Wisconsin. Relatively high concentrations of calcium and magnesium (natural hardness), iron, manganese, and aluminum were measured in Wolf River water samples during water years 1986?98 from the three sampled sites and attributed to presence of highly mineralized geologic materials in the basin. Average calcium and magnesium concentrations varied from 22?26 milligrams per liter (mg/L) and 11?13 mg/L, respectively. Average iron concentrations ranged from 290?380 micrograms per liter (?g/L); average manganese concentrations ranged from 53?56 mg/L. Average aluminum concentrations ranged from 63?67 ?g/L. Mercury was present in water samples but concentrations were not at levels of concern. Levels of Kjeldahl nitrogen, ammonia, nitrite plus nitrate, total phosphorus, and orthophosphorus in water samples were often low or below detection limits (0.01? 0.10 mg/L). Trace amounts of atrazine (maximum concentration of 0.031 ?g/L), deethylatrazine (maximum 0.032 ?g/L), and alachlor (maximum of 0.002 ?g/L) were detected. Low concentrations of most trace elements were found in streambed sediment. Tissues of fish and aquatic invertebrates collected once each year from 1995 through 1998 at the Langlade and Keshena sites, near the northern and southern boundaries of the Reservation, respectively, were low in concentrations of most trace elements. Arsenic and silver in fish livers from both sites were less than or equal to 2 ?g/g arsenic and less than 1 ?g/g silver for dry weight analysis, and concentrations of antimony, beryllium, cadmium, cobalt, lead, nickel, and uranium were all below detection limits (less than 1 ?g/g dry weight). Concentrations of most other trace elements in fish were low, with the exceptions of chromium, copper, mercury, and selenium; however, these concentrations are not at levels of concern. Concentrations of all trace elements analyzed in whole caddisfly larvae also were low compared to those reported in the literature. During 1998, a total of 48 species of macroinvertebrates were identified at each of two sampled sites, with similar numbers of genera represented at both: 41 at Keshena and 44 at Langlade. The percentage EPT (Ephemeroptera, Plecoptera, and Trichoptera) was 52 at Keshena and 77 at Langlade; these relatively large percentages suggest very good to excellent water quality at these sites. A total of 52 algal taxa were identified at the Wolf River near Langlade. Diatoms made up 96 percent of the algal biomass. A total of 58 algal taxa were identified at Keshena, including 48 diatom taxa (83 percent). Although diatoms accounted for just 22 percent of the algal relative abundance, in cells per square centimeter, diatoms contributed 91 percent of the total algal biomass. The overall biological integrity of the Keshena and Langlade sites, based on diversity, siltation, and pollution indexes for diatoms is excellent.
Ground-water quality in the Appalachian Plateaus, Kanawha River basin, West Virginia
Sheets, Charlynn J.; Kozar, Mark D.
2000-01-01
Water samples collected from 30 privately-owned and small public-supply wells in the Appalachian Plateaus of the Kanawha River Basin were analyzed for a wide range of constituents, including bacteria, major ions, nutrients, trace elements, radon, pesticides, and volatile organic compounds. Concentrations of most constituents from samples analyzed did not exceed U.S. Environmental Protection Agency (USEPA) standards. Constituents that exceeded drinking-water standards in at least one sample were total coliform bacteria, Escherichia coli (E. coli), iron, manganese, and sulfate. Total coliform bacteria were present in samples from five sites, and E. coli were present at only one site. USEPA secondary maximum contaminant levels (SMCLs) were exceeded for three constituents -- sulfate exceeded the SMCL of 250 mg/L (milligrams per liter) in samples from 2 of 30 wells; iron exceeded the SMCL of 300 ?g/L (micrograms per liter) in samples from 12 of the wells, and manganese exceeded the SMCL of 50 ?g/L in samples from 17 of the wells sampled. None of the samples contained concentrations of nutrients that exceeded the USEPA maximum contaminant levels (MCLs) for these constituents. The maximum concentration of nitrate detected was only 4.1 mg/L, which is below the MCL of 10 mg/L. Concentrations of nitrate in precipitation and shallow ground water are similar, potentially indicating that precipitation may be a source of nitrate in shallow ground water in the study area. Radon concentrations exceeded the recently proposed maximum contaminant level of 300 pCi/L at 50 percent of the sites sampled. The median concentration of radon was only 290 pCi/L. Radon-222 is a naturally occurring, carcinogenic, radioactive decay product of uranium. Concentrations, however, did not exceed the alternate maximum contaminant level (AMCL) for radon of 4,000 pCi/L in any of the 30 samples. Arsenic concentrations exceeded the proposed MCL of 5?g/L at 4 of the 30 sites. No samples exceeded the current MCL of 50 ?g/L. Neither pesticides nor volatile organic compounds (VOCs) were prevalent in the study area, and the concentrations of the compounds that were detected did not exceed any USEPA MCLs. Pesticides were detected in only two of the 30 wells sampled, but four pesticides -- atrazine, carbofuran, DCPA, and deethylatrazine -- were detected in one well; molinate was detected in the other well. All of the pesticides detected were at estimated concentrations of only 0.002 ?g/L. Of the VOCs detected, trihalomethane compounds (THMs), which can result from chlorination of a well, were the most common. THMs were detected in 13 of the 30 wells sampled. Gasoline by-products, such as benzene, toluene, ethylbenzene and xylene (BTEX compounds) were detected in 10 of the 30 wells sampled. The maximum concentration of any of the VOCs detected in this study, however, was only 1.040 ?g/L, for the THM dichlorofluoromethane. Water samples from 25 of the wells were analyzed for chlorofluorocarbons (CFCs) to estimate the apparent age of ground water. The analyses indicated that age of water ranged from 10 to greater than 57 years, and that the age of ground water could be correlated with the topographic setting of the wells sampled. Thus the apparent age of water in wells on hilltops was youngest (median of 13 years) and that of water in wells in valleys was oldest (median of 42 years). Water from wells on hillsides was intermediate in age (median of 29 years). These data can be used to define contributing areas to wells, corroborate or revise conceptual ground-water flow models, estimate contaminant travel times from spills to other sources such as nearby domestic or public supply wells, and to manage point and nonpoint source activities that may affect critical aquifers.
Mercury accumulation and attenuation at a rapidly forming delta with a point source of mining waste
Johnson, Bryce E.; Esser, Bradley K.; Whyte, Dyan C.; Ganguli, Priya M.; Austin, Carrie M.; Hunt, James R.
2009-01-01
The Walker Creek intertidal delta of Tomales Bay, California is impacted by a former mercury mine within the watershed. Eleven short sediment cores (10 cm length) collected from the delta found monomethylmercury (MMHg) concentrations ranging from 0.3 to 11.4 ng/g (dry wt.), with lower concentrations occurring at the vegetated marsh and upstream channel locations. Algal mats common to the delta’s sediment surface had MMHg concentrations ranging from 7.5 to 31.5 ng/g, and the top 1 cm of sediment directly under the mats had two times greater MMHg concentrations compared to adjacent locations without algal covering. Spatial trends in resident biota reflect enhanced MMHg uptake at the delta compared to other bay locations. Eighteen sediment cores, 1 to 2 meters deep, collected from the 1.2 km2 delta provide an estimate of a total mercury (Hg) inventory of 2500 ± 500 kg. Sediment Hg concentrations ranged from pre-mining background conditions of approximately 0.1 μg/g to a post-mining maximum of 5 μg/g. Sediment accumulation rates were determined from three sediment cores using measured differences of 137Cs activity. We estimate a pre-mining Hg accumulation of less than 20 kg/yr, and a period of maximum Hg accumulation in the 1970s and 1980s with loading rates greater than 50 kg/yr, corresponding to the failure of a tailings dam at the mine site. At the time of sampling (2003) over 40 kg/yr of Hg was still accumulating at the delta, indicating limited recovery. We attribute observed spatial evolution of elevated Hg levels to ongoing inputs and sediment re-working, and estimate the inventory of the anthropogenic fraction of total Hg to be at least 1500 ± 300 kg. We suggest ongoing sediment inputs and methylation at the deltaic surface support enhanced mercury levels for resident biota and transfer to higher trophic levels throughout the Bay. PMID:19539980
Suzumura, Masahiro; Hashihama, Fuminori; Yamada, Namiha; Kinouchi, Shinko
2012-01-01
We measured pools of dissolved phosphorus (P), including dissolved inorganic P (DIP), dissolved organic P (DOP) and alkaline phosphatase (AP)-hydrolyzable labile DOP (L-DOP), and kinetic parameters of AP activity (APA) in the euphotic zone in the western North Pacific Ocean. Samples were collected from one coastal station in Sagami Bay, Japan, and three offshore stations between the North Pacific subtropical gyre (NPSG) and the Kuroshio region. Although DIP concentrations in the euphotic zone at all stations were equally low, around the nominal method detection limit of 20 nmol L-1, chlorophyll a (Chl a) concentrations were one order of magnitude greater at the coastal station. DOP was the dominant P pool, comprising 62–92% of total dissolved P at and above the Chl a maximum layer (CML). L-DOP represented 22–39% of the total DOP at the offshore stations, whereas it accounted for a much higher proportion (about 85%) in the coastal surface layers. Significant correlations between maximum potential AP hydrolysis rates and DIP concentrations or bacterial cell abundance in the offshore euphotic zone suggest that major APA in the oligotrophic surface ocean is from bacterial activity and regulated largely by DIP availability. Although the range of maximum potential APA was comparable among the environmental conditions, the in situ hydrolysis rate of L-DOP in the coastal station was 10 times those in the offshore stations. L-DOP turnover time at the CML ranged from 4.5 days at the coastal station to 84.4 days in the NPSG. The ratio of the APA half-saturation constant to the ambient L-DOP concentration decreased markedly from the NPSG to the coastal station. There were substantial differences in the rate and efficiency of DOP remineralization and its contribution as the potential P source between the low-phosphate/high-biomass coastal ecosystem and the low-phosphate/low biomass oligotrophic ocean. PMID:22457661
NASA Technical Reports Server (NTRS)
Ferrante, J.
1972-01-01
Equilibrium surface segregation of aluminum in a copper-10-atomic-percent-aluminum single crystal alloy oriented in the /111/ direction was demonstrated by using Auger electron spectroscopy. This crystal was in the solid solution range of composition. Equilibrium surface segregation was verified by observing that the aluminum surface concentration varied reversibly with temperature in the range 550 to 850 K. These results were curve fitted to an expression for equilibrium grain boundary segregation and gave a retrieval energy of 5780 J/mole (1380 cal/mole) and a maximum frozen-in surface coverage three times the bulk layer concentration. Analyses concerning the relative merits of sputtering calibration and the effects of evaporation are also included.
[Microbial exposure in collection of residential garbage--results of field studies].
Neumann, H D; Balfanz, J
1999-01-01
Since 1995 the communal accident insurance carrier of the county Wetfalen-Lippe conducts investigations into the exposure to biological agents related to refuse collection. Total fungal exposure during refuse collection turned out to range from 10,000 up to 750,000 colony forming units per cubic meter. Most of the measurement values exceeded the limit of 50,000. During hot periods in the summertime, the concentration of Aspergillus fumigatus increased up to 90,000 cfu/m3. The mean values of the bacterial concentrations ranged from 15,000 up to 50,000 cfu/m3, the endotoxin concentration from 12 up to 59 EU/m3. In the driver's cabin fungal exposure sometimes exceeded 10,000 cfu/m3 especially in autumn and winter. Maximum values were 5,000 cfu/m3 for bacteria and 15 EU/m3 for endotoxins. High values were measured irrespective of the kind of refuse.
Observations in eastern England of elevated methyl iodide concentrations in air of atlantic origin
NASA Astrophysics Data System (ADS)
Oram, D. E.; Penkett, S. A.
Atmospheric methyl iodide (CH 3I) has been measured at a ground-based site in eastern England for two consecutive summers. Maximum values of 43.1 pptv and 28.9 pptv were recorded in 1989 and 1990, respectively. CH 3I was not detectable in the autumn and winter months. Episodes of elevated concentration persisted for periods ranging from a few hours to several days. The origin of much of the observed CH 31 would appear to be the Atlantic Ocean, indicating the presence of large source areas, possibly phytoplankton blooms, in ocean waters. If so, this work provides the first evidence of long-range transport of an important iodine-bearing species at concentrations of hemispheric significance. Estimates are made of the dry deposition velocity of CH 3I and the potential impact of elevated tropospheric levels on the human uptake of iodine.
Assessment of exposure risk of polychlorinated biphenyls to interior least terns (Sterna antillarum)
Sanchez, B.C.; Caldwell, C.A.
2008-01-01
Risk of polychlorinated biphenyl (PCB) exposure and effects were assessed for a colony of federally endangered interior least terns (Sterna antillarum) nesting on the Bitter Lake National Wildlife Refuge (NM, USA). The colony feeds from an area on the Refuge (Hunter Marsh/Oxbow Complex) wherein fish with elevated concentrations of total PCBs have been documented. Concentrations of total PCBs in whole fish averaged 0.94 mg/kg with a maximum concentration of 2.77 mg/kg, wet weight. Estimated daily PCB intake rates by adult birds throughout their 180-d breeding season ranged from <0.01 mg/kg/d to 0.98 mg/kg/d, yielding hazard quotients that ranged from 0.01 to 21.68. Polychlorinated biphenyls pose a moderate risk to the colony of interior least terns that breed at the Bitter Lake National Wildlife Refuge, but the exposure rate is not likely to threaten their overall breeding success. ?? 2008 SETAC.
Organic Tracers from Asphalt in Propolis Produced by Urban Honey Bees, Apis mellifera Linn.
Alqarni, Abdulaziz S; Rushdi, Ahmed I; Owayss, Ayman A; Raweh, Hael S; El-Mubarak, Aarif H; Simoneit, Bernd R T
2015-01-01
Propolis is a gummy material produced by honey bees to protect their hives and currently has drawn the attention of researchers due to its broad clinical use. It has been reported, based only on observations, that honey bees also collect other non-vegetation substances such as paint or asphalt/tar to make propolis. Therefore, propolis samples were collected from bee hives in Riyadh and Al-Bahah, a natural area, Saudi Arabia to determine their compositional characteristics and possible sources of the neutral organic compounds. The samples were extracted with hexane and analyzed by gas chromatography-mass spectrometry. The results showed that the major compounds were n-alkanes, n-alkenes, methyl n-alkanoates, long chain wax esters, triterpenoids and hopanes. The n-alkanes (ranging from C17 to C40) were significant with relative concentrations varying from 23.8 to 56.8% (mean = 44.9+9.4%) of the total extracts. Their odd carbon preference index (CPI) ranged from 3.6 to 7.7, with a maximum concentration at heptacosane indicating inputs from higher plant vegetation wax. The relative concentrations of the n-alkenes varied from 23.8 to 41.19% (mean = 35.6+5.1%), with CPI = 12.4-31.4, range from C25 to C35 and maximum at tritriacontane. Methyl n-alkanoates, ranged from C12 to C26 as acids, with concentrations from 3.11 to 33.2% (mean = 9.6+9.5%). Long chain wax esters and triterpenoids were minor. The main triterpenoids were α- and β-amyrins, amyrones and amyryl acetates. The presence of hopanes in some total extracts (up to 12.5%) indicated that the bees also collected petroleum derivatives from vicinal asphalt and used that as an additional ingredient to make propolis. Therefore, caution should be taken when considering the chemical compositions of propolis as potential sources of natural products for biological and pharmacological applications. Moreover, beekeepers should be aware of the proper source of propolis in the flight range of their bee colonies.
Organic Tracers from Asphalt in Propolis Produced by Urban Honey Bees, Apis mellifera Linn.
Alqarni, Abdulaziz S.; Rushdi, Ahmed I.; Owayss, Ayman A.; Raweh, Hael S.; El-Mubarak, Aarif H.; Simoneit, Bernd R. T.
2015-01-01
Propolis is a gummy material produced by honey bees to protect their hives and currently has drawn the attention of researchers due to its broad clinical use. It has been reported, based only on observations, that honey bees also collect other non-vegetation substances such as paint or asphalt/tar to make propolis. Therefore, propolis samples were collected from bee hives in Riyadh and Al-Bahah, a natural area, Saudi Arabia to determine their compositional characteristics and possible sources of the neutral organic compounds. The samples were extracted with hexane and analyzed by gas chromatography-mass spectrometry. The results showed that the major compounds were n-alkanes, n-alkenes, methyl n-alkanoates, long chain wax esters, triterpenoids and hopanes. The n-alkanes (ranging from C17 to C40) were significant with relative concentrations varying from 23.8 to 56.8% (mean = 44.9+9.4%) of the total extracts. Their odd carbon preference index (CPI) ranged from 3.6 to 7.7, with a maximum concentration at heptacosane indicating inputs from higher plant vegetation wax. The relative concentrations of the n-alkenes varied from 23.8 to 41.19% (mean = 35.6+5.1%), with CPI = 12.4-31.4, range from C25 to C35 and maximum at tritriacontane. Methyl n-alkanoates, ranged from C12 to C26 as acids, with concentrations from 3.11 to 33.2% (mean = 9.6+9.5%). Long chain wax esters and triterpenoids were minor. The main triterpenoids were α- and β-amyrins, amyrones and amyryl acetates. The presence of hopanes in some total extracts (up to 12.5%) indicated that the bees also collected petroleum derivatives from vicinal asphalt and used that as an additional ingredient to make propolis. Therefore, caution should be taken when considering the chemical compositions of propolis as potential sources of natural products for biological and pharmacological applications. Moreover, beekeepers should be aware of the proper source of propolis in the flight range of their bee colonies. PMID:26075382
40 CFR Table 1 to Subpart A of... - Maximum Concentration of Constituents for Groundwater Protection
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Maximum Concentration of Constituents for Groundwater Protection 1 Table 1 to Subpart A of Part 192 Protection of Environment ENVIRONMENTAL... Concentration of Constituents for Groundwater Protection Constituent concentration 1 Maximum Arsenic 0.05 Barium...
40 CFR Table 1 to Subpart A of... - Maximum Concentration of Constituents for Groundwater Protection
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Maximum Concentration of Constituents for Groundwater Protection 1 Table 1 to Subpart A of Part 192 Protection of Environment ENVIRONMENTAL... Concentration of Constituents for Groundwater Protection Constituent concentration 1 Maximum Arsenic 0.05 Barium...
40 CFR Table 1 to Subpart A of... - Maximum Concentration of Constituents for Groundwater Protection
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Maximum Concentration of Constituents for Groundwater Protection 1 Table 1 to Subpart A of Part 192 Protection of Environment ENVIRONMENTAL... Concentration of Constituents for Groundwater Protection Constituent concentration 1 Maximum Arsenic 0.05 Barium...
40 CFR Table 1 to Subpart A of... - Maximum Concentration of Constituents for Groundwater Protection
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Maximum Concentration of Constituents for Groundwater Protection 1 Table 1 to Subpart A of Part 192 Protection of Environment ENVIRONMENTAL... Concentration of Constituents for Groundwater Protection Constituent concentration 1 Maximum Arsenic 0.05 Barium...
Gessner, Stephan; Below, Elke; Diedrich, Stephan; Wegner, Christian; Gessner, Wiebke; Kohlmann, Thomas; Heidecke, Claus-Dieter; Bockholdt, Britta; Kramer, Axel; Assadian, Ojan; Below, Harald
2016-09-01
During hand antisepsis, health care workers (HCWs) are exposed to alcohol by dermal contact and by inhalation. Concerns have been raised that high alcohol absorptions may adversely affect HCWs, particularly certain vulnerable individuals such as pregnant women or individuals with genetic deficiencies of aldehyde dehydrogenase. We investigated the kinetics of HCWs' urinary concentrations of ethanol and its metabolite ethyl glucuronide (EtG) during clinical work with and without previous consumption of alcoholic beverages by HCWs. The median ethanol concentration was 0.7 mg/L (interquartile range [IQR], 0.5-1.9 mg/L; maximum, 9.2 mg/L) during abstinence and 12.2 mg/L (IQR, 1.5-139.6 mg/L; maximum, 1,020.1 mg/L) during alcohol consumption. During abstinence, EtG reached concentrations of up to 958 ng/mL. When alcohol consumption was permitted, the median EtG concentration of all samples was 2,593 ng/mL (IQR, 890.8-3,576 ng/mL; maximum, 5,043 ng/mL). Although alcohol consumption was strongly correlated with both EtG and ethanol in urine, no significant correlation for the frequency of alcoholic hand antisepsis was observed in the linear mixed models. The use of ethanol-based handrub induces measurable ethanol and EtG concentrations in urine. Compared with consumption of alcoholic beverages or use of consumer products containing ethanol, the amount of ethanol absorption resulting from handrub applications is negligible. In practice, there is no evidence of any harmful effect of using ethanol-based handrubs as much as it is clinically necessary. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Mercury contamination in bats from the central United States.
Korstian, Jennifer M; Chumchal, Matthew M; Bennett, Victoria J; Hale, Amanda M
2018-01-01
Mercury (Hg) is a highly toxic metal that has detrimental effects on wildlife. We surveyed Hg concentrations in 10 species of bats collected at wind farms in the central United States and found contamination in all species. Mercury concentration in fur was highly variable both within and between species (range: 1.08-10.52 µg/g). Despite the distance between sites (up to 1200 km), only 2 of the 5 species sampled at multiple locations had fur Hg concentrations that differed between sites. Mercury concentrations observed in the present study all fell within the previously reported ranges for bats collected from the northeastern United States and Canada, although many of the bats we sampled had lower maximum Hg concentrations. Juvenile bats had lower concentrations of Hg in fur compared with adult bats, and we found no significant effect of sex on Hg concentrations in fur. For a subset of 2 species, we also measured Hg concentration in muscle tissue; concentrations were much higher in fur than in muscle, and Hg concentrations in the 2 tissue types were weakly correlated. Abundant wind farms and ongoing postconstruction fatality surveys offer an underutilized opportunity to obtain tissue samples that can be used to assess Hg contamination in bats. Environ Toxicol Chem 2018;37:160-165. © 2018 SETAC. © 2017 SETAC.
Yan, En-Rong; Yang, Xiao-Dong; Chang, Scott X; Wang, Xi-Hua
2013-01-01
Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.
NASA Astrophysics Data System (ADS)
Han, Sang-Heon; Mauze, Akhil; Ahmadi, Elaheh; Mates, Tom; Oshima, Yuichi; Speck, James S.
2018-04-01
Ge and Sn as n-type dopants in (001) β-Ga2O3 films were investigated using plasma-assisted molecular beam epitaxy. The Ge concentration showed a strong dependence on the growth temperature, whereas the Sn concentration remains independent of the growth temperature. The maximum growth temperature at which a wide range of Ge concentrations (from 1017 to 1020 cm-3) could be achieved was 675 °C while the same range of Sn concentration could be achieved at growth temperature of 750 °C. Atomic force microscopy results revealed that higher growth temperature shows better surface morphology. Therefore, our study reveals a tradeoff between higher Ge doping concentration and high quality surface morphology on (001) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. The Ge doped films had an electron mobility of 26.3 cm2 V-1 s-1 at the electron concentration of 6.7 × 1017 cm-3 whereas the Sn doped films had an electron mobility of 25.3 cm2 V-1 s-1 at the electron concentration of 1.1 × 1018 cm-3.
Schmidt, A.R.; Stamer, J.K.
1987-01-01
Water quality and processes that affect the dissolved-oxygen concentration in a 45.9 mile reach of the Sangamon River from Decatur to Riverton, Illinois, were determined from data collected during low-flow periods in the summer of 1982. Relations among dissolved oxygen, water discharge, biochemical oxygen demand, ammonia and nitrite plus nitrate concentrations, and photosynthetic-oxygen production were simulated using a one-dimensional, steady-state computer model. Average dissolved oxygen concentrations ranged from 8.0 milligrams per liter at the upstream end of the study reach at Decatur to 5.2 milligrams per liter 12.2 miles downstream. Ammonia concentrations ranged from 45 milligrams per liter at the mouth of Stevens Creek (2.6 miles downstream from Decatur) to 0.03 milligram per liter at the downstream end of the study reach. Un-ionized ammonia concentrations exceeded the maximum concentration specified in the State water quality standard (0.04 milligram per liter) throughout most of the study reach. Model simulations indicated that oxidation of ammonia to form nitrite plus nitrate was the most significant process leading to low dissolved oxygen concentrations in the river. (USGS)
Kausar, Abida; Bhatti, Haq Nawaz; MacKinnon, Gillian
2013-11-01
In this research, biosorption efficiency of different agro-wastes was evaluated with rice husk showing maximum biosorption capacity among the selected biosorbents. Optimization of native, SDS-treated and immobilized rice husk adsorption parameters including pH, biosorbent amount, contact time, initial U(VI) concentration and temperature for maximum U(VI) removal was investigated. Maximum biosorption capacity for native (29.56 mg g(-1)) and immobilized biomass (17.59 mg g(-1)) was observed at pH 4 while SDS-treated biomass showed maximum removal (28.08 mg g(-1)) at pH 5. The Langmuir sorption isotherm model correlated best with the U(IV) biosorption equilibrium data for the 10-100 mg L(-1) concentration range. The kinetics of the reaction followed pseudo-second order kinetic model. Thermodynamic parameters like free energy (ΔG(0)) and enthalpy (ΔH°) confirmed the spontaneous and exothermic nature of the process. Experiments to determine the regeneration capacity of the selected biosorbents and the effect of competing metal ions on biosorption capacity were also conducted. The biomass was characterized using scanning electron microscopy, surface area analysis, Fourier transformed infra-red spectroscopy and thermal gravimetric analysis. The study proved that rice husk has potential to treat uranium in wastewater. Copyright © 2013 Elsevier B.V. All rights reserved.
Meloni, Monica; Corti, Natascia; Müller, Daniel; Henning, Lars; Gutteck, Ursula; von Braun, Amrei; Weber, Rainer; Fehr, Jan
2015-01-01
Therapeutic target serum concentrations of first-line antituberculosis drugs have not been well defined in clinical studies in tuberculosis (TB) patients. We retrospectively investigated the estimated maximum serum concentrations (eC max) of antituberculosis drugs and clinical outcome of TB patients with therapeutic drug monitoring performed between 2010-2012 at our institution, and follow-up until March 2014. The eC max was defined as the highest serum concentration during a sampling period (2, 4 and 6 hours after drug ingestion). We compared the results with published eC max values, and categorised them as either "within reference range", "low eC max", or "very low eC max".Low/very low eC max-levels were defined as follows: isoniazid 2-3/<2 mg/l, rifampicin 4-8/<4 mg/l, rifabutin 0.2-0.3/<0.2 mg/l, ethambutol 1-2/<0.1 mg/l and pyrazinamide <20 mg/l. Concentrations of antituberculosis drugs in 175 serum samples of 17 patients with TB were analysed. In 12 (71%) patients, multiple therapeutic drug monitoring samples were collected over time, in 5 (29%) patients only one sample was available for therapeutic drug monitoring. Overall, 94% of all patients had at least one low antituberculosis drug concentration. Overall, 64% of all eC max levels were classified as "low" or "very low". The eC max was below the relevant reference range in 80% of isoniazid, 95% of rifampicin, 30% of pyrazinamide, and 30% of ethambutol measurements. All but one patient were cured of tuberculosis. Although many antituberculosis drug serum concentrations were below the widely used reference ranges, 16 of 17 patients were cured of tuberculosis. These results challenge the use of the published reference ranges for therapeutic drug monitoring.
NASA Astrophysics Data System (ADS)
Naumov, V. V.; Isaeva, V. A.; Kovaleva, Yu. A.; Sharnin, V. A.
2013-07-01
Stability constants of nickel(II) glycylglycinate complexes in aqueous solutions of dimethylsulfoxide of variable composition (from 0.00 to 0.60 mole fractions DMSO) are determined according to potentiometry at 298.15 K and an ionic strength of 0.1 M (NaClO4). It is determined that with a rise in the concentration of an organic cosolvent in solution, the stability of nickel(II) complexes with glycylglycinate ion on the whole increases, but the log K stability = f( X DMSO) dependences are of a critical character with a maximum of 0.3 mole fractions DMSO. It is demonstrated that the rise in the stability of complexes is related to the destabilization of ligands in the low concentration range of the organic component, while the presence of a maximum is due to the different dynamics of the solvation contributions from reagents during changes in the Gibbs energy of reaction.
Bodkin, Lee J.; Oden, Jeannette H.
2010-01-01
To better understand the hydrology (streamflow and water quality) of the West Fork San Jacinto River Basin downstream from Lake Conroe near Conroe, Texas, including spatial and temporal variation in suspended-sediment (SS) and total suspended-solids (TSS) concentrations and loads, the U.S. Geological Survey, in cooperation with the Houston-Galveston Area Council and the Texas Commission on Environmental Quality, measured streamflow and collected continuous and discrete water-quality data during July 2008-August 2009 in the West Fork San Jacinto River Basin downstream from Lake Conroe. During July 2008-August 2009, discrete samples were collected and streamflow measurements were made over the range of flow conditions at two streamflow-gaging stations on the West Fork San Jacinto River: West Fork San Jacinto River below Lake Conroe near Conroe, Texas (station 08067650) and West Fork San Jacinto River near Conroe, Texas (station 08068000). In addition to samples collected at these two main monitoring sites, discrete sediment samples were also collected at five additional monitoring sites to help characterize water quality in the West Fork San Jacinto River Basin. Discrete samples were collected semimonthly, regardless of flow conditions, and during periods of high flow resulting from storms or releases from Lake Conroe. Because the period of data collection was relatively short (14 months) and low flow was prevalent during much of the study, relatively few samples collected were representative of the middle and upper ranges of historical daily mean streamflows. The largest streamflows tended to occur in response to large rainfall events and generally were associated with the largest SS and TSS concentrations. The maximum SS and TSS concentrations at station 08067650 (180 and 133 milligrams per liter [mg/L], respectively) were on April 19, 2009, when the instantaneous streamflow was the third largest associated with a discrete sample at the station. SS concentrations were 25 mg/L or less in 26 of 29 environmental samples and TSS concentrations were 25 mg/L or less in 25 of 28 environmental samples. Median SS and TSS concentrations were 7.0 and 7.6 mg/L, respectively. At station 08068000, the maximum SS concentration (1,270 mg/L) was on April 19, 2009, and the maximum TSS concentration (268 mg/L) was on September 18, 2008. SS concentrations were 25 mg/L or less in 16 of 27 of environmental samples and TSS concentrations were 25 mg/L or less in 18 of 26 environmental samples at the station. Median SS and TSS concentrations were 18.0 and 14.0 mg/L, respectively. The maximum SS and TSS concentrations for all five additional monitoring sites were 3,110 and 390 mg/L, respectively, and the minimum SS and TSS concentrations were 5.0 and 1.0 mg/L, respectively. Median concentrations ranged from 14.0 to 54.0 mg/L for SS and from 11.0 to 14.0 mg/L for TSS. Continuous measurements of streamflow and selected water-quality properties at stations 08067650 and 08068000 were evaluated as possible variables in regression equations developed to estimate SS and TSS concentrations and loads. Surrogate regression equations were developed to estimate SS and TSS loads by using real-time turbidity and streamflow data; turbidity and streamflow resulted in the best regression models for estimating near real-time SS and TSS concentrations for stations 08097650 and 08068000. Relatively large errors are associated with the regression-computed SS and TSS concentrations; the 90-percent prediction intervals for SS and TSS concentrations were (+/-)48.9 and (+/-)43.2 percent, respectively, for station 08067650 and (+/-)47.7 and (+/-)43.2 percent, respectively, for station 08068000. Regression-computed SS and TSS concentrations were corrected for bias before being used to compute SS and TSS loads. The total estimated SS and TSS loads during July 2008-August 2009 were about 3,540 and 1,900 tons, respectively, at station 08067650 and about 156,000 an
2006-11-01
EFFECTIVENESS OF HALOGEN-BASED DISINFECTANTS AGAINST Acinetobacter baumannii: WOUND CARE AND ENVIROMENTAL DECONTAMINATION James...a standard E. coli comparator, in a novel bacterial culture system that incorporated a three log range of organic growth media concentrations. We...report the highest dilutions of stock disinfectant able to inhibit replication or kill the bacteria , denoted as the maximum inhibitory dilution
Heterotrophic Potential for Amino Acid Uptake in a Naturally Eutrophic Lake1
Burnison, B. Kent; Morita, Richard Y.
1974-01-01
The uptake of sixteen 14C-labeled amino acids by the indigenous heterotrophic microflora of Upper Klamath Lake, Oregon, was measured using the kinetic approach. The year-long study showed a seasonal variation in the maximum uptake velocity, Vmax, of all the amino acids which was proportional to temperature. The maximum total flux of amino acids by the heterotrophic microflora ranged from 1.2 to 11.9 μmol of C per liter per day (spring to summer). Glutamate, asparagine, aspartate, and serine had the highest Vmax values and were respired to the greatest extent. The percentages of the gross (net + respired) uptake of the amino acids which were respired to CO2 ranged from 2% for leucine to 63% for glutamate. Serine, lysine, and glycine were the most abundant amino acids found in Upper Klamath Lake surface water; at intermediate concentrations were alanine, aspartate, and threonine; and the remaining amino acids were always below 7.5 × 10-8 M (10 μg/liter). The amino acid concentrations determined chemically appear to be the sum of free and adsorbed amino acids, since the values obtained were usually greater than the (Kt + Sn) values obtained by the heterotrophic uptake experiments. PMID:4207581
Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes
2012-01-01
The adsorption characteristics of 4-chloro-2-nitrophenol (4C2NP) onto single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) from aqueous solution were investigated with respect to the changes in the contact time, pH of solution, carbon nanotubes dosage and initial 4C2NP concentration. Experimental results showed that the adsorption efficiency of 4C2NP by carbon nanotubes (both of SWCNTs and MWCNTs) increased with increasing the initial 4C2NP concentration. The maximum adsorption took place in the pH range of 2–6. The linear correlation coefficients of different isotherm models were obtained. Results revealed that the Langmuir isotherm fitted the experimental data better than the others and based on the Langmuir model equation, maximum adsorption capacity of 4C2NP onto SWCNTs and MWCNTs were 1.44 and 4.42 mg/g, respectively. The observed changes in the standard Gibbs free energy, standard enthalpy and standard entropy showed that the adsorption of 4C2NP onto SWCNTs and MWCNTs is spontaneous and exothermic in the temperature range of 298–328 K. PMID:23369489
A simple parameterization for the height of maximum ozone heating rate
NASA Astrophysics Data System (ADS)
Zhang, Feng; Hou, Can; Li, Jiangnan; Liu, Renqiang; Liu, Cuiping
2017-12-01
It is well-known that the height of the maximum ozone heating rate is much higher than the height of the maximum ozone concentration in the stratosphere. However, it lacks an analytical expression to explain it. A simple theoretical model has been proposed to calculate the height of maximum ozone heating rate and further understand this phenomenon. Strong absorption of ozone causes the incoming solar flux to be largely attenuated before reaching the location of the maximum ozone concentration. By comparing with the exact radiative transfer calculations, the heights of the maximum ozone heating rate produced by the theoretical model are generally very close to the true values. When the cosine of solar zenith angle μ0 = 1.0 , in US Standard atmosphere, the heights of the maximum ozone heating rate by the theoretical model are 41.4 km in the band 0.204-0.233 μm, 47.9 km in the band 0.233-0.270 μm, 44.5 km in the band 0.270-0.286 μm, 37.1 km in the band 0.286-0.303 μm, and 30.2 km in the band 0.303-0.323 μm, respectively. The location of the maximum ozone heating rate is sensitive to the solar spectral range. In band 1, the heights of the maximum ozone heating rate by the theoretical model are 52.3 km for μ0 = 0.1 , 47.1 km for μ0 = 0.3 , 44.6 km for μ0 = 0.5 , 43.1 km for μ0 = 0.7 , 41.9 km for μ0 = 0.9 , 41.4 km for μ0 = 1.0 in US Standard atmosphere, respectively. This model also illustrates that the location of the maximum ozone heating rate is sensitive to the solar zenith angle.
Kalkhoff, S.J.
1985-01-01
The U.S. Geological Survey, in cooperation with the Mississippi Department of Natural Resources, Bureau of Geology, is conducting a hydrologic data collection program in potential lignite-producing areas in Mississippi. During the last two weeks of August 1984, hydrologic data were collected at 15 stream sites that drain potential lignite mining areas in Lafayette, Calhoun, and Yalobusha Counties. Main channel widths ranged from approximately 60 feet at three streams (Coon Creek near Toccopula, Muckaloon Creek near Tula, and Hurricane Creek near Velma) to approximately 120 feet at two streams (Potlockney Creek near Tula, and Savannah Creek near Bruce). Maximum water depths ranged from less than 1.0 foot at most streams to over 5.0 feet at sites on Potlockney Creek near Tula and McGill Creek near Sarepta. Stream discharge ranged from 0.32 cubic feet per second in Persimmon Creek near Bruce to 18.5 cubic feet per second in Puskus Creek near Etta. The specific conductance of stream water ranged from 25 to 160 microsiemens and dissolved solids concentrations ranged from 22 to 91 mg/L (milligrams per liter). Most major ion concentrations were less than 10 mg/L with the exception of calcium (11 mg/L), sodium (12 mg/L) and sulfate (18 mg/L) in the water of Persimmon Creek near Bruce. Dissolved oxygen concentrations were greater than 5.0 mg/L at all but one site. Turbidity values were generally less than 50 units. Nitrate plus nitrite concentrations were equal to or less than 0.10 mg/L in all streams except in Potlockney Creek near Tula where the concentration was 0.11 mg/L. Copper and selenium concentrations in the water at all sampling sites ranged from below the detection limits (1 microgram/g) to 4 micrograms/g (micrograms per gram) and mercury concentrations in bottom material samples ranged from less than 0.01 microgram/g to 0.15 microgram/g. (USGS)
Eckhardt, David A.V.; Sloto, Ronald A.
2012-01-01
Groundwater samples were collected from 15 production wells and 1 spring at 9 national park units in New York, Pennsylvania, and West Virginia in July and August 2011 and analyzed to characterize the quality of these water supplies. The sample sites generally were selected to represent areas of potential effects on water quality by drilling and development of gas wells in Marcellus Shale and Utica Shale areas of the northeastern United States. The groundwater samples were analyzed for 53 constituents, including nutrients, major inorganic constituents, trace elements, chemical oxygen demand, radioactivity, and dissolved gases, including methane and radon-222. Results indicated that the groundwater used for water supply at the selected national park units is generally of acceptable quality, although concentrations of some constituents exceeded at least one drinking-water guideline at several wells. Nine analytes were detected in concentrations that exceeded Federal drinking-water standards, mostly secondary standards that define aesthetic properties of water, such as taste and odor. One sample had an arsenic concentration that exceeded the U.S. Environmental Protection Agency maximum contaminant level (MCL) of 10 micrograms per liter (μg/L). The pH, which is a measure of acidity (hydrogen ion activity), ranged from 4.8 to 8.4, and in 5 of the 16 samples, the pH values were outside the accepted U.S. Environmental Protection Agency secondary maximum contaminant level (SMCL) range of 6.5 to 8.5. The concentration of total dissolved solids exceeded the SMCL of 500 milligrams per liter (mg/L) at four sites. The sulfate concentration exceeded the SMCL of 250 mg/L concentration in one sample, and the fluoride concentration exceeded the SMCL of 2 mg/L in one sample. Sodium concentrations exceeded the U.S. Environmental Protection Agency drinking water health advisory of 60 mg/L at four sites. Iron concentrations exceeded the SMCL of 300 μg/L in two samples, and manganese concentrations exceeded the SMCL of 50 μg/L in five samples. Radon-222 concentrations exceeded the proposed U.S. Environmental Protection Agency MCL of 300 picocuries per liter in eight samples.
Spada, Lucia; Annicchiarico, Cristina; Cardellicchio, Nicola; Giandomenico, Santina; Di Leo, Antonella
2012-04-01
Total mercury and methylmercury concentrations were measured in sediments and marine organisms from the Taranto Gulf to understand their distribution and partitioning. Sediment concentrations ranged from 0.036 to 7.730 mg/kg (mean: 2.777 mg/kg d.w.) and from 1 to 40 μg/kg (mean: 11 μg/kg d.w.) for total mercury (THg) and methylmercury (Me-Hg), respectively. In mollusks THg ranged from n.d. to 1870 μg/kg d.w. while in fish from 324 to 1740 μg/kg d.w. Me-Hg concentrations in fish ranged from 190 to 1040 μg/kg d.w. and from n.d. to 1321 μg/kg d.w. in mollusks. THg exceeded the maximum level fixed by the European Commission (0.5 mg/kg w.w.) only in gastropod Hexaplex t. The calculated weekly intake was in many cases over the Provisional Tolerable Weekly Intake established by EFSA for all edible species. These results seem to indicate that dietary consumption of this seafood implicates an appreciable risk for human health. Copyright © 2011 Elsevier GmbH. All rights reserved.
Tan, Zhaofeng; Lu, Keding; Jiang, Meiqing; Su, Rong; Dong, Huabin; Zeng, Limin; Xie, Shaodong; Tan, Qinwen; Zhang, Yuanhang
2018-09-15
We present the in-situ measurements in Chengdu, a major city in south west of China, in September 2016. The concentrations of ozone and its precursor were measured at four sites. Although the campaign was conducted in early autumn, up to 100 ppbv (parts per billion by volume) daily maximum ozone was often observed at all sites. The observed ozone concentrations showed good agreement at all sites, which implied that ozone pollution is a regional issue in Chengdu. To better understand the ozone formation in Chengdu, an observation based model is used in this study to calculate the RO x radical concentrations (RO x = OH + HO 2 + RO 2 ) and ozone production rate (P(O 3 )). The model predicts OH daily maximum is in the range of 4-8 × 10 6 molecules cm -3 , and HO 2 and RO 2 are in the range of 3-6 × 10 8 molecules cm -3 . The modelled radical concentrations show a distinct difference between ozone pollution and attainment period. The relative incremental reactivity (RIR) results demonstrate that anthropogenic VOCs reduction is the most efficient way to mitigate ozone pollution at all sites, of which alkenes dominate >50% of the ozone production. Empirical kinetic modelling approach shows that three out of four sites are under the VOC-limited regime, while Pengzhou is in a transition regime due to the local petrochemical industry. The ozone budget analysis showed that the local ozone production driven by the photochemical process is important to the accumulation of ozone concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.
Liger, Vladimir V; Mironenko, Vladimir R; Kuritsyn, Yurii A; Bolshov, Mikhail A
2018-05-17
A new algorithm for the estimation of the maximum temperature in a non-uniform hot zone by a sensor based on absorption spectrometry with a diode laser is developed. The algorithm is based on the fitting of the absorption spectrum with a test molecule in a non-uniform zone by linear combination of two single temperature spectra simulated using spectroscopic databases. The proposed algorithm allows one to better estimate the maximum temperature of a non-uniform zone and can be useful if only the maximum temperature rather than a precise temperature profile is of primary interest. The efficiency and specificity of the algorithm are demonstrated in numerical experiments and experimentally proven using an optical cell with two sections. Temperatures and water vapor concentrations could be independently regulated in both sections. The best fitting was found using a correlation technique. A distributed feedback (DFB) diode laser in the spectral range around 1.343 µm was used in the experiments. Because of the significant differences between the temperature dependences of the experimental and theoretical absorption spectra in the temperature range 300⁻1200 K, a database was constructed using experimentally detected single temperature spectra. Using the developed algorithm the maximum temperature in the two-section cell was estimated with accuracy better than 30 K.
Qin, Guofu; Zou, Keting; Li, Yongbo; Chen, Yan; He, Fengrui; Ding, Guirong
2016-09-01
In this study,an effort has been made to evaluate the pesticide residues in vegetables from western China. Fifty-one pesticides, including organophosphorus, organochlorine, carbamate and pyrethroid, were detected in 369 commonly used vegetables by GC-MS. Concentrations of organophosphorus pesticides were detected ranging from 0.0008 to 18.8200 mg/kg, among which organophosphorus pesticide concentrations exceeded their maximum residue levels (MRLs) in five samples. Carbamate and organochlorine pesticides were determined to have concentrations in the range of 0.0012-0.7928 mg/kg. The residual concentrations of carbamate pesticides in six samples and organochlorine pesticides in four samples exceeded their MRLs. The residual concentrations of five pyrethroid pesticides were within the range of 0.0016-6.0827 mg/kg and the pyrethroid residues in two samples exceeded their MRLs. The results revealed that pesticide residues in 70.73% of the vegetables samples were not detected, while in the rest of vegetables there were one or more pesticide residues and some even exceeded their MRLs, which would threaten the health of consumers. Our work provides significant information for the food safety regulations to control the excessive use of some pesticides on those kinds of vegetables from western China. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Hydrologic data for the Big Spring basin, Clayton County, Iowa, water year 1991
Kalkhoff, S.J.; Kuzniar, R.L.
1994-01-01
Stream discharge, specific conductance, pH, and water temperature were monitored continuously, and monthly water-quality samples were collected at a site on Roberts Creek and at Big Spring. Nitrite plus nitrate as nitrogen concentrations in 27 samples from Roberts Creek at the point where it leaves the study area ranged from 1.8 to 22 mg/L. Herbicide concentrations in 26 samples from the Roberts Creek site ranged from less than 0.10 μg/L (micrograms per liter) to 43 μg/L. Alachlor was detected in 42 percent of the samples; atrazine in 92 percent; and cyanazine and metolachlor in 35 percent of the samples. The total suspended-sediment load discharged in Roberts Creek was about 160,000 tons. At Big Spring, the ground-water discharge point, the daily mean specific conductance ranged from 414 to 788 microsiemens per centimeter at 25 degrees Celsius, the daily median pH ranged from 6.7 to 7.1, and the daily mean water temperature ranged from 8.5 to 13.0 degrees Celsius. Concentrations of nitrite plus nitrate as nitrogen in 23 samples ranged from 4.2 to 17 mg/L. The total measured suspended-sediment discharged from Big Spring was about 17,000 tons. Alachlor was detected in 26 percent; atrazine in 100 percent; cyanazine in 26 percent, and metolachlor in 9 percent of the samples. The maximum atrazine concentration was 16 μg/L.
Stamos, Christina L.; Cox, Brett F.; Izbicki, John A.; Mendez, Gregory O.
2003-01-01
The proximity of the Mojave River ground-water basin to the highly urbanized Los Angeles region has resulted in rapid population growth and, consequently, an increase in the demand for water. The Mojave River, the primary source of surface water for the region, normally is dry--except for periods of flow after intense storms; therefore, the region relies almost entirely on ground water to meet its agricultural and municipal needs. The area where the Helendale Fault intersects the Mojave River is of particular hydrogeologic interest because of its importance as a boundary between two water-management subareas of the Mojave Water Agency. The fault is the boundary between the upper Mojave River Basin (Oeste, Alto, and Este subareas) and the lower Mojave River Basin (Centro and Baja subareas); specifically, the fault is the boundary between the Alto and the Centro subareas. To obtain the information necessary to help better understand the hydrogeology of the area near the fault, multiple-well monitoring sites were installed, the surface geology was mapped in detail, and water-level and water-quality data were collected from wells in the study area. Detailed surficial geologic maps and water-level measurements indicate that the Helendale Fault impedes the flow of ground water in the deeper regional aquifer, but not in the overlying floodplain aquifer. Other faults mapped in the area impede the flow of ground water in both aquifers. Evidence of flowing water in the Mojave River upgradient of the Helendale Fault exists in the historical record, suggesting an upward gradient of ground-water flow. However, water-level data from this study indicate that pumping upstream of the Helendale Fault has reversed the vertical gradient of ground-water flow since predevelopment conditions, and the potential now exists for water to flow downward from the floodplain aquifer to the regional aquifer. Sixty-seven ground-water samples were analyzed for major ions, nutrients, and stable isotopes of oxygen and hydrogen from 34 wells within the study area between May 1990 and November 1999. Dissolved-solids concentrations in water samples from 14 wells in the floodplain aquifer ranged from 339 to 2,330 milligrams per liter (mg/L) with a median concentration of 825 mg/L. Concentrations in water from 11 of these wells exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) of 500 mg/L. Dissolved-solids concentrations of water from nine wells sampled in the regional aquifer ranged from 479 to 946 mg/L with a median concentration of 666 mg/L. Concentrations in at least one sample of water from each of the wells in the regional aquifer exceeded the USEPA SMCL for dissolved solids. Arsenic concentrations in water from 14 wells in the floodplain aquifer ranged from less than the detection limit of 2 micrograms per liter (?g/L) to a maximum of 34 ?g/L with a median concentration of 6 ?g/L. Concentrations in water from six of the 14 wells exceeded the USEPA Maximum Contaminant Level (MCL) for arsenic of 10 ?g/L. Arsenic concentrations in water from nine wells in the regional aquifer ranged from less than the detection limit of 2 to 130 ?g/L with a median concentration of 11 ?g/L. Concentrations in water from five of these nine wells exceeded the USEPA MCL for arsenic. Dissolved-solids concentrations in water from seven wells completed in the igneous and metamorphic basement rocks that underlie the floodplain and regional aquifers ranged from 400 to 3,190 mg/L with a median concentration of 1,410 mg/L. Concentrations in water from all but one of the seven wells sampled exceeded the USEPA SMCL for dissolved solids. Concentrations in water from the basement rocks exceeded the USEPA SMCL for arsenic of 10 ?g/L in five of the seven wells. The high concentrations of arsenic, dissolved solids, and other constituents probably occur naturally. Stable isotopes of oxygen and hydrogen indicate that before pumping began in
Trade-off between synergy and efficacy in combinations of HIV-1 latency-reversing agents.
Gupta, Vipul; Dixit, Narendra M
2018-02-01
Eradicating HIV-1 infection is difficult because of the reservoir of latently infected cells that gets established soon after infection, remains hidden from antiretroviral drugs and host immune responses, and retains the capacity to reignite infection following the cessation of treatment. Drugs called latency-reversing agents (LRAs) are being developed to reactivate latently infected cells and render them susceptible to viral cytopathicity or immune killing. Whereas individual LRAs have failed to induce adequate reactivation, pairs of LRAs have been identified recently that act synergistically and hugely increase reactivation levels compared to individual LRAs. The maximum synergy achievable with LRA pairs is of clinical importance, as it would allow latency-reversal with minimal drug exposure. Here, we employed stochastic simulations of HIV-1 transcription and translation in latently infected cells to estimate this maximum synergy. We incorporated the predominant mechanisms of action of the two most promising classes of LRAs, namely, protein kinase C agonists and histone deacetylase inhibitors, and quantified the activity of individual LRAs in the two classes by mapping our simulations to corresponding in vitro experiments. Without any adjustable parameters, our simulations then quantitatively captured experimental observations of latency-reversal when the LRAs were used in pairs. Performing simulations representing a wide range of drug concentrations, we estimated the maximum synergy achievable with these LRA pairs. Importantly, we found with all the LRA pairs we considered that concentrations yielding the maximum synergy did not yield the maximum latency-reversal. Increasing concentrations to increase latency-reversal compromised synergy, unravelling a trade-off between synergy and efficacy in LRA combinations. The maximum synergy realizable with LRA pairs would thus be restricted by the desired level of latency-reversal, a constrained optimum we elucidated with our simulations. We expect this trade-off to be important in defining optimal LRA combinations that would maximize synergy while ensuring adequate latency-reversal.
Kielbasa, William; Quinlan, Tonya; Jin, Ling; Xu, Wen; Lachno, D Richard; Dean, Robert A; Allen, Albert J
2012-08-01
Edivoxetine (LY2216684) is a selective and potent norepinephrine reuptake inhibitor (NERI). The pharmacokinetics (PK) and pharmacodynamics (PD) of edivoxetine were assessed in children and adolescent patients with attention-deficit/hyperactivity disorder (ADHD) following single and once-daily oral doses of edivoxetine. During a phase 1 open-label safety, tolerability, and PK study, pediatric patients were administered edivoxetine at target doses of 0.05, 0.1, 0.2 and 0.3 mg/kg, and blood samples were collected to determine plasma concentrations of edivoxetine for PK assessments and plasma 3,4-dihydroxyphenylglycol (DHPG) concentrations for PD assessments. Edivoxetine plasma concentrations were measured using liquid chromatography with tandem mass spectrometric detection, and DHPG was measured using liquid chromatography with electrochemical detection. Edivoxetine PK was comparable between children and adolescents. The time to maximum concentration (t(max)) of edivoxetine was ∼2 hours, which was followed by a mono-exponential decline in plasma concentrations with a terminal elimination half-life (t(1/2)) of ∼6 hours. Dose-dependent increases in area under the edivoxetine plasma concentration versus time curve from zero to infinity (AUC(0-∞)) and maximum plasma concentration (C(max)) were observed, and there was no discernable difference in the apparent clearance (CL/F) or the apparent volume of distribution at steady state (V(ss)/F) across the dose range. In adolescents, edivoxetine caused a maximum decrease in plasma DHPG concentrations from baseline of ∼28%, most notably within 8 hours of edivoxetine administration. This initial study in pediatric patients with ADHD provides new information on the PK profile of edivoxetine, and exposures that decrease plasma DHPG consistent with the mechanism of action of a NERI. The PK and PD data inform edivoxetine pharmacology and can be used to develop comprehensive population PK and/or PK-PD models to guide dosing strategies.
Garboś, Sławomir; Swiecicka, Dorota
2011-01-01
Maximum admissible concentration level (MACL) of barium in natural mineral waters, natural spring waters and potable waters was set at the level of 1 mg/l, while MACL of this element in natural curative waters intended for drinking therapies and inhalations were set at the levels of 1.0 mg/l and 10.0 mg/l, respectively. Those requirements were related to therapies which are applied longer than one month. Above mentioned maximum admissible concentration levels of barium in consumed waters were established after taking into account actual criteria of World Health Organization which determined the guidelines value for this element in water intended for human consumption at the level of 0.7 mg/l. In this work developed and validated method of determination of barium by inductively coupled plasma emission spectrometry technique was applied for determination of this element in 45 natural curative waters sampled from 24 spa districts situated on the area of Poland. Concentrations of barium determined were in the range from 0.0036 mg/l to 24.0 mg/l. Natural curative waters characterized by concentrations of barium in the ranges of 0.0036 - 0.073 mg/l, 0.0036 - 1.31 mg/l and 0.0036 - 24.0 mg/l, were applied to drinking therapy, inhalations and balneotherapy, respectively (some of waters analyzed were simultaneously applied to drinking therapy, inhalations and balneotherapy). In the cases of 11 natural curative waters exceeding limit of 1 mg/l were observed, however they were classified mainly as waters applied to balneotherapy and in two cases to inhalation therapies (concentrations of barium - 1.08 mg/l and 1.31 mg/l). The procedure of classification of curative waters for adequate therapies based among other things on barium concentrations meets requirements of the Decree of Minister of Health from 13 April 2006 on the range of studies indispensable for establishing medicinal properties of natural curative materials and curative properties of climate, criteria of their assessment and a specimen of certificate confirmed those properties.
Fluvial sediment and chemical quality of water in the Little Blue River basin, Nebraska and Kansas
Mundorff, J.C.; Waddell, K.M.
1966-01-01
The Little Blue River drains about 3,37)0 square miles in south-central Nebraska and north-central Kansas. The uppermost bedrock in the basin is limestone and shale of Permian age and sandstone, shale, and limestone of Cretaceous age. Bedrock is exposed in many places in the lower one-third of the basin but elsewhere is buried beneath a thin to thick mantle of younger sediments, mostly of Quaternary age. These younger sediments are largely fluvial and eolian deposits but also include some glacial till. Consisting in large part of sand and gravel, the fluvial deposits are an important source of ground-water supplies throughout much of the upper two-thirds of the basin. Loess, an eolian deposit of clayey silt, is by far the most widespread surficial deposit. The climate is continental. Temperatures ranging from -38 ? F to 118 ? F have been recorded in the basin. Average annual precipitation as low as 10.31 and as high as 49.32 inches has been recorded. During most years in the period 1956-62, when nearly all the water-quality data were obtained, annual precipitation and annual runoff were greater than normal. Flow-duration data indicate, however, that the flow distribution for the period was near normal. The Little Blue River has the same suspended-sediment characteristics as nearly all unregulated streams in the Great Plains--a wide range in concentrations, low concentrations during low-flow periods, and high concentrations during almost all periods of significant overland runoff. The maximum instantaneous concentration normally occurs many hours before maximum water discharge during any given rise in stage; the maximum daily mean concentration during any given year normally occurs at a moderate stream stage, not during a major flood. Suspended-sediment data for Little Blue River near Deweese, Nebr., which receives drainage from the upstream third of the basin, approximately, show that during the 1!}57-61 water years concentrations of 100 ppm (parts per million) or less prevailed about 42 percent of the time and concentrations of 1,000 ppm or less prevailed about 85 percent of the time. Observed concentrations ranged from 2 to 21,000 ppm: daily mean concentrations ranged from 2 to 13,800 ppm. The discharge-weighted suspended-sediment concentration was computed as about 2,800 ppm at Little Blue River near Deweese, about 3,300 ppm near Fairbury (Endicott), and about 3,000 ppm at Waterville. These stations receive drainage from about one-third, two-thirds, and nearly all the basin, respectively. Water-utilization problems resulting from high concentrations are not significant in the basin ; use of water from the Little Blue River is quantitatively negligible. Concentrations and, consequently, discharges of sediment are greater at a given water discharge on a rising stage than at the same discharge on the falling stage of the same runoff event. Also, a wide range in sediment discharge occurs at similar water discharges during different runoff events. Daily sediment discharges at Little Blue River near Deweese ranged from about 1,400 to 16,000 tons at daily mean water discharges of about 500 cfs (cubic feet per second) and from almost 7,500 to 28,000 tons at water discharges of about 1,000 cfs. The estimated long-term sediment discharge at Little Blue River near Deweese is about 400,000 tons per year: near Fairbury, about 1,200,000 tons per year: and at Waterville, about 1.900,000 tons per year. The high sediment discharge from the downstream part of the basin is due to greater precipitation and runoff--not to higher concentrations of suspended sediment--in the downstream parts of the basin. Nearly all the suspended sediment is silt and clay. The streambed material is mainly medium sand to gravel. The median particle size of bed material observed was about 0.73 mm near Deweese and about 0.77 mm near Fairbury. A few computations of total sediment discharge of Little Blue River near Deweese indicate that suspended-sedim
Fleshman, Allison M; Petrowsky, Matt; Frech, Roger
2013-05-02
The molal conductivity of liquid electrolytes with low static dielectric constants (ε(s) < 10) decreases to a minimum at low concentrations (region I) and increases to a maximum at higher concentrations (region II) when plotted against the square root of the concentration. This behavior is investigated by applying the compensated Arrhenius formalism (CAF) to the molal conductivity, Λ, of a family of 1-alcohol electrolytes over a broad concentration range. A scaling procedure is applied that results in an energy of activation (E(a)) and an exponential prefactor (Λ0) that are both concentration dependent. It is shown that the increasing molal conductivity in region II results from the combined effect of (1) a decrease in the energy of activation calculated from the CAF, and (2) an inherent concentration dependence in the exponential prefactor that is partly due to the dielectric constant.
Iodine-129 in the Snake River Plain aquifer at the Idaho National Engineering Laboratory, Idaho
Mann, L.J.; Chew, E.W.; Morton, J.S.; Randolph, R.B.
1988-01-01
From 1953 to 1983, an estimated 0.01 to 0.136 Ci (curies)/year of iodine-129 were contained in wastewater generated by the ICPP (Idaho Chemical Processing Plant) at the Idaho National Engineering Laboratory. The wastewater was directly discharged to the Snake River Plain aquifer through a deep disposal well until February 9, 1984, when the well was replaced by an unlined infiltration pond; a second pond was put into use on October 17, 1985. For 1984-86, the annual amount of iodine-129 in wastewater discharged to the ponds ranged from 0.0064 to 0.039 Ci. In August 1986, iodine-129 concentrations in water from 35 wells near the ICPP ranged from less than the reporting level to 3.6 +or-0.4 pCi/L (picocuries/L). By comparison, in April 1977 the water from 20 wells contained a maximum of 27 +or-1 pCi/L of iodine-129; in 1981, the maximum concentration in water from 32 wells was 41 +or-2 pCi/L. The average concentrations of iodine-129 in water from 18 wells that were sampled in 1977, 1981 and 1986 were 4.0, 6.7 and 1.3 pCi/L, respectively. The marked decrease in the iodine-129 concentration from 1981 to 1986 is the result of three factors: (1) The amount of iodine-129 disposed annually; (2) a change from the routine use of the disposal well to the infiltration ponds; and (3) a dilution of the iodine-129 in the aquifer by recharge from the Big Lost River. (USGS)
Baldys, Stanley
2009-01-01
The U.S. Geological Survey, in cooperation with the City of Dallas Water Utilities Division, collected water-quality data from 11 sites on Lake Texoma, a reservoir on the Texas-Oklahoma border, during April 2007-September 2008. At 10 of the sites, physical properties (depth, specific conductance, pH, temperature, dissolved oxygen, and alkalinity) were measured and samples were collected for analysis of selected dissolved constituents (bromide, calcium, magnesium, potassium, sodium, carbonate, bicarbonate, chloride, and sulfate); at one site, only physical properties were measured. The primary constituent of interest was bromide. Bromate can form when ozone is used to disinfect raw water containing bromide, and bromate is a suspected human carcinogen. Chloride and sulfate were of secondary interest. Only the analytical results for bromide, chloride, sulfate, and measured specific conductance are discussed in this report. Median dissolved bromide concentrations ranged from 0.28 to 0.60 milligrams per liter. The largest median dissolved bromide concentration (0.60 milligram per liter at site 11) was from the Red River arm of Lake Texoma. Dissolved bromide concentrations generally were larger in the Red River arm of Lake Texoma than in the Washita arm of the lake. Median dissolved chloride concentrations were largest in the Red River arm of Lake Texoma at site 11 (431 milligrams per liter) and smallest at site 8 (122 milligrams per liter) in the Washita arm. At site 11 in the Red River arm, the mean and median chloride concentrations exceeded the secondary maximum contaminant level of 300 milligrams per liter for chloride established by the 'Texas Surface Water Quality Standards' for surface-water bodies designated for the public water supply use. Median dissolved sulfate concentrations ranged from 182 milligrams per liter at site 4 in the Big Mineral arm to 246 milligrams per liter at site 11 in the Red River arm. None of the mean or median sulfate concentrations exceeded the secondary maximum contaminant level of 300 milligrams per liter. Median specific conductance measurements at sites ranged from 1,120 microsiemens per centimeter at site 8 in the Washita arm to 2,100 microsiemens per centimeter in the Red River arm. The spatial distribution of specific conductance in Lake Texoma was similar to that of bromide and chloride, with larger specific conductance values in the Red River arm compared to those in the Washita arm.
Subduction zone seismicity and the thermo-mechanical evolution of downgoing lithosphere
NASA Astrophysics Data System (ADS)
Wortel, M. J. R.; Vlaar, N. J.
1988-09-01
In this paper we discuss characteristic features of subduction zone seismicity at depths between about 100 km and 700 km, with emphasis on the role of temperature and rheology in controlling the deformation of, and the seismic energy release in downgoing lithosphere. This is done in two steps. After a brief review of earlier developments, we first show that the depth distribution of hypocentres at depths between 100 km and 700 km in subducted lithosphere can be explained by a model in which seismic activity is confined to those parts of the slab which have temperatures below a depth-dependent critical value T cr. Second, the variation of seismic energy release (frequency of events, magnitude) with depth is addressed by inferring a rheological evolution from the slab's thermal evolution and by combining this with models for the system of forces acting on the subducting lithosphere. It is found that considerable stress concentration occurs in a reheating slab in the depth range of 400 to 650 700 km: the slab weakens, but the stress level strongly increases. On the basis of this stress concentration a model is formulated for earthquake generation within subducting slabs. The model predicts a maximum depth of seismic activity in the depth range of 635 to 760 km and, for deep earthquake zones, a relative maximum in seismic energy release near the maximum depth of earthquakes. From our modelling it follows that, whereas such a maximum is indeed likely to develop in deep earthquake zones, zones with a maximum depth around 300 km (such as the Aleutians) are expected to exhibit a smooth decay in seismic energy release with depth. This is in excellent agreement with observational data. In conclusion, the incoroporation of both depth-dependent forces and depth-dependent rheology provides new insight into the generation of intermediate and deep earthquakes and into the variation of seismic activity with depth. Our results imply that no barrier to slab penetration at a depth of 650 700 km is required to explain the maximum depth of seismic activity and the pattern of seismic energy release in deep earthquake zones.
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Storey, R. W., Jr.
1977-01-01
The experiment included surface level and airborne in situ cloud measurements of the exhaust effluents from the Titan IIIC solid rocket boosters. Simultaneous visible spectrum photographic pictures of the ground cloud as well as infrared imaging of the cloud were obtained to study the cloud rise, growth, and direction of travel within the earth's surface mixing layer. The NASA multilayer diffusion model predictions of cloud growth, direction of travel, and expected surface level effluent concentrations were made prior to launch and after launch using measured meteorological conditions. Prelaunch predictions were used to position the effluent monitoring instruments, and the postlaunch predictions were compared with the measured data. Measurement results showed that surface level effluent values were low, often below the detection limits of the instrumentation. The maximum surface level hydrogen chloride concentration measured 50 parts per billion at about 8 km from the launch pad. The maximum observed in-cloud (airborne measurement) hydrogen chloride concentration was 7 per million.
NASA Astrophysics Data System (ADS)
Salomone, Vanesa N.; Riera, Marina; Cerchietti, Luciana; Custo, Graciela; Muniain, Claudia
2017-05-01
Seaweed have a great capacity to accumulate heavy metals in their tissues. The chemical characterization of seaweed is important due to their use in environmental monitoring and human or animal food. The aim of the present study was to evaluate the multi-elemental composition of seaweed from San Jorge Gulf (Patagonia, Argentina) by Total Reflection X-ray Fluorescence (TXRF). The elements As, Br, Cu, Cr, Fe, Mn, Ni, Pb, Rb, Sr, V and Zn were seasonally analyzed and quantified in blades of Macrocystis pyrifera. TXRF showed to be a suitable technique for simultaneous multi-element analysis in this kind of samples. The results revealed seasonal variations in the chemical content for some elements; arsenic content was maximum in summer and autumn, iron concentration increased to the winter and zinc concentration was maximum in autumn. The sum of principal micronutrients (Fe + Zn + Mn + Cu) varied between 114 and 171 mg k- 1 g dw. The total As concentration ranged between 36 and 66 mg kg- 1. Lead, nickel and copper were not detected.
Analysis of efficiency of phosphates sorption by different granulation of selected reactive material
NASA Astrophysics Data System (ADS)
Kasprzyk, Magda; Węgler, Jarosław; Gajewska, Magdalena
2018-01-01
In the light of the need to find an effective way to remove phosphorus from wastewater, studies on the suitability of sorption materials in this process should be conducted. The aim of the study was to examine the potential benefits of using selected adsorbents to reduce orthophosphates from the model solution under steady conditions. The study was conducted on a laboratory scale using synthetic wastewater with concentration of P-PO4 in the range of 5-100 mg/dm3. Experiment has shown that fine-grained material M1 (0-2 mm) is highly effective at removal of phosphorus compounds at the level of 97.8% at the highest concentration of P-PO4. The sorption capacity achieved during the investigation was 9.6 mg/g, while the maximum sorption capacity from the Langmuir model could reach up to 256 mg/g. Material M2 (2-8 mm) did not show satisfactory sorption capacity (maximum calculated sorption capacity: 0.36 mg/g) and the effectiveness of phosphate reduction did not exceeded 6% at the lowest concentration of P-PO4.
Radiation sensitive indicator based on tetrabromophenol blue dyed poly(vinyl alcohol)
NASA Astrophysics Data System (ADS)
Beshir, W. B.
2013-05-01
Radiation sensitive indicators based on dyed polyvinyl alcohol (PVA) containing acid- sensitive dye (tetrabromophenol blue, TBPB) and chloral hydrate (CCl3·CH·(OH)2, 2,2,2-trichloroethane-1,1-diol) have been developed. These plastic film dosimeters undergo color change from blue (the alkaline form of TBPB) to yellow (the acidic form of TBPB), indicating acid formation. The concentration of radiation formed acids in the films containing different concentrations of chloral hydrate was calculated at different doses. These films can be used as dosimeters for food irradiation applications where the maximum of the useful dose ranges are between 1 and 8 kGy depending on chloral hydrate concentration in the film. The films have the advantage of negligible humidity effects on response in the intermediate range of relative humidity from 0 to 70% as good post irradiation stability when stored in the dark at room temperature. The overall combined uncertainty (at 2σ) associated with measurement of response (ΔA mm-1) at 623 nm for dose range 1-8 kGy is 4.53%.
Curtis, Tyler E; Roeder, Ryan K
2017-10-01
Advances in photon-counting detectors have enabled quantitative material decomposition using multi-energy or spectral computed tomography (CT). Supervised methods for material decomposition utilize an estimated attenuation for each material of interest at each photon energy level, which must be calibrated based upon calculated or measured values for known compositions. Measurements using a calibration phantom can advantageously account for system-specific noise, but the effect of calibration methods on the material basis matrix and subsequent quantitative material decomposition has not been experimentally investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on the accuracy of quantitative material decomposition in the image domain. Gadolinium was chosen as a model contrast agent in imaging phantoms, which also contained bone tissue and water as negative controls. The maximum gadolinium concentration (30, 60, and 90 mM) and total number of concentrations (2, 4, and 7) were independently varied to systematically investigate effects of the material basis matrix and scaling factor calibration on the quantitative (root mean squared error, RMSE) and spatial (sensitivity and specificity) accuracy of material decomposition. Images of calibration and sample phantoms were acquired using a commercially available photon-counting spectral micro-CT system with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material decomposition of gadolinium, calcium, and water was performed for each calibration method using a maximum a posteriori estimator. Both the quantitative and spatial accuracy of material decomposition were most improved by using an increased maximum gadolinium concentration (range) in the basis matrix calibration; the effects of using a greater number of concentrations were relatively small in magnitude by comparison. The material basis matrix calibration was more sensitive to changes in the calibration methods than the scaling factor calibration. The material basis matrix calibration significantly influenced both the quantitative and spatial accuracy of material decomposition, while the scaling factor calibration influenced quantitative but not spatial accuracy. Importantly, the median RMSE of material decomposition was as low as ~1.5 mM (~0.24 mg/mL gadolinium), which was similar in magnitude to that measured by optical spectroscopy on the same samples. The accuracy of quantitative material decomposition in photon-counting spectral CT was significantly influenced by calibration methods which must therefore be carefully considered for the intended diagnostic imaging application. © 2017 American Association of Physicists in Medicine.
Rawn, Dorothea F K; Breakell, Kenneth; Verigin, Victor; Tittlemier, Sheryl A; Del Gobbo, Liana; Diamond, Miriam; Vanderlinden, Loren; Sit, Daniel
2013-01-30
Polychlorinated biphenyl (PCB) and polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) concentrations were determined in composites of 18 different fish products and were prepared as raw, baked, boiled, and fried. ∑PCB concentrations were found to range from 0.12 ng·g(-1) whole weight (ww) in raw octopus to 33 ng·g(-1) ww in baked mackerel. Boiled monkfish was found to have the lowest ∑PCDD/F concentrations (0.41 pg·g(-1) ww), while maximum concentrations were observed in fried catfish (59 pg·g(-1) ww). PCB and PCDD/F concentrations in fish were generally reduced during cooking, although differences were small. The average PCB reduction in finfish was 7.9%, while an increase in PCB mass was observed in non-finfish (2.9%). PCDD/F losses, on average, were observed in both the finfish (3.6%) and non-finfish products (25%). Maximum ∑PCB, ∑PCDD/F, and TEQ(PCDD/F+DL-PCB) (toxic equivalency) intakes, based on 150 g serving size, were determined to be 3300 ng (mackerel), 6600 pg (catfish), and 270 pg (catfish), respectively. PCB and PCDD/F changes associated with cooking generally were small (<15%), although larger mean differences (∼40%) were observed in some fish products (e.g., catfish).
Ono, Yuji; Futamura, Ryusuke; Hattori, Yoshiyuki; Sakai, Toshio; Kaneko, Katsumi
2017-12-15
The adsorption and desorption of D 2 O on hydrophobic activated carbon fiber (ACF) occurs at a smaller pressure than the adsorption and desorption of H 2 O. The behavior of the critical desorption pressure difference between D 2 O and H 2 O in the pressure range of 1.25-1.80kPa is applied to separate low concentrated D 2 O from water using the hydrophobic ACF, because the desorption branches of D 2 O and H 2 O drop almost vertically. The deuterium concentration of all desorbed water in the above pressure range is lower than that of water without adsorption-treatment on ACF. The single adsorption-desorption procedure on ACF at 1.66kPa corresponding to the maximum difference of adsorption amount between D 2 O and H 2 O reduced the deuterium concentration of desorbed water to 130.6ppm from 143.0ppm. Thus, the adsorption-desorption procedure of water on ACF is a promising separation and concentration method of low concentrated D 2 O from water. Copyright © 2017 Elsevier Inc. All rights reserved.
The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time
Uncles, R.J.; Stephens, J.A.; Smith, R.E.
2002-01-01
It is shown that there is a marked tendency for long, strongly tidal estuaries to have greater suspended particulate matter (SPM) concentrations within their high-turbidity regions than shorter estuaries with comparable tidal ranges at their mouths, or weakly tidal estuaries. Using consistently derived data from 44 estuaries in Europe and the Americas, contours of the logarithm of maximum estuarine SPM concentration are shown to be reasonably smooth when plotted against the logarithm of mean spring tidal range (at the estuary mouth) and the logarithm of estuarine tidal length. Predictions from the plot are compared with published observations made in the Delaware, Scheldt, Rio de la Plata, Gironde, Bay of Fundy, Changjiang (Yangtze), Amazon, Paros Lagoon and the Hawkesbury Estuary and it is shown that, qualitatively, there are no serious discrepancies. Short, weakly tidal estuaries are predicted to have very low 'intrinsic' SPM concentrations. High SPM concentrations in these estuaries would most likely be the result of either locally generated wave resuspension, high freshwater sediment loads due to freshets, or intruding seawater carrying suspended sediments derived from wave activity in the coastal zone. Application of a generic tidal model demonstrates that longer estuaries possess faster tidal currents for a given tidal range at their mouth and, in the presence of a supply of erodable fine sediment, therefore (by implication) produce greater concentrations of SPM that can be accumulated within a turbidity maximum. The same is true if the tidal range is increased for estuaries of a given length. These features are illustrated by comparing surveys of SPM data from two large estuaries possessing greatly different tidal ranges (the microtidal, medium turbidity Potomac and the macrotidal, highly turbid Humber-Ouse) and a third, much smaller but strongly tidal estuary (the low-turbidity Tweed). It is demonstrated that longer estuaries tend to have longer flushing times for solutes than shorter systems and that larger tides tend to reduce flushing times, although the tidal influence is secondary. Short, rapidly flushed estuaries quickly lose their erodable fine sediment to the coastal zone during freshets and during the ebbing currents of spring tides. Turbidity is therefore small during low runoff, low wave activity conditions. Very long, very slowly flushed estuaries are unlikely to lose a significant fraction of their resuspended sediments during freshets or individual ebb tides and are therefore able to accumulate large and increasing amounts of fine sediment in the long-term. Turbidity within them is therefore high during the fast currents of large spring tides. ?? 2002 Elsevier Science Ltd. All rights reserved.
The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time
Uncles, R.J.; Stephens, J.A.; Smith, R.E.
2002-01-01
It is shown that there is a marked tendency for long, strongly tidal estuaries to have greater suspended particulate matter (SPM) concentrations within their high-turbidity regions than shorter estuaries with comparable tidal ranges at their mouths, or weakly tidal estuaries. Using consistently derived data from 44 estuaries in Europe and the Americas, contours of the logarithm of maximum estuarine SPM concentration are shown to be reasonably smooth when plotted against the logarithm of mean spring tidal range (at the estuary mouth) and the logarithm of estuarine tidal length. Predictions from the plot are compared with published observations made in the Delaware, Scheldt, Rio de la Plata, Gironde, Bay of Fundy, Changjiang (Yangtze), Amazon, Patos Lagoon and the Hawkesbury Estuary and it is shown that, qualitatively, there are no serious discrepancies. Short, weakly tidal estuaries are predicted to have very low ‘intrinsic’ SPM concentrations. High SPM concentrations in these estuaries would most likely be the result of either locally generated wave resuspension, high freshwater sediment loads due to freshets, or intruding seawater carrying suspended sediments derived from wave activity in the coastal zone. Application of a generic tidal model demonstrates that longer estuaries possess faster tidal currents for a given tidal range at their mouth and, in the presence of a supply of erodable fine sediment, therefore (by implication) produce greater concentrations of SPM that can be accumulated within a turbidity maximum. The same is true if the tidal range is increased for estuaries of a given length. These features are illustrated by comparing surveys of SPM data from two large estuaries possessing greatly different tidal ranges (the microtidal, medium turbidity Potomac and the macrotidal, highly turbid Humber-Ouse) and a third, much smaller but strongly tidal estuary (the low-turbidity Tweed). It is demonstrated that longer estuaries tend to have longer flushing times for solutes than shorter systems and that larger tides tend to reduce flushing times, although the tidal influence is secondary. Short, rapidly flushed estuaries quickly lose their erodable fine sediment to the coastal zone during freshets and during the ebbing currents of spring tides. Turbidity is therefore small during low runoff, low wave activity conditions. Very long, very slowly flushed estuaries are unlikely to lose a significant fraction of their resuspended sediments during freshets or individual ebb tides and are therefore able to accumulate large and increasing amounts of fine sediment in the long-term. Turbidity within them is therefore high during the fast currents of large spring tides.
Exposure to particulate matter in a mosque
NASA Astrophysics Data System (ADS)
Ocak, Yılmaz; Kılıçvuran, Akın; Eren, Aykut Balkan; Sofuoglu, Aysun; Sofuoglu, Sait C.
2012-09-01
Indoor air quality in mosques during prayers may be of concern for sensitive/susceptible sub-groups of the population. However, no indoor air pollutant levels of potentially toxic agents in mosques have been reported in the literature. This study measured PM concentrations in a mosque on Friday when the mid-day prayer always receives high attendance. Particle number and CO2 concentrations were measured on nine sampling days in three different campaigns before, during, and after prayer under three different cleaning schedules: vacuuming a week before, a day before, and on the morning of the prayer. In addition, daily PM2.5 concentrations were measured. Number concentrations in 0.5-1.0, 1.0-5.0, and > 5.0 μm diameter size ranges were monitored. In all campaigns the maximum number concentrations were observed on the most crowded days. The lowest number concentrations occurred when vacuuming was performed a day before the prayer day in two of the three size ranges considered. PM2.5 concentrations (four-hour samples that integrated before, during, and after the prayer) were comparable to the other indoor environments reported in the literature. CO2 concentrations suggested that ventilation was not sufficient in the mosque during the prayers. The results showed that better ventilation, a preventive cleaning strategy, and a more detailed study are needed.
Availability and quality of ground water, southern Ute Indian Reservation, southwestern Colorado
Brogden, Robert E.; Hutchinson, E. Carter; Hillier, Donald E.
1979-01-01
Population growth and the potential development of subsurface mineral resources have increased the need for information on the availability and quality of ground water on the Southern Ute Indian Reservation. The U.S. Geological Survey, in cooperation with the Southern Ute Tribal Council, the Four Corners Regional Planning Commission, and the U.S. Bureau of Indian Affairs, conducted a study during 1974-76 to assess the ground-water resources of the reservation. Water occurs in aquifers in the Dakota Sandstone, Mancos Shale, Mesaverde Group, Lewis Shale, Pictured Cliffs Sandstone, Fruitland Formation, Kirtland Shale, Animas and San Jose Formations, and terrace and flood-plain deposits. Well yields from sandstone and shale aquifers are small, generally in the range from 1 to 10 gallons per minute with maximum reported yields of 75 gallons per minute. Well yields from terrace deposits generally range from 5 to 10 gallons per minute with maximum yields of 50 gallons per minute. Well yields from flood-plain deposits are as much as 25 gallons per minute but average 10 gallons per minute. Water quality in aquifers depends in part on rock type. Water from sandstone, terrace, and flood-plain aquifers is predominantly a calcium bicarbonate type, whereas water from shale aquifers is predominantly a sodium bicarbonate type. Water from rocks containing interbeds of coal or carbonaceous shales may be either a calcium or sodium sulfate type. Dissolved-solids concentrations of ground water ranged from 115 to 7,130 milligrams per liter. Water from bedrock aquifers is the most mineralized, while water from terrace and flood-plain aquifers is the least mineralized. In many water samples collected from bedrock, terrace, and flood-plain aquifers, the concentrations of arsenic, chloride, dissolved solids, fluoride, iron, manganese, nitrate, selenium, and sulfate exceeded U.S. Public Health Service (1962) recommended limits for drinking water. Selenium in the ground water in excess of U.S. Public Health Service (1962) recommended limit of 10 micrograms per liter for drinking water occurs throughout the reservation but principally in the central part. Of the 265 wells and springs sampled, 74 contained water with selenium concentrations in excess of the recommended limit. Selenium concentrations exceeded 10 micrograms per liter principally in water from aquifers in the San Jose and Animas Formations. The maximum selenium concentration determined during the study was 13,000 micrograms per liter in a sample obtained from the San Jose Formation. The only known documented case of human selenium poisoning caused by drinking ground water occurred on the reservation.
Method for analysis dried vine fruits contaminated with ochratoxin A.
Galvis-Sánchez, Andrea C; Barros, Antonio S; Delgadillo, Ivonne
2008-06-09
The EU maximum limit of 10 microg kg(-1) of OTA for dried vine fruits has been established since 2002 (European Commission, 2005). The presented work explore the capability of using Fourier infrared spectroscopy attenuated total reflection (FTIR-ATR) for the detection of ochratoxin A (OTA) in dried vine fruits in a range of concentration between 2 and 50 microg kg(-1) OTA. The method developed included a sample pretreatment using a C18 cartridge which was efficient for the isolation of the mycotoxin. The PLS1 analysis of the spectrum of sultanas spiked with different OTA concentrations showed a good correlation between the spectral data and reference concentration for OTA (R(2)=0.85).
Zheljazkov, Valtcho D; Astatkie, Tess; Jeliazkova, Ekaterina A; Schlegel, Vicki
2012-01-01
The objective of this study was to evaluate the effect of 15 distillation times (DT), ranging from 1.25 to 960 min, on oil yield, essential oil profiles, and antioxidant capacity of male J. scopulorum trees. Essential oil yields were 0.07% at 1.25 min DT and reached a maximum of 1.48% at 840 min DT. The concentrations of alpha-thujene (1.76-2.75%), alpha-pinene (2.9-8.7%), sabinene (45-74.7%), myrcene (2.4-3.4%), and para-cymene (0.8-3.1%) were highest at the shortest DT (1.5 to 5 min) and decreased with increasing DT. Cis-sabinene hydrate (0.5-0.97%) and linalool plus trans-sabinene (0.56-1.6%) reached maximum levels at 40 min DT. Maximum concentrations of limonene (2.3-2.8%) and pregeijerene-B (0.06-1.4%) were obtained at 360-480 min DT, and 4-terpinenol (0.7-5.7%) at 480 min DT. Alpha-terpinene (0.16-2.9%), gamma-terpinene (0.3-4.9%) and terpinolene (0.3-1.4%) reached maximum at 720 min DT. The concentrations of delta-cadinene (0.06-1.65%), elemol (0-6.0%), and 8-alpha-acetoxyelemol (0-4.4%) reached maximum at 840 min DT. The yield of the essential oil constituents increased with increasing DT. Only linalool/transsabinene hydrate reached a maximum yield at 360 min DT. Maximum yields of the following constituents were obtained at 720 min DT: alpha-thujene, alpha-pinene, camphene, sabinene, myrcene, alpha-terpinene, para-cimene, limonene, gamma-terpinene, terpinolene, and 4-terpinenol. At 840 min DT, cis-sabinene hydrate, prejeijerene-B, gamma muurolene, delta-cadinene, reached maximum. At 960 min DT, maximum yields of beta-pinene, elemol, alphaeudesmol/betaeudesmol, 8-alpha-acetoxyelemol were reached. These changes were adequately modeled by either the Michaelis-Menten or the Power (Convex) nonlinear regression models. Oils from the 480 min DT showed higher antioxidant activity compared to samples collected at 40, 160, or 960 min DT. These results show the potential for obtaining essential oils with various compositions and antioxidant capacity from male J. scopulorum by varying DT. This study can be used as a reference paper for comparing results of reports where different lengths of the DT were used.
Shallow ground-water quality in selected agricultural areas of south-central Georgia, 1994
Crandall, C.A.
1996-01-01
The Georgia-Florida Coastal Plain National Water-Quality Assessment Program began an agricultural land-use study in March 1994. The study area is located in the upper Suwannee River basin in Tift, Turner, Worth, Irwin, Wilcox, and Crisp Counties, Ga. Twenty-three shallow monitoring wells were installed in a 1,335-square- mile area characterized by intensive row-crop agriculture (peanuts, corn, cotton, and soybeans). The study focused on recently recharged shallow ground water in surficial aquifers to assess the relation between land-use activities and ground- water quality. All wells were sampled in March and April (spring) 1994, and 14 of these wells were resampled in August (summer) 1994. Shallow ground water in the study area is characterized by oxic and acidic conditions, low bicarbonate, and low dissolved-solids concentrations. The median pH of shallow ground water was 4.7 and the median bicarbonate concentration was 1.7 mg/L (milligrams per liter). Dissolved oxygen concentrations ranged from 3.0 to 8.0 mg/L. The median dissolved-solids concentration in samples collected in the spring was 86 mg/L. Major inorganic ion composition was generally mixed with no dominant cation; nitrate was the dominant anion (greater than 60 percent of the anion composition) in 14 of 23 samples. Only concentrations of bicarbonate, dissolved organic carbon, and nitrate had significant differences in concentrations between samples collected in the spring and the background samples. However, median concentrations of some of the major ingredients in fertilizer (including magnesium, chloride, nitrate, iron, and manganese) were higher in water samples from agricultural wells than in background samples. The median concentration of dissolved solids in ground-water samples collected in the spring (86 mg/L) was more than double the median concentration (41 mg/L) of the background samples. The median nitrate as nitrogen concentration of 6.7 mg/L in the spring samples reflects the effects of agricultural activities on ground-water quality. Samples from 30 percent of the wells exceeded the maximum contaminant level (MCL) for nitrate in drinking water (10 mg/L as N). Nitrogen isotope ratios ranged from 2.4 to 9.0 parts per thousand and indicate that most nitrogen in shallow ground water is probably from inorganic fertilizer. In addition, nitrate concentrations were positively correlated (p-values all less than 0.01) with concentrations of some of the major ingredients in fertilizer, such as potassium, calcium, magnesium, manganese, and chloride, and with values of specific conductance. Concentrations of pesticides and volatile organic compounds, detected in samples from 11 wells, were all below the MCLs. Of these constituents, only alachlor, metolachlor, metribuzin, toluene, benzene, and methyl chloride were detected in ground water at concentrations that ranged from 0.01 to 1.0 mg/L (micrograms per liter). Maximum concentrations of 1.0 mg/L of metolachlor and toluene were detected in two wells. Radon concentrations ranged from 530 to 1,400 pCi/L (picocuries per liter), exceeding the proposed MCL of 300 pCi/L in all samples; the median concentration was 1,000 pCi/L.
Owens, Tammy J; Larsen, Jennifer A; Farcas, Amy K; Nelson, Richard W; Kass, Philip H; Fascetti, Andrea J
2014-07-01
To determine total dietary fiber (TDF) composition of feline diets used for management of obesity and diabetes mellitus. Cross-sectional survey. Dry veterinary (n = 10), canned veterinary (12), and canned over-the-counter (3) feline diets. Percentage of TDF as insoluble dietary fiber (IDF), high-molecular-weight soluble dietary fiber (HMWSDF), and low-molecular-weight soluble dietary fiber (LMWSDF) was determined. Median measured TDF concentration was greater than reported maximum crude fiber content in dry and canned diets. Median TDF (dry-matter) concentration in dry and canned diets was 12.2% (range, 8.11% to 27.16%) and 13.8% (range, 4.7% to 27.9%), respectively. Dry and canned diets, and diets with and without a source of oligosaccharides in the ingredient list, were not different in energy density or concentrations of TDF, IDF, HMWSDF, or LMWSDF. Similarly, loaf-type (n = 11) and gravy-type (4) canned diets differed only in LMWSDF concentration. Disparities in TDF concentrations among products existed despite a lack of differences among groups. Limited differences in TDF concentration and dietary fiber composition were detected when diets were compared on the basis of carbohydrate concentration. Diets labeled for management of obesity were higher in TDF concentration and lower in energy density than diets for management of diabetes mellitus. Diets provided a range of TDF concentrations with variable concentrations of IDF, HMWSDF, and LMWSDF. Crude fiber concentration was not a reliable indicator of TDF concentration or dietary fiber composition. Because carbohydrate content is calculated as a difference, results suggested that use of crude fiber content would cause overestimation of both carbohydrate and energy content of diets.
NASA Astrophysics Data System (ADS)
Kawamura, K.; Tachibana, E.
2010-12-01
A rapid industrial development in China and East Asian countries for last two decades may have seriously changed the air quality of the North Pacific. To better understand a long-term atmospheric changes of organic aerosols in the western North Pacific, we collected marine aerosol samples on weekly basis at a remote island, Chichijima (27°04'E; 142°13'N) in 2001-2010. The island is located in the boundary of westerly and easterly wind regimes. The aerosol samples were analyzed for dicarboxylic acids, ketoacids and α-dicarbonyls employing butyl ester derivatization followed by GC determination, together with total carbon (TC) and water-soluble organic carbon (WSOC). Homologous series of saturated diacids (C2-C11) were detected with a predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids. Unsaturated diacids, including maleic (M), fumaric (F), phthalic, and iso-/tere-phthalic acids, were also detected together with ketoacids and α-dicarbonyls. Concentrations of total diacids fluctuated significantly in a range of 10-600 ngm-3 with winter/spring maximum and summer minimum. The maximum was explained by a combination of enhanced emissions of polluted aerosols and their precursors in Asia and enhanced atmospheric transport to the North Pacific due to the intensified westerly winds in winter/spring. Concentration ratios of C3 to C4 diacid (range 0.2-28, av. 2.8) showed a maximum during summer, indicating more oxidation of longer-chain diacids to shorter ones. Azelaic acid (C9) that is a specific photo-oxidation product of unsaturated fatty acid such as oleic acid showed a sharp increase relative to other diacids in summer, suggesting enhanced sea-to-air emission of unsaturated fatty acids followed by photochemical oxidation during summer. On the other hand, M/F ratios (range 0-8.7, av. 1.1) significantly decreased from winter to summer due to photochemical cis-to-trans isomerization. We also discuss decadal trends in the concentrations of diacids and related compounds as well as TC and WSOC, and their compositions and relative abundances.
Bio sorption of strontium from aqueous solution by New Strain Bacillus sp. GTG-83
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajer Mohammad Ghazvini, P.; Ghorbanzadeh Mashkani, S.; Ghafourian, H.
Attempt was made to isolate bacterial strains capable of removing Sr biologically. In this study we collected ten different water samples from naturally radioactive spring Neydasht in Iran and bacterial strains samples isolated. Initial screening of a total of 50 bacterial isolates resulted in selection of one strain. The strain showed maximum adsorption capacity with 55 mg Sr/g dry wt. It was tentatively identified as Bacillus sp. according to morphological and biochemical properties and called strain GTG-83. Studies indicated that Bacillus sp. GTG-83 was able to grow aerobically in the presence of 50 mM SrCl{sub 2} but showed severe growthmore » inhibition at levels above that concentration. The bio-sorption capacity of Bacillus sp. GTG-83 strongly depends on solution pH, and the maximum Sr sorption capacity of Bacillus sp. GTG-83 were obtained at pH 10 independent of the absence or the presence of increasing concentrations of salt (MgCl{sub 2}). Sr-salt bio-sorption studies were also performed at this pH values. Equilibrium uptakes of Sr increased with increasing Sr concentrations up to 250 mg/l for Bacillus sp. GTG-83. Maximum bio-sorption of Sr was obtained at temperatures in the range of 30-35 deg. C. Bacillus sp. GTG-83 bio-sorbed 97 mg Sr/g dry wt at 100 mg/l initial Sr concentration without salt medium (MgCl{sub 2}). When salt concentration (MgCl{sub 2}) increased to 15% (w/v), these values dropped to 23.6 mg Sr/g dry wt at the same conditions. Uptake of Sr within 5 min of incubation was relatively rapid and the absorption continued slowly thereafter. (authors)« less
Hassan, A K
2015-01-01
In this work, O/W emulsion sets were prepared by using different concentrations of two nonionic surfactants. The two surfactants, tween 80(HLB=15.0) and span 80(HLB=4.3) were used in a fixed proportions equal to 0.55:0.45 respectively. HLB value of the surfactants blends were fixed at 10.185. The surfactants blend concentration is starting from 3% up to 19%. For each O/W emulsion set the conductivity was measured at room temperature (25±2°), 40, 50, 60, 70 and 80°. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective surfactants blend concentration required for preparing the most stable O/W emulsion. These results were confirmed by applying the physical stability centrifugation testing and the phase inversion temperature range measurements. The results indicated that, the relation which represents the most stable O/W emulsion has the strongest direct linear relationship between temperature and conductivity. This relationship is linear up to 80°. This work proves that, the most stable O/W emulsion is determined via the determination of the maximum R² value by applying of the simple linear regression least squares method to the temperature-conductivity obtained data up to 80°, in addition to, the true maximum slope is represented by the equation which has the maximum R² value. Because the conditions would be changed in a more complex formulation, the method of the determination of the effective surfactants blend concentration was verified by applying it for more complex formulations of 2% O/W miconazole nitrate cream and the results indicate its reproducibility.
Weigel, K A; Pralle, R S; Adams, H; Cho, K; Do, C; White, H M
2017-06-01
Hyperketonemia (HYK), a common early postpartum health disorder characterized by elevated blood concentrations of β-hydroxybutyrate (BHB), affects millions of dairy cows worldwide and leads to significant economic losses and animal welfare concerns. In this study, blood concentrations of BHB were assessed for 1,453 Holstein cows using electronic handheld meters at four time points between 5 and 18 days postpartum. Incidence rates of subclinical (1.2 ≤ maximum BHB ≤ 2.9 mmol/L) and clinical ketosis (maximum BHB ≥ 3.0 mmol/L) were 24.0 and 2.4%, respectively. Variance components, estimated breeding values, and predicted HYK phenotypes were computed on the original, square-root, and binary scales. Heritability estimates for HYK ranged from 0.058 to 0.072 in pedigree-based analyses, as compared to estimates that ranged from 0.071 to 0.093 when pedigrees were augmented with 60,671 single nucleotide polymorphism genotypes of 959 cows and 801 male ancestors. On average, predicted HYK phenotypes from the genome-enhanced analysis ranged from 0.55 mmol/L for first-parity cows in the best contemporary group to 1.40 mmol/L for fourth-parity cows in the worst contemporary group. Genome-enhanced predictions of HYK phenotypes were more closely associated with actual phenotypes than pedigree-based predictions in five-fold cross-validation, and transforming phenotypes to reduce skewness and kurtosis also improved predictive ability. This study demonstrates the feasibility of using repeated cowside measurement of blood BHB concentration in early lactation to construct a reference population that can be used to estimate HYK breeding values for genomic selection programmes and predict HYK phenotypes for genome-guided management decisions. © 2017 Blackwell Verlag GmbH.
Orlando, James L.; Smalling, Kelly L.; Kuivila, Kathryn
2008-01-01
Water and suspended-sediment samples were collected at eight sites on the Alamo and New Rivers in the Imperial Valley/Salton Sea Basin of California and analyzed for both current-use and organochlorine pesticides by the U.S. Geological Survey. Samples were collected in the fall of 2006 and spring of 2007, corresponding to the seasons of greatest pesticide use in the basin. Large-volume water samples (up to 650 liters) were collected at each site and processed using a flow-through centrifuge to isolate suspended sediments. One-liter water samples were collected from the effluent of the centrifuge for the analysis of dissolved pesticides. Additional samples were collected for analysis of dissolved organic carbon and for suspended-sediment concentrations. Water samples were analyzed for a suite of 61 current-use and organochlorine pesticides using gas chromatography/mass spectrometry. A total of 25 pesticides were detected in the water samples, with seven pesticides detected in more than half of the samples. Dissolved concentrations of pesticides observed in this study ranged from below their respective method detection limits to 8,940 nanograms per liter (EPTC). The most frequently detected compounds in the water samples were chlorpyrifos, DCPA, EPTC, and trifluralin, which were observed in more than 75 percent of the samples. The maximum concentrations of most pesticides were detected in samples from the Alamo River. Maximum dissolved concentrations of carbofuran, chlorpyrifos, diazinon, and malathion exceeded aquatic life benchmarks established by the U.S. Environmental Protection Agency for these pesticides. Suspended sediments were analyzed for 87 current-use and organochlorine pesticides using microwave-assisted extraction, gel permeation chromatography for sulfur removal, and either carbon/alumina stacked solid-phase extraction cartridges or deactivated Florisil for removal of matrix interferences. Twenty current-use pesticides were detected in the suspended-sediment samples, including pyrethroid insecticides and fungicides. Fourteen legacy organochlorine pesticides also were detected in the suspended-sediment samples. Greater numbers of current-use and organochlorine pesticides were observed in the Alamo River samples in comparison with the New River samples. Maximum concentrations of current-use pesticides in suspended-sediment samples ranged from below their method detection limits to 174 micrograms per kilogram (pendimethalin). Most organochlorine pesticides were detected at or below their method detection limits, with the exception of p,p'-DDE, which had a maximum concentration of 54.2 micrograms per kilogram. The most frequently detected current-use pesticides in the suspended-sediment samples were chlorpyrifos, permethrin, tetraconazole, and trifluralin, which were observed in more than 83 percent of the samples. The organochlorine degradates p,p'-DDD and p,p'-DDE were detected in all suspended-sediment samples.
Mann, H J; Fuhs, D W; Cerra, F B
1988-03-01
The influence of the piston-cassette pump fill stroke on the pharmacodynamic response to sodium nitroprusside was evaluated prospectively in 10 adult patients in the surgical intensive-care unit. Simultaneous analog recordings of blood pressure and fill stroke were made over three complete pump fill cycles in each patient. Sodium nitroprusside flow rates and concentrations were recorded throughout the data-collection period. Analysis was based on the maximum pressure obtained during the two-minute baseline period before a fill stroke (Pmax baseline), the pressure at the initiation of the fill stroke (P initial), and the maximum pressure obtained during the two-minute period after the fill stroke (Pmax postfill). The maximum systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure (MBP) during the baseline and post-fill-stroke periods were significantly different. The mean (+/- S.D.) variability in pressure between the time periods Pmax baseline and Pmax postfill was 3.9 +/- 5.8 mm Hg for SBP (range, -8 to +16), 3.5 +/- 5.7 mm Hg for DBP (range, -7 to +13), and 3.6 +/- 5.6 mm Hg for MBP (range, -7 to +14). The likelihood of a pharmacodynamic change was inconsistent both between and within patients. Within patients the difference between cycles for the variability between time periods ranged from a minimum of 2 mm Hg to a maximum of 16 mm Hg for SBP, 2 mm Hg to 17 mm Hg for DBP, and 1 mm Hg to 17 mm Hg for MBP. The variability within the baseline period (Pmax baseline - P initial) in SBP was significantly greater than the variability between the time periods, while the differences for DBP and MBP were not significant.(ABSTRACT TRUNCATED AT 250 WORDS)
Water quality and possible sources of nitrate in the Cimarron Terrace Aquifer, Oklahoma, 2003
Masoner, Jason R.; Mashburn, Shana L.
2004-01-01
Water from the Cimarron terrace aquifer in northwest Oklahoma commonly has nitrate concentrations that exceed the maximum contaminant level of 10 milligrams per liter of nitrite plus nitrate as nitrogen (referred to as nitrate) set by the U.S. Environmental Protection Agency for public drinking water supplies. Starting in July 2003, the U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, conducted a study in the Cimarron terrace aquifer to assess the water quality and possible sources of nitrate. A qualitative and quantitative approach based on multiple lines of evidence from chemical analysis of nitrate, nitrogen isotopes in nitrate, pesticides (indicative of cropland fertilizer application), and wastewater compounds (indicative of animal or human wastewater) were used to indicate possible sources of nitrate in the Cimarron terrace aquifer. Nitrate was detected in 44 of 45 ground-water samples and had the greatest median concentration (8.03 milligrams per liter) of any nutrient analyzed. Nitrate concentrations ranged from <0.06 to 31.8 milligrams per liter. Seventeen samples had nitrate concentrations exceeding the maximum contaminant level of 10 milligrams per liter. Nitrate concentrations in agricultural areas were significantly greater than nitrate concentrations in grassland areas. Pesticides were detected in 15 of 45 ground-water samples. Atrazine and deethylatrazine, a metabolite of atrazine, were detected most frequently. Deethylatrazine was detected in water samples from 9 wells and atrazine was detected in samples from 8 wells. Tebuthiuron was detected in water samples from 5 wells; metolachlor was detected in samples from 4 wells; prometon was detected in samples from 4 wells; and alachlor was detected in 1 well. None of the detected pesticide concentrations exceeded the maximum contaminant level or health advisory level set by the U.S. Environmental Protection Agency. Wastewater compounds were detected in 28 of 45 groundwater samples. Of the 20 wastewater compounds detected, 11 compounds were from household chemicals, 3 compounds were hydrocarbons, 2 compounds were industrial chemicals, 2 compounds were pesticides, 1 compound was of animal source, and 1 compound was a detergent compound. The most frequently detected wastewater compound was phenol, which was detected in 23 wells. N,N-diethyl-meta-toluamide (DEET) was detected in water samples from 5 wells. Benzophenone, ethanol- 2-butoxy-phosphate, and tributylphosphate were detected in water samples from 3 wells. Fertilizer was determined to be the possible source of nitrate in samples from 13 of 45 wells sampled, with a15N values ranging from 0.43 to 3.46 permil. The possible source of nitrate for samples from the greatest number of wells (22 wells) was from mixed sources of nitrate from fertilizer, septic or manure, or natural sources. Mixed nitrate sources had a 15N values ranging from 0.25 to 9.83 permil. Septic or manure was determined as the possible source of nitrate in samples from 2 wells. Natural sources were determined to be the possible source of nitrate in samples from 7 wells, with a 15N values ranging from 0.83 to 9.44 permil.
Study of metals concentration levels in Patella piperata throughout the Canary Islands, Spain.
Bergasa, Oscar; Ramírez, Rubén; Collado, Cayetano; Hernández-Brito, J Joaquín; Gelado-Caballero, María Dolores; Rodríguez-Somozas, María; Haroun, Ricardo J
2007-04-01
In order to assess the extent of metal contamination at rocky shores of the Canarian Archipelago, metal concentrations have been measured in Patella piperata (Gould, 1846), using the standard atomic absorption spectrophotometer technique. Ranges of elements concentrations measured (in microg g(-1)) found in the biota were: Cd (0.36 +/- 0.26 microg g(-1) dry wt.), Cu (2.05 +/- 0.91 dry wt.), Pb (1.57 +/- 1.14 microg g(-1)dry wt.) and Zn (10.37 +/- 4.60 microg g(-1) dry wt.). Variation in metal concentrations in Patella, was tested by using non-parametric statistical methods. Cd content had a maximum in the Archipelago Chinijo, northward of Lanzarote Island. The metal concentrations recorded at the clean stations may be considered carefully if they are used like background levels.
Volatile Concentrations in Pyroclastic Obsidian: Two Case Studies
NASA Astrophysics Data System (ADS)
Wearn, K. M.; Cashman, K. V.; Wallace, P. J.
2002-12-01
Pyroclastic obsidian is abundant in fall deposits associated with Mt. Mazama's Cleetwood eruption and South Sister's Rock Mesa eruption. Measured concentrations of H2Ototal and CO2 in >300 obsidian samples from these two eruptions provide important information about both the style of degassing (open- vs. closed-system) and changes in eruptive conditions through the course of both eruptions. Obsidian clasts preserve a range of total H2O contents, with samples from lower stratigraphic levels displaying a wider range of water concentrations than those from the uppermost tephra layer sampled. All samples from the Cleetwood section contain <=1 wt% water, with those from the top of that deposit containing <0.4 wt%. Obsidian from the basal ash layer of the subsequent climactic eruption contains 0.1 - 0.8 wt% water. Obsidian fragments from the Rock Mesa eruption show a broader range in H2Ototal contents (from 0.1 to >3 wt%) than those from the Cleetwood eruption. At Rock Mesa, maximum total water contents generally decrease with increased stratigraphic height. However, this decrease is not strictly monotonic: fluctuations in maximum total water contents correspond to stratigraphic unit boundaries. In addition, the Rock Mesa event produced abundant obsidian with very low H2Ototal concentrations throughout the eruption. Dissolved molecular CO2 levels are below the detection limit in all of the Cleetwood and Mazama samples. This is not surprising, given the low initial CO2 measured in Cleetwood and Mazama melt inclusions by Bacon et al. (1992). CO2 concentrations in the Rock Mesa clasts range from <5 ppm to ~44 ppm, and are positively correlated with H2Ototal concentrations. Fluorine concentrations in Cleetwood and Mazama climactic obsidian clasts vary between ~510 and ~695 ppm, with climactic samples averaging slightly lower concentrations than Cleetwood samples. Fluorine concentrations in Rock Mesa obsidians are uniformly low (~300 to ~510 ppm). Chlorine contents of Cleetwood and Mazama climactic samples range from ~1400 ppm to ~1610 ppm. The Rock Mesa samples all contain less chlorine (~510 to ~1120 ppm) than the Cleetwood and climactic samples, and in the Rock Mesa obsidian, chlorine and total water are positively correlated. Stratigraphic variations in the volatile contents of pyroclastic obsidian support previous work suggesting that obsidian forms along the margins of the volcanic conduit and is eroded from the conduit walls by fragmenting magma. Both the Cleetwood and the Rock Mesa deposits indicate initial evacuation of shallow vanguard magma followed by a rapid increase in fragmentation depth. Both deposits also show a gradual decrease in the fragmentation depth through time, consistent with subsequent effusive activity in both cases. More puzzling is the apparent closed-system degassing trend defined by the H2O-CO2-Cl relations in the Rock Mesa obsidian samples, despite the loss of volatiles required for obsidian formation. This suggests that volatile data may also provide information on the relative time scales of volatile exsolution and loss and obsidian formation.
Determination of Cerium (IV) Using Rhodamine 6G Fluorescence Quenching
NASA Astrophysics Data System (ADS)
Zhao, Zh.; Sheng, L.; Su, B.; Tao, C.; Jing, W.
2017-11-01
The interaction between rhodamine 6G (Rh6G) and cerium sulfate was studied by the fluorescence quenching method. In a sulfuric acid medium, the interaction of Ce(IV) with Rh6G results in Rh6G fluorescence quenching. The maximum excitation wavelength (λex) and the maximum emission wavelength (λem) are 530 nm and 555 nm, respectively. A good linearity between the relative fl uorescence intensity (ΔF) and Ce(IV) was observed in the range 0.12-1.08 μg/mL. The detection limit was 1.4 × 10-3 μg/mL. The optimum reaction conditions, influencing factors, and effect of coexisting substances were investigated in the experiment. We found that the concentration of Rh6G was 3.2 × 10-6 mol/L, and the fl uorescence intensity was maximum.
Performance Analysis and Optimization of Concentrating Solar Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Lamba, Ravita; Manikandan, S.; Kaushik, S. C.
2018-06-01
A thermodynamic model for a concentrating solar thermoelectric generator considering the Thomson effect combined with Fourier heat conduction, Peltier, and Joule heating has been developed and optimized in MATLAB environment. The temperatures at the hot and cold junctions of the thermoelectric generator were evaluated by solving the energy balance equations at both junctions. The effects of the solar concentration ratio, input electrical current, number of thermocouples, and electrical load resistance ratio on the power output and energy and exergy efficiencies of the system were studied. Optimization studies were carried out for the STEG system, and the optimum number of thermocouples, concentration ratio, and resistance ratio determined. The results showed that the optimum values of these parameters are different for conditions of maximum power output and maximum energy and exergy efficiency. The optimum values of the concentration ratio and load resistance ratio for maximum energy efficiency of 5.85% and maximum exergy efficiency of 6.29% were found to be 180 and 1.3, respectively, with corresponding power output of 4.213 W. Furthermore, at higher concentration ratio (C = 600), the optimum number of thermocouples was found to be 101 for maximum power output of 13.75 W, maximum energy efficiency of 5.73%, and maximum exergy efficiency of 6.16%. Moreover, the optimum number of thermocouple was the same for conditions of maximum power output and energy and exergy efficiency. The results of this study may provide insight for design of actual concentrated solar thermoelectric generator systems.
A climatology of ⁷Be in surface air in European Union.
Hernández-Ceballos, M A; Cinelli, G; Ferrer, M Marín; Tollefsen, T; De Felice, L; Nweke, E; Tognoli, P V; Vanzo, S; De Cort, M
2015-03-01
This study presents a European-wide analysis of the spatial and temporal distribution of the cosmogenic isotope (7)Be in surface air. This is the first time that a long term database of 34 sampling sites that regularly provide data to the Radioactivity Environmental Monitoring (REM) network, managed by the Joint Research Centre (JRC) in Ispra, is used. While temporal coverage varies between stations, some of them have delivered data more or less continuously from 1984 to 2011. The station locations were considerably heterogeneous, both in terms of latitude and altitude, a range which should ensure a high degree of representativeness of the results. The mean values of (7)Be activity concentration presented a spatial distribution value ranging from 2.0 to 5.4 mBq/m(3) over the European Union. The results of the ANOVA analysis of all (7)Be data available indicated that its temporal and spatial distributions were mainly explained by the location and characteristic of the sampling sites rather than its temporal distribution (yearly, seasonal and monthly). Higher (7)Be concentrations were registered at the middle, compared to high-latitude, regions. However, there was no correlation with altitude, since all stations are sited within the atmospheric boundary layer. In addition, the total and yearly analyses of the data indicated a dynamic range of (7)Be activity for each solar cycle and phase (maximum or minimum), different impact on stations having been observed according to their location. Finally, the results indicated a significant seasonal and monthly variation for (7)Be activity concentration across the European Union, with maximum concentrations occurring in the summer and minimum in the winter, although with differences in the values reached. The knowledge of the horizontal and vertical distribution of this natural radionuclide in the atmosphere is a key parameter for modelling studies of atmospheric processes, which are important phenomena to be taken into account in the case of a nuclear accident. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Diel cycles in dissolved metal concentrations in streams: Occurrence and possible causes
Nimick, David A.; Gammons, Christopher H.; Cleasby, Thomas E.; Madison, James P.; Skaar, Don; Brick, Christine M.
2003-01-01
Substantial diel (24‐hour) cycles in dissolved (0.1‐μm filtration) metal concentrations were observed during low flow for 18 sampling episodes at 14 sites on 12 neutral and alkaline streams draining historical mining areas in Montana and Idaho. At some sites, concentrations of Cd, Mn, Ni, and Zn increased as much as 119, 306, 167, and 500%, respectively, from afternoon minimum values to maximum values shortly after sunrise. Arsenic concentrations exhibited the inverse temporal pattern with increases of up to 54%. Variations in Cu concentrations were small and inconsistent. Diel metal cycles are widespread and persistent, occur over a wide range of metal concentrations, and likely are caused primarily by instream geochemical processes. Adsorption is the only process that can explain the inverse temporal patterns of As and the divalent metals. Diel metal cycles have important implications for many types of water‐quality studies and for understanding trace‐metal mobility.
Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-Salgado, D.; Zemánková, K.; Noya, E. G.
In this work, we present a study of representative excess thermodynamic properties of aqueous mixtures of methanol over the complete concentration range, based on extensive computer simulation calculations. In addition to test various existing united atom model potentials, we have developed a new force-field which accurately reproduces the excess thermodynamics of this system. Moreover, we have paid particular attention to the behavior of the temperature of maximum density (TMD) in dilute methanol mixtures. The presence of a temperature of maximum density is one of the essential anomalies exhibited by water. This anomalous behavior is modified in a non-monotonous fashion bymore » the presence of fully miscible solutes that partly disrupt the hydrogen bond network of water, such as methanol (and other short chain alcohols). In order to obtain a better insight into the phenomenology of the changes in the TMD of water induced by small amounts of methanol, we have performed a new series of experimental measurements and computer simulations using various force fields. We observe that none of the force-fields tested capture the non-monotonous concentration dependence of the TMD for highly diluted methanol solutions.« less
Yan, En-Rong; Yang, Xiao-Dong; Chang, Scott X.; Wang, Xi-Hua
2013-01-01
Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests. PMID:23560114
Water resources of Big Horn County, Wyoming
Plafcan, Maria; Cassidy, Earl W.; Smalley, Myron L.
1993-01-01
Groundwater in unconsolidated aquifers is the most reliable and accessible source of potable water in Big Horn County, Wyoming. Well yields generally ranged from 25 to 200 gal/min; however, yields of 1600 gal/min are reported from wells in the gravel, pediment, and fan deposits. Bedrock aquifers that yield the most abundant water supplies are the Tensleep Sandstone, Madison Limestone, Bighorn Dolomite, and Flathead Sandstone. The aquifers with the most potential for development as a water supply, predominately composed of sandstone, are the Lance, Mesaverde, and Frontier Formations.The Madison Limestone, the Darby Formation, and the Bighorn Dolomite form the Madison Bighorn aquifer. Reported yields from the aquifer ranged from 40 to 14,000 gal/min. Flowing wells from the Madison-Bighorn aquifer had shut-in pressures ranging from 41 to 212 pounds per square inch (95 to 490 feet above land surface).Shut-in pressures from flowing wells in bedrock indicate declines, from the time the wells were completed to 1988, as much as 390 feet. Flows have also decreased over time. Water samples from wells completed in unconsolidated aquifers have concentrations of dissolved solids less than 2,000 mg/L (milligrams per liter). Water from unconsolidated aquifers are classified as a calcium sulfate type, a sodium sulfate type, and sodium-calcium sulfate type. Water samples from wells completed in aquifers in Paleozoic and Precambrian rocks had median concentrations of dissolved solids ranging from 111 to 275 mg/L. Water samples from wells in Tertiary and Cretaceous rocks had a median concentration of dissolved solids ranging from 1,107 to 3,320 mg/L. Water types for these aquifers were usually sodium sulfate.Perennial streams originate in the mountains and ephemeral streams originate in the Bighorn Basin. Irrigation return-flow to streams maintains perennial flow in what would otherwise be ephemeral streams. Streams that originate in the Bighorn Basin have specific conductance values generally greater than 1,000 mg/L, whereas streams that originate in the Bighorn Mountains have specific conductance values generally less than 1,000 mg/L. The predominant dissolved constituents are calcium or sodium and bicarbonate or sulfate.Concentrations of pesticides detected in surface-water samples were less than the U.S. Environmental Protection Agency (USHPA) maximum contaminant levels. The detected concentrations of pesticides in streambed material in the organochlorine insecticide class ranged from 0.1 to 8.0 micrograms per kilogram. Pesticides detected in ground-water samples included dicamba and picloram at a concentration of 0.40 jig/L (micrograms per liter), atrazines (0.40 jig/L), aldicarb sulfone (1.44 |ig/L), aldicarb sulfoxide (0.52 |ig/L), and malathion (0.02 jig/L). Analyses of ground-water samples for radionuclides indicate that concentrations from four municipal wells exceeded the maximum contaminant level established by the USEPA. Of these four wells, concentrations in water samples from the municipal well at Frannie consistently exceeded the USEPA maximum contaminant level for dissolved gross alpha activity of 15 pCi/L (picocuries per liter) and radium-226 plus radium-228 (5 pCi/L). The source of the radioactivity is postulated to be the Madison Limestone.Surface water accounts for 96 percent and ground water accounts for 4 percent of total offstream water use in Big Horn County, Wyoming. Irrigation is the largest offstream use of both surface and ground water. About 99 percent of offstream surface water and 55 percent of ground water is used for irrigation. Eighty-two percent of the water used for irrigation is consumed, which includes a 37-percent conveyance loss and 45 percent consumed by the irrigated crops. Ground water supplies 89 percent of water used for domestic purposes and about 16 percent of water used for public supplies, which shows that ground water is a primary domestic water supply in rural areas where public supplies are not available.
Three-dimensional motion analysis of the lumbar spine during "free squat" weight lift training.
Walsh, James C; Quinlan, John F; Stapleton, Robert; FitzPatrick, David P; McCormack, Damian
2007-06-01
Heavy weight lifting using a squat bar is a commonly used athletic training exercise. Previous in vivo motion studies have concentrated on lifting of everyday objects and not on the vastly increased loads that athletes subject themselves to when performing this exercise. Athletes significantly alter their lumbar spinal motion when performing squat lifting at heavy weights. Controlled laboratory study. Forty-eight athletes (28 men, 20 women) performed 6 lifts at 40% maximum, 4 lifts at 60% maximum, and 2 lifts at 80% maximum. The Zebris 3D motion analysis system was used to measure lumbar spine motion. Exercise was performed as a "free" squat and repeated with a weight lifting support belt. Data obtained were analyzed using SAS. A significant decrease (P < .05) was seen in flexion in all groups studied when lifting at 40% maximum compared with lifting at 60% and 80% of maximum lift. Flexion from calibrated 0 point ranged from 24.7 degrees (40% group) to 6.8 degrees (80% group). A significant increase (P < .05) was seen in extension when lifting at 40% maximum was compared with lifting at 60% and 80% maximum lift. Extension from calibrated 0 point ranged from -1.5 degrees (40% group) to -20.3 degrees (80% group). No statistically significant difference was found between motion seen when exercise was performed as a free squat or when lifting using a support belt in any of the groups studied. Weight lifting using a squat bar causes athletes to significantly hyperextend their lumbar spines at heavier weights. The use of a weight lifting support belt does not significantly alter spinal motion during lifting.
Methane evasion and oxidation in the Big Cypress National Preserve—a low relief carbonate wetland
NASA Astrophysics Data System (ADS)
Ward, N. D.; Bianchi, T. S.; Cohen, M. J.; Martin, J. B.; Quintero, C.; Brown, A.; Osborne, T.; Sawakuchi, H. O.
2016-12-01
The Big Cypress National Preserve is a low relief carbonate wetland characterized by unique basin patterning known as "cypress domes." Here we examine the concentration and stable isotopic composition of methane in pore waters, surface waters, and bubbles from the sediment across horizontal gradients in four domes during three sampling campaigns. The proportion of methane oxidized in surface waters was estimated based on isotopic differences between surface water and pore waters/bubbles. Rates of methane evasion from surface waters, soils, and cypress knees to the atmosphere were also measured. Surface water CH4 concentrations ranged from 170 to 4,533 ppm with the highest levels generally being observed during wet periods. Pore water CH4 concentrations ranged from 748 to 75,213 ppm. The concentration of methane in bubbles ranged from 6.5 to 71%. The stable isotopic composition of CH4 ranged from -69.2 to -43.8‰ for all samples and was generally more enriched in surface waters compared to bubbles and porewaters, particularly in the two domes that were persistently inundated throughout the year. Based on these isotopic values, the average percentage of surface water CH4 that was oxidized was 37 ± 16% (maximum of 67%) and 19 ± 4% (maximum of 47%) in the two domes that are persistently inundated versus the two domes that are not inundated during the dry season, respectively. The average rate of CH4 evasion was 3.6 ± 1.6 mmol m-2 d-1 via diffusion, 7.6 ± 4.7 mmol m-2 d-1 via ebullition, 10.9 ± 11.4 mmol m-2 d-1 from soil surfaces, and 34.3 ± 27.4 mmol m-2 d-1 from cypress knees. These results indicate that CH4 is produced in great quantities in inundated sediments, particularly in the center of the cypress domes. Diffusive fluxes from surface waters are suppressed by microbial oxidation in the water column, whereas ebullition from sediments and evasion through cypress knees, and likely other vascular vegetation, are the primary pathways for CH4 outgassing.
NASA Astrophysics Data System (ADS)
Sicard, Michaël; Izquierdo, Rebeca; Alarcón, Marta; Belmonte, Jordina; Comerón, Adolfo; Baldasano, José Maria
2016-06-01
We present for the first time continuous hourly measurements of pollen near-surface concentration and lidar-derived profiles of particle backscatter coefficients and of volume and particle depolarization ratios during a 5-day pollination event observed in Barcelona, Spain, between 27 and 31 March 2015. Daily average concentrations ranged from 1082 to 2830 pollen m-3. Platanus and Pinus pollen types represented together more than 80 % of the total pollen. Maximum hourly pollen concentrations of 4700 and 1200 m-3 were found for Platanus and Pinus, respectively. Every day a clear diurnal cycle caused by the vertical transport of the airborne pollen was visible on the lidar-derived profiles with maxima usually reached between 12:00 and 15:00 UT. A method based on the lidar polarization capabilities was used to retrieve the contribution of the pollen to the total aerosol optical depth (AOD). On average the diurnal (09:00-17:00 UT) pollen AOD was 0.05, which represented 29 % of the total AOD. Maximum values of the pollen AOD and its contribution to the total AOD reached 0.12 and 78 %, respectively. The diurnal means of the volume and particle depolarization ratios in the pollen plume were 0.08 and 0.14, with hourly maxima of 0.18 and 0.33, respectively. The diurnal mean of the height of the pollen plume was found at 1.24 km with maxima varying in the range of 1.47-1.78 km. A correlation study is performed (1) between the depolarization ratios and the pollen near-surface concentration to evaluate the ability of the former parameter to monitor pollen release and (2) between the depolarization ratios as well as pollen AOD and surface downward solar fluxes, which cause the atmospheric turbulences responsible for the particle vertical motion, to examine the dependency of the depolarization ratios and the pollen AOD upon solar fluxes. For the volume depolarization ratio the first correlation study yields to correlation coefficients ranging 0.00-0.81 and the second to correlation coefficients ranging 0.49-0.86.
NASA Technical Reports Server (NTRS)
Drese, John H.
1997-01-01
The EPA criteria air pollutants were monitored at Kennedy Space Center (KSC) since 1983 to comply the prevention of significant deterioration requirements under the Clean Air Act amendments passed by Congress in 1977 and 1990. Monitoring results show that monthly maximum 24-hour total suspended particulates decreased from 144.6 micograms/cu m in 1988 to 73.0 micrograms/cu m in 1991 and increased to 149.3 micrograms/cu m in 1992. Inhalable particulates increased from 56.1 gg/M3 in 1983 to 131.4 micrograms/cu m in 1988, and then decreased to 38.5 micrograms/cu m in 1992. Sulfur dioxide monthly maximum 24-hour average concentrations decreased each year from 135.2 micrograms/cu m in 1983 to 33.8 micrograms/cu m in 1992. Nitrogen dioxide concentrations increased from 5.1 micrograms/cu m in 1983 to 5.9 micrograms/cu m in 1988, then decreased to 4.5 micrograms/cu m in 1992. Carbon monoxide annual average concentrations decreased from 6.2 micrograms/cu m in 1983 to 1.1 micrograms/cu m in 1988, and increased to 1.2 micrograms/cu m in 1992. Ozone maximum 1-hour concentrations increased from 98 parts per billion (ppb) in 1983 to 134 ppb in 1989, and then decreased to 80 ppb in 1992. Total annual rainfall ranged from 37.47 inches to 57.47 inches and shows a 6.6 percent increase over this same ten year period.
[Levels of Ochratoxin A and total Aflatoxins in Panamanian exportation coffee by an ELISA Method].
Franco, Heriberto; Vega, Aracelly; Reyes, Stephany; De Léon, Javier; Bonilla, Alexis
2014-03-01
A study about processing conditions of exportation coffee in 15 benefits located in Chiriqui, western region of Panama, was conducted. In addition, 21 samples of processed coffee (green beans), from the benefits, were analyzed. The samples were microbiologically tested in order to quantify total aflatoxins (B1, B2, G1 and G2) and Ochratoxin A (OTA), using the immunoaffinity ELISA method. A detection limit of 0.017 ng/mL, was determined for Ochratoxin A, which is equivalent to a concentration of 0.829 µg/kg, and a detection limit of 0.027 ng/mL, for total aflatoxins, which is equivalent to a concentration of 1.350 µg/kg. It was found that four (19%) out of the 21 samples were positive to the presence of Ochratoxin A and three (14%) to the presence of total aflatoxins. Samples showed levels of Ochratoxin A in the range 4.90 - 37.73 µg/kg; only three of them exceeded the maximum limit allowed by the European Union, for the concentration of Ochratoxin, which is of 5.0 µg/kg. Total aflatoxins were found in the range 1.51 - 1.93 µg/kg, below 10 µg/kg which is the maximum limit allowed for coffee by the European Union. The results indicate that the processing of coffee produced in Panama successfully meets international standards for postharvest handling, which leads to a low incidence ofmycotoxins and very low levels ofmycotoxin-producing fungi.
Thorud, Syvert; Gjolstad, Merete; Ellingsen, Dag G; Molander, Paal
2005-06-01
An investigation of contemporary exposure to formaldehyde and organic solvents has been carried out during surface coating with acid-curing lacquers and paints in the Norwegian woodworking and furniture industry over a period of 3 years. The investigation covered 27 factories of different sizes and with different types of production, and totally 557 parallel formaldehyde and solvent samples were collected. The formaldehyde concentration (geometric mean) was 0.15 ppm (range 0.01-1.48 ppm) with about 10% of the samples exceeding the Norwegian occupational exposure limit of 0.5 ppm. The solvent concentration as additive effect (geometric mean) was 0.13 (range 0.0004-5.08) and about 5% of the samples exceeded the Norwegian occupational exposure limit. The most frequently occurring solvents from acid-curing lacquers were n-butyl acetate, ethanol, ethyl acetate and 1-butanol, which were found in 88-98% of the samples. Toluene, n-butyl acetate and 1-butanol were the only solvents with maximum concentrations exceeding their respective occupational exposure limits. Curtain painting machine operators were exposed to the highest concentrations of both formaldehyde (geometric mean 0.51 ppm, range 0.08-1.48 ppm) and organic solvents (additive effect, geometric mean 1.18, range 0.02-5.08). Other painting application work tasks such as automatic and manual spray-painting, manual painting and dip painting, showed on average considerably lower concentrations of both formaldehyde (geometric means 0.07-0.16 ppm) and organic solvents (additive effect, geometric mean 0.02-0.18). Non-painting work tasks also displayed moderate concentrations of formaldehyde (geometric means 0.11-0.17 ppm) and organic solvents (additive effect, geometric mean 0.04-0.07).
Salih, Najeba F; Jafri, Zubir M; Jaafar, Mohamad S
2016-12-01
This study was carried out to determine the concentration of 222 Rn, 226 Ra, and 238 U in 25 different toothpastes available in the local market in Penang, Malaysia, using a CR-39 detector. The results showed the maximum concentration of radon/ radium/uranium to be 4197.644 Bq.m -3 , 54.369 Bq.Kgm -1 , and 0.044 ppm in Colgate4; the annual effective dose was found (0.402 mSvy -1 ) in S07. The average concentration of radon (42 %, 3.224 KBq.m -3 ) was higher than the concentration of 214 Po, 218 Po in POS (32 %, 2.415 KBq.m -3 ) and POW (26 %, 1.979 KBq.m -3 ). Also the values of pH of samples ranged from 4.21 (highly acidic) in S04 to 9.97 (highly basic) in S07, with an average of 6.33 which tended towards an acidic behavior; a low or high pH for a long period of time can cause harmful side-effects and enamel erosion. Concentrations of heavy metals varied from the maximum value 56.156 ppm in the Ca elements in the Colgate 4 sample to a minimum value of -0.858 ppm in the Cd elements in Colgate 6 (Ca 56.156 ppm > Cd 51.572 ppm > Zn 41.039 ppm > Mg 11.682 ppm > Pb 11.009 ppm]. Monitoring the accumulation of these metals in toothpaste samples is very important: the average annual effective dose (0.3118 mSvy -1 ) was below the range (3-10 mSvy -1 ) reported by ICRP (1993), and therefore there is no evidence of health problems. Significant strong positive correlations were found (r = 1, Pearson correlation, p < 0.000) in concentration of radon, radium, uranium, annual effective dose, pH, and electrical conductivity.
Bishop, C A; Rouse, J D
2006-10-01
From three locations along a 34-km shoreline of Pelee Island, Ontario, 30 gravid female Lake Erie water snakes (Nerodia sipedon insularum) were sampled to determine the organochlorine (OC) contaminant levels in plasma and the number of live and dead embryos present in the body cavity. Plasma was analyzed for 59 polychlorinated biphenyl (PCB) congeners and 14 organochlorine pesticides. Concentrations of pesticides were low (< or =0.1 ng/g wet wt) in all snakes, but there was significant variation in mean PCB concentrations in plasma from among the sampling locations on Pelee Island. Snakes (n = 5) from the West shore and dock area of the island had significantly higher PCB concentrations (90.4 +/- 15.0 ng/g wet wt) in plasma than those from Lighthouse Point (n = 5; 34.4 +/- 13 ng/g wet wt) and the south shore of the island (n = 5; 29.4 +/- 16.3 ng/g wet wt). Body mass of the female snakes ranged from 252 to 880 g, and mean masses were not significantly different among sample sites. The number of live embryos found ranged from 13 to 46 female snakes and no dead embryos were detected. There were significant positive correlations among body mass, snout-vent length, and number of young per female. There were no significant correlations among body mass, snout-vent length, number of young per female, or per-gram body mass of female snakes and contaminant concentrations in plasma. It was concluded that an interim estimate of a no-effect level on embryonic survival in N. sipedon insularum may be a maximum average concentration of 90.4 ng/g wet wt PCBs and a maximum average concentration of 3.6 ng/g wet wt p,p'-dichloro-diphenyl-dichloroethylene in plasma.
Purification and properties of rennin-like enzyme from Aspergillus ochraceus.
Ismail, A A; Foda, M S; Khorshid, M A
1978-01-01
An active milk-clotting enzyme was purified some 40-fold from culture supernatant of Aspergillus ochraceus. The purification steps included ammonium sulfate precipitation, G-100 Sephadex gel filtration, and ion exchange chromatography, using DEAE Cellulose column. The enzyme exhibited milk-clotting activity and proteolytic behaviour, an optimum at pH 6.0 and in the range of 7--8.5, respectively. The purified enzyme was actively proteolytic against casein, haemoglobin, and bovine serum albumin at pH 8. The milk-clotting activity was greatly enhanced by manganous ions and by increasing concentrations of calcium chloride. Copper, zinc, and ammonium ions were potent inhibitors of the milk-curdling activity of the purified enzyme. Significant inhibition was also noted with sodium chloride at concentrations of 3% or more. Under the specified reaction condition, maximum rate of proteolysis against casein was obtained at 0.4% substrate concentration, whereas the milk-clotting time was linear proportional to dry skim milk concentration in the range of 8 to 24%. The results are discussed in comparison with other microbial milk-clotting enzymes, and limitations of applicability are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janssen, M.P.M.; Glastra, P.; Lembrechts, J.F.M.M.
The uptake processes of {sup 134}Cs in two earthworm species were investigated as well as the effect of temperature on these processes. The results show that equilibrium concentrations in the two species differ by 1.5- to fivefold. Equilibrium concentrations range from 367 to 963 Bq g{sup {minus}1} in Lumbricus rubellus and from 920 to 1,893 g{sup {minus}1} in Eisenia foetida; biological half-lives range from 56 to 119 h and 52 to 64 h, respectively. Assimilation was two to four times higher in E. foetida and elimination rate one to two times higher in E. foetida than in L. rubellus. Further,more » the results show that temperature may affect the {sup 134}Cs concentration in these earthworms by a factor of 1.4 to 2.1 between 10 and 20 C, depending on the species. The maximum difference found within one species was a factor of 2.6. Their results show no clear effect of temperature on the assimilation, but a small negative effect on elimination, resulting in an increasing biological half-life and concentration factor with higher temperatures.« less
Della Pelle, Flavio; Di Crescenzo, Maria Chiara; Sergi, Manuel; Montesano, Camilla; Di Ottavio, Francesca; Scarpone, Rossana; Scortichini, Giampiero; Compagnone, Dario
2016-01-01
A rapid, selective and effective method of extraction, clean-up and concentration of organophosphorous pesticides from wheat followed by electrospray (ESI) LC-MS/MS analysis was developed. The μ-SPE (micro-solid-phase extraction) procedure resulted in good analytical performance and reduced at the same time matrix effects, analysis time and solvent consumption. Limits of detection (LODs) and quantification (LOQs) were in the range of 0.3-10 and 1-30 μg kg(-1), respectively, with good reproducibility (RSD ≤ 13.8) and recoveries between 75% and 109%. Coefficients of determination (r(2)) were greater than 0.996 for the studied pesticides. Despite the reduced sorbent bed mass of μ-SPE tips (4.2 mg), the analytical data showed that no saturation phenomena occurs in the tested range of concentration both for single compounds and mixtures. Several real samples were analysed and the concentrations of the selected pesticides were found to be below the respective maximum residue limit (MRLs).
NASA Astrophysics Data System (ADS)
Liu, Xiao-rong; Jiang, Sheng-cai; Liu, Yan-jun; Li, Hui; Wang, Hua-jun
2013-10-01
Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans ( A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.
Toxicological relevance of pharmaceuticals in drinking water.
Bruce, Gretchen M; Pleus, Richard C; Snyder, Shane A
2010-07-15
Interest in the public health significance of trace levels of pharmaceuticals in potable water is increasing, particularly with regard to the effects of long-term, low-dose exposures. To assess health risks and establish target concentrations for water treatment, human health risk-based screening levels for 15 pharmaceutically active ingredients and four metabolites were compared to concentrations detected at 19 drinking water treatment plants across the United States. Compounds were selected based on rate of use, likelihood of occurrence, and potential for toxicity. Screening levels were established based on animal toxicity data and adverse effects at therapeutic doses, focusing largely on reproductive and developmental toxicity and carcinogenicity. Calculated drinking water equivalent levels (DWELs) ranged from 0.49 microg/L (risperidone) to 20,000 microg/L (naproxen). None of the 10 detected compounds exceeded their DWEL. Ratios of DWELs to maximum detected concentrations ranged from 110 (phenytoin) to 6,000,000 (sulfamethoxazole). Based on this evaluation, adverse health effects from targeted pharmaceuticals occurring in U.S. drinking water are not expected.
Komaromy-Hiller; von Wandruszka R
1996-01-15
The effects of temperature and Triton X-114 (TX-114) concentration on the fluorescence anisotropy of perylene were investigated before and after detergent clouding. The measured anisotropy values were used to estimate the microviscosity of the micellar interior. In the lower detergent concentration range, an anisotropy maximum was observed at the critical micelle concentration (CMC), while the values decreased in the range immediately above the CMC. This was ascribed to the micellar volume increase, which, in the case of TX-114, was not accompanied by a more ordered internal environment. A gradual decrease of anisotropy and microviscosity with increasing temperature below the cloud point was observed. At the cloud point, no abrupt changes were found to occur. Compared to detergents with more flexible hydrophobic moieties, TX-114 micelles have a relatively ordered micellar interior indicated by the microviscosity and calculated fusion energy values. In the separated micellar phase formed after clouding, the probe anisotropy increased as water was eliminated at higher temperatures.
Farmer, J G; Johnson, L R
1990-01-01
An analytical speciation method, capable of separating inorganic arsenic (As (V), As (III] and its methylated metabolites (MMAA, DMAA) from common, inert, dietary organoarsenicals, was applied to the determination of arsenic in urine from a variety of workers occupationally exposed to inorganic arsenic compounds. Mean urinary arsenic (As (V) + As (III) + MMAA + DMAA) concentrations ranged from 4.4 micrograms/g creatinine for controls to less than 10 micrograms/g for those in the electronics industry, 47.9 micrograms/g for timber treatment workers applying arsenical wood preservatives, 79.4 micrograms/g for a group of glassworkers using arsenic trioxide, and 245 micrograms/g for chemical workers engaged in manufacturing and handling inorganic arsenicals. The maximum recorded concentration was 956 micrograms/g. For the most exposed groups, the ranges in the average urinary arsenic speciation pattern were 1-6% As (V), 11-14% As (III), 14-18% MMAA, and 63-70% DMAA. The highly raised urinary arsenic concentrations for the chemical workers, in particular, and some glassworkers are shown to correspond to possible atmospheric concentrations in the workplace and intakes in excess of, or close to, recommended and statutory limits and those associated with inorganic arsenic related diseases. PMID:2357455
NASA Astrophysics Data System (ADS)
Liu, Fengxian; Bi, Xinhui; Zhang, Guohua; Peng, Long; Lian, Xiufeng; Lu, Huiying; Fu, Yuzhen; Wang, Xinming; Peng, Ping'an; Sheng, Guoying
2017-12-01
Size-segregated PM10 samples were collected in Guangzhou, China during autumn of 2014. Nine amines, including seven aliphatic amines and two heterocyclic amines, were detected using a gas chromatography-mass spectrometer after derivatization by benzenesulfonyl chloride. The total concentration of the nine amines (Ʃamines) was 79.6-140.9 ng m-3 in PM10. The most abundant species was methylamine (MA), which had a concentration of 29.2-70.1 ng m-3. MA, dimethylamine (DMA), diethylamine (DEA) and dibutylamine (DBA) were the predominant amines in the samples and accounted for approximately 80% of Ʃamines in each size segment. Two heterocyclic amines, pyrrolidine (PYR) and morpholine (MOR), were detected in all samples and had average concentrations of 1.14 ± 0.37 and 1.89 ± 0.64 ng m-3, respectively, in particles with aerodynamic diameters < 3 μm. More than 80% of Ʃamines were found in particles with diameters <1.5 μm, indicating that amines are mainly enriched in fine particles. All amines exhibited a bimodal distribution with a fine mode at 0.49-1.5 μm and a coarse mode at 7.2-10 μm. The maximum contributions of amines to particles (0.21%) and amines-N to water-soluble organic nitrogen (WSON) (3.1%) were found at the sizes < 0.49 μm. The maximum contribution of amines-C to water-soluble organic carbon (WSOC) was 1.6% over the size range of 0.95-1.5 μm. The molar ratio of Ʃamines to ammonium ranged from 0.0068 to 0.0107 in particles with diameters <1.5 μm, and the maximum ratio occurred in the smallest particles (diameter< 0.49 μm). The average dry deposition flux and velocity of Ʃamines in PM10 were 7.9 ± 1.6 μg m-2 d-1 and 0.084 ± 0.0021 cm s-1, respectively. The results of this study provide essential information on the contribution of amines to secondary organic aerosols and dry removal mechanisms in urban areas.
Trombley, T.J.
2001-01-01
Water-quality samples were collected from 20 surface-water sites and 7 ground-water sites across the Prairie Band Potawatomi Reservation in northeastern Kansas as part of a water-quality study begun in 1996. Water quality is a very important consideration for the tribe. Three creeks draining the reservation, Soldier, Little Soldier, and South Cedar Creeks, are important tribal resources used for maintaining subsistence fishing and hunting needs for tribal members. Samples were collected twice during June 1999 and June 2000 at all 20 surface-water sites after herbicide application, and nine quarterly samples were collected at 5 of the 20 sampling sites from February 1999 through February 2001. Samples were collected once at six wells and twice at one well from September through December 2000. Surface-water-quality constituents analyzed included nutrients, pesticides, and bacteria. In addition to nutrients, pesticides, and bacteria, ground-water constituents analyzed included major dissolved ions, arsenic, boron, and dissolved iron and manganese. The median nitrite plus nitrate concentration was 0.376 mg/L (milligram per liter) for 81 surface-water samples, and the maximum concentration was 4.18 mg/L as nitrogen, which is less than one-half the U.S. Environmental Protection Agency's Maximum Contaminant Level (MCL) for drinking water of 10 mg/L as nitrogen. Fifty-one of the 81 surface-water-quality samples exceeded the U.S. Environmental Protection Agency's recommended goal for total phosphorus of 0.10 mg/L for the protection of aquatic life. Triazine concentrations in 26 surface-water-quality samples collected during May and June 1999 and 2000 exceeded 3.0 ?g/L (micrograms per liter), the Maximum Contaminant Level established for drinking water by the U.S. Environmental Protection Agency. Triazine herbicide concentrations tended to be highest during late spring runoff after herbicide application. High concentrations of fecal indicator bacteria in surface water are a concern on the reservation with fecal coliform concentrations ranging from 4 to greater than 31,000 colonies per 100 milliliters of water with a median concentration of 570 colonies per 100 milliliters. More than one-half of the surface-water-quality samples exceeded the Kansas Department of Health and Environment contact recreation criteria of 200 and 2,000 colonies per 100 milliliters of water and were collected mostly during the spring and summer. Two wells had sodium concentrations of about 10 times the U.S. Environmental Protection Agengy health advisory level (HAL) of 20 mg/L; concentrations ranged from 241 to 336 mg/L. In water from two wells, sulfate concentrations exceeded 800 mg/L, more than three times the U.S. Environmental Protection Agency Secondary Maximum Contaminant Level (SMCL) for drinking water of 250 mg/L. All but two of the eight ground-water-quality samples had dissolved-solids concentrations exceeding the SMCL of 500 mg/L. The highest concentration of 2,010 mg/L was more than four times the SMCL. Dissolved boron concentrations exceeded the U.S. Environmental Protection Agency 600-?g/L HAL in water from two of the seven wells sampled. Because the HAL is for a lifetime of exposure, the anticipated health risk due to dissolved boron is low. Dissolved iron concentrations in ground-water samples exceeded the 300-?g/L SMCL for treated drinking water in three of the seven wells sampled. Dissolved manganese concentrations in water from the same three wells also exceeded the established SMCL of 50 ?g/L. Dissolved pesticides were not detected in any of the well samples; however, there were degradation products of the herbicides alachlor and metolachlor in several samples. Insecticides were not detected in any ground-water-quality samples. Low concentrations of E. coli and fecal coliform bacteria were detected in water from two wells, and E. coli was detected in water from one well. Much higher concentrations of E. coli, fecal coliform, and fecal strepto
Torsion fracture of carbon nanocoils
NASA Astrophysics Data System (ADS)
Yonemura, Taiichiro; Suda, Yoshiyuki; Tanoue, Hideto; Takikawa, Hirofumi; Ue, Hitoshi; Shimizu, Kazuki; Umeda, Yoshito
2012-10-01
We fix a carbon nanocoil (CNC) on a substrate in a focused ion beam instrument and then fracture the CNC with a tensile load. Using the CNC spring index, we estimate the maximum to average stress ratio on the fractured surface to range from 1.3 to 1.7, indicating stress concentration on the coil wire inner edge. Scanning electron microscopy confirms a hollow region on the inner edge of all fractured surfaces.
Rahayu, Rachmawati Noviana; Irawan, Bambang; Soegianto, Agoes
2016-01-01
This study measured the levels of total mercury (tHg) in the whole tissues of cockles (Anadara granosa and A. antiquata) harvested from three estuaries of Western Lombok Island (WLI), Indonesia. This paper also evaluated the hazard level posed by the mercury in relation to the maximum residual limit for human consumption and to estimate the weekly intake and compare it with the provisional tolerable weekly intake (PTWI). The tHg concentrations in A. granosa ranged from 0.020 to 0.070 mg kg(-1), and those in A. antiquata were between 0.032 and 0.077 mg kg(-1) at all locations. All samples of cockles harvested from WLI contain tHg below the permissible limit for human consumption. The maximum weekly intakes for total mercury by coastal people range from 0.28 to 1.08 µg kg(-1) b.w., and they are below the recommended values of PTWI (5.6 µg kg(-1) b.w.). If it is assumed that 100% of the Hg in cockles is methyl mercury (MeHg), consumption of the indicated amounts at the measured values wouldn't exceed the MeHg PTWI (1.6 µg kg(-1) b.w.).
Follicle vascularity coordinates corpus luteum blood flow and progesterone production.
de Tarso, S G S; Gastal, G D A; Bashir, S T; Gastal, M O; Apgar, G A; Gastal, E L
2017-03-01
Colour Doppler ultrasonography was used to compare the ability of preovulatory follicle (POF) blood flow and its dimensions to predict the size, blood flow and progesterone production capability of the subsequent corpus luteum (CL). Cows (n=30) were submitted to a synchronisation protocol. Follicles ≥7mm were measured and follicular wall blood flow evaluated every 12h for approximately 3.5 days until ovulation. After ovulation, cows were scanned daily for 8 days and similar parameters were evaluated for the CL. Blood samples were collected and plasma progesterone concentrations quantified. All parameters were positively correlated. Correlation values ranged from 0.26 to 0.74 on data normalised to ovulation and from 0.31 to 0.74 on data normalised to maximum values. Correlations between calculated ratios of both POF and CL in data normalised to ovulation and to maximum values ranged from moderate (0.57) to strong (0.87). Significant (P<0.0001) linear regression analyses were seen in all comparisons. In conclusion, higher correlations were observed between the dimensions of POF and/or CL and blood flow of both structures, as well as POF and/or CL blood flow with plasma progesterone concentrations of the resultant CL. These findings indicate that follicle vascularity coordinates CL blood flow and progesterone production in synchronised beef cows.
Biochemical characterisation of the esterase activities of wine lactic acid bacteria.
Matthews, Angela; Grbin, Paul R; Jiranek, Vladimir
2007-11-01
Esters are an important group of volatile compounds that can contribute to wine flavour. Wine lactic acid bacteria (LAB) have been shown to produce esterases capable of hydrolysing ester substrates. This study aims to characterise the esterase activities of nine LAB strains under important wine conditions, namely, acidic conditions, low temperature (to 10 degrees C) and in the presence of ethanol (2-18% v/v). Esterase substrate specificity was also examined using seven different ester substrates. The bacteria were generally found to have a broad pH activity range, with the majority of strains showing maximum activity close to pH 6.0. Exceptions included an Oenococcus oeni strain that retained most activity even down to a pH of 4.0. Most strains exhibited highest activity across the range 30-40 degrees C. Increasing ethanol concentration stimulated activity in some of the strains. In particular, O. oeni showed an increase in activity up to a maximum ethanol concentration of around 16%. Generally, strains were found to have greater activity towards short-chained esters (C2-C8) compared to long-chained esters (C10-C18). Even though the optimal physicochemical conditions for enzyme activity differed from those found in wine, these findings are of potential importance to oenology because significant activities remained under wine-like conditions.
Bovine and porcine heparins: different drugs with similar effects on human haemodialysis
2013-01-01
Background Heparins from porcine and bovine intestinal mucosa differ in their structure and also in their effects on coagulation, thrombosis and bleeding. However, they are used as undistinguishable drugs. Methods We compared bovine and porcine intestinal heparin administered to patients undergoing a particular protocol of haemodialysis. We compared plasma concentrations of these two drugs and also evaluated how they affect patients and the dialyzer used. Results Compared with porcine heparin, bovine heparin achieved only 76% of the maximum plasma concentration as IU mL-1. This observation is consistent with the activities observed in the respective pharmaceutical preparations. When the plasma concentrations were expressed on weight basis, bovine heparin achieved a maximum concentration 1.5 fold higher than porcine heparin. The reduced anticoagulant activity and higher concentration, on weight basis, achieved in the plasma of patients under dialysis using bovine instead of porcine heparin did not affect significantly the patients or the dialyzer used. The heparin dose is still in a range, which confers security and safety to the patients. Discussion Despite no apparent difference between bovine and porcine intestinal heparins in the haemodialysis practice, these two types of heparins should be used as distinct drugs due to their differences in structure and biological effects. Conclusions The reduced anticoagulant activity achieved in the plasma of patients under dialysis using bovine instead of porcine heparin did not affect significantly the patients or the dialyzer. PMID:23763719
Counterion self-diffusion in polyelectrolyte solutions
NASA Astrophysics Data System (ADS)
Schipper, F. J. M.; Hollander, J. G.; Leyte, J. C.
1997-12-01
The self-diffusion coefficient of 0953-8984/9/50/019/img1, tetra-methylammonium 0953-8984/9/50/019/img2, tetra-ethylammonium 0953-8984/9/50/019/img3, tetra-propylammonium 0953-8984/9/50/019/img4 and tetra-butylammonium 0953-8984/9/50/019/img5 in solutions of the weak polymethacrylic acid (PMA) were measured with PFG NMR. No additional salt was present in any of the experiments. The polyion concentration and degree of neutralization were varied. The maximum relative counterion self-diffusion coefficient against polyion concentration, that was reported earlier, was observed for both alkali and tetra-alkylammonium 0953-8984/9/50/019/img6 counterions. We propose that the maximum is due to the combination of the obstruction by the polyion and the changing counterion distribution at increasing polyion concentration. An explanation of this proposal is offered in terms of the Poisson - Boltzmann - Smoluchowski (PBS) model for polyelectrolytes. Qualitative agreement of this model with experiment was found for the dependence of the counterion self-diffusion coefficient on the degree of neutralization of the polyion, on counterion radius and on polyion concentration, over a concentration range from 0.01 to 1 0953-8984/9/50/019/img7. Adaption of the theoretical obstruction, to fit the self-diffusion data of the solvent, also greatly improves the model predictions on the counterion self-diffusion.
Horowitz, A.J.; Smith, J.J.; Elrick, K.A.
2001-01-01
A prototype 14-L Teflon? churn splitter was evaluated for whole-water sample-splitting capabilities over a range of sediment concentratons and grain sizes as well as for potential chemical contamination from both organic and inorganic constituents. These evaluations represent a 'best-case' scenario because they were performed in the controlled environment of a laboratory, and used monomineralic silica sand slurries of known concentration made up in deionized water. Further, all splitting was performed by a single operator, and all the requisite concentration analyses were performed by a single laboratory. The prototype Teflon? churn splitter did not appear to supply significant concentrations of either organic or inorganic contaminants at current U.S. Geological Survey (USGS) National Water Quality Laboratory detection and reporting limits when test samples were prepared using current USGS protocols. As with the polyethylene equivalent of the prototype Teflon? churn, the maximum usable whole-water suspended sediment concentration for the prototype churn appears to lie between 1,000 and 10,000 milligrams per liter (mg/L). Further, the maximum grain-size limit appears to lie between 125- and 250-microns (m). Tests to determine the efficacy of the valve baffle indicate that it must be retained to facilitate representative whole-water subsampling.
Multiparameter analysis of activated sludge inhibition by nickel, cadmium, and cobalt.
Hernandez-Martinez, Gabriel R; Ortiz-Alvarez, Daniela; Perez-Roa, Michael; Urbina-Suarez, Nestor Andres; Thalasso, Frederic
2018-06-05
Activated sludge processes are often inhibited by nickel, cadmium, and cobalt. The inhibitory effect of these heavy metals on a synthetic wastewater treatment process was tested through pulse microrespirometry; i.e., pulse of substrate injected in a microreactor system. The inhibitory effect was tested under different conditions including the heavy metals, substrate and biomass concentrations, and exposure time. The inhibitory effect was quantified by the percentage of inhibition, half saturation constant (K S ), inhibition constant (K I ), and maximum oxygen uptake rate (OUR max ). The results indicated that, in a range of concentration from 0 to 40 mg L -1 , the three heavy metals exerted an uncompetitive and incomplete inhibitory effect, with a maximum inhibition of 67, 57, and 53% for Ni, Co, and Cd, respectively. An increase of the biomass concentration by 620% resulted in a decrease of the inhibition by 47 and 69% for Co and Cd, respectively, while no effect was observed on Ni inhibition. An increase of the substrate concentration by 87% resulted in an increase of the inhibition by 24, 70, and 47% for Ni, Co and Cd, respectively. In the case of nickel and cadmium, an increase in the exposure time to the heavy metals also increased the inhibition. Copyright © 2018 Elsevier B.V. All rights reserved.
Phytoremediation of mercury-contaminated soils by Jatropha curcas.
Marrugo-Negrete, José; Durango-Hernández, José; Pinedo-Hernández, José; Olivero-Verbel, Jesús; Díez, Sergi
2015-05-01
Jatropha curcas plants species were tested to evaluate their phytoremediation capacity in soils contaminated by different levels of mercury. The experimental treatments consisted of four levels of mercury concentrations in the soil - T0, T1, T5, and T10 (0, 1, 5, and 10 μg Hg per g soil, respectively). The total mercury content absorbed by the different plant tissues (roots, stems and leaves) was determined during four months of exposure. The growth behavior, mercury accumulation, translocation (TF) and bioconcentration (BCF) factors were determined. The different tissues in J. curcas can be classified in order of decreasing accumulation Hg as follows: roots>leaves>stems. The highest cumulative absorption of the metal occurred between the second and third month of exposure. Maximum TF was detected during the second month and ranged from 0.79 to 1.04 for the different mercury concentrations. Values of BCF ranged from 0.21 to 1.43. Soils with T1 showed significantly higher BCF (1.43) followed by T10 (1.32) and T5 (0.91), all of them at the fourth month. On the other hand TFs were low (range 0.10-0.26) at the en of the experiment. The maximum reduction of biomass (16.3%) occurred for T10 (10 μg Hg g(-1)). In sum, J. curcas species showed high BCFs and low TFs, and their use could be a promising approach to remediating mercury-contaminated soils. Copyright © 2015 Elsevier Ltd. All rights reserved.
Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil.
Stumpf, M; Ternes, T A; Wilken, R D; Rodrigues, S V; Baumann, W
1999-01-12
The drug residues of lipid regulators, anti-inflammatories and some drug metabolites have been detected in raw sewage, treated waste water and river water in the state of Rio de Janeiro, Brazil. These residues are mainly derived from humans via excretion. The median concentrations in the effluents of sewage treatment plants (STPs) of most drugs investigated in this study ranged from 0.1 to 1 microgram/l. The removal rates of individual drugs during passage through a Brazilian STP varied from 12 to 90%. As a consequence of the incomplete removal of these residues during passage through a STP, rivers were also found to be contaminated. Median concentrations ranged from between 0.02 and 0.04 microgram/l in river water, whereas the maximum values were observed to be up to 0.5 microgram/l.
Soma, L R; Uboh, C E; Liu, Y; Li, X; Robinson, M A; Boston, R C; Colahan, P T
2013-04-01
This study investigated and compared the pharmacokinetics of intra-articular (IA) administration of dexamethasone sodium phosphate (DSP) into three equine joints, femoropatellar (IAS), radiocarpal (IAC), and metacarpophalangeal (IAF), and the intramuscular (IM), oral (PO) and intravenous (IV) administrations. No significant differences in the pharmacokinetic estimates between the three joints were observed with the exception of maximum concentration (Cmax ) and time to maximum concentration (Tmax ). Median (range) Cmax for the IAC, IAF, and IAS were 16.9 (14.6-35.4), 23.4 (13.5-73.0), and 46.9 (24.0-72.1) ng/mL, respectively. The Tmax for IAC, IAF, and IAS were 1.0 (0.75-4.0), 0.62 (0.5-1.0), and 0.25 (0.08-0.25) h, respectively. Median (range) elimination half-lives for IA and IM administrations were 3.6 (3.0-4.6) h and 3.4 (2.9-3.7) h, respectively. A 3-compartment model was fitted to the plasma dexamethasone concentration-time curve following the IV administration of DSP; alpha, beta, and gamma half-lives were 0.03 (0.01-0.05), 1.8 (0.34-2.3), and 5.1 (3.3-5.6) h, respectively. Following the PO administration, the median absorption and elimination half-lives were 0.34 (0.29-1.6) and 3.4 (3.1-4.7) h, respectively. Endogenous hydrocortisone plasma concentrations declined from a baseline of 103.8 ± 29.1-3.1 ± 1.3 ng/mL at 20.0 ± 2.7 h following the administration of DSP and recovered to baseline values between 96 and 120 h for IV, IA, and IM administrations and at 72 h for the PO. © 2012 Blackwell Publishing Ltd.
Singhal, Puran; Gaur, Ashwani; Gautam, Anirudh; Varshney, Brijesh; Paliwal, Jyoti; Batra, Vijay
2007-11-01
A simple, sensitive and rapid liquid chromatography/tandem mass spectrometric (LC-MS/MS) method was developed and validated for quantification of piperaquine, an antimalarial drug, in human plasma using its structural analogue, piperazine bis chloroquinoline as internal standard (IS). The method involved a simple protein precipitation with methanol followed by rapid isocratic elution of analytes with 10mM ammonium acetate buffer/methanol/formic acid/ammonia solution (25/75/0.2/0.15, v/v) on Chromolith SpeedROD RP-18e reversed phase chromatographic column and quantification by mass spectrometry in the multiple reaction monitoring mode (MRM). The precursor to product ion transitions of m/z 535.3-->288.2 and m/z 409.1-->205.2 were used to measure the analyte and the IS, respectively. The assay exhibited a linear dynamic range of 1.0-250.2 ng/mL for piperaquine in plasma. The limit of detection (LOD) and lower limit of quantification (LLOQ) in plasma were 0.2 and 1.0 ng/mL, respectively. Acceptable precision and accuracy (+/-20% deviation for LLOQ standard and +/-15% deviation for other standards from the respective nominal concentration) were obtained for concentrations over the standard curve ranges. A run time of 2.5 min for a sample made it possible to achieve a throughput of more than 400 plasma samples analyzed per day. The validated method was successfully applied to analyze human plasma samples from phase-1 clinical studies. The mean pharmacokinetic parameters of piperaquine following 1000 mg oral dose: observed maximum plasma concentration (Cmax), time to maximum plasma concentration (Tmax) and elimination half-life (T1/2) were 46.1 ng/mL, 3.8h and 13 days, respectively.
Tomkinson, A.; Raeburn, D.
1996-01-01
1. We have examined the effects of the isoenzyme-selective phosphodiesterase (PDE) inhibitors, vinpocetine (type 1), siguazodan (type 3), rolipram (type 4) and zaprinast (type 5) and the non-selective PDE inhibitor enprofylline on methacholine (MCh) contractile concentration-response curves on guinea-pig and rat isolated ileum. 2. In guinea-pig ileum, vinpocetine (10-300 microM), zaprinast (1-300 microM) and enprofylline (100-1000 microM) produced a concentration-dependent depression of the maximum response (Emax) to MCh only without effect on the MCh EC50 values (rank order of potency: zaprinast > vinpocetine > enprofylline). In contrast, siguazodan (10-300 microM) and rolipram (10-300 microM) produced a rightward displacement of the MCh concentration-response curve (increase in EC50: rank order; rolipram > siguazodan), with effects on the MCh maximum seen only at higher concentrations. 3. In the rat ileum, vinpocetine (10-300 microM), zaprinast (0.1-300 microM) and enprofylline (100-1000 microM) caused depression of the MCh maximum contraction (rank order: zaprinast > vinpocetine > enprofylline). Low concentrations of rolipram and siguazodan had no significant effect on the MCh maximum. In the presence of higher concentrations (> 100 microM) of rolipram and siguazodan, a maximum response was not achieved at the highest concentration of MCh tested. As in the guinea-pig ileum, only rolipram (10-300 microM) and siguazodan (10-300 microM) produced a significant, concentration-dependent, rightward displacement of the MCh concentration-response curve (increase in EC50: rank order: rolipram > siguazodan). 4. In the guinea-pig ileum, isoprenaline (0.1 microM) produced a rightward displacement (approximately 3 fold) of the MCh concentration-response curve, accompanied by a significant depression of the maximum response. Increasing the isoprenaline concentration (1 microM) had no further effect on either parameter. Sodium nitroprusside (SNP, > or = 10 microM) produced a concentration-dependent depression of the MCh maximum without an effect on the EC50. 5. In the rat ileum, isoprenaline (1 microM) produced a concentration-dependent rightward displacement (approximately 2.8 fold) of the MCh concentration-response curve with depression of the MCh maximum at higher (> or = 100 microM) concentrations. SNP produced depression of the MCh maximum at a concentration of 10 microM and above. Effects on the MCh EC50 were seen only at 100 and 300 microM. 6. In guinea-pig ileum, isoprenaline (0.1 microM) in combination with rolipram (10 microM) further increased the MCh EC50 and reduced the MCh maximum. The combination of SNP (10 microM) with zaprinast (0.1 microM) produced no further significant effect than SNP alone. 7. In rat ileum, isoprenaline (1 microM) in combination with rolipram (10 microM) further increased the EC50 and reduced the maximum. SNP (10 microM) had no significant effect on either the MCh maximum or EC50. A combination with zaprinast (1 microM) had no further effect. 8. In conclusion, all the PDE inhibitors tested produced a concentration-dependent inhibition of the MCh concentration-response curve, indicating a modulator role for the PDE isoenzymes in gastrointestinal smooth muscle contractility. The PDE inhibitors that elevate cyclic GMP produced a depression of the MCh maximum response only, whilst those that elevate cyclic AMP produced a rightward displacement of the MCh concentration-response curve. This was confirmed by the use of isoprenaline and SNP. This difference in the type of inhibition produced by these PDE isoenzyme inhibitors may reflect a different intracellular site/mechanism by which the cyclic AMP- and cyclic GMP-activated kinases act functionally to antagonize the contractile response. PMID:8864552
Secondary Pollutants in the Lake Tahoe Basin, USA
NASA Astrophysics Data System (ADS)
Zielinska, B.; Bytnerowicz, A.; Gertler, A.; McDaniel, M.; Burley, J. D.
2013-12-01
Lake Tahoe, located at 6,225 ft. (1,897 m) in the Sierra Nevada mountain range, is the largest alpine lake in North America. Known for the clarity of its water and the panorama of surrounding mountains on all sides, Lake Tahoe is a prime tourist attraction in the California - Nevada area. However, the Lake Tahoe Basin is facing significant problems in air quality and declining water clarity. In July 21 - 26, 2012, we conducted a field study in the Basin designed to characterize the precursors and pathways of secondary pollutant formation, including ozone, secondary organic aerosol (SOA) and ammonium nitrate. Four strategic sampling sites were selected inside the Basin; two of these sites were located at high elevation (one each on the western and eastern sides of the Basin) and two were positioned near the Lake level. Ozone and NO/NO2 concentrations were continuously measured. With a resolution of several hours over a 6-day sampling period we collected canister samples for detailed speciation of volatile organic compounds (VOC), 2,4-dinitrophenylhydrazine (DNPH) impregnated Sep-Pak cartridges for analysis of carbonyl compounds and honeycomb denuder/filter pack samples for measurement of concentrations of ammonia, nitrous acid, nitric acid, and fine particulate ammonium nitrate. We also collected PM2.5 Teflon and quartz filter samples for measurements of mass, organic and elemental carbon (OC/EC) concentrations and speciation of organic compounds. Whereas the concentrations of lower molecular weight (mw) C2 - C3 hydrocarbons were generally the highest in all sampling sites, ranging from 25 to 76% of the total measured VOC (over 70 species from C2 to C10), the concentrations of biogenic hydrocarbons, isoprene and α-pinene were significant, ranging from 1.4 to 26% and 1.5 to 30%, respectively, of the total VOC, depending on the site and sampling period. For comparison, the sum of benzene, toluene, ethylbenzene and xylenes (BTEX) constituted from 2.5 to 37% of the total VOC. The photooxidation reaction products of isoprene and α-pinene, 2-methyltetrols and pinonic acid, respectively, were measured in combined PM2.5 day and night samples from four sampling sites and their concentrations ranged from 16 to 47 ng/m3 for 2-methylthreitol, from 34 to 87 ng/m3 for 2-methylerythritol and from 14 to 42 ng/m3 for pinonic acid. In general, organic carbon (OC) constituted from 87 to 99.9% of total carbon. All four sites show maximum ozone concentrations in the range of 60 ppb. However, the lower sites show a pronounced diurnal pattern (i.e. maximum concentrations during the daytime hours, 0900 to 1700, with minimum values at night and in the early morning hours), whereas the upper sites show much less variability over the 24-hour diurnal period.
Geohydrology and water quality of the unconsolidated deposits in Erie County, Pennsylvania
Buckwalter, T.F.; Schreffler, C.L.; Gleichsner, R.E.
1996-01-01
Water in unconsolidated deposits is used for the water supplies of homes, farms, municipalities, and industries in Erie County. The unconsolidated deposits cover most of the bedrock of Erie County. Thickness of the unconsolidated deposits ranged from 60 to 400 feet at 30 sites surveyed by seismic refraction and reflection methods. Water wells, mostly in the unconsolidated deposits, provide adequate domestic supplies. Wells in fractured bedrock can generally provide small domestic supplies; however, droughts can affect some of the domestic water wells. Ground-water withdrawals accounted for 10 million gallons per day of the water used in Erie County in 1984. Mean annual precipitation ranged from 42 to 47 inches per year in Erie County from 1961 through 1990; the southeastern region of the county generally receives more precipitation than the lake shore region to the north. Overland runoff to three segments of the French Creek watershed in the upland area ranged from about 13 to 19 in. per year and base flow ranged from 14 to about 18 in. per year from 1975 to 1992. Evapotranspiration ranged from about 13 to 16 in. per year for those segments. Beach and outwash deposits generally provide the largest supplies of water to wells in Erie County. A median specific capacity of 17 (gal/min)/ft (gallons per minute per foot) of drawdown was determined from records of nondomestic wells in beach deposits and 9 (gal/min)/ft of drawdown in outwash. Mean specific capacity for wells in till deposits was 1.5 (gal/min)/ft. The range in yield and specific capacity, however, was great for the unconsolidated deposits and high yielding outwash deposits are sometimes difficult to locate beneath till and valley-fill deposits. Hydraulic conductivities from three aquifer tests of outwash deposits (sand and gravel) at separate sites ranged from 110 to 2,030 ft/d (feet per day). Hydraulic conductivities from another aquifer test of sand and silt in the water table at Presque Isle ranged from 120 to 215 ft/d. Transmissivities from a third aquifer test of beach sand and gravel ranged from 235 to 262 feet squared per day. Laboratory analyses of stream samples collected during base flows in 1987 and 1988 indicate that concentrations of arsenic, barium, cadmium, chromium, fluoride, lead, mercury, and selenium did not exceed the maximum contaminant levels (MCL's) established for drinking water by the U.S. Environmental Protection Agency (USEPA). Concentrations of two nontoxic elements, iron and manganese, exceeded USEPA secondary maximum contaminant levels (SMCL's) in samples from selected stream sites. Manganese concentrations exceeded the SMCL of 0.05 milligrams per liter at 19 of 30 stream sites sampled in the Upland Plateau Section of Erie County. Twenty-one wells were sampled for inorganic constituents and selected pesticides. Some samples from three of the wells exceeded the MCL for nitrate. Total arsenic concentrations above the MCL of 50 micrograms per liter were documented intermittently in three water wells in North East Township. Water from six of seven tile drains sampled in agricultural fields contained detectable concentrations of herbicides. These samples document the transport of the herbicides from the shallow ground-water system to local streams. Herbicide concentrations were at or more than minimum reporting levels for atrazine, cyanazine, prometone, and simazine. Atrazine concentrations in all seven samples from tile drains did not exceed the USEPA MCL of 3.0 micrograms per liter.
Thermoelectric properties of lanthanum sulfide
NASA Technical Reports Server (NTRS)
Wood, C.; Lockwood, A.; Parker, J.; Zoltan, A.; Zoltan, D.
1985-01-01
The Seebeck coefficient, electrical resistivity, thermal conductivity, and Hall effect have been studied in gamma-phase La(3-x)S4(LaS/y/) for compositions with x in the range from 0.04 to 0.3 (y in the range from 1.35 to 1.48) in order to ascertain its suitability for high-temperature (300 to 1400 K) thermoelectric energy conversion. In this temperature and composition range the material behaves as an extrinsic semiconductor whose degenerate carrier concentration is controlled by the stoichiometric ratio of La to S. A maximum figure-of-merit (Z) of approximately 0.0005 per K at a composition x = 0.3, y = 1.48 (LaS/1.48/) was obtained.
Ecotoxicity of diethylene glycol and risk assessment for marine environment.
Manfra, L; Tornambè, A; Savorelli, F; Rotini, A; Canepa, S; Mannozzi, M; Cicero, A M
2015-03-02
Diethylene glycol (DEG) is a chemical compound used during offshore oil activities to prevent hydrate formation, and it may be released into the sea. A full ecotoxicological characterization is required according to European and Italian regulations for chemical substances. We have evaluated long-term toxic effects of DEG on indicator species of the marine environment as algae (Phaeodactylum tricornutum), crustaceans (Artemia franciscana), molluscs (Tapes philippinarum) and fish (Dicentrarchus labrax). A range of no observed effect concentrations (365-25,000 mg/L) has been identified. Based on the toxicity results and the ratio between predicted environmental concentration and predicted no-effect concentration, we have estimated the maximum allowable value of DEG in the marine environment. Copyright © 2014 Elsevier B.V. All rights reserved.
Alcohol Dehydrogenase of Bacillus strain for Measuring Alcohol Electrochemically
NASA Astrophysics Data System (ADS)
Iswantini, D.; Nurhidayat, N.; Ferit, H.
2017-03-01
Alcohol dehydrogenase (ADH) was applied to produce alcohol biosensor. The enzyme was collected from cultured Bacillus sp. in solid media. From 6 tested isolates, bacteria from fermented rice grain (TST.A) showed the highest oxidation current which was further applied as the bioreceptor. Various ethanol concentrations was measured based on the increase of maximum oxidation current value. However, a reduction value was happened when the ethanol concentration was higher than 5%. Comparing the result of spectrophotometry measurement, R2 value obtained from the biosensor measurement method was higher. The new proposed method resulted a wider detection range, from 0.1-5% of ethanol concentration. The result showed that biosensor method has big potency to be used as alcohol detector in foods or bevearages.
NASA Astrophysics Data System (ADS)
Wijaya, H.; Wardayanie, N. I.; Widjajanti, R.; Silitonga, R. F.
2018-01-01
Aflatoxin M1 (AFM1) is a hydroxylated metabolite of aflatoxin B1 (AFB1) produced by lactating animals due to consuming AFB1-contaminated feed. AFM1 can be found in dairy products because it is resistant to heat during processing. This study aimed to detect AFM1 in powdered milk and sweetened condensed milk sold in several cities in Java. The amount of powdered milk sample was 20, while the amount of sweetened condensed milk sample was 16. AFM1 detection in powdered milk and sweetened condensed milk was conducted by HPLC-fluorescence method. The results showed that the concentration of AFM1 in powdered milk ranged from undetectable to 0.549 μg/kg and the highest data (55%) was distributed in concentration range of >0.05 μg/kg - 0.2 μg/kg. On the other hand, AFM1 levels in sweetened condensed milk ranged from undetectable to 0.056 μg/kg and 43.75% data was distributed in concentration range of >0.025 μg/kg - 0.05 μg/kg. All powdered milk and sweetened condensed milk samples have met the maximum level of AFM1 according to Indonesian regulation.
Subsurface chlorophyll maximum layers: enduring enigma or mystery solved?
Cullen, John J
2015-01-01
The phenomenon of subsurface chlorophyll maximum layers (SCMLs) is not a unique ecological response to environmental conditions; rather, a broad range of interacting processes can contribute to the formation of persistent layers of elevated chlorophyll a concentration (Chl) that are nearly ubiquitous in stratified surface waters. Mechanisms that contribute to the formation and maintenance of the SCMLs include a local maximum in phytoplankton growth rate near the nutricline, photoacclimation of pigment content that leads to elevated Chl relative to phytoplankton biomass at depth, and a range of physiologically influenced swimming behaviors in motile phytoplankton and buoyancy control in diatoms and cyanobacteria that can lead to aggregations of phytoplankton in layers, subject to grazing and physical control. A postulated typical stable water structure characterizes consistent patterns in vertical profiles of Chl, phytoplankton biomass, nutrients, and light across a trophic gradient structured by the vertical flux of nutrients and characterized by the average daily irradiance at the nutricline. Hypothetical predictions can be tested using a nascent biogeochemical global ocean observing system. Partial results to date are generally consistent with predictions based on current knowledge, which has strong roots in research from the twentieth century.
Concurrent hydrogen production and phosphorus recovery in dual chamber microbial electrolysis cell.
Almatouq, Abdullah; Babatunde, A O
2017-08-01
Concurrent hydrogen (H 2 ) production and phosphorus (P) recovery were investigated in dual chamber microbial electrolysis cells (MECs). The aim of the study was to explore and understand the influence of applied voltage and influent COD concentration on concurrent H 2 production and P recovery in MEC. P was efficiently precipitated at the cathode chamber and the precipitated crystals were verified as struvite, using X-ray diffraction and scanning electron microscopy analysis. The maximum P precipitation efficiency achieved by the MEC was 95%, and the maximum H 2 production rate was 0.28m 3 -H 2 /m 3 -d. Response surface methodology showed that applied voltage had a great influence on H 2 production and P recovery, while influent COD concentration had a significant effect on P recovery only. The overall energy recovery in the MEC was low and ranged from 25±1 to 37±1.7%. These results confirmed MECs capability for concurrent H 2 production and P recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Muyan; Zhang, Xiumei; Gao, Tianxiang; Chen, Chao
2006-09-01
The protease activity in digestive tract of young turbot Scophthalmus maximum was studied, and the optimal pH, temperature and NaCl concentration were determined for different portions of the fish's internal organs. The optimal activity in the fish's stomach was at pH of 2.2, while that in the intestinal extracts was within the alkaline range from 9.5 to 10.0. In hepatopancreas, the optimal pH was in low alkalinity at 8.5. The optimal reaction temperature was above 40°C in stomach, intestine and hepatopancreas. With increasing temperature, the pH value increased in stomach, while in the intestine, an opposite tendency was observed due to combined effect of pH and temperature. NaCl concentration showed inhibitory impact on protein digestion in hepatopancreas. The main protease for protein digestion in turbot seemed to be pepsin. Moreover, the maximum protease activity in different segments of intestine existed in the hindgut.
Ground-Water Quality in the Delaware River Basin, New York, 2001 and 2005-2006
Nystrom, Elizabeth A.
2007-01-01
The Federal Clean Water Act Amendments of 1977 require that States monitor and report on the quality of ground water and surface water. To satisfy part of these requirements, the U.S. Geological Survey and New York State Department of Environmental Conservation have developed a program in which ground-water quality is assessed in 2 to 3 of New York State's 14 major basins each year. To characterize the quality of ground water in the Delaware River Basin in New York, water samples were collected from December 2005 to February 2006 from 10 wells finished in bedrock. Data from 9 samples collected from wells finished in sand and gravel in July and August 2001 for the National Water Quality Assessment Program also are included. Ground-water samples were collected and processed using standard U.S. Geological Survey procedures. Samples were analyzed for more than 230 properties and compounds, including physical properties, major ions, nutrients, trace elements, radon-222, pesticides and pesticide degradates, volatile organic compounds, and bacteria. Concentrations of most compounds were less than drinking-water standards established by the U.S. Environmental Protection Agency and New York State Department of Health; many of the organic analytes were not detected in any sample. Drinking-water standards that were exceeded at some sites include those for color, turbidity, pH, aluminum, arsenic, iron, manganese, radon-222, and bacteria. pH ranged from 5.6 to 8.3; the pH of nine samples was less than the U.S. Environmental Protection Agency secondary drinking-water standard range of 6.5 to 8.5. Water in the basin is generally soft to moderately hard (hardness 120 milligrams per liter as CaCO3 or less). The cation with the highest median concentration was calcium; the anion with the highest median concentrations was bicarbonate. Nitrate was the predominant nutrient detected but no sample exceeded the 10 mg/L U.S. Environmental Protection Agency maximum contaminant level. The trace elements detected with the highest median concentrations were strontium and iron in unfiltered water and strontium and barium in filtered water. Concentrations of trace elements in several samples exceeded U.S. Environmental Protection Agency secondary drinking-water standards, including aluminum (50-200 micrograms per liter, three wells), arsenic (10 micrograms per liter, one well), iron (300 micrograms per liter, three wells), and manganese (50 micrograms per liter, four wells). The median concentration of radon-222 was 1,580 picoCuries per liter. Radon-222 is not currently regulated, but the U.S. Environmental Protection Agency has proposed a maximum contaminant level of 300 picoCuries per liter along with an alternative maximum contaminant level of 4,000 picoCuries per liter, to be in effect in states that have programs to address radon in indoor air. Concentrations of radon-222 exceeded the proposed maximum contaminant level in all 19 of the samples and exceeded the proposed alternative maximum contaminant level in 1 sample. Eleven pesticides and pesticide degradates were detected in samples from ten wells; all were herbicides or herbicide degradates. Three volatile organic compounds were detected, including disinfection byproducts such as trichloromethane and gasoline components or additives such as methyl tert-butyl ether. No pesticides, pesticide degradates, or volatile organic compounds were detected above established limits. Coliform bacteria were detected in samples from five wells, four of which were finished in sand and gravel; Escherichia coli was not detected in any sample.
Yasin, Mohammed; Ketema, Tsige; Bacha, Ketema
2015-10-05
The quality of drinking water has always been a major health concern, especially in developing countries, where 80% of the disease cases are attributed to inadequate sanitation and use of polluted water. The inaccessibility of potable water to large segment of a population in the rural communities is the major health concern in most part of developing countries. This study was designed to evaluate the physico-chemical and bacteriological qualities of drinking water of different sources in the study area. The study was conducted at Serbo town and selected kebeles around the same town in Kersa district of Jimma Zone, southwest Ethiopia. Socio-demographic characteristics of the study populations were gathered using structured and pre-tested questionnaires. Standard microbiological methods were employed for determination of bacterial load and detection of coliforms. Physico-chemical analyses [including total dissolved substances (TDS), total suspended substances (TSS), biological oxygen demand (BOD), nitrate and phosphate concentrations, turbidity and electrical conductivities] were conducted following guidelines of American Public Health Association and WHO. Correlations among measured parameters of water samples collected from different water sources were computed using SPSS software (version 20). Only 18.1% (43/237) of the study population had access to tap water in the study area. More than 50% of the community relies on open field waste disposal. Members of the family Enterobacteriaceae, Bacillus and Pseudomonas were among dominant bacterial isolates in the water samples. All water samples collected from unprotected water sources were positive for total coliforms and fecal coliforms (FC). Accordingly, FC were detected in 80% of the total samples with counts ranging between 0.67 and 266.67 CFU/100 ml although 66.67% of tap water samples were negative for FC. The recorded temperature and pH ranged between 20.1-29.90 °C and 5.64-8.14, respectively. The lowest and highest mean TDS were 116 and 623 mg/l, respectively. Furthermore, the mean concentration of TSS ranged between 2.07 and 403.33 mg/l. Turbidity, electric conductivity, and nitrate concentration of the water samples ranged, respectively, between 0.01-65.4 NTU, 30.6-729 μS/cm, and below detection limit to 95.80 mg/l. In addition, the mean dissolved oxygen values were found to be between 1.62 and 10.71 mg/l; whereas BOD was within the range of 8-77 mg/l. In all water samples, the concentrations of zinc were within the WHO maximum permissible limits (3 mg/l) although the lead concentration in about 66.7% of the samples exceeded the maximum permissible limit (0.01 mg/l). The present study has revealed that some of the bacteriological data and physico-chemical parameters of the different water sources had values beyond the maximum tolerable limits recommended by WHO. Thus, it calls for appropriate intervention, including awareness development work and improving the existing infrastructure in order to minimize the potential health problems of those communities currently realizing of the available water sources.
Study on emission characteristics of hybrid bus under driving cycles in typical Chinese city
NASA Astrophysics Data System (ADS)
Xie, Yongdong; Xu, Guangju
2017-09-01
In this study, hybrid city bus was taken as the research object, through the vehicle drum test, the vehicle emissions of hybrid bus, the transient emissions of gas pollutants, as well as the particle size and number distribution were surveyed. The results of the studies are listed as follows: First, compared to traditional fuel bus, hybrid bus could reduce about 44% of the NOx emissions, 33% of the total hydrocarbon emissions, and 51% of the particles emissions. Furthermore, the distribution of particles number concentration of test vehicle became high in middle and low in both sides. More specifically, the particle number concentration was mainly concentrated in the range from 0.021 to 0.755μm, the maximum was 0.2μm, and particle size of particulate matter (PM) less than 1.2μm accounted for 95% of the total number concentration. Particulate mass concentration was increased with increment of particle size, and the maximum of particulate mass (PM) concentration was 6.2μm. On average, whether traditional fuel bus or hybrid bus, the particle size of particulate matter(PM) less than 2.5μm accounted for more than 98% in the particles emission. It is found that the particles are more likely to deposit to the lung, respiratory bronchioles and alveoli, causing respiratory and lung diseases. Therefore, how to control the PM emissions of hybrid bus is the key factor of the study.
Ground-level ozone pollution and its health impacts in China
NASA Astrophysics Data System (ADS)
Liu, Huan; Liu, Shuai; Xue, Boru; Lv, Zhaofeng; Meng, Zhihang; Yang, Xiaofan; Xue, Tao; Yu, Qiao; He, Kebin
2018-01-01
In recent years, ground-level ozone pollution in China has become an increasingly prominent problem. This study simulated and analyzed spatiotemporal distribution of ozone and exposure level by the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) models and monitoring data from 1516 national air quality monitoring stations in China during 2015. The simulation results show that the Sichuan Basin, Shandong, Shanxi, Henan, Anhui, Qinghai-Tibetan Plateau, Yangtze River Delta (YRD), Pearl River Delta (PRD) and Beijing-Tianjin-Hebei (BTH) region had relatively high average annual concentrations of ozone. The regions with more than 10% nonattainment days of 160 μg/m3 (daily maximum 8-h) are mainly concentrated in BTH, Shandong Peninsula and YRD, where large seasonal variations were also found. Exposure levels were calculated based on population data and simulated ozone concentrations. The cumulative population exposed to daily maximum 8-h concentration greater than or equal to 100 μg/m3 was 816.04 million, 61.17% of the total. Three methods were used to estimate the mortality of chronic obstructive pulmonary disease (COPD) attributable to ozone. A comparative study using different exposure concentrations and threshold concentrations found large variations among these methods, although they were all peer-reviewed methods. The estimated mortality of COPD caused by ozone in China in 2015 ranged from 55341 to 80280, which mainly distributed in Beijing, Shandong, Henan, Hubei and Sichuan Province, the YRD and PRD region.
Hamid Khan, M A; Chowdhury, M S
2003-10-01
Beach Sand Exploitation Centre at Cox's Bazar, Bangladesh, produces commercial grade concentrations of magnetite, ilmenite, zircon, etc., from the high-grade accumulations available along the beach and foredune of Cox's Bazar. Solid state nuclear track detectors (CR-39 foils) were used to determine indoor radon concentration of radioactive mineral sands and the technologically enhanced radiation level inside the pilot plant of the Centre. It is found that the concentrations at processed mineral stock areas are high, and the maximum concentration was found to be 2,103 +/- 331 Bq m(-3) (0.23 +/- 0.03 WL). The indoor concentration of radon and its decay products in the raw sand stock area and at other locations was in the range of 116 +/- 27 Bq m(-3) (0.03 +/- 0.003 WL) to 2,042 +/- 233 Bq m(-3) (0.22 +/- 0.03 WL).
Automated determination of bromide in waters by ion chromatography with an amperometric detector
Pyen, G.S.; Erdmann, D.E.
1983-01-01
An automated ion chromatograph, including a program controller, an automatic sampler, an integrator, and an amperometric detector, was used to develop a procedure for the determination of bromide in rain water and many ground waters. Approximately 10 min is required to obtain a chromatogram. The detection limit for bromide is 0.01 mg l-1 and the relative standard deivation is <5% for bromide concentrations between 0.05 and 0.5 mg l-1. Chloride interferes if the chloride-to-bromide ratio is greater than 1 000:1 for a range of 0.01-0.1 mg l-1 bromide; similarly, chloride interferes in the 0.1-1.0 mg l-1 range if the ratio is greater than 5 000:1. In the latter case, a maximum of 2 000 mg l-1 of chloride can be tolerated. Recoveries of known concentrations of bromide added to several samples, ranged from 97 to 110%. ?? 1983.
Mesospheric sodium over Gadanki during Geminid meteor shower 2007
NASA Astrophysics Data System (ADS)
Lokanadham, B.; Rakesh Chandra, N.; Bhaskara Rao, S. Vijaya; Raghunath, K.; Yellaiah, G.
Resonance LIDAR system at Gadanki has been used for observing the mesospheric sodium during the night of 12-13 Dec 2007 when the peak activity of Geminid meteor shower occurred. Geminid meteor shower is observed along with the co-located MST radar in the altitude range 80-110 km. Sodium density profiles have been obtained with a vertical resolution of 300 m and a temporal resolution of 120 s with sodium resonance scattering LIDAR system. The sodium layers were found to exist in the altitude range 90-100 km. The enhanced Geminid meteor rates were recorded with the co-located MST radar in the same altitude range. The sodium concentration in the atmospheric altitude of ~93 km is estimated to be 2000 per cc where the meteoric concentration of Geminid is maximum and reduced to around 800 on the non activity of Geminid. These observations showed that the sodium levels in the E-region are found to be increasing during meteor shower nights at least by a factor of two.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the affected units as the difference between NOX mass emissions measured in the common stack and NOX... emissions using the maximum potential NOX emission rate, the maximum potential flow rate, and either the maximum potential CO2 concentration or the minimum potential O2 concentration (as applicable). The maximum...
Hallik, Maarja; Tasa, Tõnis; Starkopf, Joel; Metsvaht, Tuuli
2017-01-01
Milrinone has been suggested as a possible first-line therapy for preterm neonates to prevent postligation cardiac syndrome (PLCS) through decreasing systemic vascular resistance and increasing cardiac contractility. The optimal dosing regimen, however, is not known. To model the dosing of milrinone in preterm infants for prevention of PLCS after surgical closure of patent ductus arteriosus (PDA). Milrinone time-concentration profiles were simulated for 1,000 subjects using the volume of distribution and clearance estimates based on one compartmental population pharmacokinetic model by Paradisis et al. [Arch Dis Child Fetal Neonatal Ed 2007;92:F204-F209]. Dose optimization was based on retrospectively collected demographic data from neonates undergoing PDA ligation in Estonian PICUs between 2012 and 2014 and existing pharmacodynamic data. The target plasma concentration was set at 150-200 ng/ml. The simulation study used demographic data from 31 neonates who underwent PDA ligation. The median postnatal age was 13 days (range: 3-29) and weight was 760 g (range: 500-2,351). With continuous infusion of milrinone 0.33 μg/kg/min, the proportion of subjects within the desired concentration range was 0% by 3 h, 36% by 6 h, and 61% by 8 h; 99% of subjects exceeded the range by 18 h. The maximum proportion of total simulated concentrations in the target range was attained with a bolus infusion of 0.73 μg/kg/min for 3 h followed by a 0.16-μg/kg/min maintenance infusion. Mathematical simulations suggest that in preterm neonates the plasma time-concentration profile of milrinone can be optimized with a slow loading dose followed by maintenance infusion. © 2016 S. Karger AG, Basel.
Williams, Shannon D.
2003-01-01
From November 2001 to January 2002, a study of the ground-water resources in the Crumpton Creek area of Middle Tennessee was conducted to determine whether volatile organic compounds (VOCs) from Arnold Air Force Base (AAFB) have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. VOC samples were collected from private wells that were not included in previous sampling efforts conducted in the Crumpton Creek area near AAFB. Ground-water-flow directions were investigated by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 68 private wells, 82 monitoring wells, and 1 cave during the period of study. Ground-water levels were determined for 42 of the private wells and for all 82 monitoring wells. Of the 82 monitoring wells, 81 withdraw water from the Manchester aquifer and 1 well withdraws water from the overlying shallow aquifer. The Manchester aquifer wells range in depth from 20 to 150 feet. Water-level altitudes for the Manchester aquifer ranged from 956 to 1,064 feet above the National Geodetic Vertical Datum of 1929. Water levels ranged from approximately 6 feet above land surface to 94 feet below land surface. Water-quality samples were collected from all 68 private wells, 8 of the monitoring wells, and the 1 cave. Of the 55 VOCs analyzed, 42 were not detected. Thirteen VOCs were detected; however, only tetrachloroethylene (PCE), methylene chloride, and toluene were detected at concentrations equal to or above reporting levels for the analytical method used. PCE was detected in water samples from 15 private wells and was the only VOC that exceeded drinking water maximum contaminant levels for public water systems. PCE concentrations in samples from five of the wells were below the reporting level and ranged from estimated concentrations of 0.46 to 0.80 microgram per liter (?g/L). Samples from 10 wells contained concentrations equal to or greater than the analytical reporting level of 1 ?g/L for PCE. Samples from one of these wells contained PCE concentrations (12 ?g/L and 11 ?g/L) exceeding the drinking water maximum contaminant level of 5 ?g/L for PCE. The spatial distribution of PCE detections and the relative concentrations of PCE and trichloroethylene suggest that the PCE detections are associated with a small and localized ground-water contamination plume unrelated to AAFB ground-water contamination.
Apodaca, Lori Estelle; Bails, Jeffrey B.
2000-01-01
Water-quality samples were collected in the summer of 1997 from 45 sites (43 wells and 2 springs) in selected alluvial aquifers throughout the Southern Rocky Mountains physiographic province of the Upper Colorado River Basin study unit as part of the U.S. Geological Survey National Water-Quality Assessment Program. The objective of this study was to assess the water-quality conditions in selected alluvial aquifers in the Southern Rocky Mountains physiographic province. Alluvial aquifers are productive aquifers in the Southern Rocky Mountains physiographic province and provide for easily developed wells. Water-quality samples were collected from areas where ground water is used predominantly for domestic or public water supply. Twenty-three of the 45 sites sampled were located in or near mining districts. No statistical differences were observed between the mining sites and sites not associated with mining activities for the majority of the constituents analyzed. Water samples were analyzed for major ions, nutrients, dissolved organic carbon, trace elements, radon-222, pesticides, volatile organic compounds, bacteria, and methylene blue active substances. In addition, field parameters consisting of water temperature, specific conductance, dissolved oxygen, pH, turbidity, and alkalinity were measured at all sites.Specific conductance for the ground-water sites ranged from 57 to 6,650 microsiemens per centimeter and had higher concentrations measured in areas such as the northwestern part of the study unit. Dissolved oxygen ranged from 0.1 to 6.0 mg/L (milligrams per liter) and had a median concentration of 2.9 mg/L. The pH field values ranged from 6.1 to 8.1; about 4 percent of the sites (2 of 45) had pH values outside the range of 6.5 to 8.5 and so did not meet the U.S. Environmental Protection Agency secondary maximum contaminant level standard for drinking water. About 5 percent (2 of 43) of the samples exceeded the U.S. Environmental Protection Agency recommended turbidity value of 5 nephelometric turbidity units; one of these samples was from a monitoring well. The U.S. Environmental Protection Agency secondary maximum contaminant levels for dissolved solids, sulfate, iron, and manganese were exceeded at some of the sites. Higher dissolved-solids concentrations were detected where sedimentary rocks are exposed, such as in the northwestern part of the Southern Rocky Mountains physiographic province. The dominant water compositions for the sites sampled are calcium, magnesium, and bicarbonate. However, sites in areas where sedimentary rocks are exposed and sites located in or near mining areas show more sulfate-dominated waters. Nutrient concentrations were less than the U.S. Environmental Protection Agency drinking-water standards. Only one site had a nitrate concentration greater than 3.0 mg/L, a level indicating possible influence from human activities. No significant differences among land-use/land-cover classifications (forest, rangeland, and urban) for drinking-water wells (42 sites) were identified for dissolved-solids, sulfate, nitrate, iron or manganese concentrations. Radon concentrations were higher in parts of the study unit where Precambrian rocks are exposed. All radon concentrations in ground water exceeded the previous U.S. Environmental Protection Agency proposed maximum contaminant level for drinking water, which has been withdrawn pending further review.Pesticide detections were at concentrations below the reporting limits and were too few to allow for comparison of the data. Eight volatile organic compounds were detected at six sites; all concentrations complied with U.S. Environmental Protection Agency drinking-water standards. Total coliform bacteria were detected at six sites, but no Escherichia coli (E. coli) was detected. Methylene blue active substances were detected at three sites at concentrations just above the reporting limit. Overall, the water quality in the Southern Rocky Mountains physiograph
van der Westhuizen, J; Kuo, P Y; Reed, P W; Holder, K
2011-03-01
Gastric absorption of oral paracetamol (acetaminophen) may be unreliable perioperatively in the starved and stressed patient. We compared plasma concentrations of parenteral paracetamol given preoperatively and oral paracetamol when given as premedication. Patients scheduled for elective ear; nose and throat surgery or orthopaedic surgery were randomised to receive either oral or intravenous paracetamol as preoperative medication. The oral dose was given 30 minutes before induction of anaesthesia and the intravenous dose given pre-induction. All patients were given a standardised anaesthetic by the same specialist anaesthetist who took blood for paracetamol concentrations 30 minutes after the first dose and then at 30 minute intervals for 240 minutes. Therapeutic concentrations of paracetamol were reached in 96% of patients who had received the drug parenterally, and 67% of patients who had received it orally. Maximum median plasma concentrations were 19 mg.l(-1) (interquartile range 15 to 23 mg.l(-1)) and 13 mg.l(-1) (interquartile range 0 to 18 mg.l(-1)) for the intravenous and oral group respectively. The difference between intravenous and oral groups was less marked after 150 minutes but the intravenous preparation gave higher plasma concentrations throughout the study period. It can be concluded that paracetamol gives more reliable therapeutic plasma concentrations when given intravenously.
Manav, Ramazan; Uğur Görgün, Aysun; Filizok, Işık
2016-11-09
The pollution level of Lake Bafa was investigated by collecting fish samples { Dicentrarchus labrax (sea bass), Liza ramada (mullet) and Anguilla anguilla (eel)}, surface sediment, and core samples. In all these samples, 210 Po and 210 Pb concentrations were estimated, and total annual dose rates were obtained for each species. Some heavy metal (Cr, Ni, Pb, Cd, Mn, Fe, and Zn) concentration levels were obtained for the fish and a core sample. The sediment mass accumulation rate was found to be 3.27 g·m -2 ·day -1 (0.119 g·cm -2 ·y -1 ) from a core sample. The heavy metal concentrations in the vertical profile of samples from the core were also observed. The measured concentration of Zn, Pb, Cd, and Cr were between the ERL (effects range low) and ERM (effects range median) limits, while Ni concentrations were higher than the ERM limit. The observed concentrations of Cd, Pb, and Zn in fish samples did not exceed the limits in accordance with Turkish Food Regulations. Further, the maximum effective dose equivalent of 210 Po in the area was found to be 1.169 µSv·y -1 .
Shelf-Life of Chlorine Solutions Recommended in Ebola Virus Disease Response.
Iqbal, Qais; Lubeck-Schricker, Maya; Wells, Emma; Wolfe, Marlene K; Lantagne, Daniele
2016-01-01
In Ebola Virus Disease (EVD) outbreaks, it is widely recommended to wash living things (handwashing) with 0.05% (500 mg/L) chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies) with 0.5% (5,000 mg/L) chlorine solution. Chlorine solutions used in EVD response are primarily made from powdered calcium hypochlorite (HTH), granular sodium dichloroisocyanurate (NaDCC), and liquid sodium hypochlorite (NaOCl), and have a pH range of 5-11. Chlorine solutions degrade following a reaction highly dependent on, and unusually sensitive to, pH, temperature, and concentration. We determined the shelf-life of 0.05% and 0.5% chlorine solutions used in EVD response, including HTH, NaDCC, stabilized NaOCl, generated NaOCl, and neutralized NaOCl solutions. Solutions were stored for 30 days at 25, 30, and 35°C, and tested daily for chlorine concentration and pH. Maximum shelf-life was defined as days until initial concentration fell to <90% of initial concentration in ideal laboratory conditions. At 25-35°C, neutralized-NaOCl solutions (pH = 7) had a maximum shelf-life of a few hours, NaDCC solutions (pH = 6) 2 days, generated NaOCl solutions (pH = 9) 6 days, and HTH and stabilized NaOCl solutions (pH 9-11) >30 days. Models were developed for solutions with maximum shelf-lives between 1-30 days. Extrapolating to 40°C, the maximum predicted shelf-life for 0.05% and 0.5% NaDCC solutions were 0.38 and 0.82 hours, respectively; predicted shelf-life for 0.05% and 0.5% generated NaOCl solutions were >30 and 5.4 days, respectively. Each chlorine solution type offers advantages and disadvantages to responders, as: NaDCC is an easy-to-import high-concentration effervescent powder; HTH is similar, but forms a precipitate that may clog pipes; and, NaOCl solutions can be made locally, but are difficult to transport. We recommend responders chose the most appropriate source chlorine compound for their use, and ensure solutions are stored at appropriate temperatures and used or replaced before expiring.
NASA Astrophysics Data System (ADS)
O'Gallagher, Joseph J.
2016-09-01
As the field of nonimaging optics has developed over the last 50 years, among its many applications, the best known and recognized is probably in solar energy. In particular, the approach provides the formalism that allows the design of devices that approach the maximum physically attainable geometric concentration for a given set of optical tolerances. This means that it has the potential to revolutionize the design of solar concentrators. Much of the experimental development and early testing of these concepts was carried out at the University of Chicago by Roland Winston and his colleagues and students. In this presentation, some of many embodiments and variations of the basic Compound Parabolic Concentrator that were developed and tested over a thirty-year period at Chicago are reviewed. Practical and economic aspects of concentrator design for both thermal and photovoltaic applications are discussed. Examples covering the whole range of concentrator applications from simple low-concentration non-tracking designs to ultrahigh-concentration multistage configurations are covered.
Remediation of lead-contaminated soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, R.W.; Shem, L.
1992-01-01
Excavation and transport of soil contaminated with heavy metals has generally been the standard remediation technique for treatment of heavy-metal-contaminated soils. This approach is not a permanent solution; moreover, off-site shipment and disposal of contaminated soil involves high expense, liability, and appropriate regulatory approval. Recently, a number of other techniques have been investigated for treating such contaminated sites, including flotation, solidification/stabilization, vitrification, and chemical extraction. This paper reports the results of a laboratory investigation determining the efficiency of using chelating agents to extract lead from contaminated soils. Lead concentrations in the soils ranged from 500 to 10,000 mg/kg. Ethylenediaminetetraacetic acidmore » (EDTA) and nitrilotriacetic acid (NTA) were examined for their potential extractive capabilities. Concentrations of the chelating agents ranged from 0.01 to 0.10 M. The pH of the suspensions in which the extractions were performed ranged from 4 to 12. Results showed that the removal of lead using NTA and water was ph-dependent, whereas the removal of lead using EDTA was ph-insensitive. Maximum removals of lead were 68.7%,19.1%, and 7.3% using EDTA, NTA, and water, respectively (as compared with initial lead concentrations).« less
Remediation of lead-contaminated soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, R.W.; Shem, L.
1992-09-01
Excavation and transport of soil contaminated with heavy metals has generally been the standard remediation technique for treatment of heavy-metal-contaminated soils. This approach is not a permanent solution; moreover, off-site shipment and disposal of contaminated soil involves high expense, liability, and appropriate regulatory approval. Recently, a number of other techniques have been investigated for treating such contaminated sites, including flotation, solidification/stabilization, vitrification, and chemical extraction. This paper reports the results of a laboratory investigation determining the efficiency of using chelating agents to extract lead from contaminated soils. Lead concentrations in the soils ranged from 500 to 10,000 mg/kg. Ethylenediaminetetraacetic acidmore » (EDTA) and nitrilotriacetic acid (NTA) were examined for their potential extractive capabilities. Concentrations of the chelating agents ranged from 0.01 to 0.10 M. The pH of the suspensions in which the extractions were performed ranged from 4 to 12. Results showed that the removal of lead using NTA and water was ph-dependent, whereas the removal of lead using EDTA was ph-insensitive. Maximum removals of lead were 68.7%,19.1%, and 7.3% using EDTA, NTA, and water, respectively (as compared with initial lead concentrations).« less
Hassan, Asaad F; Hrdina, Radim
2018-04-01
Chitosan/nanohydroxyapatite composites based on scallop shells (CP12, CP14 and CP21) were prepared with different chitosan: nanohydroxyapatite ratios (1:2, 1:4 and 2:1, respectively). Nanohydroxyapatite (P), chitosan(C) and their composites were characterized by means of TGA, XRD, N 2 adsorption/desorption analysis, SEM, Zeta potential and FTIR. The BET surface area ranged between 189 and 512 m 2 /g. Static adsorption of Hg +2 was tested for the effect of adsorbent dosage, pH, time and initial Hg +2 concentrations indicating that maximum static adsorption capacity was confirmed by CP12 (111.6 mg/g). Static adsorption well fitted with Langmuir adsorption isotherm and Pseudo-second order kinetic models. CP12 was selected for dynamic adsorption of Hg +2 considering the effect of bed height, flow rate and the effect of Hg +2 concentrations. Maximum dynamic adsorption capacity was confirmed at bed height of 3 cm, 2.0 mL/min flow rate and 300 mg/L as Hg +2 concentration with breakthrough time (t b ) and exhaustion time (t e ) of 9 and 21 h. Yoon-Nelson and Thomas models best described the experimental Hg +2 breakthrough curve model. After static adsorption, EDTA solution confirmed the maximum desorption efficiency. The validity of CP12 was tested through three cycles of column dynamic adsorption-desorption. Copyright © 2017 Elsevier B.V. All rights reserved.
Valverde, Víctor; Pay, María T; Baldasano, José M
2016-02-01
Despite the ~30% emission decrease of the main tropospheric ozone (O3) precursors in Spain in the 2001-2012 period, the O3 concentration in summer still exceeds the target value for the protection of the human health of the Air Quality Directive (2008/50/EC). On-road transport is the main anthropogenic contributor to O3 precursor's emissions in Madrid and Barcelona metropolitan areas (65%/59% of NOx, 40%/33% of NMVOC, and 67%/85% of CO emissions) but this contribution to O3 formation is not well understood. The present work aims at increasing the understanding on the role of on-road transport emissions from main Spanish urban areas in O3 dynamics over Spain under typical circulation types. For that purpose, the Integrated Source Apportionment Method is used within the CALIOPE modelling system (WRF/CMAQ/HERMES/BSC-DREAM8b). The results indicate that the daily maximum O3 concentration attributed to the on-road transport emissions from Madrid (O3T-MAD) and Barcelona metropolitan areas (O3T-BCN) contribute up to 24% and 8% to total O3 concentration, respectively, within an area of influence of 200 km. The contribution of O3T-MAD and O3T-BCN is particularly significant (up to 80-100 μg m(-3) in an hour) to the O3 concentration peak during the central hours of the day in the high O3 concentration season (April-September). The maximum O3T-MAD concentration is calculated within the metropolitan area of Madrid but the plume, channelled by the Tajo and the Henares valleys, affects large areas of the Iberian Peninsula. The O3T-BCN plume is more driven by sea-land and mountain-valley breezes than by the synoptic advection and its maximum concentration is usually registered over the Mediterranean Sea. The O3 concentration transported long-range to the Iberian Peninsula is significant in the area of influence of Madrid and Barcelona, being maxima under cold (70-96%) and minima in warm circulation types (35-70%). Copyright © 2015 Elsevier B.V. All rights reserved.
Parametric studies of diethyl phosphoramidate photocatalytic decomposition over TiO2.
Sun, Bo; Vorontsov, Alexander V; Smirniotis, Panagiotis G
2011-02-28
The present study is focused on influences of parameters including pH, temperature, TiO(2) catalyst concentration, and reactant concentration on the rate of photocatalytic diethyl phosphoramidate (DEPA) decomposition with Hombikat UV 100 (HK) and Degussa P25 (P25) TiO(2). Total mineralization of DEPA is observed. Two regimes of pH, namely in acid and near-neutral environments were found where maximum total carbon (TC) decomposition was observed. The electrostatic effects on adsorption over the TiO(2) surface explain the above phenomena. The maximum rate is observed for P25 at DEPA concentration 1.3 mM whereas the rate grows continuously with DEPA concentration rise for HK. The temperature dependence of TC decomposition rate in the range of 15-63°C with both HK and P25 follows the Arrhenius equation. The activation energy for total carbon decomposition with HK and P25 are 29.5±1.0 and 24.3±3.1 kJ/mol, respectively. The decomposition rate of DEPA is larger over P25 than over HK. The rate over P25 increases faster than that with HK for each unit of the titania added when the TiO(2) concentration is less than 375 mg/l. The higher light absorption and particles aggregation of P25 are responsible for the decrease of reaction rate we observed at catalyst concentration above a certain level. In contrast, the rate over HK increases monotonically with the concentration of the photocatalyst used. Copyright © 2010 Elsevier B.V. All rights reserved.
Long-Term Monitoring of PAH Contamination in Sediment and Recovery After the Hebei Spirit Oil Spill.
Kim, Moonkoo; Jung, Jee-Hyun; Ha, Sung Yong; An, Joon Geon; Shim, Won Joon; Yim, Un Hyuk
2017-07-01
Approximately 10,900 t of crude oil was released 10 km off the west coast of Korea after the collision between the oil tanker Hebei Spirit and a barge carrying a crane in December 2007. To assess the areal extent and temporal trends of PAH contamination, 428 sediment samples were collected from December 2007 through May 2015 for PAH analysis. Sedimentary PAH concentrations measured immediately after the spill ranged from 3.2 to 71,200 ng g -1 , with a mean of 3800 ng g -1 . Increases in PAH concentrations were observed at stations 7-23, which were heavily oiled due to tidal currents and northwesterly wind that transported the spilled oil to these locations. Mean and maximum PAH concentrations decreased drastically from 3800 to 88.5 and 71,200 to 1700 ng g -1 , respectively, 4 months after the spill. PAH concentrations highly fluctuated until September 2008 and then decreased slowly to background levels. Reduction rate was much faster at the sandy beaches (k = 0.016) than in the muddy sites (k = 0.001). In muddy sediments, low attenuation due to low flushing rate in the mostly anaerobic sediment possibly contributed the persistence of PAHs. By May 2015 (~7.5 years after the spill), mean and maximum PAH concentrations decreased by 54 and 481 times, respectively, compared with the peak concentrations. The sedimentary PAH concentrations in the monitoring area have returned to regional background levels.
Concentration dependence of sodium alloys based on tin surface tension
NASA Astrophysics Data System (ADS)
Alchagirov, B. B.; Kyasova, O. Kh; Uzdenova, A. N.; Khibiev, A. Kh
2018-04-01
The concentration dependence of the surface tension (ST) for alloys of the Sn-Na system in the range of compositions with a content of 0.06 to 5.00 at.% Na is studied by the large droplet method using high-purity components and a corresponding ST isotherm for T = 573 K is constructed. It has been established that small additions of sodium to tin significantly reduce ST of the studied melts. Calculations of sodium adsorption in alloys have shown that there is a maximum on the adsorption curve corresponding to alloys with a content of about 1.5 at.% Na in tin.
Liu, D W; Li, J; Guo, L; Rong, Q G; Zhou, Y H
2018-02-18
To analyze the stress distribution in the periodontal ligament (PDL) under different loading conditions at the stage of space closure by 3D finite element model of customized lingual appliances. The 3D finite element model was used in ANSYS 11.0 to analyze the stress distribution in the PDL under the following loading conditions: (1) buccal sliding mechanics (0.75 N,1.00 N,1.50 N), (2) palatal sliding mechanics (0.75 N,1.00 N,1.50 N), (3) palatal-buccal combined sliding mechanics (buccal 1.00 N + palatal 0.50 N, buccal 0.75 N + palatal 0.75 N, buccal 0.50 N+ palatal 1.00 N). The maximum principal stress, minimum principal stress and von Mises stress were evaluated. (1) buccal sliding mechanics(0.75 N,1.00 N,1.50 N): maximum principal stress: at the initial of loading, maximum principal stress, which was the compressed stress, distributed in labial PDL of cervix of lateral incisor, and palatal distal PDL of cervix of canine. With increasing loa-ding, the magnitude and range of the stress was increased. Minimum principal stress: at the initial of loading, minimum principal stress which was tonsil stress, distributed in palatal PDL of cervix of lateral incisor and mesial PDL of cervix of canine. With increasing loading, the magnitude and range of minimum principal stress was increased. The area of minimum principal stress appeared in distal and mesial PDL of cervix of central incisor. von Mises stress:it distributed in labial and palatal PDL of cervix of lateral incisor and distal PDL of cervix of canine initially. With increasing loading, the magnitude and range of stress was increased towards the direction of root. Finally, there was stress concentration area at mesial PDL of cervix of canine. (2) palatal sliding mechanics(0.75 N,1.00 N,1.50 N): maximum principal stress: at the initial of loading, maximum principal stress which was the compressed stress, distributed in palatal and distal PDL of cervix of canine, and distal-buccal and palatal PDL of cervix of lateral incisor. With increasing loading, the magnitude and range of the stress was increased. Minimum principal stress: at the initial of loading, minimum principal stress which was tonsil stress, distributed in distal-interproximal PDL of cervix of lateral incisor and mesial-interproximal PDL of cervix of canine. With increasing loading, the magnitude and range of the stress was increased.von Mises stress: von Mises stress distributed in palatal and interproximal PDL of cervix of canine. With increasing loading, the magnitude and range of stress was increased. Finally, von Mises stress distributing area appeared at distal-palatal PDL of cervix of canine. (3) palatal-buccal combined sliding mechanics: maximum principal stress: maximum principal stress still distributed in distal-palatal PDL of cervix of canine. Minimum principal stress: minimum principal stress distributed in palatal PDL of cervix of lateral incisor when buccal force was more than palatal force. As palatal force increased, the stress concentrating area transferred to mesial PDL of cervix of canine.von Mises stress: it was lower and more well-distributed in palatal-buccal combined sliding mechanics than palatal or buccal sliding mechanics. Using buccal sliding mechanics,stress majorly distributed in PDL of lateral incisor and canine, and magnitude and range of stress increased with the increase of loading; Using palatal sliding mechanics, stress majorly distributed in PDL of canine, and magnitude and range of stress increased with the increase of loading; With palatal-buccal combined sliding mechanics, the maximum principal stress distributed in the distal PDL of canine. Minimum principal stress distributed in palatal PDL of cervix of lateral incisor when buccal force was more than palatal force. As palatal force was increasing, the minimum principal stress distributing area shifted to mesial PDL of cervix of canine. When using 1.00 N buccal force and 0.50 N palatal force, the von Mises stress distributed uniformly in PDL and minimal stress appeared.
Nanoparticles for magnetic biosensing systems
NASA Astrophysics Data System (ADS)
Kurlyandskaya, G. V.; Novoselova, Iu. P.; Schupletsova, V. V.; Andrade, R.; Dunec, N. A.; Litvinova, L. S.; Safronov, A. P.; Yurova, K. A.; Kulesh, N. A.; Dzyuman, A. N.; Khlusov, I. A.
2017-06-01
The further development of magnetic biosensors requires a better understanding of the interaction between living systems and magnetic nanoparticles (MNPs). We describe our experience of fabrication of stable ferrofluids (FF) using electrostatic or steric stabilization of iron oxide MNPs obtained by laser target evaporation. Controlled amounts of FF were used for in vitro experiments with human mesenchymal stem cells. Their morphofunctional responses in the Fe concentration range 2-1000 maximum tolerated dose revealed no cytotoxicity.
Peake, Jonathan M; Nosaka, Kazunori; Muthalib, Makii; Suzuki, Katsuhiko
2006-01-01
We compared changes in markers of muscle damage and systemic inflammation after submaximal and maximal lengthening muscle contractions of the elbow flexors. Using a cross-over design, 10 healthy young men not involved in resistance training completed a submaximal trial (10 sets of 60 lengthening contractions at 10% maximum isometric strength, 1 min rest between sets), followed by a maximal trial (10 sets of three lengthening contractions at 100% maximum isometric strength, 3 min rest between sets). Lengthening contractions were performed on an isokinetic dynamometer. Opposite arms were used for the submaximal and maximal trials, and the trials were separated by a minimum of two weeks. Blood was sampled before, immediately after, 1 h, 3 h, and 1-4 d after each trial. Total leukocyte and neutrophil numbers, and the serum concentration of soluble tumor necrosis factor-alpha receptor 1 were elevated after both trials (P < 0.01), but there were no differences between the trials. Serum IL-6 concentration was elevated 3 h after the submaximal contractions (P < 0.01). The concentrations of serum tumor necrosis factor-alpha, IL-1 receptor antagonist, IL-10, granulocyte-colony stimulating factor and plasma C-reactive protein remained unchanged following both trials. Maximum isometric strength and range of motion decreased significantly (P < 0.001) after both trials, and were lower from 1-4 days after the maximal contractions compared to the submaximal contractions. Plasma myoglobin concentration and creatine kinase activity, muscle soreness and upper arm circumference all increased after both trials (P < 0.01), but were not significantly different between the trials. Therefore, there were no differences in markers of systemic inflammation, despite evidence of greater muscle damage following maximal versus submaximal lengthening contractions of the elbow flexors.
Uranium and radon in ground water in the lower Illinois River basin
Morrow, William S.
2001-01-01
Uranium and radon are present in ground water throughout the United States, along with other naturally occurring radionuclides. The occurrence and distribution of uranium and radon are of concern because these radionuclides are carcinogens that can be ingested through drinking water. As part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program, water samples were collected and analyzed for uranium and radon from 117 wells in four aquifers in the lower Illinois River Basin (LIRB) from 1996 to 1997. The aquifers were the shallow glacial drift deposits of the Bloomington Ridged Plain (BRP) not overlying a buried bedrock valley (BRP N/O BV), shallow glacial drift deposits of the BRP overlying the Mahomet Buried Bedrock Valley (BRP O/L MBBV), shallow glacial drift deposits of the Galesburg/Springfield Plain not overlying a buried bedrock valley (GSP N/O BV), and the deep glacial drift deposits of the Mahomet Buried Bedrock Valley (MBBV). Uranium was detected in water samples from all aquifers except the MBBV and ranged in concentration from less than 1 microgram per liter ( ? g/L) to 17 ? g/L. Uranium concentrations did not exceed 20 ? g/L, the proposed U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) at the time of sampling (1996?97). The current (2001) promulgated MCL is 30 ? g/L (U.S. Environmental Protection Agency, 2000). The highest median uranium concentration (2.0 ? g/L) among the four aquifers was in the BRP N/O BV. Uranium most often occurred in oxidizing and sulfate-rich water. Radon was detected in water samples from all aquifers in the LIRB. Radon concentrations in all aquifers ranged from less than 80 picocuries per liter (pCi/L) to 1,300 pCi/L. Of 117 samples, radon concentrations exceeded 300 pCi/L (the proposed USEPA MCL) in 34 percent of the samples. Radon concentrations exceeded 300 pCi/L in more than one-half of the samples from the GSP N/O BV and the BRP O/L MBBV. No sample exceeded the proposed Alternative Maximum Contaminant Level (AMCL) of 4,000 pCi/L. Concentrations of uranium and radon were not correlated.
Molecular mechanism of acetylcholine receptor-controlled ion translocation across cell membranes
Cash, Derek J.; Hess, George P.
1980-01-01
Two molecular processes, the binding of acetylcholine to the membrane-bound acetylcholine receptor protein and the receptor-controlled flux rates of specific inorganic ions, are essential in determining the electrical membrane potential of nerve and muscle cells. The measurements reported establish the relationship between the two processes: the acetylcholine receptor-controlled transmembrane ion flux of 86Rb+ and the concentration of carbamoylcholine, a stable analog of acetylcholine. A 200-fold concentration range of carbamoylcholine was used. The flux was measured in the millisecond-to-minute time region by using a quench flow technique with membrane vesicles prepared from the electric organ of Electrophorus electricus in eel Ringer's solution at pH 7.0 and 1°C. The technique makes possible the study of the transmembrane transport of specific ions, with variable known internal and external ion concentrations, in a system in which a determinable number of receptors is exposed to a known concentration of ligand. The response curve of ion flux to ligand was sigmoidal with an average maximum rate of 84 sec-1. Carbamoylcholine induced inactivation of the receptor with a maximum rate of 2.7 sec-1 and a different ligand dependence so that it was fast relative to ion flux at low ligand concentration but slow relative to ion flux at high ligand concentration. The simplest model that fits the data consists of receptor in the active and inactive states in ligand-controlled equilibria. Receptor inactivation occurs with one or two ligand molecules bound. For channel opening, two ligand molecules bound to the active state are required, and cooperativity results from the channel opening process itself. With carbamoylcholine, apparently, the equilibrium position for the channel opening step is only one-fourth open. The integrated rate equation, based on the model, predicts the time dependence of receptor-controlled ion flux over the concentration range of carbamoylcholine investigated. The values of the constants in the rate equation form the basis for predicting receptor-controlled changes in the transmembrane potential of cells and the conditions leading to transmission of signals between cells. PMID:6928684
Palatability and pharmacokinetics of flunixin when administered to sheep through feed
Pippia, Joe; Colditz, Ian G.; Hinch, Geoff N.; Petherick, Carol J.; Lee, Caroline
2016-01-01
Applying analgesics to feed is a potentially easy method of providing pain-relief to sheep and lambs that undergo painful husbandry procedures. To be effective, the medicated feed needs to be readily accepted by sheep and its consumption needs to result in therapeutic concentrations of the drug. In the present experiment, pelleted feed was supplemented with flunixin (4.0 mg/kg live weight) and offered to eight sheep. To test the palatability of flunixin, the individually penned sheep were offered normal feed and feed supplemented with flunixin in separate troughs for two consecutive days. A trend for a day by feed-type (control versus flunixin supplemented) interaction suggested that sheep may have had an initial mild aversion to pellets supplemented with flunixin on the first day of exposure, however, by on the second day there was no difference in consumption of normal feed and feed supplemented with flunixin. To test pharmacokinetics, sheep were offered 800 g of flunixin supplemented feed for a 12 h period. Blood samples were taken over 48 h and plasma drug concentrations were determined using ultra-high-pressure liquid chromatography, negative electrospray ionisation and tandem mass spectrometry. The mean ± S.D. time required to reach maximum concentration was 6.00 ± 4.14 h and ranged from 1 to 12 h. Average maximum plasma concentration was 1.78 ± 0.48 µg/mL and ranged from 1.61 to 2.80 µg/mL. The average half-life of flunixin was 7.95 ± 0.77 h and there was a mean residence time of 13.62 ± 1.17 h. Free access to flunixin supplemented feed enabled all sheep to obtain inferred therapeutic concentrations of flunixin in plasma within 6 h of starting to consume the feed. Provision of an analgesic in feed may be an alternative practical method for providing pain relief to sheep. PMID:26989633
Annual variability of ozone along alpine hillsides
NASA Technical Reports Server (NTRS)
Putz, Erich; Kosmus, Walter
1994-01-01
Over a period of more than two years (March 1989 till June 1991) ozone and nitrogen dioxide have been monitored along twelve alpine hillsides in the Austrian alps. The profiles had a height-resolution of 100 m and cover a range between 400 m and 1800 m asl, that is 100 m to 1100 m above the bottom of the valleys. They were situated in remote rural areas as well as in the vicinity of polluted urban and industrial areas. Both trace gases were monitored by means of integral chemical (SAM-surface active monitor) methods with a measuring cycle of two weeks. The concentration of ozone exhibits a substantial annual variation over the entire height range. In summer, highest ozone levels are observed near the ground and at the top of the mountains, whereas in winter the maxima are found mainly in the crest regions. The overall ozone burden shows a relative maximum near the temperature inversion layer in the valleys and an absolute maximum at the crest.
Sarmah, Nabin; Richards, Bryce S; Mallick, Tapas K
2011-07-01
We present a detailed design concept and optical performance evaluation of stationary dielectric asymmetric compound parabolic concentrators (DiACPCs) using ray-tracing methods. Three DiACPC designs, DiACPC-55, DiACPC-66, and DiACPC-77, of acceptance half-angles (0° and 55°), (0° and 66°), and (0° and 77°), respectively, are designed in order to optimize the concentrator for building façade photovoltaic applications in northern latitudes (>55 °N). The dielectric concentrator profiles have been realized via truncation of the complete compound parabolic concentrator profiles to achieve a geometric concentration ratio of 2.82. Ray-tracing simulation results show that all rays entering the designed concentrators within the acceptance half-angle range can be collected without escaping from the parabolic sides and aperture. The maximum optical efficiency of the designed concentrators is found to be 83%, which tends to decrease with the increase in incidence angle. The intensity is found to be distributed at the receiver (solar cell) area in an inhomogeneous pattern for a wide range of incident angles of direct solar irradiance with high-intensity peaks at certain points of the receiver. However, peaks become more intense for the irradiation incident close to the extreme acceptance angles, shifting the peaks to the edge of the receiver. Energy flux distribution at the receiver for diffuse radiation is found to be homogeneous within ±12% with an average intensity of 520 W/m².
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinis, L.J.; Tunell, R.; Liber, K.
1994-12-31
Eighteen enclosures (5 m x 10 m) were constructed in the littoral zone of a 2-ha pond near Duluth, MN. Each enclosure consisted of 5 m of natural shoreline and three walls of an inert plastic. The enclosures had an average surface area of 31.9 m{sup 2} , an average depth of 0.6 m and an average water volume of 33.1 m{sup 3}. The enclosure waters were treated with the alkyl phenol ethoxylate precursor and degradation product 4-nonylphenol. Application was accomplished by sub-surface injection over a 20-day period with a 2 day frequency. Nominal aqueous concentrations were 0, 3, 30,more » 100 and 300 {mu}g/L. Concentrations of 4-nonylphenol were monitored during and after application in the water, sediment, macrophytes, and enclosure wall material. Average maximum water concentrations ranged from 96.5% of nominal to 62.0% of nominal and average minimum water concentrations ranged from 33.3% of nominal to 29.5% of nominal during the application period. Water concentrations decreased exponentially after application ended. Sediment concentrations during the application period were constant from 8 to 20 d and peak concentrations occurred 48 d after application began. Macrophyte concentrations peaked 21 d after initial application with a steady decline through 76 d. Enclosure wall material concentrations reached a peak 3 h before the final application. A gradual decline occurred until 34 d after initial application followed by a more rapid dissipation.« less
NASA Technical Reports Server (NTRS)
Wakelyn, N. T.; Jachimowski, C. J.; Wilson, C. H.
1978-01-01
A jet-stirred combustor, constructed of castable zirconia and with an Inconel injector, was used to study nitric oxide formation in propane-air combustion with residence times in the range from 3.2 to 3.3 msec and equivalence ratios varying from 0.7 to 1.4. Measurements were made of combustor operating temperature and of nitric oxide concentration. Maximum nitric oxide concentrations of the order of 55 ppm were found in the range of equivalence ratio from 1.0 to 1.1. A finite-rate chemical kinetic mechanism for propane combustion and nitric oxide formation was assembled by coupling an existing propane oxidation mechanism with the Zeldovich reactions and reactions of molecular nitrogen with hydrocarbon fragments. Analytical studies using this mechanism in a computer simulation of the experimental conditions revealed that the hydrocarbon-fragment-nitrogen reactions play a significant role in nitric oxide formation during fuel-rich combustion.
Yu, Yang; Li, Yingxia; Li, Ben; Shen, Zhenyao; Stenstrom, Michael K
2017-03-01
Lead (Pb) concentration in urban dust is often higher than background concentrations and can result in a wide range of health risks to local communities. To understand Pb distribution in urban dust and how multi-industrial activity affects Pb concentration, 21 sampling sites within the heavy industry city of Jilin, China, were analyzed for Pb concentration. Pb concentrations of all 21 urban dust samples from the Jilin City Center were higher than the background concentration for soil in Jilin Province. The analyses show that distance to industry is an important parameter determining health risks associated with Pb in urban dust. The Pb concentration showed an exponential decrease, with increasing distance from industry. Both maximum likelihood estimation and Bayesian analysis were used to estimate the exponential relationship between Pb concentration and distance to multi-industry areas. We found that Bayesian analysis was a better method with less uncertainty for estimating Pb dust concentrations based on their distance to multi-industry, and this approach is recommended for further study. Copyright © 2016. Published by Elsevier Inc.
Lafreniere, Janet A; Hamilton, Donald P; Carr, Roxane R
2006-10-01
To examine the practice of potassium chloride (KCl) replacement in pediatric oncology patients receiving amphotericin B (amp-B). A retrospective observational chart review was conducted of patients who received amp-B on the oncology unit between August 2000 and May 2001. A survey was distributed to pediatric oncology pharmacists at other pediatric institutions to assess KCl infusion guidelines across North America. Twenty hypokalemic episodes were identified within 22 patient admissions. Fifty-five percent used KCl replacement (by all combined routes) at rates exceeding the institution's guidelines. Other pediatric institutions varied with respect to the maximum rates and concentration of KCl permitted on non-intensive care units. Based on the data from this review, the KCl administration guidelines for our hospital were changed. We now allow a maximum peripheral line concentration of 60 mEq/L, a maximum central line concentration of 120 mEq/L and a maximum KCl infusion rate of 0.4 mEq/kg/hr without the requirement of a heart monitor. Parenteral Nutrition is now restricted to maximum potassium concentration of 80 mEq/L and fluid-restricted patients are restricted to a maximum concentration of 150 mEq/L.
Ester oxidation on an aluminum surface using chemiluminescence
NASA Technical Reports Server (NTRS)
Jones, William R., Jr.; Meador, Michael A.; Morales, Wilfredo
1986-01-01
The oxidation characteristics of a pure ester (trimethyolpropane triheptanoate) were studied by using a chemiluminescence technique. Tests were run in a thin film microoxidation apparatus with an aluminum alloy catalyst. Conditions included a pure oxygen atmosphere and a temperature range of 176 to 206 C. Results indicated that oxidation of the ester (containing .001 M diphenylanthracene as an intensifier) was accompanied by emission of light. The maximum intensity of light emission was a function of the amount of ester, the concentration of intensifier, and the test temperature. The induction period, or the time to reach one-half of maximum intensity was inversely proportional to test temperature. Decreases in light emission at the later stages of a test were caused by depletion of the intensifier.
Freeman, Laura A; Anwer, Bilal; Brady, Ryan P; Smith, Benjamin C; Edelman, Theresa L; Misselt, Andrew J; Cressman, Erik N K
2010-03-01
To measure and compare temperature changes in a recently developed gel phantom for thermochemical ablation as a function of reagent strength and concentration with several acids and bases. Aliquots (0.5-1 mL) of hydrochloric acid or acetic acid and sodium hydroxide or aqueous ammonia were injected for 5 seconds into a hydrophobic gel phantom. Stepwise increments in concentration were used to survey the temperature changes caused by these reactions. Injections were performed in triplicate, measured with a thermocouple probe, and plotted as functions of concentration and time. Maximum temperatures were reached almost immediately in all cases, reaching 75 degrees C-110 degrees C at the higher concentrations. The highest temperatures were seen with hydrochloric acid and either base. More concentrated solutions of sodium hydroxide tended to mix incompletely, such that experiments at 9 M and higher were difficult to perform consistently. Higher concentrations for any reagent resulted in higher temperatures. Stronger acid and base combinations resulted in higher temperatures versus weak acid and base combinations at the same concentration. Maximum temperatures obtained are in a range known to cause tissue coagulation, and all combinations tested therefore appeared suitable for further investigation in thermochemical ablation. Because of the loss of the reaction chamber shape at higher concentrations of stronger agents, the phantom does not allow complete characterization under these circumstances. Adequate mixing of reagents to maximize heating potential and avoid systemic exposure to unreacted acid and base must be addressed if the method is to be safely employed in tissues. In addition, understanding factors that control lesion shape in a more realistic tissue model will be critical. Copyright 2010 SIR. Published by Elsevier Inc. All rights reserved.
Gillip, Jonathan A.
2014-01-01
The West Gulf Coastal Plain, Mississippi embayment, and underlying Cretaceous aquifers are rich in water resources; however, large parts of the aquifers are largely unusable because of large concentrations of dissolved solids. Cretaceous aquifers are known to have large concentrations of salinity in some parts of Arkansas. The Nacatoch Sand and the Tokio Formation of Upper Cretaceous age were chosen for investigation because these aquifers produce groundwater to wells near their outcrops and have large salinity concentrations away from their outcrop areas. Previous investigations have indicated that dissolved-solids concentrations of groundwater within the Nacatoch Sand, 2–20 miles downdip from the outcrop, render the groundwater as unusable for purposes requiring freshwater. Groundwater within the Tokio Formation also exhibits large concentrations of dissolved solids downdip. Water-quality data showing elevated dissolved-solids concentrations are limited for these Cretaceous aquifers because other shallower aquifers are used for water supply. Although not suitable for many uses, large, unused amounts of saline groundwater are present in these aquifers. Historical borehole geophysical logs were used to determine the geologic and hydrogeologic properties of these Cretaceous aquifers, as well as the quality of the groundwater within the aquifers. Based on the interpretation of borehole geophysical logs, in Arkansas, the altitude of the top of the Nacatoch Sand ranges from more than 200 to less than -4,000 feet; the structural high occurs in the outcrop area and the structural low occurs in southeastern Arkansas near the Desha Basin structural feature. The thickness of the Nacatoch Sand ranges from 0 to over 550 feet. The minimum thickness occurs where the formation pinches out in the outcrop area, and the maximum thickness occurs in the southwestern corner of Arkansas. Other areas of large thickness include the area of the Desha Basin structural feature in southeastern Arkansas and in an area on the border of Cross and St. Francis Counties in eastern Arkansas. The clean-sand percentage of the total Nacatoch Sand thickness ranges from less than 20 percent to more than 60 percent and generally decreases downdip. The Nacatoch Sand contains more than 120.5 million acre-feet of water with a dissolved-solids concentration between 1,000 and 10,000 milligrams per liter (mg/L), more than 57.5 million acre-feet of water with a dissolved-solids concentration between 10,000 and 35,000 mg/L, and more than 122.5 million acre-feet of water with a dissolved-solids concentration more than 35,000 mg/L. The altitude of the top of the Tokio Formation, in Arkansas, ranges from more than 200 feet to less than -4,400 feet; the structural high occurs in the outcrop area and the structural low occurs in southeastern Arkansas near the Desha Basin structural feature. The thickness of the Tokio Formation, in Arkansas, ranges from 0 to over 400 feet. The minimum thickness occurs where the formation pinches out in the outcrop area, and the maximum thickness occurs in the southwestern corner of Arkansas. The clean-sand percentage of the total Tokio Formation thickness ranges from less than 20 percent to more than 60 percent and generally decreases away from the outcrop area. The Tokio Formation contains more than 2.5 million acre-feet of water with a dissolved-solids concentration between 1,000 and 10,000 mg/L, more than 12.5 million acre-feet of water with a dissolved-solids concentration between 10,000 and 35,000 mg/L, and nearly 43.5 million acre-feet of water with a dissolved-solids concentration more than 35,000 mg/L.
Methods for fitting a parametric probability distribution to most probable number data.
Williams, Michael S; Ebel, Eric D
2012-07-02
Every year hundreds of thousands, if not millions, of samples are collected and analyzed to assess microbial contamination in food and water. The concentration of pathogenic organisms at the end of the production process is low for most commodities, so a highly sensitive screening test is used to determine whether the organism of interest is present in a sample. In some applications, samples that test positive are subjected to quantitation. The most probable number (MPN) technique is a common method to quantify the level of contamination in a sample because it is able to provide estimates at low concentrations. This technique uses a series of dilution count experiments to derive estimates of the concentration of the microorganism of interest. An application for these data is food-safety risk assessment, where the MPN concentration estimates can be fitted to a parametric distribution to summarize the range of potential exposures to the contaminant. Many different methods (e.g., substitution methods, maximum likelihood and regression on order statistics) have been proposed to fit microbial contamination data to a distribution, but the development of these methods rarely considers how the MPN technique influences the choice of distribution function and fitting method. An often overlooked aspect when applying these methods is whether the data represent actual measurements of the average concentration of microorganism per milliliter or the data are real-valued estimates of the average concentration, as is the case with MPN data. In this study, we propose two methods for fitting MPN data to a probability distribution. The first method uses a maximum likelihood estimator that takes average concentration values as the data inputs. The second is a Bayesian latent variable method that uses the counts of the number of positive tubes at each dilution to estimate the parameters of the contamination distribution. The performance of the two fitting methods is compared for two data sets that represent Salmonella and Campylobacter concentrations on chicken carcasses. The results demonstrate a bias in the maximum likelihood estimator that increases with reductions in average concentration. The Bayesian method provided unbiased estimates of the concentration distribution parameters for all data sets. We provide computer code for the Bayesian fitting method. Published by Elsevier B.V.
Guidelines for developing spacecraft maximum allowable concentrations for Space Station contaminants
NASA Technical Reports Server (NTRS)
1992-01-01
The National Aeronautics and Space Administration (NASA) is preparing to launch a manned space station by the year 1996. Because of concerns about the health, safety, and functioning abilities of the crews, NASA has requested that the National Research Council (NRC) through the Board on Environmental Studies and Toxicology (BEST) provide advice on toxicological matters for the space-station program. The Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants was established by the Committee on Toxicology (COT) to address NASA's concerns. Spacecraft maximum allowable concentrations (SMAC's) are defined as the maximum concentrations of airborne substances (such as gas, vapor, or aerosol) that will not cause adverse health effects, significant discomfort, or degradation in crew performance.
Inhibition effect of engineered silver nanoparticles to bloom forming cyanobacteria
NASA Astrophysics Data System (ADS)
Thuy Duong, Thi; Son Le, Thanh; Thu Huong Tran, Thi; Kien Nguyen, Trung; Ho, Cuong Tu; Hien Dao, Trong; Phuong Quynh Le, Thi; Chau Nguyen, Hoai; Dang, Dinh Kim; Thu Huong Le, Thi; Thu Ha, Phuong
2016-09-01
Silver nanoparticle (AgNP) has a wide range antibacterial effect and is extensively used in different aspects of medicine, food storage, household products, disinfectants, biomonitoring and environmental remediation etc. In the present study, we examined the growth inhibition effect of engineered silver nanoparticles against bloom forming cyanobacterial M. aeruginosa strain. AgNPs were synthesized by a chemical reduction method at room temperature and UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscope (TEM) showed that they presented a maximum absorption at 410 nm and size range between 10 and 18 nm. M. aeruginosa cells exposed during 10 d to AgNPs to a range of concentrations from 0 to 1 mg l-1. The changes in cell density and morphology were used to measure the responses of the M. aeruginosa to AgNPs. The control and treatment units had a significant difference in terms of cell density and growth inhibition (p < 0.05). Increasing the concentration of AgNPs, a reduction of the cell growths in all treatment was observed. The inhibition efficiency was reached 98.7% at higher concentration of AgNPs nanoparticles. The term half maximal effective concentration (EC50) based on the cell growth measured by absorbance at 680 nm (A680) was 0.0075 mg l-1. The inhibition efficiency was 98.7% at high concentration of AgNPs (1 mg l-1). Image of SEM and TEM reflected a shrunk and damaged cell wall indicating toxicity of silver nanoparticles toward M. aeruginosa.
Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W
2010-12-21
This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at the lowest adsorption values is explained by the substantial rise in surface diffusion at high ionic strength due to decreased interactions with the surface. Overall, knowledge of the electrostatic interactions can be used to control surface parameters such as surface concentration and surface diffusion, which intimately correlate with surface biocatalysis. We propose that the maximum reaction rate results from a balance between adsorption and surface diffusion. The above finding suggests enzyme engineering and process design strategies for improving interfacial biocatalysis in industrial, pharmaceutical, and food applications.
Bartholomay, Roy C.
2009-01-01
From 1953 to 1988, wastewater containing approximately 0.94 curies of iodine-129 (129I) was generated at the Idaho National Laboratory (INL) in southeastern Idaho. Almost all of this wastewater was discharged at or near the Idaho Nuclear Technology and Engineering Center (INTEC) on the INL site. Most of the wastewater was discharged directly into the eastern Snake River Plain aquifer through a deep disposal well until 1984; however, some wastewater also was discharged into unlined infiltration ponds or leaked from distribution systems below the INTEC. In 2003, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, collected samples for 129I from 36 wells used to monitor the Snake River Plain aquifer, and from one well used to monitor a perched zone at the INTEC. Concentrations of 129I in the aquifer ranged from 0.0000066 +- 0.0000002 to 0.72 +- 0.051 picocuries per liter (pCi/L). Many wells within a 3-mile radius of the INTEC showed decreases of as much as one order of magnitude in concentration from samples collected during 1990-91, and all of the samples had concentrations less than the Environmental Protection Agency's Maximum Contaminant Level (MCL) of 1 pCi/L. The average concentration of 129I in 19 wells sampled during both collection periods decreased from 0.975 pCi/L in 1990-91 to 0.249 pCi/L in 2003. These decreases are attributed to the discontinuation of disposal of 129I in wastewater after 1988 and to dilution and dispersion in the aquifer. Although water from wells sampled in 2003 near the INTEC showed decreases in concentrations of 129I compared with data collected in 1990-91, some wells south and east of the Central Facilities Area, near the site boundary, and south of the INL showed slight increases. These slight increases may be related to variable discharge rates of wastewater that eventually moved to these well locations as a mass of water from a particular disposal period. In 2007, the USGS collected samples for 129I from 36 wells that are used to monitor the aquifer south of INTEC and from 2 wells that are used to monitor perched zones at INTEC. Concentrations of 129I in the eastern Snake River Plain aquifer ranged from 0.000026 +- 0.000002 to 1.16 +- 0.04 pCi/L, and the concentration at one well exceeded the maximum contaminant level (1 pCi/L) for public drinking water supplies. The average concentration of 19 wells sampled in 2003 and 2007 did not differ; however, slight increases and decreases of concentrations in several areas around the INTEC were evident in the aquifer. The decreases are attributed to the discontinued disposal and to dilution and dispersion in the aquifer. The increases may be due to the movement into the aquifer of remnant perched water below the INTEC. In 2007, the USGS also collected samples from 31 zones in 6 wells equipped with multi-level WestbayTM packer sampling systems to help define the vertical distribution of 129I in the aquifer. Concentrations ranged from 0.000011 +- 0.0000005 to 0.0167 +- 0.0007 pCi/L. For three wells, concentrations of 129I between zones varied one to two orders of magnitude. For two wells, concentrations varied for one zone by more than an order of magnitude from the wells' other zones. Similar concentrations were measured from all five zones sampled in one well. All of the 31 zones had concentrations two or more magnitudes below the maximum contaminant level.
Maslia, Morris L.; Aral, Mustafa M.; Ruckart, Perri Z.; Bove, Frank J.
2017-01-01
A U.S. government health agency conducted epidemiological studies to evaluate whether exposures to drinking water contaminated with volatile organic compounds (VOC) at U.S. Marine Corps Base Camp Lejeune, North Carolina, were associated with increased health risks to children and adults. These health studies required knowledge of contaminant concentrations in drinking water—at monthly intervals—delivered to family housing, barracks, and other facilities within the study area. Because concentration data were limited or unavailable during much of the period of contamination (1950s–1985), the historical reconstruction process was used to quantify estimates of monthly mean contaminant-specific concentrations. This paper integrates many efforts, reports, and papers into a synthesis of the overall approach to, and results from, a drinking-water historical reconstruction study. Results show that at the Tarawa Terrace water treatment plant (WTP) reconstructed (simulated) tetrachloroethylene (PCE) concentrations reached a maximum monthly average value of 183 micrograms per liter (μg/L) compared to a one-time maximum measured value of 215 μg/L and exceeded the U.S. Environmental Protection Agency’s current maximum contaminant level (MCL) of 5 μg/L during the period November 1957–February 1987. At the Hadnot Point WTP, reconstructed trichloroethylene (TCE) concentrations reached a maximum monthly average value of 783 μg/L compared to a one-time maximum measured value of 1400 μg/L during the period August 1953–December 1984. The Hadnot Point WTP also provided contaminated drinking water to the Holcomb Boulevard housing area continuously prior to June 1972, when the Holcomb Boulevard WTP came on line (maximum reconstructed TCE concentration of 32 μg/L) and intermittently during the period June 1972–February 1985 (maximum reconstructed TCE concentration of 66 μg/L). Applying the historical reconstruction process to quantify contaminant-specific monthly drinking-water concentrations is advantageous for epidemiological studies when compared to using the classical exposed versus unexposed approach. PMID:28868161
Thermoelectric transport in surface- and antimony-doped bismuth telluride nanoplates
NASA Astrophysics Data System (ADS)
Pettes, Michael Thompson; Kim, Jaehyun; Wu, Wei; Bustillo, Karen C.; Shi, Li
2016-10-01
We report the in-plane thermoelectric properties of suspended (Bi1-xSbx)2Te3 nanoplates with x ranging from 0.07 to 0.95 and thicknesses ranging from 9 to 42 nm. The results presented here reveal a trend of increasing p-type behavior with increasing antimony concentration, and a maximum Seebeck coefficient and thermoelectric figure of merit at x ˜ 0.5. We additionally tuned extrinsic doping of the surface using a tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) coating. The lattice thermal conductivity is found to be below that for undoped ultrathin Bi2Te3 nanoplates of comparable thickness and in the range of 0.2-0.7 W m-1 K-1 at room temperature.
David, N.; McKee, L.J.; Black, F.J.; Flegal, A.R.; Conaway, C.H.; Schoellhamer, D.H.; Ganju, N.K.
2009-01-01
In order to estimate total mercury (HgT) loads entering San Francisco Bay, USA, via the Sacramento-San Joaquin River system, unfiltered water samples were collected between January 2002 and January 2006 during high flow events and analyzed for HgT. Unfiltered HgT concentrations ranged from 3.2 to 75 ng/L and showed a strong correlation (r2 = 0.8, p < 0.001, n = 78) to suspended sediment concentrations (SSC). During infrequent large floods, HgT concentrations relative to SSC were approximately twice as high as observed during smaller floods. This difference indicates the transport of more Hg-contaminated particles during high discharge events. Daily HgT loads in the Sacramento-San Joaquin River at Mallard Island ranged from below the limit of detection to 35 kg. Annual HgT loads varied from 61 ?? 22 kg (n = 5) in water year (WY) 2002 to 470 ?? 170 kg (n = 25) in WY 2006. The data collected will assist in understanding the long-term recovery of San Francisco Bay from Hg contamination and in implementing the Hg total maximum daily load, the long-term cleanup plan for Hg in the Bay. ?? 2009 SETAC.
Modeling viscosity and conductivity of lithium salts in γ-butyrolactone
NASA Astrophysics Data System (ADS)
Chagnes, A.; Carré, B.; Willmann, P.; Lemordant, D.
Viscosity and conductivity properties of Li-salts (lithium tetrafluoroborate (LiBF 4), lithium hexafluorophosphate (LiPF 6), lithium hexafluoroarsenate (LiAsF 6), lithium bis-(trifluoromethylsulfone)-imide (LiTFSI)) dissolved in γ-butyrolactone (BL) have been investigated. The B- and D-coefficients of the Jones-Dole (JD) equation for the relative viscosity of concentrated electrolyte solutions (concentration: C=0.1-1.5 M): ηr=1+ AC1/2+ BC+ DC2, have been determined as a function of the temperature. The B-coefficient is linked to the hydrodynamic volume of the solute and remains constant within the temperature range investigated (25-55 °C). The D-coefficient, which originates mainly from long-range coulombic ion-ion interactions, is a reciprocal function of the temperature. The variations of the molar conductivity ( Λ) with C follow the cube root law Λ= Λ0'- S' C1/3 issued from quasi-lattice theory of electrolyte solutions. From the Walden product W= Λη which does not vary with C and the JD equation, the bell shape of the conductivity-concentration relationship is explained and it is shown that the concentration in salt at the maximum of conductivity is linked to the D-coefficient. Raman spectroscopy has been used as an additional tool to investigate ion pairing in BL. Ions pairs have been evidenced for LiClO 4 solutions in BL but not for LiPF 6. As little variations occur for the ions pairs dissociation coefficient when the salt concentration is increased, the cube root law remains valid, at least in the concentration range investigated.
Bell, Richard W.; Joseph, Robert L.; Freiwald, David A.
1996-01-01
Historical pesticide data from 1970-90 were compiled for 140 surface-water, 92 ground-water, 55 streambed-sediment, and 120 biological-tissue sampling sites within the Ozark Plateaus National Water-Quality Assessment Program study unit. Surface-water, bed-sediment, and biological-tissue sites have drainage basins predominantly in the Springfield and Salem Plateaus; ground-water sites are predominantly located in the Osage Plains and Mississippi Alluvial Plain. Many sites were sampled only once or twice during this period. A large percentage of the samples were collected in the mid-1970's and early 1980's for surface water, 1990 for ground water, the late 1980's for surface water, 1990 for ground water, the late 1980's for bed sediment, and the early 1980's for biological tissue. Pesticide use was approximately 4.2 million pounds per year of active ingredients from 1982-85 in the study unit and was generally greatest in the Springfield and Salem Plateaus pasturelands and in the Osage Plains and Mississippi Alluvial Plain cropland areas. The most frequently applied pesticide in the study unit was 2,4-D. Alachlor was the second most applied pesticide. Corn, pasture, rice, sorghum, and soybeans received approximately 90 percent of the pesticides applied within the study unit. The highest pesticide application rate per acre occurred on these crops in the Osage Plains and Mississippi Alluvial Plain. Pastureland was the predominant crop type in 50 of the 94 counties in the study unit. Toxaphene, the pesticide having the most number of detections in surface water, was found in 17 of 866 samples from 5 of 112 sites. Concentrations ranged from 0.1 to 6.0 micrograms per liter. Six other pesticides or pesticide metabolites were detected in 12 or more surface-water samples: DDE, dieldrin, DDT, aldrin, 2,4-D, and lindane. The maximum concentration for these pesticides was less than 1.0 micrograms per liter. Atrazine, the pesticide having the most number of detections in ground water, was found in 15 of 95 samples from 15 of 79 wells with concentrations ranging from 0.1 to 8.2 micrograms per liter. Metolachlor, alachlor, and prometon were detected more than once with maximum concentrations less than 1.0 micrograms per liter, except for prometon (2.4 micrograms per liter). Chlordane was the pesticide having the most number of detections in bed sediment and biological tissue. Chlordane was detected in 12 of 73 samples from 10 of 45 bed-sediment sites with concentrations ranging from 2.0 to 240 micrograms per kilogram. In biological tissue, chlordane was found in 93 of 151 samples from 39 of 53 sites with concentrations ranging from 0.009 to 8.6 milligrams per kilogram. Other pesticides or pesticide metabolites detected more than once in bed sediment include DDT, DDD, p,p'-DDE, DDE, and hexachlorobenzene and in biological tissue include DDT, p,p'-DDE, and hexachlorobenzene. Quality criteria or standards have been established for 15 of the pesticides detected in the study unit. For surface-water samples, the drinking water maximum contaminant level for alachlor was exceeded in one sample from one site in 1982. For ground-water samples, the drinking water maximum contaminant level for atrazine was exceeded in four samples from four wells in 1990. For biological-tissue samples collected during the years 1982-89, the fish tissue action levels for chlordane (19 sites; 26 samples), heptachlor epoxide (3 sites; 3 samples), p,p'-DDE (2 sites; 2 samples), dieldrin (2 sites, 2 samples), and mirex (1 site; 1 sample) were exceeded. For bed-sediment samples, quality criteria or standards were not exceeded for any pesticide. Pesticides do not pose any widespread or persistent problems in the study unit, based on the limited number of samples that exceeded quality criteria and standards.
[Pharmacokinetics of magnolol and honokiol in Weichang'an pill].
Chen, Yu-Ling; Wang, Shu-Ping; Wang, Lei; Jin, Zhao-Xiang; Zhang, Jing-Ze; Chen, Hong; Gao, Wen-Yuan
2016-05-01
To conduct multiple-reaction monitoring(MRM) quantitative analysis with high-performance liquid chromatography coupled with mass spectrometry method, establish the quantification method of magnolol and honokiol in blood sample under negative ion mode with ibuprofen as internal standard, investigate the pharmacokinetic process of lignans constituents after oral administration of Weichang'an pill(WCA) at different doses, and provide theoretical basis to further reveal the material basis of WCA's anti-diarrhea effect. In the plasma samples, the linear relationship was good over the concentration range of 5.25 to 1 344.00 μg•L ⁻¹ for magnolol and 10.08 to 2 580.00 μg•L ⁻¹ for honokiol. The results of precision, stability, and extraction recovery tests showed that the determination method of plasma concentration for such compositions was stable and reliable. Dose-dependence was shown for magnolol and honokiol in the plasma concentration-time profile. The results indicated that the time to reach the maximum plasma concentration(Tmax) for lignanoids was 0.55-1.42 h, when the maximum plasma concentration(Cmax) could reach 996.36-2 330.96,189.87-1 469.43 μg•L ⁻¹ respectively for magnolol and honokiol. The lignanoids could be absorbed rapidly in the blood after oral administration of WAC pills, providing experimental basis to prove rapid and long-acting anti-diarrhea effect of WAC pills after oral administration. Copyright© by the Chinese Pharmaceutical Association.
Fry, L J; Querol, S; Gomez, S G; McArdle, S; Rees, R; Madrigal, J A
2015-08-01
Advantages of using cord blood (CB) over other sources of haematopoietic progenitor cells, such as bone marrow, include the ability to cryopreserve and bank the samples until requested for a transplant. Cryopreservation requires the addition of a cryoprotectant to prevent the formation of intracellular ice during freezing. Dimethyl sulphoxide (DMSO) is commonly used at a concentration of 10% (v/v); however, there is evidence to suggest this chemical is toxic to cells as well as to patients after infusion. The toxic effects of DMSO were assessed through cell viability and in vitro functional assays in fresh and post-thaw CB samples before determining the maximum exposure time and optimal concentration for cryopreservation. A dose-dependent toxicity of DMSO was observed in fresh samples with 40% removing all viable and functional haematopoietic progenitor cells (HPC). In fresh and post-thaw analysis, minimal toxic effect was observed when cryopreservation was delayed for up to 1 h after 10% DMSO addition. After thawing, DMSO washout was superior to dilution or unmanipulated when maintained for long periods (advantage observed 1 h after thawing). Finally, the optimum concentration for cryopreserving CB was found to be 7.5 to 10% with detrimental effects observed outside of this range. These results support the use of 7.5-10% as the optimal DMSO concentration and the maximum exposure time should be limited to <1 h prior to freezing and 30 min post-thaw. © 2015 International Society of Blood Transfusion.
NASA Astrophysics Data System (ADS)
Trifonova, T. A.; Zabelina, O. N.
2017-04-01
Urban recreation areas of different sizes were investigated in the city of Vladimir. The degree of their contamination with heavy metals and oil products was revealed. The content of heavy metals exceeded their maximum permissible concentrations by more than 2.5 times. The total content of heavy metals decreased in the sequence: Zn > Pb > Co > Mn > Cr > Ni. The mass fraction of oil products in the studied soils varied within the range of 0.016-0.28 mg/g. The reaction of soils in public gardens and a boulevard was neutral or close to neutral; in some soil samples, it was weakly alkaline. The top layer of all the soils significantly differed from the lower one by the higher alkalinity promoting the deposition of heavy metals there. As the content of Ni, Co, and Mn increased and exceeded the background concentrations, but did not reach the three-fold value of the maximum permissible concentrations, the activity of catalase was intensified. The stimulating effect of nickel on the catalase activity was mostly pronounced at the neutral soil reaction. The urease activity increased when heavy metals and oil products were present together in the concentrations above the background ones, but not higher than the three-fold maximal permissible concentrations for heavy metals and 0.3 mg/g for the content of oil products. The nitrifying activity was inhibited by oil hydrocarbons that were recorded in the soils in different amounts.
Critical Concentration Ratio for Solar Thermoelectric Generators
NASA Astrophysics Data System (ADS)
ur Rehman, Naveed; Siddiqui, Mubashir Ali
2016-10-01
A correlation for determining the critical concentration ratio (CCR) of solar concentrated thermoelectric generators (SCTEGs) has been established, and the significance of the contributing parameters is discussed in detail. For any SCTEG, higher concentration ratio leads to higher temperatures at the hot side of modules. However, the maximum value of this temperature for safe operation is limited by the material properties of the modules and should be considered as an important design constraint. Taking into account this limitation, the CCR can be defined as the maximum concentration ratio usable for a particular SCTEG. The established correlation is based on factors associated with the material and geometric properties of modules, thermal characteristics of the receiver, installation site attributes, and thermal and electrical operating conditions. To reduce the number of terms in the correlation, these factors are combined to form dimensionless groups by applying the Buckingham Pi theorem. A correlation model containing these groups is proposed and fit to a dataset obtained by simulating a thermodynamic (physical) model over sampled values acquired by applying the Latin hypercube sampling (LHS) technique over a realistic distribution of factors. The coefficient of determination and relative error are found to be 97% and ±20%, respectively. The correlation is validated by comparing the predicted results with literature values. In addition, the significance and effects of the Pi groups on the CCR are evaluated and thoroughly discussed. This study will lead to a wide range of opportunities regarding design and optimization of SCTEGs.
Dissolution of Uranium(IV) Oxide in Solutions of Ammonium Carbonate and Hydrogen Peroxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Steven C.; Peper, Shane M.; Douglas, Matthew
2009-09-12
Understanding the dissolution characteristics of uranium oxides is of fundamental scientific interest. Bench scale experiments were conducted to determine the optimal dissolution parameters of uranium(IV) oxide (UO2) powder in solutions of ammonium carbonate [(NH4)2CO3] and hydrogen peroxide (H2O2). Experimental parameters included variable peroxide and carbonate concentrations, and temperature. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M (1:1 to 40:1 mol ratio H2O2:U), with no apparent maximum rate reached under the limited conditions used in our study. Temperature ranging studies show the dissolution rate of UO2 inmore » 1 M (NH4)2CO3 and 0.1 M H2O2 (2:1 mol ratio H2O2:U) increases linearly from 15 °C to 60 °C, again with no apparent maximum rate reached. Dissolution of UO2 in solutions with constant [H2O2] and [(NH4)2CO3] ranging from 0.5 to 2 M showed no difference in rate; however dissolution was significantly reduced in 0.05 M (NH4)2CO3 solution. The results of this study demonstrate the influence of [H2O2], [(NH4)2CO3], and temperature on the dissolution of UO2 in peroxide-containing (NH4)2CO3 solutions. Future studies are planned to elucidate the solution and solid state complexes in these systems.« less
Zacs, Dzintars; Rjabova, Jekaterina; Fernandes, Alwyn; Bartkevics, Vadims
2016-01-01
Fifty-eight European eel (Anquilla anquilla) specimens collected from five Latvian lakes were investigated for six groups of persistent organic pollutants (POPs), including polychlorinated, polybrominated and mixed bromo-chloro dibenzo-p-dioxins and dibenzofurans (PCDD/DFs, PBDD/DFs and PXDD/DFs), polychlorinated and mixed bromo-chloro biphenyls (PCBs and PXBs) and polybrominated diphenyl ethers (PBDEs). PCDD/DFs and PCBs were found to occur in the range 0.85-15.8 pg Total-WHO2005-TEQ g(-1) f.w., and concentrations in most of the samples were below the maximum levels specified in European Commission Regulation (EU) No. 1259/2011. The summed concentrations of 27 PBDEs (∑PBDE) and 16 non-dioxin-like PCBs (∑NDL-PCB) were in the ranges of 0.28-26.7 and 6.37-320 ng g(-1) f.w., respectively. PBDD/DFs, PXDD/DFs and PXBs show average upper-bound concentrations of 0.05, 0.06 and 0.01 pg TEQ f.w. and collectively contributed 3.4% to the sum TEQ of dioxin-like compounds. The highest contaminant concentrations were measured in samples from lakes near the Baltic Sea and the industrialised area near Riga (Liepajas and Kisezers lakes). A correlation of POP concentration with the length of collected specimens was observed.
Cramer, Joel; Seifert, Tom; Kronenberg, Alexander; Fuhrmann, Felix; Jakob, Gerhard; Jourdan, Martin; Kampfrath, Tobias; Kläui, Mathias
2018-02-14
We measure the inverse spin Hall effect of Cu 1-x Ir x thin films on yttrium iron garnet over a wide range of Ir concentrations (0.05 ⩽ x ⩽ 0.7). Spin currents are triggered through the spin Seebeck effect, either by a continuous (dc) temperature gradient or by ultrafast optical heating of the metal layer. The spin Hall current is detected by electrical contacts or measurement of the emitted terahertz radiation. With both approaches, we reveal the same Ir concentration dependence that follows a novel complex, nonmonotonous behavior as compared to previous studies. For small Ir concentrations a signal minimum is observed, whereas a pronounced maximum appears near the equiatomic composition. We identify this behavior as originating from the interplay of different spin Hall mechanisms as well as a concentration-dependent variation of the integrated spin current density in Cu 1-x Ir x . The coinciding results obtained for dc and ultrafast stimuli provide further support that the spin Seebeck effect extends to terahertz frequencies, thus enabling a transfer of established spintronic measurement schemes into the terahertz regime. Our findings also show that the studied material allows for efficient spin-to-charge conversion even on ultrafast time scales.
Effect of clay type on the velocity and run-out distance of cohesive sediment gravity flows
NASA Astrophysics Data System (ADS)
Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian
2016-04-01
Novel laboratory experiments in a lock-exchange flume filled with natural seawater revealed that sediment gravity flows (SGFs) laden with kaolinite clay (weakly cohesive), bentonite clay (strongly cohesive) and silica flour (non-cohesive) have strongly contrasting flow properties. Knowledge of cohesive clay-laden sediment gravity flows is limited, despite clay being one of the most abundant sediment types on earth and subaqueous SGFs transporting the greatest volumes of sediment on our planet. Cohesive SGFs are particularly complex owing to the dynamic interplay between turbulent and cohesive forces. Cohesive forces allow the formation of clay flocs and gels, which increase the viscosity and shear strength of the flow, and attenuate shear-induced turbulence. The experimental SGFs ranged from dilute turbidity currents to dense debris flows. For each experiment, the run-out distance, head velocity and thickness distribution of the deposit were measured, and the flow properties were recorded using high-resolution video. Increasing the volume concentration of kaolinite and bentonite above 22% and 17%, respectively, reduced both the maximum head velocity and the run-out distances of the SGFs. We infer that increasing the concentration of clay particles enhances the opportunity for the particles to collide and flocculate, thus increasing the viscosity and shear strength of the flows at the expense of turbulence, and reducing their forward momentum. Increasing the volume concentration in the silica-flour laden flows from 1% to 46% increased the maximum head velocity, owing to the gradual increase in excess density. Thereafter, however, intergranular friction is inferred to have attenuated the turbulence, causing a rapid reduction in the maximum head velocity and run-out distance as suspended sediment concentration was increased. Moving from flows carrying bentonite via kaolinite to silica flour, a progressively larger volumetric suspended sediment concentration was needed to produce similar run-out distances and maximum head velocities. Strongly cohesive bentonite flows were able to create a stronger network of particle bonds than weakly cohesive kaolinite flows of a similar concentration, thus producing the lower maximum head velocities and run-out distances observed. The lack of cohesion in the silica-flour laden flows meant that extremely high suspended sediment concentrations, i.e. close to the cubic packing density, were required to produce a high enough frictional strength to reduce the forward momentum of these flows. These experimental results can be used to improve our understanding of the deposit geometry and run-out distance of fine-grained SGFs in the natural environment. We suggest that natural SGFs that carry weakly cohesive clays (e.g. kaolinite) reach a greater distance from their origin than flows that contain strongly cohesive clays (e.g. bentonite) at similar suspended sediment concentrations, whilst equivalent fine-grained, non-cohesive SGFs travel the furthest. In addition, weakly cohesive SGFs may cover a larger surface area and have thinner deposits, with important ramifications for the architecture of stacked event beds.
Kayombo, S; Mbwette, T S A; Katima, J H Y; Jorgensen, S E
2003-07-01
This paper presents the effect of substrate concentration on the growth of a mixed culture of algae and heterotrophic bacteria in secondary facultative ponds (SFPs) utilizing settled domestic sewage as a sole source of organic carbon. The growth of the mixed culture was studied at the concentrations ranging between 200 and 800 mg COD/l in a series of batch chemostat reactors. From the laboratory data, the specific growth rate (micro) was determined using the modified Gompertz model. The maximum specific growth rate ( micro(max)) and half saturation coefficients (K(s)) were calculated using the Monod kinetic equation. The maximum observed growth rate ( micro(max)) for heterotrophic bacteria was 3.8 day(-1) with K(s) of 200 mg COD/l. The micro(max) for algal biomass based on suspended volatile solids was 2.7 day(-1) with K(s) of 110 mg COD/l. The micro(max) of algae based on the chlorophyll-a was 3.5 day(-1) at K(s) of 50mg COD/l. The observed specific substrate removal by heterotrophic bacteria varied between the concentrations of substrate used and the average value was 0.82 (mg COD/mg biomass). The specific substrate utilization rate in the bioreactors was direct proportional to the specific growth rate. Hence, the determined Monod kinetic parameters are useful for the definition of the operation of SFPs.
Delin, G.N.; Landon, M.K.; Lamb, J.A.; Anderson, J.L.
1994-01-01
Atrazine was detected by gas chromatography mass spectroscopy in 2 of the 7 wells in the research area at concentrations of 0.04 and 0.17 micrograms per liter (ug/L), well below the U.S. Environmental Protection Agency's recommended maximum contaminant level of 3 ug/L. The median concentration in these Wells was less than the qualitative detection limit of 0.01 ug/L. Atrazine metabolite de-ethylatrazine was the most frequently detected herbicide or herbicide metabolite. De-ethylatrazine was detected in 5 of the 7 wells in the research area at concentrations ranging from 0.12 to 0.32 ug/L with a median concentration of 0.14 ug/L. Atrazine metabolite de-isopropylatrazine was not detected above the qualitative detection limit of 0.06 ug/L. The most likely sources of atrazine are applications to the research area during 1990 or from precipitation.
NASA Astrophysics Data System (ADS)
Ward, Thomas; Wey, Chi; Glidden, Robert; Hosoi, A. E.; Bertozzi, A. L.
2009-08-01
The flow of viscous, particle-laden wetting thin films on an inclined plane is studied experimentally as the particle concentration is increased to the maximum packing limit. The slurry is a non-neutrally buoyant mixture of silicone oil and either solid glass beads or glass bubbles. At low concentrations (ϕ <0.45), the elapsed time versus average front position scales with the exponent predicted by Huppert [Nature (London) 300, 427 (1982)]. At higher concentrations, the average front position still scales with the exponent predicted by Huppert on some time interval, but there are observable deviations due to internal motion of the particles. At the larger concentration values and at later times, the departure from Huppert is seen to strongly depend on total slurry volume VT, inclination angle α, density difference, and particle size range.
NASA Astrophysics Data System (ADS)
Evdokimova, Maria; Glazunov, Gennady; Yakovlev, Aleksandr
2017-04-01
The basis for development of standards for soil quality is based on the assessment of their resistance to external influences. The main criterion for assessing the environmental sustainability of soils and lands is the ability to perform their ecological functions (Nkonya et al, 2011, 2013; Costanza et al, 2014, Dobrovolsky and Nikitin, 1990; Yakovlev, Evdokimova, 2011). The limiting value of indicators of the state of the environment (physical, chemical, biological and other) corresponds to the value at which stability of environmental components is preserved (the ability to heal itself). Tht threshold for effect of stressor should be identified by the methods of bioindication and biotesting. The analysis obtained by these methods aimed to identify the highest indicator values of physical or chemical (concentration or dose of the stressor) effects, which have not yet fairly established negative changes in the organism, population of organisms or community. Using a theoretical model (Yakovlev et al, 2009, Gendugov., 2013) the problem of finding the threshold concentration is reduced to the finding of the singular points characterizing macroscopic "kinetics" of response in the phase space of dependence of the response rate upon the impact indicator. Singular points are determined by the analysis of derivatives. The theoretical model allows to calculate the singular points of the model (six of them), one of which, the maximum point corresponds to the highest concentration of the stressor at which it had no adverse effects on the test organisms. This point corresponds to the lowest concentration of the stressor at which it has no longer a stimulatory (hormesis) effect. Six singular points divide the whole range of stressors values (concentration) on seven bands with a unique range for each set of values of "macrokinetic" indicators of the living cells response to the impact of the stressor (concentration). Thus, the use of theoretical equations allowed us 1) to establish categories (borders) of soil quality on an the empirical scale of environmental quality and 2) to detail the category of quality in the range of hormesis, that is, in the range of weak positive effects of the stressor. The solution of the equation in the phase space of dependence of response upon exposure is: q=C/z^b*exp(-K/z), where q - is a measurable response of living organisms on exposure to the stressor, the concentration of which is equal to z; C -the constant of integration that makes sense of coefficient, which is scaling the value of q; b - the coefficient of the growth rate responding on the increase of z; K - the coefficient of the decline rate of q responding with increasing z. The equation coefficients C, b, K are found by fitting the model to the experimental data got by the method of nonlinear regression using an available software package. The abscissa of the maximum point is of a particular interest, because it corresponds to: 1. the lowest concentration of the stressor, which does not manifest its stimulatory (hormesis) effect, and at the same time - 2. the largest concentration of the stressor, which has not shown its negative effect. That is, it meets the requirements for threshold concentrations of the stressor and can be used in the development of the environmental quality standards. Acknowledgments: This study was supported by the Russian Science Foundation, project no. 143800023.
Heratizadeh, Annice; Killig, Claudia; Worm, Margitta; Soost, Stephanie; Simon, Dagmar; Bauer, Andrea; Mahler, Vera; Schuster, Christian; Szliska, Christiane; Frambach, Yvonne; Eben, Ricarda; Werfel, Thomas; Uter, Wolfgang; Schnuch, Axel
2010-06-01
While the use of methyldibromo glutaronitrile (MDBGN) in leave-on products is clearly associated with high sensitization or elicitation risk, such a clear-cut relation could be questioned with regard to rinse-off products. The objective of this study was to find a maximum non-eliciting concentration for rinse-off products in MDBGN patch test-positive patients. We performed a use-related test [repeated open application test (ROAT)] in patients sensitized to MDBGN with a liquid soap containing three concentrations of MDBGN (50, 200, and 400 p.p.m. MDBGN, respectively). The soap at 50 p.p.m. was used twice daily for 4 weeks. If no reaction of the skin was observed, the product with the next higher concentration was used for another 4 weeks, etc. In total, 32/37 evaluated cases [86.5%; lower exact one-sided 95% confidence limit (CL): 73.7%] did not react to any of the preparations. The remaining reacted as follows: 1/37 reacted to 50 p.p.m., 3/37 to 200 p.p.m., and 1/37 to 400 p.p.m. The cumulative non-response to 50 p.p.m. was 97.3% (lower CL: 87.8%). The majority of subjects sensitized to MDBGN-tolerated rinse-off products containing a maximum concentration of 400 p.p.m. A concentration in rinse-off products in the range of 50 p.p.m. could be regarded as safe for most individuals already sensitized. These concentrations will presumably prevent induction (sensitization) also.
Smith, S. Jerrod; Schneider, M.L.; Masoner, J.R.; Blazs, R.L.
2003-01-01
Elevated salinity in the North Fork Red River is a major concern of the Bureau of Reclamation W. C. Austin Project at Lake Altus. Understanding the relation between surface-water runoff, ground-water discharge, and surface-water quality is important for maintaining the beneficial use of water in the North Fork Red River basin. Agricultural practices, petroleum production, and natural dissolution of salt-bearing bedrock have the potential to influence the quality of nearby surface water. The U.S. Geological Survey, in cooperation with the Bureau of Reclamation, sampled stream discharge and water chemistry at 19 stations on the North Fork Red River and tributaries. To characterize surface-water resources of the basin in a systematic manner, samples were collected synoptically during receding streamflow conditions during July 8-11, 2002. Together, sulfate and chloride usually constitute greater than half of the dissolved solids. Concentrations of sulfate ranged from 87.1 to 3,450 milligrams per liter. The minimum value was measured at McClellan Creek near Back (07301220), and the maximum value was measured at Bronco Creek near Twitty (07301303). Concentrations of chloride ranged from 33.2 to 786 milligrams per liter. The minimum value was measured at a North Fork Red River tributary (unnamed) near Twitty (07301310), and the maximum value was measured at the North Fork Red River near Back (07301190), the most upstream sample station.
Simulated changes in aridity from the last glacial maximum to 4xCO2
NASA Astrophysics Data System (ADS)
Greve, Peter; Roderick, Michael L.; Seneviratne, Sonia I.
2017-11-01
Aridity is generally defined as the ‘degree to which a climate lacks moisture to sustain life in terrestrial ecosystems’. Several recent studies using the ‘aridity index’ (the ratio of potential evaporation to precipitation), have concluded that aridity will increase with CO2 because of increasing temperature. However, the ‘aridity index’ is—counterintuitively—not a direct measure of aridity per se (when defined as above) and there is widespread evidence that contradicts the ‘warmer is more arid’ interpretation. We provide here an assessment of multi-model changes in a broad set of aridity metrics over a large range of atmospheric CO2 concentrations ranging from conditions at the last glacial maximum to 4xCO2, using an ensemble of simulations from state-of-the-art Earth system models. Most measures of aridity do not show increasing aridity on global scales under conditions of increasing atmospheric CO2 concentrations and related global warming, although we note some varying responses depending on the considered variables. The response is, furthermore, more nuanced at regional scales, but in the majority of regions aridity does not increase with CO2 in the majority of metrics. Our results emphasize that it is not the climate models that project overwhelming increases of aridity with increasing CO2, but rather a secondary, offline, impact model—the ‘aridity index’—that uses climate model output as input.
Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons
NASA Astrophysics Data System (ADS)
Boriskina, Svetlana V.; Chen, Gang
2014-03-01
Maximum efficiency of ideal single-junction photovoltaic (PV) cells is limited to 33% (for 1 sun illumination) by intrinsic losses such as band edge thermalization, radiative recombination, and inability to absorb below-bandgap photons. This intrinsic thermodynamic limit, named after Shockley and Queisser (S-Q), can be exceeded by utilizing low-energy photons either via their electronic up-conversion or via the thermophotovoltaic (TPV) conversion process. However, electronic up-conversion systems have extremely low efficiencies, and practical temperature considerations limit the operation of TPV converters to the narrow-gap PV cells. Here we develop a conceptual design of a hybrid TPV platform, which exploits thermal up-conversion of low-energy photons and is compatible with conventional silicon PV cells by using spectral and directional selectivity of the up-converter. The hybrid platform offers sunlight-to-electricity conversion efficiency exceeding that imposed by the S-Q limit on the corresponding PV cells across a broad range of bandgap energies, under low optical concentration (1-300 suns), operating temperatures in the range 900-1700 K, and in simple flat panel designs. We demonstrate maximum conversion efficiency of 73% under illumination by non-concentrated sunlight. A detailed analysis of non-ideal hybrid platforms that allows for up to 15% of absorption/re-emission losses yields limiting efficiency value of 45% for Si PV cells.
Oxygen intrusion into anoxic fjords leads to increased methylmercury availability
NASA Astrophysics Data System (ADS)
Veiteberg Braaten, Hans Fredrik; Pakhomova, Svetlana; Yakushev, Evgeniy
2013-04-01
Mercury (Hg) appears in the oxic surface waters of the oceans at low levels (sub ng/L). Because inorganic Hg can be methylated into the toxic and bioaccumulative specie methylmercury (MeHg) levels can be high at the top of the marine food chain. Even though marine sea food is considered the main risk driver for MeHg exposure to people most research up to date has focused on Hg methylation processes in freshwater systems. This study identifies the mechanisms driving formation of MeHg during oxygen depletion in fjords, and shows how MeHg is made available in the surface water during oxygen intrusion. Studies of the biogeochemical structure in the water column of the Norwegian fjord Hunnbunn were performed in 2009, 2011 and 2012. In autumn of 2011 mixing flushing events were observed and lead to both positive and negative effects on the ecosystem state in the fjord. The oxygenated water intrusions lead to a decrease of the deep layer concentrations of hydrogen sulfide (H2S), ammonia and phosphate. On the other hand the intrusion also raised the H2S boundary from 8 m to a shallower depth of just 4 m. Following the intrusion was also observed an increase at shallower depths of nutrients combined with a decrease of pH. Before flushing events were observed concentrations of total Hg (TotHg) increased from 1.3 - 1.7 ng/L in the surface layer of the fjord to concentrations ranging from 5.2 ng/L to 6.4 ng/L in the anoxic zone. MeHg increased regularly from 0.04 ng/L in the surface water to a maximum concentration of 5.2 ng/L in the deeper layers. This corresponds to an amount of TotHg present as MeHg ranging from 2.1 % to 99 %. The higher concentrations of MeHg in the deeper layer corresponds to an area where no oxygen is present and concentrations of H2S exceeds 500 µM, suggesting a production of MeHg in the anoxic area as a result of sulphate reducing bacteria activity. After flushing the concentrations of TotHg showed a similar pattern ranging from 0.6 ng/L in the surface layer to 6.5 ng/L at maximum depth (10 m). However, the pattern of MeHg concentrations in the water column changed with relatively high concentrations present already at 4.5 m depth (2.2 ng/L). The environmental consequence of this oxygen intrusion is the appearance in shallower water of toxic MeHg formed in the anoxic layer. As a result of this, MeHg can possibly undergo transport from the anoxic fjord to the surrounding areas.
Preliminary appraisal of the hydrology of the Red Oak area, Latimer County, Oklahoma
Marcher, M.V.; Bergman, D.L.; Stoner, J.D.; Blumer, S.P.
1983-01-01
Bed rock in the Red Oak area consists of shale, siltstone, and sandstone of the McAlester and Savanna Formations of Pennsylvanian age. Water in bedrock occurs in bedding planes, joints, and fractures and is confined. The potentiometric surface generally is less than 20 feet below the land surface. Wells yield enough water for domestic and stock use, but larger amounts of ground water are not available. Ground water commonly is a sodium or mixed cation carbonate/bicarbonate type with dissolved-solids concentrations ranging from 321 to 714 milligrams per liter. Although variable in quality, ground water generally is suitable for domestic use. No relationship between water chemistry and well depth or location is apparent. Brazil Creek, the principal stream in the area, has no flow 15 percent of the time, and flow is less than 1 cubic foot per second about 25 percent of the time. Water in Brazil Creek is a mixed cation carbonate/bicarbonate type. Dissolved-solids concentrations in Brazil Creek upstream from areas of old and recent mining ranged from 31 to 99 milligrams per liter with a mean of 58 milligrams per liter, whereas concentrations downstream from the mine areas ranged from 49 to 596 milligrams per liter with a mean of 132 milligrams per liter. Water in Brazil and Rock Creeks had concentrations of cadmium, chromium, lead, and mercury that exceeded maximum contaminant levels established by the U.S. Environmental Protection Agency at least once during the 1979-81 water years. Maximum suspended-sediment discharge, in tons per day, was 2,500 for Brazil Creek and 3,318 for Rock Creek. Silt-clay particles (diameters less than 0.062 millimeter) were the dominant sediment size. A significant hydrologic effect of surface mining is creation of additional water storage in mine ponds; one such pond supplies water for the town of Red Oak. Other effects or potential effects of surface mining include changes in rock permeability and ground-water storage, changes in drainage patterns, and changes in the chemical quality and sediment loads of streams.
Ji, De; Su, Xiaonan; Huang, Ziyan; Wang, Qiaohan; Lu, Tulin
2018-06-01
We established a rapid and sensitive ultra high-performance liquid chromatography tandem mass spectrometry method for the simultaneous quantification of xanthones and steroidal saponins in rat plasma. Chromatographic separation was achieved on a C 18 column with a mobile phase comprising acetonitrile and 0.1% formic acid. The detection was performed by negative electrospray ionization in multiple reaction monitoring mode. The validated method showed good linearity within the tested range (r > 0.9945). The intra- and interday precision at high, medium, and low concentrations was less than 7.96%. The bias of accuracies ranged from -1.92 to 9.62%. The extraction recoveries of the compounds ranged from 84.78 to 88.69%, and the matrix effects ranged from 96.76 to 108.59%. This method was successfully applied to a pharmacokinetic comparison of crude and salt-processed Anemarrhenae Rhizoma aqueous extracts after oral administration in rats. The maximum plasma concentration and area under concentration-time curve of timosaponin BIII and timosaponin AIII increased significantly (P < 0.05 or 0.01) and those of timosaponin BII decreased significantly (P < 0.05) after processing. These results could contribute to the clinical application of crude and salt-processed Anemarrhenae Rhizoma and reveal the processing mechanism. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thoresen, Stein I; Arnemo, Jon M; Liberg, Olof
2009-06-01
Scandinavian free-ranging wolves (Canis lupus) are endangered, such that laboratory data to assess their health status is increasingly important. Although wolves have been studied for decades, most biological information comes from captive animals. The objective of the present study was to establish reference intervals for 30 clinical chemical and 8 hematologic analytes in Scandinavian free-ranging wolves. All wolves were tracked and chemically immobilized from a helicopter before examination and blood sampling in the winter of 7 consecutive years (1998-2004). Seventy-nine blood samples were collected from 57 gray wolves, including 24 juveniles (24 samples), 17 adult females (25 samples), and 16 adult males (30 samples). Whole blood and serum samples were stored at refrigeration temperature for 1-3 days before hematologic analyses and for 1-5 days before serum biochemical analyses. Reference intervals were calculated as 95% confidence intervals except for juveniles where the minimum and maximum values were used. Significant differences were observed between adult and juvenile wolves for RBC parameters, alkaline phosphatase and amylase activities, and total protein, albumin, gamma-globulins, cholesterol, creatinine, calcium, chloride, magnesium, phosphate, and sodium concentrations. Compared with published reference values for captive wolves, reference intervals for free-ranging wolves reflected exercise activity associated with capture (higher creatine kinase activity, higher glucose concentration), and differences in nutritional status (higher urea concentration).
Pope, L.M.; Arruda, J.A.; Fromm, C.H.
1988-01-01
The formation of carcinogenic trihalomethanes during the treatment of public surface water supplies has become a potentially serious problem. The U. S. Geological Survey, in cooperation with the Kansas Department of Health and Environment , investigated the potential for trihalomethane formation in water from 15 small, public water supply lakes in eastern Kansas from April 1984 through April 1986 in order to define the principal factors that affect or control the potential for trihalomethane formation during the water treatment process. Relations of mean concentrations of trihalomethane-formation potential to selected water quality and lake and watershed physical characteristics were investigated using correlation and regression analysis. Statistically significant, direct relations were developed between trihalomethanes produced in unfiltered and filtered lake water and mean concentrations of total and dissolved organic carbon. Correlation coefficients for these relations ranged from 0.86 to 0.93. Mean values of maximum depth of lake were shown to have statistically significant inverse relations to mean concentrations of trihalomethane-formation potential and total and dissolved organic carbon. Correlation coefficients for these relations ranged from -0.76 to -0.81. (USGS)
Iwaoka, K; Hosoda, M; Suwankot, N; Omori, Y; Ishikawa, T; Yonehara, H; Tokonami, S
2015-11-01
Man-made tiles frequently used in Japan were collected, and activity concentrations and radon ((222)Rn) exhalation rates in these tiles were measured. Dose estimations for inhabitants living in houses built using these tiles were also carried out. The activity concentrations of (226)Ra, (228)Ra and (40)K in the man-made tiles were 31-170, 35-110 and 260-980 Bq kg(-1), respectively. The (222)Rn exhalation rates in the tiles were 8.8-21 μBq m(-2) s(-1). The ranges of experimental activity concentrations and (222)Rn exhalation rates were almost identical to those of natural rocks used as typical building materials in Japan. The maximum value of effective dose to inhabitants living in houses built with the man-made tiles was 0.14 mSv y(-1), which is lower than the reference level range (1-20 mSv y(-1)) for abnormally high levels of natural background radiation published in the ICRP Publication 103. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saik, V.O.; Lipsky, S.
The electronic absorption spectrum of benzene has been obtained by phototransmission measurements over a concentration range from 0.005 M in n-hexane to the neat liquid at 11.2 M and over a spectral range that extends down to 170 nm. Good agreement is obtained with previously reported measurements on the neat liquid. The oscillator strength of the strongly allowed A{sub 1g} {yields} E{sub 1u} transition is maintained at ca. 1.0 as the benzene concentration increases but is accompanied by extensive redistribution of the intensity such that the optical cross section at the position of the absorption maximum (which shifts from 184{submore » .2} nm in dilute solution to 189{sub .5} nm in the neat liquid) reduces by a factor of 2.7. An explanation for these changes in terms of Lorentz field corrections to the complex dielectric constant is developed, and its implication to the assignment of the neat liquid absorption as a collective excitation is considered. 43 refs., 5 figs., 1 tab.« less
Simple detection of residual enrofloxacin in meat products using microparticles and biochips.
Ha, Mi-Sun; Chung, Myung-Sub; Bae, Dong-Ho
2016-05-01
A simple and sensitive method for detecting enrofloxacin, a major veterinary fluoroquinolone, was developed. Monoclonal antibody specific for enrofloxacin was immobilised on a chip and fluorescent dye-labelled microparticles were covalently bound to the enrofloxacin molecules. Enrofloxacin in solution competes with the microparticle-immobilised enrofloxacin (enroMPs) to bind to the antibody on the chip. The presence of enrofloxacin was verified by detecting the fluorescence of enrofloxacin-bound microparticles. Under optimum conditions, a high dynamic range was achieved at enrofloxacin concentrations ranging from 1 to 1000 μg kg(-1). The limits of detection and quantification for standard solutions were 5 and 20 μg kg(-1) respectively, which are markedly lower than the maximum residue limit. Using simple extraction methods, recoveries from fortified beef, pork and chicken samples were 43.4-62.3%. This novel method also enabled approximate quantification of enrofloxacin concentration: the enroMP signal intensity decreased with increasing enrofloxacin concentration. Because of its sensitivity, specificity, simplicity and rapidity, the method described herein will facilitate the detection and approximate quantification of enrofloxacin residues in foods in a high-throughput manner.
NASA Astrophysics Data System (ADS)
Martens, C. S.; Mendlovitz, H.; Seim, H.; Lapham, L.; Magen, C.; Joye, S. B.; MacDonald, I. R.; Asper, V. L.; Diercks, A. R.
2016-02-01
In situ time-series measurements of light hydrocarbons, oxygen, temperature and bottom currents from landers and elevators in the benthic boundary layer (BBL) at multiple sites in the northern Gulf of Mexico reveal spatial and temporal variability in methane concentrations controlled by horizontal advection of methane-rich plumes originating from nearby natural oil and gas seeps. Multi-sensor systems deployed for several weeks within 1m of the seafloor at depths from 882 to 1622m revealed methane concentrations ranging from near atmospheric saturation (<3 nM) to over 4000 nM depending on seep proximity, current speed and direction. Methane concentrations observed in the BBL equal or exceed maximum near-bottom values seen in shipboard water column profiles analyzed by conventional gas chromatography. Continuous laser sensor methane measurements from mini-landers deployed in September 2015 at our Horn Dome and Bush Hill sites featuring numerous gas seeps revealed methane concentrations ranging from <3 to over 300 nM over two-week periods. Net current speeds in the BBL at our six lander sites in blocks GC600, OC26 and MC118 ranged from near zero to over 5 cm/s; instantaneous speeds ranged from near zero to over 30 cm/s. Near real-time acquisition of continuous hydrocarbon concentration and current data within the BBL and friction layer from untethered platforms provides important new opportunities for monitoring the impacts of natural seeps and accidental hydrocarbon releases. The instrumented approaches we have developed to simultaneously monitor methane sources and physical processes controlling plume development and transport will enable more effective responses to further accidental hydrocarbon releases.
Servais, P
1995-03-01
In aquatic ecosystems, [(3)H]thymidine incorporation into bacterial DNA and [(3)H]leucine incorporation into proteins are usually used to estimate bacterial production. The incorporation rates of four amino acids (leucine, tyrosine, lysine, alanine) into proteins of bacteria were measured in parallel on natural freshwater samples from the basin of the river Meuse (Belgium). Comparison of the incorporation into proteins and into the total macromolecular fraction showed that these different amino acids were incorporated at more than 90% into proteins. From incorporation measurements at four subsaturated concentrations (range, 2-77 nm), the maximum incorporation rates were determined. Strong correlations (r > 0.91 for all the calculated correlations) were found between the maximum incorporation rates of the different tested amino acids over a range of two orders of magnitude of bacterial activity. Bacterial production estimates were calculated using theoretical and experimental conversion factors. The productions calculated from the incorporation rates of the four amino acids were in good concordance, especially when the experimental conversion factors were used (slope range, 0.91-1.11, and r > 0.91). This study suggests that the incorporation of various amino acids into proteins can be used to estimate bacterial production.
Baldys, Stanley; Churchill, Christopher J.; Mobley, Craig A.; Coffman, David K.
2010-01-01
The U.S. Geological Survey, in cooperation with the City of Dallas Water Utilities Division, did a study to characterize bromide, chloride, and sulfate concentrations and loads at three U.S. Geological Survey streamflow-gaging stations on the reach of the Red River from Denison Dam, which impounds Lake Texoma, to the U.S. Highway 259 bridge near DeKalb, Texas. Bromide, chloride, and sulfate concentrations and loads were computed for streamflow-gaging stations on the study reach of the Red River. Continuous streamflow and specific conductance data and discrete samples for bromide, chloride, sulfate, and specific conductance were collected at three main-stem streamflow-gaging stations on the Red River: 07331600 Red River at Denison Dam near Denison, Texas (Denison Dam gage), 07335500 Red River at Arthur City, Texas (Arthur City gage), and 07336820 Red River near DeKalb, Texas (DeKalb gage). At each of these streamflow-gaging stations, discrete water-quality data were collected during January 2007-February 2009; continuous water-quality data were collected during March 2007-February 2009. Two periods of high flow resulted from floods during the study; floods during June-July 2007 resulted in elevated flow during June-September 2007 and smaller floods during March-April 2008 resulted in elevated flow during March-April 2008. Bromide, chloride, and sulfate concentrations in samples collected at the three gages decreased downstream. Median bromide concentrations ranged from 0.32 milligram per liter at the Denison Dam gage to 0.19 milligram per liter at the DeKalb gage. Median chloride concentrations ranged from 176 milligrams per liter at the Denison Dam gage to 108 milligrams per liter at the DeKalb gage, less than the 300-milligrams per liter secondary maximum contaminant level established by the Texas Commission on Environmental Quality. Median sulfate concentrations ranged from 213 milligrams per liter at the Denison Dam gage to 117 milligrams per liter at the DeKalb gage, also less than the 300-milligrams per liter secondary maximum contaminant level. Kruskal-Wallis analyses indicated statistically significant differences among bromide, chloride, and sulfate concentrations at the three gages. Regression equations to estimate bromide, chloride, and sulfate loads were developed for each of the three gages. The largest loads were estimated for a period of relatively large streamflow, June-September 2007, when about 50 percent of the load for the study period occurred at each gage. Adjusted R-squared values were largest for regression equations for the DeKalb gage, ranging from .957 for sulfate to .976 for chloride. Adjusted R-squared values for all regression equations developed to estimate loads of bromide, chloride, and sulfate at the three gages were .899 or larger.
Joseph, Robert L.; Green, W. Reed
1994-01-01
A study of the South Prong of Spavinaw Creek Basin conducted baween July 14 and July 23. 1993. described the surface- and ground-water quality of the basin and the streamflow gain and loss. Water samples were collected from 10 sites on the mainstem of the South Prong of Spavinaw Creek and from 4 sites on tributaries during periods of low to moderate streamflow (less than 11 cubic feet per second). Water samples were collected from 4 wells and 10 springs located in the basin. In 14 surface-water samples, nitrite plus nitrate concentrations ranged from 0.75 to 4.2 milligrams per liter as nitrogen (mg/L). Orthophosphorus concentrations ranged from 0 03 to O. 15 mg/L as phosphorus. Fecal coliform bacteria counts ranged from 61 to 1,400 colonies per 100 milliliters (col/lOO mL), with a median of 120 col/100 mL. Fecal streptococci bacteria counts ranged from 70 to greater than 2,000 col/100 mL with a median of 185 col/lOO mL. Analysis for selected metals collected at one surface-water sites indicates that concentrations were usually below the reporting limit. Diel dissolved oxygen concentrations and temperatures were measured at an upstream and downstream site on the mainstem of the stream. At the upstream site, dissolved oxygen concentrations ranged from 7.2 to 83 mg/L and temperatures ranged from 15.5 to 17.0 C. Dissolved oxygen concentrations were higher and temperature values were lower at lhe upstream site, which is located close to two springs that produce all of the flow at that site. Dissolved nitrite plus nitrate was present in all four wells sampled in the basin with concentrations ranging from 0.04 to 3.5 mg/L as nitrogen. Orthophosphorus was present in concentrations ranging from less than 0.01 to 0.07 mg/L as phosphorus. Volatile organic compound analyses in two wells indicate that toluene was present in both wells and chloroform was present in one well. All other volatile organic compounds were found to be below the reporting limits. Analysis for common constituents and selected metals indicated that fluoride concentrations in one well exceeded the U.S. Environmental Protection Agency's primary maximum contamination levels for drinking water. Analyses of water samples collected from springs indicate that nitrite plus nitrate concen- trations ranged from 0.43 to 3.9 mg/L as nitrogen. Dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.20 to 0.64 mg/L as nitrogen. Dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.20 to 0.64 mg/L at nitrogen. Orthophosphorus concentrations ranged from 0.02 to 0.09 mg/L as phosphorus. Fecal coliform bacteria counts ranged from less than 3 to more than 2,000 col/100 mL, with a median of 370 col/100 mL. Fecal streptococci bacteria counts ranged from less than 4 to greater than 2,000 col/100 mL with a median of 435 col/100 mL. Streamflow in nine reaches of the mainstream increased an average of 20 percent. Six losing reaches were identified during the study, one located on the mainstem and the other five located on tributaries to the mainstem.
Fitzpatrick, Faith A.; Arnold, Terri L.; Colman, John A.
1998-01-01
Geochemical data for the upper Illinois River Basin are presented for concentrations of 39 elements in streambed sediment collected by the U.S. Geological Survey in the fall of 1987. These data were collected as part of the pilot phase of the National Water-Quality Assessment Program. A total of 372 sites were sampled, with 238 sites located on first- and second-order streams, and 134 sites located on main stems. Spatial distribution maps and exceedance probability plots are presented for aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, calcium, carbon (total, inorganic, and organic), cerium, chromium, cobalt, copper, gallium, iron, lanthanum, lead, lithium, magnesium, manganese, mercury, molybdenum, neodymium, nickel, niobium, phosphorus, potassium, scandium, selenium, silver, sodium, strontium, sulfur, thorium, titanium, uranium, vanadium, yttrium, and zinc. For spatial distribution maps, concentrations of the elements are grouped into four ranges bounded by the minimum concentration, the 10th, 50th, and 90th percentiles, and the maximum concentrations. These ranges were selected to highlight streambed sediment with very low or very high element concentrations relative to the rest of the streambed sediment in the upper Illinois River Basin. Exceedance probability plots for each element display the differences, if any, in distributions between high- and low-order streams and may be helpful in determining differences between background and elevated concentrations.
de Solla, S R; Bishop, C A; Lickers, H; Jock, K
2001-04-01
Subsamples of eight clutches of common snapping turtle eggs (Chelydra serpentina serpentina) were collected from four sites from the territory of the Mohawk Nation, Akwesasne, on the shore of the St. Lawrence River. Egg contents were analyzed for organochlorine pesticides, polychlorinated biphenyls (PCBs), dibenzodioxins, and furans. The sites were 2 to 13 km downstream from PCB-contaminated landfill sites. Maximum concentrations of total PCBs in snapping turtle clutches were extremely high, and ranged from 2 378.2 ng/g to 737 683 ng/g (wet weight) and are among the highest recorded in any tissue of a free-ranging animal. Similarly, in a pooled sample of eggs from all four sites, the summed concentrations of non-ortho PCBs (n = 6 congeners) was also very high at 54.54 ng/g and the summed dioxin and furan concentrations (n = 11 congeners) was 85.8 ng/g. Sum organochlorine pesticide levels varied from 28 to 2,264 ng/g among the four sites. The levels of PCBs found in turtle eggs exceed concentrations associated with developmental problems and reduced hatching success in snapping turtles and other species and also exceed the Canadian tissue residue guidelines for toxic equivalency concentrations. The extremely high levels of organochlorine contaminants demonstrate the high degree of contamination in the environment in the Akwesasne area.
Orecchio, Santino
2010-08-15
The Botanical Garden lies within the city of Palermo, a few meters away from one of the largest unused Manufacturing Gas Plant in Sicily. The total concentrations of PAHs (23 compounds) in the soil of Botanical Garden ranged from 947 to 18,072 microg/kg. The wide range of PAH concentrations (RSD=84%) found in the soil samples indicates heterogeneous levels of contamination in the area and this can be explained by considering the different tree distributions which prevents the homogeneous deposition of pollutants on the soil. Soils collected in the Botanical Garden generally showed the highest PAH concentrations, being almost 2-3 times higher than the concentration samples obtained in the urban reference sites and about 20 times higher than those in the rural stations. The total PAH concentrations, in the Botanical Garden soil, resulted higher than the maximum concentrations allowed by the Italian legislation for the green areas. Perylene, was found in all the stations. From a careful study of the isomeric ratios, we can hypothesize that the soils of the Botanical Garden are mainly affected by localized MGP particulate deposition, suggesting that the partitioning between organic matter and PAHs is not the dominant process in the soils with higher organic matter content. Copyright 2010 Elsevier B.V. All rights reserved.
The PM2.5 threshold for aerosol extinction in the Beijing megacity
NASA Astrophysics Data System (ADS)
Kong, Lingbin; Xin, Jinyuan; Liu, Zirui; Zhang, Kequan; Tang, Guiqian; Zhang, Wenyu; Wang, Yuesi
2017-10-01
Particulate pollution has remained at a high level in the megacity of Beijing in the past decade. The PM2.5, PM10, aerosol optical depth (AOD), Angstrom exponent(α), and PM2.5/PM10 ratio (the proportion of PM2.5 in PM10) in Beijing were 70±6 μg m-3, 128±6 μg m-3, 0.57 ± 0.05, 1.10 ± 0.08, 45 ± 4%, respectively, from 2005 to 2014. The annual means of PM concentration, AOD, α, and PM2.5/PM10 ratio decreased slightly during this decade, meanwhile PM concentration increased in the winter. Furthermore, we found there were thresholds of PM2.5 concentration for aerosol extinction. When the PM concentration was lower than a certain threshold, AOD decreased quickly with the decline of PM concentration. To make the improvement of the particle pollution more noticeable, the PM concentration should be controlled under the threshold. The annual averaged threshold is 63 μg m-3, and the threshold values reached the maximum of 74 μg m-3 in spring, ranged from 54 to 56 μg m-3 in the three other seasons. The threshold values ranged from 55 to 77 μg m-3 under other relevant factors, including air masses directions and relative humidity.
Stienstra, Nicolaas A; Sikma, Maaike A; van Dapperen, Anouk L; de Lange, Dylan W; van Maarseveen, Erik M
2016-12-01
Tacrolimus is an immunosuppressant mainly used in the prophylaxis of solid organ transplant rejection. Therapeutic drug monitoring of tacrolimus is essential for avoiding toxicity related to overexposure and transplant rejection from underexposure. Previous studies suggest that unbound tacrolimus concentrations in the plasma may serve as a better predictor of tacrolimus-associated nephrotoxicity and neurotoxicity compared to tacrolimus concentration in whole blood. Monitoring the plasma concentrations of unbound tacrolimus might be of interest in preventing tacrolimus-related toxicity. Therefore, the aim was to develop a method for the measurement of total and unbound tacrolimus concentrations in plasma. The sample preparation for the determination of the plasma concentrations of unbound tacrolimus consisted of an easy-to-use ultrafiltration method followed by solid-phase extraction. To determine the total concentration of tacrolimus in plasma, a simple method based on protein precipitation was developed. The extracts were injected into a Thermo Scientific HyPurity C18 column using gradient elution. The analytes were detected by liquid chromatography-tandem mass spectrometry with positive ionization. The method was validated over a linear range of 1.00-200 ng/L for unbound tacrolimus concentrations in plasma and 100-3200 ng/L for total plasma concentrations. The lower limit of quantification was 1.00 ng/L in ultrafiltrate and 100 ng/L in plasma. The inaccuracy and imprecision for the determination of unbound tacrolimus concentrations in ultrafiltrate and plasma showed a maximum coefficients of variation (CV) of 11.7% and a maximum bias of 3.8%. A rapid and easy method based on ultrafiltration and liquid chromatography-tandem mass spectrometry was established to measure the total and unbound tacrolimus concentrations in plasma. This method can facilitate further investigations on the relationship between plasma concentrations of unbound tacrolimus and clinical outcomes in transplant recipients.
Oblinger, C.J.; Cuffney, T.F.; Meador, M.R.; Garrett, R.G.
2002-01-01
Treyburn is a 5,400-acre planned, mixed-use development in the upper Neuse River Basin of North Carolina. The development, which began in 1986, is located in the Falls Lake watershed near three water-supply reservoirs-Lake Michie to the north, Falls Lake to the southeast, and Little River Reservoir to the west. A study began in 1988 to determine the water-quality characteristics of surface waters in and around the Treyburn development area.Data to characterize water quality at five different sites were collected from July 1994 through September 1998. Data from a previous study are available for some sites for the period 1988–93. The sites were selected to characterize water quality and quantity in and near the Treyburn development and included an undeveloped basin, a relatively small basin containing single-family residences and a golf course, a basin downstream from the western part of the development with some industrial land use, and two basins unaffected by the development where agricultural land is being converted to urban and forested land use.Suspended-sediment concentrations ranged from less than 1 to 581 milligrams per liter and were fairly uniform among the five sites. Median suspended-sediment concentrations ranged from 12 to 21 milligrams per liter. Few concentrations of metals and trace elements, except aluminum, iron, and manganese, exceeded the laboratory reporting levels or water-quality criteria. At one site, concentrations of silver exceeded both the action level and the reporting level; copper was detected at each site and exceeded the action level of 7 micrograms per liter at one site.The lowest range and median concentrations of total organic nitrogen, nitrate, ammonia, total phosphorus, and orthophosphorus occurred in the relatively undisturbed, forested site. The maximum concentration of organic nitrogen (1.97 milligrams per liter) occurred at one of the sites unaffected by the Treyburn development where agricultural land is being converted to urban land use. At all sites, ammonia concentrations ranged from less than 0.02 to 0.36 milligram per liter, and median concentrations were near the reporting level. Nitrate concentrations ranged from less than 0.05 to 0.80 milligram per liter.Phosphorus concentrations at all of the Treyburn study sites were low compared to phosphorus concentrations that typically exceed 0.1 milligram per liter at sites sampled nationally for the U.S. Geological Survey National Water-Quality Assessment Program, including the Albemarle-Pamlico study area in North Carolina. Total phosphorus concentrations ranged from less than 0.01 to 0.87 milligram per liter, and orthophosphorus concentrations ranged from less than 0.01 to 0.76 milligram per liter as phosphorus. The maximum concentrations of total phosphorus and orthophosphorus occurred at the Treyburn residential and golf-course site, likely as a result of the fertilizer applications associated with these two types of land use.Of the 119 different pesticides tested, 11 were detected in concentrations that exceeded the laboratory reporting levels, though in very low concentrations. Water samples from the residential and golf-course site contained the greatest number of pesticides (10). Five of six samples collected at this site had detectable concentrations of simazine, atrazine, and pendimethalin-all herbicides used to control weeds in crops or turf.Channel geometry was assessed at eight sites in the study area in February 1997. These sites were separated into three groups based on mean bank angle and mean channel width-to-depth ratios. Channel gradient ranged from 0.04 to 1.63 percent, and mean cross sectional area ranged from 31 to 1,227 square feet.Three macroinvertebrate samples were collected from each of 10 sites. These three samples were from areas designated as richest targeted habitats, depositional targeted habitats, and qualitative multitargeted habitats. Over 230 taxa were identified fromthese 10 sites. The North Carolina Biotic Indices ranged from 4.98 (excellent) to 6.82 (fair). River sites tended to have higher total taxa richness (91-108) than did the small, intermittent streams (49–84) or the midsize Mountain Creek (85). Intermittent streams represent fairly hostile environments for most aquatic organisms. Samples from richest targeted habitats typically were more than twice as rich as samples from depositional targeted habitats and represented from 50 to 75 percent of the taxa found at each site (mean of 62 percent). The industrial site lacked many of the mayfly taxa that were present at the undeveloped site. Mayflies are very sensitive to metals contamination, and their absence may indicate a possible problem. The supporting chemical information is not available for the industrial site, and additional study would be necessary to substantiate this possibility. The two sites with residential and golf-course land use tended to support more different types of sensitive invertebrates (that is, mayflies, stoneflies, and caddis flies) than did the forested/residential site, though the abundances of these taxa were very similar. Land-use effects were not evident based on a comparison among these sites.Indirect gradient analysis was used to determine patterns in the distribution of invertebrates and to examine the relations between these patterns and physical and chemical site characteristics determined in this study. This analysis supports the contention that the dominant factors accounting for the distribution of benthic invertebrates are associated with natural factors, such as basin size, rather than land use.Constituent loads at five study sites were calculated for nutrients, suspended sediment, and total organic carbon. The median annual total nitrogen yield ranged from 0.635 to 1.63 tons per square mile. The median annual phosphorus yield ranged from 0.046 to 0.619 ton per square mile, and the median annual orthophosphate yield ranged from 0.022 to 0.379 ton per square mile. Orthophosphate accounted for more than half of the phosphorus yield at the residential and golf-course site.The maximum suspended-sediment yield was 422 tons per square mile, and the minimum yield was 32 tons per square mile. The suspended-sediment yield at one of the sites unaffected by the Treyburn development where agricultural was being converted to urban land use was high compared to other forested basins in the Piedmont of North Carolina.Total organic carbon data sufficient for estimating loads were available at three of the five sites. Of these three sites, the undeveloped site had substantially more organic carbon yield than the other two sites.The only significant water-quality trend (alpha=0.05) was a downward trend for total nitrogen and organic nitrogen at the undeveloped site. The trend slope was small, only 0.019 milligram per liter as nitrogen or less than 9 percent of the median organic nitrogen concentration. No trend was observed for nitrite plus nitrate or for ammonia, indicating that the downward trend in total nitrogen was due only to organic nitrogen.
Llull, Rosa Maria; Garí, Mercè; Canals, Miquel; Rey-Maquieira, Teresa; Grimalt, Joan O
2017-10-01
The present study reports total mercury (THg) and methylmercury (MeHg) concentrations in 32 different lean fish species from the Western Mediterranean Sea, with a special focus on the Balearic Islands. The concentrations of THg ranged between 0.05mg/kg ww and 3.1mg/kg ww (mean 0.41mg/kg ww). A considerable number of the most frequently fish species consumed by the Spanish population exceed the maximum levels proposed by the European legislation when they originate from the Mediterranean Sea, such as dusky grouper (100% of the examined specimens), common dentex (65%), conger (45%), common sole (38%), hake (26%) and angler (15%), among others. The estimated weekly intakes (EWI) in children (7-12 years of age) and adults from the Spanish population (2.7µg/kg bw and 2.1µg/kg bw, respectively) for population only consuming Mediterranean fish were below the provisional tolerable weekly intake (PTWI) of THg established by EFSA in 2012, 4µg/kg bw. However, the equivalent estimations for methylmercury, involving PTWI of 1.3µg/kg bw, were two times higher in children and above 50% in adults. For hake, sole, angler and dusky grouper, the most frequently consumed fish, the estimated weekly intakes in both children and adults were below the maximum levels accepted. These intakes correspond to maximum potential estimations because fish from non-Mediterranean origin is often consumed by the Spanish population including the one from the Balearic Islands. Copyright © 2017 Elsevier Inc. All rights reserved.
Temporal dynamics of CO2 fluxes and profiles over a Central European city
NASA Astrophysics Data System (ADS)
Vogt, R.; Christen, A.; Rotach, M. W.; Roth, M.; Satyanarayana, A. N. V.
2006-02-01
In Summer 2002 eddy covariance flux measurements of CO2 were performed over a dense urban surface. The month-long measurements were carried out in the framework of the Basel Urban Boundary Layer Experiment (BUBBLE). Two Li7500 open path analysers were installed at z/z H = 1.0 and 2.2 above a street canyon with z H the average building height of 14.6 m and z the height above street level. Additionally, profiles of CO2 concentration were sampled at 10 heights from street level up to 2 z H . The minimum and maximum of the average diurnal course of CO2 concentration at 2 z H were 362 and 423 ppmv in late afternoon and early morning, respectively. Daytime CO2 concentrations were not correlated to local sources, e.g. the minimum occurred together with the maximum in traffic load. During night-time CO2 is in general accumulated, except when inversion development is suppressed by frontal passages. CO2 concentrations were always decreasing with height and correspondingly, the fluxes on average always directed upward. At z/z H = 2.2 low values of about 3 µmol m-2 s-1 were measured during the second half of the night. During daytime average values reached up to 14 µmol m-2 s-1. The CO2 fluxes are well correlated with the traffic load, with their maxima occurring together in late afternoon. Daytime minimum CO2 concentrations fell below regional background values. Besides vertical mixing and entrainment, it is suggested that this is also due to advection of rural air with reduced CO2 concentration. Comparison with other urban observations shows a large range of differences among urban sites in terms of both CO2 fluxes and concentrations.
Analysis of Heavy Metal Content (Pb) on Waters and Fish at The Floating Cages BPPP Ambon
NASA Astrophysics Data System (ADS)
Wattimena, Rachel L.; Selanno, Debby A. J.; Tuhumury, Semuel F.; Tuahatu, Juliana W.
2018-02-01
Coastal waters play important roles due to highly in natural resources and developing of environmental services. However, there are highly intensity of natural resources utilization, environment and settlement. Consequently, environment and natural resources would be degraded such as in the Ambon Bay. One of the potency at the Ambon Bay is mariculture area namely the floating cages (KJA) which belongs to Fisheries education and training (BPPP) Ambon. The research aimed to analyze physical-chemical of waters (temperature, pH, salinity and current speed), to analyze heavy metal concentration (Pb) on water and fish from floating cages (KJA) and to analyze waters pollution status at KJA BPPP Ambon. The average salinity of each floating cage ranged from 30.09 - 30.34°C, pH ranged from 8.03 - 8.44, salinity ranged from 31.36 - 33.34 PSU, and current speed at spring tide ranged from 0.5 - 55.8 Cm/sec while neap tide ranged from 0.1 - 9.8 Cm/sec. Heavy metal concentration (Pb) on waters was below the standard for waters quality and the average concentration was 0.002 mg/l. Whilst, the heavy metal concentration (Pb) on fishes was below standard for floating cages (floating cages 2-6) which was 0.05 and 0.17mg/l. Otherwise, floating cage 1 had been above maximum standard for fish food and its processing following SNI 7387:2009 (0.3mg/l) which was 0.31 mg/l. The status of waters pollution at KJA BPPP Ambon belonged to C class and could be categorized as moderate based on standard for waters quality issued by State Ministerial Decree for the Environment No. 51 Year 2004.
NASA Astrophysics Data System (ADS)
Illuminati, Silvia; Bau, Sébastien; Annibaldi, Anna; Mantini, Caterina; Libani, Giulia; Truzzi, Cristina; Scarponi, Giuseppe
2016-01-01
Within the framework of the Italian National Programm for Antarctic Research (PNRA), the first direct gravimetric measurements of size-segregated aerosol fractions were carried out at Faraglione Camp, ˜3-km far from the Italian station "M. Zucchelli" (Terra Nova Bay, Ross Sea), during the 2014-2015 austral summer. A six-stage high-volume cascade impactor with size classes between 10 μm and 0.49 μm, and, in parallel, for comparison purposes, a PM10 high-volume sampler (50% cut-off aerodynamic diameter of 10 μm) were used. A 10-day sampling strategy was adopted. Aerosol mass measurements were carried out before and after exposure by using a microbalance specifically designed for the filter weight and placed inside a glove bag in order to maintain stable temperature and humidity conditions during weighing sessions. Measured atmospheric concentrations (referred to the "actual air conditions" of mean temperature of 268 K and mean pressure of 975 hPa) of size-segregated aerosol fractions showed the following values, given as size range, means (interquartile range): Dp < 0.49 μm, 0.33 (0.26-0.34) μg m-3; 0.49-0.95 μm, 0.20 (0.19-0.24) μg m-3; 0.95-1.5 μm, 0.16 (0.13-0.21) μg m-3; 1.5-3.0 μm 0.075 (0.05-0.11) μg m-3; 3.0-7.2 μm 0.12 (0.02-0.19) μg m-3; 7.2-10 μm 0.06 (0.01-0.03) μg m-3. The average mass concentration of the total PM10 at Faraglione Camp for the entire sampling period was 0.92 (0.67-1.1) μg m-3. Although a great variability, the aerosol mass concentration showed a tri-modal distribution, with an accumulation mode (in the range 0.1-1.0 μm) and two coarse modes (CM1 in the range 1.0-3.0 μm, and CM2 in the range 3.0-10 μm). From 50% to 90% of the PM10 mass comes from particles of a size smaller than 1.0 μm. The two coarse modes represented from ˜5% to ˜35% of the PM10, showing opposite seasonal trends (CM1 decreased while CM2 increased). During summer, PM10 mass concentration increased to a maximum of ˜1.6 μg m-3 at mid-December, while in January it decreased to values that are typical of November. Both accumulation and upper super-micron fractions showed a maximum in the same period contributing to the PM10 peak of mid-summer.
Heavy metals in spices and herbs from wholesale markets in Malaysia.
Nordin, N; Selamat, J
2013-01-01
As, Cd, Pb and Hg were analysed in commonly consumed spices and herbs in Malaysia. The range of As, Cd, Pb and Hg content was 0.24-2.54, 0.23-8.07, 1.54-8.94 and 0.06-0.52 µg g(-1), respectively. The highest concentration of Cd, Pb and Hg in spices and herbs exceeded the maximum permitted proportion, which are 1, 2 and 0.05 µg g(-1), respectively. This study suggests further monitoring of Cd, Pb and Hg on daily consumption of spices and herbs and its toxicological implication for consumers since only the amount of As was lower than the permitted concentration.
Crain, Angela S.
2006-01-01
Water samples were collected in streams and springs in the karst terrane of the Sinking Creek Basin in 2004 as part of study in cooperation with the Kentucky Department of Agriculture. A total of 48 water samples were collected at 7 sites (4 springs, 2 streams, and 1 karst window) from April through November 2004. The karst terrane of the Sinking Creek Basin (also known as Boiling Spring Basin) encompasses about 125 square miles in Breckinridge County and portions of Meade and Hardin Counties in Kentucky. Fourteen pesticides were detected of the 52 pesticides analyzed in the stream and spring samples. Of the 14 detected pesticides, 12 were herbicides and 2 were insecticides. The most commonly detected pesticides?atrazine, simazine, metolachlor, and acetochlor?were those most heavily used on crops during the study. Atrazine was detected in 100 percent of all samples; simazine, metolachlor, and acetochlor were detected in more than 35 percent of all samples. The pesticide-transformation compound, deethylatrazine, was detected in 98 percent of the samples. Only one nonagricultural herbicide, prometon, was detected in more than 30 percent of the samples. Malathion, the most commonly detected insecticide, was found in 4 percent of the samples, which was followed by carbofuran (2 percent). Most of the pesticides were present in low concentrations; however, atrazine was found in springs exceeding the U.S. Environmental Protection Agency?s (USEPA) standards for drinking water. Atrazine exceeded the USEPA?s maximum contaminant level 2 times in 48 detections. Concentrations of nitrate greater than 10 milligrams per liter (mg/L) were not found in water samples from any of the sites. Concentrations of nitrite plus nitrate ranged from 0.21 to 3.9 mg/L at the seven sites. The median concentration of nitrite plus nitrate for all sites sampled was 1.5 mg/L. Concentrations of nitrite plus nitrate generally were higher in the springs than in the main stem of Sinking Creek. Forty-two percent of the concentrations of total phosphorus at all seven sites exceeded the USEPA?s recommended maximum concentration of 0.1 mg/L. The median concentration of total phosphorus for all sites sampled was 0.09 mg/L. The highest median concentrations of total phosphorus were found in the springs. Median concentrations of orthophosphate followed the same pattern as concentrations of total phosphorus in the springs. Concentrations of orthophosphate ranged from <0.006 to 0.192 mg/L. Concentrations of suspended sediment generally were low throughout the basin; the median concentration of suspended sediment for all sites sampled was 23 mg/L. The highest concentration of suspended sediment (1,486 mg/L) was measured following a storm event at Sinking Creek near Lodiburg, Ky.
Kawada, Kei; Ohta, Tsuyoshi; Tanaka, Koudai; Miyamoto, Norifumi
2018-03-05
Nicardipine is frequently used in the treatment of hypertension for patients with acute stroke; however, its dosing is complicated by a high risk of phlebitis. In the present study, we examined whether restricting nicardipine concentration under a specific value could reduce the incidence of nicardipine-related phlebitis in patients with acute stroke. Intravenous nicardipine-related phlebitis was retrospectively analyzed. From July 2015, a simple proposition was made to dilute maximum intravenous nicardipine concentration to lower than 130 µg/mL. The maximum intravenous nicardipine concentration and the incidence of phlebitis were compared between patients treated from July 2014 to June 2015 (preproposition group) and patients treated from July 2015 to June 2016 (postproposition group). A total of 300 patients (preproposition group, 138; postproposition group, 162) were included. The postproposition group demonstrated significantly lower maximum intravenous nicardipine concentration (in µg/mL, 76.9, 47.6-104.5 versus 130.4, 69.8-230.8; P < .001) and incidence of phlebitis (9.9%, 16/162 vs. 30%, 42/138; P < .001) than the preproposition group. Multivariable logistic regression analysis revealed that the maximum intravenous nicardipine concentration lower than 130 µg/mL (odds ratio [OR] .15; 95% confidence interval [CI] .06-.35; P < .001) and National Institutes of Health Stroke Scale on admission (OR .95; 95% CI .91-.99; P = .007) were the statistically significant independent factors for phlebitis, which indicated the usefulness of the proposition to dilute maximum intravenous nicardipine concentration to lower than 130 µg/mL. The simple and appropriate proposition about nicardipine administration lowered maximum nicardipine concentration and reduced the incidence of nicardipine-related phlebitis in patients with acute stroke. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Limnological study of Lake Shastina, Siskiyou County, California
Dong, Alex E.; Beatty, Kenneth W.; Averett, Robert C.
1974-01-01
Lake Shastina provides water for irrigation in Shasta Valley, as well as recreation. Presently, its shoreline is being developed for summer homes. Surface water constituted more than 90 percent of the approximately 50,000 acre-foot (62-cubic hectometre) inflow to Lake Shastina in the 1972 water year. Controlled outflow is via the Montague Main Canal; however, leakage from the lake through volcanic rocks to the northwest was estimated to be greater than the measured outflow. Appreciable annual changes in the quantity of water in storage in the lake are related mainly to variations in annual inflow.From June through August the lake was thermally stratified. In the spring and summer the epilimnion was often supersaturated with oxygen, while at the same time the hypolimnion was undersaturated and 'often devoid of dissolved oxygen. Vertical stratification of carbon dioxide, carbonate, bicarbonate, hydrogen ion, nitrogen, and phosphorus was also recorded during the spring and summer. Orthophosphate, total phosphorus, and total nitrogen concentrations (organic, ammonium, and nitrate) were highest in the hypolimnion during the period of thermal stratification.Ten-inch (25-centimetre) core samples from the reservoir bottom were chemically analyzed at 0.8-inch (2-centimetre) intervals. The concentrations ranged from 6.3 to 28.9 milligrams per gram of iron, 0.07 to 0.43 milligrams per gram of manganese, 0.4 to 2.7 milligrams per gram of organic nitrogen plus ammonium, and 0.06 to 1.3 milligrams per gram of total phosphorus. Organic matter in the cores ranged from 4 to 14 percent.Green algae and diatoms were the dominant algal types, reaching maximum concentrations of about 7 and 30 million cells per litre, respectively. These phytoplankton occurred near the surface during thermally stratified periods, but were distributed at greater depths during nonthermally stratified periods. Blue-green algae were present only in the spring samples, and reached a maximum concentration of about 5 million cells per litre.Zooplankton numbers were greatest in March, July, and September, with lesser concentrations in June. Three major zooplankton groups, Cladocera, Copepoda, and Rotifera, were present. The major groups of benthic organisms were Oligochaeta, Chironomidae, and Chaoborus, with numbers ranging from 3350, 890, and 8450 per square metre, respectively.A discussion on algal control is included.
Ryberg, Karen R.
2006-01-01
This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Bureau of Reclamation, U.S. Department of the Interior, to estimate water-quality constituent concentrations in the Red River of the North at Fargo, North Dakota. Regression analysis of water-quality data collected in 2003-05 was used to estimate concentrations and loads for alkalinity, dissolved solids, sulfate, chloride, total nitrite plus nitrate, total nitrogen, total phosphorus, and suspended sediment. The explanatory variables examined for regression relation were continuously monitored physical properties of water-streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen. For the conditions observed in 2003-05, streamflow was a significant explanatory variable for all estimated constituents except dissolved solids. pH, water temperature, and dissolved oxygen were not statistically significant explanatory variables for any of the constituents in this study. Specific conductance was a significant explanatory variable for alkalinity, dissolved solids, sulfate, and chloride. Turbidity was a significant explanatory variable for total phosphorus and suspended sediment. For the nutrients, total nitrite plus nitrate, total nitrogen, and total phosphorus, cosine and sine functions of time also were used to explain the seasonality in constituent concentrations. The regression equations were evaluated using common measures of variability, including R2, or the proportion of variability in the estimated constituent explained by the regression equation. R2 values ranged from 0.703 for total nitrogen concentration to 0.990 for dissolved-solids concentration. The regression equations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.1 for dissolved solids to 35.2 for total nitrite plus nitrate. Regression equations also were used to estimate daily constituent loads. Load estimates can be used by water-quality managers for comparison of current water-quality conditions to water-quality standards expressed as total maximum daily loads (TMDLs). TMDLs are a measure of the maximum amount of chemical constituents that a water body can receive and still meet established water-quality standards. The peak loads generally occurred in June and July when streamflow also peaked.
Historical trends of metals in the sediments of San Francisco Bay, California
Hornberger, Michelle I.; Luoma, S.N.; VanGeen, A.; Fuller, C.; Anima, R.
1999-01-01
Concentrations of Ag, Al, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn were determined in six sediment cores from San Francisco Bay (SFB) and one sediment core in Tomales Bay (TB), a reference estuary. SFB cores were collected from between the head of the estuary and its mouth (Grizzly Bay, GB; San Pablo Bay, SP; Central Bay, CB; Richardson Bay, RB, respectively) and ranged in length from 150 to 250 cm. Concentrations of Cr, V and Ni are greater than mean crustal content in SFB and TB sediments, and greater than found in many other coastal sediments. However, erosion of ultramafic rock formations in the watershed appears to be the predominant source. Baseline concentrations of other metals were determined from horizons deposited before sediments were influenced by human activities and by comparing concentrations to those in TB. Baseline concentrations of Cu co-varied with Al in the SFB sediments and ranged from 23.7 ?? 1.2 ??g/g to 41.4 ?? 2.4 ??g/g. Baseline concentrations of other metals were less variable: Ag, 0.09 ?? 0.02 ??g/g; Pb, 5.2 ?? 0.7 ??g/g; Hg, 0.06 ?? 0.01 ??g/g; Zn, 78 ?? 7 ??g/g. The earliest anthropogenic influence on metal concentrations appeared as Hg contamination (0.3-0.4 ??g/g) in sediments deposited at SP between 1850 and 1880, apparently associated with debris from hydraulic gold mining. Maximum concentrations of Hg within the cores were 20 times baseline. Greater inventories of Hg at SP and GB than at RB verified the importance of mining in the watershed as a source. Enrichment of Ag, Pb, Cu and Zn first appeared after 1910 in the RB core, later than is observed in Europe or eastern North America. Maximum concentrations of Ag and Pb were 5-10 times baseline and Cu and Zn concentrations were less than three times baseline. Large inventories of Pb to the sediments in the GB and SP cores appeared to be the result of the proximity to a large Pb smelter. Inventories of Pb at RB are similar to those typical of atmospheric inputs, although influence from the Pb smelter is also suspected. Concentrations of Hg and Pb have decreased since the 1970s (to 0.30 ??g/g and 25 ??g/g, respectively) and were similar among all cores in 1990. Early Ag contamination was perhaps a byproduct of the Pb smelting process, but a modem source of Ag is also indicated, especially at RB and CB.
Keshavarzi, Behnam; Mokhtarzadeh, Zeinab; Moore, Farid; Rastegari Mehr, Meisam; Lahijanzadeh, Ahmadreza; Rostami, Soqra; Kaabi, Helena
2015-12-01
Karoon is the longest river in Iran and provides water for industries located along its banks, such as metal, petrochemical, and oil industries. It is also the source of drinking water for cities such as Ahwas, Abadan, and Khorramshahr. In this study, 34 and 18 surface sediment samples were collected and analyzed for heavy metals (Al, As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) and polycyclic aromatic hydrocarbons (PAHs). The measured concentrations of heavy metals were compared with US EPA sediment quality guidelines, and the results showed that Cu concentration was above the threshold effect level (TEL) in 65.67% of the samples and Hg concentration was above the effect range median (ERM) in some samples. The results revealed that Hg was severely enriched (5 < enrichment factor < 20) and classified in very high ecological risk index category. It is the major metallic contaminant in the study area. The total PAH concentrations ranged from 11.54-117,730 μg/kg, with the mean value of 7034.55 μg/kg dominated by lower molecular weight (LMW) PAHs. The total potentially carcinogenic PAHs (∑cPAHs) in sediment samples ranged from 2.09 to 31,930 μg/kg, indicating high carcinogenic potential of sediments in the study area. The total toxic equivalent (TEQ) values ranged from 1.06 to 7228.7 μg/kg. Maximum TEQ occurred in Abadan oil refinery station followed by Khorramshahr soap factory and Abadan petrochemical complex. Principal component analysis and cluster analysis also revealed the relationships between the studied parameters and identified their probable sources.
Sequestration of carbon dioxide and production of biomolecules using cyanobacteria.
Upendar, Ganta; Singh, Sunita; Chakrabarty, Jitamanyu; Chandra Ghanta, Kartik; Dutta, Susmita; Dutta, Abhishek
2018-07-15
A cyanobacterial strain, Synechococcus sp. NIT18, has been applied to sequester CO 2 using sodium carbonate as inorganic carbon source due to its efficiency of CO 2 bioconversion and high biomass production. The biomass obtained is used for the extraction of biomolecules - protein, carbohydrate and lipid. The main objective of the study is to maximize the biomass and biomolecules production with CO 2 sequestration using cyanobacterial strain cultivated under different concentrations of CO 2 (5-20%), pH (7-11) and inoculum size (5-12.5%) within a statistical framework. Maximum sequestration of CO 2 and maximum productivities of protein, carbohydrate and lipid are 71.02%, 4.9 mg/L/day, 6.7 mg/L/day and 1.6 mg/L/day respectively, at initial CO 2 concentration: 10%, pH: 9 and inoculum size: 12.5%. Since flue gas contains 10-15% CO 2 and the present strain is able to sequester CO 2 in this range, the strain could be considered as a useful tool for CO 2 mitigation for greener world. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ethanol inhibition kinetics of Kluyveromyces marxianus grown on Jerusalem artichoke juice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajpai, P.; Margaritis, A.
1982-12-01
The kinetics of ethanol inhibition on cell growth and ethanol production by Kluyveromyces marxianus UCD (FST) 55-82 were studied during batch growth. The liquid medium contained 10% (weight/volume) inulin-type sugars derived from an extract of Jerusalem artichoke (Helianthus tuberosus) tubers, supplemented with small amounts of Tween 80, oleic acid, and corn steep liquor. Initial ethanol concentrations ranging from 0 to 80 g/liter in the liquid medium were used to study the inhibitory effect of ethanol on the following parameters: maximum specific growth rate (mu max), cell and ethanol yields, and sugar utilization. It was found that as the initial ethanolmore » concentration increased from 0 to 80 g/liter, and maximum specific growth rate of K. marxianus cells decreased from 0.42 to 0.09/hour, whereas the ethanol and cell yields and sugar utilization remained almost constant. A simple kinetic model was used to correlate the mu max results and the rates of cell and ethanol production, and the appropriate constants were evaluated. (Refs. 22).« less
Bioaccumulation of Fe2O3(magnetic) nanoparticles in Ceriodaphnia dubia.
Hu, Ji; Wang, Demin; Wang, Jiangtao; Wang, Jianmin
2012-03-01
While nano-Fe(2)O(3)(magnetic) is generally considered non-toxic, it could serve as a carrier of other toxic chemicals such as As(V) and enhance their toxicity. The bioaccumulation of nano-Fe(2)O(3)(m) with different exposure times, NP concentrations, and pH conditions was investigated using Ceriodaphnia dubia (C. dubia) as the model organism. Under natural pH conditions, C. dubia significantly accumulated nano-Fe(2)O(3)(m) in the gut, with the maximum accumulation being achieved after 6 h of exposure. The concentration of nano-Fe(2)O(3) also impacted its accumulation, with the maximum uptake occurring at 20 mg/L or more. In addition, the highest bioaccumulation occurred in a pH range of 7-8 where the highest feeding rate was reported, confirming that the ingestion of NPs is the main route of nano-Fe(2)O(3)(m) bioaccumulation. In a clean environment without NPs, depuration of nano-Fe(2)O(3)(m) occurred, and food addition accelerated the depuration process. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hoi, Bui Dinh; Davoudiniya, Masoumeh; Yarmohammadi, Mohsen
2018-04-01
Based on theoretically tight-binding calculations considering nearest neighbors and Green's function technique, we show that the magnetic phase transition in both semiconducting and metallic armchair graphene nanoribbons with width ranging from 9.83 Å to 69.3 Å would be observed in the presence of injecting electrons by doping. This transition is explained by the temperature-dependent static charge susceptibility through calculation of the correlation function of charge density operators. This work showed that charge concentration of dopants in such system plays a crucial role in determining the magnetic phase. A variety of multicritical points such as transition temperatures and maximum susceptibility are compared in undoped and doped cases. Our findings show that there exist two different transition temperatures and maximum susceptibility depending on the ribbon width in doped structures. Another remarkable point refers to the invalidity (validity) of the Fermi liquid theory in nanoribbons-based systems at weak (strong) concentration of dopants. The obtained interesting results of magnetic phase transition in such system create a new potential for magnetic graphene nanoribbon-based devices.
Ota, Masaki; Takenaka, Motohiro; Sato, Yoshiyuki; Smith, Richard L; Inomata, Hiroshi
2015-01-01
Photoautotrophic fatty acid production of a highly CO2 -tolerant green alga Chlorococcum littorale in the presence of inorganic carbon at 295 K and light intensity of 170 µmol-photon m(-2) s(-1) was investigated. CO2 concentration in the bubbling gas was adjusted by mixing pure gas components of CO2 and N2 to avoid photorespiration and β-oxidation of fatty acids under O2 surrounding conditions. Maximum content of total fatty acid showed pH-dependence after nitrate depletion of the culture media and increased with the corresponding inorganic carbon ratio. Namely, [HCO3 (-) ]/([CO2 ]+n[ CO32-]) ratio in the culture media was found to be a controlling factor for photoautotrophic fatty acid production after the nitrate limitation. At a CO2 concentration of 5% (vol/vol) and a pH of 6.7, the fatty acid content was 47.8 wt % (dry basis) at its maximum that is comparable with land plant seed oils. © 2015 American Institute of Chemical Engineers.
Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation.
Nguyen, Cuong Mai; Nguyen, Thanh Ngoc; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Park, Youn-Je; Kim, Jin-Cheol
2014-01-01
This research examines the acid hydrolysis of Curcuma longa waste, to obtain the hydrolysate containing lactic acid and ethanol fermentative sugars. A central composite design for describing regression equations of variables was used. The selected optimum condition was 4.91% sulphuric acid, 122.68°C and 50 min using the desirability function under the following conditions: the maximum reducing sugar (RS) yield is within the limited range of the 5-hydroxymethylfurfural (HMF) and furfural concentrations. Under the condition, the obtained solution contained 144 g RS/L, 0.79 g furfural/L and 2.59 g HMF/L and was directly fermented without a detoxification step. The maximum product concentration, average productivity, RS conversion and product yield were 115.36 g/L, 2.88 g/L/h, 89.43% and 64% for L-lactic acid; 113.92 g/L, 2.59 g/L/h, 88.31% and 63.29% for D-lactic acid; and 55.03 g/L, 1.38 g/L/h, 42.66 and 30.57%, respectively, for ethanol using a 7-L jar fermenter. Copyright © 2013. Published by Elsevier Ltd.
Esralew, Rachel A.; Andrews, William J.; Smith, S. Jerrod
2011-01-01
The U.S. Geological Survey, in cooperation with the city of Oklahoma City, collected water-quality samples from the North Canadian River at the streamflow-gaging station near Harrah, Oklahoma (Harrah station), since 1968, and at an upstream streamflow-gaging station at Britton Road at Oklahoma City, Oklahoma (Britton Road station), since 1988. Statistical summaries and frequencies of detection of water-quality constituent data from water samples, and summaries of water-quality constituent data from continuous water-quality monitors are described from the start of monitoring at those stations through 2009. Differences in concentrations between stations and time trends for selected constituents were evaluated to determine the effects of: (1) wastewater effluent discharges, (2) changes in land-cover, (3) changes in streamflow, (4) increases in urban development, and (5) other anthropogenic sources of contamination on water quality in the North Canadian River downstream from Oklahoma City. Land-cover changes between 1992 and 2001 in the basin between the Harrah station and Lake Overholser upstream included an increase in developed/barren land-cover and a decrease in pasture/hay land cover. There were no significant trends in median and greater streamflows at either streamflow-gaging station, but there were significant downward trends in lesser streamflows, especially after 1999, which may have been associated with decreases in precipitation between 1999 and 2009 or construction of low-water dams on the river upstream from Oklahoma City in 1999. Concentrations of dissolved chloride, lead, cadmium, and chlordane most frequently exceeded the Criterion Continuous Concentration (a water-quality standard for protection of aquatic life) in water-quality samples collected at both streamflow-gaging stations. Visual trends in annual frequencies of detection were investigated for selected pesticides with frequencies of detection greater than 10 percent in all water samples collected at both streamflow-gaging stations. Annual frequencies of detection of 2,4-dichlorophenoxyacetic acid and bromacil increased with time. Annual frequencies of detection of atrazine, chlorpyrifos, diazinon, dichlorprop, and lindane decreased with time. Dissolved nitrogen and phosphorus concentrations were significantly greater in water samples collected at the Harrah station than at the Britton Road station, whereas specific conductance was greater at the Britton Road station. Concentrations of dissolved oxygen, biochemical oxygen demand, and fecal coliform bacteria were not significantly different between stations. Daily minimum, mean, and maximum specific conductance collected from continuous water-quality monitors were significantly greater at the Britton Road station than in water samples collected at the Harrah station. Daily minimum, maximum, and diurnal fluctuations of water temperature collected from continuous water-quality monitors were significantly greater at the Harrah station than at the Britton Road station. The daily maximums and diurnal range of dissolved oxygen concentrations were significantly greater in water samples collected at the Britton Road station than at the Harrah station, but daily mean dissolved oxygen concentrations in water at those streamflow-gaging stations were not significantly different. Daily mean and diurnal water temperature ranges increased with time at the Britton Road and Harrah streamflow-gaging stations, whereas daily mean and diurnal specific conductance ranges decreased with time at both streamflow-gaging stations from 1988–2009. Daily minimum dissolved oxygen concentrations collected from continuous water-quality monitors more frequently indicated hypoxic conditions at the Harrah station than at the Britton Road station after 1999. Fecal coliform bacteria counts in water decreased slightly from 1988–2009 at the Britton Road station. The Seasonal Kendall's tau test indicated significant downward trends in
Hout, Joseph J; Kluchinsky, Timothy; LaPuma, Peter T; White, Duvel W
2011-10-01
All soldiers in the U.S. Army are required to complete mask confidence training with o-chlorobenzylidene malononitrile (CS). To instill confidence in the protective capability of the military protective mask, CS is thermally dispersed in a room where soldiers wearing military protective masks are required to conduct various physical exercises, break the seal of their mask, speak, and remove their mask. Soldiers immediately feel the irritating effects of CS when the seal of the mask is broken, which reinforces the mask's ability to shield the soldier from airborne chemical hazards. In the study described in this article, the authors examined the CS concentration inside a mask confidence chamber operated in accordance with U.S. Army training guidelines. The daily average CS concentrations ranged from 2.33-3.29 mg/m3 and exceeded the threshold limit value ceiling, the recommended exposure limit ceiling, and the concentration deemed immediately dangerous to life and health. The minimum and maximum CS concentration used during mask confidence training should be evaluated.
NASA Technical Reports Server (NTRS)
Jandebeur, T. S.
1980-01-01
The effect of sample concentration on throughput and resolution in a modified continuous particle electrophoresis (CPE) system with flow in an upward direction is investigated. Maximum resolution is achieved at concentrations ranging from 2 x 10 to the 8th power cells/ml to 8 x 10 to the 8th power cells/ml. The widest peak separation is at 2 x 10 to the 8th power cells/ml; however, the sharpest peaks and least overlap between cell populations is at 8 x 10 to the 8th power cells/ml. Apparently as a result of improved electrophoresis cell performance due to coasting the chamber with bovine serum albumin, changing the electrode membranes and rinse, and lowering buffer temperatures, sedimentation effects attending to higher concentrations are diminished. Throughput as measured by recovery of fixed cells is diminished at the concentrations judged most likely to yield satisfactory resolution. The tradeoff appears to be improved recovery/throughput at the expense of resolution.
Estuarine methylation of tin and its relationship to the microbial sulfur cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmour, C.C.
This work describes the first quantitative measurement of tin methylation in nature. Central to this research was development of a technique for the determination of methyltin species in sediment with detection limits of about 1 pg per gm dry weight sediment. Methyltin concentrations measured in Chesapeake Bay sediments ranged from 0.005 to 8 ng per gm dry weight sediment, with monomethyltin the predominant species. Estuarine tin methylation occurred only in anoxic, sulfidic sediments and was microbially mediated. Sulfate-reducing bacteria were correlated with methyltin production in sediments, and capable of tin methylation in pure culture without sediment. Conversely, excess sulfide concentrationsmore » inhibited methylation. Sulfate reduction rates and reduced inorganic sulfur distribution between acid-volatile and non-volatile sulfides for Chesapeake sediments were also determined. Monomethyltin was the predominant product of stepwise inorganic tin methylation in sediments and bacterial cultures, with di- and trimethylated tins produced in lesser amounts. Methylation rates based on accumulation of all detectable methyltin species were quite low. Maximum concentrations of methyltins formed were quite low. Maximum concentrations of methyltins formed were 10 ng total methyltins per ml culture, or 4 ng per gm dry weight sediment. Trimethyltin, the most toxic product, was produced in the smallest quantities, never more than 50 pg per gm sediment.« less
Quality of water and time of travel in Little Copiah Creek near Crystal Springs, Mississippi
Kalkhoff, S.J.
1981-01-01
An intensive quality of water study was conducted on Little Copiah Creek in the vicinity of Crystal Springs, Miss., from August 19 to August 21, 1980. The quality of water in Little Copiah Creek improved 7 miles downstream of a source of wastewater inflow. The mean total nitrogen concentration decreased from 17 to 1.1 milligrams per liter and the mean total phosphorus concentrations decreased from 5.8 to 0.39 milligrams per liter. The maximum five-day biochemical oxygen demand decreased from 14 to 1.4 milligrams per liter while the dissolved-oxygen concentration increased from 2.0 to 6.9 milligrams per liter. The maximum fecal coliform and fecal streptococcus densities at the upstream sampling site were 2,200 and 6,700 colonies per 100 milliliter, respectively, and were observed to decrease downstream to 160 and 1,500 colonies per 100 milliliters. The mean stream temperatures decreased downstream only slightly from 26.5 to 25.0 Celsius and the pH of the water ranged from 7.2 to 7.4 units upstream and 6.5 to 7.0 units at the downstream site. The average rate of dye travel through the upstream 2.3 mile reach was 0.08 miles per hour during the study. (USGS)
In Vivo potassium-39 NMR spectra by the burg maximum-entropy method
NASA Astrophysics Data System (ADS)
Uchiyama, Takanori; Minamitani, Haruyuki
The Burg maximum-entropy method was applied to estimate 39K NMR spectra of mung bean root tips. The maximum-entropy spectra have as good a linearity between peak areas and potassium concentrations as those obtained by fast Fourier transform and give a better estimation of intracellular potassium concentrations. Therefore potassium uptake and loss processes of mung bean root tips are shown to be more clearly traced by the maximum-entropy method.
Pesticides and their metabolites in wells of Suffolk County, New York, 1998
Phillips, Patrick J.; Eckhardt, D.A.; Terracciano, S.A.; Rosenmann, Larry
1999-01-01
Five insecticide residues and 20 herbicide residues were detected in water samples collected from 50 shallow wells screened in the surficial sand and gravel aquifer in Suffolk County, Long Island in areas with known or suspected residues. Laboratory analytical methods with extremely low detection limits - from 0.001 to 0.2 ?g/L (micrograms per liter) - were used to analyze the samples for 60 pesticide residues. Forty-four of the samples contained at least one pesticide residue, and some samples contained as many as 11 different pesticides or pesticide metabolites. Only four water- quality standards were exceeded in the samples collected in this study. Dieldrin exceeded the New York State Class GA standard (0.004 ?g/L) in samples from eight wells. The Federal and New York State Maximum Contaminant Level for simazine (4 ?g/L) was exceeded in samples from two wells, and the State Class GA standard for simazine (0.5 ?g/L) was exceeded in samples from six wells. Federal water-quality standards have not been established for many of the compounds detected in this study, including herbicide metabolites. Maximum concentrations of four herbicide metabolites -metolachlor ESA (ethanesulfonic acid), metolachlor OA (oxanilic acid), and the alachlor metabolites alachlor ESA and alachlor OA -exceeded 20 ?g/L. The maximum concentration of one herbicide (tebuthiuron) exceeded 10 ?g/L, and the maximum concentration of three herbicides (simazine, metolachlor, and atrazine) and one herbicide metabolite (deisopropylatrazine) ranged from 1 to 10 ?g/L. The herbicide metolachlor, which is used on potato fields in Suffolk County, and its metabolites (metolachlor ESA and metolachlor OA) were most frequently detected in samples from agricultural areas. The herbicides simazine and tebuthiuron, which were used in utility rights-of-way, and the simazine metabolite deisopropylatrazine were detected at concentrations greater than 0.05 ?g/L most frequently in samples from residential and mixed land-use areas. The results of this investigation are not necessarily representative of conditions throughout the remainder of Long Island, because these samples were collected in areas of known or suspected residues.
NASA Astrophysics Data System (ADS)
Gallardo, María de los Ángeles; González López, Andrés E.; Ramos, Marcel; Mujica, Armando; Muñoz, Praxedes; Sellanes, Javier; Yannicelli, Beatriz
2017-06-01
Pleuroncodes monodon (Crustacea: Munididae) supports one of the main trawling fisheries over the continental shelf off Chile between 25°S and 37°S within the upper boundary of the oxygen minimum zone (OMZ). Although the reproductive cycle of P. monodon has been described, the relationship between this key biological process and the variability of the OMZ has not been comprehensibly addressed neither for P. monodon nor for other OMZ resident species. In this study a set of 14 quasi-monthly oceanographic cruises carried out between June 2010 and November 2011 were conducted over the continental shelf off Coquimbo (30°S) to investigate the temporal variability of: i) dissolved oxygen concentration, temperature and chlorophyll-a at relevant depths ii) the presence and proportion of occurrence of P. monodon ovigerous females and juveniles from benthic trawls; iii) the presence of different stage larvae in the plankton, and iv) similar biological data for other species from the OMZ and shallower depths crustaceans. During summer months oxygen levels and bottom temperature were lower than in winter, while chlorophyll-a concentration was maximum in summer coinciding with an active (but not maximum) upwelling season. P. monodon maximum egg carrying occurred in winter during periods of increased oxygenation. Egg carrying females were never found at depths where oxygen concentration was below 0.5 ml L-1, while over 50% of the autumn and spring cohorts of juveniles occurred at oxygen concentrations below that level. The depth range occupied by ovigerous females was more restricted than the rest of the population and their depth of occurrence followed the variability of the upper OMZ. The larval release period of OMZ resident species extends over late winter and spring, and its main peak precedes that of coastal species (spring) and the spring-summer chlorophyll-a maximum. We propose that for OMZ resident species, brood carrying during warmer and more oxygenated conditions in the adult benthic environment, might favor embryonic development, so OMZ seasonal variability could be acting as a selective pressure to synchronize reproductive periods.
Toccalino, Patricia L.; Norman, Julia E.; Phillips, Robyn H.; Kauffman, Leon J.; Stackelberg, Paul E.; Nowell, Lisa H.; Krietzman, Sandra J.; Post, Gloria B.
2004-01-01
A state-scale pilot effort was conducted to evaluate a Health-Based Screening Level (HBSL) approach developed for communicating findings from the U.S. Geological Survey (USGS) National Water-Quality Assessment Program in a human-health context. Many aquifers sampled by USGS are used as drinking-water sources, and water-quality conditions historically have been assessed by comparing measured contaminant concentrations to established drinking-water standards and guidelines. Because drinking-water standards and guidelines do not exist for many analyzed contaminants, HBSL values were developed collaboratively by the USGS, U.S. Environmental Protection Agency (USEPA), New Jersey Department of Environmental Protection, and Oregon Health & Science University, using USEPA toxicity values and USEPA Office of Water methodologies. The main objective of this report is to demonstrate the use of HBSL approach as a tool for communicating water-quality data in a human-health context by conducting a retrospective analysis of ground-water quality data from New Jersey. Another important objective is to provide guidance on the use and interpretation of HBSL values and other human-health benchmarks in the analyses of water-quality data in a human-health context. Ground-water samples collected during 1996-98 from 30 public-supply, 82 domestic, and 108 monitoring wells were analyzed for 97 pesticides and 85 volatile organic compounds (VOCs). The occurrence of individual pesticides and VOCs was evaluated in a human-health context by calculating Benchmark Quotients (BQs), defined as ratios of measured concentrations of regulated compounds (that is, compounds with Federal or state drinking-water standards) to Maximum Contaminant Level (MCL) values and ratios of measured concentrations of unregulated compounds to HBSL values. Contaminants were identified as being of potential human-health concern if maximum detected concentrations were within a factor of 10 of the associated MCL or HBSL (that is, maximum BQ value (BQmax) greater than or equal to 0.1) in any well type (public supply, domestic, monitoring). Most (57 of 77) pesticides and VOCs with human-health benchmarks were detected at concentrations well below these levels (BQmax less than 0.1) for all three well types; however, BQmax values ranged from 0.1 to 3,000 for 6 pesticides and 14 VOCs. Of these 20 contaminants, one pesticide (dieldrin) and three VOCs (1,2-dibromoethane, tetrachloroethylene, and trichloroethylene) both (1) were measured at concentrations that met or exceeded MCL or HBSL values, and (2) were detected in more than 10 percent of samples collected from raw ground water used as sources of drinking water (public-supply and (or) domestic wells) and, therefore, are particularly relevant to human health. The occurrence of multiple pesticides and VOCs in individual wells also was evaluated in a human-health context because at least 53 different contaminants were detected in each of the three well types. To assess the relative human-health importance of the occurrence of multiple contaminants in different wells, the BQ values for all contaminants in a given well were summed. The median ratio of the maximum BQ to the sum of all BQ values for each well ranged from 0.83 to 0.93 for all well types, indicating that the maximum BQ makes up the majority of the sum for most wells. Maximum and summed BQ values were statistically greater for individual public-supply wells than for individual domestic and monitoring wells. The HBSL approach is an effective tool for placing water-quality data in a human-health context. For 79 of the 182 compounds analyzed in this study, no USEPA drinking-water standards or guidelines exist, but new HBSL values were calculated for 39 of these 79 compounds. The new HBSL values increased the number of detected pesticides and VOCs with human-health benchmarks from 65 to 77 (of 97 detected compounds), thereby expanding the basis for interpreting contaminant-occu
Polymer-surfactant complex formation and its effect on turbulent wall shear stress.
Suksamranchit, Siriluck; Sirivat, Anuvat; Jamieson, Alexander M
2006-02-01
Turbulent drag reduction in Couette flow was investigated in terms of a decrease in wall shear stress for aqueous solutions of a nonionic polymer, poly(ethylene oxide) (PEO), a cationic surfactant, hexadecyltrimethylammonium chloride (HTAC), and their mixtures. Consistent with literature data, drag reduction was observed for PEO solutions above a critical molecular weight, 0.91 x 10(5) < Mc < 3.04 x 10(5) g/mol. Maximum drag reduction occurred at an optimum concentration, c(PEO)*, which scales inversely with molecular weight, and the % maximum drag reduction increases with molecular weight. For aqueous HTAC solutions, wall shear stress decreased with increasing HTAC concentration and leveled off at an optimum concentration, c(HTAC)*, comparable to the critical micelle concentration. For HTAC/PEO mixtures, the critical PEO molecular weight for drag reduction decreases, interpreted as due to an increase in hydrodynamic volume because of binding of HTAC micelles to PEO. Consistent with this interpretation, at fixed PEO concentration, maximum drag reduction was observed at an optimum HTAC concentration, c(HTAC/PEO)*, comparable to the maximum binding concentration, MBC. Also, with HTAC concentration fixed at the MBC, the optimum PEO concentration for drag reduction, c(PEO/HTAC)*, decreases relative to that, c(PEO)*, in the absence of HTAC.
Groundwater Quality Assessment in the Upper East Region of Ghana
NASA Astrophysics Data System (ADS)
Apambire, W. B.
2001-05-01
In Ghana, West Africa, fluoride occurs as a natural pollutant in some groundwaters, while the presence of isolated high levels of nitrate and arsenic in groundwater is due to human activities such as poor sanitation, garbage disposal and mining practices. The challenge for Ghana is to ensure that groundwater quality and environmental adversities such as water level decline are not compromised by attempts to increase water quantity. Concentrations of groundwater fluoride in the study area range from 0.11 to 4.60 mg/L, with the highest concentrations found in the fluorine-enriched Bongo granitoids. Eighty-five out of 400 wells sampled have fluoride concentrations above the World Health Organization maximum guideline value of 1.5 mg/L and thus causes dental fluorosis in children drinking from the wells. The distribution of fluoride in groundwater is highly related to the distribution of dental fluorosis in the UER. Nitrate concentrations ranged from 0.03 to 211.00 mg/L and the mean value was 16.11 mg/L. Twenty-one samples had concentrations in excess of the guideline value of 45 mg/L. Consumption of water in excess of the guideline value, by infants, may cause an infantile disease known as methaemoglobinaemia. It is inferred that groundwaters with exceptionally high NO3 values have been contaminated principally through human activities such as farming and waste disposal. This is because wells with high nitrate concentrations are all located in and around towns and sizable villages. Also, there is good correlation between Cl and NO3 (r = +0.74), suggesting that both elements come from the same sources of pollution. Only two well waters had concentrations of iron in excess of the guideline value of 0.3 mg/L. These samples come from shallow hand-dug wells. The maximum concentration of iron in groundwaters is 3.5 mg/L. The recommended guideline limit for Al in drinking water is 0.2 mg/L; two wells had Al concentrations of 12.0 and 4.0 mg/L, respectively. Other high concentrations of Al are associated with shallow wells and ponds. There is a highly positive correlation (r = +1) between Fe and Al, suggesting that dissolution of weathered lateritic material (e.g., Fe oxides, gibbsite, etc.) is the common source for these elements. Manganese concentrations are generally within acceptable limits, except for 11 wells that have concentrations above the guideline limit of 0.1 mg/L. These anomalous concentrations may be associated with manganiferous deposits in the study area. A majority of the samples contain very low concentrations of the trace elements Zn, Pb, Cd, Cr, As and Se; however, the highest concentrations occur in areas where small-scale mining is practiced.
NASA Astrophysics Data System (ADS)
Sant, Marco; Papadopoulos, George K.; Theodorou, Doros N.
2010-04-01
The concentration dependence of self-diffusivity is investigated by means of a novel method, extending our previously developed second-order Markov process model to periodic media. Introducing the concept of minimum-crossing surface, we obtain a unique decomposition of the self-diffusion coefficient into two parameters with specific physical meanings. Two case studies showing a maximum in self-diffusivity as a function of concentration are investigated, along with two cases where such a maximum cannot be present. Subsequently, the method is applied to the large cavity pore network of the ITQ-1 (Mobil tWenty tWo, MWW) zeolite for methane (displaying a maximum in self-diffusivity) and carbon dioxide (no maximum), explaining the diffusivity trend on the basis of the evolution of the model parameters as a function of concentration.
Holmes, Heather A; Pardyjak, Eric R
2014-07-01
This paper reports findings from a case study designed to investigate indoor and outdoor air quality in homes near the United States-Mexico border During the field study, size-resolved continuous particulate matter (PM) concentrations were measured in six homes, while outdoor PM was simultaneously monitored at the same location in Nogales, Sonora, Mexico, during March 14-30, 2009. The purpose of the experiment was to compare PM in homes using different fuels for cooking, gas versus biomass, and to obtain a spatial distribution of outdoor PM in a region where local sources vary significantly (e.g., highway, border crossing, unpaved roads, industry). Continuous PM data were collected every 6 seconds using a valve switching system to sample indoor and outdoor air at each home location. This paper presents the indoor PM data from each home, including the relationship between indoor and outdoor PM. The meteorological conditions associated with elevated ambient PM events in the region are also discussed. Results indicate that indoor air pollution has a strong dependence on cooking fuel, with gas stoves having hourly averaged median PM3 concentrations in the range of 134 to 157 microg m(-3) and biomass stoves 163 to 504 microg m(-1). Outdoor PM also indicates a large spatial heterogeneity due to the presence of microscale sources and meteorological influences (median PM3: 130 to 770 microg m(-3)). The former is evident in the median and range of daytime PM values (median PM3: 250 microg m(-3), maximum: 9411 microg m(-3)), while the meteorological influences appear to be dominant during nighttime periods (median PM3: 251 microg m(-3), maximum: 10,846 microg m(-3)). The atmospheric stability is quantified for three nighttime temperature inversion episodes, which were associated with an order of magnitude increase in PM10 at the regulatory monitor in Nogales, AZ (maximum increase: 12 to 474 microg m(-3)). Implications: Regulatory air quality standards are based on outdoor ambient air measurements. However, a large fraction of time is typically spent indoors where a variety of activities including cooking, heating, tobacco smoking, and cleaning can lead to elevated PM concentrations. This study investigates the influence of meteorology, outdoor PM, and indoor activities on indoor air pollution (IAP) levels in the United States-Mexico border region. Results indicate that cooking fuel type and meteorology greatly influence the IAP in homes, with biomass fuel use causing the largest increase in PM concentration.
Magnetic and hydrogel composite materials for hyperthermia applications.
Lao, L L; Ramanujan, R V
2004-10-01
Micron-sized magnetic particles (Fe3O4) were dispersed in a polyvinyl alcohol hydrogel to study their potential for hyperthermia applications. Heating characteristics of this ferrogel in an alternating magnetic field (375 kHz) were investigated. The results indicate that the amount of heat generated depends on the Fe3O4 content and magnetic field amplitude. A stable maximum temperature ranging from 43 to 47 degrees C was successfully achieved within 5-6 min. The maximum temperature was a function of Fe3O4 concentration. A specific absorption rate of up to 8.7 W/g Fe3O4 was achieved; this value was found to depend on the magnetic field strength. Hysteresis loss is the main contribution to the heating effect experienced by the sample.
Toccalino, Patricia L.; Nowell, Lisa; Wilber, William; Zogorski, John S.; Donohue, Joyce; Eiden, Catherine; Krietzman, Sandra; Post, Gloria
2003-01-01
The U.S. Geological Survey (USGS) has a need to communicate the significance of the water-quality findings of its National Water-Quality Assessment (NAWQA) Program in a human-health context. Historically, the USGS has assessed water-quality conditions by comparing water concentration data against established drinking-water standards and guidelines. However, because drinking- water standards and guidelines do not exist for many of the contaminants analyzed by the NAWQA Program and other USGS studies, this approach has proven to be insufficient for placing USGS data in a human-health context. To help meet this need, health-based screening level (HBSL) concentrations or ranges are being determined for unregulated compounds (that is, those for which Federal or State drinking-water standards have not been established), using a consensus approach that was developed collaboratively by the USGS, U.S. Environmental Protection Agency(USEPA), New Jersey Department of Environmental Protection, and Oregon Health & Science University. USEPA Office of Water methodologies for calculating Lifetime Health Advisory and Risk-Specific Dose values for drinking water are being used to develop HBSL concentrations (for unregulated noncarcinogens) and HBSL concentration ranges (for most unregulated carcinogens). This report describes the methodologies used to develop HBSL concentrations and ranges for unregulated compounds in State- and local-scale analyses, and discusses how HBSL values can be used as tools in water-quality assessments. Comparisons of measured water concentrations with Maximum Contaminant Level values and HBSL values require that water-quality data be placed in the proper context, with regard to both hydrology and human health. The use of these HBSL concentrations and ranges by USGS will increase by 27 percent the number of NAWQA contaminants for which health-based benchmarks are available for comparison with USGS water-quality data. USGS can use HBSL values to assist the USEPA and State and local agencies by providing them with comparisons of measured water concentrations to scientifically defensible human health-based benchmarks, and by alerting them when measured concentrations approach or exceed these benchmarks.
Meyer, Wibke; Reich, Margrit; Beier, Silvio; Behrendt, Joachim; Gulyas, Holger; Otterpohl, Ralf
2016-08-01
This study evaluated the impact of secondary municipal effluent discharge on carbamazepine, diclofenac, and metoprolol concentrations in small and medium rivers in northern Germany and compared the measured environmental concentrations (MECs) to the predicted environmental concentrations (PECs) calculated with four well-established models. During a 1-year sampling period, secondary effluent grab samples were collected at four wastewater treatment plants (WWTPs) together with grab samples from the receiving waters upstream and downstream from the wastewater discharge points. The carbamazepine, diclofenac, and metoprolol concentrations were analyzed with high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS-MS) after solid phase extraction. In the secondary effluents, 84-790 ng/L carbamazepine, 395-2100 ng/L diclofenac, and 745-5000 ng/L metoprolol were detected. The carbamazepine, diclofenac, and metoprolol concentrations analyzed in the rivers downstream from the secondary effluent discharge sites ranged from <5 to 68, 370, and 520 ng/L, respectively. Most of the downstream pharmaceutical concentrations were markedly higher than the corresponding upstream concentrations. The impact of wastewater discharge on the MECs in rivers downstream from the WWTPs was clearly demonstrated, but the correlations of the MECs with dilution factors were poor. The smallest rivers exhibited the largest maximum MECs and the widest ranges of MECs downstream from the wastewater discharge point. Three of the four tested models were conservative, as they showed higher PECs than the MECs in the rivers downstream from the WWTPs. However, the most detailed model underestimated the diclofenac concentrations.
Tritium and plutonium in waters from the Bering and Chukchi Seas
Landa, E.R.; Beals, D.M.; Halverson, J.E.; Michel, R.L.; Cefus, G.R.
1999-01-01
During the summer of 1993, seawater in the Bering and Chukchi Seas was sampled on a joint Russian-American cruise [BERPAC] of the RV Okean to determine concentrations of tritium, 239Pu and 240Pu. Concentrations of tritium were determined by electrolytic enrichment and liquid scintilation counting. Tritium levels ranged up to 420 mBq L-1 showed no evidence of inputs other than those attribute atmospheric nuclear weapons testing. Plutonium was recovered from water samples by ferric hydroxide precipitation, and concentrations were determined by thermal ionization mass spectrometry. 239+240Pu concentrations ranged from <1 to 5.5 [mu]Bq L-1. These concentrations are lower than those measured in water samples from other parts of the ocean during the mid-1960's to the late 1980's. The 240Pu:239Pu ratios, although associated with large uncertainties, suggest that most of the plutonium is derived from world-wide fallout. As points of comparison, the highest concentrations of tritium and plutonium observed here were about five orders of magnitude lower than the maximum permissible concentrations allowed in water released to the off-site environs from licensed nuclear facilities in the United States. This study and others sponsored by the International Atomic Energy Agency and the Office of Naval Research's Arctic Nuclear Waste Assessment Program are providing data for the assessment of potential radiological impacts in the Arctic regions associated with nuclear waste disposal by the former Soviet Union.
Dolton, Michael J; Perera, Vidya; Pont, Lisa G; McLachlan, Andrew J
2014-01-01
Terbinafine is increasingly used in combination with other antifungal agents to treat resistant or refractory mycoses due to synergistic in vitro antifungal activity; high doses are commonly used, but limited data are available on systemic exposure, and no assessment of pharmacodynamic target attainment has been made. Using a physiologically based pharmacokinetic (PBPK) model for terbinafine, this study aimed to predict total and unbound terbinafine concentrations in plasma with a range of high-dose regimens and also calculate predicted pharmacodynamic parameters for terbinafine. Predicted terbinafine concentrations accumulated significantly during the first 28 days of treatment; the area under the concentration-time curve (AUC)/MIC ratios and AUC for the free, unbound fraction (fAUC)/MIC ratios increased by 54 to 62% on day 7 of treatment and by 80 to 92% on day 28 compared to day 1, depending on the dose regimen. Of the high-dose regimens investigated, 500 mg of terbinafine taken every 12 h provided the highest systemic exposure; on day 7 of treatment, the predicted AUC, maximum concentration (Cmax), and minimum concentration (Cmin) were approximately 4-fold, 1.9-fold, and 4.4-fold higher than with a standard-dose regimen of 250 mg once daily. Close agreement was seen between the concentrations predicted by the PBPK model and the observed concentrations, indicating good predictive performance. This study provides the first report of predicted terbinafine exposure in plasma with a range of high-dose regimens.
A simulation of Asian dust events observed from 20 to 29 December 2009 in Korea by using ADAM2
NASA Astrophysics Data System (ADS)
Park, Soon-Ung; Choe, Anna; Park, Moon-Soo
2013-01-01
The Asian dust Aerosol Model 2 (ADAM2) with the MM5 meteorological model has been employed to study long-range transport process of Asian dust and to estimate dust emission, deposition (wet and dry) and concentration over the Asian dust source region and the downwind regions for dust events observed in Korea during the period of 20-29 December 2009, which is one of the dust events chosen by the 3rd Meeting of Working Group for Joint Research on Dust Sand Storm among Mongolia, China, Japan and Korea to study intensively for the development of an early warning system in Asia. It is found that the model simulates quite well the starting and ending times of dust events and the peak dust concentrations with their occurrence times both in the source region and downwind regions. The dust emission in the dust source region is found to be associated with a developing synoptic weather system accompanied with strong surface winds over the source region that usually travels east to southeastward across the source region and then turns to move northeastward toward the north western Pacific Ocean. The dust emitted in the source region is found to be split into two parts: one is transported southeastward to the East China Sea in front of the surface high pressure system and experiencing enhanced deposition due to the sinking motion induced by the southeastward traveling the surface high pressure system whereas, the other moves northeastward toward the surface low pressure system and then lifted upward to form a upper-level high dust concentration layer that results in a favorable condition for the long-range transport of dust. It is also found that the maximum ten-day total dust emission of about 23 t km-2 occurs in the domain Northwestern China (NWC). However, the maximum ten-day total dust deposition of 21 t km-2 with the maximum mean surface concentration of 555 μg m-3 and the column integrated mean concentration of 2.9 g m-2 occurs in the domain Central-northern China (CNC). The column-integrated PM10 concentration is found to increase toward northeastward especially in the domain North northeastern China (NNEC) due to the upper-level transported high PM10 concentration. The ten-day total dust deposition, mean surface PM10 and column integrated PM10 concentrations in the downwind domains are found to decrease away from the source region from 2.44 t km-2, 112 μg m-3 and 1.68 g m-2, respectively in the domain YES to 0.06 t km-2, 2.1 μg m-3 and 0.4 g m-2, respectively in the domain Northwestern Pacific 1 (NWP1). Much of the total dust deposition is largely contributed by wet deposition in the far downwind region of the seas while that is contributed by dry deposition in the source region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mínguez, Pablo, E-mail: pablo.minguezgabina@osakid
Purpose: To investigate the possible differences between SPECT/CT based whole-remnant and maximum-voxel dosimetry in patients receiving radio-iodine ablation treatment of differentiated thyroid cancer (DTC). Methods: Eighteen DTC patients were administered 1.11 GBq of {sup 131}I-NaI after near-total thyroidectomy and rhTSH stimulation. Two patients had two remnants, so in total dosimetry was performed for 20 sites. Three SPECT/CT scans were performed for each patient at 1, 2, and 3–7 days after administration. The activity, the remnant mass, and the maximum-voxel activity were determined from these images and from a recovery-coefficient curve derived from experimental phantom measurements. The cumulated activity was estimatedmore » using trapezoidal-exponential integration. Finally, the absorbed dose was calculated using S-values for unit-density spheres in whole-remnant dosimetry and S-values for voxels in maximum-voxel dosimetry. Results: The mean absorbed dose obtained from whole-remnant dosimetry was 40 Gy (range 2–176 Gy) and from maximum-voxel dosimetry 34 Gy (range 2–145 Gy). For any given patient, the activity concentrations for each of the three time-points were approximately the same for the two methods. The effective half-lives varied (R = 0.865), mainly due to discrepancies in estimation of the longer effective half-lives. On average, absorbed doses obtained from whole-remnant dosimetry were 1.2 ± 0.2 (1 SD) higher than for maximum-voxel dosimetry, mainly due to differences in the S-values. The method-related differences were however small in comparison to the wide range of absorbed doses obtained in patients. Conclusions: Simple and consistent procedures for SPECT/CT based whole-volume and maximum-voxel dosimetry have been described, both based on experimentally determined recovery coefficients. Generally the results from the two approaches are consistent, although there is a small, systematic difference in the absorbed dose due to differences in the S-values, and some variability due to differences in the estimated effective half-lives, especially when the effective half-life is long. Irrespective of the method used, the patient absorbed doses obtained span over two orders of magnitude.« less
Cryoradiolytic reduction of heme proteins: Maximizing dose-dependent yield
NASA Astrophysics Data System (ADS)
Denisov, Ilia G.; Victoria, Doreen C.; Sligar, Stephen G.
2007-04-01
Radiolytic reduction in frozen solutions and crystals is a useful method for generation of trapped intermediates in protein-based radical reactions. In this communication we define the conditions which provide the maximum yield of one electron-reduced myoglobin at 77 K using 60Co γ-irradiation in aqueous glycerol glass. The yield reached 50% after 20 kGy, was almost complete at ˜160 kGy total dose, and does not depend on the protein concentration in the range 0.01-5 mM.
1990-09-01
can see that as the particle diameter ratio decreased more from unity, the freezing curve in the D - x phase diagram begins to show a maximum with...predicted for the rod area fraction of 0.26. Free energy curves for the two phases are shown as a function of rod concentration. The random phise has lower...fabrication techniques leing used range from consolidation of subinicron-sized powders to vapor phase deposition. ’hc papers included in this
The fate of chlorinated aliphatics in anaerobic treatment under transient loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Y.C.
1993-01-01
A CSTR with dispersed-growth anaerobic bacteria that simultaneously remove COD and chlorinated aliphatics was used. Seven chlorinated aliphatics (methylene chloride, chloroform, carbon tetrachloride, 1,1,1-trichloroethane, 1,1-dichloroethylene, trichloroethylene, and tetrachloroethylene) were biotransformed into lower-chlorinated compounds by anaerobic treatment, utilizing propionic acid (HPr) or acetic acid (HAc). The microorganisms supplied with HAc grew and were sustained at higher BSS concentrations (4,500 to 11,000 mg/L) than those with HPr (2,000 to 5,000 mg/L). The anaerobic treatment process has a considerable potential for acclimation to and biotransformation of toxic chlorinated aliphatics. For providing a safe operation range, the maximum loading rates of the chlorinated aliphaticsmore » are defined as the observed daily injection of those compounds which resulted in 50% activity of the biomass. Based on the reactor volume, the maximum chlorinated compound loading rates to the microorganisms metabolizing HPr were from 0.4 to 90 mg/L-day, while the rates ranged from 0.6 to 190 mg/L-day for the microorganisms metabolizing HAc. When based on biomass, the maximum loading rates of the microorganisms metabolizing HPr were from 0.2 to 26 mg/g cell-day, while rates for the microorganisms metabolizing HAc ranged from 0.1 to 19 mg/g cell-day. Anaerobic microorganisms have higher resistance to chlorinated aliphatic alkenes than alkanes, and can biotransform about 0.04 to 68 pound chlorinated aliphatics while simultaneously metabolizing 1,000 pounds COD. Therefore, within the safe operation range, the anaerobic process can stabilize organic pollution at a high rate while still biotransforming chlorinated aliphatics.« less
Kleeschulte, M.J.; Emmett, L.F.
1987-01-01
Water samples from five monitoring wells adjacent to raffinate pits storing low-level radioactive waste contained concentrations of nitrate as nitrogen ranging from 53 to 990 milligrams per liter. Most samples also had maximum concentrations of calcium (900 milligrams per liter), sodium (340 milligrams per liter), sulfate (320 milligrams per liter), lithium (1,700 micrograms), strontium (1,900 micrograms per liter), and uranium (86 micrograms per liter). The raffinate pits also had large concentrations of these constituents. A water balance made on the raffinate pits indicated a 0.04 to 0.08 inch per day decrease in the water level that cannot be attributed to meterological conditions. These data and seismically-detected areas of saturated overburden beneath one raffinate pit and possibly adjacent to three other pits indicate leakage from the pits. (USGS)
Pharmacokinetics of penciclovir after oral administration of its prodrug famciclovir to horses.
Tsujimura, Koji; Yamada, Masayuki; Nagata, Shun-ichi; Yamanaka, Takashi; Nemoto, Manabu; Kondo, Takashi; Kurosawa, Masahiko; Matsumura, Tomio
2010-03-01
We investigated the pharmacokinetics of penciclovir after oral administration of its prodrug famciclovir to horses. Following an oral dose of famciclovir at 20 mg/kg, maximum plasma concentrations of penciclovir occurred between 0.75 and 1.5 hr (mean 0.94 + or - 0.38 hr) after dosing and were in the range 2.22 to 3.56 microg/ml (mean 2.87 + or - 0.61 microg/ml). The concentrations of penciclovir declined in a biphasic manner after the peak concentration was attained. The mean half-life of the rapid elimination phase was 1.73 + or - 0.34 hr whereas that of the slow elimination phase was 34.34 + or - 13.93 hr. These pharmacokinetic profiles observed were similar to those of another antiherpesvirus drug, acyclovir, previously reported in horses following oral dosing of its prodrug valacyclovir.
[Low flow anaesthesia with isoflurane and sevoflurane in the dog].
Kramer, Sabine; Alyakine, Hassan; Nolte, Ingo
2008-01-01
The aim of the present study was to compare the safety and efficacy of sevoflurane and isoflurane during low flow anaesthesia (fresh gas flow (FGF) 14 ml/kg/min) as well as to compare the consumption of both anaesthetics. Data were gathered from 60 dogs assigned for surgery under general anaesthesia with an expected duration of 75 minutes or longer. All dogs were induced with 0.6 mg/kg (maximum 25 mg) l-methadone and 1 mg/kg (maximum 25 mg) diazepam i.v.. Anaesthesia was maintained with isoflurane (group 1) or sevoflurane (group 2) in a mixture with 50% O2 and 50% N2O as carrier gases, under controlled ventilation. Monitoring included electrocardiogram, body temperature, the temperature of in- and exspired gases, arterial oxygen saturation, arterial blood pressure as well as a continuous monitoring of inhaled and exhaled gas concentrations (O2, N2O, CO2, isoflurane, sevoflurane). The consumption of isoflurane and sevoflurane as well as the dogs' recovery times were evaluated for both groups. In all groups the inspired oxygen concentrations ranged above the minimum value of 30 Vol% during low flow anaesthesia, with an arterial oxygen saturation above 97%. End tidal concentration of CO2, heart rate and arterial blood pressure were within the physiological ranges and showed no differences between the two groups. Recovery time was significantly shorter after sevoflurane compared to isoflurane anaesthesia, whilst the consumption of sevoflurane was higher than that of isoflurane. Sevoflurane appears to be as clinically safe as isoflurane in low flow anaesthesia. Even considering that sevoflurane is more expensive than isoflurane, the use of the low flow technique decreases the cost of anaesthesia due to the reduced volatile anaesthetic consumption.
[Low flow anaesthesia with isoflurane in the dog].
Kramer, Sabine; Alyakine, Hassan; Nolte, Ingo
2005-01-01
The aim of the present study was to compare the safety of two low flow (LF) regimes [fresh gas flow (FGF) 20 ml/kg/min (group 2) and 14 ml/kg/min (group 3)] with the high flow (HF) technique (FGF 50 ml/kg/min; group 1) of isoflurane anaesthesia. Data were gathered from ninety dogs assigned for surgery under general anaesthesia with an expected duration of 75 minutes or longer. All dogs had an anaesthetic induction with 0,6 mg/kg I-methadone (maximum 25 mg) and 1 mg/kg diazepam (maximum 25 mg) i.v. Anaesthesia was maintained with isoflurane in a mixture of 50% O2 and 50% N2O as carrier gases, with controlled ventilation. The Monitoring included electrocardiogramm, body temperature, the temperature of in- and exspired gases, arterial oxygen saturation, arterial blood pressure as well as a continuous monitoring of inhaled and exhaled gas concentrations (O2, N2O, CO2, isoflurane). The consumption of isoflurane and carrier gases as well as the recovery times were evaluated for the three groups. The inspired oxygen concentrations always ranged above the minimum value of 30 Vol.-% during low flow anaesthesia. The arterial oxygen saturation ranged between 92-98%, the end tidal concentration of CO2 between 35 and 45 mmHg. Heart rate and arterial blood pressure were within normal limits. Recovery time was significantly shorter after LF than after HF anaesthesia. The highest decrease in body temperature occurred in the HF group 1 because of a significantly lower anaesthetic gas temperature. Despite this, LF anaesthesia resulted in a reduced consumption of carrier gases and volatiles. In conclusion, low flow anaesthesia with isoflurane is a safe technique and offers substantial economic advantages over high flow techniques and is moreover better tolerated by the patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banik, Ananya; Biswas, Kanishka, E-mail: kanishka@jncasr.ac.in
SnTe, a Pb-free analogue of PbTe, was earlier assumed to be a poor thermoelectric material due to excess p-type carrier concentration and large energy separation between light and heavy hole valence bands. Here, we report the enhancement of the thermoelectric performance of p-type SnTe by Ag and I co-doping. AgI (1–6 mol%) alloying in SnTe modulates its electronic structure by increasing the band gap of SnTe, which results in decrease in the energy separation between its light and heavy hole valence bands, thereby giving rise to valence band convergence. Additionally, iodine doping in the Te sublattice of SnTe decreases themore » excess p-type carrier concentration. Due to significant decrease in hole concentration and reduction of the energy separation between light and heavy hole valence bands, significant enhancement in Seebeck coefficient was achieved at the temperature range of 600–900 K for Sn{sub 1−x}Ag{sub x}Te{sub 1−x}I{sub x} samples. A maximum thermoelectric figure of merit, zT, of ~1.05 was achieved at 860 K in high quality crystalline ingot of p-type Sn{sub 0.95}Ag{sub 0.05}Te{sub 0.95}I{sub 0.05}. - Graphical abstract: Significant decrease in hole concentration and reduction of the energy separation between light and heavy hole valence bands resulted in a maximum thermoelectric figure of merit, zT, of ~1.05 at 860 K in high quality crystalline ingot of p-type Sn{sub 0.95}Ag{sub 0.05}Te{sub 0.95}I{sub 0.05}. - Highlights: • AgI alloying in SnTe increases the principle band gap. • Hole concentration reduction and valence band convergence enhances thermopower of SnTe-AgI. • A maximum zT of ~1.05 was achieved at 860 K in p-type Sn{sub 0.95}Ag{sub 0.05}Te{sub 0.95}I{sub 0.05}.« less
Zhou, Xiaocheng; Chen, Zhi; Cui, Yueju
2016-10-01
The concentrations and flux of CO2, (222)Radon (Rn), and gaseous elemental mercury (Hg) in soil gas were investigated based on the field measurements in June 2010 at ten sites along the seismic rupture zones produced by the May 12, 2008, Wenchuan M s 8.0 earthquake in order to assess the environmental impact of degassing of CO2, Rn and Hg. Soil gas concentrations of 344 sampling points were obtained. Seventy measurements of CO2, Rn and Hg flux by the static accumulation chamber method were performed. The results of risk assessment of CO2, Rn and Hg concentration in soil gas showed that (1) the concentration of CO2 in the epicenter of Wenchuan M s 8.0 earthquake and north end of seismic ruptures had low risk of asphyxia; (2) the concentrations of Rn in the north segment of seismic ruptures had high levels of radon, Maximum was up to level 4, according to Chinese code (GB 50325-2001); (3) the average geoaccumulation index I geo of soil Hg denoted the lack of soil contamination, and maximum values classified the soil gas as moderately to strongly polluted in the epicenter. The investigation of soil gas CO2, Rn and Hg degassing rate indicated that (1) the CO2 in soil gas was characterized by a mean [Formula: see text] of -20.4 ‰ and by a mean CO2 flux of 88.1 g m(-2) day(-1), which were in the range of the typical values for biologic CO2 degassing. The maximum of soil CO2 flux reached values of 399 g m(-2) day(-1) in the epicenter; (2) the soil Rn had higher exhalation in the north segment of seismic ruptures, the maximum reached value of 1976 m Bq m(-2) s(-1); (3) the soil Hg flux was lower, ranging from -2.5 to 18.7 n g m(-2) h(-1) and increased from south to north. The mean flux over the all profiles was 4.2 n g m(-2) h(-1). The total output of CO2 and Hg degassing estimated along seismic ruptures for a survey area of 18.17 km(2) were approximately 0.57 Mt year(-1) and 688.19 g year(-1). It is recommended that land-use planners should incorporate soil gas and/or gas flux measurements in the environmental assessment of areas of possible risk. A survey of all houses along seismic ruptures is advised as structural measures to prevent the ingress of soil gases, including CO2 and Rn, were needed in some houses.
Thermoelectric transport in surface- and antimony-doped bismuth telluride nanoplates
Pettes, Michael Thompson; Kim, Jaehyun; Wu, Wei; ...
2016-07-25
We report the in-plane thermoelectric properties of suspended (Bi 1–xSb x) 2Te 3 nanoplates with x ranging from 0.07 to 0.95 and thicknesses ranging from 9 to 42 nm. The results presented here reveal a trend of increasing p-type behavior with increasing antimony concentration, and a maximum Seebeck coefficient and thermoelectric figure of merit at x ~ 0.5. We additionally tuned extrinsic doping of the surface using a tetrafluoro-tetracyanoquinodimethane (F 4-TCNQ) coating. As a result, the lattice thermal conductivity is found to be below that for undoped ultrathin Bi 2Te 3 nanoplates of comparable thickness and in the range ofmore » 0.2–0.7 W m –1 K –1 at room temperature.« less
Tornes, Lan H.
2005-01-01
Data for the Red River of the North (Red River) Basin in Minnesota, North Dakota, and South Dakota were analyzed to determine whether the water quality of streams in the basin is adequate to meet future needs. For the Red River at Emerson, Manitoba, site, pH values, water temperatures, and dissolved-oxygen concentrations generally were within the criteria established for the protection of aquatic life. Dissolved-solids concentrations ranged from 245 to 1,100 milligrams per liter. Maximum sulfate and chloride concentrations were near, but did not exceed, the established secondary maximum contaminant level. The trace elements considered potentially harmful generally were at concentrations that were less than the established guidelines, standards, and criteria. The concentrations of lead that were detected may have occurred as a result of sample contamination. For the Red River upstream from Emerson, Manitoba, sites, pH and other field values rarely exceeded the criteria established for the protection of aquatic life. Many constituent concentrations for the Red River below Fargo, N. site exceeded water-quality guidelines, standards, and criteria. However, the trace-element exceedances could be natural or could be related to pollution or sample contamination. Many of the tributaries in the western part of the Red River Basin had median specific-conductance values that were greater than 1,000 microsiemens per centimeter. Sulfate concentrations occasionally exceeded the established drinking-water standard. Median arsenic concentrations were 6 micrograms per liter or less, and maximum concentrations rarely exceeded the 10-microgram-per-liter drinking-water standard that is scheduled to take effect in 2006. The small concentrations of lead, mercury, and selenium that occasionally were detected may have been a result of sample contamination or other factors. The tributaries in the eastern part of the Red River Basin had median specific-conductance values that were less than 1,000 microsiemens per centimeter. Concentrations of pesticides that were detected and that had regulatory limits were less than the cited water-quality guidelines, standards, and criteria. Concentrations of compounds that were detected generally were less than the sediment- quality standards and criteria. The data considered in this report generally provide a good baseline from which to evaluate changes in water-quality conditions. However, because many of the trace elements detected, including lead and mercury, may have been the result of sample contamination, additional data are needed to confirm that trace-element concentrations generally are low. Concentrations of major ions, including sulfate, and specific conductance may continue to approach drinking-water standards during periods of low flow because the streams, particularly those in the western part of the basin, are sustained mostly by ground-water discharge that generally has large dissolved-solids concentrations.
NASA Technical Reports Server (NTRS)
Glasser, M. E.
1981-01-01
The Multilevel Diffusion Model (MDM) Version 5 was modified to include features of more recent versions. The MDM was used to predict in-cloud HCl concentrations for the April 12 launch of the space Shuttle (STS-1). The maximum centerline predictions were compared with measurements of maximum gaseous HCl obtained from aircraft passes through two segments of the fragmented shuttle ground cloud. The model over-predicted the maximum values for gaseous HCl in the lower cloud segment and portrayed the same rate of decay with time as the observed values. However, the decay with time of HCl maximum predicted by the MDM was more rapid than the observed decay for the higher cloud segment, causing the model to under-predict concentrations which were measured late in the life of the cloud. The causes of the tendency for the MDM to be conservative in over-estimating the HCl concentrations in the one case while tending to under-predict concentrations in the other case are discussed.
NASA Astrophysics Data System (ADS)
Xiao, Lan-Xi; Zhu, Yuan-Qing; Zhang, Shao-Quan; Liu, Xu; Guo, Yu
1999-11-01
In this paper, crust medium is treated as Maxwell medium, and crust model includes hard inclusion, soft inclusion, deep-level fault. The stress concentration and its evolution with time are obtained by using three-dimensional finite element method and differential method. The conclusions are draw as follows: (1) The average stress concentration and maximum shear stress concentration caused by non-heterogeneous of crust are very high in hard inclusion and around the deep fault. With the time passing by, the concentration of average stress in the model gradually trends to uniform. At the same time, the concentration of maximum shear stress in hard inclusion increases gradually. This character is favorable to transfer shear strain energy from soft inclusion to hard inclusion. (2) When the upper mantle beneath the inclusion upheave at a certain velocity of 1 cm/a, the changes of average stress concentration with time become complex, and the boundary of the hard and soft inclusion become unconspicuous, but the maximum shear stress concentration increases much more in the hard inclusion with time at a higher velocity. This feature make for transformation of energy from the soft inclusion to the hard inclusion. (3) The changes of average stress concentration and maximum shear stress concentration with time around the deep-level fault result in further accumulation of maximum shear stress concentration and finally cause the deep-level fault instable and accelerated creep along fault direction. (4) The changes of vertical displacement on the surface of the model, which is caused by the accelerated creep of the deep-level fault, is similar to that of the observation data before Xingtai strong earthquake.
Uranium in sediments, mussels (Mytilus sp.) and seawater of the Krka river estuary.
Cuculić, Vlado; Cukrov, Neven; Barisić, Delko; Mlakar, Marina
2006-01-01
The response of an aquatic environment to the decrease of phosphate discharges from a technologically improved transhipment terminal, situated at the Croatian Adriatic coast in the port of Sibenik, has been assessed based on uranium activity and concentration in sediment, seawater and mussels Mytilus sp. The highest 238U activities (485+/-16Bqkg(-1) dry weight) were found in the sediment sample collected from the sampling site closest to the terminal. The maximum concentrations in the sediment samples are above the natural ranges and clearly indicate the harbour activities' influence. The 238U/226Ra activity ratios in sediment samples demonstrate the decreasing trend of phosphate ore input. Mussel samples showed levels of 238U activities in the range from 12.1+/-2.9 to 19.4+/-7.2 Bqkg(-1) dry weight, thus being slightly higher than in normally consumed mussels. Only the seawater, taken just above the bottom sediment at the sampling site closest to the terminal, shows a slightly higher uranium concentration (3.1+/-0.2 microgL(-1)) when compared to the samples taken in upper seawater layers (2.1+/-0.2 microgL(-1)) but is in the range of the concentration level of uranium in natural seawater. Since the transhipment terminal in the port of Sibenik was modernised in 1988, discharge of phosphate ore into the seawater was drastically reduced and, consequently, uranium concentration levels in seawater have decreased. However, enhanced uranium activity levels are still found in deeper sediment layer samples and in mussel.
Logarithmic sensing in Bacillus subtilis aerotaxis.
Menolascina, Filippo; Rusconi, Roberto; Fernandez, Vicente I; Smriga, Steven; Aminzare, Zahra; Sontag, Eduardo D; Stocker, Roman
2017-01-01
Aerotaxis, the directed migration along oxygen gradients, allows many microorganisms to locate favorable oxygen concentrations. Despite oxygen's fundamental role for life, even key aspects of aerotaxis remain poorly understood. In Bacillus subtilis, for example, there is conflicting evidence of whether migration occurs to the maximal oxygen concentration available or to an optimal intermediate one, and how aerotaxis can be maintained over a broad range of conditions. Using precisely controlled oxygen gradients in a microfluidic device, spanning the full spectrum of conditions from quasi-anoxic to oxic (60 n mol/l-1 m mol/l), we resolved B. subtilis' 'oxygen preference conundrum' by demonstrating consistent migration towards maximum oxygen concentrations ('monotonic aerotaxis'). Surprisingly, the strength of aerotaxis was largely unchanged over three decades in oxygen concentration (131 n mol/l-196 μ mol/l). We discovered that in this range B. subtilis responds to the logarithm of the oxygen concentration gradient, a rescaling strategy called 'log-sensing' that affords organisms high sensitivity over a wide range of conditions. In these experiments, high-throughput single-cell imaging yielded the best signal-to-noise ratio of any microbial taxis study to date, enabling the robust identification of the first mathematical model for aerotaxis among a broad class of alternative models. The model passed the stringent test of predicting the transient aerotactic response despite being developed on steady-state data, and quantitatively captures both monotonic aerotaxis and log-sensing. Taken together, these results shed new light on the oxygen-seeking capabilities of B. subtilis and provide a blueprint for the quantitative investigation of the many other forms of microbial taxis.
Dynamics of erosion in a compressional mountain range revealed by 10Be paleoerosion rates
NASA Astrophysics Data System (ADS)
Val, P.; Hoke, G. D.; Fosdick, J. C.; Wittmann, H.
2015-12-01
The temporal evolution of erosion over million-year timescales is key to understanding the evolution of mountain ranges and adjacent fold-and-thrust belts. While models of orogenic wedge evolution predict an instantaneous response of erosion to pulses of rock uplift, stream-power based landscape evolution models predict catchment-wide erosion maxima that lag behind a rock uplift pulse. Here, we explore the relationships between rock uplift, erosion, and sediment deposition in the Argentine Precordillera fold-and-thrust belt at 30°S where extensive previous work documents deformation, climate and sediment accumulation histories. Sandstone samples spanning 8.8 to 1.8 Ma were collected from the previously dated wedge-top (Iglesia) and foredeep basins (Bermejo) for quartz purification and 10Be extraction. 10Be concentrations due to burial and exhumation were estimated and subtracted from the measured concentrations and yielded the inherited 10Be concentrations, which were then corrected for sample magnetostratigraphic age. The inherited concentrations were then used to calculate paleoerosion rates. We modeled various pre-burial and post-burial exposure scenarios in order to assess potential sources of uncertainty in the recovered paleoerosion rates. The modeling results reveal that pre-burial and post-burial exposure periods only marginally affect our results. By combining the 10Be-derived paleoerosion rates and geomorphic observations with detrital zircon provenance, we document the isolation of the wedge-top basin, which was later reconnected by an upstream migrating pulse of erosion in a process that was directly controlled by thrust activity and base level. The data further indicate that the attainment of maximum upland erosion rates lags maximum rates of deformation and subsidence over million-year timescales. The magnitudes and causes of the erosional delays shed new light on the catchment erosional response to tectonic deformation and rock uplift in orogenic wedges.
Moyer, Douglas; Hyer, Kenneth
2003-01-01
Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Christians Creek, in Augusta County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Christians Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Christians Creek. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Christians Creek watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Christians Creek. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Christians Creek. The calibrated streamflow model simulated observed streamflow characteristics with respect to total annual runoff, seasonal runoff, average daily streamflow, and hourly stormflow. The calibrated fecal coliform model simulated the patterns and range of observed fecal coliform bacteria concentrations. Observed fecal coliform bacteria concentrations during low-flow periods ranged from 40 to 2,000 colonies per 100 milliliters, and peak concentrations during stormflow periods ranged from 23,000 to 730,000 colonies per 100 milliliters. Additionally, fecal coliform bacteria concentrations were generally higher upstream and lower downstream. Simulated source-specific contributions of fecal coliform bacteria to instream load were matched to the observed contributions from the dominant sources, which were beaver, cats, cattle, deer, dogs, ducks, geese, horses, humans, muskrats, poultry, raccoons, and sheep. According to model results, a 96-percent reduction in the current fecal coliform load delivered from the watershed to Christians Creek would result in compliance with the designated water-quality goals and associated TMDL.
Putnam, Larry D.; Long, Andrew J.
2007-01-01
The Madison aquifer, which contains fractures and solution openings in the Madison Limestone, is used extensively for water supplies for the city of Rapid City and other suburban communities in the Rapid City, S. Dak., area. The 48 square-mile study area includes the west-central and southwest parts of Rapid City and the outcrops of the Madison Limestone extending from south of Spring Creek to north of Rapid Creek. Recharge to the Madison Limestone occurs when streams lose flow as they cross the outcrop. The maximum net loss rate for Spring and Rapid Creek loss zones are 21 and 10 cubic feet per second (ft3/s), respectively. During 2003 and 2004, fluorescent dyes were injected in the Spring and Rapid Creek loss zones to estimate approximate locations of preferential flow paths in the Madison aquifer and to measure the response and transit times at wells and springs. Four injections of about 2 kilograms of fluorescein dye were made in the Spring Creek loss zone during 2003 (sites S1, S2, and S3) and 2004 (site S4). Injection at site S1 was made in streamflow just upstream from the loss zone over a 12-hour period when streamflow was about equal to the maximum loss rate. Injections at sites S2, S3, and S4 were made in specific swallow holes located in the Spring Creek loss zone. Injection at site R1 in 2004 of 3.5 kilograms of Rhodamine WT dye was made in streamflow just upstream from the Rapid Creek loss zone over about a 28-hour period. Selected combinations of 27 wells, 6 springs, and 3 stream sites were monitored with discrete samples following the injections. For injections at sites S1-S3, when Spring Creek streamflow was greater than or equal to 20 ft3/s, fluorescein was detected in samples from five wells that were located as much as about 2 miles from the loss zone. Time to first arrival (injection at site S1) ranged from less than 1 to less than 10 days. The maximum fluorescein concentration (injection at site S1) of 120 micrograms per liter (ug/L) at well CO, which is located adjacent to the loss zone, was similar to the concentration in the stream. Fluorescein arrived at well NON (injection at site S1), which is located about 2 miles northeast of the loss zone, within about 1.6 days, and the maximum concentration was 44 ug/L. For injection at site S4, when streamflow was about 12 ft3/s, fluorescein was detected in samples from six wells and time to first arrival ranged from 0.2 to 16 days. Following injection at site S4 in 2004, the length of time that dye remained in the capture zone of well NON, which is located approximately 2 miles from the loss zone, was almost an order of magnitude greater than in 2003. For injection at site R1, Rhodamine WT was detected at well DRU and spring TI-SP with time to first arrival of about 0.5 and 1.1 days and maximum concentrations of 6.2 and 0.91 ug/L, respectively. Well DRU and spring TI-SP are located near the center of the Rapid Creek loss zone where the creek has a large meander. Measurable concentrations were observed for spring TI-SP as many as 109 days after the dye injection. The direction of a conduit flow path in the Spring Creek area was to the northeast with ground-water velocities that ranged from 770 to 6,500 feet per day. In the Rapid Creek loss zone, a conduit flow path east of the loss zone was not evident from the dye injection.
NASA Astrophysics Data System (ADS)
Leal-Acosta, M. L.; Shumilin, E.
2016-12-01
The intertidal geothermal hot springs (GHS) in Bahia Concepcion, Gulf of California are the source of potentially toxic elements to the adjacent marine environment surrounded by mangroves trees. The anoxic sediments enriched in organic carbon accumulate As, Hg and other heavy metals that can be bioavailable for the biota. To know the vertical distribution of these elements the geochemistry of a short sediment core was carried out. It was collected in June, 2010 in the mangrove area near to GHS (1 m) during a low tide, pushing manually a polypropylene tube into the sediments. The extracted sediment core was cut with plastic knife on 1 cm thick sub-samples, stored in plastic bags and transported on ice to the laboratory. The major and trace elements contents were determinate by ICP-MS after total digestion with stronger acids (HClO4-HNO3-HCl-HF). Certificate reference materials were used for the quality control of the method obtaining good recoveries for most of the elements (80-105%). The sediment core had high maximum contents of CaCO3 (70%) and total organic carbon (12%). The concentration of Hg along the core ranges from 650 to 74300 mg kg-1 and had more than three orders of magnitude above the reference values of 40 mg kg-1 for the Upper Continental Crust (UCC)1. In contrast, As ranges from 12 to 258 mg kg-1 resulting in more than one order of magnitude respect to UCC1 (1.7 mg kg-1). Similar pattern result for Mn, Cu, Pb, and Zn with the maximum values of 3200 mg kg-1, 42 mg kg-1, 12.4 mg kg-1, 71 mg kg-1 respectively that coincide with the maximum for As at the same core depth (4 cm). The Ca, Li, Co, Sb, U, and Mg also show high contents in comparison with the UCC1reference values. The maximum contents of Mo and Cd coincide with maximum concentration of sulfur (2%) at 6 to 8 cm. The enrichment factor calculated using Al as normalizing element showed Cd (7-280), As (26-329) and Hg (23-1196) as highly enriched mainly in the first centimeters of the sediment core. 1 Wedephol (1995)
Wilson, J P; Jurjevic, Z; Hanna, W W; Wilson, D M; Potter, T L; Coy, A E
2006-02-01
Pearl millet is widely consumed in regions of Africa and Asia, and is increasingly being grown as an alternative grain in drought-prone regions of the United States. Pearl millet and corn were grown in dryland conditions at Tifton, Georgia, USA and grains were compared for pre-harvest infection by potentially toxigenic fungi and contamination by mycotoxins. Corn hybrids Agripro 9909 and Pioneer 3146, and pearl millet Tifgrain 102 were grown in 2000 and 2001; pearl millet HGM 100 was included in the test in 2001. Hybrids were sown on multiple planting dates in each year to induce variation in flowering time. Host species differed in the frequency of isolation of potentially toxigenic fungal species in both years. Across years, corn hybrids were more prone to infection by Aspergillus flavus Link (maximum isolation frequency = 8.8%) and Fusarium moniliforme Sheldon sensu lato (maximum isolation frequency = 72.8%), with corresponding greater concentrations of aflatoxins (maximum concentration = 204.9 microg kg(-1)) and fumonisins (maximum concentration = 34,039 microg kg(-1)). Pearl millet was more prone to infection by F. semitectum Berk. & Ravenel (maximum isolation = 74.2%) and F. chlamydosporum Wollenweb & Reinking (maximum isolation = 33.0%), and contamination by moniliformin (maximum contamination = 92.1 microg kg(-1)). Beauvericin (maximum concentration = 414.6 microg kg(-1)) was present in both hosts. Planting date of corn affected aflatoxin and beauvericin contamination in 2000, and fumonisin concentration in 2001. The observed differences in mycotoxin contamination of the grains, which are likely due to host-specific differences in susceptibility to pre-harvest mycoflora, may affect food safety when the crops are grown under stress conditions.
Moyer, Douglas; Hyer, Kenneth
2003-01-01
Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Blacks Run, in Rockingham County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Accotink Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Blacks Run. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Blacks Run watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Blacks Run. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Blacks Run. The calibrated streamflow model simulated observed streamflow characteristics with respect to total annual runoff, seasonal runoff, average daily streamflow, and hourly stormflow. The calibrated fecal coliform model simulated the patterns and range of observed fecal coliform bacteria concentrations. Observed fecal coliform bacteria concentrations during low-flow periods ranged from 40 to 7,000 colonies per 100 milliliters, and peak concentrations during storm-flow periods ranged from 33,000 to 260,000 colonies per 100 milliliters. Simulated source-specific contributions of fecal coliform bacteria to instream load were matched to the observed contributions from the dominant sources, which were cats, cattle, deer, dogs, ducks, geese, horses, humans, muskrats, poultry, raccoons, and sheep. According to model results, a 95-percent reduction in the current fecal coliform load delivered from the watershed to Blacks Run would result in compliance with the designated water-quality goals and associated TMDL.
Moyer, Douglas; Hyer, Kenneth
2003-01-01
Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Accotink Creek, in Fairfax County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Accotink Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Accotink Creek. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Accotink Creek watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Accotink Creek. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Accotink Creek. The calibrated streamflow model simulated observed streamflow characteristics with respect to total annual runoff, seasonal runoff, average daily streamflow, and hourly stormflow. The calibrated fecal coliform model simulated the patterns and range of observed fecal coliform bacteria concentrations. Observed fecal coliform bacteria concentrations during low-flow periods ranged from 25 to 800 colonies per 100 milliliters, and peak concentrations during storm-flow periods ranged from 19,000 to 340,000 colonies per 100 milliliters. Simulated source-specific contributions of fecal coliform bacteria to instream load were matched to the observed contributions from the dominant sources, which were cats, deer, dogs, ducks, geese, humans, muskrats, and raccoons. According to model results, an 89-percent reduction in the current fecal coliform load delivered from the watershed to Accotink Creek would result in compliance with the designated water-quality goals and associated TMDL.
Risk characterization of methyl tertiary butyl ether (MTBE) in tap water.
Stern, B R; Tardiff, R G
1997-12-01
Methyl tertiary butyl ether (MTBE) can enter surface water and groundwater through wet atmospheric deposition or as a result of fuel leaks and spills. About 30% of the U.S. population lives in areas where MTBE is in regular use. Ninety-five percent of this population is unlikely to be exposed to MTBE in tap water at concentrations exceeding 2 ppb, and most will be exposed to concentrations that are much lower and may be zero. About 5% of this population may be exposed to higher levels of MTBE in tap water, resulting from fuel tank leaks and spills into surface or groundwater used for potable water supplies. This paper describes the concentration ranges found and anticipated in surface and groundwater, and estimates the distribution of doses experienced by humans using water containing MTBE to drink, prepare food, and shower/bathe. The toxic properties (including potency) of MTBE when ingested, inhaled, and in contact with the skin are summarized. Using a range of human toxic potency values derived from animal studies, margins of exposure (MOE) associated with alternative chronic exposure scenarios are estimated to range from 1700 to 140,000. Maximum concentrations of MTBE in tap water anticipated not to cause adverse health effects are determined to range from 700 to 14,000 ppb. The results of this analysis demonstrate that no health risks are likely to be associated with chronic and subchronic human exposures to MTBE in tap water. Although some individuals may be exposed to very high concentrations of MTBE in tap water immediately following a localized spill, these exposures are likely to be brief in duration due to large-scale dilution and rapid volatilization of MTBE, the institution of emergency response and remediation measures to minimize human exposures, and the low taste and odor thresholds of MTBE which ensure that its presence in tap water is readily detected at concentrations well below the threshold for human injury.
Wintertime characteristic of peroxyacetyl nitrate in the Chengyu district of southwestern China.
Zhu, Honglin; Gao, Tianyu; Zhang, Jianbo
2018-06-02
Atmospheric concentrations of peroxyacetyl nitrate (PAN) were measured in Ziyang in December 2012 to provide basic knowledge of PAN in the Chengyu district and offer recommendations for air pollution management. The PAN pollution was relatively severe in Ziyang in winter, with the maximum and average PAN concentrations of 1.61 and 0.55 ppbv, respectively, and a typical single-peak diurnal trend in PAN and theoretical PAN lost by thermal decomposition (TPAN) were observed. PAN and O 3 concentrations were correlated (R 2 = 0.52) and the ratios of daily maximum PAN to O 3 ([PAN]/[O 3 ] ratio) ranged from 0.013 to 0.108, with an average of 0.038. Both acetone and methyl ethyl ketone (MEK) were essential for producing the acetylperoxy radicals (PA) and subsequently PAN in Ziyang in winter, and PAN concentrations at the sampling site exhibited more sensitivity to volatile organic compound (VOC) concentrations than nitrogen oxide (NO x ) levels. Therefore, management should focus on reducing VOCs emissions, in particular those that produce acetone and MEK through photolysis and oxidizing reactions. In addition, the influence of relative humidity (RH) on the heterogeneous reactions between PAN and PM 2.5 in the atmospheric environment may have led to the strong correlation between observed PM 2.5 and PAN in Ziyang in winter. Furthermore, a typical air pollution event was observed on 17-18 December 2012, which Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) and PSCF simulations suggest that it was caused by the local formation and the regional transport of polluted air masses from Hanzhong, Nanchong, and Chengdu.
An, Taicheng; Wan, Shungang; Li, Guiying; Sun, Lei; Guo, Bin
2010-11-15
This study aims to compare the biological degradation performance of ethanethiol using strain RG-1 and B350 commercial mixed microorganisms, which were inoculated and immobilized on ceramic particles in twin-biotrickling filter columns. The parameters affecting the removal efficiency, such as empty bed residence time (EBRT) and inlet concentration, were investigated in detail. When EBRT ranged from 332 to 66 s at a fixed inlet concentration of 1.05 mg L(-1), the total removal efficiencies for RG-1 and B350 both decreased from 100% to 70.90% and 47.20%, respectively. The maximum elimination capacities for RG-1 and B350 were 38.36 (removal efficiency=89.20%) and 25.82 g m(-3) h(-1) (removal efficiency=57.10%), respectively, at an EBRT of 83 s. The variation of the inlet concentration at a fixed EBRT of 110 s did not change the removal efficiencies which remained at 100% for RG-1 and B350 at concentrations of less than 1.05 and 0.64 mg L(-1), respectively. The maximum elimination capacities were 39.93 (removal efficiency=60.30%) and 30.34 g m(-3) h(-1) (removal efficiency=46.20%) for RG-1 and B350, respectively, at an inlet concentration of 2.03 mg L(-1). Sulfate was the main metabolic product of sulfur in ethanethiol. Based the results, strain RG-1 would be a better choice than strain B350 for the biodegradation of ethanethiol. Copyright © 2010 Elsevier B.V. All rights reserved.
40 CFR 463.34 - New source performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pollutant concentrations: Subpart C [Finishing water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) TSS 130 37 pH (1) (1) 1...
Willacker, James J.; Eagles-Smith, Collin A.; Lutz, Michelle A.; Tate, Michael T.; Lepak, Jesse M.; Ackerman, Joshua T.
2016-01-01
Anthropogenic manipulation of aquatic habitats can profoundly alter mercury (Hg) cycling and bioaccumulation. The impoundment of fluvial systems is among the most common habitat manipulations and is known to increase fish Hg concentrations immediately following impoundment. However, it is not well understood how Hg concentrations differ between reservoirs and lakes at large spatial and temporal scales or how reservoir management influences fish Hg concentrations. This study evaluated total Hg (THg) concentrations in 64,386 fish from 883 reservoirs and 1387 lakes, across the western United States and Canada, to assess differences between reservoirs and lakes, as well as the influence of reservoir management on fish THg concentrations. Fish THg concentrations were 1.4-fold higher in reservoirs (0.13 ± 0.011 μg/g wet weight ± standard error) than lakes (0.09 ± 0.006), though this difference varied among ecoregions. Fish THg concentrations were 1.5- to 2.6-fold higher in reservoirs than lakes of the North American Deserts, Northern Forests, and Mediterranean California ecoregions, but did not differ between reservoirs and lakes in four other ecoregions. Fish THg concentrations peaked in three-year-old reservoirs then rapidly declined in 4–12 year old reservoirs. Water management was particularly important in influencing fish THg concentrations, which were up to 11-times higher in reservoirs with minimum water storage occurring in May, June, or July compared to reservoirs with minimum storage occurring in other months. Between-year changes in maximum water storage strongly influenced fish THg concentrations, but within-year fluctuations in water levels did not influence fish THg concentrations. Specifically, fish THg concentrations increased up to 3.2-fold over the range of between-year changes in maximum water storage in all ecoregions except Mediterranean California. These data highlight the role of reservoir creation and management in influencing fish THg concentrations and suggest that water management may provide an effective means of mitigating Hg bioaccumulation in some reservoirs.
Hamilton, P.A.; Denver, J.M.; Phillips, P.J.; Shedlock, R.J.
1993-01-01
Agricultural applications of inorganic fertilizers and manure have changed the natural chemical com- position of water in the surficial aquifer through- out the Delmarva Peninsula. Nitrate, derived from nitrification of ammonia in inorganic fertilizers and manure, is the dominant anion in agricultural areas. Concentrations of nitrate in 185 water samples collected in agricultural areas ranged from 0.4 to 48 mg/L as nitrogen, with a median concen- tration of 8.2 mg/L as nitrogen. Nitrate concen- trations exceeded the U.S. Environmental Protection Agency's maximum contaminant level for drinking water of 10 mg/L as nitrogen in about 33% of the 185 water samples. Groundwater affected by agricultural activities contains significantly higher concentrations of dissolved constituents than does natural groundwater. Concentrations of calcium and magnesium are higher because of liming of soils, and concentrations of potassium and chloride are higher because of applications of potash, a supple- ment to the nitrogen-based fertilizers. Alkalinity concentrations commonly are decreased because the bicarbonate ion is consumed in buffering reactions with acid that is produced during nitrification. Effects of agricultural activities on groundwater quality are not limited to the near-surface parts of the aquifer underlying farm fields. Elevated concentrations are common in aerobic water at or near the base of the aquifer, 80 to 100 ft below land surface. The median concentration of nitrate in water beneath agricultural areas collected from 24 wells deeper than 80 ft below land surface was 8.5 mg/L as nitrogen, and concentrations in 9 of these water samples exceeded the maximum contaminant level. Regional variations in concentrations of nitrate and other agriculture related constituents in the surficial aquifer in the Delmarva Peninsula depend on a number of factors that include geomorphology, geology, soils, land use, and groundwater-flow patterns. (USGS)
Naber, C K; Steghafner, M; Kinzig-Schippers, M; Sauber, C; Sörgel, F; Stahlberg, H J; Naber, K G
2001-01-01
Gatifloxacin (GTX), a new fluoroquinolone with extended antibacterial activity, is an interesting candidate for the treatment of chronic bacterial prostatitis (CBP). Besides the antibacterial spectrum, the concentrations in the target tissues and fluids are crucial for the treatment of CBP. Thus, it was of interest to investigate its penetration into prostatic and seminal fluid. GTX concentrations in plasma, urine, ejaculate, prostatic and seminal fluid, and sperm cells were determined by a high-performance liquid chromatography method after oral intake of a single 400-mg dose in 10 male Caucasian volunteers in the fasting state. Simultaneous application of the renal contrast agent iohexol was used to estimate the maximal possible contamination of ejaculate and prostatic and seminal fluid by urine. GTX was well tolerated. The means (standard deviations) for the following parameters were as indicated: time to maximum concentration of drug in serum, 1.66 (0. 91) h; maximum concentration of drug in serum, 2.90 (0.39) microg/ml; area under the concentration-time curve from 0 to 24 h, 25.65 microg. h/ml; and half life, 7.2 (0.90) h. Within 12 h about 50% of the drug was excreted unchanged into the urine. The mean renal clearance was 169 ml/min. The gatifloxacin concentrations in ejaculate, seminal fluid, and prostatic fluid were in the range of the corresponding plasma concentrations which were 1.92 (0.27) microg/ml at approximately the same time point (4 h after drug intake). The concentrations in sperm cells (0.195, 0.076, and 0.011 microg/ml) could be determined in three subjects. The good penetration into prostatic and seminal fluid, the good tolerance, and the previously reported broad antibacterial spectrum suggest that GTX may be a good alternative for the treatment of chronic bacterial prostatitis. Clinical studies should be performed to confirm this assumption.
Naber, Christoph K.; Steghafner, Michaela; Kinzig-Schippers, Martina; Sauber, Christian; Sörgel, Fritz; Stahlberg, Hans-Jürgen; Naber, Kurt G.
2001-01-01
Gatifloxacin (GTX), a new fluoroquinolone with extended antibacterial activity, is an interesting candidate for the treatment of chronic bacterial prostatitis (CBP). Besides the antibacterial spectrum, the concentrations in the target tissues and fluids are crucial for the treatment of CBP. Thus, it was of interest to investigate its penetration into prostatic and seminal fluid. GTX concentrations in plasma, urine, ejaculate, prostatic and seminal fluid, and sperm cells were determined by a high-performance liquid chromatography method after oral intake of a single 400-mg dose in 10 male Caucasian volunteers in the fasting state. Simultaneous application of the renal contrast agent iohexol was used to estimate the maximal possible contamination of ejaculate and prostatic and seminal fluid by urine. GTX was well tolerated. The means (standard deviations) for the following parameters were as indicated: time to maximum concentration of drug in serum, 1.66 (0.91) h; maximum concentration of drug in serum, 2.90 (0.39) μg/ml; area under the concentration-time curve from 0 to 24 h, 25.65 μg · h/ml; and half life, 7.2 (0.90) h. Within 12 h about 50% of the drug was excreted unchanged into the urine. The mean renal clearance was 169 ml/min. The gatifloxacin concentrations in ejaculate, seminal fluid, and prostatic fluid were in the range of the corresponding plasma concentrations which were 1.92 (0.27) μg/ml at approximately the same time point (4 h after drug intake). The concentrations in sperm cells (0.195, 0.076, and 0.011 μg/ml) could be determined in three subjects. The good penetration into prostatic and seminal fluid, the good tolerance, and the previously reported broad antibacterial spectrum suggest that GTX may be a good alternative for the treatment of chronic bacterial prostatitis. Clinical studies should be performed to confirm this assumption. PMID:11120980
Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco)
NASA Astrophysics Data System (ADS)
Aboulaich, Nadia; Achmakh, Lamiaa; Bouziane, Hassan; Trigo, M. Mar; Recio, Marta; Kadiri, Mohamed; Cabezudo, Baltasar; Riadi, Hassane; Kazzaz, Mohamed
2013-03-01
Poaceae pollen is one of the most prevalent aeroallergens causing allergenic reactions. The aim of this study was to characterise the grass pollen season in Tetouan during the years 2008-2010, to analyse the effect of some meteorological parameters on the incidence of the airborne Poaceae pollen, and to establish forecasting variables for daily pollen concentrations. Aerobiological sampling was undertaken over three seasons using the volumetric method. The pollen season started in April and showed the highest pollen index in May and June, when the maximum temperature ranged from 23 to 27 °C, respectively. The annual pollen score recorded varied from year to year between 2,588 and 5,404. The main pollen season lasted 114-173 days, with peak days occurring mainly in May; the highest concentration reached 308 pollen grains/m3. Air temperature was the most important meteorological parameter and correlated positively to daily pollen concentration increase. An increase in relative humidity and precipitation was usually related to a decrease in airborne pollen content. External validation of the models performed using data from 2011 showed that Poaceae pollen concentration can be highly predicted (64.2-78.6 %) from the maximum temperature, its mean concentration for the same day in other years, and its concentration recorded on the previous day. Sensitive patients suffering allergy to Poaceae pollen are at moderate to highest risk of manifesting allergic symptoms to grass pollen over 33-42 days. The results obtained provide new information on the quantitative contribution of the Poaceae pollen to the airborne pollen of Tetouan and on its temporal distribution. Airborne pollen can be surveyed and forecast in order to warn the atopic population.
Matczak, W; Chmielnicka, J
1993-03-01
For the years 1987-1990 160 individual samples of manual metal arc stainless steel (MMA/SS) welding fumes from the breathing zone of welders in four industrial plants were collected. Concentrations of soluble and insoluble chromium (Cr) III and Cr VI compounds as well as of some other welding fume elements (Fe, Mn, Ni, F) were determined. Concentration of welding fumes in the breathing zone ranged from 0.2 to 23.4 mg/m3. Total Cr amounted to 0.005-0.991 mg/m3 (including 0.005-0.842 mg/m3 Cr VI). Total Cr content of fumes varied from 0.1 to 7.4%. The distribution of particular Cr compounds was: 52.6% soluble Cr (including 50.7% Cr VI), 65.5% total Cr VI, and 11.4% insoluble Cr VI. The results obtained indicate that MMA/SS welding is a process that could be highly hazardous to human health. Evaluation of occupational exposure has shown that MMA/SS welders may exceed the admissible concentrations of soluble and insoluble Cr VI forms as well as of Mn and Ni. In the plants investigated the sum of the ratios of concentrations of particular welding fumes in the breathing zone of welders exceeded corresponding maximum allowable concentration values by 24 times (including 17 times for total Cr VI). Due to the variety and changeability of particular parameters occurring in the working environment, the composition of MMA/SS welding fumes (in the welder's breathing zone) is so variable that it is not possible to assess the exposure by means of one universal exposure indicator (maximum additive hygienic limit value). The evaluation should be based on the results of measurements of concentrations of particular elements in welding fumes.
Matczak, W; Chmielnicka, J
1993-01-01
For the years 1987-1990 160 individual samples of manual metal arc stainless steel (MMA/SS) welding fumes from the breathing zone of welders in four industrial plants were collected. Concentrations of soluble and insoluble chromium (Cr) III and Cr VI compounds as well as of some other welding fume elements (Fe, Mn, Ni, F) were determined. Concentration of welding fumes in the breathing zone ranged from 0.2 to 23.4 mg/m3. Total Cr amounted to 0.005-0.991 mg/m3 (including 0.005-0.842 mg/m3 Cr VI). Total Cr content of fumes varied from 0.1 to 7.4%. The distribution of particular Cr compounds was: 52.6% soluble Cr (including 50.7% Cr VI), 65.5% total Cr VI, and 11.4% insoluble Cr VI. The results obtained indicate that MMA/SS welding is a process that could be highly hazardous to human health. Evaluation of occupational exposure has shown that MMA/SS welders may exceed the admissible concentrations of soluble and insoluble Cr VI forms as well as of Mn and Ni. In the plants investigated the sum of the ratios of concentrations of particular welding fumes in the breathing zone of welders exceeded corresponding maximum allowable concentration values by 24 times (including 17 times for total Cr VI). Due to the variety and changeability of particular parameters occurring in the working environment, the composition of MMA/SS welding fumes (in the welder's breathing zone) is so variable that it is not possible to assess the exposure by means of one universal exposure indicator (maximum additive hygienic limit value). The evaluation should be based on the results of measurements of concentrations of particular elements in welding fumes. PMID:8457491
Evaluation of pesticide toxicities with differing mechanisms using Caenorhabditis elegans.
Ruan, Qin-Li; Ju, Jing-Juan; Li, Yun-Hui; Liu, Ran; Pu, Yue-Pu; Yin, Li-Hong; Wang, Da-Yong
2009-01-01
The aim of this study was to (1) determine whether model organism Caenorhabditis elegans was sensitive to pesticides at the maximum concentration limits regulated by national agency standards, and (2) examine the multi-biological toxicities occurring as a result of exposure to pesticides. Five pesticides, namely, chlorpyrifos, imibacloprid, buprofezin, cyhalothrin, and glyphosate, with four different mechanisms of action were selected for the investigation. In accordance with national agency requirements, 4 exposed groups were used for each tested pesticide with the concentration scales ranging from 1.0 x 10(-3) to 1 mg/L. L4 larvae were exposed for 24 and 72 h, respectively. Endpoints of locomotion, propagation, and development were selected for the assay as parameters of toxicity. After exposure for 24 h, both the body bend frequency and head thrash frequency of nematodes exposed to chlorpyrifos, imibacloprid, and cyhalothrin decreased in a concentration-dependent manner, and there were significant differences between exposed groups at maximum concentration level (MCL) compared to control. The generation time of nematodes exposed to buprofezin 24 h significantly increased in a concentration-dependent manner in the highest exposed group. When exposed for 72 h, the body bend frequency and head thrash frequency of nematodes exposed to cyhalothrin markedly decreased at MCL. The generation time and brood size of nematodes exposed to buprofezin were reduced in a concentration-dependent manner. The behavior of nematodes was sensitive to pesticides with neurotoxic properties, while pesticides affecting insect growth modified the reproductive system. The effects of pesticides on nematodes exposed for 24 h appeared more sensitive than with exposure for 72 h. Caenorhabditis elegans may thus be used for assessing the adverse effects of pesticide residues in aquatic environment.
Nickel, Cobalt, Chromium and Copper in agricultural and grazing land soils of Europe
NASA Astrophysics Data System (ADS)
Albanese, Stefano; Sadeghi, Martiya; De Vivo, Benedetto; Lima, Annamaria; Cicchella, Domenico; Dinelli, Enrico
2014-05-01
In the framework of the GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soils) project, concentrations of Ni, Co, Cu and Cr were determined for the whole available dataset (2218 samples of agricultural soil and 2127 samples of grazing land soil) covering a total area of 5.6 million sq km all over Europe. The distribution pattern of Ni in the European soils (both agricultural and grazing land soils) shows the highest concentrations in correspondence with the Mediterranean area (especially in Greece, the Balcan Peninsula and NW Italy) with average values generally ranging between 40 mg/kg and 140 mg/kg and anomalous areas characterized by peaks higher than 2400 mg/kg. Concentrations between 10 mg/kg and 40 mg/kg characterize Continental Europe north of Alps and, partly, the Scandinavian countries. Lower concentrations (< 10 mg/kg) occurs near the Trans-European Suture Zone, one of the main tectonic borders in Europe, and they are limited on the south by the maximum extent limit of the last glaciation. Cobalt and Cr show distribution patterns similar to Ni in both agricultural and grazing land soils. The maximum concentration peaks of Cobalt and Cr rise up to respectively 126 mg/kg and 696 mg/kg in agricultural soils and up to 255 mg/kg and 577 mg/kg in grazing land soils. Copper distribution in the soils collected across Europe, although has a general correspondence with the patterns of Ni, Co, Cr, shows some peculiarities. Specifically, Cu is characterized by high concentration values (up to 395 mg/kg in agricultural soils and 373 mg/kg in Grazing land soils) also in correspondence with the Roman Comagmatic Province and the south western coast of France characterized by a wide spread of vineyards.
Heavy Metals in Soils and Vegetables Irrigated with Urban Grey Waste Water in Fagge, Kano, Nigeria.
Chiroma, T M; Ebewele, R O; Hymore, F K
2014-01-01
There is currently an increased consumption of vegetables within the local urban community. However, contamination of these vegetables with heavy metals poses a potential health hazard. Consequently, the potential contamination problem due to the effect of levels of some heavy metals (Fe, Mg, Zn, Mn, Cu and Cr) in soils and vegetables irrigated with drainage urban grey waste water were investigated. The maximum levels of Fe, Zn, Mn, Cu and Cr in the urban grey waste waters were respectively 2.8, 2.1, 19.5, 2.3 and 143.1 times, higher than the maximum recommended concentrations of these metals: 5.0 μg/mL, 2.0 μg/mL, 0.2 μg/mL, 0.2 μg/mL and 0.1 μg/mL, respectively, for irrigation waters. The soils were found to be contaminated with these metals to levels that range between 24 to 84 percent contaminations. Although the heavy metals concentration ranking in vegetable parts vary with plant specie, the concentrations of Fe, Zn, Mn, Cu and Cr in most parts of the vegetables were above their critical concentrations of 750 - 1000 μg/g, 100 - 400 μg/g, 300 - 500 μg/g, 20 - 100 μg/g and 5 - 30 μg/g, respectively, in plants. This suggests potential toxicity of these parts of vegetables. It was however found that over 40 percent of the concentrations of Fe, Mg, Zn and Cu in Onions, Fe in Okro, Cr in Bushgreen, Cu in Roselle and Zn, Cu in Carrot leaves can be easily removed by washing the leaves with water. However, only Cu concentration in Onions and Bushgreen leaves met the acceptable permissible level in plants after washing.
Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco).
Aboulaich, Nadia; Achmakh, Lamiaa; Bouziane, Hassan; Trigo, M Mar; Recio, Marta; Kadiri, Mohamed; Cabezudo, Baltasar; Riadi, Hassane; Kazzaz, Mohamed
2013-03-01
Poaceae pollen is one of the most prevalent aeroallergens causing allergenic reactions. The aim of this study was to characterise the grass pollen season in Tetouan during the years 2008-2010, to analyse the effect of some meteorological parameters on the incidence of the airborne Poaceae pollen, and to establish forecasting variables for daily pollen concentrations. Aerobiological sampling was undertaken over three seasons using the volumetric method. The pollen season started in April and showed the highest pollen index in May and June, when the maximum temperature ranged from 23 to 27 °C, respectively. The annual pollen score recorded varied from year to year between 2,588 and 5,404. The main pollen season lasted 114-173 days, with peak days occurring mainly in May; the highest concentration reached 308 pollen grains/m(3). Air temperature was the most important meteorological parameter and correlated positively to daily pollen concentration increase. An increase in relative humidity and precipitation was usually related to a decrease in airborne pollen content. External validation of the models performed using data from 2011 showed that Poaceae pollen concentration can be highly predicted (64.2-78.6 %) from the maximum temperature, its mean concentration for the same day in other years, and its concentration recorded on the previous day. Sensitive patients suffering allergy to Poaceae pollen are at moderate to highest risk of manifesting allergic symptoms to grass pollen over 33-42 days. The results obtained provide new information on the quantitative contribution of the Poaceae pollen to the airborne pollen of Tetouan and on its temporal distribution. Airborne pollen can be surveyed and forecast in order to warn the atopic population.
Neubauer, Nicole; Palomaeki, Jaana; Karisola, Piia; Alenius, Harri; Kasper, Gerhard
2015-01-01
Palladium and nickel nanoparticles with variable but narrowly defined primary particle sizes in the range of 4-27 nm were investigated toward their catalytic activity and their ability to produce reactive oxygen species (ROS). The agglomerate size in the gas phase was between 50 and 150 nm, after transfer into solution probably larger. The catalytic activity was measured on the basis of CO oxidation to CO2. The formation of ROS was determined after transferring the particles into phosphate buffered saline (PBS), via the 2',7'-dichlorofluorescein method in a cell-free environment and with THP-1 cells. Activities were normalized with regard to catalyst surface area to enable a meaningful comparison of size effects. The solubility was measured for both materials and found to be 2 µg/ml for Ni and below the detection limit of 0.8 µg/ml for Pd. In the concentration range of about 4-250 µg/ml both materials induced a significant production of ROS in both acellular and cellular environments, with palladium being more active than nickel by several orders of magnitude. On an equal surface area concentration basis, both acellular and cellular ROS production showed a pronounced dependence on the primary particle size, with a maximum in the vicinity of 12 nm. The surface-specific catalytic activity also had a maximum at that size range. The correlation of these size effects is both surprising and - in combination with the poor solubility of palladium and nickel in PBS solution - a strong argument in favor of a particulate, catalytic mechanism for ROS production.
Schultze-Mosgau, Marcus-Hillert; Schuett, Barbara; Hafner, Frank-Thorsten; Zollmann, Frank; Kaiser, Andreas; Hoechel, Joachim; Rohde, Beate
2017-01-01
Vilaprisan is a novel, potent, and highly selective progesterone receptor modulator, which might offer a promising option for the treatment of uterine fibroids. In this randomized, placebo-controlled, parallel-group phase 1 study, the pharmacokinetics and safety of vilaprisan were investigated in healthy postmenopausal women. Subjects received a single oral dose of vilaprisan (1, 5, 15, or 30 mg) or placebo and - after a wash-out period - daily doses of the same strength over 28 days. Safety assessments included vital signs, ECGs, clinical laboratory tests, and adverse events. Blood samples for pharmacokinetic (PK) profiles were collected over 14 days after single dose (sd) and multiple dose (md; day 28). Vilaprisan was well tolerated. Mild to moderate adverse events occurred with similar frequency at all dose levels. Following single dose, maximum vilaprisan concentrations were observed 1 - 2 hours post-dose. Terminal half-lives ranged from 31 to 38 hours. Maximum concentrations of vilaprisan (Cmax) and exposure to vilaprisan (AUC) increased roughly dose-proportionally from 3.74 µg/L (1 mg) to 68.6 µg/L (30 mg) and 58.5 µg×h/L to 1,590 µg×h/L, respectively. With daily dosing, accumulation consistent with the long terminal half-life was observed (AUC(0-24)md/AUC(0-24)sd ratios: 1.9 to 3.2). The ratio AUC(0-24)md/AUCsd increased with dose from ~ 1 (1 mg) to 1.5 (30 mg). Exposure to vilaprisan increased roughly dose-proportionally in the dose range studied and accumulated after multiple dosing as expected based on t1/2, indicating linear pharmacokinetics of vilaprisan in the expected therapeutic dose range. .
Hoekstra, Ronald; de Vos, Filip Y F L; Eskens, Ferry A L M; Gietema, Jourik A; van der Gaast, Ate; Groen, Harry J M; Knight, Raymond A; Carr, Robert A; Humerickhouse, Rod A; Verweij, Jaap; de Vries, Elisabeth G E
2005-08-01
ABT-510 is an angiogenesis inhibitor derived from thrombospondin-1, a naturally occurring inhibitor of angiogenesis. We investigated ABT-510, which was administered subcutaneously in patients with advanced solid malignancies, to assess safety, pharmacokinetics, and serum markers of angiogenesis. ABT-510 was administered subcutaneously as a continuous infusion (100 mg/24 h) and bolus injections (100, 200, and 260 mg once daily; 50 and 100 mg twice daily) in 28-day cycles. Thirty-nine patients received a total of 144 treatment cycles. Administration by continuous infusion was hampered by the onset of painful skin infiltrates at the injection site. In the bolus injection regimens, the most common toxicities observed were mild injection-site reactions and fatigue. Maximum-tolerated dose was not defined, but 260 mg was defined as the maximum clinically practical dose. ABT-510 pharmacokinetics were linear across the dosage ranges tested, and the potential therapeutic threshold (plasma concentrations > 100 ng/mL > 3 h/d) was achieved with all dose regimens. Median serum basic fibroblast growth factor (bFGF) levels decreased from 14.1 pg/mL (range, 0.5 to 77.7 pg/mL) at baseline to 3.2 pg/mL (range, 0.2 to 29.4 pg/mL) after 56 days of treatment (P = .003). No correlations with time on study or ABT-510 dose or exposure were observed for individual changes in bFGF. Stable disease lasting for six cycles or more was seen in six patients. ABT-510 demonstrated a favorable toxicity profile and linear and time-independent pharmacokinetics with biologically relevant plasma concentrations. The significant number of patients with prolonged stable disease and the convenient method of dosing merit further studies with this angiogenesis inhibitor.
Stone, Wesley W.; Crawford, Charles G.; Gilliom, Robert J.
2013-01-01
Watershed Regressions for Pesticides for multiple pesticides (WARP-MP) are statistical models developed to predict concentration statistics for a wide range of pesticides in unmonitored streams. The WARP-MP models use the national atrazine WARP models in conjunction with an adjustment factor for each additional pesticide. The WARP-MP models perform best for pesticides with application timing and methods similar to those used with atrazine. For other pesticides, WARP-MP models tend to overpredict concentration statistics for the model development sites. For WARP and WARP-MP, the less-than-ideal sampling frequency for the model development sites leads to underestimation of the shorter-duration concentration; hence, the WARP models tend to underpredict 4- and 21-d maximum moving-average concentrations, with median errors ranging from 9 to 38% As a result of this sampling bias, pesticides that performed well with the model development sites are expected to have predictions that are biased low for these shorter-duration concentration statistics. The overprediction by WARP-MP apparent for some of the pesticides is variably offset by underestimation of the model development concentration statistics. Of the 112 pesticides used in the WARP-MP application to stream segments nationwide, 25 were predicted to have concentration statistics with a 50% or greater probability of exceeding one or more aquatic life benchmarks in one or more stream segments. Geographically, many of the modeled streams in the Corn Belt Region were predicted to have one or more pesticides that exceeded an aquatic life benchmark during 2009, indicating the potential vulnerability of streams in this region.
NASA Astrophysics Data System (ADS)
Koch, M. S.; Maltby, E.; Oliver, G. A.; Bakker, S. A.
1992-05-01
Denitrification rates were determined utilizing the acetylene blockage technique at three sites: upper mudflat, lower mudflat, and Halimione portulacoides marsh on the fringing wetlands of the Torridge River Estuary in South-west England. Denitrification rates were calculated from nitrous oxide (N 2O) production each month for 1 year with intact sediment cores extracted at low tide (0-5 cm). In the lower and upper mudflat sites denitrification rates were low ranging from 0·52 to 5·78 μmol and 1·28 to 4·36 μmol N 2 m -2 h -1, respectively. Denitrification rates in marsh sediments were consistently higher than those of the mudflat ranging from 2·51 to 59·00 μmol N 2 m -2 h -1. Amending river water to sediment cores stimulated lower and upper mudflat denitrification rates approximately 10-fold up to 106·39 and 96·73 μmol N 2 m -2 h -1, respectively. In marsh sediments, a two-fold increase in denitrification was found with river water amended resulting in a maximum rate of 114·80 μmol N 2 m -2 h -1. During the winter months, when riverine NO 3-N levels were at a maximum (2·47 to 2·93 mg l -1), denitrification rates were highest (75·24 to 114·99 μmol N 2 m -2 h -1) and conversely, during the summer both NO 3-N concentrations (1·0 to 1·70 mg l -1) and denitrification (0·95 to 37·38 μmol N 2 m -2 h -1) rates were at a minimum. Mudflat sediment redox potentials (Eh), within the theoretical range of NO 3-1 instability, were limited to the upper 5 mm, thus maximum denitrification rates may be restricted to the sediment surface. When calculating annual denitrification rates in tidal estuaries several factors should be considered including: seasonal NO 3-1 concentrations in tidal water, tidal flooding duration and amplitude, and the depth of the aerobic/anaerobic zone of the sediment.
Lu, Chaoyang; Zhang, Zhiping; Zhou, Xuehua; Hu, Jianjun; Ge, Xumeng; Xia, Chenxi; Zhao, Jia; Wang, Yi; Jing, Yanyan; Li, Yameng; Zhang, Quanguo
2018-01-01
Effect of substrate concentration on photo-fermentative hydrogen production was studied with a self-designed 4m 3 pilot-scale baffled photo-fermentative hydrogen production reactor (BPHR). The relationships between parameters, such as hydrogen production rate (HPR, mol H 2 /m 3 /d), hydrogen concentration, pH value, oxidation-reduction potential, biomass concentration (volatile suspended solids, VSS) and reducing sugar concentration, during the photo-fermentative hydrogen production process were investigated. The highest HPR of 202.64±8.83mol/m 3 /d was achieved in chamber #3 at a substrate concentration of 20g/L. Hydrogen contents were in the range of 42.19±0.94%-49.71±0.27%. HPR increased when organic loading rate was increased from 3.3 to 20g/L/d, then decreased when organic loading rate was further increased to 25g/L/d. A maximum HPR of 148.65±4.19mol/m 3 /d was obtained when organic loading rate was maintained at 20g/L/d during continuous bio-hydrogen production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lachenmeier, Dirk W; Sohnius, Eva-Maria; Attig, Rainer; López, Mercedes G
2006-05-31
A large collection (n = 95) of Mexican Agave spirits with protected appellations of origin (Tequila, Mezcal, Sotol, and Bacanora) was analyzed using ion and gas chromatography. Because of their production from oxalate-containing plant material, all Agave spirits contained significant concentrations of oxalate (0.1-9.7 mg/L). The two Tequila categories ("100% Agave" and "mixed") showed differences in the methanol, 2-/3-methyl-1-butanol, and 2-phenylethanol concentrations with lower concentrations in the mixed category. Mezcal showed no significant differences in any of the evaluated parameters that would allow a classification. Sotol showed higher nitrate concentrations and lower 2-/3-methyl-1-butanol concentrations. Bacanora was characterized by exceptionally high acetaldehyde concentrations and a relatively low ethyl lactate content. The methanol content was the most problematic compound regarding the Mexican standards: two Tequilas (4%), five Sotols (31%), and six Bacanoras (46%) had levels above the maximum methanol content of 300 g/hL of alcohol. In conclusion, the composition of Mexican Agave spirits was found to vary over a relatively large range.
Becker, Mark F.; Bruce, Breton W.; Pope, Larry M.; Andrews, William J.
2002-01-01
A network of 74 randomly distributed domestic water-supply wells completed in the central High Plains aquifer was sampled and analyzed from April to August 1999 as part of the High Plains Regional Ground-Water Study conducted by the U. S. Geological Survey National Water-Quality Assessment Program to provide a broad-scale assessment of the ground-water-quality in this part of the High Plains aquifer. Water properties were relatively consistent across the aquifer, with water being alkaline and well oxidized. Water was mostly of the calcium and magnesium-bicarbonate type and very hard. Sulfate concentrations in water from three wells and chloride concentration in water from one well exceeded Secondary Maximum Contaminant Levels. Fluoride concentration was equal to the Maximum Contaminant Level in one sample. Nitrate concentrations was relatively small in most samples, with the median concentration of 2.3 milligrams per liter. Dissolved organic carbon concentration was relatively low, with a median concentration of 0.5 milligram per liter. The Maximum Contaminant Level set by the U.S. Environmental Protection Agency for nitrate as nitrogen of 10 milligrams per liter was exceeded by water samples from three wells. Most samples contained detectable concentrations of the trace elements aluminum, arsenic, barium, chromium, molybdenum, selenium, zinc, and uranium. Only a few samples had trace element concentrations exceeding Maximum Contaminant Levels. Fifty-five of the samples had radon concentrations exceeding the proposed Maximum Contaminant Level of 300 picocuries per liter. The greatest radon concentrations were detected where the Ogallala Formation overlies sandstones, shales and limestones of Triassic, Jurassic, or Cretaceous age. Volatile organic compounds were detected in 9 of 74 samples. Toluene was detected in eight of those nine samples. All volatile organic compound concentrations were substantially less than Maximum Contaminant Levels. Detections of toluene may have been artifacts of the sampling and analytical processes. Pesticides were detected in 18 of the 74 water samples. None of the pesticide concentrations exceeded Maximum Contaminant Levels. The most frequently detected pesticides were atrazine and its metabolite deethylatrazine, which were detected in water from 15 and 17 wells, respectively. Most of the samples with a detectable pesticide had at least two detectable pesticides. Six of the samples had more than two detectable pesticides. Tritium concentrations was greater than 0.5 tritium unit in 10 of 51 samples, indicating recent recharge to the aquifer. Twenty-one of the samples that had nitrate concentrations greater than 4.0 milligrams per liter were assumed to have components of recent recharge. Detection of volatile organic compounds was not associated with those indicators of recent recharge, with most of volatile organic compounds being detected in water from wells with small tritium and nitrate concentrations. Detection of pesticides was associated with greater tritium or nitrate concentrations, with 16 of the 18 wells producing water with pesticides also having tritium or nitrate concentrations indicating recent recharge.
Gibson, Larry H; Coughlin, Robert W
2002-01-01
Of five strains of Aureobasidium pullulans studied, NRRL Y-2311-1 yielded the highest titer (26.2 g/L) of pullulan and formed the lowest amount of melanin-like pigment. Sucrose was superior to glucose as the carbon and energy source on the basis of yield and titer of pullulan produced. Pullulan titer was higher (26.2 vs 5.1 g/L), biomass concentration was lower (6.9 vs 12.7 g/L), and DO was lower (0 vs 60% of saturation) when the fermenter was agitated by a marine propeller compared to Rushton impellers. Pullulan produced by strain NRRL Y-2311-1 ranged in weight-average molar mass (M(w)) from 486 KDa and number-average molar mass (M(n)) from 220 Da on day 1 of growth to 390 KDa and 690 Da on day 6; M(w) declined by about 35% from day 1 to day 3, the day of maximum pullulan titer. For the other strains, the ranges of molar mass on the day of maximum pullulan titer were 338-614 KDa (M(w)) and 100-6820 Da (M(n)).
[The epidemiological validation of the MPEL for grain dust in the atmosphere].
Pinigin, M A; Cherepov, E M; Safiulin, A A; Petrova, I V; Mukhambetova, L Kh; Osipova, E M; Veselov, A P
1998-01-01
The use of calculating and gravimetric methods for examining the grain dust pollution of the ambient air at the site of an elevator determined the maximum single, mean daily, and mean annual concentrations at different distances from the source of dust emission. The mean ratio of these concentrations was 12.1:4.3:1, respectively. The calculated concentration-effect and concentration-time relationships provided evidence for the maximum single, mean daily, and mean annual allowable concentrations for grain dust in the ambient air.
Kachangoon, Rawikan; Vichapong, Jitlada; Burakham, Rodjana; Santaladchaiyakit, Yanawath; Srijaranai, Supalax
2018-05-12
An effective pre-concentration method, namely amended-cloud point extraction (CPE), has been developed for the extraction and pre-concentration of neonicotinoid insecticide residues. The studied analytes including clothianidin, imidacloprid, acetamiprid, thiamethoxam and thiacloprid were chosen as a model compound. The amended-CPE procedure included two cloud point processes. Triton™ X-114 was used to extract neonicotinoid residues into the surfactant-rich phase and then the analytes were transferred into an alkaline solution with the help of ultrasound energy. The extracts were then analyzed by high-performance liquid chromatography (HPLC) coupled with a monolithic column. Several factors influencing the extraction efficiency were studied such as kind and concentration of surfactant, type and content of salts, kind and concentration of back extraction agent, and incubation temperature and time. Enrichment factors (EFs) were found in the range of 20⁻333 folds. The limits of detection of the studied neonicotinoids were in the range of 0.0003⁻0.002 µg mL −1 which are below the maximum residue limits (MRLs) established by the European Union (EU). Good repeatability was obtained with relative standard deviations lower than 1.92% and 4.54% for retention time ( t R ) and peak area, respectively. The developed extraction method was successfully applied for the analysis of water samples. No detectable residues of neonicotinoids in the studied samples were found.
Quality of surface and ground waters, Yakima Indian Reservation, Washington, 1973-74
Fretwell, M.O.
1977-01-01
This report describes the quality of the surface and ground waters of the Yakima Indian Reservation in south-central Washington, during the period November 1973-October 1974. The average dissolved-solids concentrations ranged from 48 to 116 mg/L (milligrams per liter) in the mountain streams, and from 88 to 372 mg/L in the lowland streams, drains, and a canal. All the mountain streams contain soft water (classified as 0-60 mg/L hardness as CaC03), and the lowland streams, drains, and canal contain soft to very hard water (more than 180 mg/L hardness as CaC03). The water is generally of suitable quality for irrigation, and neither salinity nor sodium hazards are a problem in waters from any of the streams studied. The specific conductance of water from the major aquifers ranged from 20 to 1 ,540 micromhos. Ground water was most dilute in mineral content in the Klickitat River basin and most concentrated in part of the Satus Creek basin. The ground water in the Satus Creek basin with the most concentrated mineral content also contained the highest percentage composition of sulfate, chloride, and nitrate. For drinking water, the nitrate-nitrogen concentrations exceeded the U.S. Public Health Service 's recommended limit of 10 mg/L over an area of several square miles, with a maximum observed concentration of 170 mg/L. (Woodard-USGS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savich, N.A.; Andrev, V.E.
1986-11-01
The Venera-15 and -16 satellites, using the method of dual-frequency radio transillumination, determined the altitude distribution of electron concentration over the surface of Venus in the planet's polar regions near its terminator for solar zenith angles of 90 less than or equal to /ZETA/theta less than or equal to 96/sup 0/. The measurements were conducted from October 25 through November 5, 1983, in a period of comparatively low solar activity. In the experiments, the on-board transmitter emitted two coherent signals in the decimeter and centimeter bands at the times of the satellites' settings or occultations behind the planetary disk andmore » of their emerging from behind it, and the terrestrial receiver complex carried out measurements of the phase and frequency differences of these signals. It was found that, at 92 < /ZETA//PHI/ < 96/sup 0/, the distribution of electron concentration can have either one or two ionization maxima. The concentration at the upper maximum, situated at altitudes of 140-150 km, decreases regularly with increase of /ZETA/theta, while at the lower maximum it is practically independent of /ZETA/theta. The altitude range of the ionosphere in the vicinity of the terminator is as much as 10/sup 3/ km. At altitudes h > 200 km a plasma layer forms with an almost constant electron concentration of about 10/sup 3/ cm/sup -3/.« less
INFLUENCE OF ANESTHESIA ON EXPERIMENTAL NEUROTROPIC VIRUS INFECTIONS
Sulkin, S. Edward; Zarafonetis, Christine
1947-01-01
1. Experimental neurotropic virus infections previously shown to be altered by ether anesthesia are caused by viruses destroyed in vitro by anesthetic ether; this group includes the viruses of Eastern equine encephalomyelitis, Western equine encephalomyelitis, and St. Louis encephalitis. 2. Experimental neurotropic virus infections which were not altered by ether anesthesia are caused by viruses which are refractory to the in vitro virucidal activity of even large amounts of anesthetic ether; this group includes the viruses of poliomyelitis (Lansing) and rabies. 3. Quantitative studies of the in vitro virucidal activity of ether indicate that concentrations of this anesthetic within the range found in central nervous system tissues of anesthetized animals possess no virucidal activity. 4. The lowest concentration of ether possessing significant virucidal capacity is more than fifteen times the maximum concentration of the anesthetic tolerated by the experimental animal. 5. Concentrations of ether 50 to 100 times the maximum amount tolerated by the anesthetized animal are capable of destroying large amounts of susceptible viruses, the average lethal dose (LD50) being reduced more than 5 log units. 6. On the basis of the studies presented in this report, it cannot be concluded that direct virucidal activity of ether is not the underlying mechanism of the inhibition by anesthesia of certain experimental neurotropic virus infections. Indirect inhibition of the virus by the anesthetic through an alteration in the metabolism of either the host cell or the host animal as a whole appears at this point to be a more likely possibility. PMID:19871636
Benzene and its methyl-derivatives: derivation of maximum exposure levels in automobiles.
Schupp, Thomas; Bolt, Hermann M; Jaeckh, Rudolf; Hengstler, Jan G
2006-01-05
Automobile drivers are exposed to several organic hydrocarbons. Concentrations measured in passenger compartments have been reported to range between 13 and 560 microg/m(3) for benzene, 33-258 microg/m(3) for toluene, 20-250 microg/m(3) for xylene (mixed isomers) and 3-23 microg/m(3) for trimethylbenzene (mixed isomers). These aromatic hydrocarbons are emitted from gasoline and from materials inside a car. In the present study we evaluated, whether these exposures pose a potential risk to the health of drivers. Therefore, we derived maximum exposure levels inside cars for chronic (ELIA(chronic)) and short-term (STELIA) exposure. The lowest ELIA's(chronic) for benzene, toluene, xylene and trimethylbenzene were 0.083, 1.2, 8.8 and 0.31 mg/m(3), respectively. The respective STELIA's were 16, 30, 29 and 25 mg/m(3). Obviously concentrations of toluene, xylene and trimethylbenzene inside cars do not exceed their individual STELIA's. In contrast, benzene seems to be problematic, since concentrations inside cars amount up to 0.56 mg/m(3), which exceeds the ELIA(chronic) derived for benzene. This should not be underestimated, since benzene is a genotoxic carcinogen that probably acts by non-threshold mechanisms. In conclusion, concentrations of toluene, xylene and trimethylbenzene usually observed inside cars are unlikely to pose a risk to the health of drivers. A systematic toxicological evaluation of the risk associated with benzene exposure in cars seems to be necessary.
Orlando, James L.; McWayne, Megan; Sanders, Corey; Hladik, Michelle
2013-01-01
Surface-water samples were collected from sites within the Sacramento-San Joaquin Delta and Grizzly Bay, California, during the spring in 2011 and 2012, and they were analyzed by the U.S. Geological Survey for a suite of 99 current-use pesticides and pesticide degradates. Samples were collected and analyzed as part of a collaborative project studying the occurrence and characteristics of phytoplankton in the San Francisco Estuary. Samples were analyzed by two separate laboratory methods employing gas chromatography/mass spectrometry or liquid chromatography with tandem mass spectrometry. Method detection limits ranged from 0.9 to 10.5 nanograms per liter (ng/L). Eighteen pesticides were detected in samples collected during 2011, and the most frequently detected compounds were the herbicides clomazone, diuron, hexazinone and metolachlor, and the diuron degradates 3,4-dichloroaniline and N-(3,4-dichlorophenyl)-N’-methylurea (DCPMU). Concentrations for all compounds were less than 75 ng/L, except for the rice herbicide clomazone and the fungicide tetraconazole, which had maximum concentrations of 535 and 511 ng/L, respectively. In samples collected in 2012, a total of 16 pesticides were detected. The most frequently detected compounds were the fungicides azoxystrobin and boscalid and the herbicides diuron, hexazinone, metolachlor, and simazine. Maximum concentrations for all compounds detected in 2012 were less than 75 ng/L, except for the fungicide azoxystrobin and the herbicides hexazinone and simazine, which were detected at up to 188, 134, and 140 ng/L, respectively.
Methane Concentrations and Biogeochemistry in Lake Sediments from Stordalen Mire, Sub-Arctic Sweden
NASA Astrophysics Data System (ADS)
Halloran, M.; DeStasio, J.; Erickson, L.; Johnson, J. E.; Varner, R. K.; Setera, J.; Prado, M. F.; Wik, M.; Crill, P. M.
2013-12-01
Lake sediments are an important global carbon sink of both allochthonous and autochthonous inputs. However, lakes are also known to emit carbon in gaseous form, most often as methane (CH4) or carbon dioxide (CO2), which are potent greenhouse gases. As northern latitudes warm, it is increasingly important to understand these gases and the sediments that store them. In July of 2013 we took 48 cores at 16 sites throughout three lakes surrounding a mire underlain by degrading permafrost in sub-arctic Sweden. The goal was to characterize the sedimentology and geochemistry of the lake sediments to better understand the production, distribution, and flux of CO2 and CH4 from these lakes. Villasjön is a shallow lake less than 1.5 meters deep, Mellan Harrsjön has a maximum depth of 7 meters and is stream-fed, and Inre Harrsjön has a maximum depth of 5 meters and is connected to Mellan Harrsjön. Published radiocarbon dates suggest that all three lakes formed approximately 3400 years ago. At each sample site, we retrieved 2 to 4 cores from the lake bottom, approximately 40-80 cm in length. The cores were sub-sampled for measurements of bulk TOC, TC, TN, TS, and CaCO3 (by difference) using a CHNS Elemental Analyzer, and grain size using a laser particle size analyzer. Headspace CO2 and CH4 by gas chromatography and infrared gas analysis (IRGA) yielded production rates and CH4 sediment concentrations. Dissolved inorganic carbon (DIC) from porewater extractions were analyzed using IRGA and stable carbon isotopes of DIC were analyzed via a Quantum Cascade Laser. The recovered sediments in the cores from all three lakes were composed of three layers: an upper layer of organic rich sediment (30-40 cm thick), a middle transition layer of mixed organic and lithogenic materials (5-10 cm thick), and a deep layer of grey lithogenic clay with less organic carbon (of variable thickness). Preliminary results from the 12 Villasjön sites indicate that CH4 is present and produced from the organic-rich layer in the upper 20-40 cm of the sediment. TOC values in this lake range from <1 to 44 wt. %. The TOC maximum (approximately 20-40 wt. %) consistently occurred at the same depth as the methane maximum, centered at ~20 cm. A TOC minimum zone (approximately 0-5 wt. %) occurs from 35-80 cm. Particle size distributions in this lake are dominated by silt and sand size fractions (>4 um). Calcium carbonate (CaCO3) concentrations varied, but the maximum always occurred in the upper 20 cm of the core. Core sites with known high lake surface methane fluxes from bubble trap measurements also show high methane concentrations in the sediment, high DIC concentrations in the pore fluids, and δ 13C signatures of CO2 ranging from 0 to 10, consistent with methanogenesis. Similar results are expected from the integration of pending sediment methane profiles with these data from the other two lakes: Mellan Harrsjön and Inre Harrsjön. Future work, including 14C dating, microbial community profiling, and δ13C signatures of CH4 will yield more insight into the biogeochemical mechanisms that regulate sediment methane distributions. 13C isotopes of methane and DIC should indicate if methane consumption through AOM or diffusion is controlling its distribution.
de Wit, R.; Beijnen, J. H.; van Tellingen, O.; Schellens, J. H.; de Boer-Dennert, M.; Verweij, J.
1996-01-01
We investigated the pharmacokinetic profile and the efficacy of ondansetron (day 1) given as 16 mg suppository once a day, as compared with ondansetron 8 mg tablets twice daily, in patients receiving moderately emetogenic chemotherapy. The study was primarily aimed at investigating the pharmacokinetics and was part of a large multinational, randomised, double-blind, double-dummy efficacy trial. Pharmacokinetic data were obtained in a total of 20 patients, 11 of whom had received a suppository containing ondansetron, and nine patients had received the oral formulation. The median area under the plasma concentration curve (AUC) obtained with the oral formulation was 226 ng ml-1h-1 (range 91-750), and the median maximum plasma level (Cmax) was 50.5 ng ml-1 (range 24.7-199.6) after a dose of 8 mg. For the ondansetron suppository the median AUC was 140 ng ml-1h-1 range (77-405) and the median Cmax was 17.1 ng ml-1 (range 13-48.3) after a dose of 16 mg. The systemic exposure after correction for the dose difference after the suppository was on average 70% lower than after the tablet. The median time to reach the maximum level (Tmax) was 60 min (range 28-120) with the oral formulation and 209 min (range 90-420) with the suppository. For both the tablet and suppository, there was no apparent relationship between either Cmax or AUC, and efficacy. Although the patient numbers were too small for a formal exposure-response relationship to be derived, the slightly poorer pharmacokinetic performance of the suppository did not appear to be associated with a lessening of control of emesis following chemotherapy. The study demonstrates that the pharmacokinetic analysis of a once-daily 16 mg ondansetron suppository results in appropriate plasma concentrations and AUC, and that this rectal formulation is effective in the protection against nausea and vomiting associated with cyclophosphamide chemotherapy. This formulation will provide a useful alternative to the currently available oral formulation. PMID:8688345
de Wit, R; Beijnen, J H; van Tellingen, O; Schellens, J H; de Boer-Dennert, M; Verweij, J
1996-07-01
We investigated the pharmacokinetic profile and the efficacy of ondansetron (day 1) given as 16 mg suppository once a day, as compared with ondansetron 8 mg tablets twice daily, in patients receiving moderately emetogenic chemotherapy. The study was primarily aimed at investigating the pharmacokinetics and was part of a large multinational, randomised, double-blind, double-dummy efficacy trial. Pharmacokinetic data were obtained in a total of 20 patients, 11 of whom had received a suppository containing ondansetron, and nine patients had received the oral formulation. The median area under the plasma concentration curve (AUC) obtained with the oral formulation was 226 ng ml-1h-1 (range 91-750), and the median maximum plasma level (Cmax) was 50.5 ng ml-1 (range 24.7-199.6) after a dose of 8 mg. For the ondansetron suppository the median AUC was 140 ng ml-1h-1 range (77-405) and the median Cmax was 17.1 ng ml-1 (range 13-48.3) after a dose of 16 mg. The systemic exposure after correction for the dose difference after the suppository was on average 70% lower than after the tablet. The median time to reach the maximum level (Tmax) was 60 min (range 28-120) with the oral formulation and 209 min (range 90-420) with the suppository. For both the tablet and suppository, there was no apparent relationship between either Cmax or AUC, and efficacy. Although the patient numbers were too small for a formal exposure-response relationship to be derived, the slightly poorer pharmacokinetic performance of the suppository did not appear to be associated with a lessening of control of emesis following chemotherapy. The study demonstrates that the pharmacokinetic analysis of a once-daily 16 mg ondansetron suppository results in appropriate plasma concentrations and AUC, and that this rectal formulation is effective in the protection against nausea and vomiting associated with cyclophosphamide chemotherapy. This formulation will provide a useful alternative to the currently available oral formulation.
Donor impurity incorporation during layer growth of Zn II-VI semiconductors
NASA Astrophysics Data System (ADS)
Barlow, D. A.
2017-12-01
The maximum halogen donor concentration in Zn II-VI semiconductors during layer growth is studied using a standard model from statistical mechanics. Here the driving force for incorporation is an increase in entropy upon mixing of the donor impurity into the available anion lattice sites in the host binary. A formation energy opposes this increase and thus equilibrium is attained at some maximum concentration. Considering the halogen donor impurities within the Zn II-VI binary semiconductors ZnO, ZnS, ZnSe and ZnTe, a heat of reaction obtained from reported diatomic bond strengths is shown to be directly proportional to the log of maximum donor concentration. The formation energy can then be estimated and an expression for maximum donor concentration derived. Values for the maximum donor concentration with each of the halogen impurities, within the Zn II-VI compounds, are computed. This model predicts that the halogens will serve as electron donors in these compounds in order of increasing effectiveness as: F, Br, I, Cl. Finally, this result is taken to be equivalent to an alternative model where donor concentration depends upon impurity diffusion and the conduction band energy shift due to a depletion region at the growing crystal's surface. From this, we are able to estimate the diffusion activation energy for each of the impurities mentioned above. Comparisons are made with reported values and relevant conclusions presented.
The biofilm electrode sensor system for acute toxicity and viral screening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holodnick, S.E.
1988-01-01
The biofilm electrode sensor (BFE) is designed for the rapid and sensitive detection of toxic and pathogenic environmental contaminants and industrial effluents. It includes a dissolved oxygen electrode which senses respiration changes induced in a biomass film. This study assessed the effects of five chemical on biofilms of Saccharomyces cerevisiae, and polio virus on biofilms of Buffalo Green Monkey kidney cells (BGMk). Acute toxicity was assessed in 30 min, and viral infectivity in 15-20 hr. Potassium cyanide and cupric nitrate inhibited respiration in a similar manner, 2.5-68.2 %I and 30.2-68.8 %I, respectively. The response of the BFE to cyanide andmore » cupric ions occurred within 5-20 sec. Cadmium ions affected the BFE over the range of 50.0-1000 mg/l, but complexed with components in the support medium at lower concentrations. 2,4-dinitrophenol enhanced respiration in the concentration range of 10.0-50.0 mg/l and inhibited respiration in the concentration range of 85.0-100.0 mg/l. A maximum response of 19 %I was noted at 1200 mg/l phenol, before dissolution of the polysulfone membrane filter occurred. Detection of viruses utilized BGMk cells exposed to 4.7 {times} 10{sup 4}{minus}4.7 {times} 10{sup 8} ID{sub 50}/ml poliovirus for 2 hr prior to immobilization. The response of the BFE was optimal at 15-20 hr, with a %I range of 5-40%.« less
Mullaney, John R.; Lorenz, David L.; Arntson, Alan D.
2009-01-01
A study of chloride in groundwater and surface water was conducted for the glacial aquifer system of the northern United States in forested, agricultural, and urban areas by analyzing data collected for the National Water-Quality Assessment Program from 1991 to 2004. Groundwater-quality data from a sampling of 1,329 wells in 19 states were analyzed. Chloride concentrations were greater than the secondary maximum contaminant level established by the U.S. Environmental Protection Agency of 250 milligrams per liter in 2.5 percent of samples from 797 shallow monitoring wells and in 1.7 percent of samples from 532 drinking-water supply wells. Water samples from shallow monitoring wells in urban areas had the largest concentration of chloride, followed by water samples from agricultural and forested areas (medians of 46, 12, and 2.9 milligrams per liter, respectively). An analysis of chloride:bromide ratios, by mass, and chloride concentrations compared to binary mixing curves for dilute groundwater, halite, sewage and animal waste, potassium chloride fertilizer, basin brines, seawater, and landfill leachate in samples from monitoring wells indicated multiple sources of chloride in samples from wells in urban areas and agricultural areas. Water from shallow monitoring wells in urban areas had the largest chloride:bromide ratio, and samples with chloride:bromide ratios greater than 1,000 and chloride concentrations greater than 100 milligrams per liter were dominated by halite; however, the samples commonly contained mixtures that indicated input from sewage or animal waste. Chloride:bromide ratios were significantly larger in samples from public-supply drinking-water wells than from private drinking-water wells, and ratios were significantly larger in all drinking-water wells in eastern and central regions of the glacial aquifer system than in west-central and western regions of the glacial aquifer system. Surface-water-quality data collected regularly during varying time periods from 1991-2004 from 100 basins dominated by forested, agricultural, or urban land in 15 states were analyzed to determine maximum measured chloride concentrations. Samples from 15 sites in east, central, and west-central areas, collected primarily in winter, had chloride concentrations higher than the U.S. Environmental Protection Agency recommended chronic criterion concentration for aquatic life of 230 milligrams per liter. Concentrations of chloride in base-flow samples were predictive of maximum measured chloride concentrations, indicating that inputs of chloride from groundwater and (or) point-source wastewater discharges increase the likelihood of samples exceeding the recommended chronic aquatic criterion. Multiple linear regression analyses showed that the density of major roads, potential evapotranspiration, and the percentage of annual runoff from saturated overland flow were significant factors in describing the range of maximum measured chloride concentrations in the basins studied. Chloride loads and yields were determined at 95 surface-water-monitoring stations in basins dominated by forested, agricultural, or urban land. Annual chloride yield was largest in the urban basins (median of 88 tons per square mile) and smallest in the forested basins (median of 6.4 tons per square mile). The median chloride yield in the agricultural basins was 15.4 tons per square mile. Multiple linear regression analyses showed that the density of highways (roads in U.S. highway system), the number of major wastewater discharges in the basin, potential evapotranspiration, and urban minus agricultural land area were significant factors in describing the range of average annual chloride yields. Upward trends in chloride loads were apparent in several urban basins for which additional long-term data were available. Increases in chloride loads over time may be related to a variety of factors, including increases in road area and consequent deicing, incr
High levels of migratable lead and cadmium on decorated drinking glassware.
Turner, Andrew
2018-03-01
Externally decorated glassware used for the consumption of beverages, purchased new or sourced second-hand, and including tumblers, beer glasses, shot glasses, wine glasses and jars, has been analysed for Pb and Cd by portable x-ray fluorescence (XRF) spectrometry. Out of 197 analyses performed on distinctly different colours and regions of enamelling on 72 products, Pb was detected in 139 cases and among all colours tested, with concentrations ranging from about 40 to 400,000μgg -1 (median=63,000μgg -1 ); Cd was detected in 134 cases and among all colours apart from gold leaf, with concentrations ranging from about 300 to 70,000μgg -1 (median=8460μgg -1 ). The frequent occurrence of these metals is attributed to their use in both the oxidic fluxes and coloured pigments of decorative enamels employed by the glass industry. A standard test involving extraction of the external surface to within 20mm of the rim (lip area) by 4% acetic acid and subsequent analysis by ICP was applied to selected positive samples (n=14). Lead concentrations normalised to internal volume exceeded limit values of 0.5mgL -1 in all but one case, with concentrations over 100mgL -1 returned by three products. Cadmium concentrations exceeded limit values of 4mgL -1 in five cases, with a maximum concentration of about 40mgL -1 . Repeating the experiment on five positive samples using a carbonated drink (Coca Cola Classic) resulted in lower extractable concentrations but non-compliance for Pb in all cases. The presence of high concentrations of total and extractable Pb and Cd in the decorated lip areas of a wide range of products manufactured in both China and Europe is cause for concern from a health and safety perspective. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
da Silva, Caroline Santos; Pinheiro, Fernanda Costa; do Amaral, Clarice Dias Britto; Nóbrega, Joaquim Araújo
2017-12-01
Some inorganic impurities are toxic to human health even when present at low concentrations and therefore must be carefully monitored in products as continuous use drugs. This work aimed the development of a simple microwave-assisted digestion procedure for different types of drugs and excipients and the analytical determination of elemental impurities according to the new regulations of the United States Pharmacopeia (USP) 232 and 233 using inductively coupled plasma optical emission spectrometry (ICP-OES) or inductively coupled plasma mass spectrometry (ICP-MS). Eight drugs samples and two excipients of different brands were microwave-assisted digested with inverse aqua regia. Addition and recovery experiments were performed according to J values, once permissible daily exposure value is specific for each element and estimated according to the maximum daily dose of drug indicated by the label. Samples were spiked with values of 1.5J in order to check accuracies for As, Cd, Hg, and Pb. Recoveries obtained by ICP-OES ranged from 75 to 148% and for ICP-MS ranged from 74 to 120%. The limits of detection for ICP-OES ranged from 0.4 to 17 mg kg- 1 and for ICP-MS from 7.4 to 41.6 μg kg- 1. Both analytical methods were adequate in terms of accuracies and sensitivities. Considering the maximum daily dose, all drugs samples and excipients contained As, Cd, Hg and Pb below the maximum limits stipulated by USP since all of them presented contents below respective limits of detection.
Maringe, David Tinayeshe; Chidewe, Cathrine; Benhura, Mudadi Albert; Mvumi, Brighton Marimanzi; Murashiki, Tatenda Clive; Dembedza, Mavis Precious; Siziba, Lucia; Nyanga, Loveness Kuziwa
2017-03-01
Aflatoxins, mainly produced by Aspergillus flavus and Aspergillus parasiticus, are highly toxic and may lead to health problems such as liver cancer. Exposure to aflatoxins may result from ingestion of contaminated foods. Levels of AFB 1 , AFB 2 , AFG 1 and AFG 2 in samples of groundnuts (Arachis hypogaea), beans (Phaseolus vulgaris), cowpeas (Vigna unguiculata) and bambara nuts (Vigna subterranean) grown by smallholder farmers in Shamva and Makoni districts, Zimbabwe, were determined at harvesting, using high performance liquid chromatography after immunoaffinity clean-up. Aflatoxins were detected in 12.5% of groundnut samples with concentrations ranging up to 175.9 µg/kg. Aflatoxins were present in 4.3% of the cowpea samples with concentrations ranging from 1.4 to 103.4 µg/kg. Due to alarming levels of aflatoxins detected in legumes versus maximum permissible levels, there is a need to assist smallholder farmers to develop harvest control strategies to reduce contamination of aflatoxins in legumes.
Contamination status of arsenic in fish and shellfish from three river basins in Ghana.
Gbogbo, Francis; Otoo, Samuel Darlynton; Asomaning, Obed; Huago, Robert Quaye
2017-08-01
Fish and shellfish are regularly consumed and sold in Ghana, yet studies on arsenic pollution in Ghana are limited largely to ground water. This study evaluated arsenic concentrations in seven species of shellfish and 10 species of fish inhabiting the mouth of Ankobra, Densu and Volta basins in Ghana and assessed the public health implications. Arsenic levels varied from 0.2 to 2.2 mg L -1 in the three rivers and were higher than WHO recommended values of 10 μg L -1 for drinking water. Except for Periophthalmus sp. and Tympanotonus fuscatus from the Ankobra in which arsenic was not detected, concentrations in the organisms ranged from 0.2 to 2.8 mg kg -1 . The maximum quantities of the organisms considered safe for consumption ranged from 375 to 5250 g per week. Caution however needs to be exercised as PTWI for arsenic needs revision, and some heavy metals such as mercury are more toxic than arsenic.
Occurrence of 222Rn in irrigation water from Wadi Al-Rummah Qassim province, Saudi Arabia
NASA Astrophysics Data System (ADS)
El-Taher, Atef; Alashrah, Saleh
2015-08-01
Naturally accruing radioactive materials in the environment have received attention since they may be present in high level and pose risk to human health. The present work deals with measuring of 222Rn in irrigation water samples from Wadi Al-Rummah, Qassim province, in central of Saudi Arabia. 222Rn concentrations were measured by RAD7. It was found that the concentration of 222Rn ranged from 2.1 ± 1.2 to 7.2 ± 1.5 BqL-1. These values are below 11.1 BqL-1 the maximum contamination level recommended from the U.S. Environmental Protection Agency. The calculated annual effective dose (AED) ranging from 7.5 to 26.1 µSv/y. It was evident that the total annual effective dose resulting from radon in irrigation groundwater in Wadi Al-Rummah in Qassim area were significantly lower than the recommended limit 1 mSv/y for the public.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niles, L.P.; Hashemi, F.
1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, ({sup 125}I)iodomelatonin, was examined using an incubation temperature (30{degree}C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing ({sup 125}I)iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax =more » 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus.« less
Occurrence of {sup 222}Rn in irrigation water from Wadi Al-Rummah Qassim province, Saudi Arabia
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Taher, Atef; Alashrah, Saleh
Naturally accruing radioactive materials in the environment have received attention since they may be present in high level and pose risk to human health. The present work deals with measuring of {sup 222}Rn in irrigation water samples from Wadi Al-Rummah, Qassim province, in central of Saudi Arabia. {sup 222}Rn concentrations were measured by RAD7. It was found that the concentration of {sup 222}Rn ranged from 2.1 ± 1.2 to 7.2 ± 1.5 BqL{sup −1}. These values are below 11.1 BqL{sup −1} the maximum contamination level recommended from the U.S. Environmental Protection Agency. The calculated annual effective dose (AED) ranging frommore » 7.5 to 26.1 µSv/y. It was evident that the total annual effective dose resulting from radon in irrigation groundwater in Wadi Al-Rummah in Qassim area were significantly lower than the recommended limit 1 mSv/y for the public.« less
Potential impacts of discharging tertiary-treated wastewater into Port Royal Sound, South Carolina
Speiran, G.K.; Belval, D.L.
1985-01-01
An assessment of physical characteristics of Port Royal Sound was combined with the results of a dye tracer study and with data collected from a previous environmental study to describe the impact on the water quality from discharging tertiary treated wastewater into the sound. Calculated velocities for the time of maximum velocity in the tidal cycle ranged from 2.32 ft/sec near the bottom to 4.65 ft/sec near the surface of the sound in a cross section in the vicinity of a proposed wastewater outfall. Vertical velocity distributions calculated for the time of maximum velocity were similar at all stations at which velocities were measured except the station in shallow water near the shore. A recent bathymetric chart of the vicinity of the proposed outfall indicates that a bar extends farther along the northern shore of Hilton Head Island than indicated on earlier nautical charts of Port Royal Sound. Continued extension of this bar could alter the impact on water quality from discharge of treated wastewater into the sound. Further study may be needed to monitor changes in the bar if the outfall is located between the bar and Hilton Head Island. Conservative calculations based on the results of the dye tracer study indicate that the discharge of 10.9 million gallons/day of wastewater having concentrations of biochemical oxygen demand and suspended solids of 15 mg/L will result in a maximum cumulative increase in concentrations of biochemical oxygen demand of < 0.01 mg/L and no increase in concentrations of suspended solids at high slack tide in the part of Port Royal Sound most affected by the proposed wastewater discharge. (Author 's abstract)
Smith, Michael L.; Nichols, Daniel C.; Underwood, Paula; Fuller, Zachary; Moser, Matthew A.; Flegel, Ron; Gorelick, David A.; Newmeyer, Matthew N.; Concheiro, Marta; Huestis, Marilyn A.
2014-01-01
Legitimate use of legal intranasal decongestants containing l-methamphetamine may complicate interpretation of urine drug tests positive for amphetamines. Our study hypotheses were that commonly used immunoassays would produce no false-positive results and a recently developed enantiomer-specific gas chromatography–mass spectrometry (GC–MS) procedure would find no d-amphetamine or d-methamphetamine in urine following controlled Vicks VapoInhaler administration at manufacturer's recommended doses. To evaluate these hypotheses, 22 healthy adults were each administered one dose (two inhalations in each nostril) of a Vicks VapoInhaler every 2 h for 10 h on Day 1 (six doses), followed by a single dose on Day 2. Every urine specimen was collected as an individual void for 32 h after the first dose and assayed for d- and l-amphetamines specific isomers with a GC–MS method with >99% purity of R-(−)-α-methoxy-α-(trifluoromethyl)phenylacetyl derivatives and 10 µg/L lower limits of quantification. No d-methamphetamine or d-amphetamine was detected in any urine specimen by GC–MS. The median l-methamphetamine maximum concentration was 62.8 µg/L (range: 11.0–1,440). Only two subjects had detectable l-amphetamine, with maximum concentrations coinciding with l-methamphetamine peak levels, and always ≤4% of the parent's maximum. Three commercial immunoassays for amphetamines EMIT® II Plus, KIMS® II and DRI® had sensitivities, specificities and efficiencies of 100, 97.8, 97.8; 100, 99.6, 99.6 and 100, 100, 100%, respectively. The immunoassays had high efficiencies, but our first hypothesis was not affirmed. The EMIT® II Plus assay produced 2.2% false-positive results, requiring an enantiomer-specific confirmation. PMID:25217541
Huang, Yue; Lu, Wen Wei; Chen, Bo; You, Jie; Wu, Min; Li, Shu Guang
2014-10-01
The concentrations of 16 phthalates in 164 commercial Chinese rice wines (CRW) were detected by GC-MS, and consumption data on CRW in different packaging types was investigated from 634 adult males in Shanghai using a food frequency questionnaire. Based on the principles of probabilistic modelling and cumulative risk assessment, the exposure and health risk of phthalates from CRW to adult males in Shanghai was evaluated. DMP, DEP, DIBP, DnBP, BBP, and DEHP were detected in the samples, the range of detection frequency of individual phthalates varied from 6.10% for BBP to 15.24% for DIBP, and the detected concentrations were 51.06-200.34 ng/mL. All the respondents consumed CRW, 90.69% of them consumed CRW 0.01-49.9 mL/d, the minimum value of the average daily intake of CRW was 6.25 mL/d, the median was 13.72 mL/d and the maximum was 300 mL/d. The median exposure level of the 6 detected Phthalates to adult males in Shanghai were 6.58-7.10 ng/(d•kg), and the maximum exposure level were 137.38-540.47 ng/(d•kg). The cumulative exposure health risk index (HI) based on the median and maximum exposure level of the 6 Phthalates (DMP, DEP, DIBP, DnBP, BBP, and DEHP) were 0.001147 and 0.063396, both were far less than 1. In conclusion, CRW were generally consumed by the adult males in Shanghai, although multiple phthalates were detected in commercial CRW, health risk of such exposure levels from commercial CRW to the target adult males in Shanghai was very low. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Dissolved methane in the Beaufort Sea and the Arctic Ocean, 1992-2009; sources and atmospheric flux
Lorenson, Thomas D.; Greinert, Jens; Coffin, Richard B.
2016-01-01
Methane concentration and isotopic composition was measured in ice-covered and ice-free waters of the Arctic Ocean during eleven surveys spanning the years of 1992-1995 and 2009. During ice-free periods, methane flux from the Beaufort shelf varies from 0.14 to 0.43 mg CH4 m-2 day-1. Maximum fluxes from localized areas of high methane concentration are up to 1.52 mg CH4 m-2 day-1. Seasonal buildup of methane under ice can produce short-term fluxes of methane from the Beaufort shelf that varies from 0.28 to 1.01 to mg CH4 m-2 day-1. Scaled-up estimates of minimum methane flux from the Beaufort Sea and pan-Arctic shelf for both ice-free and ice-covered periods range from 0.02 Tg CH4 yr-1 and 0.30 Tg CH4 yr-1 respectively to maximum fluxes of 0.18 Tg CH4 yr-1 and 2.2 Tg CH4 yr-1 respectively. A methane flux of 0.36 Tg CH4 yr-1from the deep Arctic Ocean was estimated using data from 1993-94. The flux can be as much as 2.35 Tg CH4 yr-1 estimated from maximum methane concentrations and wind speeds of 12 m/s, representing only 0.42% of the annual atmospheric methane budget of ~560 Tg CH4 yr-1. There were no significant changes in methane fluxes during the time period of this study. Microbial methane sources predominate with minor influxes from thermogenic methane offshore Prudhoe Bay and the Mackenzie River delta and may include methane from gas hydrate. Methane oxidation is locally important on the shelf and is a methane sink in the deep Arctic Ocean.
Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren
2015-01-01
Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0-21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming.
Geochemistry and source waters of rock glacier outflow, Colorado Front Range
Williams, M.W.; Knauf, M.; Caine, N.; Liu, F.; Verplanck, P.L.
2006-01-01
We characterize the seasonal variation in the geochemical and isotopic content of the outflow of the Green Lake 5 rock glacier (RG5), located in the Green Lakes Valley of the Colorado Front Range, USA. Between June and August, the geochemical content of rock glacier outflow does not appear to differ substantially from that of other surface waters in the Green Lakes Valley. Thus, for this alpine ecosystem at this time of year there does not appear to be large differences in water quality among rock glacier outflow, glacier and blockslope discharge, and discharge from small alpine catchments. However, in September concentrations of Mg2+ in the outflow of the rock glacier increased to more than 900 ??eq L-1 compared to values of less than 40 ??eq L-1 at all the other sites, concentrations of Ca2+ were greater than 4,000 ??eq L-1 compared to maximum values of less than 200 ??eq L-1 at all other sites, and concentrations of SO42- reached 7,000 ??eq L-1, compared to maximum concentrations below 120 ??eq L-1 at the other sites. Inverse geochemical modelling suggests that dissolution of pyrite, epidote, chlorite and minor calcite as well as the precipitation of silica and goethite best explain these elevated concentrations of solutes in the outflow of the rock glacier. Three component hydrograph separation using end-member mixing analysis shows that melted snow comprised an average of 30% of RG5 outflow, soil water 32%, and base flow 38%. Snow was the dominant source water in June, soil water was the dominant water source in July, and base flow was the dominant source in September. Enrichment of ?? 18O from - 10??? in the outflow of the rock glacier compared to -20??? in snow and enrichment of deuterium excess from +17.5??? in rock glacier outflow compared to +11??? in snow, suggests that melt of internal ice that had undergone multiple melt/freeze episodes was the dominant source of base flow. Copyright ?? 2005 John Wiley & Sons, Ltd.
Biodegradation of tech-hexachlorocyclohexane in a upflow anaerobic sludge blanket (UASB) reactor.
Bhat, Praveena; Kumar, M Suresh; Mudliar, Sandeep N; Chakrabarti, T
2006-04-01
Biodegradability of technical grade hexachlorocyclohexane (tech-HCH) was studied in an upflow anaerobic sludge blanket reactor (UASB) under continuous mode of operation in concentration range of 100-200 mg/l and constant HRT of 48 h. At steady state operation more than 85% removal of tech-HCH (upto 175 mg/l concentration) and complete disappearance of beta-HCH was observed. Kinetic constants in terms of maximum specific tech-HCH utilization rate (k) and half saturation velocity constant (K(L)) were found to be 11.88 mg/g/day and 8.11 mg/g/day, respectively. The tech-HCH degrading seed preparation, UASB reactor startup and degradation in continuous mode of operation of the reactor is presented in this paper.
NASA Astrophysics Data System (ADS)
Baglio, V.; Stassi, A.; Matera, F. V.; Di Blasi, A.; Antonucci, V.; Aricò, A. S.
An investigation of properties and operating parameters of a passive DMFC monopolar mini-stack, such as catalyst loading and methanol concentration, was carried out. From this analysis, it was derived that a proper Pt loading is necessary to achieve the best compromise between electrode thickness and number of catalytic sites for the anode and cathode reactions to occur at suitable rates. Methanol concentrations ranging from 1 M up to 10 M and an air-breathing operation mode were investigated. A maximum power of 225 mW was obtained at ambient conditions for a three-cell stack, with an active single cell area of 4 cm 2, corresponding to a power density of about 20 mW cm -2.
Performance of temperature-phased anaerobic digestion (TPAD) system treating dairy cattle wastes.
Sung, Shihwu; Santha, Harikishan
2003-04-01
The performance of temperature-phased anaerobic digestion (TPAD) system in the stabilization of dairy cattle wastes at high solids concentrations has never been evaluated, though the process has been established as a feasible alternative to conventional mesophilic processes for the treatment of municipal wastewater sludges. In this study, the TPAD system operating at a retention time of 14 days was subjected to varying total solids (TS) concentrations (3.46-14.54%) of dairy cattle wastes. At TS concentrations lower than 12.20%, corresponding to system volatile solids (VS) loadings in the range of 1.87-5.82 g VS/L/day, the system achieved an average VS removal of 40.2%. The maximum VS destruction of 42.6% was achieved at a TS concentration of 10.35%. Methane recovery from the wastes was consistently within 0.21-0.22 L/g VS fed. There was a drop in the system performance with respect to VS removal and methane recovery at TS concentrations higher than 10.35%. volatile fatty acid/alkalinity ratios less than 0.35 in the thermophilic reactor and 0.10 in the mesophilic reactor were found favorable for stable operation of the system. For the entire range of TS concentrations, the indicator organism counts in the biosolids were within the limits specified by USEPA in 40 CFR Part 503 regulations for Class A designation. After digestion, nearly 80-85% of total phosphorus was associated with the biosolids. Copyright 2002 Elsevier Science Ltd.