NASA Astrophysics Data System (ADS)
Ji, Qixing; Widner, Brittany; Jayakumar, Amal; Ward, Bess; Mulholland, Margaret
2017-04-01
In coastal upwelling regions, high surface productivity leads to high export and intense remineralization consuming oxygen. This, in combination with slow ventilation, creates oxygen minimum zones (OMZ) in eastern boundary regions of the ocean, such as the one off the Peruvian coast in the Eastern Tropical South Pacific. The OMZ is characterized by a layer of high nitrite concentration coinciding with water column anoxia. Sharp oxygen gradients are located above and below the anoxic layer (upper and lower oxyclines). Thus, the OMZ harbors diverse microbial metabolisms, several of which involve the production and consumption of nitrite. The sources of nitrite are ammonium oxidation and nitrate reduction. The sinks of nitrite include anaerobic ammonium oxidation (anammox), canonical denitrification and nitrite oxidation to nitrate. To quantify the sources and sinks of nitrite in the Peruvian OMZ, incubation experiments with 15N-labeled substrates (ammonium, nitrite and nitrate) were conducted on a research cruise in January 2015. The direct measurements of instantaneous nitrite production and consumption rates were compared with ambient nitrite concentrations to evaluate the turnover rate of nitrite in the OMZ. The distribution of nitrite in the water column showed a two-peak structure. A primary nitrite maximum (up to 0.5 μM) was located in the upper oxycline. A secondary nitrite maximum (up to 10 μM) was found in the anoxic layer. A nitrite concentration minimum occurred at the oxic-anoxic interface just below the upper oxycline. For the sources of nitrite, highest rates of ammonium oxidation and nitrate reduction were detected in the upper oxycline, where both nitrite and oxygen concentrations were low. Lower rates of nitrite production were detected within the layer of secondary nitrite maximum. For the sinks of nitrite, the rates of anammox, denitrification and nitrite oxidation were the highest just below the oxic-anoxic interface. Low nitrite consumption rates were also detected within the layer of the secondary nitrite maximum. The imbalances between nitrite production and consumption rates help to explain the distribution of nitrite in the water column. The primary nitrite maximum in the upper oxycline is consistent with ammonium oxidation exceeding nitrite oxidation. Nitrite consumption rates exceeding rates of nitrite production result in the low nitrite concentration at the oxic-anoxic interface. Within the secondary nitrite maximum in the anoxic layer, production and consumption of nitrite are equivalent within measurement error. These low turnover rates suggest the stability of the nitrite pool in the secondary nitrite maximum over long time scales (decades to millennial). These data could be implemented into biogeochemical models to decipher the origin and the evolution of nitrite distribution in the OMZs.
Cooling System to Treat Exercise-Induced Hyperthermia
2016-06-01
temperatures . Additionally, individual variations in sweat rates, ventilation rates, fitness levels, and oxygen consumption were not...gastrointestinal MHR maximum heart rate NASA National Aeronautics and Space Administration Tc core temperature UCHS uncompensated heat stress VO2peak peak oxygen consumption ...the effectiveness of a cooling pump based patient thermal management system supplied by Aspen Systems on lowering core body temperature
Streeter, Ian; Cheema, Umber
2011-10-07
Understanding the basal O(2) and nutrient requirements of cells is paramount when culturing cells in 3D tissue models. Any scaffold design will need to take such parameters into consideration, especially as the addition of cells introduces gradients of consumption of such molecules from the surface to the core of scaffolds. We have cultured two cell types in 3D native collagen type I scaffolds, and measured the O(2) tension at specific locations within the scaffold. By changing the density of cells, we have established O(2) consumption gradients within these scaffolds and using mathematical modeling have derived rates of consumption for O(2). For human dermal fibroblasts the average rate constant was 1.19 × 10(-17) mol cell(-1) s(-1), and for human bone marrow derived stromal cells the average rate constant was 7.91 × 10(-18) mol cell(-1) s(-1). These values are lower than previously published rates for similar cells cultured in 2D, but the values established in this current study are more representative of rates of consumption measured in vivo. These values will dictate 3D culture parameters, including maximum cell-seeding density and maximum size of the constructs, for long-term viability of tissue models.
Del Castillo, Luis F.; da Silva, Ana R. Ferreira; Hernández, Saul I.; Aguilella, M.; Andrio, Andreu; Mollá, Sergio; Compañ, Vicente
2014-01-01
Purpose We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (pO2) obtained from in vivo estimation previously reported by other authors.1 Methods Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes. Results Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low pO2) are considered at the interface cornea-tears film. Conclusion Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility. PMID:25649636
U.S. Navy Unmanned Test Methods and Performance Limits for Underwater Breathing Apparatus
2015-06-01
in liters per minute (STPD) ?̇?2 Metabolic oxygen consumption in liters per minute (STPD) max Maximum flow rate ?̇? Ventilation , first time...8-2 8.1.3 Oxygen consumption ... OXYGEN CONSUMPTION SIMULATION ........................................................................... 9-1 CHAPTER 9. NEDU TM 15-01 vii 9-1
Heydari, Payam; Varmazyar, Sakineh; Nikpey, Ahmad; Variani, Ali Safari; Jafarvand, Mojtaba
2017-01-01
Introduction Maximum oxygen consumption shows the maximum oxygen rate of muscle oxygenation that is acceptable in many cases, to measure the fitness between person and the desired job. Given that medical emergencies are important, and difficult jobs in emergency situations require people with high physical ability and readiness for the job, the aim of this study was to evaluate the maximum oxygen consumption, to determine the ability of work type among students of medical emergencies in Qazvin in 2016. Methods This study was a descriptive – analytical, and in cross-sectional type conducted among 36 volunteer students of medical emergencies in Qazvin in 2016. After necessary coordination for the implementation of the study, participants completed health questionnaires and demographic characteristics and then the participants were evaluated with step tests of American College of Sport Medicine (ACSM). Data analysis was done by SPSS version 18 and U-Mann-Whitney tests, Kruskal-Wallis and Pearson correlation coefficient. Results Average of maximum oxygen consumption of the participants was estimated 3.15±0.50 liters per minute. 91.7% of medical emergencies students were selected as appropriate in terms of maximum oxygen consumption and thus had the ability to do heavy and too heavy work. Average of maximum oxygen consumption evaluated by the U-Mann-Whitney test and Kruskal-Wallis, had significant relationship with age (p<0.05) and weight groups (p<0.001). There was a significant positive correlation between maximum oxygen consumption with weight and body mass index (p<0.001). Conclusion The results of this study showed that demographic variables of weight and body mass index are the factors influencing the determination of maximum oxygen consumption, as most of the students had the ability to do heavy, and too heavy work. Therefore, people with ability to do average work are not suitable for medical emergency tasks. PMID:28461880
Heydari, Payam; Varmazyar, Sakineh; Nikpey, Ahmad; Variani, Ali Safari; Jafarvand, Mojtaba
2017-03-01
Maximum oxygen consumption shows the maximum oxygen rate of muscle oxygenation that is acceptable in many cases, to measure the fitness between person and the desired job. Given that medical emergencies are important, and difficult jobs in emergency situations require people with high physical ability and readiness for the job, the aim of this study was to evaluate the maximum oxygen consumption, to determine the ability of work type among students of medical emergencies in Qazvin in 2016. This study was a descriptive - analytical, and in cross-sectional type conducted among 36 volunteer students of medical emergencies in Qazvin in 2016. After necessary coordination for the implementation of the study, participants completed health questionnaires and demographic characteristics and then the participants were evaluated with step tests of American College of Sport Medicine (ACSM). Data analysis was done by SPSS version 18 and U-Mann-Whitney tests, Kruskal-Wallis and Pearson correlation coefficient. Average of maximum oxygen consumption of the participants was estimated 3.15±0.50 liters per minute. 91.7% of medical emergencies students were selected as appropriate in terms of maximum oxygen consumption and thus had the ability to do heavy and too heavy work. Average of maximum oxygen consumption evaluated by the U-Mann-Whitney test and Kruskal-Wallis, had significant relationship with age (p<0.05) and weight groups (p<0.001). There was a significant positive correlation between maximum oxygen consumption with weight and body mass index (p<0.001). The results of this study showed that demographic variables of weight and body mass index are the factors influencing the determination of maximum oxygen consumption, as most of the students had the ability to do heavy, and too heavy work. Therefore, people with ability to do average work are not suitable for medical emergency tasks.
Optimization of Wireless Transceivers under Processing Energy Constraints
NASA Astrophysics Data System (ADS)
Wang, Gaojian; Ascheid, Gerd; Wang, Yanlu; Hanay, Oner; Negra, Renato; Herrmann, Matthias; Wehn, Norbert
2017-09-01
Focus of the article is on achieving maximum data rates under a processing energy constraint. For a given amount of processing energy per information bit, the overall power consumption increases with the data rate. When targeting data rates beyond 100 Gb/s, the system's overall power consumption soon exceeds the power which can be dissipated without forced cooling. To achieve a maximum data rate under this power constraint, the processing energy per information bit must be minimized. Therefore, in this article, suitable processing efficient transmission schemes together with energy efficient architectures and their implementations are investigated in a true cross-layer approach. Target use cases are short range wireless transmitters working at carrier frequencies around 60 GHz and bandwidths between 1 GHz and 10 GHz.
A broad-scale comparison of aerobic activity levels in vertebrates: endotherms versus ectotherms
Gomez, Juan Pablo; Mavrodiev, Evgeny V.
2017-01-01
Differences in the limits and range of aerobic activity levels between endotherms and ectotherms remain poorly understood, though such differences help explain basic differences in species' lifestyles (e.g. movement patterns, feeding modes, and interaction rates). We compare the limits and range of aerobic activity in endotherms (birds and mammals) and ectotherms (fishes, reptiles, and amphibians) by evaluating the body mass-dependence of VO2 max, aerobic scope, and heart mass in a phylogenetic context based on a newly constructed vertebrate supertree. Contrary to previous work, results show no significant differences in the body mass scaling of minimum and maximum oxygen consumption rates with body mass within endotherms or ectotherms. For a given body mass, resting rates and maximum rates were 24-fold and 30-fold lower, respectively, in ectotherms than endotherms. Factorial aerobic scope ranged from five to eight in both groups, with scope in endotherms showing a modest body mass-dependence. Finally, maximum consumption rates and aerobic scope were positively correlated with residual heart mass. Together, these results quantify similarities and differences in the potential for aerobic activity among ectotherms and endotherms from diverse environments. They provide insights into the models and mechanisms that may underlie the body mass-dependence of oxygen consumption. PMID:28202808
Del Castillo, Luis F; da Silva, Ana R Ferreira; Hernández, Saul I; Aguilella, M; Andrio, Andreu; Mollá, Sergio; Compañ, Vicente
2015-01-01
We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (P(O2) ) obtained from in vivo estimation previously reported by other authors. (1) METHODS: Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes. Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low P(O2)) are considered at the interface cornea-tears film. Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility. Copyright © 2014. Published by Elsevier Espana.
Design of a Slowed-Rotor Compound Helicopter for Future Joint Service Missions
2010-01-01
achieves a 208kt top speed at engine MCP and 11,000ft/ISA while having 216hp/ton installed power, based on engine MRP and MTOW. Figure 33...Intermediate rated power ISA International Standard Atmosphere MCP Maximum continuous power MRP Maximum rated power MTOW Maximum Takeoff Weight NDARC...NASA Design and Analysis of Rotorcraft SFC Specific fuel consumption SRC Slowed-Rotor Compound Symbols σ Rotor solidity (geometric) CD Drag
Growth and laccase production kinetics of Trametes versicolor in a stirred tank reactor.
Thiruchelvam, A T; Ramsay, Juliana A
2007-03-01
White rot fungi are a promising option to treat recalcitrant organic molecules, such as lignin, polycyclic aromatic hydrocarbons, and textile dyes, because of the lignin-modifying enzymes (LMEs) they secrete. Because knowledge of the kinetic parameters is important to better design and operate bioreactors to cultivate these fungi for degradation and/or to produce LME(s), these parameters were determined using Trametes versicolor ATCC 20869 (ATCC, American Type Culture Collection) in a magnetic stir bar reactor. A complete set of kinetic data has not been previously published for this culture. Higher than previously reported growth rates with high laccase production of up to 1,385 U l(-1) occurred during growth without [Formula: see text] or glucose limitation. The maximum specific growth rate averaged 0.94 +/- 0.23 day(-1), whereas the maximum specific substrate consumption rates for glucose and ammonium were 3.37 +/- 1.16 and 0.15 +/- 0.04 day(-1), respectively. The maximum specific oxygen consumption rate was 1.63 +/- 0.36 day(-1).
Energetic costs of pyrene metabolism in isolated hepatocytes of rainbow trout, Oncorhynchus mykiss.
Bains, Onkar S; Kennedy, Christopher J
2004-04-28
The respiratory costs of pyrene exposure and biotransformation were examined in isolated hepatocytes of adult rainbow trout, Oncorhynchus mykiss. Baseline oxygen consumption rates measured at an acclimation temperature of 7.5 degrees C and during an acute temperature increase to 15 degrees C were 10.1 +/- 0.1 and 22.6 +/- 0.4 ng O(2)/min/mg cells, respectively. Hepatocytes exposed to pyrene at 1, 5 and 10 microg/ml exhibited concentration-dependent increases in oxygen consumption. Respiration rates of cells exposed to these concentrations at their acclimation temperature were 12.5 +/- 0.1, 14.7 +/- 0.1 and 17.1 +/- 0.2 ng O(2)/min/mg cells, respectively. Exposure of cells to pyrene at 15 degrees C also elevated oxygen consumption to a maximum of 34.4 +/- 0.3 ng O(2)/min/mg cells, however, the relationship with pyrene concentration was biphasic. The major metabolite identified through a series of solvent extractions, acid hydrolysis, and synchronous fluorometric spectroscopy was conjugated 1-hydroxypyrene. At 7.5 degrees C, increased pyrene metabolism correlated with increased hepatocyte respiration rates. At 15 degrees C, however, pyrene metabolism reached a maximum at 5 microg/ml, suggesting saturation of detoxification enzymes, which correlated with maximum respiration rates at this concentration. Measures of respiration by isolated mitochondria indicated that changes in hepatocyte oxygen consumption were not through direct effects of pyrene on mitochondria. This study indicates that significant respiratory costs may be accrued by teleost hepatocytes actively metabolizing and secreting xenobiotic compounds.
NASA Astrophysics Data System (ADS)
Geng, Longwu; Jiang, Haifeng; Tong, Guangxiang; Xu, Wei
2017-03-01
Knowledge of oxygen consumption rates and asphyxiation points in fish is important to determine appropriate stocking and water quality management in aquaculture. The oxygen consumption rate and asphyxiation point in Chanodichthys mongolicus were detected under laboratory conditions using an improved respirometer chamber. The results revealed that more accurate estimates can be obtained by adjusting the volume of the respirometer chamber, which may avoid system errors caused by either repeatedly adjusting fish density or selecting different equipment specifications. The oxygen consumption rate and asphyxiation point of C. mongolicus increased with increasing water temperature and decreasing fish size. Changes in the C. mongolicus oxygen consumption rate were divided into three stages at water temperatures of 11-33°C: (1) a low temperature oxygen consumption rate stage when water temperature was 11-19°C, (2) the optimum temperature oxygen consumption rate stage when water temperature was 19-23°C, and (3) a high temperature oxygen consumption rate stage when water temperature was > 27°C. The temperature quotients (Q10) obtained suggested that C. mongolicus preferred a temperature range of 19-23°C. At 19°C, C. mongolicus exhibited higher oxygen consumption rates during the day when the maximum values were observed at 10:00 and 14:00 than at night when the minimum occurred at 02:00.
Han, Fang; Wang, Zhijie; Fan, Hong
2017-01-01
This paper proposed a new method to determine the neuronal tuning curves for maximum information efficiency by computing the optimum firing rate distribution. Firstly, we proposed a general definition for the information efficiency, which is relevant to mutual information and neuronal energy consumption. The energy consumption is composed of two parts: neuronal basic energy consumption and neuronal spike emission energy consumption. A parameter to model the relative importance of energy consumption is introduced in the definition of the information efficiency. Then, we designed a combination of exponential functions to describe the optimum firing rate distribution based on the analysis of the dependency of the mutual information and the energy consumption on the shape of the functions of the firing rate distributions. Furthermore, we developed a rapid algorithm to search the parameter values of the optimum firing rate distribution function. Finally, we found with the rapid algorithm that a combination of two different exponential functions with two free parameters can describe the optimum firing rate distribution accurately. We also found that if the energy consumption is relatively unimportant (important) compared to the mutual information or the neuronal basic energy consumption is relatively large (small), the curve of the optimum firing rate distribution will be relatively flat (steep), and the corresponding optimum tuning curve exhibits a form of sigmoid if the stimuli distribution is normal. PMID:28270760
Prediction of Maximum Oxygen Consumption from Walking, Jogging, or Running.
ERIC Educational Resources Information Center
Larsen, Gary E.; George, James D.; Alexander, Jeffrey L.; Fellingham, Gilbert W.; Aldana, Steve G.; Parcell, Allen C.
2002-01-01
Developed a cardiorespiratory endurance test that retained the inherent advantages of submaximal testing while eliminating reliance on heart rate measurement in predicting maximum oxygen uptake (VO2max). College students completed three exercise tests. The 1.5-mile endurance test predicted VO2max from submaximal exercise without requiring heart…
Kampman, Christel; Temmink, Hardy; Hendrickx, Tim L G; Zeeman, Grietje; Buisman, Cees J N
2014-06-15
Simultaneous nitrogen and methane removal by the slow growing denitrifying methanotrophic bacterium 'Candidatus Methylomirabilis oxyfera' offers opportunities for a new approach to wastewater treatment. However, volumetric nitrite consumption rates should be increased by an order of magnitude before application in wastewater treatment becomes possible. A maximum volumetric nitrite consumption rate of 36 mg NO2(-)-N/L d was achieved in a membrane bioreactor inoculated with wastewater sludge and operated at 20°C. This rate is similar to maximum rates reported in literature, though it was thought that by strict biomass retention using membranes, higher rates would be achieved. In experiments lasting several years, growth was not stable: every experiment showed a decrease in activity after 1-2 years. The cause remains unknown. Rates increased after addition of copper and operating a membrane bioreactor at shorter hydraulic retention times. Further research should focus on long-term effects of copper addition and operation at hydraulic retention times in the order of hours using membrane bioreactors. Copyright © 2014 Elsevier B.V. All rights reserved.
Yang, Seung-Won
2014-11-01
This study reports the average and SD of professional baseball players' cardiorespiratory endurance, maximum oxygen consumption, oxygen consumption during anaerobic threshold, maximum oxygen consumption of anaerobic threshold %, maximum heart rate, and heart rate of anaerobic threshold. We also report the comparison between pitchers and fielders. Considering the total number of results, percentile was used and results were classified into 5 grades. One professional baseball players' organization with more than 14 years of experience participated in this study. First, we observed that the average pitchers' V[Combining Dot Above]O2max was 53.64 ml·kg·min, whereas the average fielders' was 52.30 ml·kg·min. These values were lower than other sports players. Second, in case of the V[Combining Dot Above]O2AT, pitchers showed 39.35 ml·kg·min and fielders showed 39.96 ml·kg·min. %V[Combining Dot Above]O2AT showed a significant difference of 71.13% between pitchers and fielders-pitchers, whereas fielders showed 73.89% (p < 0.01). Third, maximal heart rates were measured at 188.69 b·min (pitchers) and 187.79 b·min (fielders). These were lower than college baseball players and higher than other sports players. In conclusion, both professional baseball pitchers and fielders should be aware of the necessity of systematic cardiorespiratory endurance data analysis. Moreover, baseball teams, athletic trainers, and coaches should also be aware of the importance of cardiorespiratory endurance.
NASA Astrophysics Data System (ADS)
Alperin, M. J.; Albert, D. B.; Martens, C. S.
1994-11-01
Dissolved organic carbon (DOC) concentrations in anoxic marine sediments are controlled by at least three processes: (1) production of nonvolatile dissolved compounds, such as peptides and amino acids, soluble saccharides and fatty acids, via hydrolysis of particulate organic carbon (POC). (2) conversion of these compounds to volatile fatty acids and alcohols by fermentative bacteria. (3) consumption of volatile fatty acids and alcohols by terminal bacteria, such as sulfate reducers and methanogens. We monitored seasonal changes in concentration profiles of total DOC, nonacid-volatile (NAV) DOC and acid-volatile (AV) DOC in anoxic sediment from Cape Lookout Bight, North Carolina, USA, in order to investigate the factors that control seasonal variations in rates of hydrolysis, fermentation, and terminal metabolism. During the winter months, DOC concentrations increased continuously from 0.2 mM in the bottomwater to ~4 mM at a depth of 36 cm in the sediment column. During the summer, a large DOC maximum developed between 5 and 20 cm, with peak concentrations approaching 10 mM. The mid-depth summertime maximum was driven by increases in both NAV- and AV-DOC concentrations. Net NAV-DOC reaction rates were estimated by a diagenetic model applied to NAV-DOC concentration profiles. Depth-integrated production rates of NAV-DOC increased from February through July, suggesting that net rates of POC hydrolysis during this period are controlled by temperature. Net consumption of NAV-DOC during the late summer and early fall suggests reduced gross NAV-DOC production rates, presumably due to a decline in the availability of labile POC. A distinct subsurface peak in AV-DOC concentration developed during the late spring, when the sulfate depletion depth shoaled from 25 to 10 cm. We hypothesize that the AV-DOC maximum results from a decline in consumption by sulfate-reducing bacteria (due to sulfate limitation) and a lag in the development of an active population of methanogenic bacteria. A diagenetic model that incorporates a lag period in the sulfate reducer-methanogen transition successfully simulates the timing, magnitude, depth and shape of the AV-DOC peak.
A long-term bench-scale investigation of permanganate consumption by aquifer materials.
Xu, Xiuyuan; Thomson, Neil R
2009-11-20
In situ chemical oxidation (ISCO) applications using permanganate involve the injection or release of permanganate into the subsurface to destroy various target contaminants. Naturally occurring reduced components associated with aquifer materials can exert a significant oxidant demand thereby reducing the amount of permanganate available for the destruction of contaminants as well as reducing the overall rate of oxidation. Quantification of this natural oxidant demand (NOD) is a requirement for site-specific assessment and the design of cost-effective oxidant delivery systems. To further our understanding of the interaction between permanganate and aquifer materials, aerobic and anaerobic aquifer materials from eight representative sites throughout North America were tested in a series of systematic bench-scale experiments. Various permanganate to aquifer solids mass loading ratios at different initial permanganate concentrations in well-mixed batch reactors were monitored for >300 days. All NOD temporal profiles demonstrated an initial fast consumption rate followed by a persistent slower consumption rate. The data generated show that the mass loading ratio, the initial permanganate concentration, and the nature and quantity of reduced aquifer material species are the main factors controlling permanganate consumption rates. A higher initial permanganate concentration or a larger mass loading ratio produced a larger fast NOD consumption rate and generated a corresponding higher maximum NOD value. Hence, both the NOD temporal profile and the maximum NOD are not single-valued but are heavily dependent on the experimental conditions. Predictive relationships were developed to estimate the maximum NOD and the NOD at 7 days based on aquifer material properties. The concentration of manganese oxides deposited on the aquifer solids was highly correlated with the mass of permanganate consumed suggesting that passivation of NOD reaction sites occurred due to the formation of manganese oxide coating on the grains. A long-term NOD kinetic model was developed assuming a single fast and slow reacting oxidizable aquifer material species, passivation of NOD reaction sites, and the presence of an autocatalytic reaction. The developed model was able to successfully capture the observed NOD temporal profiles, and can be used to estimate in situ NOD behavior using batch reactor experimental data. The use of batch tests to provide data representative of in situ conditions should be used with caution.
Mousavi, Shokouh; Najafpour, Ghasem D; Mohammadi, Maedeh; Seifi, Mohammad Hasan
2018-04-01
Cultivation of microalgae in wastewater is a promising and cost-effective approach for both CO 2 biofixation and wastewater remediation. In this study, a new strain of Coelastrum sp. was isolated from cattle manure leachate. The isolated microalgae were then cultivated in wastewater. Effects of different sCOD concentrations (600, 750, 900, 1050 mg L -1 ) and light intensities (1000, 2300, 4600, 6900 and 10000 Lux) on biomass production, CO 2 consumption rate and nutrient removal from wastewater were investigated. The results showed that maximum cell growth and CO 2 consumption rate were 2.71 g L -1 and 53.12 mg L -1 day -1 , respectively, which were obtained in the wastewater with 750 mg L -1 sCOD and under the light intensity of 6900 Lux. The microalgae were able to completely consume all CO 2 after incubation period of 4 days. The highest sCOD, total Kjeldahl nitrogen (TKN), nitrate and total phosphorous (TP) removal at such conditions were 53.45, 91.18, 87.51 and 100%, respectively. The lipid content of microalgal biomass was also measured under different light intensities; maximum amount of lipid was determined to be 50.77% under illumination of 2300 Lux. Finally, the CO 2 consumption rate and biomass productivity of microalgae in semi-batch culture with continuous gas flow (CO 2 6%:N 2 94%) were investigated. The rate of CO 2 consumption and biomass productivity were 0.528 and 0.281 g L -1 day -1 , respectively. The TKN, nitrate, TP and sCOD removal rate of microalgae were 83.51, 80.91, 100, 41.4%, respectively.
Automatic Blood Pressure Measurements During Exercise
NASA Technical Reports Server (NTRS)
Weaver, Charles S.
1985-01-01
Microprocessor circuits and a computer algorithm for automatically measuring blood pressure during ambulatory monitoring and exercise stress testing have been under development at SRI International. A system that records ECG, Korotkov sound, and arm cuff pressure for off-line calculation of blood pressure has been delivered to NASA, and an LSLE physiological monitoring system that performs the algorithm calculations in real-time is being constructed. The algorithm measures the time between the R-wave peaks and the corresponding Korotkov sound on-set (RK-interval). Since the curve of RK-interval versus cuff pressure during deflation is predictable and slowly varying, windows can be set around the curve to eliminate false Korotkov sound detections that result from noise. The slope of this curve, which will generally decrease during exercise, is the inverse of the systolic slope of the brachial artery pulse. In measurements taken during treadmill stress testing, the changes in slopes of subjects with coronary artery disease were markedly different from the changes in slopes of healthy subjects. Measurements of slope and O2 consumption were also made before and after ten days of bed rest during NASA/Ames Research Center bed rest studies. Typically, the maximum rate of O2 consumption during the post-bed rest test is less than the maximum rate during the pre-bed rest test. The post-bed rest slope changes differ from the pre-bed rest slope changes, and the differences are highly correlated with the drop in the maximum rate of O2 consumption. We speculate that the differences between pre- and post-bed rest slopes are due to a drop in heart contractility.
Harvey, Prudence M; Thompson, Michael B
2006-09-01
The final moult in cicadas marks a major transition in lifestyle and is a behaviour that makes the cicada vulnerable to predation. Consequently, emergence times are short and, we predict, therefore the rate of energy consumption would be high. Hence, we measured the energetic cost of emergence in Cyclochila australasiae (green grocer) and Abricta curvicosta (floury baker) cicadas during the final moult from nymph to adult cicada. Maximum energy expended whilst emerging was compared between the sexes and species. Even though C. australasiae take longer to emerge than A. curvicosta, the mass-specific cost of emergence is not different between the two species (C. australasiae: 11.34+/-2.55 J g(-1); A. curvicosta: 12.91+/-1.90 J g(-1)). The mass-specific metabolic rates of fully emerged adults of both species are approximately twice those of the nymphs and the maximum metabolic rate during emergence is about 1.5 times higher than the resting metabolic rate of emerged adults. Emergence times, as indicated by rates of oxygen consumption, are longer than expected and probably reflect limitations in the oxygen capacity of the cicadas during moulting.
Integration of Rotor Aerodynamic Optimization with the Conceptual Design of a Large Civil Tiltrotor
2010-01-01
Rotor MCP Maximum Continuous Power MRP Maximum Rated Power (take-off power) NDARC NASA Design and Analysis of Rotorcraft OEI One Engine Inoperative...OGE Out of Ground Effect SFC Specific Fuel Consumption SNI Simultaneous Non-Interfering approach STOL Short Takeoff and Landing VTOL Vertical...that are assembled into a complete aircraft model. NDARC is designed for high computational efficiency. Performance is calculated with physics- based
Aweto, H A; Owoeye, O B A; Akinbo, S R A; Onabajo, A A
2012-01-01
Objective:Arterial hypertension is a medical condition associated with increased risks of of death, cardiovascular mortality and cardiovascular morbidity including stroke, coronary heart disease, atrial fibrillation and renal insufficiency. Regular physical exercise is considered to be an important part of the non-pharmacologictreatment of hypertension. The purpose of this study was to investigate the effects of dance movement therapy (DMT) on selected cardiovascular parameters and estimated maximum oxygen consumption in hypertensive patients. Fifty (50) subjects with hypertension participated in the study. They were randomly assigned to 2 equal groups; A (DMT group) and B (Control group). Group A carried out dance movement therapy 2 times a week for 4 weeks while group B underwent some educational sessions 2 times a week for the same duration. All the subjects were on anti-hypertensive drugs. 38 subjects completed the study with the DMTgroup having a total of 23 subjects (10 males and 13 females) and the control group 15 subjects (6 males and 9 females). Descriptive statistics of mean, standard deviation and inferential statistics of paired and independentt-testwere used for data analysis. Following four weeks of dance movement therapy, paired t-test analysis showed that there was a statistically significant difference in the Resting systolic blood pressure (RSBP) (p < 0.001*), Resting diastolic blood pressure (RDBP) (p < 0.001*), Resting heart rate (RHR) (p = 0.024*), Maximum heart rate (MHR) (p=0.002*) and Estimated oxygen consumption (VO2max) (p = 0.023*) in subjects in group A (p < 0.05) while there was no significant difference observed in outcome variables of subjects in group B (p > 0.05). Independent t-test analysis between the differences in the pre and post intervention scores of groups A and B also showed statistically significant differences in all the outcome variables (p <0.05). DMT was effective in improving cardiovascular parameters and estimated maximum oxygen consumption in hypertensive patients.
Streicher, Jeffrey W; Cox, Christian L; Birchard, Geoffrey F
2012-04-01
Although well documented in vertebrates, correlated changes between metabolic rate and cardiovascular function of insects have rarely been described. Using the very large cockroach species Gromphadorhina portentosa, we examined oxygen consumption and heart rate across a range of body sizes and temperatures. Metabolic rate scaled positively and heart rate negatively with body size, but neither scaled linearly. The response of these two variables to temperature was similar. This correlated response to endogenous (body mass) and exogenous (temperature) variables is likely explained by a mutual dependence on similar metabolic substrate use and/or coupled regulatory pathways. The intraspecific scaling for oxygen consumption rate showed an apparent plateauing at body masses greater than about 3 g. An examination of cuticle mass across all instars revealed isometric scaling with no evidence of an ontogenetic shift towards proportionally larger cuticles. Published oxygen consumption rates of other Blattodea species were also examined and, as in our intraspecific examination of G. portentosa, the scaling relationship was found to be non-linear with a decreasing slope at larger body masses. The decreasing slope at very large body masses in both intraspecific and interspecific comparisons may have important implications for future investigations of the relationship between oxygen transport and maximum body size in insects.
Yadav, Kunwar D; Tare, Vinod; Ahammed, M Mansoor
2011-06-01
The main objective of the present study was to determine the optimum stocking density for feed consumption rate, biomass growth and reproduction of earthworm Eisenia fetida as well as determining and characterising vermicompost quantity and product, respectively, during vermicomposting of source-separated human faeces. For this, a number of experiments spanning up to 3 months were conducted using soil and vermicompost as support materials. Stocking density in the range of 0.25-5.00 kg/m(2) was employed in different tests. The results showed that 0.40-0.45 kg-feed/kg-worm/day was the maximum feed consumption rate by E. fetida in human faeces. The optimum stocking densities were 3.00 kg/m(2) for bioconversion of human faeces to vermicompost, and 0.50 kg/m(2) for earthworm biomass growth and reproduction. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dual fuel diesel engine operation using LPG
NASA Astrophysics Data System (ADS)
Mirica, I.; Pana, C.; Negurescu, N.; Cernat, Al; Nutu, N. C.
2016-08-01
Diesel engine fuelling with LPG represents a good solution to reduce the pollutant emissions and to improve its energetic performances. The high autoignition endurance of LPG requires specialized fuelling methods. From all possible LPG fuelling methods the authors chose the diesel-gas method because of the following reasons: is easy to be implemented even at already in use engines; the engine does not need important modifications; the LPG-air mixture has a high homogeneity with favorable influences over the combustion efficiency and over the level of the pollutant emissions, especially on the nitrogen oxides emissions. This paper presents results of the theoretical and experimental investigations on operation of a LPG fuelled heavy duty diesel engine at two operating regimens, 40% and 55%. For 55% engine load is also presented the exhaust gas recirculation influence on the pollutant emission level. Was determined the influence of the diesel fuel with LPG substitution ratio on the combustion parameters (rate of heat released, combustion duration, maximum pressure, maximum pressure rise rate), on the energetic parameters (indicate mean effective pressure, effective efficiency, energetic specific fuel consumption) and on the pollutant emissions level. Therefore with increasing substitute ratio of the diesel fuel with LPG are obtained the following results: the increase of the engine efficiency, the decrease of the specific energetic consumption, the increase of the maximum pressure and of the maximum pressure rise rate (considered as criteria to establish the optimum substitute ratio), the accentuated reduction of the nitrogen oxides emissions level.
Varol, Memet; Kaya, Gülderen Kurt; Alp, Sumru Anık; Sünbül, Muhammet Raşit
2017-09-19
Although fish consumption has positive health effects, metals accumulated in fish can cause human health risks. In this study, the levels of ten metals in rainbow trout (Oncorhynchus mykiss) farmed in the Keban Dam Reservoir, which has the biggest rainbow trout production capacity in Turkey, were determined and compared with the maximum permissible levels (MPLs). Also, human health risks associated with rainbow trout consumption were assessed. The metal concentrations in rainbow trout were found below the MPLs. The estimated daily intake of each metal was much lower than the respective tolerable daily intake. The target hazard quotient (THQ) for individual metal and total THQ for combined metals did not exceed 1, indicating no health risk for consumers. The cancer risk (CR) value for inorganic arsenic was within the acceptable lifetime risk range of 10 -6 and 10 -4 . For carcinogenic and non-carcinogenic effects, the maximum allowable fish consumption rates were high enough to ensure the human health. According to these results, the consumption of rainbow trout farmed in the Keban Dam Reservoir does not pose a risk on human health.
Georgia fishery study: implications for dose calculations. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turcotte, M.D.S.
Fish consumption will contribute a major portion of the estimated individual and population doses from L-Reactor liquid releases and Cs-137 remobilization in Steel Creek. It is therefore important that the values for fish consumption used in dose calculations be as realistic as possible. Since publication of the L-Reactor Environmental Information Document (EID), data have become available on sport fishing in the Savannah River. These data provide SRP with a site-specific sport fish harvest and consumption values for use in dose calculations. The Georgia fishery data support the total population fish consumption and calculated dose reported in the EID. The datamore » indicate, however, that both the EID average and maximum individual fish consumption have been underestimated, although each to a different degree. The average fish consumption value used in the EID is approximately 3% below the lower limit of the fish consumption range calculated using the Georgia data. Maximum fish consumption in the EID has been underestimated by approximately 60%, and doses to the maximum individual should also be recalculated. Future dose calculations should utilize an average adult fish consumption value of 11.3 kg/yr, and a maximum adult fish consumption value of 34 kg/yr. Consumption values for the teen and child age groups should be increased proportionally: (1) teen average = 8.5; maximum = 25.9 kg/yr; and (2) child average = 3.6; maximum = 11.2 kg/yr. 8 refs.« less
Compañ, V; Aguilella-Arzo, M; Del Castillo, L F; Hernández, S I; Gonzalez-Meijome, J M
2017-11-01
This work is an analysis of the application of the generalized Monod kinetics model describing human corneal oxygen consumption during soft contact lens wear to models previously used by Chhabra et al. (J Biomed Mater Res B Appl Biomater, 2009a;90:202-209, Optom Vis Sci 2009b;86:454-466) and Larrea and Büchler (Invest Ophthalmol Vis Sci 2009;50:1076-1080). We use oxygen tension from in vivo estimations provided by Bonanno [Bonanno et al., Invest Ophthalmol Vis Sci 2002;43:371-376, and Bonanno et al 2009]. We consider four hydrogel and six silicone hydrogel lenses. The cornea is considered a single homogeneous layer, with constant oxygen permeability regardless of the type of lens worn. Our calculations yield different values for the maximum oxygen consumption rate Q c,max , whith differents oxygen tensions (high and low p c ) at the cornea-tears interface. Surprisingly, for both models, we observe an increase in oxygen consumption near an oxygen tension of 105 mmHg until a maximum is reached, then decreasing for higher levels of oxygen pressure. That is, when lowering the pressure of oxygen, the parameter Q c,max initially increases depending on the intensity of the change in pressure. Which, it could be related with the variation of the pH. Furthermore, it is also noted that to greater reductions in pressure, this parameter decreases, possibly due to changes in the concentration of glucose related to the anaerobic respiration. The averaged in vivo human corneal oxygen consumption rate of 1.47 × 10 -4 cm 3 of O 2 /cm 3 tissue s, with Monod kinetics model, considering all the lenses studied, is smaller than the average oxygen consumption rate value obtained using the Larrea and Büchler model. The impact that these calculations have on the oxygen partial pressure available at different depths in the corneal tissue is presented and discussed, taking into consideration previous models used in this study. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2269-2281, 2017. © 2016 Wiley Periodicals, Inc.
Fundamentals of Zoological Scaling.
ERIC Educational Resources Information Center
Lin, Herbert
1982-01-01
The following animal characteristics are considered to determine how properties and characteristics of various systems change with system size (scaling): skeletal weight, speed of running, height and range of jumping, food consumption, heart rate, lifetime, locomotive efficiency, frequency of wing-flapping, and maximum sizes of flying and hovering…
Arslan, Erşan; Aras, Dicle
2016-01-01
[Purpose] The aim of this study was to compare the body composition, heart rate variability, and aerobic and anaerobic performance between competitive cyclists and triathletes. [Subjects] Six cyclists and eight triathletes with experience in competitions voluntarily participated in this study. [Methods] The subjects’ body composition was measured with an anthropometric tape and skinfold caliper. Maximal oxygen consumption and maximum heart rate were determined using the incremental treadmill test. Heart rate variability was measured by 7 min electrocardiographic recording. The Wingate test was conducted to determine anaerobic physical performance. [Results] There were significant differences in minimum power and relative minimum power between the triathletes and cyclists. Anthropometric characteristics and heart rate variability responses were similar among the triathletes and cyclists. However, triathletes had higher maximal oxygen consumption and lower resting heart rates. This study demonstrated that athletes in both sports have similar body composition and aerobic performance characteristics. PMID:27190476
Cross-Layer Resource Allocation for Wireless Visual Sensor Networks and Mobile Ad Hoc Networks
2014-10-01
MMD), minimizes the maximum dis- tortion among all nodes of the network, promoting a rather unbiased treatment of the nodes. We employed the Particle...achieve the ideal tradeoff between the transmitted video quality and energy consumption. Each sensor node has a bit rate that can be used for both...Distortion (MMD), minimizes the maximum distortion among all nodes of the network, promoting a rather unbiased treatment of the nodes. For both criteria
Architecture and robustness tradeoffs in speed-scaled queues with application to energy management
NASA Astrophysics Data System (ADS)
Dinh, Tuan V.; Andrew, Lachlan L. H.; Nazarathy, Yoni
2014-08-01
We consider single-pass, lossless, queueing systems at steady-state subject to Poisson job arrivals at an unknown rate. Service rates are allowed to depend on the number of jobs in the system, up to a fixed maximum, and power consumption is an increasing function of speed. The goal is to control the state dependent service rates such that both energy consumption and delay are kept low. We consider a linear combination of the mean job delay and energy consumption as the performance measure. We examine both the 'architecture' of the system, which we define as a specification of the number of speeds that the system can choose from, and the 'design' of the system, which we define as the actual speeds available. Previous work has illustrated that when the arrival rate is precisely known, there is little benefit in introducing complex (multi-speed) architectures, yet in view of parameter uncertainty, allowing a variable number of speeds improves robustness. We quantify the tradeoffs of architecture specification with respect to robustness, analysing both global robustness and a newly defined measure which we call local robustness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wack, L. J., E-mail: linda-jacqueline.wack@med.uni
Purpose: To compare a dedicated simulation model for hypoxia PET against tumor microsections stained for different parameters of the tumor microenvironment. The model can readily be adapted to a variety of conditions, such as different human head and neck squamous cell carcinoma (HNSCC) xenograft tumors. Methods: Nine different HNSCC tumor models were transplanted subcutaneously into nude mice. Tumors were excised and immunoflourescently labeled with pimonidazole, Hoechst 33342, and CD31, providing information on hypoxia, perfusion, and vessel distribution, respectively. Hoechst and CD31 images were used to generate maps of perfused blood vessels on which tissue oxygenation and the accumulation of themore » hypoxia tracer FMISO were mathematically simulated. The model includes a Michaelis–Menten relation to describe the oxygen consumption inside tissue. The maximum oxygen consumption rate M{sub 0} was chosen as the parameter for a tumor-specific optimization as it strongly influences tracer distribution. M{sub 0} was optimized on each tumor slice to reach optimum correlations between FMISO concentration 4 h postinjection and pimonidazole staining intensity. Results: After optimization, high pixel-based correlations up to R{sup 2} = 0.85 were found for individual tissue sections. Experimental pimonidazole images and FMISO simulations showed good visual agreement, confirming the validity of the approach. Median correlations per tumor model varied significantly (p < 0.05), with R{sup 2} ranging from 0.20 to 0.54. The optimum maximum oxygen consumption rate M{sub 0} differed significantly (p < 0.05) between tumor models, ranging from 2.4 to 5.2 mm Hg/s. Conclusions: It is feasible to simulate FMISO distributions that match the pimonidazole retention patterns observed in vivo. Good agreement was obtained for multiple tumor models by optimizing the oxygen consumption rate, M{sub 0}, whose optimum value differed significantly between tumor models.« less
Tahara, Erich B; Cunha, Fernanda M; Basso, Thiago O; Della Bianca, Bianca E; Gombert, Andreas K; Kowaltowski, Alicia J
2013-01-01
Calorie restriction (CR) is an intervention known to extend the lifespan of a wide variety of organisms. In S. cerevisiae, chronological lifespan is prolonged by decreasing glucose availability in the culture media, a model for CR. The mechanism has been proposed to involve an increase in the oxidative (versus fermentative) metabolism of glucose. Here, we measured wild-type and respiratory incompetent (ρ(0)) S. cerevisiae biomass formation, pH, oxygen and glucose consumption, and the evolution of ethanol, glycerol, acetate, pyruvate and succinate levels during the course of 28 days of chronological aging, aiming to identify metabolic changes responsible for the effects of CR. The concomitant and quantitative measurements allowed for calculations of conversion factors between different pairs of substrates and products, maximum specific substrate consumption and product formation rates and maximum specific growth rates. Interestingly, we found that the limitation of glucose availability in CR S. cerevisiae cultures hysteretically increases oxygen consumption rates many hours after the complete exhaustion of glucose from the media. Surprisingly, glucose-to-ethanol conversion and cellular growth supported by glucose were not quantitatively altered by CR. Instead, we found that CR primed the cells for earlier, faster and more efficient metabolism of respiratory substrates, especially ethanol. Since lifespan-enhancing effects of CR are absent in respiratory incompetent ρ(0) cells, we propose that the hysteretic effect of glucose limitation on oxidative metabolism is central toward chronological lifespan extension by CR in this yeast.
Effects of TFM and Bayer 73 on in vivo oxygen consumption of the aquatic midge Chironomus tentans
Kawatski, J.A.; Dawson, V.K.; Reuvers, J.L.
1974-01-01
Exposure of fourth instar larvae of Chironomus tentans to 2.0-8.0 mg/liter of TFM (3-trifluormethyl-4-nitrophenol) for 6 hr at 22 A? 0.5 C in soft water resulted in a significantly increased rate of larval oxygen consumption compared to that of control larvae, as measured with the Warburg respirometer. Maximum stimulation of oxygen consumption occurred with 8.0 mg/liter of TFM, and 1.0 mg/liter of TFM had no measurable effect on basal respiration. When hardness of exposure water was progressively increased, the effect of TFM on oxygen consumption was diminished. Bayer 73 (5,2'-dichloro-4'-nitrosalicylanilide) stimulated oxygen consumption at 0.75 and 1.0 mg/liter, had no significant effect at concentrations less that 0.75 mg/liter, and inhibited oxygen consumption at concentrations of 1.20 mg/liter or greater. Mixtures of TFM and Bayer 73, in the ratio of 98:2, had no greater effect on oxygen consumption than TFM alone.
Malone, Stephen M.; McGue, Matt; Iacono, William G.
2009-01-01
Background The maximum number of alcoholic drinks consumed in a single 24-hr period is an alcoholism-related phenotype with both face and empirical validity. It has been associated with severity of withdrawal symptoms and sensitivity to alcoholism, genes implicated in alcohol metabolism, and amplitude of a measure of brain activity associated with externalizing disorders in general. In a previous study we found that the maximum number of drinks fathers had ever consumed in 24 hrs was associated with externalizing behaviors and disorders in preadolescent and adolescent children. The purpose of the present study was to determine whether maternal maximum consumption has similar correlates. Method We examined associations between maternal maximum consumption and alcohol dependence, respectively, and disruptive disorders and substance-related problems in two large independent population-based cohorts of 17-year-old adolescents. Results Maximum consumption was associated with conduct disorder, disruptive disorders in general, early substance use and misuse, and substance disorders in adolescent children regardless of sex. Associations were consistent across cohorts, providing internal replication. They also paralleled our previous findings regarding paternal status. They could not be explained by maternal alcohol dependence, effects of drinking during pregnancy, or paternal maximum consumption. They were not simple artifacts of the fact that maximum consumption is a continuous measure while alcohol dependence is dichotomous. Conclusions Despite deriving from a single question about lifetime behavior, parental maximum consumption appears to reflect vulnerability for mental health problems, especially substance-related ones, more directly than a diagnosis of alcohol dependence. PMID:20085606
Kuo, J; Shi, C; Cisewski, S; Zhang, L; Kern, M J; Yao, H
2011-07-01
To determine the regional cell density distribution and basal oxygen consumption rates (based on tissue volume and cell number) of temporomandibular joint (TMJ) discs and further examine the impact of oxygen tension on these rates. TMJ discs from pigs aged 6-8 months were divided into five regions: anterior, intermediate, posterior, lateral and medial. The cell density was determined using confocal laser scanning microscopy. The change in oxygen tension was recorded while TMJ disc explants were cultured in sealed metabolism chambers. The volume based oxygen consumption rate of explants was determined by theoretical curve-fitting of the recorded oxygen tension data with the Michaelis-Menten equation. The rate on a per-cell basis was calculated based on the cell density measurements and volume based rate measured in another group of discs. The overall cell density [mean, 95% confidence interval (CI)] was 51.3 (21.3-81.3) × 10(6) cells/mL wet tissue. Along the anteroposterior axis, the anterior band had 25.5% higher cell density than the intermediate zone (P<0.02) and 29.1% higher than the posterior band (P<0.008). Along the mediolateral axes, the medial region had 26.2% higher cell density than the intermediate zone (P<0.04) and 25.4% higher than the lateral region (P<0.045). The overall volume and cell based maximum oxygen consumption rates were 1.44 (0.44-2.44) μmol/mL wet tissue/h and 28.7 (12.2-45.2)nmol/10(6)cells/h, respectively. The central regions (intermediate, lateral, and medial) had significantly higher volume based (P<0.02) and cell based (P<0.005) oxygen consumption rates than the anterior and posterior bands. At high oxygen tension, the oxygen consumption rate remained constant, but dropped as oxygen tension fell below 5%. The TMJ disc had higher cell density and oxygen consumption rates than articular cartilage reported in the literature. These results suggest that a steeper oxygen gradient may exist in the TMJ disc and may be vulnerable to pathological events that impede nutrient supply. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Kuo, Jonathan; Shi, Changcheng; Cisewski, Sarah; Zhang, Lixia; Kern, Michael J.; Yao, Hai
2011-01-01
Objective To determine the regional cell density distribution and basal oxygen consumption rates (based on tissue volume and cell number) of temporomandibular joint (TMJ) discs and further examine the impact of oxygen tension on these rates. Design TMJ discs from pigs aged 6–8 months were divided into five regions: anterior, intermediate, posterior, lateral and medial. The cell density was determined using confocal laser scanning microscopy. The change in oxygen tension was recorded while TMJ disc explants were cultured in sealed metabolism chambers. The volume based oxygen consumption rate of explants was determined by theoretical curve fitting of the recoded oxygen tension data with the Michaelis-Menten equation. The rate on a per-cell basis was calculated based on the cell density measurements and volume based rate measured in another group of discs. Results The overall cell density (mean, 95% CI) was 51.3(21.3–81.3)×106cells/mL wet tissue. Along the anteroposterior axis, the anterior band had 25.5% higher cell density than the intermediate zone (p<0.02) and 29.1% higher than the posterior band (p<0.008). Along the mediolateral axes, the medial region had 26.2% higher cell density than the intermediate zone (p<0.04) and 25.4% higher than the lateral region (p<0.045). The overall volume and cell based maximum oxygen consumption rates were 1.44(0.44–2.44) μmol/mL wet tissue/hr and 28.7(12.2–45.2) nmol/106 cells/hr, respectively. The central regions (intermediate, lateral, and medial) had significantly higher volume based (p<0.02) and cell based (p<0.005) oxygen consumption rates than the anterior and posterior bands. At high oxygen tension, the oxygen consumption rate remained constant, but dropped as oxygen tension fell below 5%. Conclusions The TMJ disc had higher cell density and oxygen consumption rates than articular cartilage reported in the literature. These results suggest that a steeper oxygen gradient may exist in the TMJ disc and may be vulnerable to pathological events that impede nutrient supply. PMID:21397032
Silkin, V A; Chubchikova, I N
2007-01-01
We studied nonstationary kinetics of the uptake of phosphates and nitrates by the red marine algae Gelidium latifolium (Grev.) Born et Thur. and calculated constants of the Michaelis-Menten equation for these elements. In the area of 0-3 microM, the kinetics of phosphate consumption had the following coefficients: maximum rate of uptake 0.8 micromol/(g x h), constant of half-saturation 1.745 microM. For nitrate nitrogen at 0-30 microM, an adaptive strategy of uptake kinetics was noted with change of the equation parameters with time: after 1 h, the maximum rate of uptake was 5.1 micromol/(g x h) and constant of half-saturation 19 gM, while within 2 h, the maximum rate of uptake significantly increased. This could be related to the synthesis of nitrate reductase. Coupled with the uptake of nitrates, nonstationary kinetics of the release of nitrates in the surrounding medium had a one-peak pattern: the maximum concentration of nitrites in the medium and the time of its achievement increased with the initial concentration of nitrates. The maximum concentration of nitrites was 6 to 14% of the initial concentration in the medium.
Acute cardiovascular responses while playing virtual games simulated by Nintendo Wii®
Rodrigues, Gusthavo Augusto Alves; Felipe, Danilo De Souza; Silva, Elisangela; De Freitas, Wagner Zeferino; Higino, Wonder Passoni; Da Silva, Fabiano Fernandes; De Carvalho, Wellington Roberto Gomes; Aparecido de Souza, Renato
2015-01-01
[Purpose] This investigation evaluated the acute cardiovascular responses that occur while playing virtual games (aerobic and balance) emulated by Nintendo Wii®. [Subjects] Nineteen healthy male volunteers were recruited. [Methods] The ergospirometric variables of maximum oxygen consumption, metabolic equivalents, and heart rate were obtained during the aerobic (Obstacle Course, Hula Hoop, and Free Run) and balance (Soccer Heading, Penguin Slide, and Table Tilt) games of Wii Fit Plus® software. To access and analyze the ergospirometric information, a VO2000 analyzer was used. Normalized data (using maximum oxygen consumption and heart rate) were analyzed using repeated measures analysis of variance and Scheffe’s test. [Results] Significant differences were found among the balance and aerobic games in all variables analyzed. In addition, the Wii exercises performed were considered to be of light (balance games) and moderate (aerobic games) intensity in accordance with American College Sports Medicine exercise stratification. [Conclusion] Physical activity in a virtual environment emulated by Nintendo Wii® can change acute cardiovascular responses, primarily when Wii aerobic games are performed. These results support the use of the Nintendo Wii® in physical activity programs. PMID:26504308
Acute cardiovascular responses while playing virtual games simulated by Nintendo Wii(®).
Rodrigues, Gusthavo Augusto Alves; Felipe, Danilo De Souza; Silva, Elisangela; De Freitas, Wagner Zeferino; Higino, Wonder Passoni; Da Silva, Fabiano Fernandes; De Carvalho, Wellington Roberto Gomes; Aparecido de Souza, Renato
2015-09-01
[Purpose] This investigation evaluated the acute cardiovascular responses that occur while playing virtual games (aerobic and balance) emulated by Nintendo Wii(®). [Subjects] Nineteen healthy male volunteers were recruited. [Methods] The ergospirometric variables of maximum oxygen consumption, metabolic equivalents, and heart rate were obtained during the aerobic (Obstacle Course, Hula Hoop, and Free Run) and balance (Soccer Heading, Penguin Slide, and Table Tilt) games of Wii Fit Plus(®) software. To access and analyze the ergospirometric information, a VO2000 analyzer was used. Normalized data (using maximum oxygen consumption and heart rate) were analyzed using repeated measures analysis of variance and Scheffe's test. [Results] Significant differences were found among the balance and aerobic games in all variables analyzed. In addition, the Wii exercises performed were considered to be of light (balance games) and moderate (aerobic games) intensity in accordance with American College Sports Medicine exercise stratification. [Conclusion] Physical activity in a virtual environment emulated by Nintendo Wii(®) can change acute cardiovascular responses, primarily when Wii aerobic games are performed. These results support the use of the Nintendo Wii(®) in physical activity programs.
Inference on energetics of deep-sea fish that cannot be aged: The case of the hagfish
NASA Astrophysics Data System (ADS)
van der Meer, Jaap; Kooijman, Sebastiaan (Bas) A. L. M.
2014-11-01
Dynamic Energy Budget (DEB) theory is used to estimate maximum growth rates and age at maturity for two hagfish species, the Atlantic hagfish Myxine glutinosa and the Pacific hagfish Eptatretus stoutii. Neither direct measurements on growth nor aging methods are available for these species. Only limited information on, for example, length and mass at birth and at puberty, and on oxygen consumption versus mass is available. For the Atlantic hagfish, but not for the Pacific hagfish, estimated growth rates are much higher and estimated age at maturity is much lower than previously thought, which may have implications for fisheries management. Yet, whether or not these results are due to erroneous oxygen consumption measurements remains to be seen.
Aeroelastic Stability of the LCTR2 Civil Tiltrotor
2008-10-01
Airfoils MCP Maximum Continuous Power MRP Maximum Rated Power (take-off power) OGE Out of Ground Effect SFC Specific Fuel Consumption SLS Sea-Level...Ref. 6). Aircraft technology projections from the LCTR1 have been updated for the LCTR2 based on a service entry date of 2018. Table 1 summarizes...Length, ft 108.9 Wing span, ft 107.0 Wing loading, lb/ft2 107.4 Wing sweep −5.0 deg Engine power, hp 4×7500 SFC (at MRP , SLS), lb/hr/hp 0.373
Choe, Yuri; Han, Jae-Young; Choi, In-Sung; Park, Hyeng-Kyu
2018-06-01
Exercise intensity is a particularly important determinant of physiological responses to exercise training in patients with acute myocardial infarction. Heart rate (HR) is commonly used as a practical way of prescribing and monitoring exercise as specific intensities based on a linear relationship between the percentage of maximum HR (%HR max ) and the percentage of maximum oxygen consumption (%VO 2max ) regardless of age, gender, or exercise mode. To examine the change in variability in the correlation between %HR max and %VO 2max after acute myocardial infarction. Retrospective study. Regional cardio-cerebrovascular center at a tertiary hospital. A total of 66 patients were enrolled who were referred for cardiac rehabilitation (CR) after percutaneous intervention, and who had reached stage 3 of the modified Bruce Protocol (mBP) on an exercise tolerance test (ETT). There were 54 men and 12 women with an average age of 56.7 ± 9.48 years, ejection fraction (EF) of 56.4% ± 8.89%, and body mass index (BMI) of 24.73 ± 2.86 kg/m 2 . All patients participated in a 4-week outpatient CR program and underwent ETT with a gas analyzer to determine maximal heart rate and maximal oxygen consumption before CR and 1 month, 3 months, and 6 months after CR. VO 2max and HR max were defined as the highest values attained during the ETT. The HR and VO 2 values at each stage of the mBP were expressed as percentages of their maximum. %HR max and %VO 2max were calculated at each stage of the mBP. The maximum METs and VO 2max significantly improved at 1 month after CR, but not significantly at 3 and 6 months after CR. The correlation between VO 2max and HR max progressively changed in a favorable manner during CR. The relationship between %HR max and %VO 2max indicated a coefficient of variation before and 1, 3, and 6 months after of 0.800, 0.826, 0.832, and 0.880, respectively. This study showed that the %HR max correlates better with the %VO 2max in the late-stage post-AMI than in the initial stage. We should therefore set and monitor the exercise intensity using maximal oxygen consumption in the early stage of exercise training after onset of acute myocardial infarction. IV. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Concentrations and risks of organic and metal contaminants in Eurasian caviar.
Wang, Wei; Batterman, Stuart; Chernyak, Sergei; Nriagu, Jerome
2008-09-01
Caviar (fish roe of sturgeon) may contain high levels of contaminants. Concentrations of organic contaminants, including DDT, hexachlorocyclohexanes (HCHs), polychlorinated biphenyls (PCBs), brominated flame retardants (polybrominated diphenyl ethers (PBDEs)), and 23 metals were measured in three species of caviar (Acipenser Huso huso, Acipenser gueldenstaedti, and Acipenser stellatus) imported from Azerbaijan, Bulgaria, Iran, and Russia just prior to the 2006 export ban. PCB concentrations averaged 15.4+/-25.8 ng/g wet weight basis (wwt), DDT averaged 79+/-139 ng/g wwt, arsenic (As) averaged 960+/-486 ng/g, and PBDEs were detected in all samples. Cluster analyses grouped most of the Huso huso samples together, while most of the remaining clusters were grouped by origin. Trends of contaminant concentrations, estimated by incorporating data from earlier studies, show that PCB and DDT levels have been declining since 1978, and HCH levels since 2000. The maximum allowable daily consumption rate of caviar is limited by PCBs, DDTs and As. While the health risks are uncertain since consumption rates are unknown, declining concentrations and low consumption rates suggest that health advisories for caviar are unwarranted.
NASA Astrophysics Data System (ADS)
Nitnaware, Pravin Tukaram; Suryawanshi, Jiwak G.
2018-01-01
This paper shows exhaust gas recirculation (EGR) effects on multi-cylinder bi-fuel SI engine using blends of 0, 5, 10 and 15% hydrogen by energy with CNG. All trials are performed at a speed of 3000, 3500 and 4000 rpm with EGR rate of 0, 5, 10 and 15%, with equal spark timing and injection pressure of 2.6 bar. At specific hydrogen percentage with increase in EGR rate NOx emission reduces drastically and increases with increase in hydrogen addition. Hydrocarbon (HC) and carbon monoxide (CO) emission decreases with increase in speed and hydrogen addition. There is considerable improvement in brake thermal efficiency (BTE) and brake specific energy consumption (BSEC) at 15% EGR rate. At 3000 rpm, 5% EGR rate with 5% hydrogen had shown maximum cylinder pressure. Brake specific fuel consumption (b.s.f.c) increased with increase in EGR rate and decreased with increase in hydrogen addition for all speeds.
Effects of an Aerobic Exercise Program on Community-Based Adults with Mental Retardation.
ERIC Educational Resources Information Center
Pommering, Thomas L.; And Others
1994-01-01
Evaluation of a 10-week aerobic exercise program on 14 community-based adults with mental retardation found a 91.3% attendance rate and significant increases in maximal oxygen consumption, oxygen pulse, maximum ventilation, exercise stress test duration, and flexibility. However, no significant changes were observed in weight or body composition.…
Mookerjee, Shona A.; Gerencser, Akos A.; Nicholls, David G.; Brand, Martin D.
2017-01-01
Partitioning of ATP generation between glycolysis and oxidative phosphorylation is central to cellular bioenergetics but cumbersome to measure. We describe here how rates of ATP generation by each pathway can be calculated from simultaneous measurements of extracellular acidification and oxygen consumption. We update theoretical maximum ATP yields by mitochondria and cells catabolizing different substrates. Mitochondrial P/O ratios (mol of ATP generated per mol of [O] consumed) are 2.73 for oxidation of pyruvate plus malate and 1.64 for oxidation of succinate. Complete oxidation of glucose by cells yields up to 33.45 ATP/glucose with a maximum P/O of 2.79. We introduce novel indices to quantify bioenergetic phenotypes. The glycolytic index reports the proportion of ATP production from glycolysis and identifies cells as primarily glycolytic (glycolytic index > 50%) or primarily oxidative. The Warburg effect is a chronic increase in glycolytic index, quantified by the Warburg index. Additional indices quantify the acute flexibility of ATP supply. The Crabtree index and Pasteur index quantify the responses of oxidative and glycolytic ATP production to alterations in glycolysis and oxidative reactions, respectively; the supply flexibility index quantifies overall flexibility of ATP supply; and the bioenergetic capacity quantifies the maximum rate of total ATP production. We illustrate the determination of these indices using C2C12 myoblasts. Measurement of ATP use revealed no significant preference for glycolytic or oxidative ATP by specific ATP consumers. Overall, we demonstrate how extracellular fluxes quantitatively reflect intracellular ATP turnover and cellular bioenergetics. We provide a simple spreadsheet to calculate glycolytic and oxidative ATP production rates from raw extracellular acidification and respiration data. PMID:28270511
The Characterisation of a PEM Fuel-Cell System with a Focus on UAS Applications
2014-01-01
consumption at rated output Approximately 580 ml/min (at normal conditions) Maximum permissible cell temperature Operation: 50 °C; starting: 45 °C...serves to control the temperature of the stack as well as to provide oxygen for the reaction. Fur- thermore, the theoretically computed airflow rate is...The stack temperature has a significant effect on the performance of a fuel cell. Therefore, an understanding of how a fuel cell functions across a
An assessment of the industrial cogeneration market for parabolic dish systems
NASA Technical Reports Server (NTRS)
Doane, J. W.
1981-01-01
The value analysis technique used is straightforward. Maximum allowable life-cycle system cost for the cogeneration system is determined as the sum of the present value of fuels displaced plus the present value of revenues from exported power. Each conventional fuel displaced is described by a unit cost in the first year, a uniform annual consumption rate, and a uniform annual escalation rate for unit cost. Exported energy flows are treated the same as displaced energy.
NASA Astrophysics Data System (ADS)
Zhao, Qiang; Gao, Qian; Zhu, Mingyue; Li, Xiumei
2018-06-01
Water resources carrying capacity is the maximum available water resources supporting by the social and economic development. Based on investigating and statisticing on the current situation of water resources in Shandong Province, this paper selects 13 factors including per capita water resources, water resources utilization, water supply modulus, rainfall, per capita GDP, population density, per capita water consumption, water consumption per million yuan, The water consumption of industrial output value, the agricultural output value of farmland, the irrigation rate of cultivated land, the water consumption rate of ecological environment and the forest coverage rate were used as the evaluation factors. Then,the fuzzy comprehensive evaluation model was used to analyze the water resources carrying capacity Force status evaluation. The results showed : The comprehensive evaluation results of water resources in Shandong Province were lower than 0.6 in 2001-2009 and higher than 0.6 in 2010-2015, which indicating that the water resources carrying capacity of Shandong Province has been improved.; In addition, most of the years a value of less than 0.6, individual years below 0.4, the interannual changes are relatively large, from that we can see the level of water resources is generally weak, the greater the interannual changes in Shandong Province.
Fly Photoreceptors Demonstrate Energy-Information Trade-Offs in Neural Coding
Niven, Jeremy E; Anderson, John C; Laughlin, Simon B
2007-01-01
Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1–6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, ∼20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from ∼200 bits s−1 in D. melanogaster to ∼1,000 bits s−1 in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput. PMID:17373859
Diffusional limits to the consumption of atmospheric methane by soils
Striegl, Robert G.
1993-01-01
Net transport of atmospheric gases into and out of soil systems is primarily controlled by diffusion along gas partial pressure gradients. Gas fluxes between soil and the atmosphere can therefore be estimated by a generalization of the equation for ordinary gaseous diffusion in porous unsaturated media. Consumption of CH4 by methylotrophic bacteria in the top several centimeters of soil causes the uptake of atmospheric CH4 by aerated soils. The capacity of the methylotrophs to consume CH4 commonly exceeds the potential of CH4 to diffuse from the atmosphere to the consumers. The maximum rate of uptake of atmospheric CH4 by soil is, therefore, limited by diffusion and can be calculated from soil physical properties and the CH4 concentration gradient. The CH4 concentration versus depth profile is theoretically described by the equation for gaseous diffusion with homogeneous chemical reaction in porous unsaturated media. This allows for calculation of the in situ rate of CH4 consumption within specified depth intervals.
Jayasundara, Nishad; Somero, George N
2013-06-01
An insufficient supply of oxygen under thermal stress is thought to define thermal optima and tolerance limits in teleost fish. When under thermal stress, cardiac function plays a crucial role in sustaining adequate oxygen supply for respiring tissues. Thus, adaptive phenotypic plasticity of cardiac performance may be critical for modifying thermal limits during temperature acclimation. Here we investigated effects of temperature acclimation on oxygen consumption, cardiac function and blood oxygen carrying capacity of a eurythermal goby fish, Gillichthys mirabilis, acclimated to 9, 19 and 26°C for 4 weeks. Acclimation did not alter resting metabolic rates or heart rates; no compensation of rates was observed at acclimation temperatures. However, under an acute heat ramp, warm-acclimated fish exhibited greater heat tolerance (CTmax=33.3, 37.1 and 38.9°C for 9°C-, 19°C- and 26°C-acclimated fish, respectively) and higher cardiac arrhythmia temperatures compared with 9°C-acclimated fish. Heart rates measured under an acute heat stress every week during 28 days of acclimation suggested that both maximum heart rates and temperature at onset of maximum heart rates changed over time with acclimation. Hemoglobin levels increased with acclimation temperature, from 35 g l(-1) in 9°C-acclimated fish to 60-80 g l(-1) in 19°C- and 26°C-acclimated fish. Oxygen consumption rates during recovery from acute heat stress showed post-stress elevation in 26°C-acclimated fish. These data, coupled with elevated resting metabolic rates and heart rates at warm temperatures, suggest a high energetic cost associated with warm acclimation in G. mirabilis. Furthermore, acclimatory capacity appears to be optimized at 19°C, a temperature shown by behavioral studies to be close to the species' preferred temperature.
Current-day matters of administration and law in the field of high-rise construction
NASA Astrophysics Data System (ADS)
Voskresenskaya, Elena; Snetkov, Vitaly; Tebryaev, Alexander
2018-03-01
The article touches upon main reasons for high-rise construction: increase in energy consumption and limited availability of site in the big cities of Russia. Increase in energy consumption is related with construction, transportation and applying of ventilation and air conditioning systems. Nowadays, there are developed a lot of design and engineer solutions, that include autonomous systems as well as passive methods with low energy consumption rate, which are interrelated with local climate conditions. Certain architectural solutions contribute to energy consumption decrease: building orientation with respect to the cardinal directions, taking into account the prevailing cold wind directions, maximum glazing of the southern facades and minimum glazing of the northern ones, what plays a big role in hard climate conditions. Limited availability of site for construction in the big cities resulted in rapid development of the high-rise construction, which today prevails in terms of quantitative indicators of civil engineering.
ERIC Educational Resources Information Center
Tsao, Te Hung; Yang, Chang Bin; Hsu, Chin Hsing
2012-01-01
We investigated the effects of different exercise intensities on C-reactive protein (CRP), and whether changes in CRP levels correlated with blood lipid levels. Ten men exercised at 25%, 65%, and 85% of their maximum oxygen consumption rates. Participants' blood was analyzed for CRP and blood lipid levels before and after the exercise sessions.…
NASA Astrophysics Data System (ADS)
Huang, Guoqin; Zhang, Meiqin; Huang, Hui; Guo, Hua; Xu, Xipeng
2018-04-01
Circular sawing is an important method for the processing of natural stone. The ability to predict sawing power is important in the optimisation, monitoring and control of the sawing process. In this paper, a predictive model (PFD) of sawing power, which is based on the tangential force distribution at the sawing contact zone, was proposed, experimentally validated and modified. With regard to the influence of sawing speed on tangential force distribution, the modified PFD (MPFD) performed with high predictive accuracy across a wide range of sawing parameters, including sawing speed. The mean maximum absolute error rate was within 6.78%, and the maximum absolute error rate was within 11.7%. The practicability of predicting sawing power by the MPFD with few initial experimental samples was proved in case studies. On the premise of high sample measurement accuracy, only two samples are required for a fixed sawing speed. The feasibility of applying the MPFD to optimise sawing parameters while lowering the energy consumption of the sawing system was validated. The case study shows that energy use was reduced 28% by optimising the sawing parameters. The MPFD model can be used to predict sawing power, optimise sawing parameters and control energy.
Adams, Jenny; Schneider, Jonna; Hubbard, Matthew; McCullough-Shock, Tiffany; Cheng, Dunlei; Simms, Kay; Hartman, Julie; Hinton, Paul; Strauss, Danielle
2010-01-01
This study was designed to measure the functional capacity of healthy subjects during strenuous simulated police tasks, with the goal of developing occupation-specific training for cardiac rehabilitation of police officers. A calibrated metabolic instrument and an oxygen consumption data collection mask were used to measure the oxygen consumption and heart rates of 30 Dallas Police Academy officers and cadets as they completed an 8-event obstacle course that simulated chasing, subduing, and handcuffing a suspect. Standard target heart rates (85% of age-predicted maximum heart rate, or 0.85 x [220 - age]) and metabolic equivalents (METs) were calculated; a matched-sample t test based on differences between target and achieved heart rate and MET level was used for statistical analysis. Peak heart rates during the obstacle course simulation were significantly higher than the standard target heart rates (those at which treadmill stress tests in physicians' offices are typically stopped) (t(29) = 12.81, P < 0.001) and significantly higher than the suggested maximum of 150 beats/min during cardiac rehabilitation training (t(29) = 17.84, P < 0.001). Peak MET levels during the obstacle course simulation were also significantly higher than the goal level (8 METs) that patients typically achieve in a cardiac rehabilitation program (t(29) = 14.73, P < 0.001). We conclude that police work requires a functional capacity greater than that typically attained in traditional cardiac rehabilitation programs. Rehabilitation professionals should consider performing maximal stress tests and increasing the intensity of cardiac rehabilitation workouts to effectively train police officers who have had a cardiac event.
Vigg, Steven; Poe, Thomas P.; Prendergast , Linda A.; Hansel, Hal C.
1991-01-01
Adult northern squawfish Ptychocheilus oregonensis, walleyes Stizostedion vitreum, smallmouth bass Micropterus dolomieu, and channel catfish Ictalurus punctatus were sampled from four regions of John Day Reservoir from April to August 1983–1986 to quantify their consumption of 13 species of prey fish, particularly seaward-migrating juvenile Pacific salmon and steelhead (Oncorhynchus spp.). Consumption rates were estimated from field data on stomach contents and digestion rate relations determined in previous investigations. For each predator, consumption rates varied by reservoir area, month, time of day, and predator size or age. The greatest daily consumption of salmonids by northern squawfish and channel catfish (0.7 and 0.5 prey/predator) occurred in the upper end of the reservoir below McNary Dam. Greatest daily predation by walleyes (0.2 prey/predator) and smallmouth bass (0.04) occurred in the middle and lower reservoir. Consumption rates of all predators were highest in July, concurrent with maximum temperature and abundance of juvenile salmonids. Feeding by the predators tended to peak after dawn (0600–1200 hours) and near midnight (2000–2400). Northern squawfish below McNary Dam exhibited this pattern, but fed mainly in the morning hours down-reservoir. The daily ration of total prey fish was highest for northern squawfish over 451 mm fork length (> 13.2 mg/g predator), for walleyes 201–250 mm (42.5 mg/g), for smallmouth bass 176–200 mm (30.4 mg/g), and for channel catfish 401–450 mm (17.1 mg/g). Averaged over all predator sizes and sampling months (April–August), the total daily ration (fish plus other prey) of smallmouth bass (28.7 mg/ g) was about twice that of channel catfish (12.6), northern squawfish (14.1), and walleyes (14.2). However, northern squawfish was clearly the major predator on juvenile salmonids.
Ma, Fuying; Zeng, Yelin; Wang, Jinjin; Yang, Yang; Yang, Xuewei; Zhang, Xiaoyu
2013-01-01
Non-isothermal thermogravimetry/derivative thermogravimetry (TG/DTG) measurements are used to determine pyrolytic characteristics and kinetics of lignocellulose. TG/DTG experiments at different heating rates with corn stover pretreated with monocultures of Irpex lacteus CD2 and Auricularia polytricha AP and their cocultures were conducted. Heating rates had little effect on the pyrolysis process, but the peak of weight loss rate in the DTG curves shifted towards higher temperature with heating rate. The maximum weight loss of biopretreated samples was 1.25-fold higher than that of the control at the three heating rates, and the maximum weight loss rate of the co-culture pretreated samples was intermediate between that of the two mono-cultures. The activation energies of the co-culture pretreated samples were 16-72 kJ mol(-1) lower than that of the mono-culture at the conversion rate range from 10% to 60%. This suggests that co-culture pretreatment can decrease activation energy and accelerate pyrolysis reaction thus reducing energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of a virtual reality-enhanced exercise protocol after coronary artery bypass grafting.
Chuang, Tien-Yow; Sung, Wen-Hsu; Chang, Hwa-Ann; Wang, Ray-Yau
2006-10-01
Virtual reality (VR) technology has gained importance in many areas of medicine. Knowledge concerning the application and the influence of VR-enhanced exercise programs is limited for patients receiving coronary artery bypass grafting. The purpose of this study was to evaluate the effect of a virtual "country walk" on the number of sessions necessary to reach cardiac rehabilitation goals in patients undergoing coronary artery bypass grafting. Twenty subjects who were seen for cardiac rehabilitation between January and June 2004 comprised the study sample. The protocol for this study included an initial maximum graded exercise tolerance test, given to determine the subsequent training goals for the subject, followed by biweekly submaximal endurance training sessions. All subjects were assigned by lot to 1 of 2 submaximal endurance training programs, one (group 2) with and the other (group 1) without the added VR environment. In all other respects, the 2 programs were identical. Each training session lasted for 30 minutes and was carried out twice per week for about 3 months. The primary outcome measures were maximum load during the work sessions, target oxygen consumption, target heart rate (beats per minute), and number of training sessions required to reach rehabilitation goals. By the end of 20 training sessions, only 4 of the 10 control subjects had reached the heart rate target goal of 85% their maximum heart rate. In contrast, 9 of the 10 subjects in the VR program had attained this goal by 9 or fewer training sessions. When target metabolic cost (75% peak oxygen consumption) was used as the training goal, all 10 subjects in the VR program had reached this target after 2 training sessions (or, in some cases, 1 training session), but not until training session 15 did a cumulative number of 9 control subjects reach this goal. These study outcomes clearly support the notion that incorporating a VR environment into cardiac rehabilitation programs will accelerate maximum recovery of patients' cardiovascular function.
Melakeberhan, H; Ferris, H
1988-10-01
Food (energy) consumption rates ofMeloidogyne incognita were calculated on Vitis vinifera cv. French Colombard (highly susceptible) and cv. Thompson Seedless (moderately resistant). One-month-old grape seedlings in styrofoam cups were inoculated with 2,000 or 8,000 M. incognita second-stage juveniles (J2) and maintained at 17.5 degree days (DD - base 10 C)/day until maximum adult female growth and (or) the end of oviposition. At 70 DD intervals, nematode fresh biomass was calculated on the basis of volumes of 15-20 nematodes per plant obtained with a digitizer and computer algorithm. Egg production was measured at 50-80 DD intervals by weighing 7-10 egg masses and counting the number of eggs. Nematode growth and food (energy) consumption rates were calculated up to 1,000 DD based on biomass increase, respiratory requirements, and an assumption of 60 % assimilation efficiency. The growth rate of a single root-knot nematode, excluding egg production, was similar in both cultivars and had a logistic form. The maximum fresh weight of a mature female nematode was ca. 29-32 mug. The total biomass increase, including egg production, also had a logistic form. Maximum biomass (mature adult female and egg mass) was 211 mug on French Colombard and 127 mug on Thompson Seedless. The calculated total cost to the host for the development of a single J2 from root penetration to the end of oviposition for body growth and total biomass was 0.535 and 0.486 calories with a total energy demand of 1.176 and 0.834 calories in French Colombard and Thompson Seedless, respectively.
Consumption processes and food web structure in the Columbia River Estuary
NASA Astrophysics Data System (ADS)
Simenstad, Charles A.; Small, Lawrence F.; David McIntire, C.
Consumption processes at several trophic levels tend to coverage in the central (estuarine-mixing) region of the Columbia River estuary, where living and dentrital food resources are entrained within the energy null of the turbidity maximum zone. Primary consumers in this region are generalist and omnivorous feeders, capable of exploiting both autotrophic and heterotrophic food web pathways. In the presence of higher standing stocks of their prey resources, feeding by secondary and tertiary consumers is also concentrated, or more effective, in the estuarine mixing region of the estuary. During the 1980-1981 studies of the estuary, total consumer (metazoan) production averaged 5.5g C m -2 within the estuary. Of the estimated 15 x 10 3mt Cyy -1 attributed to primary consumption in the water column, 83% was the result of suspension-feeding pelagic zooplankton. In comparison to grazing on phytoplankton, it was estimated that approximately 84% of primary consumption in the water column was based on suspended detritus and, presumably, associated microbiota. Endemic primary,consumers, principally epibenthic crustaceans such as the calanoid copepod Eurytemora affinis, the harpacticoid copepod Scottolana canadensis, and the crangonid shrimp Crangon franciscorum, accounted for a high proportion of the consumption of suspended particles. Wertland herbivores inhabiting the estuary's extensive marshes, on the other hand, were estimated to account for only 2 to 17% of total estuarine primary consumption. Trophic linkages to secondary and tertiary consumers were more evenly apportioned among pelagic fishes, motile macroinvertebrates, and benthic infauna. High, comparatively unknown fluxes of migratory or wide-ranging tertiary consumers, such as piscivorous birds, seals and sea lions, made estimation of their annual consumption rates in the estuary highly tenuous. The physical processes of mixing and stratification, sediments accretion and erosion, and salinity intrusion appear to be the fundamental determinants of consumption processes in the Columbia River estuary, and perhaps in other similarly energetic estuarine systems, by promoting concentrations of consumers in low-energy habitats such as the turbidity maximum and peripheral bays.
Physiological responses and air consumption during simulated firefighting tasks in a subway system.
Williams-Bell, F Michael; Boisseau, Geoff; McGill, John; Kostiuk, Andrew; Hughson, Richard L
2010-10-01
Professional firefighters (33 men, 3 women), ranging in age from 30 to 53 years, participated in a simulation of a subway system search and rescue while breathing from their self-contained breathing apparatus (SCBA). We tested the hypothesis that during this task, established by expert firefighters to be of moderate intensity, the rate of air consumption would exceed the capacity of a nominal 30-min cylinder. Oxygen uptake, carbon dioxide output, and air consumption were measured with a portable breath-by-breath gas exchange analysis system, which was fully integrated with the expired port of the SCBA. The task involved descending a flight of stairs, walking, performing a search and rescue, retreat walking, then ascending a single flight of stairs to a safe exit. This scenario required between 9:56 and 13:24 min:s (mean, 12:10 ± 1:10 min:s) to complete, with an average oxygen uptake of 24.3 ± 4.5 mL kg(-1) min(-1) (47 ± 10 % peak oxygen uptake) and heart rate of 76% ± 7% of maximum. The highest energy requirement was during the final single-flight stair climb (30.4 ± 5.4 mL kg(-1) min(-1)). The average respiratory exchange ratio (carbon dioxide output/oxygen uptake) throughout the scenario was 0.95 ± 0.08, indicating a high carbon dioxide output for a relatively moderate average energy requirement. Air consumption from the nominal "30-min" cylinder averaged 51% (range, 26%-68%); however, extrapolation of these rates of consumption suggested that the low-air alarm, signalling that only 25% of the air remains, would have occurred as early as 11 min for an individual with the highest rate of air consumption, and at 16 min for the group average. These data suggest that even the moderate physical demands of walking combined with search and rescue while wearing full protective gear and breathing through the SCBA impose considerable physiological strain on professional firefighters. As well, the rate of air consumption in these tasks classed as moderate, compared with high-rise firefighting, would have depleted the air supply well before the nominal time used to describe the cylinders.
Yen, Hong-Wei; Liu, Yi Xian
2014-08-01
The high cost of microbial oils produced from oleaginous microorganisms is the major obstacle to commercial production. In this study, the operation of an airlift bioreactor is examined for the cultivation of oleaginous yeast-Rhodotorula glutinis, due to the low process cost. The results suggest that the use of a high aeration rate could enhance cell growth. The maximum biomass concentration of 25.40 g/L was observed in the batch with a 2.0 vvm aeration rate. In addition, a higher aeration rate of 2.5 vvm could achieve the maximum growth rate of 0.46 g/L h, about twice the 0.22 g/L h obtained in an agitation tank. However, an increase in tank pressure instead of the aeration rate did not enhance cell growth. The operation of airlift bioreactor described in this work has the advantages of simple operation and low energy consumption, thus making it suitable for the accumulation of microbial oils. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Kinetics of formation of nanoparticles from first group metal carboxylates
NASA Astrophysics Data System (ADS)
Solov'ev, M. E.; Irzhak, T. F.; Irzhak, V. I.
2015-09-01
A kinetic model of the formation of metal nanoparticles via reduction of their carboxylates under conditions of clustering is proposed. It is found that the kinetics of the process is characterized by an induction period in carboxylate consumption and by almost linear growth of the average size of nanoparticles with conversion. It is shown that the maximum rate of nanoparticle formation grows along with the rate of ternary associate formation, the induction period becomes longer, and the particle size decreases. At the same time, it is characterized by a narrow size distribution.
Performance Charts for a Turbojet System
NASA Technical Reports Server (NTRS)
Karp, Irving M.
1947-01-01
Convenient charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet system. These charts take into account the effects of ram pressure, compressor pressure ratio, ratio of combustion-chamber-outlet temperature to atmospheric temperature, compressor efficiency, turbine efficiency, combustion efficiency, discharge-nozzle coefficient, losses in total pressure in the inlet to the jet-propulsion unit and in the combustion chamber, and variation in specific heats with temperature. The principal performance charts show clearly the effects of the primary variables and correction charts provide the effects of the secondary variables. The performance of illustrative cases of turbojet systems is given. It is shown that maximum thrust per unit mass rate of air flow occurs at a lower compressor pressure ratio than minimum specific fuel consumption. The thrust per unit mass rate of air flow increases as the combustion-chamber discharge temperature increases. For minimum specific fuel consumption, however, an optimum combustion-chamber discharge temperature exists, which in some cases may be less than the limiting temperature imposed by the strength temperature characteristics of present materials.
Yu, Yingxin; Wang, Xinxin; Yang, Dan; Lei, Bingli; Zhang, Xiaolan; Zhang, Xinyu
2014-07-01
The present study estimated the human daily intake and uptake of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), and toxic trace elements [mercury (Hg), chromium (Cr), cadmium (Cd), and arsenic (As)] due to consumption of fish from Taihu Lake, China, and the associated potential health risks posed by these contaminants. The health risks posed by the contaminants were assessed using a risk quotient of the fish consumption rate to the maximum allowable fish consumption rate considering the contaminants for carcinogenic and non-carcinogenic effect endpoints. The results showed that fish consumption would not pose non-cancer risks. However, some species would cause a cancer risk. Relative risks of the contaminants were calculated to investigate the contaminant which posed the highest risk to humans. As a result, in view of the contaminants for carcinogenic effects, As was the contaminant which posed the highest risk to humans. However, when non-carcinogenic effects of the contaminants were considered, Hg posed the highest risk. The risk caused by PBDEs was negligible. The results demonstrated that traditional contaminants, such as As, Hg, DDTs (dichlorodiphenyltrichloroethane and its metabolites), and PCBs, require more attention in Taihu Lake than the other target contaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Y.; Kawase, Y.
2006-07-01
In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial compostingmore » mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.« less
Prey life-history and bioenergetic responses across a predation gradient.
Rennie, M D; Purchase, C F; Shuter, B J; Collins, N C; Abrams, P A; Morgan, G E
2010-10-01
To evaluate the importance of non-consumptive effects of predators on prey life histories under natural conditions, an index of predator abundance was developed for naturally occurring populations of a common prey fish, the yellow perch Perca flavescens, and compared to life-history variables and rates of prey energy acquisition and allocation as estimated from mass balance models. The predation index was positively related to maximum size and size at maturity in both male and female P. flavescens, but not with life span or reproductive investment. The predation index was positively related to size-adjusted specific growth rates and growth efficiencies but negatively related to model estimates of size-adjusted specific consumption and activity rates in both vulnerable (small) and invulnerable (large) size classes of P. flavescens. These observations suggest a trade-off between growth and activity rates, mediated by reduced activity in response to increasing predator densities. Lower growth rates and growth efficiencies in populations with fewer predators, despite increased consumption suggests either 1) a reduction in prey resources at lower predator densities or 2) an intrinsic cost of rapid prey growth that makes it unfavourable unless offset by a perceived threat of predation. This study provides evidence of trade-offs between growth and activity rates induced by predation risk in natural prey fish populations and illustrates how behavioural modification induced through predation can shape the life histories of prey fish species. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.
CDRA-4EU Testing to Assess Increased Number of ISS Crew
NASA Technical Reports Server (NTRS)
Peters, Warren T.; Knox, James C.
2017-01-01
The International Space Station (ISS) program is investigating methods to increase carbon dioxide (CO2) removal on ISS in order to support an increased number of astronauts at a future date. The Carbon Dioxide Removal Assembly - Engineering Unit (CDRA-4EU) system at NASA Marshall Space Flight Center (MSFC) was tested at maximum fan settings to evaluate CO2 removal rate and power consumption at those settings.
The effects of hard water consumption on kidney function: Insights from mathematical modelling
NASA Astrophysics Data System (ADS)
Tambaru, David; Djahi, Bertha S.; Ndii, Meksianis Z.
2018-03-01
Most water sources in Nusa Tenggara Timur contain higher concentration of calcium and magnesium ions, which is known as hard water. Long-term consumption of hard water can cause kidney dysfunction, which may lead to the other diseases such as cerebrovascular disease, diabetes and others. Therefore, understanding the effects of hard water consumption on kidney function is of importance. This paper studies the transmission dynamics of kidney dysfunction due to the consumption of hard water using a mathematical model. We propose a new deterministic mathematical model comprising human and water compartments and conduct a global sensitivity analysis to determine the most influential parameters of the model. The Routh-Hurwitz criterion is used to examine the stability of the steady states. The results shows that the model has two steady states, which are locally stable. Moreover, we found that the most influential parameters are the maximum concentration of magnesium and calcium in the water, the increase rate of calcium and magnesium concentration in the water and the rate of effectiveness of water treatment. The results suggest that better water treatments are required to reduce the concentration of magnesium and calcium in the water. This aid in minimizing the probability of humans to attract kidney dysfunction. Furthermore, water-related data need to be collected for further investigation.
NASA Astrophysics Data System (ADS)
Liang, C. P.; Chen, J. S.
2017-12-01
An abundant and inexpensive supply of groundwater is used to meet drinking, agriculture and aquaculture requirements of the residents in the Pingtung Plain. Long-term groundwater quality monitoring data indicate that the As content in groundwater in the Pingtung Plain exceeds the maximum level of 10 g/L recommended by the World Health Organization (WHO). The situation is further complicated by the fact that only 46.89% of population in the Pingtung Plain has been served with tap water, far below the national average of 92.93%. Considering there is a considerable variation in the measured concentrations, from below the detection limit (<0.1 g/L) to the maximum value of 544 g/L and the consumption rate and body weight of the individual, the conventional approach to conducting a human health risk assessment may be insufficient for health risk management. This study presents a probabilistic risk assessment for inorganic As intake through the consumption of the drinking groundwater by local residents in the Pingtung Plain. The probabilistic risk assessment for inorganic As intake through the consumption of the drinking groundwater is achieved using Monte Carlo simulation technique based on the hazard quotient (HQ) and target cancer risk (TR) established by the U.S. Environmental Protection Agency. This study demonstrates the importance of the individual variability of inorganic As intake through drinking groundwater consumption when evaluating a high exposure sub-group of the population who drink high As content groundwater.
ASSESSMENT OF RADON IN SOIL AND WATER IN DIFFERENT REGIONS OF KOLHAPUR DISTRICT, MAHARASHTRA, INDIA.
Raste, P M; Sahoo, B K; Gaware, J J; Sharma, Anil; Waikar, M R; Shaikh, A A; Sonkawade, R G
2018-03-19
Researchers have already established that inhalation of high radon concentration is hazardous to human health. Radon concentration has been measured in water and soil, in various part of Kolhapur district has been carried out by the AQTEK Smart RnDuo which is an active device technique. The observed minimum value of the radon mass exhalation rate of the soil is 13.16 ± 0.83 mBq/kg/h and maximum is 35.11 ± 1.84 mBq/kg/h. The minimum value of the Radon concentration in water is 0.33 ± 0.052 Bq/L and maximum is 7.32 ± 0.078 Bq/L. These values of radon concentration are below the action of recommended level by the USEPA, which is set as the maximum contaminant level of 11.1-148 Bq/L of radon in drinking water. Total annual effective dose rate of water is 11 μSv/y. The purpose of present study is to assess radiological risk from consumption of water that provide in Kolhapur district and to evaluate the radon mass exhalation rate of soil in few places of Kolhapur district.
Sharma, Neeraj Kumar; Akhtar, M S; Pandey, Nityanand; Singh, Ravindra; Singh, Atul Kumar
2015-08-01
We studied the season dependent thermal tolerance, oxygen consumption, respiratory burst response and antioxidative enzyme activities in juveniles of Barilius bendelisis. The critical thermal maximum (CTmax), lethal thermal maximum (LTmax), critical thermal minimum (CTmin) and lethal thermal minimum (LTmin) were significantly different at five different seasons viz. winter (10.64°C), spring (16.25°C), summer (22.11°C), rainy (20.87°C) and autumn (17.77°C). The highest CTmax was registered in summer (36.02°C), and lowest CTmin was recorded during winter (2.77°C). Water temperature, dissolved oxygen and pH were strongly related to CTmax, LTmax, CTmin and LTmin suggesting seasonal acclimatization of B. bendelisis. The thermal tolerance polygon area of the B. bendelisis juveniles within the range of seasonal temperature (10.64-22.11°C) was calculated as 470.92°C(2). Oxygen consumption rate was significantly different (p<0.05) between seasons with maximum value during summer (57.66mgO2/kg/h) and lowest in winter (32.60mgO2/kg/h). Total white blood cell count including neutrophil and monocytes also showed significant difference (p<0.05) between seasons with maximum value during summer and minimum number in winter and were found correlated to temperature, dissolved oxygen, pH and respiratory burst activity. Respiratory burst activity of blood phagocytes significantly differed (p<0.05) among seasons with higher value during summer (0.163 OD540nm) and minimum in winter season (0.054 OD540nm). The activity of superoxide dismutase, catalase and glutathione-s-transferase both in liver and gill, also varied significantly (p<0.05) during different seasons. Overall results of this study suggest that multiple environmental factors play a role in seasonal acclimation in B. bendelisis, which modulate the thermal tolerance, oxygen consumption, respiratory burst activity and status of anti-oxidative potential in wild environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wearing a Wetsuit Alters Upper Extremity Motion during Simulated Surfboard Paddling
Nessler, J. A.; Silvas, M.; Carpenter, S.; Newcomer, S. C.
2015-01-01
Surfers often wear wetsuits while paddling in the ocean. This neoprene covering may be beneficial to upper extremity movement by helping to improve proprioceptive acuity, or it may be detrimental by providing increased resistance. The purpose of this study was to evaluate the effects of wearing a wetsuit on muscle activation, upper extremity motion, heart rate, and oxygen consumption during simulated surfboard paddling in the laboratory. Twelve male, recreational surfers performed two paddling trials at a constant workload on a swim bench ergometer both with and without a wetsuit. Kinematic data and EMG were acquired from the right arm via motion capture, and oxygen consumption and heart rate were recorded with a metabolic cart and heart rate monitor. Wearing a wetsuit had no significant effect on oxygen consumption or heart rate. A significant increase in EMG activation was observed for the middle deltoid but not for any of the other shoulder muscle evaluated. Finally, approximate entropy and estimates of the maximum Lyapunov exponent increased significantly for vertical trajectory of the right wrist (i.e. stroke height) when a wetsuit was worn. These results suggest that a 2mm wetsuit has little effect on the energy cost of paddling at lower workloads but does affect arm motion. These changes may be the result of enhanced proprioceptive acuity due to mechanical compression from the wetsuit. PMID:26551321
Novoseltsev, V N; Arking, R; Novoseltseva, J A; Yashin, A I
2002-06-01
The general purpose of the paper is to test evolutionary optimality theories with experimental data on reproduction, energy consumption, and longevity in a particular Drosophila genotype. We describe the resource allocation in Drosophila females in terms of the oxygen consumption rates devoted to reproduction and to maintenance. The maximum ratio of the component spent on reproduction to the total rate of oxygen consumption, which can be realized by the female reproductive machinery, is called metabolic reproductive efficiency (MRE). We regard MRE as an evolutionary constraint. We demonstrate that MRE may be evaluated for a particular Drosophila phenotype given the fecundity pattern, the age-related pattern of oxygen consumption rate, and the longevity. We use a homeostatic model of aging to simulate a life history of a representative female fly, which describes the control strain in the long-term experiments with the Wayne State Drosophila genotype. We evaluate the theoretically optimal trade-offs in this genotype. Then we apply the Van Noordwijk-de Jong resource acquisition and allocation model, Kirkwood's disposable soma theory. and the Partridge-Barton optimality approach to test if the experimentally observed trade-offs may be regarded as close to the theoretically optimal ones. We demonstrate that the two approaches by Partridge-Barton and Kirkwood allow a positive answer to the question, whereas the Van Noordwijk-de Jong approach may be used to illustrate the optimality. We discuss the prospects of applying the proposed technique to various Drosophila experiments, in particular those including manipulations affecting fecundity.
Physiologic and perceptual responses during treadmill running with ankle weights.
Bhambhani, Y N; Gomes, P S; Wheeler, G
1990-03-01
This study examined the effects of ankle weighting on physiologic and perceptual responses during treadmill running in seven healthy, female recreational runners with a mean maximal aerobic power of 48.4 +/- 4.0 ml/kg/min. Each subject completed four experimental one-mile runs at individually selected treadmill running speeds with 0, 1.6, 3.2 and 4.8 kg weights on their ankles. The subjects selected a speed at which they would run (train) if their objectives were to significantly improve cardiovascular function and induce weight loss. Metabolic and cardiovascular responses were continuously monitored, and ratings of perceived exertion were recorded near the end of the activity. During the unweighted run, the subjects selected a running speed of 6.87 +/- 0.63 mph which resulted in a net energy expenditure of 0.153 kcal/kg/min or 1.34 +/- 0.16 kcal/kg/mile. This corresponded to a training intensity of 76.3% +/- 5.1% of maximum oxygen consumption or 88.1% +/- 9.7% of maximum heart rate. Addition of weight to the ankles caused a significant decrease (p less than .05) in the running speed selected and, therefore, did not result in any significant changes (p greater than .05) in the rate of oxygen consumption, heart rate or ratings of perceived exertion when compared to the unweighted condition. These observations are in contrast to previous studies on ankle weighting which were conducted at fixed treadmill running speeds. However, the use of ankle weights did have a tendency to increase gross and net energy expenditure of running when values were expressed in kcal/mile because of slower self-selected running speeds under these conditions. This increase in energy expenditure could be of physiologic significance if running with ankle weights was performed on a regular basis at a fixed distance.
McMinn, Andrew; Lee, Shihong
2018-06-01
Micro glucose biosensors were used to measure net extracellular glucose produced by natural microphytobenthos and three diatom cultures (Amphora coffeaeformis, Navicula menisculus, Nitzschia longissima) from southern Tasmania, Australia. They were exposed to a light gradient in either nutrient-replete or nutrient-limiting conditions. Glucose exudation in the natural communities increased with increased light but the response in the cultures was variable. Similarly, nutrient-replete conditions elicited lower rates of glucose exudation in the natural communities but produced variable species-specific responses in the cultures. Increased glucose exudation mostly correlated with a reduction in maximum quantum yield (F v /F m ). The same trend was observed in the natural communities for relative maximum electron transfer rates (rETR max ) but responses in the cultures were again variable and species-specific. Responses of the three species to increased light and nutrient deficiency were variable, although glucose exudation, F v /F m and rETR max was mostly lower in the nutrient-limited media. In a second set of experiments species/communities were treated with/without antibiotics. In the dark, glucose concentrations in treatments with antibiotics remained unchanged, while in those with bacteria, it fell rapidly. In the sediment communities, glucose consumption in the dark was ~25% the rate of exudation at the highest light level. In culture, exudation rates were up to 100% greater than those with active bacteria. Rates of glucose consumption in the dark in the antibiotic-treated samples were negligible and up to 10 4 times lower than those with active bacteria. These results demonstrate the important role extracellular glucose exudation has on maintaining an active microbial loop. © 2018 Phycological Society of America.
Al-Ghamdi, Ahmad AlKazim; Al-Khaibari, Abeer M.; Omar, Mohamed O.
2010-01-01
The experiment was carried out under laboratory condition to study the consumption of some proteinic diets and their effect on hypopharyngeal glands (HPG) development during nursing period. The results showed that the bee bread and the pollen loads mixture with sugar (1:1) were more consumed by honeybee workers followed by Nectapol® and Yeast-Gluten mixture. The lowest consumption amount was recorded with traditional substitute. Clear differences were found in HPG development under feeding with different diets. The maximum development degree was observed when fed with bee bread followed by pollen loads and mixture from Yeast, Gluten and sugar (1:1:2). The acinal surface of HPG showed clear difference under feeding with difference diets. The largest area was recorded when honeybee workers fed on bee bread followed by Yeast-Gluten-sugar mixture (diet,4) and pollen loads(diet,2). PMID:23961106
Limits on the maximum attainable efficiency for solid-state lighting
NASA Astrophysics Data System (ADS)
Coltrin, Michael E.; Tsao, Jeffrey Y.; Ohno, Yoshi
2008-03-01
Artificial lighting for general illumination purposes accounts for over 8% of global primary energy consumption. However, the traditional lighting technologies in use today, i.e., incandescent, fluorescent, and high-intensity discharge lamps, are not very efficient, with less than about 25% of the input power being converted to useful light. Solid-state lighting is a rapidly evolving, emerging technology whose efficiency of conversion of electricity to visible white light is likely to approach 50% within the next years. This efficiency is significantly higher than that of traditional lighting technologies, with the potential to enable a marked reduction in the rate of world energy consumption. There is no fundamental physical reason why efficiencies well beyond 50% could not be achieved, which could enable even greater world energy savings. The maximum achievable luminous efficacy for a solid-state lighting source depends on many different physical parameters, for example the color rendering quality that is required, the architecture employed to produce the component light colors that are mixed to produce white, and the efficiency of light sources producing each color component. In this article, we discuss in some detail several approaches to solid-state lighting and the maximum luminous efficacy that could be attained, given various constraints such as those listed above.
Muscat, Kristina M; Kotrach, Houssam G; Wilkinson-Maitland, Courtney A; Schaeffer, Michele R; Mendonca, Cassandra T; Jensen, Dennis
2015-11-01
In a randomized cross-over study of 15 healthy men aged 20-30 years, we compared physiological and perceptual responses during treadmill and cycle exercise test protocols matched for increments in work rate - the source of increased locomotor muscle metabolic and contractile demands. The rates of O2 consumption and CO2 production were higher at the peak of treadmill versus cycle testing (p ≤ 0.05). Nevertheless, work rate, minute ventilation, tidal volume (VT), breathing frequency (fR), inspiratory capacity (IC), inspiratory reserve volume (IRV), tidal esophageal (Pes,tidal) and transdiaphragmatic pressure swings (Pdi,tidal), peak expiratory gastric pressures (Pga,peak), the root mean square of the diaphragm electromyogram (EMGdi,rms) expressed as a percentage of maximum EMGdi,rms (EMGdi,rms%max), and dyspnea ratings were similar at the peak of treadmill versus cycle testing (p > 0.05). Ratings of leg discomfort were higher at the peak of cycle versus treadmill exercise (p ≤ 0.05), even though peak O2 consumption was lower during cycling. Oxygen consumption, CO2 production, minute ventilation, fR, Pes,tidal, Pdi,tidal and Pga,peak were higher (p ≤ 0.05), while VT, IC, IRV, EMGdi,rms%max, and ratings of dyspnea and leg discomfort were similar (p > 0.05) at all or most submaximal work rates during treadmill versus cycle exercise. Our findings highlight important differences (and similarities) in physiological and perceptual responses at maximal and submaximal work rates during incremental treadmill and cycle exercise testing protocols. The lack of effect of exercise test modality on peak work rate advocates for the use of this readily available parameter to optimize training intensity determination, regardless of exercise training mode.
Performance Optimization of the NASA Large Civil Tiltrotor
2008-07-01
Continuous Power MRP Maximum Rated Power (take-off power) OEI One Engine Inoperative OGE Out of Ground Effect SFC Specific Fuel Consumption SLS Sea...for the LCTR2 based on a service entry date of 2018. Table 1 summarizes the nominal mission, and Table 2 lists key design values (the initial values...Aeroflightdynamics Directorate (AFDD), RDECOM (Ref. 4). RC designs are based upon a physics- based synthesis process calibrated to a database of
Quirós-Sauceda, Ana Elena; Chen, C.-Y. Oliver; González-Aguilar, Gustavo A.
2017-01-01
The health-promoting effects of phenolic compounds depend on their bioaccessibility from the food matrix and their consequent bioavailability. We carried out a randomized crossover pilot clinical trial to evaluate the matrix effect (raw flesh and juice) of ‘Ataulfo’ mango on the bioavailability of its phenolic compounds. Twelve healthy male subjects consumed a dose of mango flesh or juice. Blood was collected for six hours after consumption, and urine for 24 h. Plasma and urine phenolics were analyzed by electrochemical detection coupled to high performance liquid chromatography (HPLC-ECD). Five compounds were identified and quantified in plasma. Six phenolic compounds, plus a microbial metabolite (pyrogallol) were quantified in urine, suggesting colonic metabolism. The maximum plasma concentration (Cmax) occurred 2–4 h after consumption; excretion rates were maximum at 8–24 h. Mango flesh contributed to greater protocatechuic acid absorption (49%), mango juice contributed to higher chlorogenic acid absorption (62%). Our data suggests that the bioavailability and antioxidant capacity of mango phenolics is preserved, and may be increased when the flesh is processed into juice. PMID:28961171
Quirós-Sauceda, Ana Elena; Chen, C-Y Oliver; Blumberg, Jeffrey B; Astiazaran-Garcia, Humberto; Wall-Medrano, Abraham; González-Aguilar, Gustavo A
2017-09-29
The health-promoting effects of phenolic compounds depend on their bioaccessibility from the food matrix and their consequent bioavailability. We carried out a randomized crossover pilot clinical trial to evaluate the matrix effect (raw flesh and juice) of 'Ataulfo' mango on the bioavailability of its phenolic compounds. Twelve healthy male subjects consumed a dose of mango flesh or juice. Blood was collected for six hours after consumption, and urine for 24 h. Plasma and urine phenolics were analyzed by electrochemical detection coupled to high performance liquid chromatography (HPLC-ECD). Five compounds were identified and quantified in plasma. Six phenolic compounds, plus a microbial metabolite (pyrogallol) were quantified in urine, suggesting colonic metabolism. The maximum plasma concentration (C max ) occurred 2-4 h after consumption; excretion rates were maximum at 8-24 h. Mango flesh contributed to greater protocatechuic acid absorption (49%), mango juice contributed to higher chlorogenic acid absorption (62%). Our data suggests that the bioavailability and antioxidant capacity of mango phenolics is preserved, and may be increased when the flesh is processed into juice.
Demeke, Mekonnen M; Dietz, Heiko; Li, Yingying; Foulquié-Moreno, María R; Mutturi, Sarma; Deprez, Sylvie; Den Abt, Tom; Bonini, Beatriz M; Liden, Gunnar; Dumortier, Françoise; Verplaetse, Alex; Boles, Eckhard; Thevelein, Johan M
2013-06-21
The production of bioethanol from lignocellulose hydrolysates requires a robust, D-xylose-fermenting and inhibitor-tolerant microorganism as catalyst. The purpose of the present work was to develop such a strain from a prime industrial yeast strain, Ethanol Red, used for bioethanol production. An expression cassette containing 13 genes including Clostridium phytofermentans XylA, encoding D-xylose isomerase (XI), and enzymes of the pentose phosphate pathway was inserted in two copies in the genome of Ethanol Red. Subsequent EMS mutagenesis, genome shuffling and selection in D-xylose-enriched lignocellulose hydrolysate, followed by multiple rounds of evolutionary engineering in complex medium with D-xylose, gradually established efficient D-xylose fermentation. The best-performing strain, GS1.11-26, showed a maximum specific D-xylose consumption rate of 1.1 g/g DW/h in synthetic medium, with complete attenuation of 35 g/L D-xylose in about 17 h. In separate hydrolysis and fermentation of lignocellulose hydrolysates of Arundo donax (giant reed), spruce and a wheat straw/hay mixture, the maximum specific D-xylose consumption rate was 0.36, 0.23 and 1.1 g/g DW inoculum/h, and the final ethanol titer was 4.2, 3.9 and 5.8% (v/v), respectively. In simultaneous saccharification and fermentation of Arundo hydrolysate, GS1.11-26 produced 32% more ethanol than the parent strain Ethanol Red, due to efficient D-xylose utilization. The high D-xylose fermentation capacity was stable after extended growth in glucose. Cell extracts of strain GS1.11-26 displayed 17-fold higher XI activity compared to the parent strain, but overexpression of XI alone was not enough to establish D-xylose fermentation. The high D-xylose consumption rate was due to synergistic interaction between the high XI activity and one or more mutations in the genome. The GS1.11-26 had a partial respiratory defect causing a reduced aerobic growth rate. An industrial yeast strain for bioethanol production with lignocellulose hydrolysates has been developed in the genetic background of a strain widely used for commercial bioethanol production. The strain uses glucose and D-xylose with high consumption rates and partial cofermentation in various lignocellulose hydrolysates with very high ethanol yield. The GS1.11-26 strain shows highly promising potential for further development of an all-round robust yeast strain for efficient fermentation of various lignocellulose hydrolysates.
2013-01-01
Background The production of bioethanol from lignocellulose hydrolysates requires a robust, D-xylose-fermenting and inhibitor-tolerant microorganism as catalyst. The purpose of the present work was to develop such a strain from a prime industrial yeast strain, Ethanol Red, used for bioethanol production. Results An expression cassette containing 13 genes including Clostridium phytofermentans XylA, encoding D-xylose isomerase (XI), and enzymes of the pentose phosphate pathway was inserted in two copies in the genome of Ethanol Red. Subsequent EMS mutagenesis, genome shuffling and selection in D-xylose-enriched lignocellulose hydrolysate, followed by multiple rounds of evolutionary engineering in complex medium with D-xylose, gradually established efficient D-xylose fermentation. The best-performing strain, GS1.11-26, showed a maximum specific D-xylose consumption rate of 1.1 g/g DW/h in synthetic medium, with complete attenuation of 35 g/L D-xylose in about 17 h. In separate hydrolysis and fermentation of lignocellulose hydrolysates of Arundo donax (giant reed), spruce and a wheat straw/hay mixture, the maximum specific D-xylose consumption rate was 0.36, 0.23 and 1.1 g/g DW inoculum/h, and the final ethanol titer was 4.2, 3.9 and 5.8% (v/v), respectively. In simultaneous saccharification and fermentation of Arundo hydrolysate, GS1.11-26 produced 32% more ethanol than the parent strain Ethanol Red, due to efficient D-xylose utilization. The high D-xylose fermentation capacity was stable after extended growth in glucose. Cell extracts of strain GS1.11-26 displayed 17-fold higher XI activity compared to the parent strain, but overexpression of XI alone was not enough to establish D-xylose fermentation. The high D-xylose consumption rate was due to synergistic interaction between the high XI activity and one or more mutations in the genome. The GS1.11-26 had a partial respiratory defect causing a reduced aerobic growth rate. Conclusions An industrial yeast strain for bioethanol production with lignocellulose hydrolysates has been developed in the genetic background of a strain widely used for commercial bioethanol production. The strain uses glucose and D-xylose with high consumption rates and partial cofermentation in various lignocellulose hydrolysates with very high ethanol yield. The GS1.11-26 strain shows highly promising potential for further development of an all-round robust yeast strain for efficient fermentation of various lignocellulose hydrolysates. PMID:23800147
Anthropometric and physiological profiles of sepak takraw players
Jawis, M; Singh, R; Singh, H; Yassin, M; Khanna, G
2005-01-01
Objectives: Anthropometric and physiological profiles of national sepak takraw players were determined. Methods: Thirty nine players, specialising in the three playing positions (tekong/server, feeder, and killer/spiker) were divided into three age categories of under 15 (U15), under 18 (U18), and under 23 (U23) years of age. Height, weight, percent body fat (%bf), maximum oxygen consumption (Vo2max), range of motion (ROM), back and leg strength, and heart rate, for the estimation of oxygen consumption during matches, were recorded. Statistical analysis was performed using one way ANOVA for independent measurements and data are presented as mean±standard deviation. Results: The U23 players were significantly taller and heavier with significantly better ROM of the neck, trunk, and ankle joints and back and leg strength than the U15 players. No significant difference was found in %bf between the three age categories. Mean maximum heart rate during exercise was significantly higher in the U15 group when compared to the U18 and U23 groups (p<0.05). Mean Vo2max was similar between the three groups. Estimated oxygen consumption during matches was 69.1%, 68.5%, and 56.4% of Vo2max in the killer, tekong, and the feeder groups, respectively. Conclusions: The mean height, body weight, and cardiopulmonary capacities of the players were within the Malaysian population norms, but were somewhat lower than those of players of other court games from other countries. %bf was also lower in these players. This study provides the much needed anthropometric and physiological data of sepak takraw players for further development of this sport. PMID:16244191
Code of Federal Regulations, 2010 CFR
2010-07-01
... period some quantity of consumption that the nation is permitted under the Montreal Protocol. (2) Trade... Party to the Protocol as set forth in this paragraph (b). A person may only receive consumption from... maximum consumption that the nation is allowed under the Protocol minus the quantity (in kilograms) traded...
Code of Federal Regulations, 2011 CFR
2011-07-01
... period some quantity of consumption that the nation is permitted under the Montreal Protocol. (2) Trade... Party to the Protocol as set forth in this paragraph (b). A person may only receive consumption from... maximum consumption that the nation is allowed under the Protocol minus the quantity (in kilograms) traded...
Code of Federal Regulations, 2013 CFR
2013-07-01
... period some quantity of consumption that the nation is permitted under the Montreal Protocol. (2) Trade... Party to the Protocol as set forth in this paragraph (b). A person may only receive consumption from... maximum consumption that the nation is allowed under the Protocol minus the quantity (in kilograms) traded...
Code of Federal Regulations, 2012 CFR
2012-07-01
... period some quantity of consumption that the nation is permitted under the Montreal Protocol. (2) Trade... Party to the Protocol as set forth in this paragraph (b). A person may only receive consumption from... maximum consumption that the nation is allowed under the Protocol minus the quantity (in kilograms) traded...
Code of Federal Regulations, 2014 CFR
2014-07-01
... period some quantity of consumption that the nation is permitted under the Montreal Protocol. (2) Trade... Party to the Protocol as set forth in this paragraph (b). A person may only receive consumption from... maximum consumption that the nation is allowed under the Protocol minus the quantity (in kilograms) traded...
Effects of Air Conditioner Use on Real-World Fuel Economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huff, Shean P; West, Brian H; Thomas, John F
2013-01-01
Vehicle data were acquired on-road and on a chassis dynamometer to assess fuel consumption under several steady cruise conditions and at idle. Data were gathered for various air conditioner (A/C) settings and with the A/C off and the windows open. Two vehicles were used in the comparisonstudy: a 2009 Ford Explorer and a 2009 Toyota Corolla. At steady speeds between 64.4 and 112.7 kph (40 and 70 mph), both vehicles consumed more fuel with the A/C on at maximum cooling load (compressor at 100% duty cycle) than when driving with the windows down. The Explorer maintained this trend beyond 112.7more » kph (70 mph), while the Corolla fuel consumption with the windows down matched that of running the A/C at 120.7 kph (75 mph), and exceeded it at 128.7 kph (80 mph). The largest incremental fuel consumption rate penalty due to air conditioner use occurred was nearly constant with a weakslight trend of increasing consumption with increasing compressor (and vehicle) speed. Lower consumption is seenobserved at idle for both vehicles, likely due to the low compressor speed at this operating point« less
Ikeo, T; Nagao, T
1985-10-01
We compared the effects of denopamine (TA-064) and isoproterenol on hemodynamics, myocardial oxygen consumption and the left ventricular (LV) dimension in halothane-N2O anesthetized dogs. Denopamine (0.25-1 micrograms/kg/min, i.v., infusion X 15 min) produced a maximum increase in LV dp/dtmax by 64% of the control, without affecting aortic pressure significantly. Doses of isoproterenol (0.01-0.04 micrograms/kg/min, i.v., infusion X 15 min) were selected to produce a positive inotropic action similar to that of denopamine. Denopamine produced significantly less increasing effects in heart rate, cardiac output and myocardial oxygen consumption and had more reducing effects in LV internal diameter than isoproterenol, while isoproterenol tended to produce a more potent increase in coronary blood flow, but a smaller decrease in LV end-diastolic pressure than denopamine. PQ interval was similarly reduced. Denopamine caused no substantial increase in myocardial oxygen consumption at a lower dose, at which LV dp/dtmax was significantly increased. A weak effect of denopamine on myocardial oxygen consumption may result partly from a weak positive chronotropic effect and partly from a reduction of preload and cardiac size.
Nitrate consumption in sediments of the German Bight (North Sea)
NASA Astrophysics Data System (ADS)
Neumann, Andreas; van Beusekom, Justus E. E.; Holtappels, Moritz; Emeis, Kay-Christian
2017-09-01
Denitrification on continental margins and in coastal sediments is a major sink of reactive N in the present nitrogen cycle and a major ecosystem service of eutrophied coastal waters. We analyzed the nitrate removal in surface sediments of the Elbe estuary, Wadden Sea, and adjacent German Bight (SE North Sea) during two seasons (spring and summer) along a eutrophication gradient ranging from a high riverine nitrate concentrations at the Elbe Estuary to offshore areas with low nitrate concentrations. The gradient encompassed the full range of sediment types and organic carbon concentrations of the southern North Sea. Based on nitrate penetration depth and concentration gradient in the porewater we estimated benthic nitrate consumption rates assuming either diffusive transport in cohesive sediments or advective transport in permeable sediments. For the latter we derived a mechanistic model of porewater flow. During the peak nitrate discharge of the river Elbe in March, the highest rates of diffusive nitrate uptake were observed in muddy sediments (up to 2.8 mmol m- 2 d- 1). The highest advective uptake rate in that period was observed in permeable sediment and was tenfold higher (up to 32 mmol m- 2 d- 1). The intensity of both diffusive and advective nitrate consumption dropped with the nitrate availability and thus decreased from the Elbe estuary towards offshore stations, and were further decreased during late summer (minimum nitrate discharge) compared to late winter (maximum nitrate discharge). In summary, our rate measurements indicate that the permeable sediment accounts for up to 90% of the total benthic reactive nitrogen consumption in the study area due to the high efficiency of advective nitrate transport into permeable sediment. Extrapolating the averaged nitrate consumption of different sediment classes to the areas of Elbe Estuary, Wadden Sea and eastern German Bight amounts to an N-loss of 3.1 ∗ 106 mol N d- 1 from impermeable, diffusion-controlled sediment, and 5.2 ∗ 107 mol N d- 1 from permeable sediment with porewater advection.
Avelar, Núbia Cp; Simão, Adriano P; Tossige-Gomes, Rosalina; Neves, Camila Dc; Mezencio, Bruno; Szmuchrowski, Leszek; Coimbra, Cândido C; Lacerda, Ana Cr
2011-12-01
Avelar, NCP, Simão, AP, Tossige-Gomes, R, Neves, CDC, Mezencio, B, Szmuchrowski, L, Coimbra, CC, and Lacerda, ACR. Oxygen consumption and heart rate during repeated squatting exercises with or without whole-body vibration in the elderly. J Strength Cond Res 25(12): 3495-3500, 2011-The aim of this study was to investigate whether vibration plus squatting would increase cardiovascular demand to the optimal exercise limits needed for the prescription of cardiovascular training. Oxygen consumption, measured breath by breath by a portable gas analysis system, and heart rate (HR), measured using an HR monitor, were evaluated in 18 elderly individuals, 15 women and 3 men with a mean age of 72 ± 6 years. These variables were measured simultaneously and at the same time points in each subject during rest and randomly during the performance of squatting exercises (8 series of 40 seconds, with 40 seconds of rest between series of performing squats in 3-second cycles with 10-60° of flexion, a total of 5 repetitions for 40 seconds) with or without vibration at a frequency of 40 Hz and amplitude of 4 mm, separated by at least 1 day. Associating whole-body vibration with squatting exercise resulted in an additional increase of around 20% in oxygen consumption and 7.5% in the HR recorded during exercise. However, during squatting exercise with vibration, the increase achieved in oxygen consumption was limited to around 2 metabolic equivalents, and mean HR represented around 56% of the predicted maximum HR for age. The results of this study show that, despite the fact that vibration increased oxygen consumption and HR during the performance of squatting exercise, the minimum standards of intensity for the prescription of physical exercise with the specific objective of improving cardiorespiratory fitness were not achieved. Therefore, a protocol such as that used in the study does not meet the threshold for cardiovascular training prescription.
Li, Wei-Xin; Tang, Chuan-Dong; Wu, Zhi-Lin; Wang, Wei-Min; Zhang, Yu-Feng; Zhao, Yi; Cravotto, Giancarlo
2015-04-01
This paper presents the purification of eutrophic water using a combination of hydrodynamic cavitation (HC) and ozonation (O3) at a continuous flow of 0.8 m(3) h(-1) on a pilot scale. The maximum removal rate of chlorophyll a using O3 alone and the HC/O3 combination was 62.3 and 78.8%, respectively, under optimal conditions, where the ozone utilization efficiency was 64.5 and 94.8% and total energy consumption was 8.89 and 8.25 kWh m(-3), respectively. Thus, the removal rate of chlorophyll a and the ozone utilization efficiency were improved by 26.5% and 46.9%, respectively, by using the combined technique. Meanwhile, total energy consumption was reduced by 7.2%. Turbidity linearly decreased with chlorophyll a removal rate, but no linear relationship exists between the removal of COD or UV254 and chlorophyll a. As expected, the suction-cavitation-assisted O3 exhibited higher energy efficiency than the extrusion-cavitation-assisted O3 and O3 alone methods.
Wiczkowski, Wieslaw; Romaszko, Ewa; Piskula, Mariusz K
2010-12-08
The aim of this study was to investigate the bioavailability of anthocyanins from chokeberry juice with a dietary-relevant dose of anthocyanins. Thirteen healthy volunteers consumed chokeberry juice providing 0.8 mg of anthocyanins/kg of body weight. Before and after juice consumption, blood and urine were collected. Concentration of anthocyanins was measured with HPLC-PDA-MS-ESI. Cyanidin-3-galactoside comprised 66% of total chokeberry anthocyanins. Eight cyanidin derivatives were found in blood and urine after juice consumption. The maximum plasma anthocyanin concentration of 32.7 ± 2.9 nmol/L was reached at 1.3 ± 0.1 h after juice consumption. The anthocyanins' urine excretion rate (62.9 ± 5.0 nmol/h) was the highest within the first 2 h. In total, 0.25 ± 0.02% of the ingested anthocyanins was excreted by the renal route during 24 h, mainly as metabolites of cyanidin. According to these observations, after consumption of a dietary-relevant dose of anthocyanins as natural chokeberry juice, anthocyanins and their metabolites were present in plasma and urine of volunteers.
NASA Astrophysics Data System (ADS)
Kang, Dong-Hyun; Kim, Kyongtae; Kim, Yong-Jun
2018-02-01
Microfluidic devices for plasma extraction are popular because they offer the advantage of smaller reagent consumption compared to conventional centrifugations. The plasma yield (volume percentage of plasma that can be extracted) is an important factor for diagnoses in microdevices with small reagent consumptions. However, recently designed microfluidic devices tend to have a low plasma yield because they have been optimized to improve the purity of extracted plasma. Thus, these devices require large amounts of reagents, and this complexity has eliminated the advantage of microfluidic devices that can operate with only small amounts of reagents. We therefore propose a continuous, real-time, blood plasma separation device, for plasma extraction rate enhancements. Moreover, a blood plasma separation device was designed to achieve improved plasma yields with high-purity efficiency. To obtain a high plasma yield, microstructures were placed on the bottom side of the channel to increase the concentration of blood cells. Plasma separation was then accomplished via microfluidic networks based on the Zweifach-Fung effect. The proposed device was fabricated based on the polydimethylsiloxane molding process using the SU-8 microfluidic channel for the fabrication of the mold and bottom structures. Human blood diluted in a phosphate buffered saline solution (25% hematocrit) was injected into the inlet of the device. The purity efficiencies were approximately equal to 96% with a maximum of 96.75% at a flow rate of 2 µl min-1, while the plasma yield was approximately 59% with a maximum of 59.92% at a flow rate of 4 µl min-1. Compared to results obtained using other devices, our proposed device could obtain comparable or higher plasma purity and a high plasma yield.
Electrooxidation of industrial wastewater containing 1,4-dioxane in the presence of different salts.
Barndõk, H; Hermosilla, D; Cortijo, L; Torres, E; Blanco, A
2014-04-01
The treatment of 1,4-dioxane solution by electrochemical oxidation on boron-doped diamond was studied using a central composite design and the response surface methodology to investigate the use of SO4 (2-) and HCO3 (-) as supporting electrolytes considering the applied electric current, initial chemical oxygen demand (COD) value, and treatment time. Two industrial effluents containing bicarbonate alkalinity, one just carrying 1,4-dioxane (S1), and another one including 1,4-dioxane and 2-methyl-1,3-dioxolane (S2), were treated under optimized conditions and subsequently subjected to biodegradability assays with a Pseudomonas putida culture. Electrooxidation was compared with ozone oxidation (O3) and its combination with hydrogen peroxide (O3/H2O2). Regarding the experimental design, the optimal compromise for maximum COD removal at minimum energy consumption was shown at the maximum tested concentrations of SO4 (2-) and HCO3 (-) (41.6 and 32.8 mEq L(-1), respectively) and the maximum selected initial COD (750 mg L(-1)), applying a current density of 11.9 mA cm(-2) for 3.8 h. Up to 98 % of the COD was removed in the electrooxidation treatment of S1 effluent using 114 kWh per kg of removed COD and about 91 % of the COD from S2 wastewater applying 49 kWh per kg of removed COD. The optimal biodegradability enhancement was achieved after 1 h of electrooxidation treatment. In comparison with O3 and O3/H2O2 alternatives, electrochemical oxidation achieved the fastest degradation rate per oxidant consumption unit, and it also resulted to be the most economical treatment in terms of energy consumption and price per unit of removed COD.
Samayoa, Ana Clariza; Hwang, Shaw-Yhi
2018-04-09
Although well known for its organic waste decomposing capability, much of the biology of Hermetia illucens (L.) (Diptera: Stratiomyidae) remains unknown, including details involving its diapause. The present study provides a better understanding of the effects of diapause on the fecundity and longevity of H. illucens. The daily degradation rates (dry weight of the uneaten residue) of a H. illucens cohort were also evaluated. Data were collected and analyzed based on the age-stage, two-sex life table. The intrinsic rate of increase (r), finite rate of increase (λ), net reproduction rate (R0), and mean generation time (T) were 0.0498 (d-1), 1.0511 (d-1), 118.3 offspring, and 95.8 d, respectively. The maximum net maternity was 22.5 eggs after 88 d. Only 12 females out of 22 were able to successfully oviposit. The number of eggs produced per female ranged from 508 to 1,047. Degradation and consumption occurred during each of the 23 d until all larvae developed into the prepupal stage. The age-stage net consumption rate (Bxj) dropped at day 11 (1.05 mg) and then reached its highest level at day 14 (1.72 mg). The mean degradation rate was 26.69 mg and the total degradation and consumption was 1,921.52 mg. Linking life table data and degradation rates provides the necessary data for predicting a population's growth and its degradation capacity. Results of this study demonstrated the importance of adding moisture during the prepupal stage. This information will provide a better understanding for an implementation program using H. illucens as a biodegrading agent of organic waste matter.
NASA Astrophysics Data System (ADS)
Rodrigues, Rita C. L. B.; Lu, Chenfeng; Lin, Bernice; Jeffries, Thomas W.
Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3Δ) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h-1). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 gxylose/gcel h) and xylitol production (0.059 gxylitol/gcel h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized.
Fitzgibbon, Quinn P; Simon, Cedric J; Smith, Gregory G; Carter, Chris G; Battaglene, Stephen C
2017-05-01
We examined the effects of temperature on the growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi, in order to determine if temperature acclimated aerobic scope correlates with optimum for growth and to establish the thermal tolerance window for this emerging aquaculture species. Juvenile lobsters (initial weight=10.95±0.47g) were reared (n=7) at temperatures from 11.0 to 28.5°C for 145days. All lobsters survived from 14.5 to 25.0°C while survival was reduced at 11.0°C (86%) and all lobsters died at 28.5°C. Lobster specific growth rate and specific feed consumption displayed a unimodal response with temperature, peaking at 21.5°C. Lobster standard, routine and maximum metabolic rates, and aerobic scope all increased exponentially up to maximum non-lethal temperature. Optimum temperature for growth did not correspond to that for maximum aerobic scope suggesting that aerobic scope is not an effective predictor of the thermal optimum of spiny lobsters. Plateauing of specific feed consumption beyond 21.5°C suggests that temperature dependent growth of lobsters is limited by capacity to ingest or digest sufficient food to meet increasing maintenance metabolic demands at high temperatures. The nutritional condition of lobsters was not influenced by temperature and feed conversion ratio was improved at lower temperatures. These findings add to a growing body of evidence questioning the generality of aerobic scope to describe the physiological thermal boundaries of aquatic ectotherms and suggest that feed intake plays a crucial role in regulating performance at thermal extremes. Copyright © 2017 Elsevier Inc. All rights reserved.
Yang, Gui-Qiang; Xu, Shao-Gang; Wang, Yue-Zhi; Wang, Zhan-Quan; Zhang, Yong-Wang
2009-11-01
The oxygen consumption and ammonia excretion rates of juvenile brook trout (Salvelinus fontinalus) under satiation and starvation were measured at different levels of water temperature [(5.5 +/- 0.5), (8.5 +/- 0.5), (11.5 +/- 0.5), (14.5 +/- 0.5), (17.5 +/- 0.5) degrees C], aimed to study the effects of water temperature and feeding on the respiratory metabolism of the fish. Under satiation, the oxygen consumption and ammonia excretion rates of juvenile S. fontinalus at the five temperature levels increased rapidly to the maximum, and then decreased gradually to the initial state. The regression equations of oxygen consumption rate (OR) and ammonia excretion rate (NR) to water temperature (t) were OR = -0.0601 t4 + 2.5542 t3 - 39.256 t2 + 276.26 t - 598.75 (R2 = 1, 4.5 degrees C < t < 17.5 degrees C) and NR = - 0.0020 t4 + 0.0826 t3 - 1.2318 t2 + 8.6186 t - 18.838 (R2 = 1, 4.5 degrees C < t < 17.5 degrees C), respectively. Under starvation, the regression equations were OR = 13.723 t(0.9738) (R2 = 0.9974, 4.5 degrees C < t < 17.5 degrees C) and NR = 0.1687 t(1.0896) (R2 = 0.9977, 4.5 degrees C < t < 17.5 degrees C), respectively. The optimal temperature range was 11.5 degrees C-14.5 degrees C. The juvenile S. fontinalus in starvation was heavily depended on fat and carbohydrates.
Dheyongera, Geoffrey; Grzebyk, Katherine; Rudolf, Agata M; Sadowska, Edyta T; Koteja, Paweł
2016-04-01
Agro-chemicals potentially cause adverse effects in non-target organisms. The rate of animal energy metabolism can influence their susceptibility to pesticides by influencing food consumption, biotransformation and elimination rates of toxicants. We used experimental evolution to study the effects of inherent differences in energy metabolism rate and exposure to the organophosphate insecticide, chlorpyrifos (CPF) on thermogenic capacity in a wild rodent, the bank vole (Myodes = Clethrionomys glareolus). The voles were sampled from four replicate lines selected for high swim-induced aerobic metabolism (A) and four unselected control (C) lines. Thermogenic capacity, measured as the maximum cold-induced rate of oxygen consumption (VO2cold), was higher in the A - than C lines, and it decreased after continuous exposure to CPF via food or after a single dose administered via oral gavage, but only when measured shortly after exposure. VO2cold measured 24 h after repeated exposure was not affected. In addition, gavage with a single dose led to decreased food consumption and loss in body mass. Importantly, the adverse effects of CPF did not differ between the selected and control lines. Therefore, exposure to CPF has adverse effects on thermoregulatory performance and energy balance in this species. The effects are short-lived and their magnitude is not associated with the inherent level of energy metabolism. Even without severe symptoms of poisoning, fitness can be compromised under harsh environmental conditions, such as cold and wet weather. Copyright © 2016. Published by Elsevier Ltd.
Wang, Liangzhu; Emmerich, Steven J; Persily, Andrew K
2010-12-01
On the basis of currently available data, approximately 97% of generator-related carbon monoxide (CO) fatalities are caused by operating currently marketed, carbureted spark-ignited gasoline-powered generators (not equipped with emission controls) in enclosed spaces. To better understand and to reduce the occurrence of these fatalities, research is needed to quantify CO generation rates, develop and test CO emission control devices, and evaluate CO transport and exposure when operating a generator in an enclosed space. As a first step in these efforts, this paper presents measured CO generation rates from a generator without any emission control devices operating in an enclosed space under real weather conditions. This study expands on previously published information from the U.S. Consumer Product Safety Commission. Thirteen separate tests were conducted under different weather conditions at half and full generator load settings. It was found that the CO level in the shed reached a maximum value of 29,300 +/- 580 mg/m3, whereas the oxygen (O2) was depleted to a minimum level of 16.2 +/- 0.02% by volume. For the test conditions of real weather and generator operation, the CO generation and the O2 consumption could be expressed as time-averaged generation/consumption rates. It was also found that the CO generation and O2 consumption rates can be correlated to the O2 levels in the space and the actual load output from the generator. These correlations are shown to agree well with the measurements.
Physiological analysis to quantify training load in badminton.
Majumdar, P; Khanna, G L; Malik, V; Sachdeva, S; Arif, M; Mandal, M
1997-01-01
OBJECTIVE: To estimate the training load of specific on court training regimens based on the magnitude of variation of heart rate-lactate response during specific training and to determine the magnitude of variation of biochemical parameters (urea, uric acid, and creatine phosphokinase (CPK)) 12 hours after the specific training programme so as to assess training stress. METHODS: The study was conducted on six national male badminton players. Maximum oxygen consumption (VO2), ventilation (VE), heart rate, and respiratory quotient were measured by a protocol of graded treadmill exercise. Twelve training sessions and 35 singles matches were analysed. Heart rate and blood lactate were monitored during technical training routines and match play. Fasting blood samples collected on two occasions--that is, during off season and 12 hours after specific training--were analysed for serum urea, uric acid, and CPK. RESULTS: Analysis of the on court training regimens showed lactate values of 8-10.5 mmol/l in different phases. The percentage of maximum heart rate ranged from 82% to 100%. Urea, uric acid, and CPK activity showed significant changes from (mean (SD)) 4.93 (0.75) mmol/l to 5.49 (0.84) mmol/l, 0.23 (0.04) to 0.33 (0.06) mmol/l, and 312 (211.8) to 363 (216.4) IU/l respectively. CONCLUSION: Maximum lactate reported in the literature ranges from 3-6 mmol/l. Comparatively high lactate values and high percentage of maximum heart rate found in on court training show a considerable stress on muscular and cardiovascular system. The training load needs appropriate monitoring to avoid over-training. Workouts that are too intensive may interfere with coordination, a factor that is important in sports requiring highly technical skill such as badminton. PMID:9429015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavousian, A; Rajagopal, R; Fischer, M
2013-06-15
We propose a method to examine structural and behavioral determinants of residential electricity consumption, by developing separate models for daily maximum (peak) and minimum (idle) consumption. We apply our method on a data set of 1628 households' electricity consumption. The results show that weather, location and floor area are among the most important determinants of residential electricity consumption. In addition to these variables, number of refrigerators and entertainment devices (e.g., VCRs) are among the most important determinants of daily minimum consumption, while number of occupants and high-consumption appliances such as electric water heaters are the most significant determinants of dailymore » maximum consumption. Installing double-pane windows and energy-efficient lights helped to reduce consumption, as did the energy-conscious use of electric heater. Acknowledging climate change as a motivation to save energy showed correlation with lower electricity consumption. Households with individuals over 55 or between 19 and 35 years old recorded lower electricity consumption, while pet owners showed higher consumption. Contrary to some previous studies, we observed no significant correlation between electricity consumption and income level, home ownership, or building age. Some otherwise energy-efficient features such as energy-efficient appliances, programmable thermostats, and insulation were correlated with slight increase in electricity consumption. (C) 2013 Elsevier Ltd. All rights reserved.« less
Cardiovascular responses to a high-volume continuous circuit resistance training protocol.
Gotshalk, Lincoln A; Berger, Richard A; Kraemer, William J
2004-11-01
The purpose of this investigation was to determine the level of cardiovascular stress elicited by continuous and prolonged circuit resistance training (CRT). Each of the 11 men who volunteered as a subject were tested to determine oxygen consumption and heart rate responses to a submaximal and maximal treadmill protocol and a CRT session consisting of 10 exercises and 10 repetitions at 40% of 1 repetition maximum (1RM) for each station with 4.6 circuits performed. The physiological stress of the CRT in this study was evident by the sustained heart rate of more than 70% of maximum for 16.6 minutes, with the last 12 minutes at more than 80%. Despite the large anaerobic component in CRT, Vo(2) was sustained at 50% or more of maximum for the final 12 minutes. Treadmill running, involving large muscle groups, increased Vo(2) more rapidly than CRT, where alternating larger and smaller muscle groups were used. In addition, at the same Vo(2) heart rate differed significantly between the 2 modes of activity. Heart rate in CRT was higher (at 165) than the heart rate of 150 found during treadmill running at the same 50% Vo(2). Such workouts may be used in a training cycle in classical linear periodization or in a nonlinear program day targeting local muscular endurance under intense cardiorespiratory conditions, which may help individuals develop enhanced toleration of physiological environments where high cardiovascular demands and higher lactate concentrations are present.
Carvalho, Margarida; Roca, Christophe; Reis, Maria A M
2014-10-01
Carob pods are a by-product of locust bean gum industry containing more than 50% (w/w) sucrose, glucose and fructose. In this work, carob pod water extracts were used, for the first time, for succinic acid production by Actinobacillus succinogenes 130Z. Kinetic studies of glucose, fructose and sucrose consumption as individual carbon sources till 30g/L showed no inhibition on cell growth, sugar consumption and SA production rates. Sugar extraction from carob pods was optimized varying solid/liquid ratio and extraction time, maximizing sugar recovery while minimizing the extraction of polyphenols. Batch fermentations containing 10-15g/L total sugars resulted in a maximum specific SA production rate of 0.61Cmol/Cmol X.h, with a yield of 0.55Cmol SA/Cmol sugar and a volumetric productivity of 1.61g SA/L.h. Results demonstrate that carob pods can be a promising low cost feedstock for bio-based SA production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Body cooling in human males by cold-water immersion after vigorous exercise.
McDonald, A; Goode, R C; Livingstone, S D; Duffin, J
1984-03-01
Five male subjects were immersed to neck level in a whole-body water calorimeter (water temperature 19 degrees C) on two occasions. One immersion was preceded by 30 min of exercise on a treadmill at 80% of the subjects' maximum heart rate, while the other was preceded by no exercise (control). Ventilation, oxygen consumption, hand-grip strength, and heat loss (measured by calorimetry) results showed no significant differences between resting and exercise trials. Minute ventilation and oxygen consumption increased during the immersion but the magnitude of the increase varied among subjects. There was a significant decrease is isometric hand-grip strength after 30 min of immersion. Rectal temperatures fell faster (0.031 degree C +/- 0.004 degree C/min) for exercised subjects than for controls (0.019 degree C +/- 0.005 degree C/min) between 10 and 45 min of immersion (P less than 0.01). It appears that vigorous preimmersion exercise may shorten survival time in cold water due to an increase in cooling rate.
A rational approach to improving productivity in recombinant Pichia pastoris fermentation.
d'Anjou, M C; Daugulis, A J
2001-01-05
A Mut(S) Pichia pastoris strain that had been genetically modified to produce and secrete sea raven antifreeze protein was used as a model system to demonstrate the implementation of a rational, model-based approach to improve process productivity. A set of glycerol/methanol mixed-feed continuous stirred-tank reactor (CSTR) experiments was performed at the 5-L scale to characterize the relationship between the specific growth rate and the cell yield on methanol, the specific methanol consumption rate, the specific recombinant protein formation rate, and the productivity based on secreted protein levels. The range of dilution rates studied was 0. 01 to 0.10 h(-1), and the residual methanol concentration was kept constant at approximately 2 g/L (below the inhibitory level). With the assumption that the cell yield on glycerol was constant, the cell yield on methanol increased from approximately 0.5 to 1.5 over the range studied. A maximum specific methanol consumption rate of 20 mg/g. h was achieved at a dilution rate of 0.06 h(-1). The specific product formation rate and the volumetric productivity based on product continued to increase over the range of dilution rates studied, and the maximum values were 0.06 mg/g. h and 1.7 mg/L. h, respectively. Therefore, no evidence of repression by glycerol was observed over this range, and operating at the highest dilution rate studied maximized productivity. Fed-batch mass balance equations, based on Monod-type kinetics and parameters derived from data collected during the CSTR work, were then used to predict cell growth and recombinant protein production and to develop an exponential feeding strategy using two carbon sources. Two exponential fed-batch fermentations were conducted according to the predicted feeding strategy at specific growth rates of 0.03 h(-1) and 0.07 h(-1) to verify the accuracy of the model. Cell growth was accurately predicted in both fed-batch runs; however, the model underestimated recombinant product concentration. The overall volumetric productivity of both runs was approximately 2.2 mg/L. h, representing a tenfold increase in the productivity compared with a heuristic feeding strategy. Copyright 2001 John Wiley & Sons, Inc.
An experimental analysis of electricity conservation procedures1
Palmer, Michael H.; Lloyd, Margaret E.; Lloyd, Kenneth E.
1977-01-01
Daily electricity consumption of four families was recorded for 106 days. A reversal design, consisting of various experimental conditions interspersed between repeated baseline conditions, was used. During experimental conditions, daily prompts (written conservation slogans attached to front doors) and/or daily feedback (daily kilowatts consumed and daily cost information) were in effect. Maximum consumption occurred during the initial baseline; minimum consumption occurred during different experimental conditions for different families. The mean decrease from the maximum to the minimum for all families was 35%. Reversals in consumption were demonstrated in three families, although successive baselines tended to decrease. No clear differences in effectiveness between prompting and feedback conditions were apparent. The procedures used resulted in considerable dollar savings for the families. PMID:16795572
Food Acquisition: Food Ingredients, Raw Materials and Supply
NASA Technical Reports Server (NTRS)
Wheat, D. W.
1984-01-01
The kind of food supply system that will serve the space station in coming years is considered. The direction and rate of evolution of space food service systems is also considered and what is needed to supply appropriate food to space station crews. Innovations in food sourcing, recipe development, pre-preparation, packaging, preservation, presentation, consumption and waste disposal are discussed. The development and validation of preparation systems and ingredients which minimize demands on crew time and provide maximum eating enjoyment is outlined.
Miniaturized module for the wireless transmission of measurements with Bluetooth.
Roth, H; Schwaibold, M; Moor, C; Schöchlin, J; Bolz, A
2002-01-01
The wiring of patients for obtaining medical measurements has many disadvantages. In order to limit these, a miniaturized module was developed which digitalizes analog signals and sends the signal wirelessly to the receiver using Bluetooth. Bluetooth is especially suitable for this application because distances of up to 10 m are possible with low power consumption and robust transmission with encryption. The module consists of a Bluetooth chip, which is initialized in such a way by a microcontroller that connections from other bluetooth receivers can be accepted. The signals are then transmitted to the distant end. The maximum bit rate of the 23 mm x 30 mm module is 73.5 kBit/s. At 4.7 kBit/s, the current consumption is 12 mA.
NASA Astrophysics Data System (ADS)
Paufler, S.; Grischek, T.; Adomat, Y.; Herlitzius, J.; Hiller, K.; Metelica, Y.
2018-04-01
Microbiological contamination usually leads to erratic operation of drinking water wells and disinfection is required after disasters and sometimes to restore proper well performance for aquifer storage and recovery (ASR) and subsurface iron removal (SIR) wells. This study focused on estimating the fate of chlorine around an infiltration well and improving the knowledge about processes that control the physical extent of the disinfected/affected radius. Closed bottle batch tests revealed low chlorine consumption rates for filter gravel and sand (0.005 mg/g/d) and higher rates for clay (0.030 mg/g/d) as well as natural aquifer material (0.054 mg/g/d). Smaller grain sizes <1 mm showed 10- to 70-times higher initial chlorine consumption rates within the first hour after contact compared to the median consumption rates. Initial chlorine concentration most likely does not impact disinfection ability at grain sizes >1 mm, but results in more effective disinfection for very fine material <0.063 mm. Column studies focused on the adaptation of the lab results to an actual SIR waterworks in Khabarovsk, Russia. Results reinforced the previous lab results with low 1st-order decay constants of 16 d-1 for filter material and much higher values of 254 d-1 for natural aquifer material. Application of the chlorine consumption rates to an example well consistently indicated that the filter gravel pack consumes <1% of infiltrated chlorine. The disinfection zone at the example well seems to extend to maximum 3.5 m into the aquifer. Excessive chlorine dosage of >10 mg/l would not further extend the disinfected radius. A preferable way to increase the range of chlorine application is to increase the total infiltrated volume and time. Three approaches are proposed for adapting lab results to actual infiltration wells, that are in principle applicable to any other site.
Production of oxalic acid from sugar beet molasses by formed nitrogen oxides.
Gürü, M; Bilgesü, A Y; Pamuk, V
2001-03-01
Production of oxalic acid from sugar beet molasses was developed in a series of three reactors. Nitrogen oxides formed were used to manufacture oxalic acid in the second and third reactor. Parameters affecting the reaction were determined to be, air flow rate, temperature, the amount of V2O5 catalyst and the concentrations of molasses and H2SO4. The maximum yields in the second and third reactors were 78.9% and 74.6% of theoretical yield, respectively. Also, kinetic experiments were performed and the first-order rate constants were determined for the glucose consumption rate. Nitrogen oxides in off-gases from the final reactor were absorbed in water and concentrated sulphuric acid and reused in the following reactors giving slightly lower yields under similar conditions. In this novel way, it was possible to recover NO(x) and to prevent air pollution. Meanwhile, it was possible to reduce the unit cost of reactant for oxalic acid production. A maximum 77.5% and 74.1% of theoretical yield was obtained by using the absorption solutions with NO(x).
Growth and Maximum Size of Tiger Sharks (Galeocerdo cuvier) in Hawaii
Meyer, Carl G.; O'Malley, Joseph M.; Papastamatiou, Yannis P.; Dale, Jonathan J.; Hutchinson, Melanie R.; Anderson, James M.; Royer, Mark A.; Holland, Kim N.
2014-01-01
Tiger sharks (Galecerdo cuvier) are apex predators characterized by their broad diet, large size and rapid growth. Tiger shark maximum size is typically between 380 & 450 cm Total Length (TL), with a few individuals reaching 550 cm TL, but the maximum size of tiger sharks in Hawaii waters remains uncertain. A previous study suggested tiger sharks grow rather slowly in Hawaii compared to other regions, but this may have been an artifact of the method used to estimate growth (unvalidated vertebral ring counts) compounded by small sample size and narrow size range. Since 1993, the University of Hawaii has conducted a research program aimed at elucidating tiger shark biology, and to date 420 tiger sharks have been tagged and 50 recaptured. All recaptures were from Hawaii except a single shark recaptured off Isla Jacques Cousteau (24°13′17″N 109°52′14″W), in the southern Gulf of California (minimum distance between tag and recapture sites = approximately 5,000 km), after 366 days at liberty (DAL). We used these empirical mark-recapture data to estimate growth rates and maximum size for tiger sharks in Hawaii. We found that tiger sharks in Hawaii grow twice as fast as previously thought, on average reaching 340 cm TL by age 5, and attaining a maximum size of 403 cm TL. Our model indicates the fastest growing individuals attain 400 cm TL by age 5, and the largest reach a maximum size of 444 cm TL. The largest shark captured during our study was 464 cm TL but individuals >450 cm TL were extremely rare (0.005% of sharks captured). We conclude that tiger shark growth rates and maximum sizes in Hawaii are generally consistent with those in other regions, and hypothesize that a broad diet may help them to achieve this rapid growth by maximizing prey consumption rates. PMID:24416287
Growth and maximum size of tiger sharks (Galeocerdo cuvier) in Hawaii.
Meyer, Carl G; O'Malley, Joseph M; Papastamatiou, Yannis P; Dale, Jonathan J; Hutchinson, Melanie R; Anderson, James M; Royer, Mark A; Holland, Kim N
2014-01-01
Tiger sharks (Galecerdo cuvier) are apex predators characterized by their broad diet, large size and rapid growth. Tiger shark maximum size is typically between 380 & 450 cm Total Length (TL), with a few individuals reaching 550 cm TL, but the maximum size of tiger sharks in Hawaii waters remains uncertain. A previous study suggested tiger sharks grow rather slowly in Hawaii compared to other regions, but this may have been an artifact of the method used to estimate growth (unvalidated vertebral ring counts) compounded by small sample size and narrow size range. Since 1993, the University of Hawaii has conducted a research program aimed at elucidating tiger shark biology, and to date 420 tiger sharks have been tagged and 50 recaptured. All recaptures were from Hawaii except a single shark recaptured off Isla Jacques Cousteau (24°13'17″N 109°52'14″W), in the southern Gulf of California (minimum distance between tag and recapture sites = approximately 5,000 km), after 366 days at liberty (DAL). We used these empirical mark-recapture data to estimate growth rates and maximum size for tiger sharks in Hawaii. We found that tiger sharks in Hawaii grow twice as fast as previously thought, on average reaching 340 cm TL by age 5, and attaining a maximum size of 403 cm TL. Our model indicates the fastest growing individuals attain 400 cm TL by age 5, and the largest reach a maximum size of 444 cm TL. The largest shark captured during our study was 464 cm TL but individuals >450 cm TL were extremely rare (0.005% of sharks captured). We conclude that tiger shark growth rates and maximum sizes in Hawaii are generally consistent with those in other regions, and hypothesize that a broad diet may help them to achieve this rapid growth by maximizing prey consumption rates.
[Low flow anaesthesia with isoflurane and sevoflurane in the dog].
Kramer, Sabine; Alyakine, Hassan; Nolte, Ingo
2008-01-01
The aim of the present study was to compare the safety and efficacy of sevoflurane and isoflurane during low flow anaesthesia (fresh gas flow (FGF) 14 ml/kg/min) as well as to compare the consumption of both anaesthetics. Data were gathered from 60 dogs assigned for surgery under general anaesthesia with an expected duration of 75 minutes or longer. All dogs were induced with 0.6 mg/kg (maximum 25 mg) l-methadone and 1 mg/kg (maximum 25 mg) diazepam i.v.. Anaesthesia was maintained with isoflurane (group 1) or sevoflurane (group 2) in a mixture with 50% O2 and 50% N2O as carrier gases, under controlled ventilation. Monitoring included electrocardiogram, body temperature, the temperature of in- and exspired gases, arterial oxygen saturation, arterial blood pressure as well as a continuous monitoring of inhaled and exhaled gas concentrations (O2, N2O, CO2, isoflurane, sevoflurane). The consumption of isoflurane and sevoflurane as well as the dogs' recovery times were evaluated for both groups. In all groups the inspired oxygen concentrations ranged above the minimum value of 30 Vol% during low flow anaesthesia, with an arterial oxygen saturation above 97%. End tidal concentration of CO2, heart rate and arterial blood pressure were within the physiological ranges and showed no differences between the two groups. Recovery time was significantly shorter after sevoflurane compared to isoflurane anaesthesia, whilst the consumption of sevoflurane was higher than that of isoflurane. Sevoflurane appears to be as clinically safe as isoflurane in low flow anaesthesia. Even considering that sevoflurane is more expensive than isoflurane, the use of the low flow technique decreases the cost of anaesthesia due to the reduced volatile anaesthetic consumption.
Influence of experimental hyperthyroidism on skeletal muscle metabolism in the rat.
van Hardeveld, C; Kassenaar, A A
1977-05-01
In this study hind-limb perfusion was used to investigate the influence of thyroid hormones on some metabolic parameters in the skeletal muscle of the rat. Daily injection of 20 microng L-thyroxine (T4) per 100 g b. w. for a week caused a 25% increase in oxygen consumption. Further enlargement of the T4 dose had little additive effect. In the dose range 20--80 microng T4/100g b.w., no important changes occurred in lactate production or glucose consumption. Only at the highest T4 dose did the glucose consumption increase significantly. The most profound effect of T4 was on lipolysis. A daily dose of 20 microng T4/100 g b. w. gave a doubling of glycerol production rate, the maximum occuring at a dose of 40 microng T4/100 g b. w. Inactivation of the nervous system was without influence on the T4-induced increase in oxygen consumption. However, the T4-induced elevation of lipolysis disappeared after abolition of the nervous activity. This raises the possibility that the T4 effect on lipolysis in skeletal muscle is a potentiation of catecholamine effects. The T4-induced oxygen consumption increase might be dependent not on the lipolytic process but rather on other energy-consuming cell processes.
Bechara, Rami; Gomez, Adrien; Saint-Antonin, Valérie; Schweitzer, Jean-Marc; Maréchal, François
2016-08-01
The application of methodologies for the optimal design of integrated processes has seen increased interest in literature. This article builds on previous works and applies a systematic methodology to an integrated first and second generation ethanol production plant with power cogeneration. The methodology breaks into process simulation, heat integration, thermo-economic evaluation, exergy efficiency vs. capital costs, multi-variable, evolutionary optimization, and process selection via profitability maximization. Optimization generated Pareto solutions with exergy efficiency ranging between 39.2% and 44.4% and capital costs from 210M$ to 390M$. The Net Present Value was positive for only two scenarios and for low efficiency, low hydrolysis points. The minimum cellulosic ethanol selling price was sought to obtain a maximum NPV of zero for high efficiency, high hydrolysis alternatives. The obtained optimal configuration presented maximum exergy efficiency, hydrolyzed bagasse fraction, capital costs and ethanol production rate, and minimum cooling water consumption and power production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ambarita, H.; Sinulingga, E. P.; Nasution, M. KM; Kawai, H.
2017-03-01
In this work, a compression ignition (CI) engine is tested in dual-fuel mode (Diesel-Raw biogas). The objective is to examine the performance and emission characteristics of the engine when some of the diesel oil is replaced by biogas. The specifications of the CI engine are air cooled single horizontal cylinder, four strokes, and maximum output power of 4.86 kW. It is coupled with a synchronous three phase generator. The load, engine revolution, and biogas flow rate are varied from 600 W to 1500 W, 1000 rpm to 1500 rpm, 0 to 6 L/minute, respectively. The electric power, specific fuel consumption, thermal efficiency, gas emission, and diesel replacement ratio are analyzed. The results show that there is no significant difference of the power resulted by CI run on dual-fuel mode in comparison with pure diesel mode. However, the specific fuel consumption and efficiency decrease significantly as biogas flow rate increases. On the other hand, emission of the engine on dual-fuel mode is better. The main conclusion can be drawn is that CI engine without significant modification can be operated perfectly in dual-fuel mode and diesel oil consumption can be decreased up to 87.5%.
Species-specific impacts of suspended sediments on gill structure and function in coral reef fishes.
Hess, Sybille; Prescott, Leteisha J; Hoey, Andrew S; McMahon, Shannon A; Wenger, Amelia S; Rummer, Jodie L
2017-11-15
Reduced water quality, in particular increases in suspended sediments, has been linked to declines in fish abundance on coral reefs. Changes in gill structure induced by suspended sediments have been hypothesized to impair gill function and may provide a mechanistic basis for the observed declines; yet, evidence for this is lacking. We exposed juveniles of three reef fish species ( Amphiprion melanopus , Amphiprion percula and Acanthochromis polyacanthus ) to suspended sediments (0-180 mg l -1 ) for 7 days and examined changes in gill structure and metabolic performance (i.e. oxygen consumption). Exposure to suspended sediments led to shorter gill lamellae in A. melanopus and A. polyacanthus and reduced oxygen diffusion distances in all three species. While A. melanopus exhibited impaired oxygen uptake after suspended sediment exposure, i.e. decreased maximum and increased resting oxygen consumption rates resulting in decreased aerobic scope, the oxygen consumption rates of the other two species remained unaffected. These findings imply that species sensitive to changes in gill structure such as A. melanopus may decline in abundance as reefs become more turbid, whereas species that are able to maintain metabolic performance despite suspended sediment exposure, such as A. polyacanthus or A. percula , may be able to persist or gain a competitive advantage. © 2017 The Author(s).
Taweel, Abdulali; Shuhaimi-Othman, M; Ahmad, A K
2013-07-01
Concentrations of the heavy metals copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb) and nickel (Ni) were determined in the liver, gills and muscles of tilapia fish from the Langat River and Engineering Lake, Bangi, Selangor, Malaysia. There were differences in the concentrations of the studied heavy metals between different organs and between sites. In the liver samples, Cu>Zn>Ni>Pb>Cd, and in the gills and muscle, Zn>Ni>Cu>Pb>Cd. Levels of Cu, Cd, Zn and Pb in the liver samples from Engineering Lake were higher than in those from the Langat River, whereas the Ni levels in the liver samples from the Langat River were greater than in those from Engineering Lake. Cd levels in the fish muscle from Engineering Lake were lower than in that from the Langat River. Meanwhile, the Cd, Zn and Pb levels in the fish muscle from the Langat River were lower than in that from Engineering Lake, and the Ni levels were almost the same in the fish muscle samples from the two sites. The health risks associated with Cu, Cd, Zn, Pb and Ni were assessed based on the target hazard quotients. In the Langat River, the risk from Cu is minimal compared to the other studied elements, and the concentrations of Pb and Ni were determined to pose the greatest risk. The maximum allowable fish consumption rates (kg/d) based on Cu in Engineering Lake and the Langat River were 2.27 and 1.51 in December and 2.53 and 1.75 in February, respectively. The Cu concentrations resulted in the highest maximum allowable fish consumption rates compared with the other studied heavy metals, whereas those based on Pb were the lowest. A health risk analysis of the heavy metals measured in the fish muscle samples indicated that the fish can be classified at one of the safest levels for the general population and that there are no possible risks pertaining to tilapia fish consumption. Copyright © 2013 Elsevier Inc. All rights reserved.
Do mitochondrial properties explain intraspecific variation in thermal tolerance?
Fangue, Nann A; Richards, Jeffrey G; Schulte, Patricia M
2009-02-01
As global temperatures rise, there is a growing need to understand the physiological mechanisms that determine an organism's thermal niche. Here, we test the hypothesis that increases in mitochondrial capacity with cold acclimation and adaptation are associated with decreases in thermal tolerance using two subspecies of killifish (Fundulus heteroclitus) that differ in thermal niche. We assessed whole-organism metabolic rate, mitochondrial amount and mitochondrial function in killifish acclimated to several temperatures. Mitochondrial enzyme activities and mRNA levels were greater in fish from the northern subspecies, particularly in cold-acclimated fish, suggesting that the putatively cold-adapted northern subspecies has a greater capacity for increases in mitochondrial amount in response to cold acclimation. When tested at the fish's acclimation temperature, maximum ADP-stimulated (State III) rates of mitochondrial oxygen consumption in vitro were greater in cold-acclimated northern fish than in southern fish but did not differ between subspecies at higher acclimation temperatures. Whole-organism metabolic rate was greater in fish of the northern subspecies at all acclimation temperatures. Cold acclimation also changed the response of mitochondrial respiration to acute temperature challenge. Mitochondrial oxygen consumption was greater in cold-acclimated northern fish than in southern fish at low test temperatures, but the opposite was true at high test temperatures. These differences were reflected in whole-organism oxygen consumption. Our data indicate that the plasticity of mitochondrial function and amount differs between killifish subspecies, with the less high-temperature tolerant, and putatively cold adapted, northern subspecies having greater ability to increase mitochondrial capacity in the cold. However, there were few differences in mitochondrial properties between subspecies at warm acclimation temperatures, despite differences in both whole-organism oxygen consumption and thermal tolerance at these temperatures.
Method of electric powertrain matching for battery-powered electric cars
NASA Astrophysics Data System (ADS)
Ning, Guobao; Xiong, Lu; Zhang, Lijun; Yu, Zhuoping
2013-05-01
The current match method of electric powertrain still makes use of longitudinal dynamics, which can't realize maximum capacity for on-board energy storage unit and can't reach lowest equivalent fuel consumption as well. Another match method focuses on improving available space considering reasonable layout of vehicle to enlarge rated energy capacity for on-board energy storage unit, which can keep the longitudinal dynamics performance almost unchanged but can't reach lowest fuel consumption. Considering the characteristics of driving motor, method of electric powertrain matching utilizing conventional longitudinal dynamics for driving system and cut-and-try method for energy storage system is proposed for passenger cars converted from traditional ones. Through combining the utilization of vehicle space which contributes to the on-board energy amount, vehicle longitudinal performance requirements, vehicle equivalent fuel consumption level, passive safety requirements and maximum driving range requirement together, a comprehensive optimal match method of electric powertrain for battery-powered electric vehicle is raised. In simulation, the vehicle model and match method is built in Matlab/simulink, and the Environmental Protection Agency (EPA) Urban Dynamometer Driving Schedule (UDDS) is chosen as a test condition. The simulation results show that 2.62% of regenerative energy and 2% of energy storage efficiency are increased relative to the traditional method. The research conclusions provide theoretical and practical solutions for electric powertrain matching for modern battery-powered electric vehicles especially for those converted from traditional ones, and further enhance dynamics of electric vehicles.
Sandhwar, Vishal Kumar; Prasad, Basheshwar
2017-12-01
In this work, comparative study between electrochemical processes such as electrocoagulation (EC), peroxi-coagulation (PC) and peroxi-electrocoagulation (PEC) was performed for the removal of phthalic acid (PA) and chemical oxygen demand (COD) from aqueous medium. Initially, acid treatment was studied at various pH (1-3) and temperature (10-55 °C). Subsequently, the supernatant was re-treated by electrochemical processes such as EC, PC and PEC separately. Independent parameters viz. pH, current density (CD), electrolyte concentration (m), electrode gap (g), H 2 O 2 concentration and electrolysis time (t) were optimized by Central Composite Design (CCD) for these electrochemical processes. All three processes were compared based on removal, energy consumption, kinetic analysis, operating cost and sludge characteristics. In this study, PEC process was found more efficient among EC, PC and PEC processes in order to get maximum removal, minimum energy consumption and minimum operating cost. Maximum removal of PA- 68.21%, 74.36%, 82.25% & COD- 64.79%, 68.15%, 75.21% with energy consumption - 120.95, 97.51, 65.68 (kWh/kg COD removed) were attained through EC, PC and PEC processes respectively at their corresponding optimum conditions. Results indicated that PA and COD removals are in order of PEC > PC > EC under optimum conditions. First order kinetic model was found able to describe the degradation kinetics and provided best correlation for the removal rate within the acceptable error range. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adams, Jenny; Roberts, Joanne; Simms, Kay; Cheng, Dunlei; Hartman, Julie; Bartlett, Charles
2009-03-15
We designed a study to measure the functional capacity requirements of firefighters to aid in the development of an occupation-specific training program in cardiac rehabilitation; 23 healthy male firefighters with no history of heart disease completed a fire and rescue obstacle course that simulated 7 common firefighting tasks. They wore complete personal protective equipment and portable metabolic instruments that included a data collection mask. We monitored each subject's oxygen consumption (VO(2)) and working heart rate, then calculated age-predicted maximum heart rates (220 - age) and training target heart rates (85% of age-predicted maximum heart rate). During performance of the obstacle course, the subjects' mean working heart rates and peak heart rates were higher than the calculated training target heart rates (t(22) = 5.69 [working vs target, p <0.001] and t(22) = 15.14 [peak vs target, p <0.001]). These findings, with mean results for peak VO(2) (3,447 ml/min) and metabolic equivalents (11.9 METs), show that our subjects' functional capacity greatly exceeded that typically attained by patients in traditional cardiac rehabilitation programs (5 to 8 METs). In conclusion, our results indicate the need for intense, occupation-specific cardiac rehabilitation training that will help firefighters safely return to work after a cardiac event.
Zhang, Ronghui; You, Feng; Lv, Zhihan; He, Zhaocheng; Wang, Haiwei; Huang, Ling
2016-12-12
In order to prevent the backward flow of piezoelectric pumps, this paper presents a single-active-chamber piezoelectric membrane pump with multiple passive check valves. Under the condition of a fixed total number of passive check valves, by means of changing the inlet valves and outlet valves' configuration, the pumping characteristics in terms of flow rate and backpressure are experimentally investigated. Like the maximum flow rate and backpressure, the testing results show that the optimal frequencies are significantly affected by changes in the number inlet valves and outlet valves. The variation ratios of the maximum flow rate and the maximum backpressure are up to 66% and less than 20%, respectively. Furthermore, the piezoelectric pump generally demonstrates very similar flow rate and backpressure characteristics when the number of inlet valves in one kind of configuration is the same as that of outlet valves in another configuration. The comparison indicates that the backflow from the pumping chamber to inlet is basically the same as the backflow from the outlet to the pumping chamber. No matter whether the number of inlet valves or the number of outlet valves is increased, the backflow can be effectively reduced. In addition, the backpressure fluctuation can be significantly suppressed with an increase of either inlet valves or outlet valves. It also means that the pump can prevent the backflow more effectively at the cost of power consumption. The pump is very suitable for conditions where more accurate flow rates are needed and wear and fatigue of check valves often occur.
Measurement and relevance of maximum metabolic rate in fishes.
Norin, T; Clark, T D
2016-01-01
Maximum (aerobic) metabolic rate (MMR) is defined here as the maximum rate of oxygen consumption (M˙O2max ) that a fish can achieve at a given temperature under any ecologically relevant circumstance. Different techniques exist for eliciting MMR of fishes, of which swim-flume respirometry (critical swimming speed tests and burst-swimming protocols) and exhaustive chases are the most common. Available data suggest that the most suitable method for eliciting MMR varies with species and ecotype, and depends on the propensity of the fish to sustain swimming for extended durations as well as its capacity to simultaneously exercise and digest food. MMR varies substantially (>10 fold) between species with different lifestyles (i.e. interspecific variation), and to a lesser extent (
The biological pump: Profiles of plankton production and consumption in the upper ocean
NASA Astrophysics Data System (ADS)
Longhurst, Alan R.; Glen Harrison, W.
The ‘biological pump’ mediates flux of carbon to the interior of the ocean by interctions between the components of the vertically-structured pelagic ecosystem of the photic zone. Chlorophyll profiles are not a simple indicator of autotrophic biomass or production, because of non-linearities in the physiology of cells and preferential vertical distribution of taxa. Profiles of numbers or biomass of heterotrophs do not correspond with profiles of consumption, because of depth-selection (taxa, seasons) for reasons unconnected with feeding. Depths of highest plant biomass, chlorophyll and growth rate coincide when these depths are shallow, but become progressively separated in profiles where they are deeper - so that highest growth rate lies progressively shallower than the chloropyll maximum. It is still uncertain how plant biomass is distributed in deep profiles. Depths of greatest heterotroph biomass (mesozooplankton) are usually close to depths of fastest plant growth rate, and thus lie shallower than the chlorophyll maximum in profiles where this itself is deep. This correlation is functional, and relates to the role of heterotrophs in excreting metabolic wastes (especially ammonia), which may fuel a significant component of integrated algal production, especially in the oligotrophic ocean. Some, but not all faecal material from mesozooplankton of the photic zone appears in vertical flux below the pycnocine, depending on the size of the source organisms, and the degree of vertical mixing above the pycnocline. Diel, but probably not seasonal, vertical migration is significant in the vertical flux of dissolved nitrogen. Regional generalisations of the vertical relations of the main components of the ‘biological pump’ now appear within reach, and an approach is suggested.
Effects of amitriptyline and clomipramine in the isolated, perfused rabbit heart.
Nielsen-Kudsk, F; Quist, S
1980-04-01
The cardiac effects of supratherapeutic concentrations of two tricyclic antidepressants were studied in isolated rabbit hearts, which were perfused with a modified Krebs-Henseleit solution containing 0.25 or 0.50 micrograms ml-1 of amitriptyline or 0.28 micrograms mg-1 of clomipramine. The following parameters were continuously recorded:heart rate, amplitude and rate of contraction, coronary flow rate, myocardial oxygen consumption and ECG. The lowest concentration of amitriptyline caused a time correlated decrease (20%) in the frequency of spontaneous beating and a pronounced decrease in the amplitude (62%) and rate of cardiac contraction (58%). Maximum increases of the PQ-interval of about 46% and of the QRS-complex of about 100% were observed. At the higher amitriptyline concentration these effect further increased. Clomipramine 0.28 micrograms ml-1 also had a very pronounced and time correlated negative inotropic effect, but the effects upon the conduction velocities were substantially lesser than those produced by the equimilar concentration of amitriptyline. The compounds caused only insignificant changes in coronary flow. The oxygen consumption did not decrease in proportion to the decrease in contractility, as an expression of decreased myocardial efficiency. The effects of the drugs are discussed in relation to theri myocardial accumulation pharmacokinetics and influence upon the membraneous sodium and calcium flux and intracellular metabolism.
Optimal Location through Distributed Algorithm to Avoid Energy Hole in Mobile Sink WSNs
Qing-hua, Li; Wei-hua, Gui; Zhi-gang, Chen
2014-01-01
In multihop data collection sensor network, nodes near the sink need to relay on remote data and, thus, have much faster energy dissipation rate and suffer from premature death. This phenomenon causes energy hole near the sink, seriously damaging the network performance. In this paper, we first compute energy consumption of each node when sink is set at any point in the network through theoretical analysis; then we propose an online distributed algorithm, which can adjust sink position based on the actual energy consumption of each node adaptively to get the actual maximum lifetime. Theoretical analysis and experimental results show that the proposed algorithms significantly improve the lifetime of wireless sensor network. It lowers the network residual energy by more than 30% when it is dead. Moreover, the cost for moving the sink is relatively smaller. PMID:24895668
NASA Astrophysics Data System (ADS)
Fonds, M.; Cronie, R.; Vethaak, A. D.; Van Der Puyl, P.
Daily rates of oxygen consumption, food consumption and growth of plaice ( Pleuronectes platessa) and flounder ( Platichthys flesus) have been measured in the laboratory at various constant temperatures. Oxygen consumption was related to body weight of the fish as a power function, with a weight exponent of between 0.71 and 0.85. No significant effects of temperature or feeding on this exponent were found. Flounder showed a significantly higher metabolic rate and a higher temperature coefficient for metabolism than plaice. Maximum daily rates of food consumption and the weight increment of fish fed with excess rations of fresh mussel meat could also be related to fish weights by means of power functions. For plaice these exponents decreased from about 0.9 at low temperatures (2-6 C°) to about 0.7 at high temperatures (18-22°C). Such a temperature effect on the weight exponent indicates that small juvenile fish eat more and grow faster at higher temperatures than do large older fish, and that large fish do better at low temperatures. After scaling of daily food consumption and growth in proportion to metabolic weights of the fish (W 0.78), feeding and growth at different fish sizes and temperatures can be compared and temperature-growth rate models can be used for investigations of feeding in natural populations. Compared to plaice, young flounder ate more and grew faster at higher temperatures (> 14°C). This may partly explain the preference of flounder for the shallower parts of coastal areas and estuaries, where summer temperatures and food densities are higher. Energy budgets of young plaice and flounder fed with excess rations of mussel meat indicate that at least 29% of the food energy is used for metabolism while about 37% of the food energy is converted into growth. The net conversion efficiency was estimated at 0.45 for food and growth in units of ash-free dry weight, and at 0.53 for food and growth in energy units. Analysis of the energy budget showed that the assimilated physiologically useful food energy is divided almost equally over metabolism (42-47%) and growth (53-55%). It is suggested that flatfish spend relatively less energy in swimming and therefore convert more food energy into growth than (pelagic) roundfish.
Newmeyer, Matthew N; Swortwood, Madeleine J; Abulseoud, Osama A; Huestis, Marilyn A
2017-06-01
Although smoking is the most common cannabis administration route, vaporization and consumption of cannabis edibles are common. Few studies directly compare cannabis' subjective and physiological effects following multiple administration routes. Subjective and physiological effects, and expired carbon monoxide (CO) were evaluated in frequent and occasional cannabis users following placebo (0.001% Δ 9 -tetrahydrocannabinol [THC]), smoked, vaporized, and oral cannabis (6.9% THC, ∼54mg). Participants' subjective ratings were significantly elevated compared to placebo after smoking and vaporization, while only occasional smokers' ratings were significantly elevated compared to placebo after oral dosing. Frequent smokers' maximum ratings were significantly different between inhaled and oral routes, while no differences in occasional smokers' maximum ratings between active routes were observed. Additionally, heart rate increases above baseline 0.5h after smoking (mean 12.2bpm) and vaporization (10.7bpm), and at 1.5h (13.0bpm) and 3h (10.2bpm) after oral dosing were significantly greater than changes after placebo, with no differences between frequent and occasional smokers. Finally, smoking produced significantly increased expired CO concentrations 0.25-6h post-dose compared to vaporization. All participants had significant elevations in subjective effects after smoking and vaporization, but only occasional smokers after oral cannabis, indicating partial tolerance to subjective effects with frequent exposure. There were no differences in occasional smokers' maximum subjective ratings across the three active administration routes. Vaporized cannabis is an attractive alternative for medicinal administrations over smoking or oral routes; effects occur quickly and doses can be titrated with minimal CO exposure. These results have strong implications for safety and abuse liability assessments. Published by Elsevier B.V.
Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria
Mohamed, Magdy El-Said; Al-Yacoub, Zakariya H.; Vedakumar, John V.
2015-01-01
Microorganisms possess enormous highly specific metabolic activities, which enable them to utilize and transform nearly every known chemical class present in crude oil. In this context, one of the most studied biocatalytic processes is the biodesulfurization (BDS) of thiophenic sulfur-containing compounds such as benzothiophene (BT) and dibenzothiophene (DBT) in crude oils and refinery streams. Three newly isolated bacterial strains, which were affiliated as Rhodococcus sp. strain SA11, Stenotrophomonas sp. strain SA21, and Rhodococcus sp. strain SA31, were enriched from oil contaminated soil in the presence of DBT as the sole S source. GC-FID analysis of DBT-grown cultures showed consumption of DBT, transient formation of DBT sulfone (DBTO2) and accumulation of 2-hydroxybiphenyl (2-HBP). Molecular detection of the plasmid-borne dsz operon, which codes for the DBT desulfurization activity, revealed the presence of dszA, dszB, and dszC genes. These results point to the operation of the known 4S pathway in the BDS of DBT. The maximum consumption rate of DBT was 11 μmol/g dry cell weight (DCW)/h and the maximum formation rate of 2-HBP formation was 4 μmol/g DCW/h. Inhibition of both cell growth and DBT consumption by 2-HBP was observed for all isolates but SA11 isolate was the least affected. The isolated biocatalysts desulfurized other model DBT alkylated homologs. SA11 isolate was capable of desulfurizing BT as well. Resting cells of SA11 exhibited 10% reduction in total sulfur present in heavy crude oil and 18% reduction in total sulfur present in the hexane-soluble fraction of the heavy crude oil. The capabilities of the isolated bacteria to survive and desulfurize a wide range of S compounds present in crude oil are desirable traits for the development of a robust BDS biocatalyst to upgrade crude oils and refinery streams. PMID:25762990
Optimal translational swimming of a sphere at low Reynolds number.
Felderhof, B U; Jones, R B
2014-08-01
Swimming velocity and rate of dissipation of a sphere with surface distortions are discussed on the basis of the Stokes equations of low-Reynolds-number hydrodynamics. At first the surface distortions are assumed to cause an irrotational axisymmetric flow pattern. The efficiency of swimming is optimized within this class of flows. Subsequently, more general axisymmetric polar flows with vorticity are considered. This leads to a considerably higher maximum efficiency. An additional measure of swimming performance is proposed based on the energy consumption for given amplitude of stroke.
Comparison of alcogas aviation fuel with export aviation gasoline
NASA Technical Reports Server (NTRS)
Gage, V R; Sparrow, S W; Harper, D R
1921-01-01
Mixtures of gasoline and alcohol when used in internal combustion engines designed for gasoline have been found to possess the advantage of alcohol in withstanding high compression without "knock" while retaining advantages of gasoline with regard to starting characteristics. Test of such fuels for maximum power-producing ability and fuel economy at various rates of consumption are thus of practical importance, with especial reference to high-compression engine development. This report discusses the results of tests which compares the performance of alcogas with x gasoline (export grade) as a standard.
NASA Astrophysics Data System (ADS)
Tiemann, L. K.; Billings, S. A.
2010-12-01
Investigators appreciate the important role that nitrate (NO3-) and soil moisture availability can play in governing net N2O production from soils. However, a large knowledge gap remains surrounding the drivers of soil N2O consumption and the role of microbial adaptation to changing environmental conditions in governing both N2O production and consumption. Net N2O soil efflux can be correlated with temperature, but little is known about the influence of temperature on gross rates of N2O production vs. consumption. Further, we do not understand how microbial communities responsible for these processes adapt or acclimate to soil warming. To investigate whether temperature alters the denitrifier-mediated fate of NO3- lost via N2O or N2, and if any such effect changes across seasons, we incubated soil collected in three seasons at four temperatures with and without 15N-enriched nitrate for 26 hours. Incubations were conducted in an anaerobic environment flushed with helium to permit detection of N2O and N2, and those gases’ δ15N. Temperature positively influenced CO2 production resulting from anaerobic processes. Maximum values of net N2O production were positively influenced by incubation and seasonal temperature, and the maximum rate of net N2O production occurred relatively early at warmer incubation temperatures. We also observed greater N2O:N2 ratios early in the incubations at warmer incubation temperatures. Isotope data are consistent with these trends. For those soils receiving the 15N label, differences in δ15N2O between early and late in the incubations were increasingly negative, and differences in δ15N2 increasingly positive, as temperature increased. Q10 values for N2O production and consumption exhibited increasing similarities as seasons progressed, with June N2O production and consumption Q10 values being nearly identical. These data provide convincing evidence that: a) increasing temperatures can induce denitrifying communities to perform complete denitrification (i.e. consumption of gross N2O production into N2) to a greater degree, and permit release of a relatively smaller proportion of the nitrate they consumed as N2O; b) the suite of enzymes responsible for N2O production and the one enzyme responsible for its consumption exhibit differential temperature sensitivities in their production and expression during winter months, but the sensitivity of these processes converges during warmer seasons; c) in spite of the smaller proportion of NO3- released as N2O with warming, warming’s positive influence on the amount of NO3- transformed by denitrifying organisms resulted in far greater absolute quantities of N2O released with incubation and seasonal warming. Continuing work explores the influence that temperature may exert on the relative abundances of denitrifying populations and their gene expression, and links these microbial characteristics to denitrification processes with warming. These data signify the importance of understanding enzyme kinetics in concert with microbial adaptation and acclimation as a factor governing the net fluxes of N2O from soil vs. its transformation into N2 with warming.
Joint Mobile Data Collection and Wireless Energy Transfer in Wireless Rechargeable Sensor Networks.
Zhong, Ping; Li, Ya-Ting; Liu, Wei-Rong; Duan, Gui-Hua; Chen, Ying-Wen; Xiong, Neal
2017-08-16
In wireless rechargeable sensor networks (WRSNs), there is a way to use mobile vehicles to charge node and collect data. It is a rational pattern to use two types of vehicles, one is for energy charging, and the other is for data collecting. These two types of vehicles, data collection vehicles (DCVs) and wireless charging vehicles (WCVs), are employed to achieve high efficiency in both data gathering and energy consumption. To handle the complex scheduling problem of multiple vehicles in large-scale networks, a twice-partition algorithm based on center points is proposed to divide the network into several parts. In addition, an anchor selection algorithm based on the tradeoff between neighbor amount and residual energy, named AS-NAE, is proposed to collect the zonal data. It can reduce the data transmission delay and the energy consumption for DCVs' movement in the zonal. Besides, we design an optimization function to achieve maximum data throughput by adjusting data rate and link rate of each node. Finally, the effectiveness of proposed algorithm is validated by numerical simulation results in WRSNs.
Joint Mobile Data Collection and Wireless Energy Transfer in Wireless Rechargeable Sensor Networks
Li, Ya-Ting; Liu, Wei-Rong; Duan, Gui-Hua; Chen, Ying-Wen
2017-01-01
In wireless rechargeable sensor networks (WRSNs), there is a way to use mobile vehicles to charge node and collect data. It is a rational pattern to use two types of vehicles, one is for energy charging, and the other is for data collecting. These two types of vehicles, data collection vehicles (DCVs) and wireless charging vehicles (WCVs), are employed to achieve high efficiency in both data gathering and energy consumption. To handle the complex scheduling problem of multiple vehicles in large-scale networks, a twice-partition algorithm based on center points is proposed to divide the network into several parts. In addition, an anchor selection algorithm based on the tradeoff between neighbor amount and residual energy, named AS-NAE, is proposed to collect the zonal data. It can reduce the data transmission delay and the energy consumption for DCVs’ movement in the zonal. Besides, we design an optimization function to achieve maximum data throughput by adjusting data rate and link rate of each node. Finally, the effectiveness of proposed algorithm is validated by numerical simulation results in WRSNs. PMID:28813029
Baseline tests of the battronic Minivan electric delivery van
NASA Technical Reports Server (NTRS)
Dustin, M. O.; Soltis, R. F.; Bozek, J. M.; Maslowski, E. A.
1977-01-01
An electric passenger vehicle was tested to develop data characterizing the state of the art of electric and hybrid vehicles. The test measured vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability and limit, road energy consumption, road power, indicated energy consumption, braking capability and battery charge efficiency. The data obtained are to serve as a baseline to compare improvements in electric and hybrid vehicle technologies and to assist in establishing performance standards.
Baseline tests of the EPC Hummingbird electric passenger vehicle
NASA Technical Reports Server (NTRS)
Slavik, R. J.; Maslowski, E. A.; Sargent, N. B.; Birchenough, A. G.
1977-01-01
The rear-mounted internal combustion engine in a four-passenger Volkswagen Thing was replaced with an electric motor made by modifying an aircraft generator and powered by 12 heavy-duty, lead-acid battery modules. Vehicle performance tests were conducted to measure vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability limit, road energy consumption, road power, indicated energy consumption, braking capability, battery charger efficiency, and battery characteristics. Test results are presented in tables and charts.
Gutiérrez, M C; Siles, J A; Diz, J; Chica, A F; Martín, M A
2017-01-01
The composting process of six different compostable substrates and one of these with the addition of bacterial inoculums carried out in a dynamic respirometer was evaluated. Despite the heterogeneity of the compostable substrates, cumulative oxygen demand (OD, mgO 2 kgVS) was fitted adequately to an exponential regression growing until reaching a maximum in all cases. According to the kinetic constant of the reaction (K) values obtained, the wastes that degraded more slowly were those containing lignocellulosic material (green wastes) or less biodegradable wastes (sewage sludge). The odor emissions generated during the composting processes were also fitted in all cases to a Gaussian regression with R 2 values within the range 0.8-0.9. The model was validated representing real odor concentration near the maximum value against predicted odor concentration of each substrate, (R 2 =0.9314; 95% prediction interval). The variables of maximum odor concentration (ou E /m 3 ) and the time (h) at which the maximum was reached were also evaluated statistically using ANOVA and a post-hoc Tukey test taking the substrate as a factor, which allowed homogeneous groups to be obtained according to one or both of these variables. The maximum oxygen consumption rate or organic matter degradation during composting was directly related to the maximum odor emission generation rate (R 2 =0.9024, 95% confidence interval) when only the organic wastes with a low content in lignocellulosic materials and no inoculated waste (HRIO) were considered. Finally, the composting of OFMSW would produce a higher odor impact than the other substrates if this process was carried out without odor control or open systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Flight trajectories with maximum tangential thrust in a central Newtonian field
NASA Astrophysics Data System (ADS)
Azizov, A. G.; Korshunova, N. A.
1983-07-01
The paper examines the two-dimensional problem of determining the optimal trajectories of a point moving with a limited per-second mass consumption in a central Newtonian field. It is shown that one of the cases in which the variational equations in the Meier formulation can be integrated in quadratures is motion with maximum tangential thrust. Trajectories corresponding to this motion are determined. By way of application, attention is given to the problem of determining the thrust which assures maximum kinetic energy for the point at the moment t = t1, corresponding to the mass consumption M0 - M1, where M0 and M1 are, respectively, the initial and final mass.
Booth, David T
2009-01-01
Swimming effort and oxygen consumption of newly emerged green turtle Chelonia mydas hatchlings was measured simultaneously and continuously for the first 18 h of swimming after hatchlings entered the water. Oxygen consumption was tightly correlated to swimming effort during the first 12 h of swimming indicating that swimming is powered predominantly by aerobic metabolism. The patterns of swimming effort and oxygen consumption could be divided into three distinct phases: (1) the rapid fatigue phase from 0 to 2 h when the mean swim thrust decreased from 45 to 30 mN and oxygen consumption decreased from 33 to 18 ml h(-1); (2) the slow fatigue phase from 2 to 12 h when the mean swim thrust decreased from 30 to 22 mN and oxygen consumption decreased from 18 to 10 ml h(-1); and (3) the sustained effort phase from 12 to 18 h when mean swim thrust averaged 22 mN and oxygen consumption averaged 10 ml h(-1). The decrease in mean swim thrust was caused by a combination of a decrease in front flipper stroke rate during a power stroking bout, a decrease in mean maximum thrust during a power stroking bout and a decrease in the proportion of time spent power stroking. Hence hatchlings maximise their swimming thrust as soon as they enter the water, a time when a fast swimming speed will maximise the chance of surviving the gauntlet of predators inhabiting the shallow fringing reef before reaching the relative safety of deeper water.
Klobucar, Stephen L.; Budy, Phaedra
2016-01-01
In reservoirs, seasonal drawdown can alter the physical environment and may influence predatory fish performance. We investigated the performance of lake trout (Salvelinus namaycush) in a western reservoir by coupling field measurements with visual foraging and bioenergetic models at four distinct states (early summer, mid-summer, late summer, and fall). The models suggested that lake trout prey, juvenile kokanee (Oncorhynchus nerka), are limited seasonally by suitable temperature and dissolved oxygen. Accordingly, prey densities were greatest in late summer when reservoir volume was lowest and fish were concentrated by stratification. Prey encounter rates (up to 68 fish·day−1) and predator consumption are also predicted to be greatest during late summer. However, our models suggested that turbidity negatively correlates with prey detection and consumption across reservoir states. Under the most turbid conditions, lake trout did not meet physiological demands; however, during less turbid periods, predator consumption reached maximum bioenergetic efficiency. Overall, our findings demonstrate that rapid reservoir fluctuations and associated abiotic conditions can influence predator–prey interactions, and our models describe the potential impacts of water level fluctuation on valuable sport fishes.
Genaidy, A M; Sequeira, R; Tolaymat, T; Kohler, J; Rinder, M
2008-12-15
This research examines lead recovery and recycling in lead-acid batteries (LAB) which account for 88% of US lead consumption. We explore strategies to maximize lead recovery and recycling in the LAB lifecycle. Currently, there is limited information on recycling rates for LAB in the published literature and is derived from a single source. Therefore, its recycling efforts in the US has been unclear so as to determine the maximum opportunities for metal recovery and recycling in the face of significant demands for LAB particularly in the auto industry. The research utilizes an evidence-based approach to: (1) determine recycling rates for lead recovery in the LAB product lifecycle for the US market; and (2) quantify and identify opportunities where lead recovery and recycling can be improved. A comprehensive electronic search of the published literature was conducted to gather information on different LAB recycling models and actual data used to calculate recycling rates based on product lifecycle for the US market to identify strategies for increasing lead recovery and recycling. The electronic search yielded five models for calculating LAB recycling rates. The description of evidence was documented for each model. Furthermore, an integrated model was developed to identify and quantify the maximum opportunities for lead recovery and recycling. Results showed that recycling rates declined during the period spanning from 1999 to 2006. Opportunities were identified for recovery and recycling of lead in the LAB product lifecycle. One can deduce the following from the analyses undertaken in this report: (1) lead recovery and recycling has been stable between 1999 and 2006; (2) lead consumption has increased at an annual rate of 2.25%, thus, the values derived in this study for opportunities dealing with lead recovery and recycling underestimate the amount of lead in scrap and waste generated; and (3) the opportunities for maximizing lead recovery and recycling are centered on spent batteries left with consumers, mishandled LAB sent to auto wreckers, slag resulting from recycling technology process inefficiencies, and lead lost in municipal waste.
Temperature changes in dental implants following exposure to hot substances in an ex vivo model.
Feuerstein, Osnat; Zeichner, Kobi; Imbari, Chen; Ormianer, Zeev; Samet, Nachum; Weiss, Ervin I
2008-06-01
The habitual consumption of extremely hot foods and beverages may affect implant treatment modality. Our objectives were to: (i) establish the maximum temperature produced intra-orally while consuming very hot substances and (ii) use these values in an ex vivo model to assess the temperature changes along the implant-bone interface. Temperatures were measured using thermocouples linked to a computer. The thermocouple electrodes were attached to the tooth-gum interface of the interproximal areas in 14 volunteers during consumption of extremely hot foods and beverages. The in vivo measured temperature values obtained were used in an ex vivo model of a bovine mandible block with an implant and with an assembled abutment. Temperatures were measured by thermocouple electrodes attached to five locations, three of them along the implant-bone interface. During consumption of a hot beverage, a maximum temperature of up to 76.3 degrees C was recorded, and a calculated extreme intra-oral temperature of 61.4 degrees C was established. The ex vivo model showed a high correlation between the temperature measured at the abutment and that measured at the abutment-implant interface and inside the implant, reaching maximum temperatures close to 60 degrees C. At the mid-implant-bone and apical implant-bone interfaces, the maximum temperatures measured were 43.3 and 42 degrees C, respectively. The maximum temperatures measured at the implant-bone interfaces reached the temperature threshold of transient changes in bone (42 degrees C). The results of this study support the notion that intra-oral temperatures, developed during the consumption of very hot substances, may be capable of damaging peri-implant tissues.
Comparison of two progressive treadmill tests in patients with peripheral arterial disease.
Riebe, D; Patterson, R B; Braun, C M
2001-11-01
In a vascular rehabilitation program, 28% of our frail elderly patients are unable to be tested with traditional progressive exercise protocols at program entry due to the high (2.0 miles/h or 3.2 km/h) initial treadmill speeds. The purpose of this investigation was to compare a new progressive treadmill protocol which has a reduced initial speed (1.0 mile/h or 1.6 km/h) to an established protocol performed at 2.0 miles/h (3.2 km/h) to determine the comparability and reproducibility of the new protocol. Eleven patients with arterial claudication performed three symptom-limited exercise tests in random order. Two tests used the new protocol while the remaining trial used the established protocol. Claudication pain was measured using a 5-point scale. Oxygen consumption, heart rate, minute ventilation, respiratory exchange ratio and blood pressure at peak exercise were similar among the three trials. There were strong intraclass correlations for peak oxygen consumption (r = 0.97), onset of claudication (r = 0.96) and maximum walking time (r = 0.98) between the two trials using the new protocol. There was also a significant correlation between the new protocol and the established protocol for peak oxygen consumption (r = 0.90) and maximum walking time (r = 0.89). The new progressive treadmill protocol represents a valid, reliable protocol for patients with arterial claudication. This protocol may be useful for testing patients with a low functional capacity so that clinically appropriate exercise prescriptions can be established and the efficacy of treatments can be determined.
Effects of shoe cleat position on physiology and performance of competitive cyclists.
Paton, Carl D
2009-12-01
Aerobic economy is an important factor that affects the performance of competitive cyclists. It has been suggested that placing the foot more anteriorly on the bicycle pedals may improve economy over the traditional foot position by improving pedaling efficiency. The current study examines the effects of changing the anterior-posterior pedal foot position on the physiology and performance of well-trained cyclists. In a crossover study, 10 competitive cyclists completed two maximal incremental and two submaximal tests in either their preferred (control) or a forward (arch) foot position. Maximum oxygen consumption and peak power output were determined from the incremental tests for both foot positions. On two further occasions, cyclists also completed a two-part 60-min submaximal test that required them to maintain a constant power output (equivalent to 60% of their incremental peak power) for 30 min, during which respiratory and blood lactate samples were taken at predetermined intervals. Thereafter, subjects completed a 30-min self-paced maximal effort time trial. Relative to the control, the mean changes (+/-90% confidence limits) in the arch condition were as follows: maximum oxygen consumption, -0.5% (+/-2.0%); incremental peak power output, -0.8% (+/-1.3%); steady-state oxygen consumption at 60%, -2.4% (+/-1.1%); steady-state heart rate 60%, 0.4% (+/-1.7%); lactate concentration 60%, 8.7% (+/-14.4%); and mean time trial power, -1.5% (+/-2.9%). We conclude that there was no substantial physiological or performance advantage in this group using an arch-cleat shoe position in comparison with a cyclist's normal preferred condition.
Cardiorespiratory functional assessment after pediatric heart transplantation.
Pastore, E; Turchetta, A; Attias, L; Calzolari, A; Giordano, U; Squitieri, C; Parisi, F
2001-12-01
Limited data are available on the exercise capacity of young heart transplant recipients. The aim of this study was therefore to assess cardiorespiratory responses to exercise in this group of patients. Fourteen consecutive heart transplant recipients (six girls and eight boys, age-range 5-15 yr) and 14 healthy matched controls underwent a Bruce treadmill test to determine: duration of test; resting and maximum heart rates; maximum systolic blood pressure; peak oxygen consumption (VO2 peak); and cardiac output. Duration of test and heart rate increase were then compared with: time since transplantation, rejections per year, and immunosuppressive drugs received. The recipients also underwent the following lung function tests: forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). When compared with healthy controls, transplant recipients had tachycardia at rest (126 +/- 3.7 beats/min; p < 0.001); significantly reduced tolerance (9.3 +/- 0.4 min; p < 0.001), a maximum heart rate of 169 +/- 5.4 beats/min (p < 0.05); a cardiac output of 5.65 +/- 0.6 L/min (p < 0.05); and a lower heart-rate increase from rest to peak exercise (p < 0.001) but a similar VO2 peak. The heart-rate increase correlated significantly with time post-transplant (r = 0.55; p < 0.05), number of rejection episodes per year (r = - 0.63; p < 0.05), and number of immunosuppressive drugs (r = - 0.60; p < 0.05). The recipients had normal FVC and FEV1 values. After surgery, few heart transplant recipients undertake physical activity, possibly owing to over-protective parents and teachers and to a lack of suitable supervised facilities. The authors stress the importance of a cardiorespiratory functional evaluation for assessment of health status and to encourage recipients, if possible, to undertake regular physical activity.
NASA Technical Reports Server (NTRS)
Coykendall, R. E.; Curry, J. K.; Domke, A. E.; Madsen, S. E.
1976-01-01
Economic studies were conducted for three general fuel conserving options: (1) improving fuel consumption characteristics of existing aircraft via retrofit modifications; (2) introducing fuel efficient derivations of existing production aircraft and/or introducing fuel efficient, current state-of-the-art new aircraft; and (3) introducing an advanced state-of-the-art turboprop airplane. These studies were designed to produce an optimum airline fleet mix for the years 1980, 1985 and 1990. The fleet selected accommodated a normal growth market by introducing somewhat larger aircraft while solving for maximum departure frequencies and a minimum load factor corresponding to a 15% investment hurdle rate. Fuel burnt per available-seat-mile flown would drop 22% from 1980 to 1990 due to the use of more fuel efficient aircraft designs, larger average aircraft size, and increased seating density. An inflight survey was taken to determine air traveler attitudes towards a new generation of advanced turboprops.
Temporal variation of aerobic methane oxidation over a tidal cycle in a wetland of northern Taiwan.
NASA Astrophysics Data System (ADS)
Lee, T. Y.; Wang, P. L.; Lin, L. H.
2017-12-01
Aerobic methanotrophy plays an important role in controlling methane emitted from wetlands. However, the activity of aerobic methanotrophy regulated by temporal fluctuation of oxygen and methane supply in tidal wetlands is not well known. This study aims to examine the dynamics of methane fluxes and potential aerobic methane consumption rates in a tidal wetland of northern Taiwan, where the variation of environmental characteristics, such as sulfate and methane concentration in pore water has been demonstrated during a tidal cycle. Two field campaigns were carried out in December of 2016 and March of 2017. Fluxes of methane emission, methane concentrations in surface sediments and oxygen profiles were measured at different tidal phases. Besides, batch incubations were conducted on surface sediments in order to quantify potential microbial methane consumption rates and to derive the kinetic parameters for aerobic methanotrophy. Our results demonstrated temporal changes of the surface methane concentration and the methane emission flux during a tidal cycle, while the oxygen flux into the sediment was kept at a similar magnitude. The methane flux was low when the surface was exposed for both shortest and longest periods of time. The potential aerobic methane oxidation rate was high for sample collected from the surface sediments exposed the longest. No correlation could be found between the potential aerobic methane oxidation rate and either the oxygen downward flux or methane emission flux. The decoupled relationships between these observed rates and fluxes suggest that, rather than aerobic methanotrophy, heterotrophic respirations exert a profound control on oxygen flux, and the methane emission is not only been affected by methane consumption but also methane production at depths. The maximum potential rate and the half saturation concentration determined from the batch incubations were high for the surface sediments collected in low tide, suggesting that aerobic methanotrophy could be modulated to reach peak activity once the influence of saline water is reduced to a low level.
Study on polychlorobiphenyl serum levels in French consumers of freshwater fish.
Desvignes, Virginie; Volatier, Jean-Luc; de Bels, Frédéric; Zeghnoun, Abdelkrim; Favrot, Marie-Christine; Marchand, Philippe; Le Bizec, Bruno; Rivière, Gilles; Leblanc, Jean-Charles; Merlo, Mathilde
2015-02-01
Polychlorobiphenyls (PCBs) are persistent pollutants that are widespread in the environment and in foodstuffs, particularly in freshwater fish, which frequently exceed the maximum levels set by European regulations. First, we describe the consumption of freshwater fish and serum PCB levels in French anglers, a population expected to have the highest level of dietary PCB exposure. Second, we investigated whether there is a statistical relationship between serum PCB levels and the angler consumption of freshwater fish with high PCB bioaccumulation potential (PCB-BP(+) freshwater fish) in order to make recommendations with regard to safe consumption of freshwater fish. We conducted a survey of anglers from six sites with contrasting PCB contamination levels. The survey included a food consumption frequency questionnaire and blood samples were taken to assess serum PCB levels. We used a regression model to determine the main factors contributing to serum PCB levels. Consumption of PCB-BP(+) freshwater fish was relatively infrequent. Serum PCB levels of the study population and of women of childbearing age were in the same range as those observed in the French population and in neighbouring European countries, but higher than in the North American population. The two factors with the highest positive association with serum PCB levels were age (R(2)=61%) and the consumption of PCB-BP(+) freshwater fish (R(2)=2%). Using the regression model, we calculated, for several scenarios depending on the age and gender of the population, the maximum annual frequencies for PCB-BP(+) freshwater fish consumption that do not exceed the critical body burden threshold. Following the results of this study, the French agency for food, environmental and occupational health and safety (ANSES) issued an opinion and recommended some specific maximum freshwater fish consumption frequencies to protect the French general population. Copyright © 2014 Elsevier B.V. All rights reserved.
Carvalho, Margarida; Matos, Mariana; Roca, Christophe; Reis, Maria A M
2014-01-25
Glycerol, a highly abundant byproduct of the biodiesel industry, constitutes today a cheap feedstock for biobased succinic acid (SA) production. Actinobacillus succinogenes is one of the best SA producers. However, glycerol consumption by this biocatalyst is limited because of a redox imbalance during cell growth. The use of an external electron acceptor may improve the metabolism of SA synthesis by A. succinogenes in glycerol. In this study, the effect of dimethylsulfoxide (DMSO), an electron acceptor, on glycerol consumption and SA production by A. succinogenes under controlled fermentation conditions was investigated. Concentrations of DMSO between 1 and 4% (v/v) greatly promoted glycerol consumption and SA production by A. succinogenes. During fed-batch cultivation, SA concentration reached 49.62 g/L, with a product yield of 0.87 gSA/gGLR and a maximum production rate of 2.31 gSA/Lh, the highest values so far reported in the literature for A. succinogenes using glycerol as carbon source. These results show that using DMSO as external electron acceptor significantly promotes glycerol consumption and succinic acid production by A. succinogenes and may be used as a co-substrate, opening new perspectives for the use of glycerol by this biocatalyst. Copyright © 2013 Elsevier B.V. All rights reserved.
Yu, Lingling; Zhu, Junyan; Huang, Qingqing; Su, Dechun; Jiang, Rongfeng; Li, Huafen
2014-10-01
This field experiment analyzed the phytoremediation effects of oilseed rape in moderately cadmium (Cd)-contaminated farmland and the food safety of successive rice in an oilseed rape-rice rotation system. Two oilseed rape cultivars accumulated Cd at different rates. The rapeseed cultivar Zhucang Huazi exhibited high Cd accumulation rates, higher than the legal limit for human consumption (0.2mgkg(-1)); Cd concentrations in the cultivar Chuanyou II-93 were all below the maximum allowed level. Planting oilseed rape increased the uptake of Cd by the successive rice crop compared with a previous fallow treatment. Most Cd concentrations of brown rice were below the maximum allowed level. The phytoextraction efficiency was lower in the moderately Cd-contaminated soil in field experiments. The results suggest screening rice cultivars with lower Cd accumulation can assure the food safety; the mobilization of heavy metals by roots of different plant species should be considered during crop rotation to assure food safety. Copyright © 2014 Elsevier Inc. All rights reserved.
Formic acid production using a microbial electrolysis desalination and chemical-production cell.
Lu, Yaobin; Luo, Haiping; Yang, Kunpeng; Liu, Guangli; Zhang, Renduo; Li, Xiao; Ye, Bo
2017-11-01
The aim of this study was to investigate the feasibility and optimization of formic acid production in the microbial electrolysis desalination and chemical-production cell (MEDCC). The maximum current density in the MEDCC with 72cm of the anode fiber length (72-MEDCC) reached 24.0±2.0A/m 2 , which was much higher than previously reported. The maximum average formic acid production rate in the 72-MEDCC was 5.28 times higher than that in the MEDCC with 24cm of the anode fiber length (37.00±1.15vs. 7.00±0.25mg/h). High performance in the 72-MEDCC was attributed to small membrane spacing (1mm), high flow rate (1500μL/min) on the membrane surface and high anode biomass. The minimum electricity consumption of 0.34±0.04kWh/kg in the 72-MEDCC was only 3.1-18.8% of those in the EDBMs. The MEDCC should be a promising technology for the formic acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Energy Efficient Cluster Based Scheduling Scheme for Wireless Sensor Networks
Srie Vidhya Janani, E.; Ganesh Kumar, P.
2015-01-01
The energy utilization of sensor nodes in large scale wireless sensor network points out the crucial need for scalable and energy efficient clustering protocols. Since sensor nodes usually operate on batteries, the maximum utility of network is greatly dependent on ideal usage of energy leftover in these sensor nodes. In this paper, we propose an Energy Efficient Cluster Based Scheduling Scheme for wireless sensor networks that balances the sensor network lifetime and energy efficiency. In the first phase of our proposed scheme, cluster topology is discovered and cluster head is chosen based on remaining energy level. The cluster head monitors the network energy threshold value to identify the energy drain rate of all its cluster members. In the second phase, scheduling algorithm is presented to allocate time slots to cluster member data packets. Here congestion occurrence is totally avoided. In the third phase, energy consumption model is proposed to maintain maximum residual energy level across the network. Moreover, we also propose a new packet format which is given to all cluster member nodes. The simulation results prove that the proposed scheme greatly contributes to maximum network lifetime, high energy, reduced overhead, and maximum delivery ratio. PMID:26495417
Carvajal, Ana Karina; Rustad, Turid; Mozuraityte, Revilija; Storrø, Ivar
2009-09-09
The effect of hemoglobin (Hb) and lipid concentration, pH, temperature, and different antioxidants on heme-mediated lipid oxidation of liposomes from marine phospholipids was studied. The rate of lipid oxidation was measured by consumption of dissolved oxygen. Heme-mediated lipid oxidation at different Hb and lipid concentrations was modeled by Michaelis-Menten kinetics. The maximum rate (V(max)) for the reaction with cod and bovine Hb as a pro-oxidant was 66.2 +/- 3.4 and 56.6 +/- 3.4 microM/min, respectively. The Michaelis-Menten constant (K(m)) for the reaction with cod and bovine Hb was 0.67 +/- 0.09 and 1.2 +/- 0.2 microM, respectively. V(max) for the relationship between the oxygen uptake rate and lipid concentration was 43.2 +/- 1.5 microM/min, while the K(m) was 0.93 +/- 0.14 mg/mL. The effect of the temperature followed Arrhenius kinetics, and there was no significant difference in activation energy between cod and bovine Hb. The rate of lipid oxidation induced by bovine Hb was highest around pH 6. Ethylenediaminetetraacetic acid (EDTA) had no significant effect on heme-mediated lipid oxidation, but alpha-tocopherol and astaxanthin worked well as antioxidants. Kinetic differences were found between iron and Hb as pro-oxidants, and the efficacy of the antioxidants depended upon the pro-oxidant in the system.
Strategies to reduce exposure of fumonisins from complementary foods in rural Tanzania.
Kimanya, Martin E; De Meulenaer, Bruno; Van Camp, John; Baert, Katleen; Kolsteren, Patrick
2012-10-01
Feeding infants with maize can expose them to fumonisin mycotoxins. We assessed fumonisin exposure from complementary foods in rural Tanzania and determined strategies to reduce the exposure. We conducted a cross-sectional study in four villages of Tarakea division, Northern Tanzania. We used a repeat 24-hour dietary recall to collect data of maize consumption as complementary food for 254 infants aged 6-8 months. Fumonisin concentrations in the maize were also estimated. Fumonisin exposure was assessed using @risk analysis software. With the software, several maximum fumonisin contamination and maize consumption patterns were combined in order to determine effective strategies for minimizing fumonisin exposure. Of the infants, 89% consumed maize at amounts up to 158g/person/day (mean; 43g/person/day±28). The maize was contaminated with fumonisins at levels up to 3201µgkg(-1) . Risk of fumonisin intake above the provisional maximum tolerable daily limit of 2µgkg(-1) body weight was 15% (95% confidence interval; 10-19). The risk was minimized when the maximum contamination was set at 150µgkg(-1) . The risk was also minimized when the maximum consumption was set at 20g/child/day while keeping the maximum contamination at the European Union (EU) maximum tolerated limit (MTL) of 1000µgkg(-1) . Considering the economical and technological limitations of adopting good agricultural practices in rural Tanzania, it is practically difficult to reduce contamination in maize to 150µgkg(-1) . We suggest adoption of the EU MTL of 1000µgkg(-1) for fumonisins in maize and reduction, by replacement with another cereal, of the maize component in complementary foods to a maximum intake of 20g/child/day. © 2011 Blackwell Publishing Ltd.
21 CFR 172.260 - Oxidized polyethylene.
Code of Federal Regulations, 2013 CFR
2013-04-01
... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances § 172.260 Oxidized polyethylene. Oxidized polyethylene may... by high temperature vapor pressure osmometry; contains a maximum of 5 percent by weight of total...
21 CFR 172.260 - Oxidized polyethylene.
Code of Federal Regulations, 2011 CFR
2011-04-01
... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances § 172.260 Oxidized polyethylene. Oxidized polyethylene may... by high temperature vapor pressure osmometry; contains a maximum of 5 percent by weight of total...
21 CFR 172.260 - Oxidized polyethylene.
Code of Federal Regulations, 2012 CFR
2012-04-01
... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances § 172.260 Oxidized polyethylene. Oxidized polyethylene may... by high temperature vapor pressure osmometry; contains a maximum of 5 percent by weight of total...
2008-05-01
Bernheim, B.D. (1996). Veblen Effects in a Theory of Conspicuous Consumption . In: American Economic Review, 86, 349-373. Berry, C.J. (1994). The...Luxury Taxes: Status Seeking and Conspicuous Consumption in the History of Economic Thought) 6. AUTHOR(S) Tobias Thomas 7. PERFORMING ORGANIZATION NAME(S...Maximum 200 words) Summary: Questionable Luxury Taxes: Status Seeking and Conspicuous Consumption in the History of Economic Thought In the history of
[Incidence of non-communicable diseases and health risks due to potable water quality].
Skudarnov, S E; Kurkatov, S V
2011-01-01
Iron and fluorine concentrations and water mineralization and hardness, which exceeded the maximum allowable concentrations, were found to cause an increase in overall morbidity and morbidity from skeletal-and-muscular, urogenital, and digestive system involvement in the population of the Krasnoyarsk Region. A quantitative relationship were found between the concentrations of iron, the hardness and dry residue of water and the incidence rates of urogenital, skeletal-and-muscular and digestive diseases. The consumption of potable water contaminated with chloroform and methane tetrachloride presents unacceptable carcinogenic risks to the population of the Krasnoyarsk Region.
Gessner, Stephan; Below, Elke; Diedrich, Stephan; Wegner, Christian; Gessner, Wiebke; Kohlmann, Thomas; Heidecke, Claus-Dieter; Bockholdt, Britta; Kramer, Axel; Assadian, Ojan; Below, Harald
2016-09-01
During hand antisepsis, health care workers (HCWs) are exposed to alcohol by dermal contact and by inhalation. Concerns have been raised that high alcohol absorptions may adversely affect HCWs, particularly certain vulnerable individuals such as pregnant women or individuals with genetic deficiencies of aldehyde dehydrogenase. We investigated the kinetics of HCWs' urinary concentrations of ethanol and its metabolite ethyl glucuronide (EtG) during clinical work with and without previous consumption of alcoholic beverages by HCWs. The median ethanol concentration was 0.7 mg/L (interquartile range [IQR], 0.5-1.9 mg/L; maximum, 9.2 mg/L) during abstinence and 12.2 mg/L (IQR, 1.5-139.6 mg/L; maximum, 1,020.1 mg/L) during alcohol consumption. During abstinence, EtG reached concentrations of up to 958 ng/mL. When alcohol consumption was permitted, the median EtG concentration of all samples was 2,593 ng/mL (IQR, 890.8-3,576 ng/mL; maximum, 5,043 ng/mL). Although alcohol consumption was strongly correlated with both EtG and ethanol in urine, no significant correlation for the frequency of alcoholic hand antisepsis was observed in the linear mixed models. The use of ethanol-based handrub induces measurable ethanol and EtG concentrations in urine. Compared with consumption of alcoholic beverages or use of consumer products containing ethanol, the amount of ethanol absorption resulting from handrub applications is negligible. In practice, there is no evidence of any harmful effect of using ethanol-based handrubs as much as it is clinically necessary. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Determination of water use in Rockford and Kankakee areas, Illinois
LaTour, John K.
1991-01-01
Amounts of water withdrawn, delivered, consumed, released, returned, and lost or gained during conveyance were determined for six communities--Rockford, Loves Park, North Park, Kankakee, Bourbonnais, and Bradley--served by the public-water systems in the Rockford and the Kankakee areas of Illinois. Water-use categories studied were commercial, industrial, domestic, and municipal uses; public supply; and sewage treatment. The availability and accuracy of water-use data are described, and water-use coefficients and methods of estimating water use are provided to improve the collection and the analysis of water-use information. Water-use data were obtained from all the water utilities and from 30 major water users in the Rockford and the Kankakee areas. Data were available for water withdrawals by water suppliers; deliveries by water suppliers to water users; returns by sewage-treatment plants and water users; releases by water users to sewers; and sewer-conveyance losses. Accuracy of the water-use data was determined from discharge measurements or reliability tests of water meters, or was estimated according to the completeness of the data. Accuracy of withdrawal and sewage-treatment-return data for the Rockford area and of withdrawal, delivery, industrial release, and sewage-treatment-return data for the Kankakee area was considered to be at least 90 percent. Where water-use data were inadequate or unavailable, various methods were used to estimate consumptive uses; releases; returns by commercial, domestic, and municipal users; and conveyance losses and gains. The methods focused on water budgeting to assure that water uses balanced. Consumptive uses were estimated by use of the consumption-budget method, the types-of-use method, consumptive-use ratios, the winter base-rate method, and the maximum lawn-watering method. The winter base-rate method provided the best domestic consumptive-use estimates, whose ratios (consumptive use from the winter base-rate method divided by deliveries and self-supply withdrawals), by community, ranged from 0.03 to 0.136 and averaged 0.068. The consumption-budget and types-of-use methods, as well as consumptive-use ratios, were used to estimate consumptive use for commercial, industrial, and municipal categories. Water budgeting was generally used to estimate releases, and conveyance losses and gains. Estimates of nonconsumptive uses by cooling systems, boilers, and lawn watering; data of deliveries to septic-system owners; and (or) water budgeting were used to estimate commercial, domestic, industrial, and municipal returns. Proportions of water use were similar in the Rockford and the Kankakee areas. Of the public-supply withdrawals in each area, about one-half was delivered for commercial and industrial uses; about one-third for domestic use; and about one-sixth for municipal use and public-supply conveyance losses.Consumptive use by all water users in the Rockford and the Kankakee areas was 13 +/- 1 percent, releases were 78 +/- 2 percent, and returns were 9 +/- 2 percent of deliveries and self-supply withdrawals. Total returns were greater than total withdrawals in the two areas because-of sewer-conveyance gains, which amounted to about 34 percent of the sewage-treatment returns for each area. Delivery rates (deliveries divided by the number of users [establishments or households]) and domestic per capita use were similar for all six communities. At a 95-percent confidence level, domestic delivery rates for each community range from 0.067 to 0.075 million gallons per household per year. Commercial delivery rates range from 0.277 to 0.535 million gallons per establishment per year. Delivery rates for all categories combined range from 0.100 to 0.192 million gallons per user per year. Domestic per capita use, which ranged from 67.2 to 71.0 gallons per day, averaged 69.2 +/- 1.1 gallons per day.
Cluster-Based Maximum Consensus Time Synchronization for Industrial Wireless Sensor Networks.
Wang, Zhaowei; Zeng, Peng; Zhou, Mingtuo; Li, Dong; Wang, Jintao
2017-01-13
Time synchronization is one of the key technologies in Industrial Wireless Sensor Networks (IWSNs), and clustering is widely used in WSNs for data fusion and information collection to reduce redundant data and communication overhead. Considering IWSNs' demand for low energy consumption, fast convergence, and robustness, this paper presents a novel Cluster-based Maximum consensus Time Synchronization (CMTS) method. It consists of two parts: intra-cluster time synchronization and inter-cluster time synchronization. Based on the theory of distributed consensus, the proposed method utilizes the maximum consensus approach to realize the intra-cluster time synchronization, and adjacent clusters exchange the time messages via overlapping nodes to synchronize with each other. A Revised-CMTS is further proposed to counteract the impact of bounded communication delays between two connected nodes, because the traditional stochastic models of the communication delays would distort in a dynamic environment. The simulation results show that our method reduces the communication overhead and improves the convergence rate in comparison to existing works, as well as adapting to the uncertain bounded communication delays.
Cluster-Based Maximum Consensus Time Synchronization for Industrial Wireless Sensor Networks †
Wang, Zhaowei; Zeng, Peng; Zhou, Mingtuo; Li, Dong; Wang, Jintao
2017-01-01
Time synchronization is one of the key technologies in Industrial Wireless Sensor Networks (IWSNs), and clustering is widely used in WSNs for data fusion and information collection to reduce redundant data and communication overhead. Considering IWSNs’ demand for low energy consumption, fast convergence, and robustness, this paper presents a novel Cluster-based Maximum consensus Time Synchronization (CMTS) method. It consists of two parts: intra-cluster time synchronization and inter-cluster time synchronization. Based on the theory of distributed consensus, the proposed method utilizes the maximum consensus approach to realize the intra-cluster time synchronization, and adjacent clusters exchange the time messages via overlapping nodes to synchronize with each other. A Revised-CMTS is further proposed to counteract the impact of bounded communication delays between two connected nodes, because the traditional stochastic models of the communication delays would distort in a dynamic environment. The simulation results show that our method reduces the communication overhead and improves the convergence rate in comparison to existing works, as well as adapting to the uncertain bounded communication delays. PMID:28098750
NASA Technical Reports Server (NTRS)
Moore, C S; Collins, J H
1932-01-01
Results of motoring tests are presented showing the effect of passage diameter on chamber and cylinder compression pressures, maximum pressure differences, and f.m.e.p. over a speed range from 300 to 1,750 r.p.m. Results of engine performance tests are presented which show the effect of passage diameter on m.e.p., explosion pressures, specific fuel consumption, and rates of pressure rise for a range of engine speeds from 500 to 1,500 r.p.m. The cylinder compression pressure, the maximum pressure difference, and the f.m.e.p. decreased rapidly as the passage diameter increased to 29/64 inch, whereas further increase in passage diameter effected only a slight change. The most suitable passage diameter for good engine performance and operating characteristics was 29/64 inch. Passage diameter became less critical with a decrease in engine speed. Therefore, the design should be based on maximum operating speed. Optimum performance and satisfactory combustion control could not be obtained by means of any single diameter of the connecting passage.
NASA Astrophysics Data System (ADS)
Deepak, G. Divya; Joshi, N. K.; Prakash, Ram
2018-05-01
In this study, both model analysis and electrical characterization of a dielectric barrier discharge based argon plasma jet have been carried at atmospheric pressure in a pin electrode configuration. The plasma and fluid dynamics modules of COMSOL multi-physics code have been used for the modeling of the plasma jet. The plasma parameters, such as, electron density, electron temperature and electrical potential have been analyzed with respect to the electrical parameters, i.e., supply voltage and supply frequency with and without the flow of gas. In all the experiments, gas flow rate has been kept constant at 1 liter per minute. This electrode configuration is subjected to a range of supply frequencies (10-25 kHz) and supply voltages (3.5-6.5 kV). The power consumed by the device has been estimated at different applied combinations (supply voltage & frequency) for optimum power consumption at maximum jet length. The maximum power consumed by the device in this configuration for maximum jet length of ˜26 mm is just ˜1 W.
GDP and efficiency of Russian economy
NASA Astrophysics Data System (ADS)
Borodachev, Sergey M.
2018-01-01
The goal is to study GDP (gross domestic product) as an unobservable characteristic of the Russian national economy state on the basis of more reliable observed data on gross output (systems output) and final consumption (systems control). To do this, the dynamic Leontief model is presented in a system-like form and its parameters and GDP dynamics are estimated by the Kalman filter (KF). We consider that all previous year's investments affect the growth of the gross output by the next year. The weights of these investments in the sum are equal to unity and decrease in geometric progression. The estimation of the model parameters was carried out by the maximum likelihood method. The original data on the gross output and final consumption in the period from 1995 to 2015 years where taken from the Rosstat website, where maximally aggregated economy of Russia is reflected in the system of national accounts. The growth of direct costs and capital expenditures at gross output increase has been discovered, which indicates the extensive character of the development of the economy. Investments are being absorbed 2 - 4 years; any change of them causes a surge of commissioned fixed assets fluctuation with a period of 2 years. Then these parameter values were used in the KF to estimate the states of the system. The emerging tendency of the transition of GDP growth to its fall means that the rate of growth of final consumption is higher than the rate of GDP growth. In general, the behavior of the curve of Rosstat GDP obviously follows the declared investments, whereas in the present calculation it is closer to the behavior of final consumption. Estimated GDP and investments that really increased it were significantly less after the crisis of 2008-2009 years than officially published data.
Mychek-Londer, Justin G.; Bunnell, David B.
2013-01-01
Accurate estimates of fish consumption are required to understand trophic interactions and facilitate ecosystem-based fishery management. Despite their importance within the food-web, no method currently exists to estimate daily consumption for Great Lakes slimy (Cottus cognatus) and deepwater sculpin (Myoxocephalus thompsonii). We conducted experiments to estimate gastric evacuation (GEVAC) and collected field data from Lake Michigan to estimate index of fullness [(g prey/g fish weight)100%) to determine daily ration for water temperatures ranging 2–5 °C, coinciding with the winter and early spring season. Exponential GEVAC rates equaled 0.0115/h for slimy sculpin and 0.0147/h for deepwater sculpin, and did not vary between 2.7 °C and 5.1 °C for either species or between prey types (Mysis relicta and fish eggs) for slimy sculpin. Index of fullness varied with fish size, and averaged 1.93% and 1.85% for slimy and deepwater sculpins, respectively. Maximum index of fullness was generally higher (except for the smallest sizes) for both species in 2009–2010 than in 1976 despite reductions in a primary prey, Diporeia spp. Predictive daily ration equations were derived as a function of fish dry weight. Estimates of daily consumption ranged from 0.2 to 0.8% of their body weight, which was within the low range of estimates from other species at comparably low water temperatures. These results provide a tool to estimate the consumptive demand of sculpins which will improve our understanding of benthic offshore food webs and aid in management and restoration of these native species in the Great Lakes.
Alvarez, Guillermo Dufort Y; Favaro, Federico; Lecumberry, Federico; Martin, Alvaro; Oliver, Juan P; Oreggioni, Julian; Ramirez, Ignacio; Seroussi, Gadiel; Steinfeld, Leonardo
2018-02-01
This work presents a wireless multichannel electroencephalogram (EEG) recording system featuring lossless and near-lossless compression of the digitized EEG signal. Two novel, low-complexity, efficient compression algorithms were developed and tested in a low-power platform. The algorithms were tested on six public EEG databases comparing favorably with the best compression rates reported up to date in the literature. In its lossless mode, the platform is capable of encoding and transmitting 59-channel EEG signals, sampled at 500 Hz and 16 bits per sample, at a current consumption of 337 A per channel; this comes with a guarantee that the decompressed signal is identical to the sampled one. The near-lossless mode allows for significant energy savings and/or higher throughputs in exchange for a small guaranteed maximum per-sample distortion in the recovered signal. Finally, we address the tradeoff between computation cost and transmission savings by evaluating three alternatives: sending raw data, or encoding with one of two compression algorithms that differ in complexity and compression performance. We observe that the higher the throughput (number of channels and sampling rate) the larger the benefits obtained from compression.
Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production.
Teh, Kwee-Yan; Lutz, Andrew E
2010-05-17
Thermodynamic concepts have been used in the past to predict microbial growth yield. This may be the key consideration in many industrial biotechnology applications. It is not the case, however, in the context of ethanol fuel production. In this paper, we examine the thermodynamics of fermentation and concomitant growth of baker's yeast in continuous culture experiments under anaerobic, glucose-limited conditions, with emphasis on the yield and efficiency of bio-ethanol production. We find that anaerobic metabolism of yeast is very efficient; the process retains more than 90% of the maximum work that could be extracted from the growth medium supplied to the chemostat reactor. Yeast cells and other metabolic by-products are also formed, which reduces the glucose-to-ethanol conversion efficiency to less than 75%. Varying the specific ATP consumption rate, which is the fundamental parameter in this paper for modeling the energy demands of cell growth, shows the usual trade-off between ethanol production and biomass yield. The minimum ATP consumption rate required for synthesizing cell materials leads to biomass yield and Gibbs energy dissipation limits that are much more severe than those imposed by mass balance and thermodynamic equilibrium constraints. 2010 Elsevier B.V. All rights reserved.
Ethanol production from eucalyptus wood hemicellulose hydrolysate by Pichia stipitis.
Ferrari, M D; Neirotti, E; Albornoz, C; Saucedo, E
1992-10-05
Ethanol production was evaluated from eucalyptus wood hemicellulose acid hydrolysate using Pichia stipitis NRRL Y-7124. An initial lag phase characterized by flocculation and viability loss of the yeast inoculated was observed. Subsequently, cell regrowth occurred with sequential consumption of sugars and production of ethanol. Polyol formation was detected. Acetic acid present in the hydrolysate was an important inhibitor of the fermentation, reducing the rate and the yield. Its toxic effect was due essentially to its undissociated form. The fermentation was more effective at an oxygen transfer rate between 1.2 and 2.4 mmol/L h and an initial pH of 6.5. The hydrolysate used in the experiences had the following composition (expressed in grams per liter): xylose 30, arabinose 2.8, glucose 1.5, galactose 3.7, mannose 1.0, cellobiose 0.5, acetic acid 10, glucuronic acid 1.5, and galacturonic acid 1.0. The best values obtained were maximum ethanol concentration 12.6 g/L, fermentation time 75 h, fermentable sugar consumption 99% ethanol yield 0.35 g/g sugars consumed, and volumetric ethanol productivity 4 g/L day. ( (c) 1992 John Wiley & Sons, Inc.
Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon
2016-01-01
Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS’s optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust’s coarse particle size and bulking effect. PMID:26954138
Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon
2016-05-01
Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.
Jafarnejadi, A R; Sayyad, Gh; Homaee, M; Davamei, A H
2013-05-01
Increasing cadmium (Cd) accumulation in agricultural soils is undesirable due to its hazardous influences on human health. Thus, having more information on spatial variability of Cd and factors effective to increase its content on the cultivated soils is very important. Phosphate fertilizers are main contamination source of cadmium (Cd) in cultivated soils. Also, crop rotation is a critical management practice which can alter soil Cd content. This study was conducted to evaluate the effects of long-term consumption of the phosphate fertilizers, crop rotations, and soil characteristics on spatial variability of two soil Cd species (i.e., total and diethylene triamine pentaacetic acid (DTPA) extractable) in agricultural soils. The study was conducted in wheat farms of Khuzestan Province, Iran. Long-term (27-year period (1980 to 2006)) data including the rate and the type of phosphate fertilizers application, the respective area, and the rotation type of different regions were used. Afterwards, soil Cd content (total or DTPA extractable) and its spatial variability in study area (400,000 ha) were determined by sampling from soils of 255 fields. The results showed that the consumption rate of di-ammonium phosphate fertilizer have been varied enormously in the period study. The application rate of phosphorus fertilizers was very high in some subregions with have extensive agricultural activities (more than 95 kg/ha). The average and maximum contents of total Cd in the study region were obtained as 1.47 and 2.19 mg/kg and DTPA-extractable Cd as 0.084 and 0.35 mg/kg, respectively. The spatial variability of Cd indicated that total and DTPA-extractable Cd contents were over 0.8 and 0.1 mg/kg in 95 and 25 % of samples, respectively. The spherical model enjoys the best fitting and lowest error rate to appraise the Cd content. Comparing the phosphate fertilizer consumption rate with spatial variability of the soil cadmium (both total and DTPA extractable) revealed the high correlation between the consumption rate of P fertilizers and soil Cd content. Rotation type was likely the main effective factor on variations of the soil DTPA-extractable Cd contents in some parts (eastern part of study region) and could explain some Cd variation. Total Cd concentrations had significant correlation with the total neutralizing value (p < 0.01), available P (p < 0.01), cation exchange capacity (p < 0.05), and organic carbon (p < 0.05) variables. The DTPA-extractable Cd had significant correlation with OC (p < 0.01), pH, and clay content (p < 0.05). Therefore, consumption rate of the phosphate fertilizers and crop rotation are important factors on solubility and hence spatial variability of Cd content in agricultural soils.
Zhou, Wei-guan; Lv, Wei-ping; Qiu, Yi; Zhou, Wei-hai
2014-12-01
To investigate the oxygen consumption, oxygen consumption rate and asphyxiation point of Poecilobdella ma- nillensis. Oxygen consumption, oxygen consumption rate and asphyxiation point on juvenile (the average weight of 0. 29 g) and adult leech (the average weight of 2.89 g) of Poecilobdella manillensis were measured at water temperature conditions of 20. 2 and 30. 4 °C respectively using an airtight container with flowing water. Oxygen consumptions of Poecilobdella manillensis were increased with the increase of temperature and body weight respectively; However, their oxygen consumption rates circadian variation and the aver- age oxygen consumption rate at daytime were higher than those at night. In addition, their asphyxiation point was declined accordingly with the increase of temperature and body weight respectively. Oxygen consumption and oxygen consumption rate of Poeci- lobdella manillensis were closely associated with their activities and influenced by circadian variation, the preferable feeding time were the period of 6:00-10:00 in the morning or 17:00-19:00 in the afternoon; Meanwhile, Poecilobdella manillensis had a higher ability of the hypoxia tolerance for high density or factory farming, the long time living preservation and the long distance transport.
Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi
2015-01-01
The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototypemore » measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s -1 (12.6 km h -1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.« less
Consumptive Water Use and Crop Coefficients of Irrigated Sunflower
USDA-ARS?s Scientific Manuscript database
In semi-arid environments, the use of irrigation is necessary for sunflower production to reach its maximum potential. The aim of this study was to quantify the consumptive water use and crop coefficients of irrigated sunflower (Helianthus annuus L.) without soil water limitations during two growing...
Preliminary flight evaluation of an engine performance optimization algorithm
NASA Technical Reports Server (NTRS)
Lambert, H. H.; Gilyard, G. B.; Chisholm, J. D.; Kerr, L. J.
1991-01-01
A performance seeking control (PSC) algorithm has undergone initial flight test evaluation in subsonic operation of a PW 1128 engined F-15. This algorithm is designed to optimize the quasi-steady performance of an engine for three primary modes: (1) minimum fuel consumption; (2) minimum fan turbine inlet temperature (FTIT); and (3) maximum thrust. The flight test results have verified a thrust specific fuel consumption reduction of 1 pct., up to 100 R decreases in FTIT, and increases of as much as 12 pct. in maximum thrust. PSC technology promises to be of value in next generation tactical and transport aircraft.
Baseline tests of the power-train electric delivery van
NASA Technical Reports Server (NTRS)
Lumannick, S.; Dustin, M. O.; Bozek, J. M.
1977-01-01
Vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability, gradeability limit, road energy consumption, road power, indicated energy consumption, braking capability, battery charger efficiency, and battery characteristics were determined for a modified utility van powered by sixteen 6-volt batteries connected in series. A chopper controller actuated by a foot accelerator pedal changes the voltage applied to the 22-kilowatt (30-hp) series-wound drive motor. In addition to the conventional hydraulic braking system, the vehicle has hydraulic regenerative braking. Cycle tests and acceleration tests were conducted with and without hydraulic regeneration.
Chen, Chiu-Lin; Wang, Chun-Chun; Cheng, I-Jiunn
2010-10-01
Several biotic and abiotic factors can influence nest oxygen content during embryogenesis. Several of these factors were determined during each developmental stage of green sea turtle embryos on Wan-an Island, Penghu Archipelago, Taiwan. We examined oxygen content in 7 nests in 2007 and 11 in 2008. Oxygen in the adjacent sand, total and viable clutch sizes, air, sand and nest temperatures, and sand characters of each nest were also determined. Oxygen content was lower in late stages than in the early and middle stages. It was also lower in the middle layer than in the upper and bottom layers. Nest temperature showed opposite trends, reaching its maximum value in late stages of development. Nest oxygen content was influenced by fraction of viable eggs, total clutch sizes, sand temperatures, maximum nest temperature and maximum change in the nest temperature during incubation. Clutch size during embryogenesis was the most influential factor overall. However, the major influential factors were different for different developmental stages. In the first half of the incubation, the development rate was low, and the change in the nest oxygen content was influenced mainly by the clutch size. During the second half, the rapid embryonic development rate became the dominant factor, and hatchling activities caused even greater oxygen consumption during the last stage of development.
Degradation of paracetamol by Pseudomonas aeruginosa strain HJ1012.
Hu, Jun; Zhang, Li L; Chen, Jian M; Liu, Yu
2013-01-01
Pseudomonas aeruginosa strain HJ1012 was isolated on paracetamol as a sole carbon and energy source. This organism could completely degrade paracetamol as high as 2200 mg/L. Following paracetamol consumption, a CO₂ yield rate up to 71.4% proved that the loss of paracetamol was mainly via mineralization. Haldane's equation adequately described the relationship between the specific growth rate and substrate concentration. The maximum specific growth rate and yield coefficient were 0.201 g-Paracetamol/g-VSS·h and 0.101 mg of biomass yield/mg of paracetamol consumed, respectively. A total of 8 metabolic intermediates was identified and classified into aromatic compounds, carboxylic acids, and inorganic species (nitrite and nitrate ions). P-aminophenol and hydroquinone are the two key metabolites of the initial steps in the paracetamol catabolic pathway. Paracetamol is degraded predominantly via p-aminophenol to hydroquinone with subsequent ring fission, suggesting partially new pathways for paracetamol-degrading bacteria.
Jang, Nulee; Yasin, Muhammad; Park, Shinyoung; Lovitt, Robert W; Chang, In Seop
2017-09-01
A mathematical model of microbial kinetics was introduced to predict the overall volumetric gas-liquid mass transfer coefficient (k L a) of carbon monoxide (CO) in a batch cultivation system. The cell concentration (X), acetate concentration (C ace ), headspace gas (N co and [Formula: see text] ), dissolved CO concentration in the fermentation medium (C co ), and mass transfer rate (R) were simulated using a variety of k L a values. The simulated results showed excellent agreement with the experimental data for a k L a of 13/hr. The C co values decreased with increase in cultivation times, whereas the maximum mass transfer rate was achieved at the mid-log phase due to vigorous microbial CO consumption rate higher than R. The model suggested in this study may be applied to a variety of microbial systems involving gaseous substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
GEC Ferranti piezo vibratory gyroscope
NASA Technical Reports Server (NTRS)
Nuttall, J. D.
1993-01-01
Prototypes of a piezo-electric vibratory angular rate transducer (gyroscope) (PVG) have been constructed and evaluated. The construction is on the lines suggested by Burdess. The sensitive element is a cylinder of radially poled piezo-electric ceramic. The cylinder is metallized inside and out, and the outer metallization is divided into eight electrodes. The metallization on the inside is earthed. A phase locked loop, using pairs of the electrodes, causes the cylinder to vibrate in one of its two fundamental, degenerate modes. In the presence of rotation, some of the vibration is coupled into the outer mode. This can be detected, or suppressed with a closed-up technique and provides a measure of rotation rate. The gyroscope provides a number of advantages over rotating mass and optical instruments: low size and mass, lower power consumption, potentially high reliability, potentially good dormancy, low cost and high maximum rate.
Vodka and Violence: Alcohol Consumption and Homicide Rates in Russia
Pridemore, William Alex
2002-01-01
In Russia, rates of alcohol consumption and homicide are among the highest in the world, and already-high levels increased dramatically after the breakup of the Soviet Union. Rates of both, however, vary greatly among Russia’s 89 regions. We took advantage of newly available vital statistics and socioeconomic data to examine the regional covariation of drinking and lethal violence. Log-log models were employed to estimate the impact of alcohol consumption on regional homicide rates, controlling for structural factors thought to influence the spatial distribution of homicide rates. Results revealed a positive and significant relationship between alcohol consumption and homicide, with a 1% increase in regional consumption of alcohol associated with an approximately 0.25% increase in homicide rates. In Russia, higher regional rates of alcohol consumption are associated with higher rates of homicide. PMID:12453810
Vodka and violence: alcohol consumption and homicide rates in Russia.
Pridemore, William Alex
2002-12-01
In Russia, rates of alcohol consumption and homicide are among the highest in the world, and already-high levels increased dramatically after the breakup of the Soviet Union. Rates of both, however, vary greatly among Russia's 89 regions. We took advantage of newly available vital statistics and socioeconomic data to examine the regional covariation of drinking and lethal violence. Log-log models were employed to estimate the impact of alcohol consumption on regional homicide rates, controlling for structural factors thought to influence the spatial distribution of homicide rates. Results revealed a positive and significant relationship between alcohol consumption and homicide, with a 1% increase in regional consumption of alcohol associated with an approximately 0.25% increase in homicide rates. In Russia, higher regional rates of alcohol consumption are associated with higher rates of homicide.
A 12b 200kS/s 0.52mA 0.47mm2 Algorithmic A/D Converter for MEMS Applications
NASA Astrophysics Data System (ADS)
Kim, Young-Ju; Choi, Hee-Cheol; Lee, Seung-Hoon; Cho, Dongil “Dan”
This work describes a 12b 200kS/s 0.52mA 0.47mm2 ADC for sensor applications such as motor control, 3-phase power control, and CMOS image sensors simultaneously requiring ultra-low power and small size. The proposed ADC is based on the conventional algorithmic architecture with a recycling signal path to optimize sampling rate, resolution, chip area, and power consumption. The input SHA with eight input channels employs a folded-cascode amplifier to achieve a required DC gain and a high phase margin. A 3-D fully symmetric layout with critical signal lines shielded reduces the capacitor and device mismatch of the multiplying D/A converter while switched-bias power-reduction circuits minimize the power consumption of analog amplifiers. Current and voltage references are integrated on chip with optional off-chip voltage references for low glitch noise. The down-sampling clock signal selects the sampling rate of 200kS/s and 10kS/s with a further reduced power depending on applications. The prototype ADC in a 0.18μm n-well 1P6M CMOS process demonstrates a maximum measured DNL and INL within 0.40 LSB and 1.97 LSB and shows a maximum SNDR and SFDR of 55dB and 70dB at all sampling frequencies up to 200kS/s, respectively. The ADC occupies an active die area of 0.47mm2 and consumes 0.94mW at 200kS/s and 0.63mW at 10kS/s with a 1.8V supply.
NASA Astrophysics Data System (ADS)
Pfannkuche, O.
The benthic response to the sedimentation of particulate organic matter (POM) was investigated during 1985-1990 at 47°N, 20°W (BIOTRANS station). The first noticeable annual sedimentation of phytodetritus, as indicated by chlorophyll a concentrations in the sediment, occurred as early as late April-early May. Maximum amounts were found in June-July. Two different sedimentation pulses to the sea bed are described that demonstrate interannual variation: the occurrence of salp faecal pellets early in the year 1988 and the massive fall out of a plankton bloom in summer 1986, which deposited approximately 15 mmol C m -2. The benthic reaction to POM pulses was quite diverse. The mega-, macro- and meiobenthos showed no change in biomass, whereas bacterial biomass doubled between March and July. This corresponds to a seasonal maximum of total adenylate biomass. The relative abundance of Foraminifera among the meiobenthos increased during the summer. Benthic activity (ATP, ratio ATP/ETSA), as well as in situ sediment community oxygen consumption rates (SCOC), showed distinct seasonal maxima in July-August of 0.75 mmol C m -2 day -1. Based on SCOC and the carbon demand for growth, a benthic carbon consumption of 0.94 mmol C m -2 day -1 was estimated. This represents about 1.1% of spring bloom primary production and 9.6% of the export flux beneath the 150 m layer, measured during the North Atlantic Bloom Experiment. Bacteria and protozoans colonizing the epibenthic phytodetrital layer were responsible for 60-80% of the seasonal increase in SCOC. The strong reaction of the smaller benthic size groups (bacteria, protozoans) to POM pulses stresses their particular importance for sediment-water interface flux rates.
Development of a bioenergetics model for the threespine stickleback Gasterosteus aculeatus
Hovel, Rachel A.; Beauchamp, David A.; Hansen, Adam G.; Sorel, Mark H.
2016-01-01
The Threespine Stickleback Gasterosteus aculeatus is widely distributed across northern hemisphere ecosystems, has ecological influence as an abundant planktivore, and is commonly used as a model organism, but the species lacks a comprehensive model to describe bioenergetic performance in response to varying environmental or ecological conditions. This study parameterized a bioenergetics model for the Threespine Stickleback using laboratory measurements to determine mass- and temperature-dependent functions for maximum consumption and routine respiration costs. Maximum consumption experiments were conducted across a range of temperatures from 7.5°C to 23.0°C and a range of fish weights from 0.5 to 4.5 g. Respiration experiments were conducted across a range of temperatures from 8°C to 28°C. Model sensitivity was consistent with other comparable models in that the mass-dependent parameters for maximum consumption were the most sensitive. Growth estimates based on the Threespine Stickleback bioenergetics model suggested that 22°C is the optimal temperature for growth when food is not limiting. The bioenergetics model performed well when used to predict independent, paired measures of consumption and growth observed from a separate wild population of Threespine Sticklebacks. Predicted values for consumption and growth (expressed as percent body weight per day) only deviated from observed values by 2.0%. Our model should provide insight into the physiological performance of this species across a range of environmental conditions and be useful for quantifying the trophic impact of this species in food webs containing other ecologically or economically important species.
Photonic efficiency of the photodegradation of paracetamol in water by the photo-Fenton process.
Yamal-Turbay, E; Ortega, E; Conte, L O; Graells, M; Mansilla, H D; Alfano, O M; Pérez-Moya, M
2015-01-01
An experimental study of the homogeneous Fenton and photo-Fenton degradation of 4-amidophenol (paracetamol, PCT) is presented. For all the operation conditions evaluated, PCT degradation is efficiently attained by both Fenton and photo-Fenton processes. Also, photonic efficiencies of PCT degradation and mineralization are determined under different experimental conditions, characterizing the influence of hydrogen peroxide (H2O2) and Fe(II) on both contaminant degradation and sample mineralization. The maximum photonic degradation efficiencies for 5 and 10 mg L(-1) Fe(II) were 3.9 (H2O2 = 189 mg L(-1)) and 5 (H2O2 = 378 mg L(-1)), respectively. For higher concentrations of oxidant, H2O2 acts as a "scavenger" radical, competing in pollutant degradation and reducing the reaction rate. Moreover, in order to quantify the consumption of the oxidizing agent, the specific consumption of the hydrogen peroxide was also evaluated. For all operating conditions of both hydrogen peroxide and Fe(II) concentration, the consumption values obtained for Fenton process were always higher than the corresponding values observed for photo-Fenton. This implies a less efficient use of the oxidizing agent for dark conditions.
Monascus ruber as cell factory for lactic acid production at low pH.
Weusthuis, Ruud A; Mars, Astrid E; Springer, Jan; Wolbert, Emil Jh; van der Wal, Hetty; de Vrije, Truus G; Levisson, Mark; Leprince, Audrey; Houweling-Tan, G Bwee; Pha Moers, Antoine; Hendriks, Sjon Na; Mendes, Odette; Griekspoor, Yvonne; Werten, Marc Wt; Schaap, Peter J; van der Oost, John; Eggink, Gerrit
2017-07-01
A Monascus ruber strain was isolated that was able to grow on mineral medium at high sugar concentrations and 175g/l lactic acid at pH 2.8. Its genome and transcriptomes were sequenced and annotated. Genes encoding lactate dehydrogenase (LDH) were introduced to accomplish lactic acid production and two genes encoding pyruvate decarboxylase (PDC) were knocked out to subdue ethanol formation. The strain preferred lactic acid to glucose as carbon source, which hampered glucose consumption and therefore also lactic acid production. Lactic acid consumption was stopped by knocking out 4 cytochrome-dependent LDH (CLDH) genes, and evolutionary engineering was used to increase the glucose consumption rate. Application of this strain in a fed-batch fermentation resulted in a maximum lactic acid titer of 190g/l at pH 3.8 and 129g/l at pH 2.8, respectively 1.7 and 2.2 times higher than reported in literature before. Yield and productivity were on par with the best strains described in literature for lactic acid production at low pH. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wigle, Jeffrey C.; Castellanos, Cherry C.
2016-03-01
Exposure to 2.88 J/cm2 of red light induces an adaptive response against a lethal pulse of 2.0 μm laser radiation in hTERT-RPE cells in vitro, but not in a knockdown mutant for vascular endothelial growth factor c (VEGF-C). The generally accepted initiation sequence for photobiomodulation is that absorption of red light by cytochome c oxidase (CCOX) of the electron transport chain increases the binding affinity of CCOX for O2 vs. nitric oxide (NO). This results in displacement of NO by O2 in the active site of CCOX, thereby increasing cellular respiration and intracellular ATP. We've previously reported that red-light exposure induces a small, but consistently reproducible, increase in NO levels in these cells. But the relative importance of NO and oxidative phosphorylation is unclear because little is known about the relative contributions of NO and ATP to the response. However, if NO dissociation from CCOX actually increases oxidative phosphorylation, one should see a corresponding increase in oxygen consumption. A Seahorse Extracellular Flux Analyzer was used to measure oxygen consumption rates (OCR) in normal and mutant cells as a proxy for oxidative phosphorylation. Both basal respiration and maximum respiration rates in normal cells are significantly higher than in the mutant. The normal cells have a significant amount of "excess capacity," whereas the VEGF-C(KD) have little or none. The OCR in exposed normal cells is lower than in unexposed cells when measured immediately after exposure. The exposures used for these experiments had no effect on the OCR in mutant cells.
Brennan, Reid S; Hwang, Ruth; Tse, Michelle; Fangue, Nann A; Whitehead, Andrew
2016-06-01
Regulation of internal ion homeostasis is essential for fishes inhabiting environments where salinities differ from their internal concentrations. It is hypothesized that selection will reduce energetic costs of osmoregulation in a population's native osmotic habitat, producing patterns of local adaptation. Killifish, Fundulus heteroclitus, occupy estuarine habitats where salinities range from fresh to seawater. Populations inhabiting an environmental salinity gradient differ in physiological traits associated with acclimation to acute salinity stress, consistent with local adaptation. Similarly, metabolic rates differ in populations adapted to different temperatures, but have not been studied in regard to salinity. We investigated evidence for local adaptation between populations of killifish native to fresh and brackish water habitats. Aerobic scope (the difference between minimum and maximum metabolic rates), excess post-exercise oxygen consumption, and swimming performance (time and distance to reach exhaustion) were used as proxies for fitness in fresh and brackish water treatments. Swimming performance results supported local adaptation; fish native to brackish water habitats performed significantly better than freshwater-native fish at high salinity while low salinity performance was similar between populations. However, results from metabolic measures did not support this conclusion; both populations showed an increase in resting metabolic rate and a decrease of aerobic scope in fresh water. Similarly, excess post-exercise oxygen consumption was higher for both populations in fresh than in brackish water. While swimming results suggest that environmentally dependent performance differences may be a result of selection in divergent osmotic environments, the differences between populations are not coupled with divergence in metabolic performance. Copyright © 2016 Elsevier Inc. All rights reserved.
Traumeel S® for pain relief following hallux valgus surgery: a randomized controlled trial
2010-01-01
Background In spite of recent advances in post-operative pain relief, pain following orthopedic surgery remains an ongoing challenge for clinicians. We examined whether a well known and frequently prescribed homeopathic preparation could mitigate post-operative pain. Method We performed a randomized, double blind, placebo-controlled trial to evaluate the efficacy of the homeopathic preparation Traumeel S® in minimizing post-operative pain and analgesic consumption following surgical correction of hallux valgus. Eighty consecutive patients were randomized to receive either Traumeel tablets or an indistinguishable placebo, and took primary and rescue oral analgesics as needed. Maximum numerical pain scores at rest and consumption of oral analgesics were recorded on day of surgery and for 13 days following surgery. Results Traumeel was not found superior to placebo in minimizing pain or analgesic consumption over the 14 days of the trial, however a transient reduction in the daily maximum post-operative pain score favoring the Traumeel arm was observed on the day of surgery, a finding supported by a treatment-time interaction test (p = 0.04). Conclusions Traumeel was not superior to placebo in minimizing pain or analgesic consumption over the 14 days of the trial. A transient reduction in the daily maximum post-operative pain score on the day of surgery is of questionable clinical importance. Trial Registration This study was registered at ClinicalTrials.gov. # NCT00279513 PMID:20380750
21 CFR 172.260 - Oxidized polyethylene.
Code of Federal Regulations, 2010 CFR
2010-04-01
... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION... polyethylene has a minimum number average molecular weight of 1,200, as determined by high temperature vapor pressure osmometry; contains a maximum of 5 percent by weight of total oxygen; and has an acid value of 9...
Verce, Matthew F.; Ulrich, Ricky L.; Freedman, David L.
2000-01-01
An aerobic enrichment culture was developed by using vinyl chloride (VC) as the sole organic carbon and electron donor source. VC concentrations as high as 7.3 mM were biodegraded without apparent inhibition. VC use did not occur when nitrate was provided as the electron acceptor. A gram-negative, rod-shaped, motile isolate was obtained from the enrichment culture and identified based on biochemical characteristics and the sequence of its 16S rRNA gene as Pseudomonas aeruginosa, designated strain MF1. The observed yield of MF1 when it was grown on VC was 0.20 mg of total suspended solids (TSS)/mg of VC. Ethene, acetate, glyoxylate, and glycolate also served as growth substrates, while ethane, chloroacetate, glycolaldehyde, and phenol did not. Stoichiometric release of chloride and minimal accumulation of soluble metabolites following VC consumption indicated that the predominant fate for VC is mineralization and incorporation into cell material. MF1 resumed consumption of VC after at least 24 days when none was provided, unlike various mycobacteria that lost their VC-degrading ability after brief periods in the absence of VC. When deprived of oxygen for 2.5 days, MF1 did not regain the ability to grow on VC, and a portion of the VC was transformed into VC-epoxide. Acetylene inhibited VC consumption by MF1, suggesting the involvement of a monooxygenase in the initial step of VC metabolism. The maximum specific VC utilization rate for MF1 was 0.41 μmol of VC/mg of TSS/day, the maximum specific growth rate was 0.0048/day, and the Monod half-saturation coefficient was 0.26 μM. A higher yield and faster kinetics occurred when MF1 grew on ethene. When grown on ethene, MF1 was able to switch to VC as a substrate without a lag. It therefore appears feasible to grow MF1 on a nontoxic substrate and then apply it to environments that do not exhibit a capacity for aerobic biodegradation of VC. PMID:10919818
NASA Astrophysics Data System (ADS)
Chen, Chunxiang; Cheng, Zheng; Xu, Qing; Qin, Songheng
2018-04-01
In order to explore the high-efficient utilization of oil shale, the effects of different microwave powers and different kinds of catalysts (metal oxides and metal salts) on the temperature characteristics and product yield towards the oil shale are investigated by microwave catalytic pyrolysis. The results show that the effect of microwave power on the heating and pyrolysis rates of oil shale is significant, and the maximum output of shale oil is 5.1% when the microwave power is 1500W; CaO has a certain effect on the temperature rise of oil shale, and MgO and CuO have a certain degree of inhibition, but the addition of three kinds of metal oxidation is beneficial to increase the shale oil production; From the perspective of unit power consumption and gas production, the catalytic effect order of three kinds of metal oxides is MgO> CaO> CuO; The addition of three kinds of metal salts is favorable for the increase of pyrolysis temperature of oil shale, after adding 5% ZnCl2, the unit power consumption of shale oil and pyrolysis gas increases by 62.60% and 81.96% respectively. After adding 5% NaH2PO3, the unit power consumption of shale oil increases by 64.64%, and reduces by 9.56% by adding 5% MgCl2.
Lyngsø, Julie; Ramlau-Hansen, Cecilia Høst; Bay, Bjørn; Ingerslev, Hans Jakob; Hulman, Adam; Kesmodel, Ulrik Schiøler
2017-01-01
The aim was to investigate whether coffee or caffeine consumption is associated with reproductive endpoints among women with natural fertility (ie, time to pregnancy [TTP] and spontaneous abortion [SAB]) and among women in fertility treatment (ie, clinical pregnancy rate or live birth rate). This study was a systematic review and dose-response meta-analysis including data from case-control and cohort studies. An extensive literature search was conducted in MEDLINE and Embase, with no time and language restrictions. Also, reference lists were searched manually. Two independent reviewers assessed the manuscript quality using the Newcastle-Ottawa Scale (NOS). A two-stage dose-response meta-analysis was applied to assess a potential association between coffee/caffeine consumption and the outcomes: TTP, SAB, clinical pregnancy, and live birth. Heterogeneity between studies was assessed using Cochrane Q -test and I 2 statistics. Publication bias was assessed using Egger's regression test. The pooled results showed that coffee/caffeine consumption is associated with a significantly increased risk of SAB for 300 mg caffeine/day (relative risk [RR]: 1.37, 95% confidence interval [95% CI]: 1.19; 1.57) and for 600 mg caffeine/day (RR: 2.32, 95% CI: 1.62; 3.31). No association was found between coffee/caffeine consumption and outcomes of fertility treatment (based on two studies). No clear association was found between exposure to coffee/caffeine and natural fertility as measured by fecundability odds ratio (based on three studies) or waiting TTP (based on two studies). Results from this meta-analysis support the growing evidence of an association between coffee/caffeine intake and the risk of SAB. However, viewing the reproductive capacity in a broader perspective, there seems to be little, if any, association between coffee/caffeine consumption and fecundity. In general, results from this study are supportive of a precautionary principle advised by health organizations such as European Food Safety Authority (EFSA) and World Health Organization (WHO), although the advised limit of a maximum of two to three cups of coffee/200-300 mg caffeine per day may be too high.
Lyngsø, Julie; Ramlau-Hansen, Cecilia Høst; Bay, Bjørn; Ingerslev, Hans Jakob; Hulman, Adam; Kesmodel, Ulrik Schiøler
2017-01-01
Objective The aim was to investigate whether coffee or caffeine consumption is associated with reproductive endpoints among women with natural fertility (ie, time to pregnancy [TTP] and spontaneous abortion [SAB]) and among women in fertility treatment (ie, clinical pregnancy rate or live birth rate). Design This study was a systematic review and dose–response meta-analysis including data from case–control and cohort studies. Methods An extensive literature search was conducted in MEDLINE and Embase, with no time and language restrictions. Also, reference lists were searched manually. Two independent reviewers assessed the manuscript quality using the Newcastle–Ottawa Scale (NOS). A two-stage dose–response meta-analysis was applied to assess a potential association between coffee/caffeine consumption and the outcomes: TTP, SAB, clinical pregnancy, and live birth. Heterogeneity between studies was assessed using Cochrane Q-test and I2 statistics. Publication bias was assessed using Egger’s regression test. Results The pooled results showed that coffee/caffeine consumption is associated with a significantly increased risk of SAB for 300 mg caffeine/day (relative risk [RR]: 1.37, 95% confidence interval [95% CI]: 1.19; 1.57) and for 600 mg caffeine/day (RR: 2.32, 95% CI: 1.62; 3.31). No association was found between coffee/caffeine consumption and outcomes of fertility treatment (based on two studies). No clear association was found between exposure to coffee/caffeine and natural fertility as measured by fecundability odds ratio (based on three studies) or waiting TTP (based on two studies). Conclusion Results from this meta-analysis support the growing evidence of an association between coffee/caffeine intake and the risk of SAB. However, viewing the reproductive capacity in a broader perspective, there seems to be little, if any, association between coffee/caffeine consumption and fecundity. In general, results from this study are supportive of a precautionary principle advised by health organizations such as European Food Safety Authority (EFSA) and World Health Organization (WHO), although the advised limit of a maximum of two to three cups of coffee/200–300 mg caffeine per day may be too high. PMID:29276412
Effects of low calorie diet-induced weight loss on post-exercise heart rate recovery in obese men.
Kim, Maeng Kyu
2014-06-01
Heart Rate Recovery (HRR) after maximum exercise is a reactivation function of vagus nerve and an independent risk factor that predicts cardiovascular disease and mortality. Weight loss obtained through dietary programs has been employed as a therapy to reduce risks of cardiovascular disease and obesity. Eighteen subjects of middle aged obese men (age 44.8 ± 1.6 yrs, BMI 29.7 ± 0.5 kg/m(2)) were selected for this study. As a weight loss direction, the nutritional direction of low-calorie diet mainly consisted of carbohydrate, protein, and fat has been conducted for 3 months. Blood pressure was measured after overnight fasting, and blood samples were collected from the antecubital vein before and after weight loss program. All the pre- and post-exercise 'HRR decay constant's were assessed by using values of HRR (heart recovery rate; 2 minutes) and HR measured after reached to the maximal oxygen uptake (VO2max) exploited the bicycle ergometer. After the completion of weight loss program, body weight and BMI were significantly decreased, but the Heart Rate (HR) after maximum exercise and in steady state were not changed significantly (p > 0.05). The post-exercise HRR after the weight loss did not show significant changes in perspectives of 30 seconds (-16.6 ± 2.3 to -20.2 ± 2.1 beats/min, p > 0.05) and 60 seconds (-33.5 ± 3.4 to -34.6 ± 2.8 beats/min, p > 0.05) respectively but in perspectives of 90 seconds (-40.9 ± 2.6 to -48.1 ± 3.1 beats/min, p < 0.05) and 120 seconds (-48.6 ± 2.6 to -54.3 ± 3.5 beats/min, p < 0.05), they were decreased significantly. Pre-'HRR decay constant's of 0.294 ± 0.02 %/second were significantly increased to post-values of 0.342 ± 0.03 %/second (p = 0.026). Changes in 'HRR decay constant' were significantly correlated with changes in blood glucose (r = -0.471, p < 0.05) and maximal oxygen consumption (VO2max, r = 0.505, p < 0.05) respectively. The low-calorie diet directed to obese middle aged men for 3 months significantly improved the HRR after maximum exercise, and this improvement in cardiovascular autonomic nerve system was estimated to be involved with improvements in blood glucose and maximal oxygen consumption.
Qi, Hui; Li, Shixue
2014-04-01
A dose-response meta-analysis was carried out between Parkinson's disease (PD) risk, and coffee, tea and caffeine consumption. A comprehensive search was carried out to identify eligible studies. The fixed or random effect model was used based on heterogeneity test. The dose-response relationship was assessed by restricted cubic spline. A total of 13 articles involving 901 764 participants for coffee, eight articles involving 344 895 participants for tea and seven articles involving 492 724 participants for caffeine were included. A non-linear relationship was found between coffee consumption and PD risk overall, and the strength of protection reached the maximum at approximately 3 cups/day (smoking-adjusted relative risk: 0.72, 95% confidence interval 0.65-0.81). A linear relationship was found between tea and caffeine consumption, and PD risk overall, and the smoking-adjusted risk of PD decreased by 26% and 17% for every two cups/day and 200 mg/day increments, respectively. The association of coffee and tea consumption with PD risk was stronger for men than that for women, and the association of caffeine consumption with PD risk was stronger for ever users of hormones than that for never users of hormones among postmenopausal women. The aforementioned associations were weaker for USA relative to Europe or Asia. A linear dose-relationship for decreased PD risk with tea and caffeine consumption was found, whereas the strength of protection reached a maximum at approximately 3 cups/day for coffee consumption overall. Further studies are required to confirm the findings. © 2013 Japan Geriatrics Society.
Consumption of alcohol and risk of alcohol addiction among students in Poland.
Wilczyński, Krzysztof; Witowski, Łukasz; Pawlik, Aleksandra; Krysta, Krzysztof; Krupka-Matuszczyk, Irena
2013-09-01
Alcohol consumption in our society is a known, and a widely discussed problem, due to the proven negative impact of excessive usage of spirits on health. Aim of the study was to evaluate the rate of consumption, and risk of an alcoholic disease among Polish students. Study was carried out using an authors' own questionnaire, made of a queries about amount and frequency of alcohol consumption, risky behaviors and knowledge about alcoholism. Research was conducted through community portals (f.e. facebook.com), and within 3 weeks time (from a 10(th) of January to 31(st) of January 2013) 1300 students from different Polish universities participated in it. Out of them, after removal of inadequate questionnaires, group of 1259 students (822 females, 437 males) was selected for further analysis. Average age equaled to 21.5, with the maximum of 27 and minimum of 18 years. For the statistical analysis StatSoft "Statistica" 10.0 software was used. The study shows that 95.5% of students use alcohol (mostly beer and vodka) and they tend to overuse it. 28.86% of respondents drank excessively more than 3 times during the month preceding research, 46% of subjects also had an alcoholic palimpsest more than once, 12.7% need an alcohol to enjoy a party and 0.83% of respondents can't control the amount of a one-time alcohol consumption. 3.32% of students may be in the group of a high alcoholism risk. Alcohol consumption is a common problem among Polish students. Most of respondents, mostly males, drink excessively and potentially risky for their health. There is a remarkable group of students endangered with alcohol addiction.
NASA Astrophysics Data System (ADS)
Rowe, Christopher L.
2018-01-01
I evaluated standard metabolic rates (SMR) of hatchling northern diamondback terrapins (Malaclemys terrapin terrapin) across a range of salinities (salinity = 1.5, 4, 8, 12, and 16 psu) that they may encounter in brackish habitats such as those in the Maryland portion of the Chesapeake Bay, U.S.A. Consumption of O2 and production of CO2 by resting, unfed animals served as estimates of SMR. A peak in SMR occurred at 8 psu which corresponds closely with the salinity at which hatchling growth was previously shown to be maximized (salinity ∼ 9 psu). It appears that SMR is influenced by growth, perhaps reflecting investments in catabolic pathways that fuel anabolism. This ecophysiological information can inform environmental conservation and management activities by identifying portions of the estuary that are bioenergetically optimal for growth of hatchling terrapins. I suggest that conservation and restoration efforts to protect terrapin populations in oligo-to mesohaline habitats should prioritize protection or creation of habitats in regions where average salinity is near 8 psu and energetic investments in growth appear to be maximized.
Technology in the high entropy world.
Tambo, N
2006-01-01
Modern growing society is mainly driven by oils and may be designated "petroleum civilisation". However, the basic energy used to drive the global ecosystem is solar radiation. The amount of fossil energy consumption is minimal in the whole global energy balance. Economic growth is mainly controlled by the fossil (commercial) energy consumption rate in urban areas. Water and sanitation systems are bridging economical activities and global ecosystems. Therefore, vast amounts of high entropy solar energy should always be taken into account in the water industry. Only in urban/industrial areas where most of the GDP is earned, are commercial energy driven systems inevitably introduced with maximum effort for energy saving. A water district concept to ensure appropriate quality use with the least deterioration of the environment is proposed. In other areas, decentralised water and sanitation systems driven on soft energy paths would be recommended. A process and system designed on a high entropy energy system would be the foundation for a future urban metabolic system revolution for when oil-based energy become scarce.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coykendall, R.E.; Curry, J.K.; Domke, A.E.
1976-06-01
Economic studies were conducted for three general fuel-conserving options: (1) improving fuel-consumption characteristics of existing aircraft via retrofit modifications; (2) introducing fuel-efficient derivations of existing production aircraft and/or introducing fuel efficient, current state-of-the-art new aircraft; and (3) introducing an advanced state-of-the-art turboprop airplane. These studies were designed to produce an optimum airline fleet mix for the years 1980, 1985 and 1990. The fleet selected accommodated a normal growth market by introducing somewhat larger aircraft while solving for maximum departure frequencies and a minimum load factor corresponding to a 15% investment hurdle rate. Fuel burnt per available-seat-mile flown would drop 22%more » from 1980 to 1990 due to the use of more fuel efficient aircraft designs, larger average aircraft size, and increased seating density. An inflight survey was taken to determine air traveler attitudes towards a new generation of advanced turboprops. (Author) (GRA)« less
Dynamics of oxygen supply and consumption during mainstream large-scale composting in China.
Zeng, Jianfei; Shen, Xiuli; Han, Lujia; Huang, Guangqun
2016-11-01
This study characterized some physicochemical and biological parameters to systematically evaluate the dynamics of oxygen supply and consumption during large-scale trough composting in China. The results showed that long active phases, low maximum temperatures, low organic matter losses and high pore methane concentrations were observed in different composting layers. Pore oxygen concentrations in the top, middle and bottom layers maintained <5vol.% for 40, 42 and 45days, respectively, which accounted for more than 89% of the whole period. After each mechanical turning, oxygen was consumed at a stable respiration rate to a concentration of 5vol.% in no more than 99min and remained anaerobic in the subsequent static condition. The daily percentage of time under aerobic condition was no more than 14% of a single day. Therefore, improving FAS, adjusting aeration interval or combining turning with forced aeration was suggested to provide sufficient oxygen during composting. Copyright © 2016 Elsevier Ltd. All rights reserved.
Skylab experiment M-171 'Metabolic Activity' - Results of the first manned mission
NASA Technical Reports Server (NTRS)
Michel, E. L.; Rummel, J. A.; Sawin, C. F.
1975-01-01
The experiment was performed to ascertain whether man's ability to perform mechanical work would be altered as a result of exposure to the weightless environment. Skylab II crewmen were exercised on a bicycle ergometer at loads approximating 25%, 50%, and 75% of their maximum oxygen uptake while their physiological responses were monitored. The results of these tests indicate that the crewmen had no significant decrement in their response to exercise during their exposure to zero gravity. Immediately postflight, however, all crewmen demonstrated an inability to perform the programmed exercise with the same metabolic effectiveness as they did both preflight and inflight. The most significant changes were elevated heart rates for the same work load and oxygen consumption (decreased oxygen pulse), decreased stroke volume, and decreased cardiac output at the same oxygen consumption level. It is apparent that the changes occurred inflight, but did not manifest themselves until the crewmen attempted to readapt to the 1-G environment.
Heavy metal bioaccumulation and risk assessment for wild and farmed beluga sturgeon caviar.
Hosseini, Seyed Vali; Hosseini, Seyed Mehdi; Monsef Rad, Seyede Fatemeh; Mobinifar, Mohammad; Regenstein, Joe M
2013-12-01
Because of over-exploitation of sturgeon for caviar production, they have been listed worldwide in annex II of the Convention on International Trade in Endangered Species regulations; so caviar production using aquaculture is increasingly seen as a feasible way to reduce overfishing. The accumulation of the nonessential metals As, Ba, Cd, Hg, Pb, and Sn was determined in the caviar of farmed and wild Beluga sturgeon (Huso huso). The levels of As in both and Cd in wild samples were less than 0.01 mg kg(-1) wet weight, and the comparison for all of the metals studied did not show large fluctuations in metal concentrations between farmed and wild caviar samples. The average for each toxic metal was below the permissible limits proposed by the UK's Ministry of Agriculture, Fisheries and Foods (2000). The maximum allowable daily consumption rate of caviar was calculated; however, the health risks from caviar consumption are uncertain because the amount of caviar consumed by heavy users is not known.
Residues in Beeswax: A Health Risk for the Consumer of Honey and Beeswax?
Wilmart, Olivier; Legrève, Anne; Scippo, Marie-Louise; Reybroeck, Wim; Urbain, Bruno; de Graaf, Dirk C; Steurbaut, Walter; Delahaut, Philippe; Gustin, Pascal; Nguyen, Bach Kim; Saegerman, Claude
2016-11-09
A scenario analysis in regard to the risk of chronic exposure of consumers to residues through the consumption of contaminated honey and beeswax was conducted. Twenty-two plant protection products and veterinary substances of which residues have already been detected in beeswax in Europe were selected. The potential chronic exposure was assessed by applying a worst-case scenario based on the addition of a "maximum" daily intake through the consumption of honey and beeswax to the theoretical maximum daily intake through other foodstuffs. For each residue, the total exposure was finally compared to the acceptable daily intake. It is concluded that the food consumption of honey and beeswax contaminated with these residues considered separately does not compromise the consumer's health, provided proposed action limits are met. In regard to residues of flumethrin in honey and in beeswax, "zero tolerance" should be applied.
Stoner, Kimberly A.; Eitzer, Brian D.
2013-01-01
Analysis of pollen trapped from honey bees as they return to their hives provides a method of monitoring fluctuations in one route of pesticide exposure over location and time. We collected pollen from apiaries in five locations in Connecticut, including urban, rural, and mixed agricultural sites, for periods from two to five years. Pollen was analyzed for pesticide residues using a standard extraction method widely used for pesticides (QuEChERS) and liquid chromatography/mass spectrometric analysis. Sixty pesticides or metabolites were detected. Because the dose lethal to 50% of adult worker honey bees (LD50) is the only toxicity parameter available for a wide range of pesticides, and among our pesticides there were contact LD50 values ranging from 0.006 to >1000 μg per bee (range 166,000X), and even among insecticides LD50 values ranged from 0.006 to 59.8 μg/bee (10,000X); therefore we propose that in studies of honey bee exposure to pesticides that concentrations be reported as Hazard Quotients as well as in standard concentrations such as parts per billion. We used both contact and oral LD50 values to calculate Pollen Hazard Quotients (PHQ = concentration in ppb ÷ LD50 as μg/bee) when both were available. In this study, pesticide Pollen Hazard Quotients ranged from over 75,000 to 0.01. The pesticides with the greatest Pollen Hazard Quotients at the maximum concentrations found in our study were (in descending order): phosmet, Imidacloprid, indoxacarb, chlorpyrifos, fipronil, thiamethoxam, azinphos-methyl, and fenthion, all with at least one Pollen Hazard Quotient (using contact or oral LD50) over 500. At the maximum rate of pollen consumption by nurse bees, a Pollen Hazard Quotient of 500 would be approximately equivalent to consuming 0.5% of the LD50 per day. We also present an example of a Nectar Hazard Quotient and the percentage of LD50 per day at the maximum nectar consumption rate. PMID:24143241
Stoner, Kimberly A; Eitzer, Brian D
2013-01-01
Analysis of pollen trapped from honey bees as they return to their hives provides a method of monitoring fluctuations in one route of pesticide exposure over location and time. We collected pollen from apiaries in five locations in Connecticut, including urban, rural, and mixed agricultural sites, for periods from two to five years. Pollen was analyzed for pesticide residues using a standard extraction method widely used for pesticides (QuEChERS) and liquid chromatography/mass spectrometric analysis. Sixty pesticides or metabolites were detected. Because the dose lethal to 50% of adult worker honey bees (LD50) is the only toxicity parameter available for a wide range of pesticides, and among our pesticides there were contact LD50 values ranging from 0.006 to >1000 μg per bee (range 166,000X), and even among insecticides LD50 values ranged from 0.006 to 59.8 μg/bee (10,000X); therefore we propose that in studies of honey bee exposure to pesticides that concentrations be reported as Hazard Quotients as well as in standard concentrations such as parts per billion. We used both contact and oral LD50 values to calculate Pollen Hazard Quotients (PHQ = concentration in ppb ÷ LD50 as μg/bee) when both were available. In this study, pesticide Pollen Hazard Quotients ranged from over 75,000 to 0.01. The pesticides with the greatest Pollen Hazard Quotients at the maximum concentrations found in our study were (in descending order): phosmet, Imidacloprid, indoxacarb, chlorpyrifos, fipronil, thiamethoxam, azinphos-methyl, and fenthion, all with at least one Pollen Hazard Quotient (using contact or oral LD50) over 500. At the maximum rate of pollen consumption by nurse bees, a Pollen Hazard Quotient of 500 would be approximately equivalent to consuming 0.5% of the LD50 per day. We also present an example of a Nectar Hazard Quotient and the percentage of LD50 per day at the maximum nectar consumption rate.
Performance tests of a single-cylinder compression-ignition engine with a displacer piston
NASA Technical Reports Server (NTRS)
Moore, C S; Foster, H H
1935-01-01
Engine performance was investigated using a rectangular displacer on the piston crown to cause a forced air flow in a vertical-disk combustion chamber of a single-cylinder, 4-stroke-cycle compression-ignition engine. The optimum air-flow area was determined first with the area concentrated at one end of the displacer and then with the area equally divided between two passages, one at each end of the displacer. Best performance was obtained with the two-passage air flow arranged to give a calculated maximum air-flow speed of 8 times the linear crank-pin speed. With the same fuel-spray formation as used without the air flow, the maximum clear exhaust brake mean effective pressure at 1,500 r.p.m. was increased from 90 to 115 pounds per square inch and the corresponding fuel consumption reduced from 0.46 to 0.43 pound per brake horsepower-hour. At 1,200 r.p.m., a maximum clear exhaust brake mean effective pressure of 120 pounds per square inch was obtained at a fuel consumption of 0.42 pound per brake horsepower-hour. At higher specific fuel consumption the brake mean effective pressure was still increasing rapidly.
Sakagami, N; Nishida, K; Misumi, K; Hirayama, Y; Yamashita, S; Hoshi, H; Misawa, H; Akiyama, K; Suzuki, C; Yoshioka, K
2016-01-01
The aim of this study was to assess the viability of vitrified-warmed in vivo-derived pig embryos after measuring the oxygen consumption rate. Six days after artificial insemination, blastocysts were collected from gilts and vitrified by the micro volume air cooling method. The oxygen consumption rate was measured in 60 vitrified-warmed embryos, which were then cultured for 48h to assess the viability. The survival (re-expansion) rate of embryos after warming was 85.0%. The average oxygen consumption rate of embryos immediately after warming was greater in embryos which could re-expand during subsequent culture (F=0.75±0.04) than that in those which failed to re-expand (F=0.33±0.05). Moreover, the oxygen consumption rate of vitrified-warmed embryos was greater in the hatched (F=0.88±0.06) than that in the not-hatched group (F=0.53±0.04). When the oxygen consumption rate of the vitrified-warmed embryos and the numbers of viable and dead cells in embryos were determined, there was a positive correlation between the oxygen consumption rate and the number of live cells (P<0.01, r=0.538). A total of 29 vitrified embryos after warming and measuring the oxygen consumption rate were surgically transferred into uterine horns of two recipients. Both of the recipients become pregnant and farrowed 12 healthy piglets. These results demonstrate that the oxygen consumption rate of vitrified-warmed pig embryos can be related to the number of live cells and that the measurement of oxygen consumption of embryos after cryopreservation may be useful for estimating embryo survivability. Copyright © 2015 Elsevier B.V. All rights reserved.
Modelling Electrical Energy Consumption in Automotive Paint Shop
NASA Astrophysics Data System (ADS)
Oktaviandri, Muchamad; Safiee, Aidil Shafiza Bin
2018-03-01
Industry players are seeking ways to reduce operational cost to sustain in a challenging economic trend. One key aspect is an energy cost reduction. However, implementing energy reduction strategy often struggle with obstructions, which slow down their realization and implementation. Discrete event simulation method is an approach actively discussed in current research trend to overcome such obstructions because of its flexibility and comprehensiveness. Meanwhile, in automotive industry, paint shop is considered the most energy consumer area which is reported consuming about 50%-70% of overall automotive plant consumption. Hence, this project aims at providing a tool to model and simulate energy consumption at paint shop area by conducting a case study at XYZ Company, one of the automotive companies located at Pekan, Pahang. The simulation model was developed using Tecnomatix Plant Simulation software version 13. From the simulation result, the model was accurately within ±5% for energy consumption and ±15% for maximum demand after validation with real system. Two different energy saving scenarios were tested. Scenario 1 was based on production scheduling approach under low demand situation which results energy saving up to 30% on the consumption. Meanwhile scenario 2 was based on substituting high power compressor with the lower power compressor. The results were energy consumption saving of approximately 1.42% and maximum demand reduction about 1.27%. This approach would help managers and engineers to justify worthiness of investment for implementing the reduction strategies.
Code of Federal Regulations, 2010 CFR
2010-01-01
... consumption, estimated annual operating cost, and energy efficiency rating, and of water use rate. 305.5... energy efficiency rating, and of water use rate. (a) Procedures for determining the estimated annual energy consumption, the estimated annual operating costs, the energy efficiency ratings, and the efficacy...
Sigal, R J; Purdon, C; Fisher, S J; Halter, J B; Vranic, M; Marliss, E B
1994-10-01
Hyperglycemia with accompanying hyperinsulinemia occurs after brief, greater than 85% maximum oxygen consumption exercise to exhaustion in normal subjects and persists up to 60 min of recovery. To determine the importance of endogenous insulin secretion during and after intense exercise, responses to exercise of lean fit male post-absorptive insulin-dependent diabetes mellitus (IDDM) subjects, aged 18-34 yr, were compared with those of control subjects (C; n = 6). Three iv insulin protocols were employed: hyperglycemic (HG; n = 7) and euglycemic (EG1; n = 6) with constant insulin infusion, and euglycemic with doubled insulin infusion during recovery (EG2; n = 6). Overnight iv insulin was adjusted to achieve prolonged euglycemia (5.4 +/- 0.3 mmol/L) or hyperglycemia (8.6 +/- 0.3 mmol/L) before exercise. This allowed for comparisons between HG and EG1 (constant infusion) and between C and EG2 (to approximate physiological hyperinsulinemia by doubling the infusion rates at exhaustion for 56 +/- 7 min during recovery). Subjects exercised to 89-98% of their individual maximum oxygen consumption for 12.8 +/- 0.3 min. Glycemia increased to maximum values at 6 min of recovery (9.8 +/- 0.5 in HG, 6.9 +/- 0.4 in EG1, 7.3 +/- 0.3 in EG2, and 6.9 +/- 0.4 mmol/L in C). Whereas in EG2 and C, glucose returned to resting values in 50-80 min, it remained elevated at 120 min recovery in HG and EG1. During exercise, [3-3H]-glucose-determined glucose production increased markedly and exceeded disappearance in all groups, but less so in the HG subjects than in the other groups. An early recovery decline in glucose production did not differ among groups, but MCR (rate of glucose disappearance/glycemia) were markedly lower in HG and EG1, in whom plasma free insulin remained unchanged from 15 min of recovery onward (MCR, 1.6-1.9 vs. 2.3-2.8 mL/kg.min in C). Doubling the insulin infusion rate in EG2 restored the MCR response to that of C subjects. In summary, constant insulin infusion is insufficient to prevent prolonged postexercise hyperglycemia in IDDM subjects, even when provided at a rate sufficient to maintain normal resting glycemia and glucose turnover. The finding that increasing the rate of insulin infusion restored plasma glucose to normal in IDDM subjects suggests that the postexercise increase in insulin levels observed in normal subjects is essential to return plasma glucose to resting levels. Therefore, special strategies, differing from those for less strenuous exercise, are required for the management of insulin therapy in IDDM during and after intense exercise.
Hussain, Amir; Kangwa, Martin; Yumnam, Nivedita; Fernandez-Lahore, Marcelo
2015-12-01
The influence of internal mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; chitosan coating, flow rate, glucose concentration and particle size. Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on particle side mass transfer on substrate consumption time, lag phase and ethanol production. The results indicate that chitosan coating, beads size, glucose concentration and flow rate have a significant effect on lag phase duration. The duration of lag phase for different size of beads (0.8, 2 and 4 mm) decreases by increasing flow rate and by decreasing the size of beads. Moreover, longer lag phase were found at higher glucose medium concentration and also with chitosan coated beads. It was observed that by increasing flow rates; lag phase and glucose consumption time decreased. The reason is due to the reduction of external (fluid side) mass transfer as a result of increase in flow rate as glucose is easily transported to the surface of the beads. Varying the size of beads is an additional factor: as it reduces the internal (particle side) mass transfer by reducing the size of beads. The reason behind this is the distance for reactants to reach active site of catalyst (cells) and the thickness of fluid created layer around alginate beads is reduced. The optimum combination of parameters consisting of smaller beads size (0.8 mm), higher flow rate of 90 ml/min and glucose concentration of 10 g/l were found to be the maximum condition for ethanol production.
Physiological responses to indoor rock-climbing and their relationship to maximal cycle ergometry.
Sheel, A William; Seddon, Nicholas; Knight, Andrew; McKenzie, Donald C; R Warburton, Darren E
2003-07-01
To quantify the cardiorespiratory responses to indoor climbing during two increasingly difficult climbs and relate them to whole-body dynamic exercise. It was hypothesized that as climbing difficulty increased, oxygen consumption ([V02] and heart rate would increase, and that climbing would require utilization of a significant fraction of maximal cycling values. Elite competitive sport rock climbers (6 male, 3 female) completed two data collection sessions. The first session was completed at an indoor climbing facility, and the second session was an incremental cycle test to exhaustion. During indoor climbing subjects were randomly assigned to climb two routes designated as "harder" or "easier" based on their previous best climb. Subjects wore a portable metabolic system, which allowed measurement of oxygen consumption [V02], minute ventilation ([V02]E), respiratory exchange ratio (RER), and heart rate. During the second session, maximal values for [V02], [V02]E, RER, and heart rate were determined during an incremental cycle test to exhaustion. Heart rate and [VO2], expressed as percent of cycling maximum, were significantly higher during harder climbing compared with easier climbing. During harder climbing, %HR(max) was significantly higher than %[V02] (2max) (89.6% vs 51.2%), and during easier climbing, %HR(max) was significantly higher than %[V02] (2max) (66.9% vs 45.3%). With increasing levels of climbing difficulty, there is a rise in both heart rate and [V02]. However, there is a disproportional rise in heart rate compared with [V02], which we attribute to the fact that climbing requires the use of intermittent isometric contractions of the arm musculature and the reliance of both anaerobic and aerobic metabolism.
The mechanical design of a vapor compressor for a heat pump to be used in space
NASA Technical Reports Server (NTRS)
Berner, F.; Oesch, H.; Goetz, K.; Savage, C. J.
1982-01-01
A heat pump developed for use in Spacelab as a stand-alone refrigeration unit as well as within a fluid loop system is discussed. It will provide an active thermal control for payloads. Specifications for the heat pump were established: (1) heat removal rates at the source; (2) heat source temperatures from room temperature; (3) heat-sink fluid temperatures at condenser inlet; and (4) minimum power consumption. A reversed Carnot cycle heat pump using Freon 12 as working fluid incorporating a one-cylinder reciprocating compressor was selected. The maximum crankshaft speed was fixed relatively high at 100 rpm. The specified cooling rates then made it necessary to select a cylinder volume of 10 cu cm, which was obtained with a bore of 40 mm and a stroke of 8 mm.
NASA Technical Reports Server (NTRS)
Erickson, H. H.; Stone, H. L.
1972-01-01
The mechanisms by which acute hypoxia (10% and 5% oxygen) mediates changes in coronary blood flow and cardiac function were investigated in the conscious dog. When the dogs breathed hypoxic gas mixtures through a tracheostomy, both arterial and coronary sinus oxygen tensions were significantly decreased. With 5% oxygen, there were significant increases in heart rate (25%), maximum left ventricular dP/dt (39%), left circumflex coronary artery blood flow (163%), and left ventricular oxygen consumption (52%), which were attenuated by beta-adrenergic blockage with propranolol. When electrical pacing was used to keep the ventricular rate constant during hypoxia, there was no significant difference in coronary blood flow before and after beta blockade. Beta-adrenergic receptor activity in the myocardium participates in the integrated response to hypoxia although it may not cause active vasodilation of the coronary vessels.
Effect of flow rate on growth and oxygen consumption of biofilm in gravity sewer.
Xu, Jingwei; Li, Muzhi; He, Qiang; Sun, Xingfu; Zhou, Xiangren; Su, Zhenping; Ai, Hainan
2017-01-01
The function of sewer as reactors must rely on the biofilm in it. In this paper, the formation, structure, oxygen transfer, and activity of the biofilm under different hydraulic conditions were studied by the microelectrode technology, oxygen uptake rate (OUR) technology, and 454 high-throughput pyrosequencing technology. Results showed that when the wall-shear stresses were 1.12, 1.29, and 1.45 Pa, the porosity of the steady-state biofilm were 69.1, 64.4, and 55.1 %, respectively. The maximum values of OUR were 0.033, 0.027, and 0.022 mg/(L*s), respectively, and the COD removal efficiency in the sewers reached 40, 35, and 32 %, respectively. The research findings had an important significance on how to improve the treatment efficiency of the sewers. Fig. a Graphical Abstract.
Target Water Consumption Calculation for Human Water Management based on Water Balance
NASA Astrophysics Data System (ADS)
Sang, X.; Zhai, Z.; Ye, Y.; Zhai, J.
2016-12-01
Degradation of the regional ecological environment has become increasingly serious due to the rapid increase of water usage. Critical to water consumption management is a good approach to control the growth of water usage. Through the identification and analysis of water consumption for various sectors in the hydrosocial cycle, the method for calculating the regional target water consumption also is derived based on water balance theory. Analysis shows that during 1980 - 2004 in Tianjin City, there were 22 years in which the actual water consumption of Tianjin exceeded its target water consumption, with an average excess of 66 million m3 annually. Moreover, calculations show that the maximum human target water consumption water supply is 1.91 billion m3/a. If water consumption is controlled according to the target, the sustainable development of water resource, economic and social growth, and ecological environment in this region can be expected to be achieved.
Reduced maximal oxygen consumption and overproduction of proinflammatory cytokines in athletes.
Vaisberg, Mauro; de Mello, Marco Tulio; Seelaender, Marília Cerqueira Leite; dos Santos, Ronaldo Vagner Thomatieli; Costa Rosa, Luis Fernando Bicudo Pereira
2007-01-01
It was the aim of this study to evaluate whether chronic pain in athletes is related to performance, measured by the maximum oxygen consumption and production of hormones and cytokines. Fifty-five athletes with a mean age of 31.9 +/- 4.2 years engaged in regular competition and showing no symptoms of acute inflammation, particularly fever, were studied. They were divided into 2 subgroups according to the occurrence of pain. Plasma concentrations of adrenaline, noradrenaline, cortisol, prolactin, growth hormone and dopamine were measured by radioimmunoassay, and the production of the cytokines interleukin (IL)-1, IL-2, IL-4, IL-6, tumor necrosis factor-alpha, interferon-alpha and prostaglandin E(2) by whole-blood culture. Maximal oxygen consumption was determined during an incremental treadmill test. There was no change in the concentration of stress hormones, but the athletes with chronic pain showed a reduction in maximum oxygen consumption (22%) and total consumption at the anaerobic threshold (25%), as well as increased cytokine production. Increases of 2.7-, 8.1-, 1.7- and 3.7-fold were observed for IL-1, IL-2, tumor necrosis factor-alpha and interferon-alpha, respectively. Our data show that athletes with chronic pain have enhanced production of proinflammatory cytokines and lipid mediators and reduced performance in the ergospirometric test. (c) 2008 S. Karger AG, Basel.
[Oxygen consumption rate of Sepia pharaonis embryos.
Wang, Peng Shuai; Jiang, Xia Min; Ruan, Peng; Peng, Rui Bing; Jiang, Mao Wang; Han, Qing Xi
2016-07-01
This research was conducted to unravel the variation of oxygen consumption rate during different developmental stages and the effects of different ecological factors on embryonic oxygen consumption rate of Sepia pharaonis. The oxygen consumption rates were measured at twelve deve-lopmental stages by the sealed volumetric flasks, and four embryonic developmental periods (oosperm, gastrula, the formation of organization, endoskeleton) were selected under various ecological conditions, such as salinity (21, 24, 27, 30, 33), water temperature (18, 21, 24, 27, 30 ℃) and pH (7.0, 7.5, 8.0, 8.5, 9.0). The results showed that the oxygen consumption rate rose along with the developmental progress, and distinctly differed from each other. The oxygen consumption rate was 0.082 mg·(100 eggs) -1 ·h -1 during oosperm period, and rose to 0.279 mg·(100 eggs) -1 ·h -1 during gastrula period, which was significantly higher than that of blastula period. Finally, the oxygen consumption rate rose to 1.367 mg·(100 eggs) -1 ·h -1 during hatching period. The salinity showed a significant effect on oxygen consumption rate during the formation of organization and endoskeleton formation stage (P<0.05), but no significant effect during oosperm and gastrula periods (P>0.05). The oxygen consumption rates of four studied embryonic stages all rose and then declined along with the increase of salinity, and reached the highest values [0.082, 0.200, 0.768 and 1.301 mg·(100 eggs) -1 ·h -1 , respectively] at salinity 30. The water temperature had a significant effect on the embryo oxygen consumption rates of gastrula, and the formation of organization and endoskeleton formation stage (P<0.05), with the exception of oosperm (P>0.05). The oxygen consumption rates of four studied embryonic stages all rose and then declined along with the increase of temperature, and reached the highest values at 27 ℃ [0.082, 0.286, 0.806 and 1.338 mg·(100 eggs) -1 ·h -1 , respectively]. The pH had no significant effect on the oxygen consumption rates of four embryonic stages (P>0.05). The oxygen consumption rates of four studied embryonic stages all rose and then declined along with the increase of pH. The oxygen consumption rates of gastrula, the formation of organization, endoskeleton reached the according highest values [0.281, 0.799 and 1.130 mg·(100 eggs) -1 ·h -1 ] at pH 8.5, but that during oosperm period occurred at pH 8.0 [0.116 mg·(100 eggs) -1 ·h -1 ].
Rosewarne, P J; Wilson, J M; Svendsen, J C
2016-01-01
Metabolic rate is one of the most widely measured physiological traits in animals and may be influenced by both endogenous (e.g. body mass) and exogenous factors (e.g. oxygen availability and temperature). Standard metabolic rate (SMR) and maximum metabolic rate (MMR) are two fundamental physiological variables providing the floor and ceiling in aerobic energy metabolism. The total amount of energy available between these two variables constitutes the aerobic metabolic scope (AMS). A laboratory exercise aimed at an undergraduate level physiology class, which details the appropriate data acquisition methods and calculations to measure oxygen consumption rates in rainbow trout Oncorhynchus mykiss, is presented here. Specifically, the teaching exercise employs intermittent flow respirometry to measure SMR and MMR, derives AMS from the measurements and demonstrates how AMS is affected by environmental oxygen. Students' results typically reveal a decline in AMS in response to environmental hypoxia. The same techniques can be applied to investigate the influence of other key factors on metabolic rate (e.g. temperature and body mass). Discussion of the results develops students' understanding of the mechanisms underlying these fundamental physiological traits and the influence of exogenous factors. More generally, the teaching exercise outlines essential laboratory concepts in addition to metabolic rate calculations, data acquisition and unit conversions that enhance competency in quantitative analysis and reasoning. Finally, the described procedures are generally applicable to other fish species or aquatic breathers such as crustaceans (e.g. crayfish) and provide an alternative to using higher (or more derived) animals to investigate questions related to metabolic physiology. © 2016 The Fisheries Society of the British Isles.
Meng, Yang; Holmes, John; Hill-McManus, Daniel; Brennan, Alan; Meier, Petra Sylvia
2014-02-01
British alcohol consumption and abstinence rates have increased substantially in the last 3 decades. This study aims to disentangle age, period and birth cohort effects to improve our understanding of these trends and suggest groups for targeted interventions to reduce resultant harms. Age, period, cohort analysis of repeated cross-sectional surveys using separate logistic and negative binomial models for each gender. Great Britain 1984-2009. Annual nationally representative samples of approximately 20 000 adults (16+) within 13 000 households. Age (eight groups: 16-17 to 75+ years), period (six groups: 1980-84 to 2005-09) and birth cohorts (19 groups: 1900-04 to 1990-94). Outcome measures were abstinence and average weekly alcohol consumption. Controls were income, education, ethnicity and country. After accounting for period and cohort trends, 18-24-year-olds have the highest consumption levels (incident rate ratio = 1.18-1.15) and lower abstention rates (odds ratio = 0.67-0.87). Consumption generally decreases and abstention rates increase in later life. Until recently, successive birth cohorts' consumption levels were also increasing. However, for those born post-1985, abstention rates are increasing and male consumption is falling relative to preceding cohorts. In contrast, female drinking behaviours have polarized over the study period, with increasing abstention rates accompanying increases in drinkers' consumption levels. Rising female consumption of alcohol and progression of higher-consuming birth cohorts through the life course are key drivers of increased per capita alcohol consumption in the United Kingdom. Recent declines in alcohol consumption appear to be attributable to reduced consumption and increased abstinence rates among the most recent birth cohorts, especially males, and general increased rates of abstention across the study period. © 2013 Society for the Study of Addiction.
Feder, M E
1986-03-01
To determine the effects of thermal acclimation upon locomotor performance and the rate of oxygen consumption (MO2) during activity, small (less than 3 g), lungless salamanders, Desmognathus ochrophaeus Cope, were acclimated to three temperatures (5, 13 and 21 degrees C) and exercised at various controlled speeds within an exercise wheel while their MO2 was measured. MO2 increased with speed at low speeds (less than 14 cm min-1). Although animals could sustain greater speeds, MO2 did not increase further. These small, exclusively skin-breathing salamanders could increase their MO2 9-11 times during exercise and could sustain nearly half of the oxygen flux expected across a similar surface area of the mammalian lung. However, their maximum aerobic speed was remarkably slow (14 cm min-1) and their net cost of transport remarkably large (15-17 ml O2 g-1 km-1). Thermal acclimation affected MO2 during activity, the maximum sustainable speed and locomotor stamina in different ways. During exercise at 13 degrees C, cold-acclimated animals had a significantly greater MO2 than warm-acclimated animals, but did not differ in stamina or the maximum sustainable speed. During exercise at 21 degrees C, cold acclimation did not affect the MO2 significantly, but it decreased the stamina and increased the rate of lactate accumulation. Thus, these results suggest that thermal acclimation of the MO2 is not tightly coupled to thermal acclimation of locomotor performance in salamanders.
Clarification of cyanide's effect on oxygen transport characteristics in a canine model.
Pham, Julius Cuong; Huang, David T; McGeorge, Francis T; Rivers, Emanuel P
2007-03-01
To clarify the cardiovascular mechanisms of cyanide poisoning by evaluating oxygen transport characteristics using a canine model. A prospective controlled experiment was performed at a hospital-based animal laboratory. Five male beagle (17 (2) kg) dogs were anesthetised with alpha-chloralose, paralysed with pancuronium bromide and mechanically ventilated. Potassium cyanide was infused at 0.045 mg/kg/min for 110 min. Heart rate, blood pressure, cardiac output, oxygen delivery (DO2), oxygen consumption (VO2) and oxygen extraction ratio (OER) were measured every 10 min for 140 min. DO2 was measured by an indirect calorimeter. Cyanide and lactate levels peaked at 1.52 (0.25) mg/l and 9.1 (1.5) mmol/l, respectively. Systolic blood pressure remained relatively constant whereas diastolic blood pressure decreased by 19%. Cardiac output, heart rate and DO2 increased to a maximum of 6%, 10% and 10%, respectively, at 40 min, after which they declined to a low of 32%, 28% and 30% below baseline, respectively. Stroke volume remained constant. Oxygen consumption initially increased by 5%, then decreased to 24% below baseline. The OER initially declined to 35% below baseline, then increased throughout the rest of the study. Cyanide poisoning in the canine model showed two phases of injury. The first (compensated) phase had a mechanism consistent with a traditional global oxygen consumption defect. The second (decompensated) phase had a mechanism consistent with heart failure. This heart failure was due to bradycardia. These data suggest chronotropy as an avenue of further study in the temporary treatment of cyanide poisoning.
Exposure to aflatoxin B1 in Thailand by consumption of brown and color rice.
Panrapee, Iamtaweejaroen; Phakpoom, Kooprasertying; Thanapoom, Maneeboon; Nampeung, Anukul; Warapa, Mahakarnchanakul
2016-02-01
This study assessed the aflatoxin B1 (AFB1) intake of the Thai population through consumption of contaminated brown and color rice. A total of 240 rice samples from two harvesting periods were collected in June/July 2012 (period I) and in December 2012/January 2013 (period II) and analyzed for AFB1 by HPLC with fluorescence detection (limit of detection (LOD) = 0.093 ng/g). Exposure assessment was based on AFB1 levels in rice and food intake data for rice according to Thai National Consumption. Frequency and levels of AFB1 were higher in period I (59%,
Hernández, Ángel Rodríguez; Boada, Luis D; Mendoza, Zenaida; Ruiz-Suárez, Norberto; Valerón, Pilar F; Camacho, María; Zumbado, Manuel; Almeida-González, Maira; Henríquez-Hernández, Luis A; Luzardo, Octavio P
2017-02-01
Numerous studies have shown an epidemiological link between meat consumption and the incidence of cancer, and it has been suggested that this relationship may be motivated by the presence of carcinogenic contaminants on it. Among the most frequently detected contaminants in meat are several types of persistent organic pollutants (POPs), and it is well known that many of them are carcinogenic. On the other hand, an increasing number of consumers choose to feed on what are perceived as healthier foods. Thus, the number of consumers of organic food is growing. However, environmental contamination by POPs is ubiquitous, and it is therefore unlikely that the practices of organic food production are able to prevent this contamination. To test this hypothesis, we acquired 76 samples of meat (beef, chicken, and lamb) of two modes of production (organic and conventional) and quantified their levels of 33 carcinogenic POPs. On this basis, we determined the human meat-related daily dietary exposure to these carcinogens using as a model a population with a high consumption of meat, such as the Spanish population. The maximum allowable meat consumption for this population and the carcinogenic risk quotients associated with the current pattern of consumption were calculated. As expected, no sample was completely free of carcinogenic contaminants, and the differences between organically and conventionally produced meats were minimal. According to these results, the current pattern of meat consumption exceeded the maximum limits, which are set according to the levels of contaminations, and this is associated with a relevant carcinogenic risk. Strikingly, the consumption of organically produced meat does not diminish this carcinogenic risk, but on the contrary, it seems to be even higher, especially that associated with lamb consumption.
Sakagami, N; Nishida, K; Akiyama, K; Abe, H; Hoshi, H; Suzuki, C; Yoshioka, K
2015-01-01
Oxygen consumption rate of in vivo-derived porcine embryos was measured, and its value as an objective method for the assessment of embryo quality was evaluated. Embryos were surgically collected 5 or 6 days after artificial insemination (AI), and oxygen consumption rate of embryos was measured using an embryo respirometer. The average oxygen consumption rate (F × 10(14)/mol s(-1)) of the embryos that developed to the compacted morula stage on Day 5 (Day 0 = the day of artificial insemination) was 0.58 ± 0.03 (mean ± standard error of the mean). The Day-6 embryos had consumption rates of 0.56 ± 0.13, 0.87 ± 0.06, and 1.13 ± 0.07 at the early blastocyst, blastocyst, and expanded blastocyst stages, respectively, showing a gradual increase as the embryos developed. Just after collection, the average oxygen consumption rates of embryos that hatched and of those that did not hatch after culture were 0.60 ± 0.04 and 0.50 ± 0.04 for Day 5 (P = 0.08) and 1.05 ± 0.09 and 0.77 ± 0.05 for Day 6 (P < 0.05), respectively. The value and probability of discrimination by measuring the oxygen consumption rates of embryos to predict their hatching ability after culture were 0.56 and 63.6% for Day-5 embryos and 0.91 and 68.4% for Day-6 blastocysts, respectively. When Day-5 embryos were classified based on the oxygen consumption rate and then transferred non-surgically to recipient sows, three of the seven sows, to which embryos having a high oxygen consumption rate (≥ 0.59) were transferred, became pregnant and farrowed a total of 20 piglets. However, none of the four sows, to which embryos having low oxygen consumption rate (< 0.59) were transferred, became pregnant. These results suggest that the viability of in vivo-derived porcine embryos and subsequent development can be estimated by measuring the oxygen consumption rate. Copyright © 2015 Elsevier Inc. All rights reserved.
Casey, Elizabeth; Sedlak, Miroslav; Ho, Nancy W Y; Mosier, Nathan S
2010-06-01
A current challenge of the cellulosic ethanol industry is the effect of inhibitors present in biomass hydrolysates. Acetic acid is an example of one such inhibitor that is released during the pretreatment of hemicellulose. This study examined the effect of acetic acid on the cofermentation of glucose and xylose under controlled pH conditions by Saccharomyces cerevisiae 424A(LNH-ST), a genetically engineered industrial yeast strain. Acetic acid concentrations of 7.5 and 15 g L(-1), representing the range of concentrations expected in actual biomass hydrolysates, were tested under controlled pH conditions of 5, 5.5, and 6. The presence of acetic acid in the fermentation media led to a significant decrease in the observed maximum cell biomass concentration. Glucose- and xylose-specific consumption rates decreased as the acetic acid concentration increased, with the inhibitory effect being more severe for xylose consumption. The ethanol production rates also decreased when acetic acid was present, but ethanol metabolic yields increased under the same conditions. The results also revealed that the inhibitory effect of acetic acid could be reduced by increasing media pH, thus confirming that the undissociated form of acetic acid is the inhibitory form of the molecule.
Electrochemical removal of phenol from oil refinery wastewater.
Abdelwahab, O; Amin, N K; El-Ashtoukhy, E-S Z
2009-04-30
This study explores the possibility of using electrocoagulation to remove phenol from oil refinery waste effluent using a cell with horizontally oriented aluminum cathode and a horizontal aluminum screen anode. The removal of phenol was investigated in terms of various parameters namely: pH, operating time, current density, initial phenol concentration and addition of NaCl. Removal of phenol during electrocoagulation was due to combined effect of sweep coagulation and adsorption. The results showed that, at high current density and solution pH 7, remarkable removal of 97% of phenol after 2h can be achieved. The rate of electrocoagulation was observed to increase as the phenol concentration decreases; the maximum removal rate was attained at 30 mg L(-1) phenol concentration. For a given current density using an array of closely packed Al screens as anode was found to be more effective than single screen anode, the percentage phenol removal was found to increase with increasing the number of screens per array. After 2h of electrocoagulation, 94.5% of initial phenol concentration was removed from the petroleum refinery wastewater. Energy consumption and aluminum Electrode consumption were calculated per gram of phenol removed. The present study shows that, electrocoagulation of phenol using aluminum electrodes is a promising process.
Tsuge, Yota; Uematsu, Kimio; Yamamoto, Shogo; Suda, Masako; Yukawa, Hideaki; Inui, Masayuki
2015-07-01
Rapid sugar consumption is important for the microbial production of chemicals and fuels. Here, we show that overexpression of the NADH dehydrogenase gene (ndh) increased glucose consumption rate in Corynebacterium glutamicum under oxygen-deprived conditions through investigating the relationship between the glucose consumption rate and intracellular NADH/NAD(+) ratio in various mutant strains. The NADH/NAD(+) ratio was strongly repressed under oxygen deprivation when glucose consumption was accelerated by the addition of pyruvate or sodium hydrogen carbonate. Overexpression of the ndh gene in the wild-type strain under oxygen deprivation decreased the NADH/NAD(+) ratio from 0.32 to 0.13, whereas the glucose consumption rate increased by 27%. Similarly, in phosphoenolpyruvate carboxylase gene (ppc)- or malate dehydrogenase gene (mdh)-deficient strains, overexpression of the ndh gene decreased the NADH/NAD(+) ratio from 1.66 to 0.37 and 2.20 to 0.57, respectively, whereas the glucose consumption rate increased by 57 and 330%, respectively. However, in a lactate dehydrogenase gene (L-ldhA)-deficient strain, although the NADH/NAD(+) ratio decreased from 5.62 to 1.13, the glucose consumption rate was not markedly altered. In a tailored D-lactate-producing strain, which lacked ppc and L-ldhA genes, but expressed D-ldhA from Lactobacillus delbrueckii, overexpression of the ndh gene decreased the NADH/NAD(+) ratio from 1.77 to 0.56, and increased the glucose consumption rate by 50%. Overall, the glucose consumption rate was found to be inversely proportional to the NADH/NAD(+) ratio in C. glutamicum cultured under oxygen deprivation. These findings could provide an option to increase the productivity of chemicals and fuels under oxygen deprivation.
Development of energy saving automatic air conditioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, T.; Iijima, T.; Kakinuma, A.
1986-01-01
This paper discusses an automatic air conditioner which adopts a new energy saving control method for controlling heat exchange at the heater and the cooler instead of the conventional reheat air-mix one. In this new air conditioner, the cooler does not work when the passenger room is heated and similarly the heater does not work when the passenger room is cooled, minimizing the use rate of the cooler which accounts for the most of the air conditioner's power consumption. Nonetheless, the heat released from the air conditioner to the room can be adjusted smoothly from maximum cooling to maximum heatingmore » just the same as in the conventional type. The results of on-vehicle comparison tests of the above two methods have shown that the energy saving control method saves nearly half of the energy which is consumed in a year with the conventional one, with the room being kept around 25/sup 0/C (77/sup 0/F).« less
Paramasivam, Mariappan; Deepa, Manthirachalam; Selvi, Chellamuthu; Chandrasekaran, Subramanian
2017-12-01
Dissipation kinetics of tebuconazole, trifloxystrobin and its acid metabolite residues were studied in tea under tropical field conditions using GC-MS (SIM). The average recoveries ranged from 80.7% to 105.8%, with a RSD of <9.3%. Dissipation rate for both doses applied followed first-order kinetics, with half-lives in green leaves in the range of 2.8-3.3 and 2.9-3.3 days; ranges in processed tea were 2.7-3.6 days for trifloxystrobin and 3.0-3.1 days for tebuconazole. The trifloxystrobin residues were not transferred into the tea infusion during the infusion process; tebuconazole did transfer, in the range of 14.3-18.9%. As the theoretical maximum residue contributions on tea from initial deposits were found to be less than the maximum permissible intake values, at the recommended application dose a withdrawal period of 23 days before consumption should be applied to reduce risk.
Ferreira, Vicente; Carrascon, Vanesa; Bueno, Mónica; Ugliano, Maurizio; Fernandez-Zurbano, Purificación
2015-12-30
Fifteen Spanish red wines extensively characterized in terms of SO2, color, antioxidant indexes, metals, and polyphenols were subjected to five consecutive sensor-controlled cycles of air saturation at 25 °C. Within each cycle, O2 consumption rates cannot be interpreted by simple kinetic models. Plots of cumulated consumed O2 made it possible to define a fast and highly wine-dependent initial O2 consumption rate and a second and less variable average O2 consumption rate which remains constant in saturations 2 to 5. Both rates have been satisfactorily modeled, and in both cases they were independent of Fe and SO2 and highly dependent on Cu levels. Average rates were also related to Mn, pH, Folin, protein precipitable proanthocyanidins (PPAs), and polyphenolic profile. Initial rates were strong and negatively correlated to SO2 consumption, indicating that such an initial rate is either controlled by an unknown antioxidant present in some wines or affected by a poor real availability of SO2. Remaining unreacted SO2 is proportional to initial combined SO2 and to final free acetaldehyde.
NASA Astrophysics Data System (ADS)
Cross, Alison D.; Beauchamp, David A.; Armstrong, Janet L.; Blikshteyn, Mikhail; Boldt, Jennifer L.; Davis, Nancy D.; Haldorson, Lewis J.; Moss, Jamal H.; Myers, Katherine W.; Walker, Robert V.
2005-01-01
Prince William Sound hatcheries release over 600 million pink salmon ( Oncorhynchus gorbuscha) fry each year. The effect of the additional consumption demand by hatchery fish on prey biomass in Prince William Sound and the coastal Gulf of Alaska is unknown. The objectives of this study were to: (1) use bioenergetics models to compare spatial and temporal variation in the consumption demand and growth efficiency of hatchery and wild juvenile pink salmon in Prince William Sound and the coastal Gulf of Alaska between May and October 2001; and (2) compare localized population-level consumption in each region to the standing stock biomass of coexisting prey. In order to achieve observed growth, juvenile pink salmon consumed at 64-107% of their theoretical maximum consumption rate. Individual juvenile pink salmon consumed an average of 366.5 g of prey from marine entry through October of their first growing season. Growth efficiency ranged from 18.9% to 33.8% over the model simulation period. Juvenile salmon that migrated to the Gulf of Alaska grew more efficiently than those that remained in Prince William Sound until August, but after August juvenile salmon in Prince William Sound grew more efficiently than those in the Gulf of Alaska due to differences in prey quality between regions. Temperatures did not vary much between regions; thus differences in the thermal experience of juvenile pink salmon did not affect growth, consumption, and growth efficiency as much as the effects of different prey quality. Consumption demand by juvenile pink salmon exceeded the average standing stock biomass of key prey (large copepods, pteropods, hyperiid amphipods, and larvaceans) during some months. Our results are consistent with advection and production of these prey replenishing the forage base, or the reliance of individual pink salmon on high-density prey patches that occur at finer temporal scales than we were capable of sampling.
Medium and Short Wave RF Energy Harvester for Powering Wireless Sensor Networks
Leon-Gil, Jesus A.; Cortes-Loredo, Agustin; Fabian-Mijangos, Angel; Martinez-Flores, Javier J.; Tovar-Padilla, Marco; Cardona-Castro, M. Antonia; Alvarez-Quintana, Jaime
2018-01-01
Internet of Things (IoT) is an emerging platform in which every day physical objects provided with unique identifiers are connected to the Internet without requiring human interaction. The possibilities of such a connected world enables new forms of automation to make our lives easier and safer. Evidently, in order to keep billions of these communicating devices powered long-term, a self-sustainable operation is a key point for realization of such a complex network. In this sense, energy-harvesting technologies combined with low power consumption ICs eliminate the need for batteries, removing an obstacle to the success of the IoT. In this work, a Radio Frequency (RF) energy harvester tuned at AM broadcast has been developed for low consumption power devices. The AM signals from ambient are detected via a high-performance antenna-free LC circuit with an efficiency of 3.2%. To maximize energy scavenging, the RF-DC conversion stage is based on a full-wave Cockcroft–Walton voltage multiplier (CWVM) with efficiency up to 90%. System performance is evaluated by rating the maximum power delivered into the load via its output impedance, which is around 62 μW, although power level seems to be low, it is able to power up low consumption devices such as Leds, portable calculators and weather monitoring stations. PMID:29510482
Medium and Short Wave RF Energy Harvester for Powering Wireless Sensor Networks.
Leon-Gil, Jesus A; Cortes-Loredo, Agustin; Fabian-Mijangos, Angel; Martinez-Flores, Javier J; Tovar-Padilla, Marco; Cardona-Castro, M Antonia; Morales-Sánchez, Alfredo; Alvarez-Quintana, Jaime
2018-03-03
Internet of Things (IoT) is an emerging platform in which every day physical objects provided with unique identifiers are connected to the Internet without requiring human interaction. The possibilities of such a connected world enables new forms of automation to make our lives easier and safer. Evidently, in order to keep billions of these communicating devices powered long-term, a self-sustainable operation is a key point for realization of such a complex network. In this sense, energy-harvesting technologies combined with low power consumption ICs eliminate the need for batteries, removing an obstacle to the success of the IoT. In this work, a Radio Frequency (RF) energy harvester tuned at AM broadcast has been developed for low consumption power devices. The AM signals from ambient are detected via a high-performance antenna-free LC circuit with an efficiency of 3.2%. To maximize energy scavenging, the RF-DC conversion stage is based on a full-wave Cockcroft-Walton voltage multiplier (CWVM) with efficiency up to 90%. System performance is evaluated by rating the maximum power delivered into the load via its output impedance, which is around 62 μW, although power level seems to be low, it is able to power up low consumption devices such as Leds, portable calculators and weather monitoring stations.
Raña, P; Pérez-Ríos, M; Santiago-Pérez, M I; Crujeiras, R M
2016-09-01
Since 2011, smoking legislation was hardened in Spain, banning tobacco consumption in all hospitality venues. Law 42/2010 was the first comprehensive tobacco control policy enacted in Spain. The aim of this paper is to evaluate the effect that this intervention has had in reducing the prevalence of tobacco consumption, setting up three scenarios on the basis of different theoretical levels of effect of the law. A predictive model based on Markov Chains was developed to distinguish the effect of tobacco control policies in different scenarios. The model developed uses population, smoking rates and smoking characteristics from a non-transmissible disease surveillance system developed in Galicia (namely SICRI). Results show that tobacco control policies hardly affect the predicted trend in a temporal frame of 10 years, with relative reduction in the predicted male smoking prevalence of 20.4% with no intervention, reaching a reduction of 26.1% under the maximum effect of the policies. In the global population the effects of the law in the predicted prevalence have been barely perceived. For people under 25 years of age, interventions have had an important and positive effect, which proves that policies affecting this age group should be hardened. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Correction of Dynamic Characteristics of SAR Cryogenic GTE on Consumption of Gasified Fuel
NASA Astrophysics Data System (ADS)
Bukin, V. A.; Gimadiev, A. G.; Gangisetty, G.
2018-01-01
When the gas turbine engines (GTE) NK-88 were developed for liquid hydrogen and NK-89 for liquefied natural gas, performance of the systems with a turbo-pump unitary was improved and its proved without direct regulation of the flow of a cryogenic fuel, which was supplied by a centrifugal pump of the turbo-pump unit (TPU) Command from the “kerosene” system. Such type of the automatic control system (SAR) has the property of partial “neutralization” of the delay caused by gasification of the fuel. This does not require any measurements in the cryogenic medium, and the failure of the centrifugal cryogenic pump does not lead to engine failure. On the other hand, the system without direct regulation of the flow of cryogenic fuel has complex internal dynamic connections, their properties are determined by the characteristics of the incoming units and assemblies, and it is difficult to maintain accurate the maximum boundary level and minimum fuel consumption due to the influence of a booster pressure change. Direct regulation of the consumption of cryogenic fuel (prior to its gasification) is the preferred solution, since for using traditional liquid and gaseous fuels this is the main and proven method. The scheme of correction of dynamic characteristics of a single-loop SAR GTE for the consumption of a liquefied cryogenic fuel with a flow rate correction in its gasified state, which ensures the dynamic properties of the system is not worse than for NK-88 and NK-89 engines.
Dinosaurs, dragons, and dwarfs: The evolution of maximal body size
Burness, Gary P.; Diamond, Jared; Flannery, Timothy
2001-01-01
Among local faunas, the maximum body size and taxonomic affiliation of the top terrestrial vertebrate vary greatly. Does this variation reflect how food requirements differ between trophic levels (herbivores vs. carnivores) and with taxonomic affiliation (mammals and birds vs. reptiles)? We gathered data on the body size and food requirements of the top terrestrial herbivores and carnivores, over the past 65,000 years, from oceanic islands and continents. The body mass of the top species was found to increase with increasing land area, with a slope similar to that of the relation between body mass and home range area, suggesting that maximum body size is determined by the number of home ranges that can fit into a given land area. For a given land area, the body size of the top species decreased in the sequence: ectothermic herbivore > endothermic herbivore > ectothermic carnivore > endothermic carnivore. When we converted body mass to food requirements, the food consumption of a top herbivore was about 8 times that of a top carnivore, in accord with the factor expected from the trophic pyramid. Although top ectotherms were heavier than top endotherms at a given trophic level, lower metabolic rates per gram of body mass in ectotherms resulted in endotherms and ectotherms having the same food consumption. These patterns explain the size of the largest-ever extinct mammal, but the size of the largest dinosaurs exceeds that predicted from land areas and remains unexplained. PMID:11724953
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batool, Syeda Adila; Chuadhry, Muhammad Nawaz
2009-01-15
The contribution of existing municipal solid waste management to emission of greenhouse gases and the alternative scenarios to reduce emissions were analyzed for Data Ganj Bukhsh Town (DGBT) in Lahore, Pakistan using the life cycle assessment methodology. DGBT has a population of 1,624,169 people living in 232,024 dwellings. Total waste generated is 500,000 tons per year with an average per capita rate of 0.84 kg per day. Alternative scenarios were developed and evaluated according to the environmental, economic, and social atmosphere of the study area. Solid waste management options considered include the collection and transportation of waste, collection of recyclablesmore » with single and mixed material bank container systems (SMBCS, MMBCS), material recovery facilities (MRF), composting, biogasification and landfilling. A life cycle inventory (LCI) of the six scenarios along with the baseline scenario was completed; this helped to quantify the CO{sub 2} equivalents, emitted and avoided, for energy consumption, production, fuel consumption, and methane (CH{sub 4}) emissions. LCI results showed that the contribution of the baseline scenario to the global warming potential as CO{sub 2} equivalents was a maximum of 838,116 tons. The sixth scenario had a maximum reduction of GHG emissions in terms of CO{sub 2} equivalents of -33,773 tons, but the most workable scenario for the current situation in the study area is scenario 5. It saves 25% in CO{sub 2} equivalents compared to the baseline scenario.« less
Pang, Xu; Cao, Zhen-Dong; Peng, Jiang-Lan; Fu, Shi-Jian
2010-02-01
To test whether the effects of feeding on swimming performance vary with acclimation temperature in juvenile southern catfish (Silurus meridionalis), we investigated the specific dynamic action (SDA) and swimming performance of fasting and feeding fish at acclimation temperatures of 15, 21, 27, and 33 degrees C. Feeding had no effect on the critical swimming speeding (U(crit)) of fish acclimated at 15 degrees C (p=0.66), whereas it elicited a 12.04, 18.70, and 20.98% decrease in U(crit) for fish acclimated at 21, 27 and 33 degrees C, respectively (p<0.05). Both the maximal postprandial oxygen consumption rate (VO2peak) and the active metabolic rate (VO2active, maximal aerobic sustainable metabolic rate of fasting fish) increased significantly with temperature (p<0.05). The postprandial maximum oxygen consumption rates during swimming (VO2max) were higher than the VO2active of fasting fish at all temperature groups (p<0.05). The VO2max increased with increasing temperature, but the relative residual metabolic scope (VO2max-VO2peak) during swimming decreased with increasing in temperature. The present study showed that the impairment of postprandial swimming performance increased with increasing temperature due to the unparalleled changes in the catfish's central cardio-respiratory, peripheral digestive and locomotory capacities. The different metabolic strategies of juvenile southern catfish at different temperatures may relate to changes in oxygen demand, imbalances in ion fluxes and dissolved oxygen levels with changes in temperature. 2009 Elsevier Inc. All rights reserved.
Liu, Gang; Yan, Guozheng; Zhu, Bingquan; Lu, Li
2016-11-01
In recent years, wireless capsule endoscopy (WCE) has been a state-of-the-art tool to examine disorders of the human gastrointestinal tract painlessly. However, system miniaturization, enhancement of the image-data transfer rate and power consumption reduction for the capsule are still key challenges. In this paper, a video capsule endoscopy system with a low-power controlling and processing application-specific integrated circuit (ASIC) is designed and fabricated. In the design, these challenges are resolved by employing a microimage sensor, a novel radio frequency transmitter with an on-off keying modulation rate of 20 Mbps, and an ASIC structure that includes a clock management module, a power-efficient image compression module and a power management unit. An ASIC-based prototype capsule, which measures Φ11 mm × 25 mm, has been developed here. Test results show that the designed ASIC consumes much less power than most of the other WCE systems and that its total power consumption per frame is the least. The image compression module can realize high near-lossless compression rate (3.69) and high image quality (46.2 dB). The proposed system supports multi-spectral imaging, including white light imaging and autofluorescence imaging, at a maximum frame rate of 24 fps and with a resolution of 400 × 400. Tests and in vivo trials in pigs have proved the feasibility of the entire system, but further improvements in capsule control and compression performance inside the ASIC are needed in the future.
Junicke, H; Feldman, H; van Loosdrecht, M C M; Kleerebezem, R
2015-04-01
In this study, the impact of the hydrogen partial pressure on lactate degradation was investigated in a coculture of Desulfovibrio sp. G11 and Methanobrevibacter arboriphilus DH1. To impose a change of the hydrogen partial pressure, formate was added to the reactor. Hydrogen results from the bioconversion of formate besides lactate in the liquid phase. In the presence of a hydrogen-consuming methanogen, this approach allows for a better estimation of low dissolved hydrogen concentrations than under conditions where hydrogen is supplied externally from the gas phase, resulting in a more accurate determination of kinetic parameters. A change of the hydrogen partial pressure from 1,200 to 250 ppm resulted in a threefold increase of the biomass-specific lactate consumption rate. The 50 % inhibition constant of hydrogen on lactate degradation was determined as 0.692 ± 0.064 μM dissolved hydrogen (831 ± 77 ppm hydrogen in the gas phase). Moreover, for the first time, the maximum biomass-specific lactate consumption rate of Desulfovibrio sp. G11 (0.083 ± 0.006 mol-Lac/mol-XG11/h) and the affinity constant for hydrogen uptake of Methanobrevibacter arboriphilus DH1 (0.601 ± 0.022 μM dissolved hydrogen) were determined. Contrary to the widely established view that the biomass-specific growth rate of a methanogenic coculture is determined by the hydrogen-utilizing partner; here, it was found that the hydrogen-producing bacterium determined the biomass-specific growth rate of the coculture grown on lactate and formate.
Associations of Methanotrophs With the Roots and Rhizomes of Aquatic Vegetation
NASA Technical Reports Server (NTRS)
King, Gary M.
1994-01-01
Results of an in vitro assay revealed that root-associated methane consumption was a common attribute or diverse emergent wetland macrophytes from a variety of habitats. Maximum potential uptake rates (V(sub maxp)) varied between about 1 and 10 micro mol g/ (dry weight) h, with no obvious correlation between rate and gross morphological characteristics of the plants. The V(sub maxp) corresponded to about 2 x 10(exp 18) to 2 x 10(exp 9) methanotrophs g/ (dry weight), assuming that root-associated methanotrophs have cell-specific activities comparable to those of known isolates. V(sub maxp) varied seasonally for an aquatic grass, Calamogrostis canadensis, and for the cattail, Typha latifolia, with highest rates in late summer. V(sub maxp) was well correlated with ambient temperature for C. canadensis but weakly correlated for T. Wifolia. The seasonal changes in V(sub maxp), as well as inferences from apparent half-saturation constants for methane uptake (K(sub app); generally 3 to 6 micro M), indicated that oxygen availability might be more important than methane as a rate determinant. In addition, roots incubated under anoxic conditions showed little or no postanoxia aerobic methane consumption, indicating that root-associated metbanotrophic populations might not tolerate variable oxygen availability. Hybridization of oligodeoxynucleotide probes specific for group 1 or group 2 methylotrophs also varied seasonally. The group 2-specific probe consistently hybridized to a greater extent than the group 1 probe, and the relative amount of group 2 probe hybridization to C. canadensis root extracts was positively correlated with V(sub maxp).
Ito, Koji; Miyata, Kenji; Mohri, Masahiro; Origuchi, Hideki; Yamamoto, Hideo
Objective It is recommended that middle-aged and elderly individuals reduce their salt intake because of the high prevalence of hypertension. The consumption of miso soup is associated with salt intake, and the reduced consumption of miso soup has been recommended. Recent studies have demonstrated that the consumption of miso soup can attenuate an autonomic imbalance in animal models. However, it is unclear whether these results are applicable to humans. This study examined the cross-sectional association between the frequency of miso soup consumption and the blood pressure and heart rate of human subjects. Methods A total of 527 subjects of 50 to 81 years of age who participated in our hospital health examination were enrolled in the present study and divided into four groups based on the frequency of their miso soup consumption ([bowl(s) of miso soup/week] Group 1, <1; Group2, <4; Group3, <7; Group4, ≥7). The blood pressure levels and heart rates of the subjects in each group were compared. Furthermore, a multivariable analysis was performed to determine whether miso soup consumption was an independent factor affecting the incidence of hypertension or the heart rate. Results The frequency of miso soup consumption was not associated with blood pressure. The heart rate was, however, lower in the participants who reported a high frequency of miso soup consumption. A multivariable analysis revealed that the participants who reported a high frequency of miso soup consumption were more likely to have a lower heart rate, but that the consumption of miso soup was not associated with the incidence of hypertension. Conclusion These results indicate that miso soup consumption might decrease the heart rate, but not have a significant effect on the blood pressure of in middle-aged and elderly Japanese individuals.
Ito, Koji; Miyata, Kenji; Mohri, Masahiro; Origuchi, Hideki; Yamamoto, Hideo
2017-01-01
Objective It is recommended that middle-aged and elderly individuals reduce their salt intake because of the high prevalence of hypertension. The consumption of miso soup is associated with salt intake, and the reduced consumption of miso soup has been recommended. Recent studies have demonstrated that the consumption of miso soup can attenuate an autonomic imbalance in animal models. However, it is unclear whether these results are applicable to humans. This study examined the cross-sectional association between the frequency of miso soup consumption and the blood pressure and heart rate of human subjects. Methods A total of 527 subjects of 50 to 81 years of age who participated in our hospital health examination were enrolled in the present study and divided into four groups based on the frequency of their miso soup consumption ([bowl(s) of miso soup/week] Group 1, <1; Group2, <4; Group3, <7; Group4, ≥7). The blood pressure levels and heart rates of the subjects in each group were compared. Furthermore, a multivariable analysis was performed to determine whether miso soup consumption was an independent factor affecting the incidence of hypertension or the heart rate. Results The frequency of miso soup consumption was not associated with blood pressure. The heart rate was, however, lower in the participants who reported a high frequency of miso soup consumption. A multivariable analysis revealed that the participants who reported a high frequency of miso soup consumption were more likely to have a lower heart rate, but that the consumption of miso soup was not associated with the incidence of hypertension. Conclusion These results indicate that miso soup consumption might decrease the heart rate, but not have a significant effect on the blood pressure of in middle-aged and elderly Japanese individuals. PMID:28049996
Larsen, Nadja; Werner, Birgit Brøsted; Vogensen, Finn Kvist; Jespersen, Lene
2015-03-01
Milk acidification by DL-starter cultures [cultures containing Lactococcus lactis diacetylactis (D) and Leuconostoc (L) species] depends on the oxidation-reduction (redox) potential in milk; however, the mechanisms behind this effect are not completely clear. The objective of this study was to investigate the effect of dissolved oxygen on acidification kinetics and redox potential during milk fermentation by lactic acid bacteria (LAB). Fermentations were conducted by single strains isolated from mixed DL-starter culture, including Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris, and Leuconostoc mesenteroides ssp. cremoris, by the DL-starter culture, and by the type strains. High and low levels of oxygen were produced by flushing milk with oxygen or nitrogen, respectively. The kinetics of milk acidification was characterized by the maximum rate and time of acidification (Vamax and Tamax), the maximum rate and time of reduction (Vrmax and Trmax), the minimum redox potential (Eh7 final), and time of reaching Eh7 final (Trfinal). Variations in kinetic parameters were observed at both the species and strain levels. Two of the Lc. lactis ssp. lactis strains were not able to lower redox potential to negative values. Kinetic parameters of the DL-starter culture were comparable with the best acidifying and reducing strains, indicating their additive effects. Acidification curves were mostly diauxic at all oxygen levels, displaying 2 maxima of acidification rate: before (aerobic maximum) and after (anaerobic maximum) oxygen depletion. The redox potential decreased concurrently with oxygen consumption and continued to decrease at slower rate until reaching the final values, indicating involvement of both oxygen and microbiological activity in the redox state of milk. Oxygen flushing had a negative effect on reduction and acidification capacity of tested LAB. Reduction was significantly delayed at high initial oxygen, exhibiting longer Trmax, Trfinal, or both. Concurrently, anaerobic acidification rate maximum Vamax was decreased and Tamax was extended. Fermentation kinetics in nitrogen-flushed milk was not statistically different from that in untreated milk except for Lc. lactis ssp. lactis CHCC D2, which showed faster reduction time after nitrogen flushing. This study clarifies the relationship between the redox state in milk and acidification kinetics of the predominant subspecies in DL-starter cultures. This knowledge is important for dairies to ensure optimized, fast, and controlled milk fermentations, leading to greater standardization of dairy products. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Prajapati, Abhinesh Kumar; Chaudhari, Parmesh Kumar
2014-01-01
The electrochemical (EC) treatment of rice grain-based distillery wastewater was carried out in a 1.5 dm3 electrolytic batch reactor using aluminium plate electrodes. With the four-plate configurations, a current density (j) of 89.3 A/m2 and pH 8 was found to be optimal, obtaining a maximum chemical oxygen demand (COD) and colour removal of 93% and 87%, respectively. The chemical dissolution of aluminium was strongly influenced by initial pH (pHi). At higher pHi (pH 9.5) anode consumption decreased while energy consumption increased. At the optimal current density 89.3 A/m2, the aluminium electrode consumption was 16.855 g/dm3 wastewater and energy consumption was 31.4 Wh/dm3 achieving a maximum COD removal of 87%. The settling and filterability characteristics ofelectrochemically treated sludge were also analysed at different pH. It was noted that treated slurry at pHi 9.5 gave best settling characteristic, which decreased with increase in pH. EC-treated effluent at pHi 8 had provided best filterability. Characteristics of scum and residues are also analysed at different pH.
Gul, Sehrish; Zou, Xiang; Hassan, Che Hashim; Azam, Muhammad; Zaman, Khalid
2015-12-01
This study investigates the relationship between energy consumption and carbon dioxide emission in the causal framework, as the direction of causality remains has a significant policy implication for developed and developing countries. The study employed maximum entropy bootstrap (Meboot) approach to examine the causal nexus between energy consumption and carbon dioxide emission using bivariate as well as multivariate framework for Malaysia, over a period of 1975-2013. This is a unified approach without requiring the use of conventional techniques based on asymptotical theory such as testing for possible unit root and cointegration. In addition, it can be applied in the presence of non-stationary of any type including structural breaks without any type of data transformation to achieve stationary. Thus, it provides more reliable and robust inferences which are insensitive to time span as well as lag length used. The empirical results show that there is a unidirectional causality running from energy consumption to carbon emission both in the bivariate model and multivariate framework, while controlling for broad money supply and population density. The results indicate that Malaysia is an energy-dependent country and hence energy is stimulus to carbon emissions.
Low-cost directionally-solidified turbine blades, volume 2. [TFE731-3 turbofan engine
NASA Technical Reports Server (NTRS)
Dennis, R. E.; Hoppin, G. S., III; Hurst, L. G.
1979-01-01
An endothermically heated technology was used to manufacture low cost, directionally solidified, uncooled nickel-alloy blades for the TFE731-3 turbofan engine. The MAR-M 247 and MER-M 100+Hf blades were finish processed through heat treatment, machining, and coating operations prior to 150 hour engine tests consisting of the following sequences: (1) 50 hours of simulated cruise cycling (high fatigue evaluation); (2) 50 hours at the maximum continuous power rating (stress rupture endurance (low cycle fatigue). None of the blades visually showed any detrimental effects from the test. This was verified by post test metallurgical evaluation. The specific fuel consumption was reduced by 2.4% with the uncooled blades.
A Theoretical Reassessment of Microbial Maintenance and Implications for Microbial Ecology Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Gangsheng; Post, Wilfred M
We attempted to reconcile three microbial maintenance models (Herbert, Pirt, and Compromise) through a critical reassessment. We provided a rigorous proof that the true growth yield coefficient (YG) is the ratio of the specific maintenance rate (a in Herbert) to the maintenance coefficient (m in Pirt). Other findings from this study include: (1) the Compromise model is identical to the Herbert for computing microbial growth and substrate consumption, but it expresses the dependence of maintenance on both microbial biomass and substrate; (2) the maximum specific growth rate in the Herbert ( max,H) is higher than those in the other twomore » models ( max,P and max,C), and the difference is the physiological maintenance factor (mq = a); and (3) the overall maintenance coefficient (mT) is more sensitive to mq than to the specific growth rate ( G) and YG. Our critical reassessment of microbial maintenance provides a new approach for quantifying some important components in soil microbial ecology models.« less
de Oliveira, Samuel Conceição; de Castro, Heizir Ferreira; Visconti, Alexandre Eliseu Stourdze; Giudici, Reinaldo
2015-03-01
Experiments of continuous alcoholic fermentation of sugarcane juice with flocculating yeast recycle were conducted in a system of two 0.22-L tower bioreactors in series, operated at a range of dilution rates (D 1 = D 2 = 0.27-0.95 h(-1)), constant recycle ratio (α = F R /F = 4.0) and a sugar concentration in the feed stream (S 0) around 150 g/L. The data obtained in these experimental conditions were used to adjust the parameters of a mathematical model previously developed for the single-stage process. This model considers each of the tower bioreactors as a perfectly mixed continuous reactor and the kinetics of cell growth and product formation takes into account the limitation by substrate and the inhibition by ethanol and biomass, as well as the substrate consumption for cellular maintenance. The model predictions agreed satisfactorily with the measurements taken in both stages of the cascade. The major differences with respect to the kinetic parameters previously estimated for a single-stage system were observed for the maximum specific growth rate, for the inhibition constants of cell growth and for the specific rate of substrate consumption for cell maintenance. Mathematical models were validated and used to simulate alternative operating conditions as well as to analyze the performance of the two-stage process against that of the single-stage process.
The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications
Park, Keunyeol; Song, Minkyu
2018-01-01
This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm2 with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency. PMID:29495273
The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications.
Park, Keunyeol; Song, Minkyu; Kim, Soo Youn
2018-02-24
This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm² with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency.
Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network
Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N.
2015-01-01
Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead. PMID:26426701
Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network.
Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N
2015-01-01
Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead.
Noyola, Javier; Caamal-Monsreal, Claudia; Díaz, Fernando; Re, Denisse; Sánchez, Adolfo; Rosas, Carlos
2013-01-01
Thermopreference, tolerance and oxygen consumption rates of early juveniles Octopus maya (O. maya; weight range 0.38-0.78g) were determined after acclimating the octopuses to temperatures (18, 22, 26, and 30°C) for 20 days. The results indicated a direct relationship between preferred temperature (PT) and acclimated temperature, the PT was 23.4°C. Critical Thermal Maxima, (CTMax; 31.8±1.2, 32.7±0.9, 34.8±1.4 and 36.5±1.0) and Critical Thermal Minima, (CTMin; 11.6±0.2, 12.8±0.6, 13.7±1.0, 19.00±0.9) increased significantly (P<0.05) with increasing acclimation temperatures. The endpoint for CTMax was ink release and for CTMin was tentacles curled, respectively. A thermal tolerance polygon over the range of 18-30°C resulted in a calculated area of 210.0°C(2). The oxygen consumption rate increased significantly α=0.05 with increasing acclimation temperatures between 18 and 30°C. Maximum and minimum temperature quotients (Q10) were observed between 26-30°C and 22-26°C as 3.03 and 1.71, respectively. These results suggest that O. maya has an increased capability for adapting to moderate temperatures, and suggest increased culture potential in subtropical regions southeast of México. Copyright © 2012 Elsevier Ltd. All rights reserved.
Borken, W.; Davidson, E.A.; Savage, K.; Sundquist, E.T.; Steudler, P.
2006-01-01
Soil moisture strongly controls the uptake of atmospheric methane by limiting the diffusion of methane into the soil, resulting in a negative correlation between soil moisture and methane uptake rates under most non-drought conditions. However, little is known about the effect of water stress on methane uptake in temperate forests during severe droughts. We simulated extreme summer droughts by exclusion of 168 mm (2001) and 344 mm (2002) throughfall using three translucent roofs in a mixed deciduous forest at the Harvard Forest, Massachusetts, USA. The treatment significantly increased CH4 uptake during the first weeks of throughfall exclusion in 2001 and during most of the 2002 treatment period. Low summertime CH4 uptake rates were found only briefly in both control and exclusion plots during a natural late summer drought, when water contents below 0.15 g cm-3 may have caused water stress of methanotrophs in the A horizon. Because these soils are well drained, the exclusion treatment had little effect on A horizon water content between wetting events, and the effect of water stress was smaller and more brief than was the overall treatment effect on methane diffusion. Methane consumption rates were highest in the A horizon and showed a parabolic relationship between gravimetric water content and CH4 consumption, with maximum rate at 0.23 g H2O g-1 soil. On average, about 74% of atmospheric CH4 was consumed in the top 4-5 cm of the mineral soil. By contrast, little or no CH4 consumption occurred in the O horizon. Snow cover significantly reduced the uptake rate from December to March. Removal of snow enhanced CH4 uptake by about 700-1000%, resulting in uptake rates similar to those measured during the growing season. Soil temperatures had little effect on CH4 uptake as long as the mineral soil was not frozen, indicating strong substrate limitation of methanotrophs throughout the year. Our results suggest that the extension of snow periods may affect the annual rate of CH4 oxidation and that summer droughts may increase the soil CH4 sink of temperate forest soils. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mahmoud, Shereif H.; Alazba, A. A.
2016-07-01
In countries with absolute water scarcity such as the Kingdom of Saudi Arabia (KSA), large-scale actual evapotranspiration estimation is of great concern in water use practices. Herein, spatial and temporal distribution of actual evapotranspiration (AET) in the western and southern regions of KSA during 1992-2014 was estimated using the SEBAL model with field observations. Zonal statistics for each land use-cover type were also identified, in order to understand their effects on water consumption. In addition, daily and seasonal water consumption for major crops was computed. Results revealed a gradual increase in monthly AET values from January to April and subsequent decline from May to December. The maximum monthly AET values were observed for irrigated cropland in southwestern, central, and southeastern regions of Asir Province, central and southwestern regions of Al-Baha Province, central and the plains region of Jazan Province, southern portion of Makkah Province, and limited areas in the northern regions of Madinah Province. The annual AET ranged from 418.8 to 3442.3 mm yr-1. The normal distribution of mean annual AET values ranged from 717 to 1020 mm yr-1. Forty-two percent of the study area had an annual AET that ranged from 717 to 1020 mm yr-1. The second highest range of frequencies was concentrated around 1020-1322 mm yr-1, representing the majority of agricultural land. The consumptive water use of the different land cover types in study area indicated that irrigated cropland which occupied 14.6% of the study area had AET rates much higher than other land uses. Water bodies are the next highest, with forest and shrubland and sparse vegetation slightly lower, and very low AET rates from bare soil. Daily and seasonal water consumption of major cropping systems varied spatially depending on cropping practices and climatic conditions.
Stability in the drinking habits of older problem-drinkers recruited from nontreatment settings.
Walton, M A; Mudd, S A; Blow, F C; Chermack, S T; Gomberg, E S
2000-03-01
Few prospective studies have examined older problem-drinkers not currently in treatment to determine the stability in alcohol problems over time. Seventy-eight currently drinking, older adults meeting a diagnosis of alcohol abuse or dependence were recruited via advertising to complete a health interview; 48 were reinterviewed approximately 3 years later. Participants were categorized based on alcohol consumption (risk) and alcohol-related diagnostic symptoms (problem) at baseline and follow-up. At follow-up, few older adults (11.4%) were resolved using both risk and problem criteria. Alcohol risk/problem groups were not significantly stable between baseline and follow-up. Health problems was the most common reason for changing drinking habits. Average and maximum consumption at baseline and follow-up were significant markers of follow-up risk group and follow-up alcohol-related consequences, respectively, with maximum consumption being more robust. The course of alcohol problems among older adults fluctuates over time, and heavy drinking appears to be the best indicator of problem continuation.
Zhu, Hu; Sun, Jiao; Tian, Baozhen; Wang, Honglin
2015-03-01
In this study, a straight diagonal-pitched blade stirrer was designed, built and characterized in a 5-L fermenter. Compared with the six straight blade Rushton turbine, the power consumption of the new stirrer is lower at a given speed under conditions of no ventilation. The oxygen transference is poorer at the same agitation speed in the cultivation conditions and scales investigated, which confirms that the shear stress of the new stirrer is lower and the gas dispersion is weaker. The new stirrer was installed in a 5-L bioreactor and evaluated in submerged fermentation of the edible fungus Pleurotus ostreatus. The results showed that the maximum dry weight of mycelium is increased by 47 % and reached 7.47 g/L, and the maximum laccase activity is increased by 15 % up to 2,277 U/L. Glucose consumption was also found to be relatively faster. The power consumption is 2.8 % lower than that of the Rushton turbine.
Holloman, Erica L; Newman, Michael C
2012-02-01
Through collaborative partnerships established between current researchers and The Moton Community House (a local community center), African American women (ages 16-49yrs) from the Southeast Community of Newport News, Virginia, USA were surveyed to assess the reproducibility and consistency of fish consumption patterns (ingestion rates, exposure frequencies, weight, and fish consumption rates) derived from a community-specific fish consumption survey. Women were also surveyed to assess the reliability of the survey responses, and to estimate daily mercury intake. Fish consumption patterns were reproducible and the survey responses were reliable. Comparison between years revealed that fish consumption patterns remained consistent over time. In addition, the high fish consumption rate estimated in 2008 (147.8g/day; 95% CI: 117.6-185.8g/day) was confirmed with a rate (134.9g/day; 95% CI: 88-207g/day) not materially different and still considerably higher than mean fish consumption rates reported for U.S. women. Daily mercury intake rates were estimated using consumption data from 2008 and three consumption scenarios (canned white, canned light, and no tuna) due to confirmed differences in mercury concentration between canned white and light tuna. Arithmetic mean daily mercury intake rates were 0.284μg/kg bw/day (95% CI: 0.229-0.340μg/kg bw/day) using canned white tuna, 0.212μg/kg bw/day (95% CI: 0.165-0.259μg/kg bw/day) using light tuna, and 0.197μg/kg bw/day (95% CI: 0.151-0.243μg/kg bw/day) using no tuna. Approximately 58%-73% of the daily mercury intake rates for African American women in the Southeast Community exceeded US EPA's oral reference dose (RfD) of 0.10μg/kg bw/day for mercury. In addition, 2% of the rates exceeded a level (1.00μg/kg bw/day) documented to produce adverse health effects. Past and current investigations confirmed that even though women in this community were not subsistence fishers, they are subsistence fish consumers. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Alam, Md. Ferdous; Sazidy, Ahmad Sharif; Kabir, Asif; Mridha, Gowtam; Litu, Nazmul Alam; Rahman, Md. Ashiqur
2017-06-01
The present study aimed to evaluate the feasibility of coconut coir pads, jute fiber pads and sackcloth pads as alternative pad materials. Experimental measurements were conducted and the experimental data were quantitative. The experimental work mainly focused on the effects of different types and thicknesses of evaporative cooling pads by using forced draft fan while changing the environmental conditions. Experiments are conducted in a specifically constructed test chamber having dimensions of 12'X8'X8', using a number of cooling pads (36"X26") with a variable thickness parameters of the evaporative cooling pads i.e., 50, 75 and 100 mm. Moreover, the experimental work involved the measurement of environmental parameters such as temperature, relative humidity, air velocity, water mass flow rate and pressure drops at different times during the day. Experiments were conducted at three different water mass flow rates (0.25 kgs-1, 0.40 kgs-1 & 0.55 kgs-1) and three different air velocities (3.6 ms-1, 4.6 ms-1& 5.6 ms-1). There was a significant difference between evaporative cooling pad types and cooling efficiency. The coconut coir pads yielded maximum cooling efficiency of 85%, whereas other pads yielded the following maximum cooling efficiency: jute fiber pads 78% and sackcloth 69% for higher air velocity and minimum mass flow rate. It is found that the maximum reduction in temperature between cooling pad inlet and outlet is 4°C with a considerable increase in humidity. With the increase of pad thickness there was an increment of cooling efficiency. The results obtained for environmental factors, indicated that there was a significant difference between environmental factors and cooling efficiency. In terms of the effect of air velocity on saturation efficiency and pressure drop, higher air velocity decreases saturation efficiency and increases pressure drop across the wetted pad for maximum flow rate. Convective heat transfer co-efficient has an almost linear relationship with air Velocity. Water consumption or evaporation rate increases with the increase in air velocity. Finally, the present study indicated that the coconut coir pads perform better than the other evaporative cooling pads and have higher potential as wetted-pad material. The outcomes of this study can provide an effective and low-cost solution in the form of evaporative cooling system, especially in an agricultural country like Bangladesh.
Metabolically Derived Human Ventilation Rates: A Revised ...
EPA announced the availability of the final report, Metabolically Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates. This report provides a revised approach for calculating an individual's ventilation rate directly from their oxygen consumption rate. This approach will be used to update the ventilation rate information in the Exposure Factors Handbook, which serve as a resources for exposure assessors for calculating inhalation and other exposures. In this report, EPA presents a revised approach in which ventilation rate is calculated directly from an individual's oxygen consumption rate.
Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis
Watanabe, Miki; Muraleedharan, Ranjithmenon; Lambert, Paul F.; Lane, Andrew N.; Romick-Rosendale, Lindsey E.; Wells, Susanne I.
2017-01-01
The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos). To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA) that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth. PMID:28558019
Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis.
Matrka, Marie C; Watanabe, Miki; Muraleedharan, Ranjithmenon; Lambert, Paul F; Lane, Andrew N; Romick-Rosendale, Lindsey E; Wells, Susanne I
2017-01-01
The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos). To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA) that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth.
Continuous ethanol production from cheese whey fermentation by Candida pseudotropicalis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghaly, A.E.; El-Taweel, A.A.
1997-12-01
Three pilot-scale continuous mix reactors of 5-L volume each were used to study the effects of retention time (18--42 hours) and initial substrate concentration (50--150 g/L) on the cell yield, lactose consumption, and maximum ethanol concentration during continuous fermentation of cheese whey using the yeast Candida pseudotropicalis. A microaeration rate of 480 mL/min and a nutrient supplement (yeast extract) concentration of 0.1% vol/vol were used. The results indicated that the dissolved oxygen concentration, temperature, cell concentration, lactose utilization rate, and ethanol concentration were affected by hydraulic retention time and initial substrate concentration. The highest cell concentration of 5.46 g/L andmore » the highest ethanol concentration of 57.96 g/L (with a maximum ethanol yield of 99.6% from the theoretical yield) were achieved at the 42-hour hydraulic retention time and the 150 g/L initial substrate concentration, whereas the highest cell yield was observed at the 50 g/L initial substrate concentration and the 36-hour hydraulic retention time. Lactose utilizations of 98, 91, and 83% were obtained with 50, 100, and 150 g/L initial substrate concentrations at the 42-hour hydraulic retention time. A pH control system was found unnecessary.« less
Performance Evaluation of Bluetooth Low Energy: A Systematic Review.
Tosi, Jacopo; Taffoni, Fabrizio; Santacatterina, Marco; Sannino, Roberto; Formica, Domenico
2017-12-13
Small, compact and embedded sensors are a pervasive technology in everyday life for a wide number of applications (e.g., wearable devices, domotics, e-health systems, etc.). In this context, wireless transmission plays a key role, and among available solutions, Bluetooth Low Energy (BLE) is gaining more and more popularity. BLE merges together good performance, low-energy consumption and widespread diffusion. The aim of this work is to review the main methodologies adopted to investigate BLE performance. The first part of this review is an in-depth description of the protocol, highlighting the main characteristics and implementation details. The second part reviews the state of the art on BLE characteristics and performance. In particular, we analyze throughput, maximum number of connectable sensors, power consumption, latency and maximum reachable range, with the aim to identify what are the current limits of BLE technology. The main results can be resumed as follows: throughput may theoretically reach the limit of ~230 kbps, but actual applications analyzed in this review show throughputs limited to ~100 kbps; the maximum reachable range is strictly dependent on the radio power, and it goes up to a few tens of meters; the maximum number of nodes in the network depends on connection parameters, on the network architecture and specific device characteristics, but it is usually lower than 10; power consumption and latency are largely modeled and analyzed and are strictly dependent on a huge number of parameters. Most of these characteristics are based on analytical models, but there is a need for rigorous experimental evaluations to understand the actual limits.
Performance Evaluation of Bluetooth Low Energy: A Systematic Review
Taffoni, Fabrizio; Santacatterina, Marco; Sannino, Roberto
2017-01-01
Small, compact and embedded sensors are a pervasive technology in everyday life for a wide number of applications (e.g., wearable devices, domotics, e-health systems, etc.). In this context, wireless transmission plays a key role, and among available solutions, Bluetooth Low Energy (BLE) is gaining more and more popularity. BLE merges together good performance, low-energy consumption and widespread diffusion. The aim of this work is to review the main methodologies adopted to investigate BLE performance. The first part of this review is an in-depth description of the protocol, highlighting the main characteristics and implementation details. The second part reviews the state of the art on BLE characteristics and performance. In particular, we analyze throughput, maximum number of connectable sensors, power consumption, latency and maximum reachable range, with the aim to identify what are the current limits of BLE technology. The main results can be resumed as follows: throughput may theoretically reach the limit of ~230 kbps, but actual applications analyzed in this review show throughputs limited to ~100 kbps; the maximum reachable range is strictly dependent on the radio power, and it goes up to a few tens of meters; the maximum number of nodes in the network depends on connection parameters, on the network architecture and specific device characteristics, but it is usually lower than 10; power consumption and latency are largely modeled and analyzed and are strictly dependent on a huge number of parameters. Most of these characteristics are based on analytical models, but there is a need for rigorous experimental evaluations to understand the actual limits. PMID:29236085
Localized 1H NMR measurement of glucose consumption in the human brain during visual stimulation.
Chen, W; Novotny, E J; Zhu, X H; Rothman, D L; Shulman, R G
1993-01-01
Spatially localized 1H NMR spectroscopy has been applied to measure changes in brain glucose concentration during 8-Hz photic stimulation. NMR spectroscopic measurements were made in a 12-cm3 volume centered on the calcarine fissure and encompassing the primary visual cortex. The average maximum change in glucose levels was 0.34 mumol.g-1 (n = 5) at 15 min; glucose level had turned toward resting level at 25 min. The glucose change was used to calculate the increase of glucose cerebral metabolic rate in the visual cortex region for individual subjects by using the Michaelis-Menten model of glucose transport on the assumption of constant transport kinetics. The glucose cerebral metabolic rate was calculated to increase over the nonstimulated rate by 22% during the first 15 min of photic stimulation. A model in which the glucose metabolic rate gradually decreases during stimulation was proposed as a possible explanation for the recovery of brain glucose and previously measured lactate concentrations to prestimulus values after 15 min. Images Fig. 1 PMID:8234332
Compression-ignition engine performance with undoped and doped fuel oils and alcohol mixtures
NASA Technical Reports Server (NTRS)
Moore, Charles S; Foster, Hampton H
1939-01-01
Several fuel oils, doped fuel oils, and mixtures of alcohol and fuel oil were tested in a high-speed, single-cylinder, compression-ignition engine to determine power output, fuel consumption, and ignition and combustion characteristics. Fuel oils or doped fuel oils of high octane number had shorter ignition lags, lower rates of pressure rise, and gave smoother engine operation than fuel oils or doped fuel oils of low octane number. Higher engine rotative speeds and boost pressures resulted in smoother engine operation and permitted the use of fuel oils of relatively low octane number. Although the addition of a dope to a fuel oil decreased the ignition lag and the rate of pressure rise, the ensuing rate of combustion was somewhat slower than for the undoped fuel oil so that the effectiveness of combustion was practically unchanged. Alcohol used as an auxiliary fuel, either as a mixture or by separate injection, increased the rates of pressure rise and induced roughness. In general, the power output decreased as the proportion of alcohol increased and, below maximum power, varied with the heating value of the total fuel charge.
Ruotolo, L A M; Santos-Júnior, D S; Gubulin, J C
2006-05-01
Compounds of Cr(VI) are very toxic and their reduction to Cr(III) is necessary to allow their further precipitation or adsorption. Chemical methods for Cr(VI) reduction are usually used for this purpose. As an alternative, electrochemical methods using three-dimensional electrodes, such as reticulated vitreous carbon (RVC) and polyaniline-modified RVC, have been used successfully. Since the pH affects reaction of Cr(VI) reduction, in this work its effect on the reaction rate was studied using electrodes of RVC and RVC/PANI. While a maximum in reaction rate was found for a pH 1.5 using the RVC, the RVC/PANI showed no differences in reaction rates in the range of pH between 0 and 1. Practically, no reaction was observed for any pH greater than 3. The effect of different current densities using optimized pH was also evaluated and the RVC/PANI electrode showed the best reaction rates, current efficiencies and energy consumption as a result of the polyaniline electrocatalytic effect.
Wang, Jing; Lu, Xiao-Lan; Yang, Gui-Peng; Xu, Guan-Qiu
2014-11-01
Carbon monoxide (CO) concentration distribution, sea-to-air flux and microbial consumption rate constant, along with atmospheric CO mixing ratio, were measured in the East China Sea and the South Yellow Sea in summer. Atmospheric CO mixing ratios varied from 68 x 10(-9) -448 x 10(-9), with an average of 117 x 10(-9) (SD = 68 x 10(-9), n = 36). Overall, the concentrations of atmospheric CO displayed a decreasing trend from the coastal stations to the offshore stations. The surface water CO concentrations in the investigated area ranged from 0.23-7.10 nmol x L(-1), with an average of 2.49 nmol x L(-1) (SD = 2.11, n = 36). The surface water CO concentrations were significantly affected by sunlight. Vertical profiles showed that CO concentrations rapidly declined with depth, with the maximum values appearing in the surface water. CO concentrations exhibited obvious diurnal variations in the study area, with the maximum values being 6-40 folds higher than the minimum values. Minimal concentrations of CO all occurred before dawn. However, the maximal concentrations of CO occurred at noon. Marked diurnal variation in the concentrations of CO in the water column indicated that CO was produced primarily by photochemistry. The surface CO concentrations were oversaturated relative to the atmospheric concentrations and the saturation factors ranged from 1.99-99.18, with an average of 29.36 (SD = 24.42, n = 29). The East China Sea and the South Yellow Sea was a net source of atmospheric CO. The sea-to-air fluxes of CO in the East China Sea and the South Yellow Sea ranged 0.37-44.84 μmol x (m2 x d)(-1), with an average of 12.73 μmol x (m2 x d)(-1) (SD = 11.40, n = 29). In the incubation experiments, CO concentrations decreased exponentially with incubation time and the processes conformed to the first order reaction characteristics. The microbial CO consumption rate constants (K(co)) in the surface water ranged from 0.12 to 1.45 h(-1), with an average of 0.47 h(-1) (SD = 0.55, n = 5). A negative correlation between K(co) and salinity was observed in the present study.
Local modelling of land consumption in Germany with RegioClust
NASA Astrophysics Data System (ADS)
Hagenauer, Julian; Helbich, Marco
2018-03-01
Germany is experiencing extensive land consumption. This necessitates local models to understand actual and future land consumption patterns. This research examined land consumption rates on a municipality level in Germany for the period 2000-10 and predicted rates for 2010-20. For this purpose, RegioClust, an algorithm that combines hierarchical clustering and regression analysis to identify regions with similar relationships between land consumption and its drivers, was developed. The performance of RegioClust was compared against geographically weighted regression (GWR). Distinct spatially varying relationships across regions emerged, whereas population density is suggested as the central driver. Although both RegioClust and GWR predicted an increase in land consumption rates for east Germany for 2010-20, only RegioClust forecasts a decline for west Germany. In conclusion, both models predict for 2010-20 a rate of land consumption that suggests that the policy objective of reducing land consumption to 30 ha per day in 2020 will not be achieved. Policymakers are advised to take action and revise existing planning strategies to counteract this development.
NASA Astrophysics Data System (ADS)
Avianto Sugeng, Dhani; Zahari, Mohamad Fathur Hafeezat Mohd; Muhsin Ithnin, Ahmad; Jazair Yahya, Wira
2017-10-01
Efforts in making water in diesel emulsion (W/D) with the absence of surfactant have been developed to address the issues of long-term stability and the dependence on surfactants. This paper discusses an alternative formation method of a non-surfactant W/D, e.g. by steam condensation. By injecting steam into a batch of colder diesel fuel, fine water droplets are formed and suspended in the fuel forming an emulsion. The droplets are confirmed to be in the size range of hundreds of nanometers. The emissions of NOx is reduced by a maximum of 71%, whereas the CO and UHC emissions are increased by maximum respectively 180% and a surprising 517%. Not less interesting is the lower BSFC which was measured at a maximum reduction of 18.4%. These results on emission analysis together with the brake specific fuel consumption confirm this method to resemble the combustion behaviour of a conventional emulsion fuel of lower NOx and BSFC, yet higher CO and UHC
Parameter Optimization and Operating Strategy of a TEG System for Railway Vehicles
NASA Astrophysics Data System (ADS)
Heghmanns, A.; Wilbrecht, S.; Beitelschmidt, M.; Geradts, K.
2016-03-01
A thermoelectric generator (TEG) system demonstrator for diesel electric locomotives with the objective of reducing the mechanical load on the thermoelectric modules (TEM) is developed and constructed to validate a one-dimensional thermo-fluid flow simulation model. The model is in good agreement with the measurements and basis for the optimization of the TEG's geometry by a genetic multi objective algorithm. The best solution has a maximum power output of approx. 2.7 kW and does not exceed the maximum back pressure of the diesel engine nor the maximum TEM hot side temperature. To maximize the reduction of the fuel consumption, an operating strategy regarding the system power output for the TEG system is developed. Finally, the potential consumption reduction in passenger and freight traffic operating modes is estimated under realistic driving conditions by means of a power train and lateral dynamics model. The fuel savings are between 0.5% and 0.7%, depending on the driving style.
Kim, Daehyeok; Song, Minkyu; Choe, Byeongseong; Kim, Soo Youn
2017-06-25
In this paper, we present a multi-resolution mode CMOS image sensor (CIS) for intelligent surveillance system (ISS) applications. A low column fixed-pattern noise (CFPN) comparator is proposed in 8-bit two-step single-slope analog-to-digital converter (TSSS ADC) for the CIS that supports normal, 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 mode of pixel resolution. We show that the scaled-resolution images enable CIS to reduce total power consumption while images hold steady without events. A prototype sensor of 176 × 144 pixels has been fabricated with a 0.18 μm 1-poly 4-metal CMOS process. The area of 4-shared 4T-active pixel sensor (APS) is 4.4 μm × 4.4 μm and the total chip size is 2.35 mm × 2.35 mm. The maximum power consumption is 10 mW (with full resolution) with supply voltages of 3.3 V (analog) and 1.8 V (digital) and 14 frame/s of frame rates.
Roussos, C S; Macklem, P T
1977-08-01
The time required (tlim) to produce fatigue of the diaphragm was determined in three normal seated subjects, breathing through a variety of high alinear, inspiratory resistances. During each breath in all experimental runs the subject generated a transdiaphragmatic pressure (Pdi) which was a predetermined fraction of his maximum inspiratory Pdi (Pdimax) at functional residual capacity. The breathing test was performed until the subject was unable to generate this Pdi. The relationship between Pdi/Pdimax and tlim was curvilinear so that when Pdi/Pdimax was small tlim increased markedly for little changes in Pdi/Pdimax. The value of Pdi/Pdimax that could be generated indefinitely (Pdicrit) was around 0.4. Hypoxia appeared to have no influence on Pdicrit, but probably led to a reduction in tlim at Pdi greater than Pdicrit for equal rates of energy consumption. Insofar as the behavior of the diaphragm reflects that of other respiratory muscles it appears that quite high inspiratory loads can be tolerated indefinitely. However, when the energy consumption of the respiratory muscles exceeds a critical level, fatigue should develop. This may be a mechanism of respiratory failure in a variety in a variety of lung diseases.
Ergonomic Evaluation of Battery Powered Portable Cotton Picker
NASA Astrophysics Data System (ADS)
Dixit, A.; Manes, G. S.; Singh, A.; Prakash, A.; Mahal, J. S.
2012-09-01
Ergonomic evaluation of battery powered portable manual cotton picker was carried out on two subjects for three cotton varieties and was compared against manual method of picking. It is a hand operated machine and has a pair of chain with small sharp edged teeth and sprockets and is operated by a light weight 12 V battery. Cotton gets entangled with the chain and is collected and guided into the collection bag. Average heart rate, oxygen consumption, workload, energy expenditure was more in case of cotton picking by manual cotton picker as compared to manual picking for both the subjects for all three cotton variety types. Oxygen consumption varied from 0.81 to 0.97 l/min, workload varied from 36.32 to 46.16 W and energy expenditure varied from 16.83 to 20.33 kJ/min for both the subject in case of machine picking for all three cotton varieties. The maximum discomfort experienced by the subjects during picking cotton by manual cotton picker was in right wrist palm, right forearm, upper and lower back, left shoulder and in lower legs and both feet.
Sewage sludge disintegration by high-pressure homogenization: a sludge disintegration model.
Zhang, Yuxuan; Zhang, Panyue; Ma, Boqiang; Wu, Hao; Zhang, Sheng; Xu, Xin
2012-01-01
High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge. The effects of homogenization pressure, homogenization cycle number, and total solid content on sludge disintegration were investigated. The sludge disintegration degree (DD(COD)), protein concentration, and polysaccharide concentration increased with the increase of homogenization pressure and homogenization cycle number, and decreased with the increase of sludge total solid (TS) content. The maximum DD(COD) of 43.94% was achieved at 80 MPa with four homogenization cycles for a 9.58 g/L TS sludge sample. A HPH sludge disintegration model of DD(COD) = kNaPb was established by multivariable linear regression to quantify the effects of homogenization parameters. The homogenization cycle exponent a and homogenization pressure exponent b were 0.4763 and 0.7324 respectively, showing that the effect of homogenization pressure (P) was more significant than that of homogenization cycle number (N). The value of the rate constant k decreased with the increase of sludge total solid content. The specific energy consumption increased with the increment of sludge disintegration efficiency. Lower specific energy consumption was required for higher total solid content sludge.
Lockwood, Geoff G; Cabreros, Leilani; Banach, Dorota; Punjabi, Prakash P
2017-10-01
Continuous bilateral thoracic paravertebral blockade has been used for analgesia after cardiac surgery, but its efficacy has never been formally tested. Fifty adult patients were enrolled in a double-blind, randomised, controlled study of continuous bilateral thoracic paravertebral infusion of 0.5% lidocaine (1 mg.kg -1 .hr -1 ) for analgesia after coronary surgery. Control patients received a subcutaneous infusion of lidocaine at the same rate through catheters inserted at the same locations as the study group. The primary outcome was morphine consumption at 48 hours using patient-controlled analgesia (PCA). Secondary outcomes included pain, respiratory function, nausea and vomiting. Serum lidocaine concentrations were measured on the first two post-operative days. There was no difference in morphine consumption or in any other outcome measure between the groups. Serum lidocaine concentrations increased during the study, with a maximum of 5.9 mg.l -1 . There were no adverse events as a consequence of the study. Bilateral paravertebral infusion of lidocaine confers no advantage over systemic lidocaine infusion after cardiac surgery. ISRCTN13424423 ( https://www.isrctn.com ).
Intraspecific competition and density dependence of food consumption and growth in Arctic charr.
Amundsen, Per-Arne; Knudsen, Rune; Klemetsen, Anders
2007-01-01
1. Intraspecific competition for restricted food resources is considered to play a fundamental part in density dependence of somatic growth and other population characteristics, but studies simultaneously addressing the interrelationships between population density, food acquisition and somatic growth have been missing. 2. We explored the food consumption and individual growth rates of Arctic charr Salvelinus alpinus in a long-term survey following a large-scale density manipulation experiment in a subarctic lake. 3. Prior to the initiation of the experiment, the population density was high and the somatic growth rates low, revealing a severely overcrowded and stunted fish population. 4. During the 6-year period of stock depletion the population density of Arctic charr was reduced with about 75%, resulting in an almost twofold increase in food consumption rates and enhanced individual growth rates of the fish. 5. Over the decade following the density manipulation experiment, the population density gradually rose to intermediate levels, accompanied by corresponding reductions in food consumption and somatic growth rates. 6. The study revealed negative relationships with population density for both food consumption and individual growth rates, reflecting a strong positive correlation between quantitative food intake and somatic growth rates. 7. Both the growth and consumption rate relationships with population density were well described by negative power curves, suggesting that large density perturbations are necessary to induce improved feeding conditions and growth rates in stunted fish populations. 8. The findings demonstrate that quantitative food consumption represents the connective link between population density and individual growth rates, apparently being highly influenced by intraspecific competition for limited resources.
Phase I/II randomized trial of aerobic exercise in Parkinson disease in a community setting.
Uc, Ergun Y; Doerschug, Kevin C; Magnotta, Vincent; Dawson, Jeffrey D; Thomsen, Teri R; Kline, Joel N; Rizzo, Matthew; Newman, Sara R; Mehta, Sonya; Grabowski, Thomas J; Bruss, Joel; Blanchette, Derek R; Anderson, Steven W; Voss, Michelle W; Kramer, Arthur F; Darling, Warren G
2014-07-29
To (1) investigate effects of aerobic walking on motor function, cognition, and quality of life in Parkinson disease (PD), and (2) compare safety, tolerability, and fitness benefits of different forms of exercise intervention: continuous/moderate intensity vs interval/alternating between low and vigorous intensity, and individual/neighborhood vs group/facility setting. Initial design was a 6-month, 2 × 2 randomized trial of different exercise regimens in independently ambulatory patients with PD. All arms were required to exercise 3 times per week, 45 minutes per session. Randomization to group/facility setting was not feasible because of logistical factors. Over the first 2 years, we randomized 43 participants to continuous or interval training. Because preliminary analyses suggested higher musculoskeletal adverse events in the interval group and lack of difference between training methods in improving fitness, the next 17 participants were allocated only to continuous training. Eighty-one percent of 60 participants completed the study with a mean attendance of 83.3% (95% confidence interval: 77.5%-89.0%), exercising at 46.8% (44.0%-49.7%) of their heart rate reserve. There were no serious adverse events. Across all completers, we observed improvements in maximum oxygen consumption, gait speed, Unified Parkinson's Disease Rating Scale sections I and III scores (particularly axial functions and rigidity), fatigue, depression, quality of life (e.g., psychological outlook), and flanker task scores (p < 0.05 to p < 0.001). Increase in maximum oxygen consumption correlated with improvements on the flanker task and quality of life (p < 0.05). Our preliminary study suggests that aerobic walking in a community setting is safe, well tolerated, and improves aerobic fitness, motor function, fatigue, mood, executive control, and quality of life in mild to moderate PD. This study provides Class IV evidence that in patients with PD, an aerobic exercise program improves aerobic fitness, motor function, fatigue, mood, and cognition. © 2014 American Academy of Neurology.
Presence of heavy metals in fruits and vegetables: Health risk implications in Bangladesh.
Shaheen, Nazma; Irfan, Nafis Md; Khan, Ishrat Nourin; Islam, Saiful; Islam, Md Saiful; Ahmed, Md Kawser
2016-06-01
The presence of toxic heavy metals such as As, Cd, Pb, Cr, Mn, Ni, Cu, and Zn in nationally representative samples of highly consumed fruits and vegetables was determined by inductively coupled plasma mass spectrometry (ICP-MS). Their concentrations exceeded the maximum allowable concentration (MAC) set by FAO/WHO for Pb in mango and Cd in tomato among the analyzed fruits and vegetables. Pb content in mango was found to be six times higher than the safe limit at production level. Health risks associated with the intake of these metals were evaluated in terms of estimated daily intake (EDI), and carcinogenic and noncarcinogenic risks by target hazard quotient (THQ) and hazard index (HI). EDI values of all the metals were found to be below the maximum tolerable daily intake (MTDI). The THQs of all metals were <1, suggesting no health hazards for adult population. However, total THQs of Mn and Cu were >1 through consumption of all vegetables, indicating significant health risks. HI was found to be <1 (0.825) for consumption of fruits; however, it was >1 (3.727) for vegetable consumption, suggesting adverse health effects from vegetable consumption only. The total carcinogenic risk (CR) of As was below the threshold level (10(-6)) and 9.82E-05 for Pb, suggesting no potential CR from As consumption, but indicating the risk of Pb-induced carcinogenesis. The findings of this study reveal the health risks associated with the consumption of heavy metals through the intake of selected fruits and vegetables in adult population of Bangladesh. Copyright © 2016 Elsevier Ltd. All rights reserved.
Commentary: if you drink alcohol, drink sensibly: is this guideline still appropriate?
Jacobs, Liezille; Steyn, Nelia
2013-01-01
Alcohol abuse remains one of the most serious substance abuse disorders in South African society, resulting in inordinately large social, economic and health problems at all levels of society. Alcohol consumers in South Africa are estimated to drink 16.6L per annum with a per capita consumption of 7.1L. South Africa has one of the highest rates of death attributable to crime, violence, traffic accidents, and HIV/AIDS in the world. These rates have been directly related to the high prevalence of alcohol abuse and risky drinking patterns. A food-based dietary guideline that encourages alcohol consumption would appear to be not in the nation's best interest. We conducted a search of websites supported by the World Health Organization to find published literature on substance abuse in South Africa and also reviewed the website of the Medical Research Council of South Africa for studies on the social impact of alcohol abuse in humans. We used the search terms alcohol guidelines, alcohol abuse, non-communicable diseases, health benefits of alcohol, moderate drinking, alcohol, and intake patterns and reviewed studies that hade been published between 2002 and the current time. Based on evidence over the past two decades, messages that convey the positive health benefits of moderate alcohol consumption (eg, the increased levels of HDL cholesterol) should be raised and even encouraged for those who are very moderate drinkers (ie, one alcoholic drink/ day for women and a maximum of 2 drinks/day for men). For those who do not consume alcohol at all, even moderate drinking is not encouraged. Nutrition educators should emphasize the negative consequences of alcohol abuse. The current food-based dietary guideline, "If you drink alcohol, drink sensibly," from the South African Department of Health should not remain as is.
Mannheimer, C; Eliasson, T; Andersson, B; Bergh, C H; Augustinsson, L E; Emanuelsson, H; Waagstein, F
1993-01-01
OBJECTIVE--To investigate the effects of spinal cord stimulation on myocardial ischaemia, coronary blood flow, and myocardial oxygen consumption in angina pectoris induced by atrial pacing. DESIGN--The heart was paced to angina during a control phase and treatment with spinal cord stimulation. Blood samples were drawn from a peripheral artery and the coronary sinus. SETTING--Multidisciplinary pain centre, department of medicine, Ostra Hospital, and Wallenberg Research Laboratory, Sahlgrenska Hospital, Gothenburg, Sweden. SUBJECTS--Twenty patients with intractable angina pectoris, all with a spinal cord stimulator implanted before the study. RESULTS--Spinal cord stimulation increased patients' tolerance to pacing (p < 0.001). At the pacing rate comparable to that producing angina during the control recording, myocardial lactate production during control session turned into extraction (p = 0.003) and, on the electrocardiogram, ST segment depression decreased, time to ST depression increased, and time to recovery from ST depression decreased (p = 0.01; p < 0.05, and p < 0.05, respectively). Spinal cord stimulation also reduced coronary sinus blood flow (p = 0.01) and myocardial oxygen consumption (p = 0.02). At the maximum pacing rate during treatment, all patients experienced anginal pain. Myocardial lactate extraction reverted to production (p < 0.01) and the magnitude and duration of ST segment depression increased to the same values as during control pacing, indicating that myocardial ischaemia during treatment with spinal cord stimulation gives rise to anginal pain. CONCLUSIONS--Spinal cord stimulation has an anti-anginal and anti-ischaemic effect in severe coronary artery disease. These effects seem to be secondary to a decrease in myocardial oxygen consumption. Furthermore, myocardial ischemia during treatment gives rise to anginal pain. Thus, spinal cord stimulation does not deprive the patient of a warning signal. PMID:8400930
Clarification of cyanide's effect on oxygen transport characteristics in a canine model
Pham, Julius Cuong; Huang, David T; McGeorge, Francis T; Rivers, Emanuel P
2007-01-01
Objective To clarify the cardiovascular mechanisms of cyanide poisoning by evaluating oxygen transport characteristics using a canine model. Methods A prospective controlled experiment was performed at a hospital‐based animal laboratory. Five male beagle (17 (2) kg) dogs were anesthetised with α‐chloralose, paralysed with pancuronium bromide and mechanically ventilated. Potassium cyanide was infused at 0.045 mg/kg/min for 110 min. Heart rate, blood pressure, cardiac output, oxygen delivery (DO2), oxygen consumption (VO2) and oxygen extraction ratio (OER) were measured every 10 min for 140 min. DO2 was measured by an indirect calorimeter. Results Cyanide and lactate levels peaked at 1.52 (0.25) mg/l and 9.1 (1.5) mmol/l, respectively. Systolic blood pressure remained relatively constant whereas diastolic blood pressure decreased by 19%. Cardiac output, heart rate and DO2 increased to a maximum of 6%, 10% and 10%, respectively, at 40 min, after which they declined to a low of 32%, 28% and 30% below baseline, respectively. Stroke volume remained constant. Oxygen consumption initially increased by 5%, then decreased to 24% below baseline. The OER initially declined to 35% below baseline, then increased throughout the rest of the study. Conclusion Cyanide poisoning in the canine model showed two phases of injury. The first (compensated) phase had a mechanism consistent with a traditional global oxygen consumption defect. The second (decompensated) phase had a mechanism consistent with heart failure. This heart failure was due to bradycardia. These data suggest chronotropy as an avenue of further study in the temporary treatment of cyanide poisoning. PMID:17351216
School Lunch Consumption Among 3 Food Service Providers in New Orleans.
Canterberry, Melanie; Francois, Samantha; van Hattum, Taslim; Rudov, Lindsey; Carton, Thomas W
2018-02-01
Louisiana has one of the highest rates of overweight and obese children in the United States. The Healthy School Food Collaborative (HSFC) was created to allow New Orleans's schools to select their own healthy school Food Service Provider (FSP) with requirements for higher nutritional standards than traditional options. The goal of this cross-sectional study was to examine whether HSFC membership was associated with lunch consumption rates in elementary school children. An 8-week plate waste study examining 18,070 trays of food among fourth and fifth graders was conducted. Participants included 7 schools and the 3 FSPs (2 HSFC and 1 non-HSFC member) that serviced them. Mixed models analysis examined whether consumption rates of food items differed among FSPs. On average, students consumed 307 cal during lunch. Analyses showed significant differences in consumption rates of entrée, vegetables, fruit, and milk between the 3 FSPs (p < .01). The highest consumption rate was among entrées at 65%. One HSFC provider had consumption levels consistent with the non-HSFC FSP. Overall, students consumed less than 60% of the US Department of Agriculture recommended calories for school lunch. While overall caloric consumption was higher among the non-HSFC schools, interventions to increase lunch consumption across all schools are needed. © 2018, American School Health Association.
Tejera, Aberto; Herrero, Javier; de Los Santos, M J; Garrido, Nicolás; Ramsing, Niels; Meseguer, Marcos
2011-09-01
To evaluate the effect of different ovarian stimulation protocols on oocyte respiration and to investigate the relationship between oocyte oxygen consumption and reproductive outcome. Prospective observational cohort study. Infertility clinic in a university hospital. A total of 349 oocytes from 56 IVF treatment cycles in our oocyte donation program. None. Average oocyte oxygen consumption rate in fmol/s. We correlated oxygen consumption values with ovarian stimulation features, fertilization, embryo quality on days 2 and 3, and implantation. Differences in the measured oxygen consumption rates were found depending on which type of gonadotropins were used in the stimulation protocol. Higher consumption rates were found for oocytes that underwent normal fertilization compared with rates from nonfertilized or abnormal oocytes (odds ratio = 1.340; 95% confidence intervals = 1.037-1.732). Furthermore, higher oxygen consumption was observed for those oocytes which generated embryos that implanted compared with those that did not implant (6.21 ± 0.849 fmol/s vs. 5.23 ± 0.345 fmol/s. Measurement of oxygen consumption rates for individual oocytes before fertilization provides a noninvasive marker of oocyte quality and hence a quantitative assessment of the reproductive potential for the oocyte. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., the water consumption flow rate of commercial prerinse spray valves. (b) Testing and Calculations. The test procedure to determine the water consumption flow rate for prerinse spray valves, expressed in... the previous step. Round the final water consumption value to one decimal place as follows: (1) A...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-24
... Exhibit II-12. Petitioner determined labor costs using the labor consumption rates of the Wind Tower... natural gas costs using the natural gas consumption rates derived from the Wind Tower Producer's.... Petitioner determined labor costs using the labor consumption rates of the Wind Tower Producer. See Volume IV...
Aircraft emissions of methane and nitrous oxide during the alternative aviation fuel experiment.
Santoni, Gregory W; Lee, Ben H; Wood, Ezra C; Herndon, Scott C; Miake-Lye, Richard C; Wofsy, Steven C; McManus, J Barry; Nelson, David D; Zahniser, Mark S
2011-08-15
Given the predicted growth of aviation and the recent developments of alternative aviation fuels, quantifying methane (CH(4)) and nitrous oxide (N(2)O) emission ratios for various aircraft engines and fuels can help constrain projected impacts of aviation on the Earth's radiative balance. Fuel-based emission indices for CH(4) and N(2)O were quantified from CFM56-2C1 engines aboard the NASA DC-8 aircraft during the first Alternative Aviation Fuel Experiment (AAFEX-I) in 2009. The measurements of JP-8 fuel combustion products indicate that at low thrust engine states (idle and taxi, or 4% and 7% maximum rated thrusts, respectively) the engines emit both CH(4) and N(2)O at a mean ± 1σ rate of 170 ± 160 mg CH(4) (kg Fuel)(-1) and 110 ± 50 mg N(2)O (kg Fuel)(-1), respectively. At higher thrust levels corresponding to greater fuel flow and higher engine temperatures, CH(4) concentrations in engine exhaust were lower than ambient concentrations. Average emission indices for JP-8 fuel combusted at engine thrusts between 30% and 100% of maximum rating were -54 ± 33 mg CH(4) (kg Fuel)(-1) and 32 ± 18 mg N(2)O (kg Fuel)(-1), where the negative sign indicates consumption of atmospheric CH(4) in the engine. Emission factors for the synthetic Fischer-Tropsch fuels were statistically indistinguishable from those for JP-8.
COSP for Windows: Strategies for Rapid Analyses of Cyclic Oxidation Behavior
NASA Technical Reports Server (NTRS)
Smialek, James L.; Auping, Judith V.
2002-01-01
COSP is a publicly available computer program that models the cyclic oxidation weight gain and spallation process. Inputs to the model include the selection of an oxidation growth law and a spalling geometry, plus oxide phase, growth rate, spall constant, and cycle duration parameters. Output includes weight change, the amounts of retained and spalled oxide, the total oxygen and metal consumed, and the terminal rates of weight loss and metal consumption. The present version is Windows based and can accordingly be operated conveniently while other applications remain open for importing experimental weight change data, storing model output data, or plotting model curves. Point-and-click operating features include multiple drop-down menus for input parameters, data importing, and quick, on-screen plots showing one selection of the six output parameters for up to 10 models. A run summary text lists various characteristic parameters that are helpful in describing cyclic behavior, such as the maximum weight change, the number of cycles to reach the maximum weight gain or zero weight change, the ratio of these, and the final rate of weight loss. The program includes save and print options as well as a help file. Families of model curves readily show the sensitivity to various input parameters. The cyclic behaviors of nickel aluminide (NiAl) and a complex superalloy are shown to be properly fitted by model curves. However, caution is always advised regarding the uniqueness claimed for any specific set of input parameters,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, E-E; Pan, Shu-Yuan; Yang, Liuhanzi
2015-09-15
Highlights: • Carbonation was performed using CO{sub 2}, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO{sub 2} per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO{sub 2} emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO{sub 2} captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewatermore » (CRW) was investigated for carbon dioxide (CO{sub 2}) fixation under different operating conditions, i.e., reaction time, CO{sub 2} concentration, liquid-to-solid ratio, particle size, and CO{sub 2} flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO{sub 2} fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO{sub 2} reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO{sub 2} fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.« less
Adolescent energy drink consumption: An Australian perspective.
Costa, Beth M; Hayley, Alexa; Miller, Peter
2016-10-01
Caffeinated Energy Drinks (EDs) are not recommended for consumption by children, yet there is a lack of age-specific recommendations and restrictions on the marketing and sale of EDs. EDs are increasingly popular among adolescents despite growing evidence of their negative health effects. In the current study we examined ED consumption patterns among 399 Australian adolescents aged 12-18 years. Participants completed a self-report survey of consumption patterns, physiological symptoms, and awareness of current ED consumption guidelines. Results indicated that ED consumption was common among the sample; 56% reported lifetime ED consumption, with initial consumption at mean age 10 (SD = 2.97). Twenty-eight percent of the sample consumed EDs at least monthly, 36% had exceeded the recommended two standard EDs/day, and 56% of consumers had experienced negative physiological health effects following ED consumption. The maximum number of EDs/day considered appropriate for children, adolescents, and adults varied, indicating a lack of awareness of current consumption recommendations. These findings add to the growing body of international evidence of adolescent ED consumption, and the detrimental impact of EDs to adolescent health. Enforced regulation and restriction of EDs for children's and adolescents' consumption is urgently needed in addition to greater visibility of ED consumption recommendations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Assessment protocols of maximum oxygen consumption in young people with Down syndrome--a review.
Seron, Bruna Barboza; Greguol, Márcia
2014-03-01
Maximum oxygen consumption is considered the gold standard measure of cardiorespiratory fitness. Young people with Down syndrome (DS) present low values of this indicator compared to their peers without disabilities and to young people with an intellectual disability but without DS. The use of reliable and valid assessment methods provides more reliable results for the diagnosis of cardiorespiratory fitness and the response of this variable to exercise. The aim of the present study was to review the literature on the assessment protocols used to measure maximum oxygen consumption in children and adolescents with Down syndrome giving emphasis to the protocols used, the validation process and their feasibility. The search was carried out in eight electronic databases--Scopus, Medline-Pubmed, Web of science, SportDiscus, Cinhal, Academic Search Premier, Scielo, and Lilacs. The inclusion criteria were: (a) articles which assessed VO2peak and/or VO2max (independent of the validation method), (b) samples composed of children and/or adolescents with Down syndrome, (c) participants of up to 20 years old, and (d) studies performed after 1990. Fifteen studies were selected and, of these, 11 measured the VO2peak using tests performed in a laboratory, 2 used field tests and the remaining 2 used both laboratory and field tests. The majority of the selected studies used maximal tests and conducted familiarization sessions. All the studies took into account the clinical conditions that could hamper testing or endanger the individuals. However, a large number of studies used tests which had not been specifically validated for the evaluated population. Finally, the search emphasized the small number of studies which use field tests to evaluate oxygen consumption. Copyright © 2013 Elsevier Ltd. All rights reserved.
Moser, Othmar; Eckstein, Max L; McCarthy, Olivia; Deere, Rachel; Bain, Stephen C; Haahr, Hanne L; Zijlstra, Eric; Bracken, Richard M
2017-01-01
To explore the impact of glycaemic control (HbA 1c ) on functional capacity during cardio-pulmonary exercise testing in people with type 1 diabetes. Sixty-four individuals with type 1 diabetes (age: 34 ± 8 years; 13 females, HbA 1c : 7.8 ± 1% (62 ± 13 mmol/mol), duration of diabetes: 17 ± 9 years) performed a cardio-pulmonary cycle ergometer exercise test until volitional exhaustion. Stepwise linear regression was used to explore relationships between HbA 1c and cardio-respiratory data with p ≤ 0.05. Furthermore, participants were divided into quartiles based on HbA 1c levels and cardio-respiratory data were analysed by one-way ANOVA. Multiple regression analysis was performed to explore the relationships between changes in time to exhaustion and cardio-respiratory data. Data were adjusted for confounder. HbA 1c was related to time to exhaustion and oxygen consumption at the power output elicited at the sub-maximal threshold of the heart rate turn point (r = 0.47, R 2 = 0.22, p = 0.03). Significant differences were found at time to exhaustion between Q I vs. Q IV and at oxygen consumption at the power output elicited at the heart rate turn point between Q I vs. Q II and Q I vs. Q IV (p < 0.05). Changes in oxygen uptake, power output and in oxygen consumption at the power output elicited at the heart rate turn point and at maximum power output explained 55% of the variance in time to exhaustion ( r = 0.74, R 2 = 0.55, p < 0.01). Poor glycaemic control is related to less economical use of oxygen at sub-maximal work rates and an earlier time to exhaustion during cardio-pulmonary exercise testing. However, exercise training could have the same potential to counteract the influence of poor glycaemic control on functional capacity. Trial registration NCT01704417. Date of registration: October 11, 2012.
Suffoletto, Brian; Chung, Tammy; Muench, Frederick; Monti, Peter; Clark, Duncan B
2018-02-16
Stand-alone text message-based interventions can reduce binge drinking episodes (≥4 drinks for women and ≥5 drinks for men) among nontreatment-seeking young adults, but may not be optimized. Adaptive text message support could enhance effectiveness by assisting context-specific goal setting and striving, but it remains unknown how to best integrate it into text message interventions. The objective of this study was to evaluate young adults' engagement with a text message intervention, Texting to Reduce Alcohol Consumption 2 (TRAC2), which focuses on reducing weekend alcohol consumption. TRAC2 incorporated preweekend drinking-limit goal-commitment ecological momentary assessments (EMA) tailored to past 2-week alcohol consumption, intraweekend goal reminders, self-efficacy EMA with support tailored to goal confidence, and maximum weekend alcohol consumption EMA with drinking limit goal feedback. We enrolled 38 nontreatment-seeking young adults (aged 18 to 25 years) who screened positive for hazardous drinking in an urban emergency department. Following a 2-week text message assessment-only run-in, subjects were given the opportunity to enroll in 4-week intervention blocks. We examined patterns of EMA responses and voluntary re-enrollment. We then examined how goal commitment and goal self-efficacy related to event-level alcohol consumption. Finally, we examined the association of length of TRAC2 exposure with alcohol-related outcomes from baseline to 3-month follow-up. Among a diverse sample of young adults (56% [28/50] female, 54% [27/50] black, 32% [12/50] college enrolled), response rates to EMA queries were, on average, 82% for the first 4-week intervention block, 75% for the second 4-week block, and 73% for the third 4-week block. In the first 4 weeks of the intervention, drinking limit goal commitment was made 68/71 times it was prompted (96%). The percentage of subjects being prompted to commit to a drinking limit goal above the binge threshold was 52% (15/29) in week 1 and decreased to 0% (0/15) by week 4. Subjects met their goal 130/146 of the times a goal was committed to (89.0%). There were lower rates of goal success when subjects reported lower confidence (score <4) in meeting the goal (76% [32/42 weekends]) compared with that when subjects reported high confidence (98% [56/57 weekends]; P=.001). There were reductions in alcohol consumption from baseline to 3 months, but reductions were not different by length of intervention exposure. Preliminary evidence suggests that nontreatment-seeking young adults will engage with a text message intervention incorporating self-regulation support features, resulting in high rates of weekend drinking limit goal commitment and goal success. ©Brian Suffoletto, Tammy Chung, Frederick Muench, Peter Monti, Duncan B Clark. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 16.02.2018.
Effects of Low-Dose Non-Caloric Sweetener Consumption on Gut Microbiota in Mice
Uebanso, Takashi; Ohnishi, Ai; Kitayama, Reiko; Yoshimoto, Ayumi; Nakahashi, Mutsumi; Shimohata, Takaaki; Mawatari, Kazuaki; Takahashi, Akira
2017-01-01
Non-caloric artificial sweeteners (NASs) provide sweet tastes to food without adding calories or glucose. NASs can be used as alternative sweeteners for controlling blood glucose levels and weight gain. Although the consumption of NASs has increased over the past decade in Japan and other countries, whether these sweeteners affect the composition of the gut microbiome is unclear. In the present study, we examined the effects of sucralose or acesulfame-K ingestion (at most the maximum acceptable daily intake (ADI) levels, 15 mg/kg body weight) on the gut microbiome in mice. Consumption of sucralose, but not acesulfame-K, for 8 weeks reduced the relative amount of Clostridium cluster XIVa in feces. Meanwhile, sucralose and acesulfame-K did not increase food intake, body weight gain or liver weight, or fat in the epididymis or cecum. Only sucralose intake increased the concentration of hepatic cholesterol and cholic acid. Moreover, the relative concentration of butyrate and the ratio of secondary/primary bile acids in luminal metabolites increased with sucralose consumption in a dose-dependent manner. These results suggest that daily intake of maximum ADI levels of sucralose, but not acesulfame-K, affected the relative amount of the Clostridium cluster XIVa in fecal microbiome and cholesterol bile acid metabolism in mice. PMID:28587159
Effects of Low-Dose Non-Caloric Sweetener Consumption on Gut Microbiota in Mice.
Uebanso, Takashi; Ohnishi, Ai; Kitayama, Reiko; Yoshimoto, Ayumi; Nakahashi, Mutsumi; Shimohata, Takaaki; Mawatari, Kazuaki; Takahashi, Akira
2017-06-01
Abstract : Non-caloric artificial sweeteners (NASs) provide sweet tastes to food without adding calories or glucose. NASs can be used as alternative sweeteners for controlling blood glucose levels and weight gain. Although the consumption of NASs has increased over the past decade in Japan and other countries, whether these sweeteners affect the composition of the gut microbiome is unclear. In the present study, we examined the effects of sucralose or acesulfame-K ingestion (at most the maximum acceptable daily intake (ADI) levels, 15 mg/kg body weight) on the gut microbiome in mice. Consumption of sucralose, but not acesulfame-K, for 8 weeks reduced the relative amount of Clostridium cluster XIVa in feces. Meanwhile, sucralose and acesulfame-K did not increase food intake, body weight gain or liver weight, or fat in the epididymis or cecum. Only sucralose intake increased the concentration of hepatic cholesterol and cholic acid. Moreover, the relative concentration of butyrate and the ratio of secondary/primary bile acids in luminal metabolites increased with sucralose consumption in a dose-dependent manner. These results suggest that daily intake of maximum ADI levels of sucralose, but not acesulfame-K, affected the relative amount of the Clostridium cluster XIVa in fecal microbiome and cholesterol bile acid metabolism in mice.
System and method of vehicle operating condition management
Sujan, Vivek A.; Vajapeyazula, Phani; Follen, Kenneth; Wu, An; Moffett, Barty L.
2015-10-20
A vehicle operating condition profile can be determined over a given route while also considering imposed constraints such as deviation from time targets, deviation from maximum governed speed limits, etc. Given current vehicle speed, engine state and transmission state, the present disclosure optimally manages the engine map and transmission to provide a recommended vehicle operating condition that optimizes fuel consumption in transitioning from one vehicle state to a target state. Exemplary embodiments provide for offline and online optimizations relative to fuel consumption. The benefit is increased freight efficiency in transporting cargo from source to destination by minimizing fuel consumption and maintaining drivability.
Ilic, Milena; Ilic, Irena; Stojanovic, Goran; Zivanovic-Macuzic, Ivana
2016-01-01
Objectives This paper reports association between mortality rates from cancer, ischaemic heart disease and diabetes mellitus and the consumption of common food groups and beverages in Serbia. Design In this ecological study, data on both mortality and the average annual consumption of common food groups and beverages per household's member were obtained from official data-collection sources. The multivariate linear regression analysis was used to determine the strength of the associations between consumption of common food groups and beverages and mortality rates. Results Markedly increasing trends of cancer, ischaemic heart disease and diabetes mellitus mortality rates were observed in Serbia in the period 1991–2010. Mortality rates from cancer were negatively associated with consumption of vegetable oil (p=0.005) and grains (p=0.001), and same was found for ischaemic heart disease (p=0.002 and 0.021, respectively), while consumption of other dairy products showed a significant positive association (p<0.001 and p=0.032, respectively). In men and women, mortality rates from diabetes mellitus showed a significant positive association with consumption of poultry (p=0.014 and 0.004, respectively). Consumption of beef and grains showed a significant negative association with cancer mortality rates in both genders (p=0.002 and p<0.001 in men, and p<0.001 and p=0.014 in women, respectively), while consumption of cheese was negatively associated only in men (p<0.001). Mortality from diabetes mellitus showed a significant positive association with consumption of animal fat and other dairy products only in women (p=0.003 and 0.046, respectively). Conclusions Association between unfavourable mortality trends from cancer, ischaemic heart disease and diabetes mellitus, and common food groups and beverages consumption was observed and should be assessed in future analytical epidemiological studies. Promotion of healthy diet is sorely needed in Serbia. PMID:26733565
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirota, Kosa, E-mail: hirota-kousa@sme.hitachi-hitec.com; Itabashi, Naoshi; Tanaka, Junichi
2014-11-01
The variation in polysilicon plasma etching rates caused by Ti residue on the reactor walls was investigated. The amount of Ti residue was measured using attenuated total reflection Fourier transform infrared spectroscopy with the HgCdTe (MCT) detector installed on the side of the reactor. As the amount of Ti residue increased, the number of fluorine radicals and the polysilicon etching rate increased. However, a maximum limit in the etching rate was observed. A mechanism of rate variation was proposed, whereby F radical consumption on the quartz reactor wall is suppressed by the Ti residue. The authors also investigated a plasma-cleaningmore » method for the removal of Ti residue without using a BCl{sub 3} gas, because the reaction products (e.g., boron oxide) on the reactor walls frequently cause contamination of the product wafers during etching. CH-assisted chlorine cleaning, which is a combination of CHF{sub 3} and Cl{sub 2} plasma treatment, was found to effectively remove Ti residue from the reactor walls. This result shows that CH radicals play an important role in deoxidizing and/or defluorinating Ti residue on the reactor walls.« less
Optimization of the ANFIS using a genetic algorithm for physical work rate classification.
Habibi, Ehsanollah; Salehi, Mina; Yadegarfar, Ghasem; Taheri, Ali
2018-03-13
Recently, a new method was proposed for physical work rate classification based on an adaptive neuro-fuzzy inference system (ANFIS). This study aims to present a genetic algorithm (GA)-optimized ANFIS model for a highly accurate classification of physical work rate. Thirty healthy men participated in this study. Directly measured heart rate and oxygen consumption of the participants in the laboratory were used for training the ANFIS classifier model in MATLAB version 8.0.0 using a hybrid algorithm. A similar process was done using the GA as an optimization technique. The accuracy, sensitivity and specificity of the ANFIS classifier model were increased successfully. The mean accuracy of the model was increased from 92.95 to 97.92%. Also, the calculated root mean square error of the model was reduced from 5.4186 to 3.1882. The maximum estimation error of the optimized ANFIS during the network testing process was ± 5%. The GA can be effectively used for ANFIS optimization and leads to an accurate classification of physical work rate. In addition to high accuracy, simple implementation and inter-individual variability consideration are two other advantages of the presented model.
NASA Astrophysics Data System (ADS)
Cao, Jiashun; Oleyiblo, Oloche James; Xue, Zhaoxia; Otache, Y. Martins; Feng, Qian
2015-07-01
Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal (BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic (A2/O). The ASM2d implemented on the platform of WEST2011 software and the BioWin activated sludge/anaerobic digestion (AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2d parameters (the reduction factor for denitrification , the maximum growth rate of heterotrophs (µH), the rate constant for stored polyphosphates in PAOs ( q pp), and the hydrolysis rate constant ( k h)) were adjusted. Whereas three BioWin parameters (aerobic decay rate ( b H), heterotrophic dissolved oxygen (DO) half saturation ( K OA), and Y P/acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations (ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen (N-NO3), total nitrogen (TN), and total phosphorus (TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio (COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.
Contribution of alcohol in accident related mortality in Belarus: a time series approach
Razvodovsky, Yury Evgeny
2012-01-01
Abstract: Background: High accidental death rates in the former Soviet republics (FSR) and its profound fluctuation over the past decades have attracted considerable interest. The research evidences emphasize binge drinking pattern as a potentially important contributor to accident mortality crisis in FSR. In line with this evidence we assume that higher level of alcohol consumption in conjunction with binge drinking pattern results in close aggregate-level association between alcohol psychoses and accidental death rates in the former Soviet Slavic republic Belarus. Methods: Trends in alcohol psychoses rate (as a proxy for alcohol consumption) from 1979 to 2007 were analyzed employing a distributed lag analysis in order to asses bivariate relationship between the two time series. Results: According to the Bureau of Forensic Medicine autopsy reports the number of deaths due to accidents and injuries increased by 52.5% (from 62.3 to 95.0 per 100.000 of residents), and fatal alcohol poisoning rate increased by 108.6% (from 12.8 to 26.7 per 100.000 of residents) in Belarus between 1979 and 2007. Alcohol in blood was found in 50.1% victims of deaths from accidents and injuries for the whole period, with the minimum figure 40% in 1986 and maximum 58.2% in 2005. The outcome of distributed lags analysis indicated statistically significant association between the number of alcohol psychoses cases and the number BAC-positive deaths from accidents at zero lag. Conclusion: The outcome of this study supports previous findings suggesting that alcohol and deaths from accidents are closely connected in a culture with prevailing intoxication-oriented drinking pattern, and add to growing body of evidence that a substantial proportion of accidental deaths in Belarus are due to effects of binge drinking. PMID:21502784
Studies on the exercise physiology of draft horses performed in Japan during the 1950s and 1960s.
Hiraga, Atsushi; Sugano, Shigeru
2017-01-01
Although the total number of horses raised in Japan dramatically decreased after World War II, because draft horses were still used for farm work in paddy fields and on farms during the period of the 1950s and 1960s, a performance test for selecting better draft horses was needed. In order to determine the most suitable size of draft horses for Japanese farm conditions, the working power of horses weighing from 185 to 622 kg was evaluated by performing an endurance test, several kinds of working power tests, and maximum pulling power tests. Oxygen consumption during draft exercise was measured by the Douglas bag method in order to evaluate effects of draft workload under the conditions of different types of work (14- and 18-cm plow depths, cultivator, and tillage), traction methods (shoulder traction, shoulder-trunk traction, and chest-trunk traction), walking speeds (40, 60, 80, 100, and 120 m/min), and depths of water (0, 18, 36, and 54 cm) on energy expenditure. The relationship between energy consumption and pulse rate during exercise was also evaluated. A study of a performance test for draft horses was conducted to establish a new approach for evaluating draft horse performance using heart rate as an index. For this study, a beat meter for measuring heart rate was developed, and experimental protocols were used to evaluate the relationship between heart rate and workload. Although the research results obtained from these studies do not have particular relevance in the current day, these studies are valuable for understanding the history of equine exercise physiology in Japan.
Studies on the exercise physiology of draft horses performed in Japan during the 1950s and 1960s
HIRAGA, Atsushi; SUGANO, Shigeru
2017-01-01
ABSTRACT Although the total number of horses raised in Japan dramatically decreased after World War II, because draft horses were still used for farm work in paddy fields and on farms during the period of the 1950s and 1960s, a performance test for selecting better draft horses was needed. In order to determine the most suitable size of draft horses for Japanese farm conditions, the working power of horses weighing from 185 to 622 kg was evaluated by performing an endurance test, several kinds of working power tests, and maximum pulling power tests. Oxygen consumption during draft exercise was measured by the Douglas bag method in order to evaluate effects of draft workload under the conditions of different types of work (14- and 18-cm plow depths, cultivator, and tillage), traction methods (shoulder traction, shoulder-trunk traction, and chest-trunk traction), walking speeds (40, 60, 80, 100, and 120 m/min), and depths of water (0, 18, 36, and 54 cm) on energy expenditure. The relationship between energy consumption and pulse rate during exercise was also evaluated. A study of a performance test for draft horses was conducted to establish a new approach for evaluating draft horse performance using heart rate as an index. For this study, a beat meter for measuring heart rate was developed, and experimental protocols were used to evaluate the relationship between heart rate and workload. Although the research results obtained from these studies do not have particular relevance in the current day, these studies are valuable for understanding the history of equine exercise physiology in Japan. PMID:28400701
Optimal energy-utilization ratio for long-distance cruising of a model fish
NASA Astrophysics Data System (ADS)
Liu, Geng; Yu, Yong-Liang; Tong, Bing-Gang
2012-07-01
The efficiency of total energy utilization and its optimization for long-distance migration of fish have attracted much attention in the past. This paper presents theoretical and computational research, clarifying the above well-known classic questions. Here, we specify the energy-utilization ratio (fη) as a scale of cruising efficiency, which consists of the swimming speed over the sum of the standard metabolic rate and the energy consumption rate of muscle activities per unit mass. Theoretical formulation of the function fη is made and it is shown that based on a basic dimensional analysis, the main dimensionless parameters for our simplified model are the Reynolds number (Re) and the dimensionless quantity of the standard metabolic rate per unit mass (Rpm). The swimming speed and the hydrodynamic power output in various conditions can be computed by solving the coupled Navier-Stokes equations and the fish locomotion dynamic equations. Again, the energy consumption rate of muscle activities can be estimated by the quotient of dividing the hydrodynamic power by the muscle efficiency studied by previous researchers. The present results show the following: (1) When the value of fη attains a maximum, the dimensionless parameter Rpm keeps almost constant for the same fish species in different sizes. (2) In the above cases, the tail beat period is an exponential function of the fish body length when cruising is optimal, e.g., the optimal tail beat period of Sockeye salmon is approximately proportional to the body length to the power of 0.78. Again, the larger fish's ability of long-distance cruising is more excellent than that of smaller fish. (3) The optimal swimming speed we obtained is consistent with previous researchers’ estimations.
Geist, D.R.; Brown, R.S.; Cullinan, V.I.; Mesa, M.G.; VanderKooi, S.P.; McKinstry, C.A.
2003-01-01
Oxygen consumption rates of adult spring chinook salmon Oncorhynchus tshawytscha increased with swim speed and, depending on temperature and fish mass, ranged from 609 mg O2 h-1 at 30 cm s-1 (c. 0.5 BLs-1) to 3347 mg O2 h-1 at 170 cm s -1 (c. 2.3 BLs-1). Corrected for fish mass, these values ranged from 122 to 670 mg O2 kg-1 h-1, and were similar to other Oncorhynchus species. At all temperatures (8, 12.5 and 17??C), maximum oxygen consumption values levelled off and slightly declined with increasing swim speed >170 cm s-1, and a third-order polynomial regression model fitted the data best. The upper critical swim speed (Ucrit) of fish tested at two laboratories averaged 155 cm s -1 (2.1 BLs-1), but Ucrit of fish tested at the Pacific Northwest National Laboratory were significantly higher (mean 165 cm s-1) than those from fish tested at the Columbia River Research Laboratory (mean 140 cm s-1). Swim trials using fish that had electromyogram (EMG) transmitters implanted in them suggested that at a swim speed of c. 135 cm s-1, red muscle EMG pulse rates slowed and white muscle EMG pulse rates increased. Although there was significant variation between individual fish, this swim speed was c. 80% of the Ucrit for the fish used in the EMG trials (mean Ucrit 168.2 cm s-1). Bioenergetic modelling of the upstream migration of adult chinook salmon should consider incorporating an anaerobic fraction of the energy budget when swim speeds are ???80% of the Ucrit. ?? 2003 The Fisheries Society of the British Isles.
Food limitation and the recovery of sea otters following the 'Exxon Valdez' oil spill
Dean, Thomas A.; Bodkin, James L.; Fukuyama, Allan K.; Jewett, Stephen C.; Monson, Daniel H.; O'Clair, Charles E.; VanBlaricom, Glenn R.
2002-01-01
We examined the potential role of food limitation in constraining the recovery of sea otters Enhydra lutris in Prince William Sound, Alaska, following the 'Exxon Valdez' oil spill. The spill resulted in the removal of a large number of sea otters in 1989, and as of 1998, the portion of the population in the heavily oiled northern Knight Island region had not fully recovered. Between 1996 and 1998, prey consumption rate was higher and the condition of sea otters was better at northern Knight Island than in an unoiled area of the sound (Montague Island). Estimates of prey energy available per unit mass of sea otter were about 4 times higher at Knight than Montague Island, albeit not significantly different between the 2 areas. Over this same period, the number of sea otters remained constant at northern Knight Island but increased at Montague Island. These data suggest that food was at least as abundant at Knight than at Montague Island, and that recovery of sea otters via intrinsic population growth was limited by factors other than food. However, the availability of food, the prey consumption rate, and the condition of sea otters were all much lower at both Knight and Montague Islands than in areas newly occupied by sea otters where the population growth rate was near the theoretical maximum. It is possible that the relatively short supply of food (compared to areas where sea otter population growth rate was high) may have inhibited immigration or interacted with other factors (e.g. oil-induced mortality or predation) to restrict sea otter population growth. Nonetheless, these data suggest that impacts of anthropogenic disturbances on large, often food-limited vertebrate predators can persist in spite of the availability of food resources that are sufficient for intrinsic population growth.
Physiological responses during continuous work in hot dry and hot humid environments in Indians
NASA Astrophysics Data System (ADS)
Sen Gupta, J.; Swamy, Y. V.; Pichan, G.; Dimri, G. P.
1984-06-01
Studies have been conducted on six young healthy heat acclimatised Indians to determine the physiological changes in prolonged continuous work in thermally neutral and in hot dry and hot humid environments. Physiological responses in maximal efforts i.e. Vo2 max, VE max and Cf max were noted. In addition, duration in continuous work at three sub-maximal rate of work in three simulated environments were also noted. Physiological responses like Vo2, VE and Cf were noted every 15 minutes of work. Besides these responses, rectal temperature (Tre), mean skin temperature (Ts) and mean sweat rate were also recorded during continuous work. Results indicated a significant decrease in maximum oxygen uptake capacity (Vo2 max) in heat with no change in maximum exercise ventilation (VE max) and maximum cardiac frequency. However, the fall in Vo2 max was more severe in the hot humid environment than in the hot dry climate. Cardiac frequency at fixed oxygen consumption of 1.0, 1.5 and 2.0 l/min was distinctly higher in the hot humid environment than in the hot dry and comfortable temperature. The duration in continuous physical effort in various grades of activities decreased in hot dry environment from that in the-comfortable climate and further decreased significantly in hot humid environment. The highest rate of sweating was observed during work in humid heat. The mean skin temperature (Ts) showed a fall in all the three rates of work in comfortable and hot dry conditions whereas in hot humid environment it showed a linear rise during the progress of work. The rectal temperature on the other hand maintained a near steady state while working at 65 and 82 watts in comfortable and hot dry environments but kept on rising during work in hot humid environment. At the highest work rate of 98 watts, the rectal temperature showed a steady increase even in the hot dry condition. It was thus concluded from the study that a hot humid climate imposes more constraints on the thermoregulatory system during work than in the hot dry condition because of less effective heat dissipation so resulting in reduced tolerance to work.
Lead-contaminated imported tamarind candy and children's blood lead levels.
Lynch, R A; Boatright, D T; Moss, S K
2000-01-01
In 1999, an investigation implicated tamarind candy as the potential source of lead exposure for a child with a significantly elevated blood lead level (BLL). The Oklahoma City-County Health Department tested two types of tamarind suckers and their packaging for lead content. More than 50% of the tested suckers exceeded the US Food and Drug Administration (FDA) Level of Concern for lead in this type of product. The authors calculated that a child consuming one-quarter to one-half of either of the two types of suckers in a day would exceed the maximum FDA Provis onal Tolerable Intake for lead. High lead concentrations in the two types of wrappers suggested leaching as a potential source of contamination. The authors used the Environmental Protection Agency's Integrated Exposure Uptake Biokinetic (IEUBK) model to predict the effects of consumption of contaminated tamarind suckers on populat on BLLs. The IEUBK model predicted that consumption of either type of sucker at a rate of one per day would result in dramatic increases in mean BLLs for children ages 6-84 months in Oklahoma and in the percentage of children wth elevated BLLs (> or =10 micrograms per deciliter [microg/dL]). The authors conclude that consumption of these products represents a potential public health threat. In addition, a history of lead contamination in imported tamarind products suggests that import control measures may not be completely effective in preventing additional lead exposure.
Per Capita Alcohol Consumption and Suicide Rates in the U.S., 1950-2002
ERIC Educational Resources Information Center
Landberg, Jonas
2009-01-01
The aim of this paper was to estimate how suicide rates in the United States are affected by changes in per capita consumption during the postwar period. The analysis included Annual suicide rates and per capita alcohol consumption data (total and beverage specific) for the period 1950-2002. Gender- and age-specific models were estimated using the…
Alcohol consumption and ischemic heart disease mortality in Russia.
Razvodovsky, Yury E
2012-01-01
It has been repeatedly emphasized that alcohol provides the most plausible explanation for both the high rate of cardiovascular mortality rate and its dramatic fluctuations in Russia over recent decades, while other traditional risk factors identified in epidemiological studies have little predictive value. The aim of this study was to examine the relation between alcohol consumption and ischemic heart disease (IHD) mortality rates in Russia. A ge-standardized sex-specific male and female IHD mortality data for the period 1980-2005 and data on overall alcohol consumption were analyzed by means of ARIMA time series analysis. The results of the analysis showed that alcohol consumption was significantly associated with both male and female IHD mortality rates: a 1-liter increase in overall alcohol consumption would result in a 3.9% increase in the male IHD mortality rate and a 2.7% increase in the female IHD mortality rate. As a conclusion, the results of this study provide indirect support for the hypothesis that the drastic fluctuations in IHD mortality in Russia over recent decades are related to alcohol, as indicated by the close temporal association between number of deaths from IHD and overall alcohol consumption per capita.
Crouch, Edmund A; Labarre, David; Golden, Neal J; Kause, Janell R; Dearfield, Kerry L
2009-10-01
The U.S. Department of Agriculture, Food Safety and Inspection Service is exploring quantitative risk assessment methodologies to incorporate the use of the Codex Alimentarius' newly adopted risk management metrics (e.g., food safety objectives and performance objectives). It is suggested that use of these metrics would more closely tie the results of quantitative microbial risk assessments (QMRAs) to public health outcomes. By estimating the food safety objective (the maximum frequency and/or concentration of a hazard in a food at the time of consumption) and the performance objective (the maximum frequency and/or concentration of a hazard in a food at a specified step in the food chain before the time of consumption), risk managers will have a better understanding of the appropriate level of protection (ALOP) from microbial hazards for public health protection. We here demonstrate a general methodology that allows identification of an ALOP and evaluation of corresponding metrics at appropriate points in the food chain. It requires a two-dimensional probabilistic risk assessment, the example used being the Monte Carlo QMRA for Clostridium perfringens in ready-to eat and partially cooked meat and poultry products, with minor modifications to evaluate and abstract required measures. For demonstration purposes, the QMRA model was applied specifically to hot dogs produced and consumed in the United States. Evaluation of the cumulative uncertainty distribution for illness rate allows a specification of an ALOP that, with defined confidence, corresponds to current industry practices.
Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?
Phan, Hoang Vu; Truong, Quang Tri; Au, Thi Kim Loan; Park, Hoon Cheol
2016-07-08
This work presents a parametric study, using the unsteady blade element theory, to investigate the role of twist in a hovering flapping wing. For the investigation, a flapping-wing system was developed to create a wing motion of large flapping amplitude. Three-dimensional kinematics of a passively twisted wing, which is capable of creating a linearly variable geometric angle of attack (AoA) along the wingspan, was measured during the flapping motion and used for the analysis. Several negative twist or wash-out configurations with different values of twist angle, which is defined as the difference in the average geometric AoAs at the wing root and the wing tip, were obtained from the measured wing kinematics through linear interpolation and extrapolation. The aerodynamic force generation and aerodynamic power consumption of these twisted wings were obtained and compared with those of flat wings. For the same aerodynamic power consumption, the vertical aerodynamic forces produced by the negatively twisted wings are approximately 10%-20% less than those produced by the flat wings. However, these twisted wings require approximately 1%-6% more power than flat wings to produce the same vertical force. In addition, the maximum-force-producing twisted wing, which was found to be the positive twist or wash-in configuration, was used for comparison with the maximum-force-producing flat wing. The results revealed that the vertical aerodynamic force and aerodynamic power consumption of the two types of wings are almost identical for the hovering condition. The power loading of the positively twisted wing is only approximately 2% higher than that of the maximum-force-producing flat wing. Thus, the flat wing with proper wing kinematics (or wing rotation) can be regarded as a simple and efficient candidate for the development of hovering flapping-wing micro air vehicle.
Rowland, Bosco; Allen, Felicity; Toumbourou, John W
2012-05-01
Approximately 4.5 million Australians are involved in community sports clubs. A high level of alcohol consumption tends to be commonplace in this setting. The only program of its type in the world, the Good Sports program was designed to reduce harmful alcohol consumption in these Australian community sports clubs. The program offers a staged accreditation process to encourage the implementation of alcohol harm-reduction strategies. We conducted a postintervention adoption study to evaluate whether community sports club accreditation through the Good Sports program was associated with lower rates of alcohol consumption. We examined alcohol consumption rates in 113 clubs (N = 1,968 participants) and compared these to consumption rates in the general community. We hypothesized that members of clubs with more advanced implementation of the Good Sports accreditation program (Stage Two) would consume less alcohol than those with less advanced implementation (Stage One). Multilevel modeling (MLM) indicated that on days when teams competed, Stage Two club members consumed 19% less alcohol than Stage One club members. MLM also indicated that the length of time a club had been in the Good Sports program was associated with reduced rates of weekly drinking that exceeded Australian short-term risky drinking guidelines. However consumption rates for all clubs were still higher than the general community. Higher accreditation stage also predicted reduced long-term risky drinking by club members. Our findings suggest that community sports clubs show evidence of higher levels of alcohol consumption and higher rates of risky consumption than the general community. Implementation of the Good Sports accreditation strategy was associated with lower alcohol consumption in these settings.
Asai, Takao; Tsuchiya, Yasuo; Okano, Kiyoshi; Piscoya, Alejandro; Nishi, Carlos Yoshito; Ikoma, Toshikazu; Oyama, Tomizo; Ikegami, Kikuo; Yamamoto, Masaharu
2012-01-01
Chilean red chili peppers contaminated with aflatoxins were reported in a previous study. If the development of gallbladder cancer (GBC) in Chile is associated with a high level of consumption of aflatoxin-contaminated red chili peppers, such peppers from other countries having a high GBC incidence rate may also be contaminated with aflatoxins. We aimed to determine whether this might be the case for red chili peppers from Bolivia and Peru. A total of 7 samples (3 from Bolivia, 4 from Peru) and 3 controls (2 from China, 1 from Japan) were evaluated. Aflatoxins were extracted with acetonitrile:water (9:1, v/v) and eluted through an immuno-affinity column. The concentrations of aflatoxins B1, B2, G1, and G2 were measured using high-performance liquid chromatography (HPLC), and then the detected aflatoxins were identified using HPLC-mass spectrometry. In some but not all of the samples from Bolivia and Peru, aflatoxin B1 or aflatoxins B1 and B2 were detected. In particular, aflatoxin B1 or total aflatoxin concentrations in a Bolivian samples were above the maximum levels for aflatoxins in spices proposed by the European Commission. Red chili peppers from Bolivia and Peru consumed by populations having high GBC incidence rates would appear to be contaminated with aflatoxins. These data suggest the possibility that a high level of consumption of aflatoxin-contaminated red chili peppers is related to the development of GBC, and the association between the two should be confirmed by a case-control study.
Food consumption and growth rates of juvenile black carp fed natural and prepared feeds
Hodgins, Nathaniel C.; Schramm, Harold L.; Gerard, Patrick D.
2014-01-01
The introduced mollusciphagic black carp Mylopharyngodon piceus poses a significant threat to native mollusks in temperate waters throughout the northern hemisphere, but consumption rates necessary to estimate the magnitude of impact on mollusks have not been established. We measured food consumption and growth rates for small (77–245 g) and large (466–1,071 g) triploid black carp held individually under laboratory conditions at 20, 25, and 30°C. Daily consumption rates (g food · g wet weight fish−1·d−1·100) of black carp that received prepared feed increased with temperature (small black carp 1.39–1.71; large black carp 1.28–2.10), but temperature-related increases in specific growth rate (100[ln(final weight) - ln(initial weight)]/number of days) only occurred for the large black carp (small black carp −0.02 to 0.19; large black carp 0.16–0.65). Neither daily consumption rates (5.90–6.28) nor specific growth rates (0.05–0.24) differed among temperatures for small black carp fed live snails. The results of these laboratory feeding trials indicate food consumption rates can vary from 289.9 to 349.5 J·g−1·d−1 for 150 g black carp receiving prepared feed, from 268.8 to 441.0 J·g−1·d−1for 800 g black carp receiving prepared feed, and from 84.8 to 90.2 J·g−1·d−1 for 150 g black carp that feed on snails. Applying estimated daily consumption rates to estimated biomass of native mollusks indicates that a relatively low biomass of bla
Macfarlane, Craig; Adams, Mark A; Hansen, Lee D
2002-01-01
The enthalpy balance model of growth uses measurements of the rates of heat and CO(2) production to quantify rates of decarboxylation, oxidative phosphorylation and net anabolism. Enthalpy conversion efficiency (eta(H)) and the net rate of conservation of enthalpy in reduced biosynthetic products (R(SG)DeltaH(B)) can be calculated from metabolic heat rate (q) and CO(2) rate (R(CO2)). eta(H) is closely related to carbon conversion efficiency and the efficiency of conservation of available electrons in biosynthetic products. R(SG)DeltaH(B) and eta(H) can be used, together with biomass composition, to describe the rate and efficiency of growth of plant tissues. q is directly related to the rate of O(2) consumption and the ratio q:R(CO2) is inversely related to the respiratory quotient. We grew seedlings of Eucalyptus globulus at 16 and 28 degrees C for four to six weeks, then measured q and R(CO2) using isothermal calorimetry. Respiratory rate at a given temperature was increased by a lower growth temperature but eta(H) was unaffected. Enthalpy conversion efficiency - and, therefore, carbon conversion efficiency - decreased with increasing temperature from 15 to 35 degrees C. The ratio of oxidative phosphorylation to oxygen consumption (P/O ratio) was inferred in vivo from eta(H) and by assuming a constant ratio of growth to maintenance respiration with changing temperature. The P/O ratio decreased from 2.1 at 10-15 degrees C to less than 0.3 at 35 degrees C, suggesting that decreased efficiency was not only due to activity of the alternative oxidase pathway. In agreement with predictions from non-equilibrium thermodynamics, growth rate was maximal near 25 degrees C, where the calculated P/O ratio was about half maximum. We propose that less efficient pathways, such as the alternative oxidase pathway, are necessary to satisfy the condition of conductance matching whilst maintaining a near constant phosphorylation potential. These conditions minimize entropy production and maximize the efficiency of mitochondrial energy conversions as growing conditions change, while maintaining adequate finite rates of energy processing. PMID:12137581
Deslauriers, R; Moffatt, D J; Smith, I C
1986-05-29
A spectrophotometric assay has been devised to measure oxygen consumption non-invasively in intact murine red cells parasitized by Plasmodium berghei. The method uses oxyhemoglobin in the erythrocytes both as a source of oxygen and as an indicator of oxygen consumption. Spectra of intact cells show broad peaks and sloping baselines due to light-scattering. In order to ascertain the number of varying components in the 370-450 nm range, the resolution of the spectra was enhanced using Fourier transforms of the frequency domain spectra. Calculation of oxygen consumption was carried out for two-component systems (oxyhemoglobin, deoxyhemoglobin) using absorbances at 415 and 431 nm. Samples prepared from highly parasitized mice (greater than 80% parasitemia, 5% hematocrit) showed oxygen consumption rates of (4-8) X 10(-8) microliter/cell per h. This rate was not attributable to the presence of white cells or reticulocytes. The rate of oxygen consumption in the erythrocytes is shown to be modulated by various agents: the respiratory inhibitors NaN3 and KCN (1 mM) reduced oxygen consumption 2-3-fold; salicylhydroxamic acid (2.5 mM) caused a 20% reduction in rate and 10 mM NaN3, completely blocked deoxygenation. Antimalarial drugs and metal-chelating agents were also tested. Chloroquine, EDTA and desferal (desferoxamine mesylate) did not decrease the deoxygenation rate of hemoglobin in parasitized cells. Quinacrine, quinine and primaquine reduced the rate of formation of deoxyhemoglobin but also produced substantial quantities of methemoglobin. The lipophilic chelator, 5-hydroxyquinoline, decreased the rate of deoxygenation one-third. The spectrophotometric assay provides a convenient means to monitor oxygen consumption in parasitized red cells, to test the effects of various agents thereon, and potentially to explore possible mechanisms for oxygen utilization.
Two Rotor Stratified Charge Rotary Engine (SCRE) Engine System Technology Evaluation
NASA Technical Reports Server (NTRS)
Hoffman, T.; Mack, J.; Mount, R.
1994-01-01
This report summarizes results of an evaluation of technology enablement component technologies as integrated into a two rotor Stratified Charge Rotary Engine (SCRE). The work constitutes a demonstration of two rotor engine system technology, utilizing upgraded and refined component technologies derived from prior NASA Contracts NAS3-25945, NAS3-24628 and NAS-23056. Technical objectives included definition of, procurement and assembly of an advanced two rotor core aircraft engine, operation with Jet-A fuel at Take-Off rating of 340 BHP (254kW) and operation at a maximum cruise condition of 255 BHP (190kW), 75% cruise. A fuel consumption objective of 0.435 LBS/BHP-Hr (265 GRS/kW-Hr) was identified for the maximum cruise condition. A critical technology component item, a high speed, unit injector fuel injection system with electronic control was defined, procured and tested in conjunction with this effort. The two rotor engine configuration established herein defines an affordable, advanced, Jet-A fuel capability core engine (not including reduction gear, propeller shaft and some aircraft accessories) for General Aviation of the mid-1990's and beyond.
Büchs, Milena; Schnepf, Sylke V.
2017-01-01
Consumption surveys often record zero purchases of a good because of a short observation window. Measures of distribution are then precluded and only mean consumption rates can be inferred. We show that Propensity Score Matching can be applied to recover the distribution of consumption rates. We demonstrate the method using the UK National Travel Survey, in which c.40% of motorist households purchase no fuel. Estimated consumption rates are plausible judging by households’ annual mileages, and highly skewed. We apply the same approach to estimate CO2 emissions and outcomes of a carbon cap or tax. Reliance on means apparently distorts analysis of such policies because of skewness of the underlying distributions. The regressiveness of a simple tax or cap is overstated, and redistributive features of a revenue-neutral policy are understated. PMID:29020029
7 CFR 3565.210 - Maximum interest rate.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Maximum interest rate. 3565.210 Section 3565.210... AGRICULTURE GUARANTEED RURAL RENTAL HOUSING PROGRAM Loan Requirements § 3565.210 Maximum interest rate. The interest rate for a guaranteed loan must not exceed the maximum allowable rate specified by the Agency in...
Alcohol consumption and pancreatitis mortality in Russia.
Razvodovsky, Yury E
2014-07-28
Pancreatitis is a major public health problem with high associated economic costs. The incidence of pancreatitis has increased in many European countries in recent decade. Accumulated research and empirical evidence suggests that excessive alcohol consumption is a major risk factor for both acute and chronic pancreatitis. The aim of this study was to examine the aggregate-level relation between the alcohol consumption and pancreatitis mortality rates in Russia. Age-standardized sex-specific male and female pancreatitis mortality data for the period 1970-2005 and data on overall alcohol consumption were analyzed by means ARIMA (autoregressive integrated moving average) time series analysis. Alcohol consumption was significantly associated with both male and female pancreatitis mortality rates: a 1 liter increase in overall alcohol consumption would result in a 7.0% increase in the male pancreatitis mortality rate and in 2.3% increase in the female mortality rate. The results of the analysis suggest that 63.1% of all male pancreatitis deaths and 26.8% female deaths in Russia could be attributed to alcohol. Conclusions The outcomes of this study provide indirect support for the hypothesis that unfavorable mixture of higher overall level of alcohol consumption and binge drinking pattern is an important contributor to the pancreatitis mortality rate in Russian Federation.
Barton D. Clinton; James M. Vose; Wayne T. Swank; Erik C. Berg; David L. Loftis
1998-01-01
We characterized tire behavior and fuel consumption resulting from an understory prescribed burn in a mixed eastern white pine-hardwood stand in the Southern Appalachians. These stands were used for the treatment. Flame lengths, ranging from 0.3 to 1.5 meters (m) for backing fires and from 1.2 to 4.5 m for head fires, reached maximum heights where evergreen understory...
Shield, Kevin D; Gmel, Gerrit; Gmel, Gerhard; Mäkelä, Pia; Probst, Charlotte; Room, Robin; Rehm, Jürgen
2017-09-01
Low-risk alcohol drinking guidelines require a scientific basis that extends beyond individual or group judgements of risk. Life-time mortality risks, judged against established thresholds for acceptable risk, may provide such a basis for guidelines. Therefore, the aim of this study was to estimate alcohol mortality risks for seven European countries based on different average daily alcohol consumption amounts. The maximum acceptable voluntary premature mortality risk was determined to be one in 1000, with sensitivity analyses of one in 100. Life-time mortality risks for different alcohol consumption levels were estimated by combining disease-specific relative risk and mortality data for seven European countries with different drinking patterns (Estonia, Finland, Germany, Hungary, Ireland, Italy and Poland). Alcohol consumption data were obtained from the Global Information System on Alcohol and Health, relative risk data from meta-analyses and mortality information from the World Health Organization. The variation in the life-time mortality risk at drinking levels relevant for setting guidelines was less than that observed at high drinking levels. In Europe, the percentage of adults consuming above a risk threshold of one in 1000 ranged from 20.6 to 32.9% for women and from 35.4 to 54.0% for men. Life-time risk of premature mortality under current guideline maximums ranged from 2.5 to 44.8 deaths per 1000 women in Finland and Estonia, respectively, and from 2.9 to 35.8 deaths per 1000 men in Finland and Estonia, respectively. If based upon an acceptable risk of one in 1000, guideline maximums for Europe should be 8-10 g/day for women and 15-20 g/day for men. If low-risk alcohol guidelines were based on an acceptable risk of one in 1000 premature deaths, then maximums for Europe should be 8-10 g/day for women and 15-20 g/day for men, and some of the current European guidelines would require downward revision. © 2017 Society for the Study of Addiction.
EPA announced the availability of the final report, Metabolically Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates. This report provides a revised approach for calculating an individual's ventilation rate directly from their oxygen c...
Abstract: Native Americans who consume seafood often have higher seafood consumption rates and consequently greater exposures to contaminants in seafood than the general U.S. population. Defensible and quantifiable tribal seafood consumption rates are needed for development of ...
Moya, Jacqueline; Itkin, Cheryl; Selevan, Sherry G; Rogers, John W; Clickner, Robert P
2008-09-15
Fish consumption rates derived from national surveys may not accurately reflect consumption rates in a particular population such as recreational anglers. Many state and local health agencies in the U.S. have conducted area-specific surveys to study fish consumption patterns in local populations, assess exposure to environmental contaminants, or evaluate compliance with fish advisories. The U.S. Environmental Protection Agency (EPA) has analyzed the raw data from fish consumption surveys in Florida, Connecticut, Minnesota, and North Dakota for the purpose of deriving distributions of fish consumption rates and studying the variables that may be more predictive of high-end consumers. Distributions of fish consumption for different age cohorts, ethnic groups, socioeconomic statuses, types of fish (i.e., freshwater, marine, estuarine), and source of fish (i.e., store-bought versus self-caught) were derived. Consumption of fish and shellfish for those who consume both caught and bought fish is higher than those who reported eating only bought or only self-caught. Mean fish consumption per kilogram of body weight ranged from 0.11 g/kg-day to 2.3 g/kg-day. The highest values were observed in Florida for children 1<6 years of age. The Florida data show a statistically significant increase in the percentage of the population reporting fish and shellfish consumption with an increase in household income and education. This trend was not observed in the other states.
Mertens, Nicole L; Russell, Bayden D; Connell, Sean D
2015-12-01
Ocean warming is anticipated to strengthen the persistence of turf-forming habitat, yet the concomitant elevation of grazer metabolic rates may accelerate per capita rates of consumption to counter turf predominance. Whilst this possibility of strong top-down control is supported by the metabolic theory of ecology (MTE), it assumes that consumer metabolism and consumption keep pace with increasing production. This assumption was tested by quantifying the metabolic rates of turfs and herbivorous gastropods under a series of elevated temperatures in which the ensuing production and consumption were observed. We discovered that as temperature increases towards near-future levels (year 2100), consumption rates of gastropods peak earlier than the rate of growth of producers. Hence, turfs have greater capacity to persist under near-future temperatures than the capacity for herbivores to counter their growth. These results suggest that whilst MTE predicts stronger top-down control, understanding whether consumer-producer responses are synchronous is key to assessing the future strength of top-down control.
[Consumption of sugar-sweetened beverages among 18 years old and over adults in 2010-2012 in China].
Guo, Haijun; Zhao, Liyun; Xu, Xiaoli; Yu, Wentao; Ju, Lahong; Yu, Dongmei
2018-01-01
To investigate consumption of sugar-sweetened beverages among Chinese adults in 2010-2012. Data was collected from Chinese Nutrition and Health Surveillance: 2010-2012. Multi-stage stratified random cluster and probability proportionate sampling method was used, and 45 203 respondents aged 18 and over from 150 sites of 31 provinces, autonomous regions and municipalities were involved in the analysis. The consumption rate of sugar-sweetened beverages, distribution of the classification of the consumption frequency and percentage of variety beverages consumption frequency were calculated. There were 50. 1% of Chinese adults in2010-2012 consuming sugar-sweetened beverages, men and women were 49. 2% and 50. 8%, for age groups of 18-44, 45-59 and 60 and over, the consumption rates were65. 4% %, 47. 0% % 36. 3%, respectively. The prevalence in cities was 49. 0% and in counties was 51. 3%. The rate of consuming 1 time/week and over was 15. 3% and consuming 1 time/day was 1. 3%. As the economical level decreased, the two rates decreased. Carbonated beverages had the highest consumption frequency( 39. 8%), and the lactic acid beverages had the lowest( 10. 8%). Consumption of carbonated beverages in men( 44. 8%) was higher than that in women( 35. 3%), while for the fruit and vegetable juice, lactic acid beverages, disposable milk beverages and coffee, the consumption in women were higher than that in men. As the economical level decreased, consumption of carbonated and disposable milk beverages were increasing, and lactic acid beverages and coffee were decreasing significantly. The consumption of sugar-sweetened beverages among adults in 2010-2012 was relatively high. The targeted nutrition health education and intervention was needed and implemented to decrease the consumption of sugar-sweetened beverages.
An Experimental Investigation of Premixed Combustion in Extreme Turbulence
NASA Astrophysics Data System (ADS)
Wabel, Timothy Michael
This work has explored various aspects of high Reynolds number combustion that have received much previous speculation. A new high-Reynolds number premixed Bunsen burner, called Hi-Pilot, was designed to produce turbulence intensities in the extreme range of turbulence. The burner was modified several times in order to prevent boundary layer separation in the nozzle, and a large co-flow was designed that was capable of maintaining reactions over the entire flame surface. Velocity and turbulence characteristics were measured using a combination of Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). Flame structure was studied using a combination of formaldehyde (CH2O), hydroxyl (OH), and the CH radical. Planar Laser Induced Fluorescence (PLIF). The spatial Overlap of formaldehyde and OH PLIF qualitatively measures the reaction rate between formaldehyde molecules and OH radicals, and is a measure of the reaction layers of the flame. CH PLIF provides an alternative measure of the reaction zone, and was measured to compare with the Overlap PLIF results. Reaction layers are the full-width at half-maximum of the Overlap or CH PLIF signal, and extinction events were defined as regions where the PLIF signal drops below this threshold. Preheat structures were measured using formaldehyde PLIF, and are defined as beginning at 35% of the local maximum PLIF signal, and continue up to the leading edge of the reaction layer. Previous predictions of regime diagram boundaries were tested at the largest values of turbulent Reynolds number to date. The Overlap and CH PLIF diagnostics allowed extensive testing of the predicted broken reaction zones boundary of Peters. Measurements indicated that all run conditions are in the Broadened Preheat - Thin Reaction layers regime, but several conditions are expected to display a broken reaction zone structure. Therefore the work shows that Peters's predicted boundary is not correct, and therefore a Karlovitz number of 100 is not a valid criteria for broken reactions in the Bunsen geometry. Several measures of the turbulent burning velocity, including the global consumption speed and the extent of flamelet wrinkling, were measured at these conditions. Reaction layers for the burning velocity measurements were provided by the OH PLIF. The measurements showed that the global consumption speed continues to increase for all levels of turbulence intensity u'/SL. In contrast, the flame surface wrinkling rapidly increases the flame surface area for u'/SL < 10, but the flame surface area does not increase further at larger turbulence intensities. This indicates that the flame is not in the laminar flamelet regime, and the consumption rate per unit of flame surface area must be increased. The turbulent diffusivity is thought to be the mechanism enhancing the consumption rate, which is a scenario first hypothesized by Damkohler. The flame structure and burning velocity measurements motivated the measurements of the evolution of turbulence through regions of very thick preheat layers. This measurement utilized simultaneous PIV and formaldehyde PLIF in order to obtain conditioned statistics of the turbulence as a function of eta, the distance from the reaction layer. Together, the results tell a consistent story, and deepen our understanding of premixed combustion at large turbulent Reynolds number.
[Foliar water use efficiency of Platycladus orientalis sapling under different soil water contents].
Zhang, Yong E; Yu, Xin Xiao; Chen, Li Hua; Jia, Guo Dong; Zhao, Na; Li, Han Zhi; Chang, Xiao Min
2017-07-18
The determination of plant foliar water use efficiency will be of great value to improve our understanding about mechanism of plant water consumption and provide important basis of regional forest ecosystem management and maintenance, thus, laboratory controlled experiments were carried out to obtain Platycladus orientalis sapling foliar water use efficiency under five different soil water contents, including instantaneous water use efficiency (WUE gs ) derived from gas exchange and short-term water use efficiency (WUE cp ) caculated using carbon isotope model. The results showed that, controlled by stomatal conductance (g s ), foliar net photosynthesis rate (P n ) and transpiration rate (T r ) increased as soil water content increased, which both reached maximum va-lues at soil water content of 70%-80% field capacity (FC), while WUE gs reached a maximum of 7.26 mmol·m -2 ·s -1 at the lowest soil water content (35%-45% FC). Both δ 13 C of water-soluble leaf and twig phloem material achieved maximum values at the lowest soil water content (35%-45% FC). Besides, δ 13 C values of leaf water-soluble compounds were significantly greater than that of phloem exudates, indicating that there was depletion in 13 C in twig phloem compared with leaf water-soluble compounds and no obvious fractionation in the process of water-soluble material transportation from leaf to twig. Foliar WUE cp also reached a maximum of 7.26 mmol·m -2 ·s -1 at the lowest soil water content (35%-45% FC). There was some difference between foliar WUE gs and WUE cp under the same condition, and the average difference was 0.52 mmol·m -2 ·s -1 . The WUE gs had great space-time variability, by contrast, WUE cp was more representative. It was concluded that P. orientalis sapling adapted to drought condition by increasing water use efficiency and decreasing physiological activity.
ERIC Educational Resources Information Center
Cairney, John; Hay, John; Veldhuizen, Scott; Faught, Brent
2010-01-01
Oxygen consumption at peak physical exertion (VO[subscript 2] maximum) is the most widely used indicator of cardiorespiratory fitness. The purpose of this study was to compare two protocols for its estimation, cycle ergometer testing and the 20 m shuttle run, among children with and without probable developmental coordination disorder (pDCD). The…
NASA Astrophysics Data System (ADS)
Jiang, Yan; Zemp, Roger
2018-01-01
The metabolic rate of oxygen consumption is an important metric of tissue oxygen metabolism and is especially critical in the brain, yet few methods are available for measuring it. We use a custom combined photoacoustic-microultrasound system and demonstrate cerebral oxygen consumption estimation in vivo. In particular, the cerebral metabolic rate of oxygen consumption was estimated in a murine model during variation of inhaled oxygen from hypoxia to hyperoxia. The hypothesis of brain autoregulation was confirmed with our method even though oxygen saturation and flow in vessels changed.
Arshad, Muhammad; Hussain, Tariq; Iqbal, Munawar; Abbas, Mazhar
Very high gravity (VHG) technology was employed on industrial scale to produce ethanol from molasses (fermented) as well as by-products formation estimation. The effect of different Brix° (32, 36 and 40) air-flow rates (0.00, 0.20, 0.40, and 0.60vvm) was studied on ethanol production. The maximum ethanol production was recorded to be 12.2% (v/v) at 40 Brix° with 0.2vvm air-flow rate. At optimum level aeration and 40 Brix° VHG, the residual sugar level was recorded in the range of 12.5-18.5g/L, whereas the viable cell count remained constant up to 50h of fermentation and dry matter production increased with fermentation time. Both water and steam consumption reduced significantly under optimum conditions of Brix° and aeration rate with compromising the ethanol production. Results revealed VHG with continuous air flow is viable technique to reduce the ethanol production cost form molasses at commercial scale. Copyright © 2017. Published by Elsevier Editora Ltda.
A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling.
Wang, Gangsheng; Post, Wilfred M
2012-09-01
We attempted to reconcile three microbial maintenance models (Herbert, Pirt, and Compromise) through a theoretical reassessment. We provided a rigorous proof that the true growth yield coefficient (Y(G)) is the ratio of the specific maintenance rate (a in Herbert) to the maintenance coefficient (m in Pirt). Other findings from this study include: (1) the Compromise model is identical to the Herbert for computing microbial growth and substrate consumption, but it expresses the dependence of maintenance on both microbial biomass and substrate; (2) the maximum specific growth rate in the Herbert (μ(max,H)) is higher than those in the other two models (μ(max,P) and μ(max,C)), and the difference is the physiological maintenance factor (m(q) = a); and (3) the overall maintenance coefficient (m(T)) is more sensitive to m(q) than to the specific growth rate (μ(G)) and Y(G). Our critical reassessment of microbial maintenance provides a new approach for quantifying some important components in soil microbial ecology models. © This article is a US government work and is in the public domain in the USA.
Razi, Putri Zulaiha; Abdul Razak, Hashim; Khalid, Nur Hafizah A
2016-05-06
This study investigates the engineering performance and CO₂ footprint of mortar mixers by replacing Portland cement with 10%, 20%, 40% and 60% fly ash, a common industrial waste material. Samples of self-compacting mortar (SCM) were prepared with four different water/binder ratios and varying dosages of superplasticizer to give three ranges of workability, i.e. , normal, high and self-compacting mortar mix. The engineering performance was assessed in term of compressive strength after designated curing periods for all mixes. CO₂ footprint was the environmental impact indicator of each production stage. The optimum mix obtained was at 10% replacement rate for all mixes. Total production emission reduced by 56% when the fly ash replacement rate increased from 0% to 60% (maximum). This is translated to a reduction of 80% in eco-points (assuming that the energy consumption rate of production with 0% fly ash is at 100%). Such re-utilization is encouraged since it is able to reduce possible soil toxicity due to sulfur leaching by 5% to 27% and landfill area by 15% to 91% on average.
Razi, Putri Zulaiha; Abdul Razak, Hashim; Khalid, Nur Hafizah A.
2016-01-01
This study investigates the engineering performance and CO2 footprint of mortar mixers by replacing Portland cement with 10%, 20%, 40% and 60% fly ash, a common industrial waste material. Samples of self-compacting mortar (SCM) were prepared with four different water/binder ratios and varying dosages of superplasticizer to give three ranges of workability, i.e., normal, high and self-compacting mortar mix. The engineering performance was assessed in term of compressive strength after designated curing periods for all mixes. CO2 footprint was the environmental impact indicator of each production stage. The optimum mix obtained was at 10% replacement rate for all mixes. Total production emission reduced by 56% when the fly ash replacement rate increased from 0% to 60% (maximum). This is translated to a reduction of 80% in eco-points (assuming that the energy consumption rate of production with 0% fly ash is at 100%). Such re-utilization is encouraged since it is able to reduce possible soil toxicity due to sulfur leaching by 5% to 27% and landfill area by 15% to 91% on average. PMID:28773465
Energy Intensity Trends in AEO2010 (released in AEO2010)
2010-01-01
Energy intensity (energy consumption per dollar of real GDP) indicates how much energy a country uses to produce its goods and services. From the early 1950s to the early 1970s, U.S. total primary energy consumption and real GDP increased at nearly the same annual rate. During that period, real oil prices remained virtually flat. In contrast, from the mid-1970s to 2008, the relationship between energy consumption and real GDP growth changed, with primary energy consumption growing at less than one-third the previous average rate and real GDP growth continuing to grow at its historical rate. The decoupling of real GDP growth from energy consumption growth led to a decline in energy intensity that averaged 2.8% per year from 1973 to 2008. In the Annual Energy Outlook 2010 Reference case, energy intensity continues to decline, at an average annual rate of 1.9% from 2008 to 2035.
Carrascón, Vanesa; Bueno, Mónica; Fernandez-Zurbano, Purificación; Ferreira, Vicente
2017-11-01
This Article addresses the study of O 2 and SO 2 consumption rates of white and rosé wines, their relationship to the initial chemical composition, and their effects on the chemical changes experienced by wine during oxidation. Eight wines were subjected to five consecutive air-saturation cycles. O 2 was monitored periodically; SO 2 , color, and antioxidant indexes were determined after each cycle, and the initial and final compositions of the wines were thoroughly determined. Wines consumed oxygen at progressively decreasing rates. In the last cycles, after a strong decrease, consistent increases of oxygen levels were seen. Oxygen consumption rates were satisfactorily modeled, being proportional to wine copper, quercetin, and kaempherol contents and negatively proportional to cinnamic acids. SO 2 consumption rates were highly diverse between wines and were positively related to free SO 2 , Mn, and pH, among others. In the last saturations, SO 2 consumption took place regardless of O 2 consumption, implying that SO 2 should reduce chemical species oxidized in previous saturations. Some volatile phenols seem to be the end point of radical-mediated oxidation of polyphenols taking place preferably in the first saturation.
Kurosawa, Hiroki; Utsunomiya, Hiroki; Shiga, Naomi; Takahashi, Aiko; Ihara, Motomasa; Ishibashi, Masumi; Nishimoto, Mitsuo; Watanabe, Zen; Abe, Hiroyuki; Kumagai, Jin; Terada, Yukihiro; Igarashi, Hideki; Takahashi, Toshifumi; Fukui, Atsushi; Suganuma, Ryota; Tachibana, Masahito; Yaegashi, Nobuo
2016-10-01
Does a new system-the chip-sensing embryo respiration monitoring system (CERMs)-enable evaluation of embryo viability for potential application in a clinical IVF setting? The system enabled the oxygen consumption rate of spheroids, bovine embryos and frozen-thawed human embryos to be measured, and this rate corresponded to the developmental potential of embryos. To date, no reliable and clinically suitable objective evaluation methods for embryos are available, which circumvent the differences in inter-observer subjective view. Existing systems such as the scanning electrochemical microscopy (SECM) technique, which enables the measurement of oxygen consumption rate in embryos, need improvement in usability before they can be applied to a clinical setting. This is a prospective original research study. The feasibility of measuring the oxygen consumption rate was assessed using CERMs for 9 spheroids, 9 bovine embryos and 30 redundant frozen-thawed human embryos. The endpoints for the study were whether CERMs could detect a dissolved oxygen gradient with high sensitivity, had comparable accuracy to the SECM measuring system with improved usability, and could predict the development of an embryo to a blastocyst by measuring the oxygen consumption rate. The relationship between the oxygen consumption rate and standard morphological evaluation was also examined. We developed a new CERMs, which enables the oxygen consumption rate to be measured automatically using an electrochemical method. The device was initially used for measuring a dissolved oxygen concentration gradient in order to calculate oxygen consumption rate using nine spheroids. Next, we evaluated data correlation between the CERMs and the SECM measuring systems using nine bovine embryos. Finally, the oxygen consumption rates of 30 human embryos, which were frozen-thawed on 2nd day after fertilization, were measured by CERMs at 6, 24, 48, 72 and 96 h after thawing with standard morphological evaluation. Furthermore, the developed blastocysts were scored using the blastocyst quality score (BQS), and the correlation with oxygen consumption rate was also assessed. The device enabled the oxygen consumption rate of an embryo to be measured automatically within a minute. The oxygen concentration gradient profile showed excellent linearity in a distance-dependent change. A close correlation in the oxygen consumption rates of bovine embryos was observed between the SECM measuring system and CERMs, with a determination coefficient of 0.8203 (P = 0.0008). Oxygen consumption rates of human embryos that have reached the blastocyst stage were significantly higher than those of arrested embryos at 48, 72 and 96 h after thawing (P = 0.039, 0.004 and 0.049, respectively). Thus, in vitro development of frozen-thawed human embryos to the blastocyst stage would be predicted at 48 h after thawing (day 4) by measuring the oxygen consumption using CERMs. Although a positive linear relationship between BQS and the oxygen consumption rate was observed [the determination coefficient was R(2) = 0.6537 (P = 0.008)], two blastocysts exhibited low oxygen consumption rates considering their relatively high BQS. This suggests that morphology and metabolism in human embryos might not correlate consistently. Transfer of the embryo and pregnancy evaluation was not performed. Thus, a correlation between oxygen consumption and the in vivo viability of embryos remains unknown. Clinical trials, including embryo transfer, would be desirable to determine a threshold value to elect clinically relevant, quality embryos for transfer. We utilized frozen-thawed human embryos in this study. The effect of these manipulations on the respiratory activity of the embryo is also unknown. Selection of quality embryos, especially in a single embryo transfer cycle, by CERMs may have an impact on obtaining better clinical outcomes, albeit with clinical trials being required. Furthermore, the early determination of quality embryos by CERMs may enable the omission of long-term in vitro embryo culture to the blastocyst stage. CERMs is scalable technology that can be integrated into incubators and/or other embryo evaluation systems, such as the time-lapse systems, due to its chip-based architecture. Thus, CERMS would enable automatic measurement of oxygen consumption, under 5% CO2, in the near future, in order to reduce oxidative stress from exposure to atmospheric air. This study was supported by grants from the Health and Labor Sciences Research Grant (H24-Hisaichiiki-Shitei-016). The authors have no conflicts of interest. Not applicable. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The energetic and nutritional yields from insectivory for Kasekela chimpanzees.
O'Malley, Robert C; Power, Michael L
2014-06-01
Insectivory is hypothesized to be an important source of macronutrients, minerals, and vitamins for chimpanzees (Pan troglodytes), yet nutritional data based on actual intake are lacking. Drawing on observations from 2008 to 2010 and recently published nutritional assays, we determined the energy, macronutrient and mineral yields for termite-fishing (Macrotermes), ant-dipping (Dorylus), and ant-fishing (Camponotus) by the Kasekela chimpanzees of Gombe National Park, Tanzania. We also estimated the yields from consumption of weaver ants (Oecophylla) and termite alates (Macrotermes and Pseudacanthotermes). On days when chimpanzees were observed to prey on insects, the time spent in insectivorous behavior ranged from <1 min to over 4 h. After excluding partial bouts and those of <1 min duration, ant-dipping bouts were of significantly shorter duration than the other two forms of tool-assisted insectivory but provided the highest mass intake rate. Termite-fishing bouts were of significantly longer duration than ant-dipping and had a lower mass intake rate, but provided higher mean and maximum mass yields. Ant-fishing bouts were comparable to termite-fishing bouts in duration but had significantly lower mass intake rates. Mean and maximum all-day yields from termite-fishing and ant-dipping contributed to or met estimated recommended intake (ERI) values for a broad array of minerals. The mean and maximum all-day yields of other insects consistently contributed to the ERI only for manganese. All forms of insectivory provided small but probably non-trivial amounts of fat and protein. We conclude that different forms of insectivory have the potential to address different nutritional needs for Kasekela chimpanzees. Other than honeybees, insects have received little attention as potential foods for hominins. Our results suggest that ants and (on a seasonal basis) termites would have been viable sources of fat, high-quality protein and minerals for extinct hominins employing Pan-like subsistence technology in East African woodlands. Copyright © 2014 Elsevier Ltd. All rights reserved.
Features of the Functioning Bacterial Ecosystems in the Antarctic
NASA Astrophysics Data System (ADS)
Yakushev, A. V.; Churilin, N.; Soina, V. S.; Vorobyova, E. A.; Mergelov, N. S.
2014-10-01
Studies of bacterial communities in the samples of Antarctic soils by different methods showed that, both in liquid soil suspensions and in situ, microbial complexes are functioning presumably by forming biofilms -- the phenomenon that is more expressed in such habitat than in soils of temperate zones. Functional (trophic) diversity and physiological state of hydrolytic bacteria was studied in the samples at the upper layer (0-2 cm) of gravel pavement with algae, in the underlying peat horizon (2-4 cm) with inclusions of dead biomass and its underlying mineral horizon (4-10 cm) with signs of fungal mycelium. The investigated samples of Antarctic soils revealed different trophic diversity and the maximum specific growth rate on mineral medium with different biopolymers as the sole carbon source (starch, chitin, pectin, xylan, dextran-500, tween-20, casein); this can testify to differences in the physiological state of hydrolytic bacteria in various soil horizons and their readiness for growth. The most remarkable characteristics of the studied Antarctic soil as compared to the soils of temperate zone, was the unusual ability of hydrolytic community to consume chitin in the mineral horizon; this can be explained by the presence of fungal mycelium. Also, an almost complete lack in consumption of tween-20 (a water-soluble analogue of fat) by bacterial community of Arctic soil horizons are not explained and needs further verification. The higher functional diversity was detected in the upper horizon of the gravel pavement, which "protects" microorganisms from exposure to extreme temperatures, UV radiation, and desiccation, but the maximum specific growth rate was higher in the lower mineral horizon; this can be explained by the specificity of bacterial colonizing processes and unique formation of Antarctic soil microprofiles in the Larsemann oasis. The obtained data indicate a specific environmental strategy in the samples of Antarctic soils: development in lower mineral horizons of microorganisms with a high metabolic readiness to life revival and high maximum growth rate.
Study Of Functioning of Bacterial Complexes in East Antarctic Soils
NASA Astrophysics Data System (ADS)
Yakushev, A. V.; Churilin, N. A.
2014-11-01
Studies of bacterial communities in the samples of Antarctic soils by different methods showed that, both in liquid soil suspensions and in situ, microbial complexes are functioning presumably by forming biofilms - the phenomenon that is more expressed in such habitat than in soils of temperate zones. Functional (trophic) diversity and physiological state of hydrolytic bacteria was studied in the samples at the upper layer (0-2 cm) of gravel pavement with algae, in the underlying peat horizon (2-4 cm) with inclusions of dead biomass and its underlying mineral horizon (4-10 cm) with signs of fungal mycelium. The investigated samples of Antarctic soils revealed different trophic diversity and the maximum specific growth rate on mineral medium with different biopolymers as the sole carbon source (starch, chitin, pectin, xylan, dextran-500, tween-20, casein); this can testify to differences in the physiological state of hydrolytic bacteria in various soil horizons and their readiness for growth. The most remarkable characteristics of the studied Antarctic soil as compared to the soils of temperate zone, was the unusual ability of hydrolytic community to consume chitin in the mineral horizon; this can be explained by the presence of fungal mycelium. Also, an almost complete lack in consumption of tween-20 (a water-soluble analogue of fat) by bacterial community of Arctic soil horizons are not explained and needs further verification. The higher functional diversity was detected in the upper horizon of the gravel pavement, which "protects" microorganisms from exposure to extreme temperatures, UV radiation, and desiccation, but the maximum specific growth rate was higher in the lower mineral horizon; this can be explained by the specificity of bacterial colonizing processes and unique formation of Antarctic soil microprofiles in the Larsemann oasis. The obtained data indicate a specific environmental strategy in the samples of Antarctic soils: development in lower mineral horizons of microorganisms with a high metabolic readiness to life revival and high maximum growth rate.
Li, Meng-Meng; Shi, Hong-Zhuan; Guo, Qiao-Sheng; Wang, Jia; Dai, Dao-Xin
2016-08-01
The oxygen consumption, oxygen consumption rate and suffocation point of different quality Whitmania pigra and Bellamya purificata were determined by hydrostatic breathing room method. The effects of feeding modes on growth of W.pigra were determined by biomass. The results showed that the oxygen consumption correlated positively with the weight of W.pigra and B. purificata(P<0.05), suffocation point increased with the increases of the weight(P<0.05).Oxygen consumption correlated negatively with the weight of W. pigra, the oxygen consumption rate of B.purificata first increased and then decreased with the increasing of the weight. Feeding modes had no significant effects on the finial weight, SGR, WGR, death rates of W. pigra. Feeding modes had significant effects on eating ratio. It suggested that the optimum feeding frequency of W. pigra was once every three days. Scientific and reasonable feeding amount of B. purificata should be calculated based on oxygen consumption and suffocation point of W.pigra and B.purificata at every period. Meanwhile, stocking density, water area and water exchanging frequency should be taken into consideration. Copyright© by the Chinese Pharmaceutical Association.
Dong, Hao; Bi, Jun; Xia, Guang-Li; Zhou, Xun-Bo; Chen, Yu-Hai
2014-08-01
High-yield winter wheat cultivar Jimai 22 was used to study effects of irrigation and planting patterns on water consumption characteristics and photosynthetic characteristics of winter wheat in field from 2009 to 2011. Three different planting patterns (uniform row, wide-narrow row and furrow) and four irrigation schedules (W0, no irrigation; W1, irrigation at jointing stage; W2, irrigations at jointing and anthesis stages; W3, irrigation at jointing, anthesis and milking stages. Each irrigation rate was 60 mm) were designed in the experiment. Results showed that, with the increasing of irrigation amount, flag leaf area, net photosynthesis rate, maximum photochemical efficiency and actual light transformation efficiency at late growth stages of winter wheat increased. Compared with W0 treatment, the other irrigation treatments had higher grain yields, but lower water use efficiencies. Under the same irrigation condition, the flag leaf net photosynthesis, maximum photochemical efficiency and actual light transformation efficiency were much higher in furrow pattern. Grain yields of winter wheat under furrow pattern and W2 treatment were significantly higher than that of the other treatments. Taking grain yield and WUE into consideration, furrow pattern combined with irrigation at jointing and anthesis stages might be the optimal water-saving and planting mode for the winter wheat production in North China Plain.
Laboratory evaluation of a walleye (Sander vitreus) bioenergetics model
Madenjian, C.P.; Wang, C.; O'Brien, T. P.; Holuszko, M.J.; Ogilvie, L.M.; Stickel, R.G.
2010-01-01
Walleye (Sander vitreus) is an important game fish throughout much of North America. We evaluated the performance of the Wisconsin bioenergetics model for walleye in the laboratory. Walleyes were fed rainbow smelt (Osmerus mordax) in four laboratory tanks during a 126-day experiment. Based on a statistical comparison of bioenergetics model predictions of monthly consumption with the observed monthly consumption, we concluded that the bioenergetics model significantly underestimated food consumption by walleye in the laboratory. The degree of underestimation appeared to depend on the feeding rate. For the tank with the lowest feeding rate (1.4% of walleye body weight per day), the agreement between the bioenergetics model prediction of cumulative consumption over the entire 126-day experiment and the observed cumulative consumption was remarkably close, as the prediction was within 0.1% of the observed cumulative consumption. Feeding rates in the other three tanks ranged from 1.6% to 1.7% of walleye body weight per day, and bioenergetics model predictions of cumulative consumption over the 126-day experiment ranged between 11 and 15% less than the observed cumulative consumption. ?? 2008 Springer Science+Business Media B.V.
[Gradation in the level of vitamin consumption: possible risk of excessive consumption].
Kodentsova, V M
2014-01-01
The ratio between the levels of consumption of certain vitamins and minerals [recommended daily allowance for labelling purposes < maximum supplement levels < tolerable upper intake level (UL) < safe level (limit) of consumption < or = therapeutic dose has been characterized. Vitamin A and beta-carotene maximum supplement levels coincides with UL, and recommended daily allowance for these micronutrients coincides with the maximal level of consumption through dietary supplements and/or multivitamins. Except for vitamin A and beta-carotene recommended daily allowance for other vitamins adopted in Russia are considerably lower than the upper safe level of consumption. For vitamin A and beta-carotene there is a potential risk for excess consumption. According to the literature data (meta-analysis) prolonged intake of high doses of antioxidant vitamins (above the RDA) both alone and in combination with two other vitamins or vitamin C [> 800 microg (R.E.) of vitamin A, > 9.6 mg of beta-carotene, > 15 mg (T.E.) of vitamin E] do not possess preventive effects and may be harmful with unwanted consequences to health, especially in well-nourished populations, persons having risk of lung cancer (smokers, workers exposed to asbestos), in certain conditions (in the atmosphere with high oxygen content, hyperoxia, oxygen therapy). Proposed mechanisms of such action may be due to the manifestation of prooxidant action when taken in high doses, shifting balance with other important natural antioxidants, their displacement (substitution), interference with the natural defense mechanisms. Athletes are the population group that requires attention as used antioxidant vitamins A, C, E, both individually and in combination in extremely high doses. In summary, it should be noted that intake of physiological doses which are equivalent to the needs of the human organism, as well as diet inclusion of fortified foods not only pose no threat to health, but will bring undoubted benefits, filling the existing lack of vitamins in the ration.
Ilic, Milena; Ilic, Irena; Stojanovic, Goran; Zivanovic-Macuzic, Ivana
2016-01-05
This paper reports association between mortality rates from cancer, ischaemic heart disease and diabetes mellitus and the consumption of common food groups and beverages in Serbia. In this ecological study, data on both mortality and the average annual consumption of common food groups and beverages per household's member were obtained from official data-collection sources. The multivariate linear regression analysis was used to determine the strength of the associations between consumption of common food groups and beverages and mortality rates. Markedly increasing trends of cancer, ischaemic heart disease and diabetes mellitus mortality rates were observed in Serbia in the period 1991-2010. Mortality rates from cancer were negatively associated with consumption of vegetable oil (p=0.005) and grains (p=0.001), and same was found for ischaemic heart disease (p=0.002 and 0.021, respectively), while consumption of other dairy products showed a significant positive association (p<0.001 and p=0.032, respectively). In men and women, mortality rates from diabetes mellitus showed a significant positive association with consumption of poultry (p=0.014 and 0.004, respectively). Consumption of beef and grains showed a significant negative association with cancer mortality rates in both genders (p=0.002 and p<0.001 in men, and p<0.001 and p=0.014 in women, respectively), while consumption of cheese was negatively associated only in men (p<0.001). Mortality from diabetes mellitus showed a significant positive association with consumption of animal fat and other dairy products only in women (p=0.003 and 0.046, respectively). Association between unfavourable mortality trends from cancer, ischaemic heart disease and diabetes mellitus, and common food groups and beverages consumption was observed and should be assessed in future analytical epidemiological studies. Promotion of healthy diet is sorely needed in Serbia. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Astrophysics Data System (ADS)
Belfiore, Laurence A.; Volpato, Fabio Z.; Paulino, Alexandre T.; Belfiore, Carol J.
2011-12-01
The primary objective of this investigation is to establish guidelines for generating significant mammalian cell density in suspension bioreactors when stress-sensitive kinetics enhance the rate of nutrient consumption. Ultra-low-frequency dynamic modulations of the impeller (i.e., 35104 Hz) introduce time-dependent oscillatory shear into this transient analysis of cell proliferation under semi-continuous creeping flow conditions. Greater nutrient consumption is predicted when the amplitude
King, Gary M; Weber, Carolyn F
2008-02-01
Patterns of microbial colonization and interactions between microbial processes and vascular plants on volcanic deposits have received little attention. Previous reports have shown that atmospheric CO and hydrogen contribute significantly to microbial metabolism on Kilauea volcano (Hawaii) deposits with varied ages and successional development. Relationships between CO oxidation and plant communities were not clear, however, since deposit age and vegetation status covaried. To determine plant-microbe interactions in deposits of uniform ages, CO and hydrogen dynamics have been assayed for unvegetated tephra on a 1959 deposit at Pu'u Puai (PP-bare), at the edge of tree 'islands' within the PP deposit (PP-edge) and within PP tree islands (PP-canopy). Similar assays have been conducted for vegetated and unvegetated sites on a 1969 Mauna Ulu (MU) lava flow. Net in situ atmospheric CO uptake was highest at PP-edge and PP-bare sites (2.2+/-0.5 and 1.3+/-0.1 mg CO m(-2) day(-1), respectively), and least for PP-canopy (-3.2+/-0.9 mg CO m(-2) day(-1), net emission). Respiration rates, microbial biomass and maximum CO uptake potential showed an opposing pattern. Comparisons of atmospheric CO uptake and CO(2) production rates indicate that CO contributes significantly to microbial metabolism in PP-bare and MU-unvegetated sites, but negligibly where vegetation is well developed. Nonetheless, maximum potential CO uptake rates indicate that CO oxidizer populations increase with increasing plant biomass and consume CO actively. Some of these CO oxidizers may contribute to elevated nitrogen fixation rates (acetylene reduction) measured within tree islands, and thus, support plant successional development.
Distribution and Rate of Methane Oxidation in Sediments of the Florida Everglades †
King, Gary M.; Roslev, Peter; Skovgaard, Henrik
1990-01-01
Rates of methane emission from intact cores were measured during anoxic dark and oxic light and dark incubations. Rates of methane oxidation were calculated on the basis of oxic incubations by using the anoxic emissions as an estimate of the maximum potential flux. This technique indicated that methane oxidation consumed up to 91% of the maximum potential flux in peat sediments but that oxidation was negligible in marl sediments. Oxygen microprofiles determined for intact cores were comparable to profiles measured in situ. Thus, the laboratory incubations appeared to provide a reasonable approximation of in situ activities. This was further supported by the agreement between measured methane fluxes and fluxes predicted on the basis of methane profiles determined by in situ sampling of pore water. Methane emissions from peat sediments, oxygen concentrations and penetration depths, and methane concentration profiles were all sensitive to light-dark shifts as determined by a combination of field and laboratory analyses. Methane emissions were lower and oxygen concentrations and penetration depths were higher under illuminated than under dark conditions; the profiles of methane concentration changed in correspondence to the changes in oxygen profiles, but the estimated flux of methane into the oxic zone changed negligibly. Sediment-free, root-associated methane oxidation showed a pattern similar to that for methane oxidation in the core analyses: no oxidation was detected for roots growing in marl sediment, even for roots of Cladium jamaicense, which had the highest activity for samples from peat sediments. The magnitude of the root-associated oxidation rates indicated that belowground plant surfaces may not markedly increase the total capacity for methane consumption. However, the data collectively support the notion that the distribution and activity of methane oxidation have a major impact on the magnitude of atmospheric fluxes from the Everglades. PMID:16348299
Optimization of fuel-cell tram operation based on two dimension dynamic programming
NASA Astrophysics Data System (ADS)
Zhang, Wenbin; Lu, Xuecheng; Zhao, Jingsong; Li, Jianqiu
2018-02-01
This paper proposes an optimal control strategy based on the two-dimension dynamic programming (2DDP) algorithm targeting at minimizing operation energy consumption for a fuel-cell tram. The energy consumption model with the tram dynamics is firstly deduced. Optimal control problem are analyzed and the 2DDP strategy is applied to solve the problem. The optimal tram speed profiles are obtained for each interstation which consist of three stages: accelerate to the set speed with the maximum traction power, dynamically adjust to maintain a uniform speed and decelerate to zero speed with the maximum braking power at a suitable timing. The optimal control curves of all the interstations are connected with the parking time to form the optimal control method of the whole line. The optimized speed profiles are also simplified for drivers to follow.
Barwick, M; Maher, W
2003-10-01
In this study the biotransference of selenium copper, cadmium, zinc, arsenic and lead was measured in a contaminated seagrass ecosystem in Lake Macquarie, NSW, Australia, to determine if biomagnification of these trace metals is occurring and if they reach concentrations that pose a threat to the resident organisms or human consumers. Selenium was found to biomagnify, exceeding maximum permitted concentrations for human consumption within carnivorous fish tissue, the highest trophic level examined. Selenium concentrations measured within carnivorous fish were also above those shown to elicit sub-lethal effects in freshwater fish. As comparisons are made to selenium concentrations known to effect freshwater fish, inferences must be made with caution. There was no evidence of copper, cadmium, zinc or lead biomagnification within the food web examined. Copper, cadmium, zinc and lead concentrations were below concentrations shown to elicit adverse responses in biota. Copper concentrations within crustaceans M. bennettae and P. palagicus were found to exceed maximum permitted concentrations for human consumption. It is likely that copper concentrations within these species were accumulated due to the essential nature of this trace metal for many species of molluscs and crustaceans. Arsenic showed some evidence of biomagnification. Total arsenic concentrations are similar to those found in other uncontaminated marine ecosystems, thus arsenic concentrations are unlikely to cause adverse effects to aquatic organisms. Inorganic arsenic concentrations are below maximum permitted concentrations for human consumption.
Sepulveda, C; Dickson, K A
2000-10-01
Tunas (Scombridae) have been assumed to be among the fastest and most efficient swimmers because they elevate the temperature of the slow-twitch, aerobic locomotor muscle above the ambient water temperature (endothermy) and because of their streamlined body shape and use of the thunniform locomotor mode. The purpose of this study was to test the hypothesis that juvenile tunas swim both faster and more efficiently than their ectothermic relatives. The maximum sustainable swimming speed (U(max), the maximum speed attained while using a steady, continuous gait powered by the aerobic myotomal muscle) and the net cost of transport (COT(net)) were compared at 24 degrees C in similar-sized (116-255 mm fork length) juvenile scombrids, an endothermic tuna, the kawakawa (Euthynnus affinis) and the ectothermic chub mackerel (Scomber japonicus). U(max) and COT(net) were measured by forcing individual fish to swim in a temperature-controlled, variable-speed swimming tunnel respirometer. There were no significant interspecific differences in the relationship between U(max) and body mass or fork length or in the relationship between COT(net) and body mass or fork length. Muscle temperatures were elevated by 1.0-2.3 degrees C and 0.1-0.6 degrees C above water temperature in the kawakawa and chub mackerel, respectively. The juvenile kawakawa had significantly higher standard metabolic rates than the chub mackerel, because the total rate of oxygen consumption at a given swimming speed was higher in the kawakawa when the effects of fish size were accounted for. Thus, juvenile kawakawa are not capable of higher sustainable swimming speeds and are not more efficient swimmers than juvenile chub mackerel.
44 CFR 208.12 - Maximum Pay Rate Table.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Maximum Pay Rate Table. 208... § 208.12 Maximum Pay Rate Table. (a) Purpose. This section establishes the process for creating and updating the Maximum Pay Rate Table (Table), and the Table's use to reimburse Affiliated Personnel (Task...
Nugawela, Manjula D.; Langley, Tessa; Szatkowski, Lisa; Lewis, Sarah
2016-01-01
Aims To review the international guidelines and recommendations on survey instruments for measurement of alcohol consumption in population surveys and to examine how national surveys in England meet the core recommendations. Methods A systematic search for international guidelines for measuring alcohol consumption in population surveys was undertaken. The common core recommendations for alcohol consumption measures and survey instruments were identified. Alcohol consumption questions in national surveys in England were compared with these recommendations for specific years and over time since 2000. Results Four sets of international guidelines and three core alcohol consumption measures (alcohol consumption status, average volume of consumption, frequency and volume of heavy episodic drinking) with another optional measure (drinking context) were identified. English national surveys have been inconsistent over time in including questions that provide information on average volume of consumption but have not included questions on another essential alcohol consumption measure, frequency of heavy episodic drinking. Instead, they have used questions that focus only on maximum volume of alcohol consumed on any day in the previous week. Conclusions International guidelines provide consistent recommendations for measuring alcohol consumption in population surveys. These recommendations have not been consistently applied in English national surveys, and this has contributed to the inadequacy of survey measurements for monitoring vital aspects of alcohol consumption in England over recent years. PMID:26115987
Hui, Ada; Lam, Xanthe M; Kuehl, Christopher; Grauschopf, Ulla; Wang, Y John
2015-01-01
When isolator technology is applied to biotechnology drug product fill-finish process, hydrogen peroxide (H2O2) spiking studies for the determination of the sensitivity of protein to residual peroxide in the isolator can be useful for assessing a maximum vapor phase hydrogen peroxide (VPHP) level. When monoclonal antibody (mAb) drug products were spiked with H2O2, an increase in methionine (Met 252 and Met 428) oxidation in the Fc region of the mAbs with a decrease in H2O2 concentration was observed for various levels of spiked-in peroxide. The reaction between Fc-Met and H2O2 was stoichiometric (i.e., 1:1 molar ratio), and the reaction rate was dependent on the concentrations of mAb and H2O2. The consumption of H2O2 by Fc-Met oxidation in the mAb followed pseudo first-order kinetics, and the rate was proportional to mAb concentration. The extent of Met 428 oxidation was half of that of Met 252, supporting that Met 252 is twice as reactive as Met 428. Similar results were observed for free L-methionine when spiked with H2O2. However, mAb formulation excipients may affect the rate of H2O2 consumption. mAb formulations containing trehalose or sucrose had faster H2O2 consumption rates than formulations without the sugars, which could be the result of impurities (e.g., metal ions) present in the excipients that may act as catalysts. Based on the H2O2 spiking study results, we can predict the amount Fc-Met oxidation for a given protein concentration and H2O2 level. Our kinetic modeling of the reaction between Fc-Met oxidation and H2O2 provides an outline to design a H2O2 spiking study to support the use of VPHP isolator for antibody drug product manufacture. Isolator technology is increasing used in drug product manufacturing of biotherapeutics. In order to understand the impact of residual vapor phase hydrogen peroxide (VPHP) levels on protein product quality, hydrogen peroxide (H2O2) spiking studies may be performed to determine the sensitivity of monoclonal antibody (mAb) drug products to residual peroxide in the isolator. In this study, mAbs were spiked with H2O2; an increase in methionine (Met) oxidation of the mAbs with a decrease in H2O2 concentration was observed for various levels of spiked-in peroxide. The reaction between Met and H2O2 was 1:1, and its rate was dependent on mAb and H2O2 concentrations. Consumption of H2O2 by Met followed pseudo first-order kinetics; the rate was proportional to mAb concentration. Formulations containing trehalose or sucrose had faster consumption rates than formulations without the sugars, which could be due to excipient impurities. Based on H2O2 spiking study results, we can predict the amount of Met oxidation for a given mAb concentration and H2O2 level. Our modeling of the reaction between Fc-Met oxidation and H2O2 provides an outline to design a H2O2 spiking study that supports using VPHP isolators during manufacture of mAb products. © PDA, Inc. 2015.
Effect of flow rate and concentration difference on reverse electrodialysis system
NASA Astrophysics Data System (ADS)
Kwon, Kilsugn; Han, Jaesuk; Kim, Daejoong
2013-11-01
Various energy conversion technologies have been developed to reduce dependency on limited fossil fuels, including wind power, solar power, hydropower, ocean power, and geothermal power. Among them, reverse electrodialysis (RED), which is one type of salinity gradient power (SGP), has received much attention due to high reliability and simplicity without moving parts. Here, we experimentally evaluated the RED performance with several parameters like flow rate of concentrated and dilute solution, concentration difference, and temperature. RED was composed of endplates, electrodes, spacers, anion exchange membrane, and cation exchange membrane. Endplates are made by a polypropylene. It included the electrodes, flow field for the electrode rinse solution, and path to supply a concentrated and dilute solution. Titanium coated by iridium and ruthenium was used as the electrode. The electrode rinse solution based on hexacyanoferrate system is used to reduce the power loss generated by conversion process form ionic current to electric current. Maximum power monotonously increases as increasing flow rate and concentration difference. Net power has optimal point because pumping power consumption increases with flow rate. This work was supported by Basic Science Research Program (Grat No. NRF-2011-0009993) through the National Research Foundation of Korea.
Patterns in Vegetable Consumption: Implications for Tailored School Meal Interventions
ERIC Educational Resources Information Center
Orlowski, Marietta; Lee, Miryoung; Spears, William; Narayan, Roopsi; Pobocik, Rebecca S.; Kennel, Julie; Krafka, Erin; Patton, Susan
2017-01-01
Background: Vegetable consumption is a challenging behavioral target; consumption rates are below recommended levels and when interventions produce improvements, increases in vegetable consumption are typically a fraction of the change in fruit consumption. We describe vegetable consumption within Ohio school meals and examine how fruit selection,…
Carman, Mary R; Grunden, David W; Govindarajan, Annette F
2017-01-01
Here we report a unique trophic interaction between the cryptogenic and sometimes highly toxic hydrozoan clinging jellyfish Gonionemus sp. and the spider crab Libinia dubia . We assessed species-specific predation on the Gonionemus medusae by crabs found in eelgrass meadows in Massachusetts, USA. The native spider crab species L. dubia consumed Gonionemus medusae, often enthusiastically, but the invasive green crab Carcinus maenus avoided consumption in all trials. One out of two blue crabs ( Callinectes sapidus ) also consumed Gonionemus , but this species was too rare in our study system to evaluate further. Libinia crabs could consume up to 30 jellyfish, which was the maximum jellyfish density treatment in our experiments, over a 24-hour period. Gonionemus consumption was associated with Libinia mortality. Spider crab mortality increased with Gonionemus consumption, and 100% of spider crabs tested died within 24 h of consuming jellyfish in our maximum jellyfish density containers. As the numbers of Gonionemus medusae used in our experiments likely underestimate the number of medusae that could be encountered by spider crabs over a 24-hour period in the field, we expect that Gonionemus may be having a negative effect on natural Libinia populations. Furthermore, given that Libinia overlaps in habitat and resource use with Carcinus , which avoids Gonionemus consumption, Carcinus populations could be indirectly benefiting from this unusual crab-jellyfish trophic relationship.
Carman, Mary R.; Grunden, David W.
2017-01-01
Here we report a unique trophic interaction between the cryptogenic and sometimes highly toxic hydrozoan clinging jellyfish Gonionemus sp. and the spider crab Libinia dubia. We assessed species–specific predation on the Gonionemus medusae by crabs found in eelgrass meadows in Massachusetts, USA. The native spider crab species L. dubia consumed Gonionemus medusae, often enthusiastically, but the invasive green crab Carcinus maenus avoided consumption in all trials. One out of two blue crabs (Callinectes sapidus) also consumed Gonionemus, but this species was too rare in our study system to evaluate further. Libinia crabs could consume up to 30 jellyfish, which was the maximum jellyfish density treatment in our experiments, over a 24-hour period. Gonionemus consumption was associated with Libinia mortality. Spider crab mortality increased with Gonionemus consumption, and 100% of spider crabs tested died within 24 h of consuming jellyfish in our maximum jellyfish density containers. As the numbers of Gonionemus medusae used in our experiments likely underestimate the number of medusae that could be encountered by spider crabs over a 24-hour period in the field, we expect that Gonionemus may be having a negative effect on natural Libinia populations. Furthermore, given that Libinia overlaps in habitat and resource use with Carcinus, which avoids Gonionemus consumption, Carcinus populations could be indirectly benefiting from this unusual crab–jellyfish trophic relationship. PMID:29085761
A multisite randomized trial of social norms marketing campaigns to reduce college student drinking.
DeJong, William; Schneider, Shari Kessel; Towvim, Laura Gomberg; Murphy, Melissa J; Doerr, Emily E; Simonsen, Neal R; Mason, Karen E; Scribner, Richard A
2006-11-01
An 18-site randomized trial was conducted to determine the effectiveness of social norms marketing (SNM) campaigns in reducing college student drinking. The SNM campaigns are intended to correct misperceptions of subjective drinking norms and thereby drive down alcohol consumption. Institutions of higher education were randomly assigned to treatment and control groups. At the treatment group institutions, SNM campaigns delivered school-specific, data-driven messages through a mix of campus media venues. Cross-sectional student surveys were conducted by mail at baseline (n = 2,771) and at posttest 3 years later (n = 2,939). Hierarchical linear modeling was applied to examine multiple drinking outcomes, taking intraclass correlation into account. Controlling for other predictors, having an SNM campaign was significantly associated with lower perceptions of student drinking levels and lower alcohol consumption, as measured by a composite drinking scale, recent maximum consumption, blood alcohol concentration for recent maximum consumption, drinks consumed when partying, and drinks consumed per week. A moderate mediating effect of normative perceptions on student drinking was demonstrated by an attenuation of the Experimental Group x Time interaction, ranging from 16.4% to 39.5% across measures. Additional models that took into account the intensity of SNM campaign activity at the treatment institutions suggested that there was a dose-response relationship. This study is the most rigorous evaluation of SNM campaigns conducted to date. Analysis revealed that students attending institutions that implemented an SNM campaign had a lower relative risk of alcohol consumption than students attending control group institutions.
The effects of beverage type on suicide rate in Russia.
Razvodovsky, Yury E
2011-12-01
Research evidence has suggested that the consumption of different types of alcoholic beverage may have a differential effect on suicide rate. The aim of this study was to examine the relation between the consumption of different beverage types and suicide rates in Russia. Age-standardized sex- and age-specific suicide rate for the period 1980-2005 and data on beverage-specific alcohol sale were obtained from the Russian State Statistical Committee. Time-series analytical modeling techniques (ARIMA) were used to examine the relationship between the sale of different alcoholic beverages and suicide rates. Vodka consumption as measured by sale was significantly associated with both male and female suicide rate. The consumption of beer and wine were not associated with suicide rate. The estimates of the age specific models for men were positive (except for the 75+ age group) and ranging from 0.069 (60-74 age group) to 0.123 (30-44 age group). The estimates for women were positive for the 15-29 age group (0.08), 30-44 age group (0.096) and 45-59 age group (0.057). These findings suggest that public health efforts should focus on both reducing overall consumption and changing beverage preference away from distilled spirits in order to reduce suicide rate in Russia.
Yu, Daoyong; Huang, Guihong; Xu, Fengxi; Ge, Baosheng; Liu, Shuang; Xu, Hai; Huang, Fang
2014-11-01
Surfactants play a significant role in solubilization of photosystem I (PSI) in vitro. Triton X-100 (TX), n-Dodecyl-β-D-maltoside (DDM), and sodium dodecyl sulfate (SDS) were employed to solubilize PSI particles in MES buffer to compare the effect of surfactant and its dosage on the apparent oxygen consumption rate of PSI. Through a combined assessment of sucrose density gradient centrifugation, Native PAGE and 77 K fluorescence with the apparent oxygen consumption, the nature of the enhancement of the apparent oxygen consumption activity of PSI by surfactants has been analyzed. Aggregated PSI particles can be dispersed by surfactant molecules into micelles, and the apparent oxygen consumption rate is higher for surfactant-solubilized PSI than for integral PSI particles. For DDM, PSI particles are solubilized mostly as the integral trimeric form. For TX, PSI particles are solubilized as incomplete trimeric and some monomeric forms. For the much harsher surfactant, SDS, PSI particles are completely solubilized as monomeric and its subunit forms. The enhancement of the oxygen consumption rate cannot be explained only by the effects of surfactant on the equilibrium between monomeric and trimeric forms of solubililized PSI. Care must be taken when the electron transfer activity of PSI is evaluated by methods based on oxygen consumption because the apparent oxygen consumption rate is influenced by uncoupled chlorophyll (Chl) from PSI, i.e., the larger the amount of uncoupled Chl, the higher the rate of apparent oxygen consumption. 77 K fluorescence spectra can be used to ensure that there is no uncoupled Chl present in the system. In order to eliminate the effect of trace uncoupled Chl, an efficient physical quencher of (1)O2, such as 1 mM NaN3, may be added into the mixture.
EPA has released a draft report entitled, Metabolically-Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates, for independent external peer review and public comment. NCEA published the Exposure Factors Handbook in 1997. This comprehens...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burger, Joanna, E-mail: burger@biology.rutgers.edu; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854-8082
Valuation of features of habitats and ecosystems usually encompasses the goods and services that ecosystems provide, but rarely also examine how people value ecological resources in terms of eco-cultural and sacred activities. The social, sacred, and cultural aspects of ecosystems are particularly important to Native Americans, but western science has rarely examined the importance of eco-cultural attributes quantitatively. In this paper I explore differences in ecosystem evaluations, and compare the perceptions and evaluations of places people go for consumptive and non-consumptive resource use with evaluations of the same qualities for religious and sacred places. Qualities of ecosystems included goods (abundantmore » fish and crabs, butterflies and flowers, clean water), services (complexity of nature, lack of radionuclides that present a health risk), and eco-cultural attributes (appears unspoiled, scenic horizons, noise-free). Native Americans and Caucasians were interviewed at a Pow Wow at Post Falls, Idaho, which is in the region with the Department of Energy's Hanford Site, known for its storage of radioactive wastes and contamination. A higher percentage of Native American subjects engaged in consumptive and religious activities than did Caucasians. Native Americans engaged in higher rates of many activities than did Caucasians, including commune with nature, pray or meditate, fish or hunt, collect herbs, and conduct vision quests or other ceremonies. For nearly all attributes, there was no difference in the relative ratings given by Native Americans for characteristics of sites used for consumption/non-consumptive activities compared to religious/sacred places. However, Caucasians rated nearly all attributes lower for religious/sacred places than they did for places where they engaged in consumptive or non-consumptive activities. Native Americans were less concerned with distance from home for consumptive/non-consumptive activities, compared to religious activities. - Research Highlights: {yields} A higher percentage of Native Americans engaged in consumptive and religious activities than did Caucasians interviewed. {yields} Caucasians rated environmental attributes as more important for consumptive and non-consumptive activities than they did for places where they engaged in religious/cultural ones. {yields} Native Americans rated environmental attributes as equally important regardless of the activities performed. {yields} Eco-cultural attributes (such as 'appears unspoiled') were rated as high as ecosystem services (e.g. unpolluted water).« less
Blum, Jan-Michael; Su, Qingxian; Ma, Yunjie; Valverde-Pérez, Borja; Domingo-Félez, Carlos; Jensen, Marlene Mark; Smets, Barth F
2018-05-01
Nitrous oxide (N 2 O) is emitted during microbiological nitrogen (N) conversion processes, when N 2 O production exceeds N 2 O consumption. The magnitude of N 2 O production vs. consumption varies with pH and controlling net N 2 O production might be feasible by choice of system pH. This article reviews how pH affects enzymes, pathways and microorganisms that are involved in N-conversions in water engineering applications. At a molecular level, pH affects activity of cofactors and structural elements of relevant enzymes by protonation or deprotonation of amino acid residues or solvent ligands, thus causing steric changes in catalytic sites or proton/electron transfer routes that alter the enzymes' overall activity. Augmenting molecular information with, e.g., nitritation or denitrification rates yields explanations of changes in net N 2 O production with pH. Ammonia oxidizing bacteria are of highest relevance for N 2 O production, while heterotrophic denitrifiers are relevant for N 2 O consumption at pH > 7.5. Net N 2 O production in N-cycling water engineering systems is predicted to display a 'bell-shaped' curve in the range of pH 6.0-9.0 with a maximum at pH 7.0-7.5. Net N 2 O production at acidic pH is dominated by N 2 O production, whereas N 2 O consumption can outweigh production at alkaline pH. Thus, pH 8.0 may be a favourable pH set-point for water treatment applications regarding net N 2 O production. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Application of dynamic flux balance analysis to an industrial Escherichia coli fermentation.
Meadows, Adam L; Karnik, Rahi; Lam, Harry; Forestell, Sean; Snedecor, Brad
2010-03-01
We have developed a reactor-scale model of Escherichia coli metabolism and growth in a 1000 L process for the production of a recombinant therapeutic protein. The model consists of two distinct parts: (1) a dynamic, process specific portion that describes the time evolution of 37 process variables of relevance and (2) a flux balance based, 123-reaction metabolic model of E. coli metabolism. This model combines several previously reported modeling approaches including a growth rate-dependent biomass composition, maximum growth rate objective function, and dynamic flux balancing. In addition, we introduce concentration-dependent boundary conditions of transport fluxes, dynamic maintenance demands, and a state-dependent cellular objective. This formulation was able to describe specific runs with high-fidelity over process conditions including rich media, simultaneous acetate and glucose consumption, glucose minimal media, and phosphate depleted media. Furthermore, the model accurately describes the effect of process perturbations--such as glucose overbatching and insufficient aeration--on growth, metabolism, and titer. (c) 2009 Elsevier Inc. All rights reserved.
Xiao, Wei; Jin, Xianbo; Deng, Yuan; Wang, Dihua; Hu, Xiaohong; Chen, George Z
2006-08-11
The electrochemical reduction of solid SiO2 (quartz) to Si is studied in molten CaCl2 at 1173 K. Experimental observations are compared and agree well with a novel penetration model in relation with electrochemistry at the dynamic conductor|insulator|electrolyte three-phase interlines. The findings show that the reduction of a cylindrical quartz pellet at certain potentials is mainly determined by the diffusion of the O(2-) ions and also the ohmic polarisation in the reduction-generated porous silicon layer. The reduction rate increases with the overpotential to a maximum after which the process is retarded, most likely due to precipitation of CaO in the reaction region (cathodic passivation). Data are reported on the reduction rate, current efficiency and energy consumption during the electroreduction of quartz under potentiostatic conditions. These theoretical and experimental findings form the basis for an in-depth discussion on the optimisation of the electroreduction method for the production of silicon.
Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar
2015-02-01
An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field. Copyright © 2014 Elsevier Ltd. All rights reserved.
Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum.
Jojima, Toru; Noburyu, Ryoji; Sasaki, Miho; Tajima, Takahisa; Suda, Masako; Yukawa, Hideaki; Inui, Masayuki
2015-02-01
Recombinant Corynebacterium glutamicum harboring genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB) can produce ethanol under oxygen deprivation. We investigated the effects of elevating the expression levels of glycolytic genes, as well as pdc and adhB, on ethanol production. Overexpression of four glycolytic genes (pgi, pfkA, gapA, and pyk) in C. glutamicum significantly increased the rate of ethanol production. Overexpression of tpi, encoding triosephosphate isomerase, further enhanced productivity. Elevated expression of pdc and adhB increased ethanol yield, but not the rate of production. Fed-batch fermentation using an optimized strain resulted in ethanol production of 119 g/L from 245 g/L glucose with a yield of 95% of the theoretical maximum. Further metabolic engineering, including integration of the genes for xylose and arabinose metabolism, enabled consumption of glucose, xylose, and arabinose, and ethanol production (83 g/L) at a yield of 90 %. This study demonstrated that C. glutamicum has significant potential for the production of cellulosic ethanol.
Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Domínguez, José Manuel
2012-02-15
This study develops a system for the efficient valorisation of hemicellulosic hydrolysates of vineshoot trimmings. By connecting two reactors of 2L and 10L, operational conditions were set up for the sequential production of lactic acid and xylitol in continuous fermentation, considering the dependence of the main metabolites and fermentation parameters on the dilution rate. In the first bioreactor, Lactobacillus rhamnosus consumed all the glucose to produce lactic acid at 31.5°C, with 150rpm and 1L of working volume as the optimal conditions. The residual sugars were employed for the xylose to xylitol bioconversion by Debaryomyces hansenii in the second bioreactor at 30°C, 250rpm and an air-flow rate of 2Lmin(-1). Several steady states were reached at flow rates (F) in the range of 0.54-5.33mLmin(-1), leading to dilution rates (D) ranging from 0.032 to 0.320h(-1) in Bioreactor 1 and from 0.006 to 0.064h(-1) in Bioreactor 2. The maximum volumetric lactic acid productivity (Q(P LA)=2.908gL(-1)h(-1)) was achieved under D=0.266h(-1) (F=4.44mLmin(-1)); meanwhile, the maximum production of xylitol (5.1gL(-1)), volumetric xylitol productivity (Q(P xylitol)=0.218gL(-1)h(-1)), volumetric rate of xylose consumption (Q(S xylose)=0.398gL(-1)h(-1)) and product yield (0.55gg(-1)) were achieved at an intermediate dilution rate of 0.043h(-1) (F=3.55mLmin(-1)). Under these conditions, ethanol, which was the main by-product of the fermentation, was produced in higher amounts (1.9gL(-1)). Finally, lactic acid and xylitol were effectively recovered by conventional procedures. Copyright © 2011 Elsevier B.V. All rights reserved.
Burger, J
1999-02-26
Several federal agencies are reclaiming land through remediation and restoration, and are considering potential future land uses that are compatible with current land uses and local needs. Understanding potential recreational and wild game consumption patterns and risk perceptions are critical for determining cleanup levels and assessing potential risk associated with certain uses. In this article, recreational rates of people attending the Lewiston "Roundup" rodeo in northwestern Idaho were examined, as well as their perceptions of the safety of consuming fish and game from two Department of Energy (DOE) facilities: the Hanford Site and the Idaho National Engineering and Environmental Laboratory (INEEL). These are two of DOE's largest sites. Lewiston is closer to Hanford, but is in the same state as INEEL. Men engaged in significantly higher hunting and fishing rates than women, but there were no gender differences in camping and hiking rates. Rates of hunting and camping decreased significantly with age, while rates of hiking were lowest for 31- to 45-yr-olds. Level of education generally was not related to rates of recreation. Over 70% of the subjects ate deer, elk, and self-caught fish; 30-50% ate grouse, moose, and waterfowl; and fewer people ate other game species. Overall, subjects were less concerned about eating the fish and game from INEEL than from Hanford, and more people thought Hanford should be cleaned up completely compared to INEEL. Mean rates of fishing, hiking, and camping all exceeded the DOE's maximum recreational exposure assumption of 14 d/yr used in their future use documents. Although at present people are generally not allowed access to DOE lands for recreation, recreation is one future land use being considered for these federal facilities. Given that some people would engage in multiple activities, the potential exists for people living in the general region of Hanford and INEEL to exceed the 14-d exposure assumption. The relative gender differences in recreational rates mean that men are potentially more at risk, particularly since hunting (on both sites) and fishing (on Hanford) are attractive.
NASA Technical Reports Server (NTRS)
Gao, Q.; Fang, A.; Demain, A. L.
2001-01-01
We examined the consumption of glucose from the media in which Escherichia coli ZK650 was grown. This organism, which produces the polypeptide antibiotic microcin B17 best under conditions of limiting supplies of glucose and air, was grown with a low level of glucose (0.5 mg/ml) as well as a high level (5.0 mg/ml) under both high and low aeration. Glucose consumption rates were virtually identical under both high and low aeration. Thus, glucose consumption rate is not a regulating factor in microcin B17 formation.
Trust Model of Wireless Sensor Networks and Its Application in Data Fusion
Chen, Zhenguo; Tian, Liqin; Lin, Chuang
2017-01-01
In order to ensure the reliability and credibility of the data in wireless sensor networks (WSNs), this paper proposes a trust evaluation model and data fusion mechanism based on trust. First of all, it gives the model structure. Then, the calculation rules of trust are given. In the trust evaluation model, comprehensive trust consists of three parts: behavior trust, data trust, and historical trust. Data trust can be calculated by processing the sensor data. Based on the behavior of nodes in sensing and forwarding, the behavior trust is obtained. The initial value of historical trust is set to the maximum and updated with comprehensive trust. Comprehensive trust can be obtained by weighted calculation, and then the model is used to construct the trust list and guide the process of data fusion. Using the trust model, simulation results indicate that energy consumption can be reduced by an average of 15%. The detection rate of abnormal nodes is at least 10% higher than that of the lightweight and dependable trust system (LDTS) model. Therefore, this model has good performance in ensuring the reliability and credibility of the data. Moreover, the energy consumption of transmitting was greatly reduced. PMID:28350347
Kieffer, J D; Wakefield, A M
2009-02-01
Experiments were designed to examine the effects of various temperature challenges on oxygen consumption and ammonia excretion rates and protein utilization in juvenile Atlantic salmon Salmo salar. Fish acclimated to 15 degrees C were acutely and abruptly exposed to either 20 or 25 degrees C for a period of 3 h. To simulate a more environmentally relevant temperature challenge, a third group of fish was exposed to a gradual increase in temperature from 15 to 20 degrees C over a period of 3 h (c. 1.7 degrees C h(-1)). Oxygen consumption and ammonia excretion rates were monitored before, during and after the temperature shift. From the ammonia excretion and oxygen consumption rates, protein utilization rates were calculated. Acute temperature changes (15-20 degrees C or 15-25 degrees C) caused large and immediate increases in the oxygen consumption rates. When the temperature was gradually changed (i.e. 1.7 degrees C h(-1)), however, the rates of oxygen consumption and ammonia excretion were only marginally altered. When fish were exposed to warmer temperatures (i.e. 15-20 degrees C or 15-25 degrees C) protein use generally remained at pre-exposure (15 degrees C) levels. A rapid transfer back to 15 degrees C (20-15 degrees C or 25-15 degrees C) generally increased protein use in S. salar. These results indicate that both the magnitude and the rate of temperature change are important in describing the physiological response in juvenile salmonids.
FEC decoder design optimization for mobile satellite communications
NASA Technical Reports Server (NTRS)
Roy, Ashim; Lewi, Leng
1990-01-01
A new telecommunications service for location determination via satellite is being proposed for the continental USA and Europe, which provides users with the capability to find the location of, and communicate from, a moving vehicle to a central hub and vice versa. This communications system is expected to operate in an extremely noisy channel in the presence of fading. In order to achieve high levels of data integrity, it is essential to employ forward error correcting (FEC) encoding and decoding techniques in such mobile satellite systems. A constraint length k = 7 FEC decoder has been implemented in a single chip for such systems. The single chip implementation of the maximum likelihood decoder helps to minimize the cost, size, and power consumption, and improves the bit error rate (BER) performance of the mobile earth terminal (MET).
Alcohol Control Policies and Alcohol Consumption by Youth: A Multi-National Study
Paschall, Mallie J.; Grube, Joel W.; Kypri, Kypros
2009-01-01
Aims The study examined relationships between alcohol control policies and adolescent alcohol use in 26 countries. Design Cross-sectional analyses of alcohol policy ratings based on the Alcohol Policy Index (API), per capita consumption, and national adolescent survey data. Setting Data are from 26 countries. Participants Adolescents (15-17 years old) who participated in the 2003 ESPAD (European countries) or national secondary school surveys in Spain, Canada, Australia, New Zealand and the USA. Measurements Alcohol control policy ratings based on the API; prevalence of alcohol use, heavy drinking, and first drink by age 13 based on national secondary school surveys; per capita alcohol consumption for each country in 2003. Analysis Correlational and linear regression analyses were conducted to examine relationships between alcohol control policy ratings and past-30-day prevalence of adolescent alcohol use, heavy drinking, and having first drink by age 13. Per capita consumption of alcohol was included as a covariate in regression analyses. Findings More comprehensive API ratings and alcohol availability and advertising control ratings were inversely related to the past-30-day prevalence of alcohol use and prevalence rates for drinking 3-5 times and 6 or more times in the past 30 days. Alcohol advertising control was also inversely related to the prevalence of past-30-day heavy drinking and having first drink by age 13. Most of the relationships between API, alcohol availability and advertising control and drinking prevalence rates were attenuated and no longer statistically significant when controlling for per capita consumption in regression analyses, suggesting that alcohol use in the general population may confound or mediate observed relationships between alcohol control policies and youth alcohol consumption. Several of the inverse relationships remained statistically significant when controlling for per capita consumption. Conclusions More comprehensive and stringent alcohol control policies, particularly policies affecting alcohol availability and marketing, are associated with lower prevalence and frequency of adolescent alcohol consumption and age of first alcohol use. PMID:19832785
ERIC Educational Resources Information Center
Poulos, Natalie S.; Pasch, Keryn E.
2016-01-01
Background: Energy drink consumption has become increasingly prevalent among US college students, yet little is known about current rates of consumption and reasons for consumption among current energy drink users, particularly differences related to gender and race/ethnicity. Objectives: To better understand energy drink consumption alone and…
Using consumption rate to assess potential predators for biological control of white perch
Gosch, N.J.C.; Pope, K.L.
2011-01-01
Control of undesirable fishes is important in aquatic systems, and using predation as a tool for biological control is an attractive option to fishery biologists. However, determining the appropriate predators for biological control is critical for success. The objective of this study was to evaluate the utility of consumption rate as an index to determine the most effective predators for biological control of an invasive fish. Consumption rate values were calculated for nine potential predators that prey on white perch Morone americana in Branched Oak and Pawnee reservoirs, Nebraska. The consumption rate index provided a unique and insightful means of determining the potential effectiveness of each predator species in controlling white perch. Cumulative frequency distributions facilitated interpretation by providing a graphical presentation of consumption rates by all individuals within each predator species. Largemouth bass Micropterus salmoides, walleye Sander vitreus and sauger S. canadensis were the most efficient white perch predators in both reservoirs; however, previous attempts to increase biomass of these predators have failed suggesting that successful biological control is unlikely using existing predator species in these Nebraska reservoirs. ?? 2011 ONEMA.
Ai, Shiwei; Guo, Rui; Liu, Bailin; Ren, Liang; Naeem, Sajid; Zhang, Wenya; Zhang, Yingmei
2016-10-01
Vegetables and crops can take up heavy metals when grown on polluted lands. The concentrations and dynamic uptake of heavy metals vary at different growth points for different vegetables. In order to assess the safe consumption of vegetables in weak alkaline farmlands, Chinese cabbage and radish were planted on the farmlands of Baiyin (polluted site) and Liujiaxia (relatively unpolluted site). Firstly, the growth processes of two vegetables were recorded. The growth curves of the two vegetables observed a slow growth at the beginning, an exponential growth period, and a plateau towards the end. Maximum concentrations of copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) were presented at the slow growth period and showed a downtrend except the radish shoot. The concentrations of heavy metals (Cu, Zn, and Cd) in vegetables of Baiyin were higher than those of Liujiaxia. In the meanwhile, the uptake contents continued to increase during the growth or halted at maximum at a certain stage. The maximum uptake rates were found on the maturity except for the shoot of radish which took place at the exponential growth stages of root. The sigmoid model could simulate the dynamic processes of growth and heavy metals uptake of Chinese cabbage and radish. Conclusively, heavy metals have higher bioaccumulation tendency for roots in Chinese cabbage and for shoots in radish.
Global increase and geographic convergence in antibiotic consumption between 2000 and 2015
Van Boeckel, Thomas P.; Martinez, Elena M.; Pant, Suraj; Gandra, Sumanth; Levin, Simon A.; Goossens, Herman
2018-01-01
Tracking antibiotic consumption patterns over time and across countries could inform policies to optimize antibiotic prescribing and minimize antibiotic resistance, such as setting and enforcing per capita consumption targets or aiding investments in alternatives to antibiotics. In this study, we analyzed the trends and drivers of antibiotic consumption from 2000 to 2015 in 76 countries and projected total global antibiotic consumption through 2030. Between 2000 and 2015, antibiotic consumption, expressed in defined daily doses (DDD), increased 65% (21.1–34.8 billion DDDs), and the antibiotic consumption rate increased 39% (11.3–15.7 DDDs per 1,000 inhabitants per day). The increase was driven by low- and middle-income countries (LMICs), where rising consumption was correlated with gross domestic product per capita (GDPPC) growth (P = 0.004). In high-income countries (HICs), although overall consumption increased modestly, DDDs per 1,000 inhabitants per day fell 4%, and there was no correlation with GDPPC. Of particular concern was the rapid increase in the use of last-resort compounds, both in HICs and LMICs, such as glycylcyclines, oxazolidinones, carbapenems, and polymyxins. Projections of global antibiotic consumption in 2030, assuming no policy changes, were up to 200% higher than the 42 billion DDDs estimated in 2015. Although antibiotic consumption rates in most LMICs remain lower than in HICs despite higher bacterial disease burden, consumption in LMICs is rapidly converging to rates similar to HICs. Reducing global consumption is critical for reducing the threat of antibiotic resistance, but reduction efforts must balance access limitations in LMICs and take account of local and global resistance patterns. PMID:29581252
Wang, Li; Xi, Feng Ming; Wang, Jiao Yue
2016-03-01
The contradiction between energy consumption and economic growth is increasingly prominent in China. Liaoning Province as one of Chinese heavy industrial bases, consumes a large amount of energy. Its economic development has a strong dependence on energy consumption, but the energy in short supply become more apparent. In order to further understand the relationship between energy consumption and economic growth and put forward scientific suggestions on low carbon development, we used the grey correlation analysis method to separately examine the relevance of economic growth with energy consumption industries and energy consumption varieties through analy sis of energy consumption and economic growth data in Liaoning Province from 2000 to 2012. The results showed that the wholesale and retail sector and hotel and restaurant sector were in the minimum energy consumption in all kinds of sectors, but they presented the closest connection with the economic growth. Although industry energy consumption was the maximum, the degree of connection between industry energy consumption and economic growth was weak. In all types of energy consumption, oil and hydro-power consumption had a significant connection with economic growth. However, the degree of connection of coal consumption with economic growth was not significant, which meant that coal utilization efficiency was low. In order to achieve low carbon and sustainable development, Liaoning Province should transform the economic growth mode, adjust industry structure, optimize energy structure, and improve energy utilization efficiency, especially promote producer services and develop clean and renewable energy.
Wildland fire emissions, carbon, and climate: Modeling fuel consumption
Roger D. Ottmar
2014-01-01
Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern. Fuel consumption is the basic...
ERIC Educational Resources Information Center
Koziol, James A.; Zuraw, Bruce L.; Christiansen, Sandra C.
2002-01-01
Purpose: This report examines health care rates, charges, and patterns of consumption from a comprehensive California hospitalization data set covering 1986-1995. An improved understanding of current trends in health care consumption would facilitate the development of future resource allocation models. Design and Methods: We obtained discharge…
Li, Xiao; Luo, Yu-Di; Pan, Dong-Rui; Shi, Xiao-Dan; Tan, Ya-Li; Li, Zhi-Hong
2017-01-01
ABSTRACT Using 5 Zn2+ supplementation strategies in a 50 L batch bioreactor named FUS-50L(A), possible correlations among Zn2+ content and addition timing, physiologic activity (PA), halohydrin dehalogenase (HheC) accumulation of Escherichia coli P84A/MC1061 were systematically investigated. First, Zn2+ was confirmed as the significant factor, and its optimal concentration for HheC expression was 3.87 mg/L through fermentation experiments in shaking flasks. Second, based on experimental results from the different strategies, it was found that PA, nutrient consumption rate (NCR) and specific growth rate (μ) for E. coli P84A/MC1061 were promoted in the log phase (4–8 h) under appropriate Zn2+ concentrations in the lag phase and late log phase. Furthermore cell biomass was also increased to a higher level and the maximum HheC activity (i.e. HheCmax) was increased by 9.80%, and the time to reach HheCmax was reduced from 16 to 12 hours. Furthermore, appropriate supplementation of Zn2+ caused higher μ for E. coli P84A/MC1061, which resulted in more rapid accumulation of increased acetic acid concentrations, leading to higher acetic acid consumption avoiding any negative effects on producing HheC because of carbon source being exhausted prematurely and acetic acid being consumed rapidly. PMID:28282255
Is weather related to the number of assaults seen at emergency departments?
Lemon, D J; Partridge, R
2017-11-01
It is often suggested that the weather can effect behaviour, increasing the likelihood of assaults and resulting in increased admissions to emergency departments (ED). Therefor a better understanding of the effect of climatic conditions could be useful to help EDs in capacity planning. Whilst other studies have looked at this, none have used data collected specifically to look at ED attendance for assaults or have taken account of potential behaviour modifiers. We use data from our ED violence surveillance system, the Cardiff Model (CM), married to daily meteorological data to construct negative-binomial regression models. The models are used to estimate changes in the assault rate with changes in temperature, adjusting for day of the week and alcohol consumption. We find that there is 1% increase in the assault rate for every degree increase in the maximum daily temperature (IRR=1.01, P-value=0.033). Additionally, different patterns in alcohol consumption at weekends also provide a significant contribution. However, when we generalise this model to represent temperature in terms of factors of standard deviation from the mean temperature, the IRR relationship changes, plateauing at unusually high temperatures (±1.5 SD above the mean). The results presented here suggest that whilst temperature does increase the risk of assaults in Dorset, there may be a limit to its effect. This implies the 'curve-linear' relationship for temperature as suggested by others. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
High energy deficit in an ultraendurance athlete in a 24-hour ultracycling race
Rodríguez, Ferran A.; Iglesias, Xavier; Benítez, Adolfo; Marina, Míchel; Padullés, Josep M.; Torrado, Priscila; Vázquez, Jairo; Knechtle, Beat
2012-01-01
This case study examined the nutritional behavior and energy balance in an official finisher of a 24-hour ultracycling race. The food and beverages consumed by the cyclist were continuously weighed and recorded to estimate intake of energy, macronutrients, sodium, and caffeine. In addition, during the race, heart rate was continuously monitored. Energy expenditure was assessed using a heart rate–oxygen uptake regression equation obtained previously from a laboratory test. The athlete (39 years, 175.6 cm, 84.2 kg, maximum oxygen uptake, 64 mL/kg/min) cycled during 22 h 22 min, in which he completed 557.3 km with 8760 m of altitude at an average speed of 25.1 km/h. The average heart rate was 131 beats/min. Carbohydrates were the main macronutrient intake (1102 g, 13.1 g/kg); however, intake was below current recommendations. The consumption of protein and fat was 86 g and 91 g, respectively. He ingested 20.7 L (862 mL/h) of fluids, with sport drinks the main fluid used for hydration. Sodium concentration in relation to total fluid intake was 34.0 mmol/L. Caffeine consumption over the race was 231 mg (2.7 mg/kg). During the race, he expended 15,533 kcal. Total energy intake was 5571 kcal, with 4058 (73%) and 1513 (27%) kcal derived from solids and fluids, respectively. The energy balance resulted in an energy deficit of 9915 kcal. PMID:22481841
Matsushika, Akinori; Sawayama, Shigeki
2012-12-01
The inhibitory effects of pH and acetic acid on the co-fermentation of glucose and xylose in complex medium by recombinant flocculent Saccharomyces cerevisiae MA-R4 were evaluated. In the absence of acetic acid, the fermentation performance of strain MA-R4 was similar between pH 4.0-6.0, but was negatively affected at pH 2.5. The addition of acetic acid to batch cultures resulted in negligible inhibition of several fermentation parameters at pH 6.0, whereas the interactive inhibition of pH and acetic acid on the maximum cell and ethanol concentrations, and rates of sugar consumption and ethanol production were observed at pH levels below 5.4. The inhibitory effect of acetic acid was particularly marked for the consumption rate of xylose, as compared with that of glucose. With increasing initial acetic acid concentration, the ethanol yield slightly increased at pH 5.4 and 6.0, but decreased at pH values lower than 4.7. Notably, ethanol production was nearly completely inhibited under low pH (4.0) and high acetic acid (150-200 mM) conditions. Together, these results indicate that the inhibitory effects of acetic acid and pH on ethanol fermentation by MA-R4 are highly synergistic, although the inhibition can be reduced by increasing the medium pH.
Cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025.
Rocha, Maria Valderez Ponte; Rodrigues, Tigressa Helena Soares; Melo, Vania M M; Gonçalves, Luciana R B; de Macedo, Gorete Ribeiro
2011-08-01
The potential of cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025 was evaluated in this work. This strain was preliminarily cultivated in a synthetic medium containing glucose and xylose and was able to produce ethanol and xylitol at pH 4.5. Next, cashew apple bagasse hydrolysate (CABH) was prepared by a diluted sulfuric acid pretreatment and used as fermentation media. This hydrolysate is rich in glucose, xylose, and arabinose and contains traces of formic acid and acetic acid. In batch fermentations of CABH at pH 4.5, the strain produced only ethanol. The effects of temperature on the kinetic parameters of ethanol fermentation by K. marxianus CE025 using CABH were also evaluated. Maximum specific growth rate (μ(max)), overall yields of ethanol based on glucose consumption [Formula: see text] and based on glucose + xylose consumption (Y ( P/S )), overall yield of ethanol based on biomass (Y ( P/X )), and ethanol productivity (P (E)) were determined as a function of temperature. Best results of ethanol production were achieved at 30°C, which is also quite close to the optimum temperature for the formation of biomass. The process yielded 12.36 ± 0.06 g l(-1) of ethanol with a volumetric production rate of 0.257 ± 0.002 g l(-1) h(-1) and an ethanol yield of 0.417 ± 0.003 g g(-1) glucose.
Development and evaluation of a bioenergetics model for bull trout
Mesa, Matthew G.; Welland, Lisa K.; Christiansen, Helena E.; Sauter, Sally T.; Beauchamp, David A.
2013-01-01
We conducted laboratory experiments to parameterize a bioenergetics model for wild Bull Trout Salvelinus confluentus, estimating the effects of body mass (12–1,117 g) and temperature (3–20°C) on maximum consumption (C max) and standard metabolic rates. The temperature associated with the highest C max was 16°C, and C max showed the characteristic dome-shaped temperature-dependent response. Mass-dependent values of C max (N = 28) at 16°C ranged from 0.03 to 0.13 g·g−1·d−1. The standard metabolic rates of fish (N = 110) ranged from 0.0005 to 0.003 g·O2·g−1·d−1 and increased with increasing temperature but declined with increasing body mass. In two separate evaluation experiments, which were conducted at only one ration level (40% of estimated C max), the model predicted final weights that were, on average, within 1.2 ± 2.5% (mean ± SD) of observed values for fish ranging from 119 to 573 g and within 3.5 ± 4.9% of values for 31–65 g fish. Model-predicted consumption was within 5.5 ± 10.9% of observed values for larger fish and within 12.4 ± 16.0% for smaller fish. Our model should be useful to those dealing with issues currently faced by Bull Trout, such as climate change or alterations in prey availability.
Lee, T-Y; Forschler, B T
2016-04-01
Three hundred Reticulitermes virginicus (Banks) workers were exposed to three 1-cm3 wood blocks of either Quercus sp. (Red Oak), Populus sp. (Poplar), Pinus sp. (Pine), or Sequoia sp. (Redwood) placed into one of the three bioassay designs (no-, two-, and four-choice) for 21 d. Termite wood consumption was measured by wood weight loss, resistance class, and visual rating. Wood consumption rates were determined using four formulas in addition to two standardized visual rating scales (American Society for Testing and Materials [ASTM] and American Wood Protection Association [AWPA]) and a preference ranking obtained for each measure. The wood consumption formula, rating scale, and preference rankings were compared by bioassay design. The overall preference ranking of the four wood types as determined by the combination of all three designs was—1) Pine, 2) Red Oak, 3) Redwood, and 4) Poplar. Results indicate that bioassay design influenced both wood consumption and preference rankings. A no-choice design can determine aversion; a four-choice design the most preferred wood; and a two-choice design can illuminate the fine details of comparative preference. The different formulas employed for calculation of consumption rate influenced preference ranking in the no- and four-choice designs but not the two-choice design.
Oxygen consumption during pouch development of the macropod marsupial Setonix brachyurus
Shield, John
1966-01-01
1. Measurements of O2 consumption at 9 or 10 temperatures in the 20-40° C ambient temperature range were made on joeys with ages selected to cover the 180-day period of pouch occupancy. 2. The rate of O2 consumption of joeys younger than 100 days increased directly with ambient temperature. 3. After 100 days of age the O2 consumption rate at low temperatures rose and at about 140 days of age a constant rate was maintained over the full ambient temperature range. 4. Heat transfer from joey to mother commenced after 100 days of age. 5. At 150-180 days of age the rate of O2 consumption at 20° C was approximately 12 times greater than at ages less than 100 days. A thermal neutral zone was established in the range 32-36° C by joeys older than 150 days. 6. At the usual pouch temperature of 36·5° C, O2 consumption per unit wet body weight rose from 12 ml./kg.min at birth to 17 ml./kg.min at the end of pouch life. On a unit dry body weight basis it fell from 120 to 56 ml./kg.min. This decline parallels the decrease in growth rate. PMID:5972171
Bioavailability of catechins from tea: the effect of milk.
van het Hof, K H; Kivits, G A; Weststrate, J A; Tijburg, L B
1998-05-01
To assess the blood concentration of catechins following green or black tea ingestion and the effect of addition of milk to black tea. Twelve volunteers received a single dose of green tea, black tea and black tea with milk in a randomized cross-over design with one-week intervals. Blood samples were drawn before and up to eight hours after tea consumption. The study was performed at the Unilever Research Vlaardingen in The Netherlands. Twelve healthy adult volunteers (7 females, 5 males) participated in the study. They were recruited among employees of Unilever Research Vlaardingen. Green tea, black tea and black tea with semi-skimmed milk (3 g tea solids each). Consumption of green tea (0.9 g total catechins) or black tea (0.3 g total catechins) resulted in a rapid increase of catechin levels in blood with an average maximum change from baseline (CVM) of 0.46 micromol/l (13%) after ingestion of green tea and 0.10 micromol/l (13%) in case of black tea. These maximum changes were reached after (mean (s.e.m.)) t=2.3 h (0.2) and t=2.2 h (0.2) for green and black tea respectively. Blood levels rapidly declined with an elimination rate (mean (CVM)) of t1/2=4.8 h (5%) for green tea and t1/2=6.9 h (8%) for black tea. Addition of milk to black tea (100 ml in 600 ml) did not significantly affect the blood catechin levels (areas under the curves (mean (CVM) of 0.53 h. micromol/l (11%) vs 0.60 h. micromol/l (9%) for black tea and black tea with milk respectively. Catechins from green tea and black tea are rapidly absorbed and milk does not impair the bioavailability of tea catechins.
[Low flow anaesthesia with isoflurane in the dog].
Kramer, Sabine; Alyakine, Hassan; Nolte, Ingo
2005-01-01
The aim of the present study was to compare the safety of two low flow (LF) regimes [fresh gas flow (FGF) 20 ml/kg/min (group 2) and 14 ml/kg/min (group 3)] with the high flow (HF) technique (FGF 50 ml/kg/min; group 1) of isoflurane anaesthesia. Data were gathered from ninety dogs assigned for surgery under general anaesthesia with an expected duration of 75 minutes or longer. All dogs had an anaesthetic induction with 0,6 mg/kg I-methadone (maximum 25 mg) and 1 mg/kg diazepam (maximum 25 mg) i.v. Anaesthesia was maintained with isoflurane in a mixture of 50% O2 and 50% N2O as carrier gases, with controlled ventilation. The Monitoring included electrocardiogramm, body temperature, the temperature of in- and exspired gases, arterial oxygen saturation, arterial blood pressure as well as a continuous monitoring of inhaled and exhaled gas concentrations (O2, N2O, CO2, isoflurane). The consumption of isoflurane and carrier gases as well as the recovery times were evaluated for the three groups. The inspired oxygen concentrations always ranged above the minimum value of 30 Vol.-% during low flow anaesthesia. The arterial oxygen saturation ranged between 92-98%, the end tidal concentration of CO2 between 35 and 45 mmHg. Heart rate and arterial blood pressure were within normal limits. Recovery time was significantly shorter after LF than after HF anaesthesia. The highest decrease in body temperature occurred in the HF group 1 because of a significantly lower anaesthetic gas temperature. Despite this, LF anaesthesia resulted in a reduced consumption of carrier gases and volatiles. In conclusion, low flow anaesthesia with isoflurane is a safe technique and offers substantial economic advantages over high flow techniques and is moreover better tolerated by the patients.
NASA Astrophysics Data System (ADS)
Carroll, R. W. H.; Flickinger, A.; Warwick, J. J.; Schumer, R.
2015-12-01
A bioenergetic and mercury (Hg) mass balance (BioHg) model is developed for the Sacramento blackfish (Orthodon microlepidotus), a filter feeding cyprinid found in northern California and Nevada. Attention focuses on the Lahontan Reservoir in northern Nevada, which receives a strong temporally varying load of dissolved methylmercury (DMeHg) from the Carson River. Hg loads are the result of contaminated bank erosion during high flows and diffusion from bottom sediments during low flows. Coupling of dynamic reservoir loading with periods of maximum plankton growth and maximum fish consumption rates are required to explain the largest body burdens observed in the planktivore. In contrast, the large body burdens cannot be achieved using average water column concentrations. The United States Bureau of Reclamation has produced future streamflow estimates for 2000-2099 using 112 CMIP3 climate projections and the Variable Infiltration Capacity (VIC) model. These are used to drive a fully dynamic Hg transport model to assess changes in contaminant loading to the reservoir and implications on planktivorous bioaccumulation. Model results suggest the future loads of DMeHg entering the Lahontan Reservoir will decrease most significantly in the spring and summer due to channel width increases and depth decreases in the Carson River which reduce bank erosion over the century. The modeled concentrations of DMeHg in the reservoir are expected to increase during the summer due to a decrease in reservoir volume affecting the concentrations more than the decrease in loads, and the model results show that bioaccumulation levels may increase in the upstream sections of the reservoir while maintaining contamination levels above the federal action limit for human consumption in the lower reservoir.
Reconfigurable fault tolerant avionics system
NASA Astrophysics Data System (ADS)
Ibrahim, M. M.; Asami, K.; Cho, Mengu
This paper presents the design of a reconfigurable avionics system based on modern Static Random Access Memory (SRAM)-based Field Programmable Gate Array (FPGA) to be used in future generations of nano satellites. A major concern in satellite systems and especially nano satellites is to build robust systems with low-power consumption profiles. The system is designed to be flexible by providing the capability of reconfiguring itself based on its orbital position. As Single Event Upsets (SEU) do not have the same severity and intensity in all orbital locations, having the maximum at the South Atlantic Anomaly (SAA) and the polar cusps, the system does not have to be fully protected all the time in its orbit. An acceptable level of protection against high-energy cosmic rays and charged particles roaming in space is provided within the majority of the orbit through software fault tolerance. Check pointing and roll back, besides control flow assertions, is used for that level of protection. In the minority part of the orbit where severe SEUs are expected to exist, a reconfiguration for the system FPGA is initiated where the processor systems are triplicated and protection through Triple Modular Redundancy (TMR) with feedback is provided. This technique of reconfiguring the system as per the level of the threat expected from SEU-induced faults helps in reducing the average dynamic power consumption of the system to one-third of its maximum. This technique can be viewed as a smart protection through system reconfiguration. The system is built on the commercial version of the (XC5VLX50) Xilinx Virtex5 FPGA on bulk silicon with 324 IO. Simulations of orbit SEU rates were carried out using the SPENVIS web-based software package.
Lead-contaminated imported tamarind candy and children's blood lead levels.
Lynch, R A; Boatright, D T; Moss, S K
2000-01-01
In 1999, an investigation implicated tamarind candy as the potential source of lead exposure for a child with a significantly elevated blood lead level (BLL). The Oklahoma City-County Health Department tested two types of tamarind suckers and their packaging for lead content. More than 50% of the tested suckers exceeded the US Food and Drug Administration (FDA) Level of Concern for lead in this type of product. The authors calculated that a child consuming one-quarter to one-half of either of the two types of suckers in a day would exceed the maximum FDA Provis onal Tolerable Intake for lead. High lead concentrations in the two types of wrappers suggested leaching as a potential source of contamination. The authors used the Environmental Protection Agency's Integrated Exposure Uptake Biokinetic (IEUBK) model to predict the effects of consumption of contaminated tamarind suckers on populat on BLLs. The IEUBK model predicted that consumption of either type of sucker at a rate of one per day would result in dramatic increases in mean BLLs for children ages 6-84 months in Oklahoma and in the percentage of children wth elevated BLLs (> or =10 micrograms per deciliter [microg/dL]). The authors conclude that consumption of these products represents a potential public health threat. In addition, a history of lead contamination in imported tamarind products suggests that import control measures may not be completely effective in preventing additional lead exposure. PMID:11354337
Castera, V T; Sanz Valero, J; Juan-Quilis, V; Wanden-Berghe, C; Culebras, J M; García de Lorenzo y Mateos, A
2008-01-01
To describe and assess the consumption of the information consulted and cited in the articles published in the journal Nutrición Hospitalaria for the period 2001--2005 by means of bibliometric analysis. Cross-sectional descriptive analysis of the results obtained from the analysis of the lists of bibliographic references of the articles published at Nutrición Hospitalaria. We studied the most cited journals, the signatures index, the type of document referred, the publication language, the distribution of geographical origin, and obsolescence and readiness index. We took into account all types of documents with the exception of Communications to Congresses. 345 articles were published at Nutr Hosp, containing 8,113 bibliographic references, with a median of 18, a maximum of 136 and minimum of 0 BR per article. The mean (rate of publications per published article during the specified period) is 23.52 (95% IC 20.93-26.10) and the mean at 5% is 20.66 per article. The 25th and 75th percentiles are 6 and 32, respectively, the interquartile interval being 26 BR per document. The semi-period of Burton and Kebler is 7 years and the Price Index is 38.18%. The bibliographic references, the consumption of information, of the articles published at Nutrición Hospitalaria present parameters similar to other journals on health science. However, good data on obsolescence are observed, which reveal the good validity of most of the references studied.
Tahara, Yasuaki; Moji, Kazuhiko; Honda, Sumihisa; Nakao, Rieko; Tsunawake, Noriaki; Fukuda, Rika; Aoyagi, Kiyoshi; Mascie-Taylor, Nicholas
2008-05-01
The relationship between fat-free mass (FFM) and excess post-exercise oxygen consumption (EPOC) has not been well researched because of the relatively small number of subjects studied. This study investigated the effects of FFM on EPOC and EPOC/maximum oxygen consumption. 250 Japanese male athletes between 16 and 21 years old from Nagasaki prefecture had their EPOC measured up to 40 minutes after short-duration exhaustive exercise. The value was named as EPOC40 min. The proportions of EPOC up to 1, 3, 6, 10, and 25 minutes to EPOC40 min were calculated and named as P1, P3, P6, P10, and P25, respectively. Body size and composition, VO2max and resting metabolic rate (RMR) were also measured. Mean EPOC40 min was 9.04 L or 158 ml/kg FFM. EPOC40 min was related to FFM (r=0.55, p<0.001) and VO2max (r=0.37, p<0.001). The ratio of EPOC40 min to VO2max was related to FFM (r=0.28, p<0.001). P1, P3, P6, P10, and P25 were negatively related to EPOC40 min/FFM, EPOC40 min/VO2max, and FFM. Athletes who had larger FFM had larger EPOC40 40 min and EPOC40 40 min/VO2max, and smaller P1, P3, P10, and P25.
Discounting and decision making in the economic evaluation of health-care technologies.
Claxton, Karl; Paulden, Mike; Gravelle, Hugh; Brouwer, Werner; Culyer, Anthony J
2011-01-01
Discounting costs and health benefits in cost-effectiveness analysis has been the subject of recent debate - some authors suggesting a common rate for both and others suggesting a lower rate for health. We show how these views turn on key judgments of fact and value: on whether the social objective is to maximise discounted health outcomes or the present consumption value of health; on whether the budget for health care is fixed; on the expected growth in the cost-effectiveness threshold; and on the expected growth in the consumption value of health. We demonstrate that if the budget for health care is fixed and decisions are based on incremental cost effectiveness ratios (ICERs), discounting costs and health gains at the same rate is correct only if the threshold remains constant. Expecting growth in the consumption value of health does not itself justify differential rates but implies a lower rate for both. However, whether one believes that the objective should be the maximisation of the present value of health or the present consumption value of health, adopting the social time preference rate for consumption as the discount rate for costs and health gains is valid only under strong and implausible assumptions about values and facts. 2010 John Wiley & Sons, Ltd.
González-Luque, J C; Rodríguez-Artalejo, F
2000-01-01
This paper identifies the variables associated with alcohol-related fatal traffic crashes (AFTC) in Spain. In addition, and for the first time in this country, these variables are used to describe the trend in AFTC, and to study the relationship between AFTC and alcohol consumption over the period 1976-1993. To this end, official data were obtained from the Traffic Department (Dirección General de Tráfico), the National Statistics Institute (Instituto Nacional de Estadística), and from international publications on trends in alcohol consumption. Nighttime fatal crashes (NFC) and male-driver single-vehicle nighttime fatal crashes (MNFC) were strongly associated with AFTC rates in Spain. A further finding was the decrease in NFC and MNFC rates during the period 1978-1993, though this decrease proved of a lower magnitude than that observed for daytime crashes. No relationship was observed between alcohol consumption at the population level and NFC or MNFC rates. The fatal crash rate, particularly the daytime rate, showed a rise with wealth level, as measured by gross domestic product and national private consumption, and an inverse relationship with the unemployment rate. The relationship between the fatal crash rate and economic variables was due, in most part, to changes in vehicle-km travelled.
Design and Test Research on Cutting Blade of Corn Harvester Based on Bionic Principle.
Tian, Kunpeng; Li, Xianwang; Zhang, Bin; Chen, Qiaomin; Shen, Cheng; Huang, Jicheng
2017-01-01
Existing corn harvester cutting blades have problems associated with large cutting resistance, high energy consumption, and poor cut quality. Using bionics principles, a bionic blade was designed by extracting the cutting tooth profile curve of the B. horsfieldi palate. Using a double-blade cutting device testing system, a single stalk cutting performance contrast test for corn stalks obtained at harvest time was carried out. Results show that bionic blades have superior performance, demonstrated by strong cutting ability and good cut quality. Using statistical analysis of two groups of cutting test data, the average cutting force and cutting energy of bionic blades and ordinary blades were obtained as 480.24 N and 551.31 N and 3.91 J and 4.38 J, respectively. Average maximum cutting force and cutting energy consumption for the bionic blade were reduced by 12.89% and 10.73%, respectively. Variance analysis showed that both blade types had a significant effect on maximum cutting energy and cutting energy required to cut a corn stalk. This demonstrates that bionic blades have better cutting force and energy consumption reduction performance than ordinary blades.
Hennessy, Michael; Bleakley, Amy; Piotrowski, Jessica Taylor; Mallya, Giridhar; Jordan, Amy
2015-10-01
To examine how parents' beliefs about beverage attributes and exposure to sugar-sweetened beverage (SSB) advertising are associated with parents' and their children's SSB consumption. Cross-sectional representative telephone survey of Philadelphia parents in households with children between the ages of 3 and 16 years. Three hundred and seventy-one randomly selected survey respondents. The response rate was 27% using the American Association for Public Opinion Research RR3 formula. SSB consumption, health ratings of SSBs, exposure to SSB ads, and exposure to anti-SSB public service advertisements. Seemingly unrelated regression was used to correct for Type I error and significance levels were set at .05 or less. Assessment of SSB "healthiness" was associated with the increased adult consumption of SSBs for three of the five SSBs and associated with children's consumption for all four SSBs with child consumption data. For both groups, ratings of SSB sugar and caloric content were not related to consumption. Adult exposure to SSB-specific advertising was related to consumption for three of five SSBs and two of four SSBs consumed by children. These results suggest that sugar and calories are not relevant to consumption, absent an explicit connection to a healthiness evaluation of SSBs. © 2015 Society for Public Health Education.
NASA Astrophysics Data System (ADS)
Gu, Kezhuan; Dogan, Neslihan; Coley, Kenneth S.
2017-10-01
The bloating behavior of metal droplets and the dephosphorization behavior of bloated droplets at 1853 K (1580 °C) were investigated using X-ray fluoroscopy coupled with constant volume pressure change measurements and chemical analysis of quenched samples. The effect of sulfur content on dephosphorization kinetics was studied during the decarburization period. The slag foamed during the reaction forming a foamy layer over a dense layer. After a short incubation period, the droplets became bloated due to internal decarburization. The bloated droplets floated from the dense slag into the foamy slag. The behavioral changes are directly related to the effect of sulfur on the incubation time for swelling. The dephosphorization reaction was very fast; droplets with low sulfur contents experienced phosphorus reversion shortly after entering the foamy slag, while those with higher sulfur content took a longer time to swell and went through reversion before they entered the foam. The dephosphorization rate and maximum phosphorus partition were higher at lower CO evolution rates because the dynamic interfacial oxygen potential increased with the decreasing oxygen consumption rate. The rate controlling step for dephosphorization was initially a combination of mass transport in both the metal and the slag. As the iron oxide in the slag was depleted, the rate control shifted to mass transport in slag.
Mazareli, Raissa Cristina da Silva; Duda, Rose Maria; Leite, Valderi Duarte; Oliveira, Roberto Alves de
2016-06-01
Considering the high waste generation that comes from agriculture and livestock farming, as well as the demand for natural gas, it is necessary to develop sustainable technologies which can reduce environmental impact. There is no available literature on the use of high-rate horizontal anaerobic reactors with fixed bed (HARFB) and continuous feed for the co-digestion of vegetable wastes (VW) and swine wastewater (SW). The aim of this work was to evaluate the reactor performance in terms of methane production, organic matter consumption, and removal of total and thermotolerant coliforms under different proportions of SW and VW, and organic loading rates (OLR) of 4.0, 5.2 and 11.0g COD (Ld)(-)(1). The mixture of SW and VW in the proportions of 90:10, 80:20 and 70:30 (SW:VW) with those OLRs provided great buffering capacity, with partial alkalinity reaching 3552mgL(-1), thereby avoiding the inhibition of methane production by volatile fatty acids produced during the fermentation process. Higher proportions of VW and higher OLR improved volumetric methane production with a maximum value of 1.08LCH4 (Ld)(-)(1), organic matter removal rates up to 98% and total and thermotolerant coliform removal rates of 99% were also observed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nansai, Keisuke; Kagawa, Shigemi; Suh, Sangwon; Inaba, Rokuta; Moriguchi, Yuichi
2007-02-15
Today's material welfare has been achieved at the expense of consumption of finite resources and generation of environmental burdens. Over the past few decades the volume of global consumption has grown dramatically, while at the same time technological advances have enabled products with greater efficiencies. These two directions of change, consumption growth and technological advance, are the foci of the present paper. Using quantitative measures for these two factors, we define a new indicator, "eco-velocity of consumption", analogous to velocity in physics. The indicator not only identifies the environmental soundness of consumption growth and technological advance but also indicates whether and to what extent our society is shifting toward sustainable consumption. This study demonstrates the practicability of the indicator through a case study in which we calculate the eco-velocities of Japanese household consumption in 2 years: 1995 and 2000. The rate of technological advance during the periods concerned is quantified in terms of the embodied carbon dioxide emission per yen of product. The results show that the current growth rate of Japanese household consumption is greater than the rate of technological advance to mitigate carbon dioxide emissions. The eco-velocities at the level of individual commodity groups are also examined, and the sources of changes in eco-velocity for each commodity are identified using structural decomposition analysis.
2015-09-30
cell temperature is shown in Fig. 4. Here we begin with the premise when both In and Ga are incident on the wafer, the Sb consumption rate should be a...monitor the Sb consumption rate while slowly raising the cell temperature . It is evident from the data that the correct rate of total Sb consumption ...rise the substrate temperature during DE phase of DETA technique owing to the heat reflectance effect , while the power supplied to a substrate heater
Body mass scaling of passive oxygen diffusion in endotherms and ectotherms
Gillooly, James F.; Gomez, Juan Pablo; Mavrodiev, Evgeny V.; Rong, Yue; McLamore, Eric S.
2016-01-01
The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick’s law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption. PMID:27118837
Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.
Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S
2016-05-10
The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption.
Energy optimization for upstream data transfer in 802.15.4 beacon-enabled star formulation
NASA Astrophysics Data System (ADS)
Liu, Hua; Krishnamachari, Bhaskar
2008-08-01
Energy saving is one of the major concerns for low rate personal area networks. This paper models energy consumption for beacon-enabled time-slotted media accessing control cooperated with sleeping scheduling in a star network formulation for IEEE 802.15.4 standard. We investigate two different upstream (data transfer from devices to a network coordinator) strategies: a) tracking strategy: the devices wake up and check status (track the beacon) in each time slot; b) non-tracking strategy: nodes only wake-up upon data arriving and stay awake till data transmitted to the coordinator. We consider the tradeoff between energy cost and average data transmission delay for both strategies. Both scenarios are formulated as optimization problems and the optimal solutions are discussed. Our results show that different data arrival rate and system parameters (such as contention access period interval, upstream speed etc.) result in different strategies in terms of energy optimization with maximum delay constraints. Hence, according to different applications and system settings, different strategies might be chosen by each node to achieve energy optimization for both self-interested view and system view. We give the relation among the tunable parameters by formulas and plots to illustrate which strategy is better under corresponding parameters. There are two main points emphasized in our results with delay constraints: on one hand, when the system setting is fixed by coordinator, nodes in the network can intelligently change their strategies according to corresponding application data arrival rate; on the other hand, when the nodes' applications are known by the coordinator, the coordinator can tune the system parameters to achieve optimal system energy consumption.
Risk Assessment of Hepatocellular Carcinoma in Patients with Hepatitis C in China and the USA.
Parikh, Neehar D; Fu, Sherry; Rao, Huiying; Yang, Ming; Li, Yumeng; Powell, Corey; Wu, Elizabeth; Lin, Andy; Xing, Baocai; Wei, Lai; Lok, Anna S F
2017-11-01
Hepatitis C (HCV) infection is an increasingly common cause of hepatocellular carcinoma (HCC) in China. We aimed to determine differences in demographic and behavioral profiles associated with HCC in HCV+ patients in China and the USA. Consecutive HCV+ patients were recruited from centers in China and the USA. Clinical data and lifestyle profiles were obtained through standardized questionnaires. Multivariable analysis was conducted to determine factors associated with HCC diagnosis within groups. We included 41 HCC patients from China and 71 from the USA, and 931 non-HCC patients in China and 859 in China. Chinese patients with HCC were significantly younger, less likely to be male and to be obese than US patients with HCC (all p < 0.001). Chinese patients with HCC had a significantly lower rate of cirrhosis diagnosis (36.6 vs. 78.9%, p < 0.001); however, they also had a higher rate of hepatitis B core antibody positivity (63.4 vs. 36.8%, p = 0.007). In a multivariable analysis of the entire Chinese cohort, age > 55, male sex, the presence of diabetes, and time from maximum weight were associated with HCC, while tea consumption was associated with a decreased HCC risk (OR 0.37, 95% CI 0.16-0.88). In the US cohort, age > 55, male sex, and cirrhosis were associated with HCC on multivariable analysis. With the aging Chinese population and increasing rates of diabetes, there will likely be continued increase in the incidence of HCV-related HCC in China. The protective effect of tea consumption on HCC development deserves further validation.
Smilios, Ilias; Myrkos, Aristides; Zafeiridis, Andreas; Toubekis, Argyris; Spassis, Apostolos; Tokmakidis, Savas P
2017-03-13
The recovery duration and the work to recovery ratio are important aspects to consider when designing a high-intensity aerobic interval exercise (HIIE). This study examined the effects of recovery duration on total exercise time performed above 80, 90 and 95% of maximum oxygen consumption (VO2max) and heart rate (HRmax) during a single-bout HIIE. We also evaluated the effects on VO2 and HR kinetics, blood lactate concentration and rating of perceived exertion (RPE). Eleven moderately trained males (22.1±1 yrs.) executed, on three separate sessions, 4×4-min runs at 90% of maximal aerobic velocity (MAV) with 2-min, 3-min and 4-min of active recovery. Recovery duration did not affect the percentage of VO2max attained and the total exercise time above 80, 90 and 95% of VO2max. Exercise time above 80 and 90% of HRmax was longer with 2 and 3 min (p<0.05) as compared with the 4-min recovery. Oxygen uptake and HR amplitude were lower, mean response time slower (p<0.05), and blood lactate and RPE higher with 2-min compared to 4-min recovery (p<0.05). In conclusion, aerobic metabolism attains its upper functional limits with either 2, or 3 or 4 min of recovery during the 4×4 min HIIE; thus, all rest durations could be used for the enhancement of aerobic capacity in sports, fitness, and clinical settings. The short (2 min) compared to longer (4 min) recovery, however, evokes greater cardiovascular and metabolic stress, and activates to a greater extent anaerobic glycolysis, and hence, could be used by athletes to induce greater overall physiological challenge.
Louhevaara, V; Ilmarinen, R; Griefahn, B; Künemund, C; Mäkinen, H
1995-01-01
Every fire fighter needs to wear fire-protective clothing and a self-contained breathing apparatus (SCBA) several times a year while carrying out various fire-fighting and rescue operations in hazardous work environments. The aim of the present study was to quantify the effects of a multilayer turnout suit designed to fulfil European standard EN 469 used over standardized (Nordic) clothing and with SCBA (total mass 25.9 kg) on maximal physical work performance, and to evaluate the relationship between individual characteristics and power output with the fire-protective clothing system and SCBA. The subjects were 12 healthy firemen aged 26-46 years. The range of their body mass, body fat and maximal oxygen consumption was 69-101 kg, 10-20% and 2.70-5.86 l.min-1, respectively. The maximal tests without (control) and with the fire-protective clothing system and SCBA were carried out on a treadmill in a thermoneutral environment. When compared to the control test, the decrease in the maximal power output in terms of maximal working time and walking speed averaged 25% (P < 0.001) varying from 18% to 34% with the fire-protective clothing system and SCBA. At maximum, no significant differences were found in pulmonary ventilation, absolute oxygen consumption, the respiratory exchange ratio, heart rate, systolic blood pressure, the rate-pressure product, mechanical efficiency, and the rating of perceived exertion between the tests with and without the fire-protective clothing system and SCBA. The reduction of the power output was related to the extra mass of the fire protective clothing and SCBA.(ABSTRACT TRUNCATED AT 250 WORDS)
Computing the Energy Cost of the Information Transmitted by Model Biological Neurons
NASA Astrophysics Data System (ADS)
Torrealdea, F. J.; Sarasola, C.; d'Anjou, A.; Moujahid, A.
2009-08-01
We assign an energy function to a Hindmarsh-Rose model of a neuron and use it to compute values of average energy consumption during its signalling activity. We also compute values of information entropy of an isolated neuron and of mutual information between two electrically coupled neurons. We find that for the isolated neuron the chaotic signaling regime is the one with the biggest ratio of information entropy to energy consumption. We also find that in the case of electrically coupled neurons there are values of the coupling strength at which the mutual information to energy consumption ratio is maximum, that is, that transmitting at that coupling conditions is energetically less expensive.
Modeling of Current Consumption in 802.15.4/ZigBee Sensor Motes
Casilari, Eduardo; Cano-García, Jose M.; Campos-Garrido, Gonzalo
2010-01-01
Battery consumption is a key aspect in the performance of wireless sensor networks. One of the most promising technologies for this type of networks is 802.15.4/ZigBee. This paper presents an empirical characterization of battery consumption in commercial 802.15.4/ZigBee motes. This characterization is based on the measurement of the current that is drained from the power source under different 802.15.4 communication operations. The measurements permit the definition of an analytical model to predict the maximum, minimum and mean expected battery lifetime of a sensor networking application as a function of the sensor duty cycle and the size of the sensed data. PMID:22219671
Modeling of current consumption in 802.15.4/ZigBee sensor motes.
Casilari, Eduardo; Cano-García, Jose M; Campos-Garrido, Gonzalo
2010-01-01
Battery consumption is a key aspect in the performance of wireless sensor networks. One of the most promising technologies for this type of networks is 802.15.4/ZigBee. This paper presents an empirical characterization of battery consumption in commercial 802.15.4/ZigBee motes. This characterization is based on the measurement of the current that is drained from the power source under different 802.15.4 communication operations. The measurements permit the definition of an analytical model to predict the maximum, minimum and mean expected battery lifetime of a sensor networking application as a function of the sensor duty cycle and the size of the sensed data.
ERIC Educational Resources Information Center
Titze, Ingo R.
2006-01-01
Purpose: Maximum flow declination rate (MFDR) in the glottis is known to correlate strongly with vocal intensity in voicing. This declination, or negative slope on the glottal airflow waveform, is in part attributable to the maximum area declination rate (MADR) and in part to the overall inertia of the air column of the vocal tract (lungs to…
Climate Impacts on Extreme Energy Consumption of Different Types of Buildings
Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming
2015-01-01
Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings. PMID:25923205
Climate impacts on extreme energy consumption of different types of buildings.
Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming
2015-01-01
Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.
Drivers of summer oxygen depletion in the central North Sea
NASA Astrophysics Data System (ADS)
Queste, B. Y.; Fernand, L.; Jickells, T. D.; Heywood, K. J.; Hind, A. J.
2015-06-01
In stratified shelf seas, oxygen depletion beneath the thermocline is a result of a greater rate of biological oxygen demand than the rate of supply of oxygenated water. Suitably equipped gliders are uniquely placed to observe both the supply through the thermocline and the consumption of oxygen in the bottom layers. A Seaglider was deployed in the shallow (≈ 100 m) stratified North Sea in a region of known low oxygen during August 2011 to investigate the processes regulating supply and consumption of dissolved oxygen below the pycnocline. The first deployment of such a device in this area, it provided extremely high resolution observations, 316 profiles (every 16 min, vertical resolution of 1 m) of CTD, dissolved oxygen concentrations, backscatter and fluorescence during a three day deployment. The high temporal resolution observations revealed occasional small scale events that supply oxygenated water into the bottom layer at a rate of 2±1 μmol dm-3 day-1. Benthic and pelagic oxygen sinks, quantified through glider observations and past studies, indicate more gradual background consumption rates of 2.5±1 μmol dm-3 day-1. This budget revealed that the balance of oxygen supply and demand is in agreement with previous studies of the North Sea. However, the glider data show a net oxygen consumption rate of 2.8±0.3 μmol dm-3 day-1 indicating a localised or short-lived increase in oxygen consumption rates. This high rate of oxygen consumption is indicative of an unidentified oxygen sink. We propose that this elevated oxygen consumption is linked to localised depocentres and rapid remineralisation of resuspensded organic matter. The glider proved to be an excellent tool for monitoring shelf sea processes despite challenges to glider flight posed by high tidal velocities, shallow bathymetry, and very strong density gradients. The direct observation of these processes allows more up to date rates to be used in the development of ecosystem models.
Zhang, J; Temme, E H; Kesteloot, H
2000-08-01
A striking difference in fish consumption and lung cancer mortality (LCM) exists among populations worldwide. This study investigated the relation between fish consumption and LCM at the population level. Sex-specific LCM data, mostly around 1993 and fish consumption data for 10 periods 1961-1994 in 36 countries were obtained from WHO and FAO, respectively. A significant inverse correlation exists between log fish consumption and LCM rate in 9 out of the 10 time periods (r = -0.34 to r = -0.46, P = 0.044 to P = 0.005). After adjusting for smoking and other confounders, log fish consumption (% of total energy [% E]) was inversely and significantly associated with LCM rate (per 100 000 per year) in all 10 time periods (beta = -26.3 to beta = -36.7; P = 0.0039 to P < 0.0001). The stratified analysis showed that this inverse relation was significant only in countries with above median level of smoking (>2437 cigarettes/adult/year) or animal fat minus fish fat consumption (22.4% E). An increase in fish consumption by 1% E was calculated to reduce mean male LCM rate of the populations examined in the age class of 45-74 years by 8.4%. In women, no significant relation between fish consumption and LCM could be established. Fish consumption is associated with a reduced risk from LCM, but this possible protective effect is clear-cut only in men and in countries with high levels of cigarette smoking or animal fat consumption.
Alcohol advertising bans and alcohol abuse.
Young, D J
1993-07-01
Henry Saffer [Saffer (1991) Journal of Health Economics 10, 65-79] concludes that bans on broadcast advertising for alcoholic beverages reduce total alcohol consumption, motor vehicle fatalities, and cirrhosis deaths. A reexamination of his data and procedures reveals a number of flaws. First, there is evidence of reverse causation: countries with low consumption/death rates tend to adopt advertising bans, creating a (spurious) negative correlation between bans and consumption/death rates. Second, even this correlation largely disappears when the estimates are corrected for serial correlation. Third, estimates based on the components of consumption--spirits, beer and wine--mostly indicate that bans are associated with increased consumption.
Hansson, S.; Rudstam, L. G.; Kitchell, J.F.; Hilden, M.; Johnson, B.L.; Peppard, P.E.
1996-01-01
We compared four different methods for estimating predation rates by North Sea cod (Gadus moi hua). Three estimates, based on gastric evacuation rates, came from an ICES multispecies working group and the fourth from a bioenergetics model. The bioenergetics model was developed from a review of literature on cod physiology. The three gastric evacuation rate models produced very different prey consumption estimates for small (2 kg) fish. For most size and age classes, the bioenergetics model predicted food consumption rates intermediate to those predicted by the gastric evacuation models. Using the standard ICES model and the average population abundance and age structure for 1974-1989, annual, prey consumption by the North Sea cod population (age greater than or equal to 1) was 840 kilotons. The other two evacuation rate models produced estimates of 1020 and 1640 kilotons, respectively. The bioenergetics model estimate was 1420 kilotons. The major differences between models were due to consumption rate estimates for younger age groups of cod. (C) 1996 International Council for the Exploration of the Sea
The power-consumption-controlled extruder: a tool for pellet production.
Kleinebudde, P; Sølvberg, A J; Lindner, H
1994-07-01
Based on the assumption that there is a link between power consumption of an extruder and pellet properties, a control circuit for power consumption was developed. Powder and granulation liquid are fed separately into a twin-screw extruder. The power consumption is controlled by varying the pump rate at a given powder-feed rate; consequently each level of power consumption results in a specific water content of the extrudate for a particular formulation. The shape of pellets depends almost entirely on the level of power consumption irrespective of formulation. The size of dry pellets is additionally affected by a shrinking factor which depends on the water content. The power-consumption-controlled extruder is an appropriate tool for the production of pellets. The system is able to adapt the water content for a formulation automatically.
Nil Whey Protein Effect on Glycemic Control after Intense Mixed-Mode Training in Type 2 Diabetes.
Gaffney, Kim Alexander; Lucero, Adam; Stoner, Lee; Faulkner, James; Whitfield, Patricia; Krebs, Jeremy; Rowlands, David Stephen
2018-01-01
Although intense endurance and resistance exercise training and whey protein supplementation have both been shown to independently improve glycemic control, no known studies have examined the effect of high-intensity mixed-mode interval training (MMIT) and whey supplementation in adults with Type 2 diabetes (T2D). This study aimed to determine if peritraining whey protein supplementation combined with MMIT can improve glycemic control. In a double-blind, randomized, placebo-controlled trial, 24 men (55.7 ± 5.6 yr) with T2D performed MMIT with whey (20 g) or placebo control for 10 wk. Glycemic control was assessed via glucose disposal rate during a euglycemic insulin clamp, fasting blood glucose concentration, and homeostatic model assessment of insulin resistance. Changes in peak oxygen consumption, 1-repetition maximum strength, vastus lateralis muscle, and subcutaneous adipose thicknesses, and waist circumference were also assessed. Ten weeks of MMIT substantially improved glucose disposal rate by 27.5% (90% confidence interval, 1.2%-60.7%) and 24.8% (-5.4% to 64.8%) in the whey and control groups, respectively. There were likely and possible reductions in fasting blood glucose by -17.4% (-30.6% to -1.6%) and homeostatic model assessment of insulin resistance by -14.1% (-25.3% to 1.08%) in the whey group; however, whey effects were not clearly beneficial to glycemic outcomes relative to the control. MMIT also clearly substantially improved 1-repetition maximum by 20.6% (16.3%-24.9%) and 22.7% (18.4%-27.2%), peak oxygen consumption by 22.6% (12.0%-26.2%) and 18.5% (10.5%-27.4%), and vastus lateralis muscle thickness by 18.9% (12.0%-26.2%) and 18.6% (10.5%-27.4%) and possibly reduced waist circumference by -2.1% (-3.1% to -1.0%) and -1.9% (-3.7% to -0.1%) in the control and whey groups, respectively, but the whey-control outcome was trivial or unclear. A clinically meaningful enhancement in glycemic control after 10 wk of MMIT was not clearly advanced with peritraining whey protein supplementation in middle-age men with T2D.
Konić-Ristić, Aleksandra; Šavikin, Katarina; Zdunić, Gordana; Besu, Irina; Menković, Nebojša; Glibetić, Marija; Srdić-Rajić, Tatjana
2015-04-01
The role of saliva in maintaining oral health and homeostasis is based on its physicochemical properties and biological activities of its components, including salivary immunoglobulin A (IgA). Both salivary rates and immunological status of saliva are found to be compromised in smokers. The aim of this study was to investigate the acute time-dependent effect of smoking and black currant consumption on the salivary flow rate (SFR) and salivary IgA secretion rate (sIgA SR) in healthy smokers. SFR, sIgA levels in saliva, and sIgA SRs were determined in healthy smokers (n=8) at eight times of assessment within three consecutive interventions: at the baseline; 5, 30, and 60 min after smoking; 5, 30, and 60 min after black currant consumption (100 g), followed by smoking; and 5 min after black currant consumption. Smoking induced a significant delayed effect on SFR measured 60 min after smoking (P=.03), while black currant consumption preceding smoking prevented that effect. Salivary IgA concentrations and sIgA flow rates were not acutely influenced by smoking. Black currant consumption preceding smoking induced a significant decrease in sIgA concentrations 5 min after the intervention compared with the baseline (P=.046), with a further increasing trend, statistically significant, 60 min after the intervention (P=.025). Although smoking cessation is the most important strategy in the prevention of chronic diseases, the obtained results suggest that the influence of black currant consumption on negative effects of tobacco smoke on salivary flow and immunological status of saliva could partly reduce the smoking-associated risk on oral health.
NASA Astrophysics Data System (ADS)
Tang, Dunbing; Dai, Min
2015-09-01
The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production planning and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed smalland large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.
Kaya, Takatoshi; Numai, Daisuke; Nagamine, Kuniaki; Aoyagi, Shigeo; Shiku, Hitoshi; Matsue, Tomokazu
2004-06-01
The metabolic activity of E. coli cells embedded in collagen gel microstructures in a cone-shaped well and in a cylindrical micropore was investigated using scanning electrochemical microscopy (SECM), based on the oxygen consumption rate and the conversion rate from ferrocyanide to ferricyanide. The analysis of the concentration profiles for oxygen and ferrocyanide afforded the oxygen consumption rate and the ferrocyanide production rate. A comparison indicated that the ferrocyanide production rates were larger than the oxygen consumption rate, and also that the rates observed in the cylindrical micropore were larger than those observed in the cone-shaped well. The ferrocyanide production rate of a single E. coli cell was calculated to be (5.4 +/- 2.6) x 10(-19) mol s(-1), using a cylindrical micropore system.
High Efficiency, Low Power-Consumption DFB Quantum Cascade Lasers Without Lateral Regrowth
NASA Astrophysics Data System (ADS)
Jia, Zhi-Wei; Wang, Li-Jun; Zhang, Jin-Chuan; Liu, Feng-Qi; Zhou, Yu-Hong; Wang, Dong-Bo; Jia, Xue-Feng; Zhuo, Ning; Liu, Jun-Qi; Zhai, Shen-Qiang; Wang, Zhan-Guo
2017-04-01
Very low power-consumption distributed feedback (DFB) quantum cascade lasers (QCLs) at the wavelength around 4.9 μm were fabricated by conventional process without lateral regrowth of InP:Fe or using sidewall grating. Benefitted from the optimized materials and low waveguide loss, very low threshold current density of 0.5 kA/cm2 was obtained for a device with cavity length of 2 mm. Combined with the partial-high-reflection coating, the 1-mm-long DFB QCL achieved low power-consumption continuous wave (CW) operation up to 105 °C. The CW threshold power-consumptions were 0.72 and 0.78 W at 15 and 25 °C, respectively. The maximum CW output power was over 110 mW at 15 °C and still more than 35 mW at 105 °C. At 15 °C, wall-plug efficiency of 5.5% and slope efficiency of 1.8 W/A were deduced, which were very high for low power-consumption DFB QCLs.
Liu, Xiaoning; Ying, Kezhen; Chen, Guangyao; Zhou, Canwei; Zhang, Wen; Zhang, Xihui; Cai, Zhonghua; Holmes, Thomas; Tao, Yi
2017-11-01
In this study, Chlorella vulgaris (C. vulgaris) were cultured in cell culture flask supplied with intermittent CO 2 enriched gas. The impact of CO 2 concentration (from 1% to 20% v/v) on the growth of C. vulgaris cultured in domestic wastewater was exploited in various perspectives which include biomass, specific growth rate, culture pH, carbon consumption, and the removal of nitrogen and phosphorus compounds. The results showed that the maximum microalgal biomass concentration, 1.12 g L -1 , was achieved with 10% CO 2 as a feed gas. At 20% CO 2 the growth of C. vulgaris suffered from inhibition during initial 1.5 d, but acclimated to low pH (6.3 in average) with relatively higher specific growth rate (0.3-0.5 d -1 ) during subsequent culture period. After the rapid consumption of ammonium in the wastewater, an obvious decline in the nitrate concentration was observed, indicating that C. vulgaris prefer ammonium as a primary nitrogen source. The total nitrogen and phosphorus decreased from 44.0 mg L -1 to 2.1-5.4 mg L -1 and from 5.2 mg L -1 to 0-0.6 mg L -1 within 6.5 d under the aeration of 1-20% CO 2 , respectively, but no significant difference in consumed nitrogen versus phosphorus ratio was observed among different CO 2 concentration. The kinetics of nutrients removal were also determined through the application of pseudo first order kinetic model. 5-10% CO 2 aeration was optimal for the growth of C. vulgaris in the domestic wastewater, based on the coupling of carbon consumption, microalgal biomass, the nutrients removal and kinetics constants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Xiong; Wang, Xiaoyu; Yang, Dong; Chen, Youguo
2014-01-01
To explore the enhancing effect of alcohol consumption on attractiveness ratings, in that few studies on the Beer Goggles effect control the stimuli attractiveness level and researchers have seldom considered extending the effect to stimuli other than faces. Male and female participants (n = 103) were randomly assigned to alcohol consumption or placebo groups. Both groups were asked to assess the attractiveness of two types of pictures (faces and landscapes) with three levels of attractiveness for each stimulus category (high, moderate and low). We found significant interactions between beverage type and attractiveness level. Attractiveness ratings for moderate- and low-attractiveness faces were significantly higher in the alcohol compared with placebo condition, while there was no significant difference for high-attractiveness stimuli between these two conditions. As for landscapes, only low-attractiveness stimuli were rated significantly higher in the alcohol condition. Whether or not alcohol consumption leads to an increase in attractiveness ratings depends on the initial attractiveness of the stimulus materials. Alcohol consumption tends to affect ratings for stimuli with relatively low attractiveness. Furthermore, this effect is not limited to faces; it extends to other types of stimuli like landscapes. © The Author 2014. Medical Council on Alcohol and Oxford University Press. All rights reserved.
A structure-function analysis of the left ventricle
Meyer, Leith C. R.; Fuller, Andrea; Haw, Anna; Mitchell, Duncan; Farrell, Anthony P.; Costello, Mary-Ann; Izwan, Adian; Badenhorst, Margaret; Maloney, Shane K.
2016-01-01
This study presents a structure-function analysis of the mammalian left ventricle and examines the performance of the cardiac capillary network, mitochondria, and myofibrils at rest and during simulated heavy exercise. Left ventricular external mechanical work rate was calculated from cardiac output and systemic mean arterial blood pressure in resting sheep (Ovis aries; n = 4) and goats (Capra hircus; n = 4) under mild sedation, followed by perfusion-fixation of the left ventricle and quantification of the cardiac capillary-tissue geometry and cardiomyocyte ultrastructure. The investigation was then extended to heavy exercise by increasing cardiac work according to published hemodynamics of sheep and goats performing sustained treadmill exercise. Left ventricular work rate averaged 0.017 W/cm3 of tissue at rest and was estimated to increase to ∼0.060 W/cm3 during heavy exercise. According to an oxygen transport model we applied to the left ventricular tissue, we predicted that oxygen consumption increases from 195 nmol O2·s−1·cm−3 of tissue at rest to ∼600 nmol O2·s−1·cm−3 during heavy exercise, which is within 90% of the oxygen demand rate and consistent with work remaining predominantly aerobic. Mitochondria represent 21-22% of cardiomyocyte volume and consume oxygen at a rate of 1,150 nmol O2·s−1·cm−3 of mitochondria at rest and ∼3,600 nmol O2·s−1·cm−3 during heavy exercise, which is within 80% of maximum in vitro rates and consistent with mitochondria operating near their functional limits. Myofibrils represent 65–66% of cardiomyocyte volume, and according to a Laplacian model of the left ventricular chamber, generate peak fiber tensions in the range of 50 to 70 kPa at rest and during heavy exercise, which is less than maximum tension of isolated cardiac tissue (120–140 kPa) and is explained by an apparent reserve capacity for tension development built into the left ventricle. PMID:27586835
Han, Xiao; Wang, Hai Bo; Wang, Xiao di; Shi, Xiang Bin; Wang, Bao Liang; Zheng, Xiao Cui; Wang, Zhi Qiang; Liu, Feng Zhi
2017-10-01
The photo response curves of 11 rootstock-scion combinations including summer black/Beta, summer black/1103P, summer black/101-14, summer black/3309C, summer black/140Ru, summer black/5C, summer black/5BB, summer black/420A, summer black/SO4, summer black/Kangzhen No.1, summer black/Huapu No.1 were fitted by rectangular hyperbola mo-del, non-rectangular hyperbola model, modified rectangular hyperbola model and exponential model respectively, and the differences of imitative effects were analyzed by determination coefficiency, light compensation point, light saturation point, initial quantum efficiency, maximum photosynthetic rate and dark respiration rate. The result showed that the fit coefficients of all four models were above 0.98, and there was no obvious difference on the fitted values of light compensation point among the four models. The modified rectangular hyperbola model fitted best on light saturation point, apparent quantum yield, maximum photosynthetic rate and dark respiration rate, and had the minimum AIC value based on the akaike information criterion, therefore, the modified rectangular hyperbola model was the best one. The clustering analysis indicated that summer black/SO4 and summer black/420A combinations had low light compensation point, high apparent quantum yield and low dark respiration rate among 11 rootstock-scion combinations, suggesting that these two combinations could use weak light more efficiently due to their less respiratory consumption and higher weak light tolerance. The Topsis comparison method ranked summer black/SO4 and summer black/420A combinations as No. 1 and No. 2 respectively in weak light tolerance ability, which was consistent with cluster analysis. Consequently, summer black has the highest weak light tolerance in case grafted on 420A or SO4, which could be the most suitable rootstock-scion combinations for protected cultivation.
Oxygen consumption in weakly electric Neotropical fishes.
Julian, David; Crampton, William G R; Wohlgemuth, Stephanie E; Albert, James S
2003-12-01
Weakly electric gymnotiform fishes with wave-type electric organ discharge (EOD) are less hypoxia-tolerant and are less likely to be found in hypoxic habitats than weakly electric gymnotiforms with pulse-type EOD, suggesting that differences in metabolism resulting from EOD type affects habitat choice. Although gymnotiform fishes are common in most Neotropical freshwaters and represent the dominant vertebrates in some habitats, the metabolic rates of these unique fishes have never been determined. In this study, O(2) consumption rates during EOD generation are reported for 34 gymnotiforms representing 23 species, all five families and 17 (59%) of the 28 genera. Over the size range sampled (0.4 g to 125 g), O(2) consumption of gymnotiform fishes was dependent on body mass, as expected, fitting a power function with a scaling exponent of 0.74, but the O(2) consumption rate was generally about 50% of that expected by extrapolation of temperate teleost metabolic rates to a similar ambient temperature (26 degrees C). O(2) consumption rate was not dependent on EOD type, but maintenance of "scan swimming" (continuous forwards and backwards swimming), which is characteristic only of gymnotiforms with wave-type EODs, increased O(2) consumption 2.83+/-0.49-fold (mean+/-SD). This suggests that the increased metabolic cost of scan swimming could restrict gymnotiforms with wave-type EODs from hypoxic habitats.
Groot, Joost; Cepress-Mclean, Sidney C; Robbins-Pianka, Adam; Knight, Rob; Gill, Ryan T
2017-04-01
Engineering the simultaneous consumption of glucose and xylose sugars is critical to enable the sustainable production of biofuels from lignocellulosic biomass. In most major industrial microorganisms glucose completely inhibits the uptake of xylose, limiting efficient sugar mixture conversion. In E. coli removal of the major glucose transporter PTS allows for glucose and xylose co-consumption but only after prolonged adaptation, which is an effective process but hard to control and prone to co-evolving undesired traits. Here we synthetically engineer mutants to target sugar co-consumption properties; we subject a PTS - mutant to a short adaptive step and subsequently either delete or overexpress key genes previously suggested to affect sugar consumption. Screening the co-consumption properties of these mutants individually is very laborious. We show we can evaluate sugar co-consumption properties in parallel by culturing the mutants in selection and applying a novel approach that computes mutant growth rates in selection using chromosomal barcode counts obtained from Next-Generation Sequencing. We validate this multiplex growth rate phenotyping approach with individual mutant pure cultures, identify new instances of mutants cross-feeding on metabolic byproducts, and, importantly, find that the rates of glucose and xylose co-consumption can be tuned by altering glucokinase expression in our PTS - background. Biotechnol. Bioeng. 2017;114: 885-893. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
An ecological study for Sri Lanka about health effects of coconut.
Athauda, L K; Wickremasinghe, A R; Kumarendran, B; Kasturiratne, A
2015-09-01
An ecological correlation study was conducted to determine the association between consumption of coconut products and cardiovascular disease (CVD) deaths in Sri Lanka. Data on coconut consumption patterns from 1961 to 2006 were abstracted from the FAO database, and mortality data from reports of the Department of Census and Statistics, and UN databases. Correlational and regression analyses were carried out. There was no increase in the per capita consumption of coconut products from 1961 to 2006 (range 54.1-76.2kg/ capita/year). The CVD death rates and the proportionate mortality rate due to CVD increased from 1961 to 2006. CVD death rates were significantly associated with per capita GDP, percentage of urban population, and elderly dependency ratio but not consumption of coconut products after adjusting for the other variables (R2=0.94). The results do not provide evidence at the population level that consumption of coconut products increases mortality due to cardiovascular diseases.
39 CFR 3010.28 - Maximum size of unused rate adjustment authority rate adjustments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 39 Postal Service 1 2010-07-01 2010-07-01 false Maximum size of unused rate adjustment authority rate adjustments. 3010.28 Section 3010.28 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL REGULATION OF RATES FOR MARKET DOMINANT PRODUCTS Rules for Applying the Price Cap § 3010.28 Maximum size of...
5 CFR 9701.312 - Maximum rates.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Maximum rates. 9701.312 Section 9701.312... MANAGEMENT SYSTEM Pay and Pay Administration Overview of Pay System § 9701.312 Maximum rates. (a) DHS may not pay any employee an annual rate of basic pay in excess of the rate for level III of the Executive...
5 CFR 9701.312 - Maximum rates.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Maximum rates. 9701.312 Section 9701.312... MANAGEMENT SYSTEM Pay and Pay Administration Overview of Pay System § 9701.312 Maximum rates. (a) DHS may not pay any employee an annual rate of basic pay in excess of the rate for level III of the Executive...
5 CFR 9701.312 - Maximum rates.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Maximum rates. 9701.312 Section 9701.312... MANAGEMENT SYSTEM Pay and Pay Administration Overview of Pay System § 9701.312 Maximum rates. (a) DHS may not pay any employee an annual rate of basic pay in excess of the rate for level III of the Executive...
9 CFR 381.68 - Maximum inspection rates-New turkey inspection system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Maximum inspection rates-New turkey... Procedures § 381.68 Maximum inspection rates—New turkey inspection system. (a) The maximum inspection rates for one inspector New Turkey Inspection (NTI-1 and NTI-1 Modified) and two inspectors New Turkey...
9 CFR 381.68 - Maximum inspection rates-New turkey inspection system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Maximum inspection rates-New turkey... Procedures § 381.68 Maximum inspection rates—New turkey inspection system. (a) The maximum inspection rates for one inspector New Turkey Inspection (NTI-1 and NTI-1 Modified) and two inspectors New Turkey...
9 CFR 381.68 - Maximum inspection rates-New turkey inspection system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Maximum inspection rates-New turkey... Procedures § 381.68 Maximum inspection rates—New turkey inspection system. (a) The maximum inspection rates for one inspector New Turkey Inspection (NTI-1 and NTI-1 Modified) and two inspectors New Turkey...
9 CFR 381.68 - Maximum inspection rates-New turkey inspection system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Maximum inspection rates-New turkey... Procedures § 381.68 Maximum inspection rates—New turkey inspection system. (a) The maximum inspection rates for one inspector New Turkey Inspection (NTI-1 and NTI-1 Modified) and two inspectors New Turkey...
9 CFR 381.68 - Maximum inspection rates-New turkey inspection system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Maximum inspection rates-New turkey... Procedures § 381.68 Maximum inspection rates—New turkey inspection system. (a) The maximum inspection rates for one inspector New Turkey Inspection (NTI-1 and NTI-1 Modified) and two inspectors New Turkey...
Pink, Alex; Ragatz, Adam; Wang, Lijuan; ...
2017-03-28
Vehicles continuously report real-time fuel consumption estimates over their data bus, known as the controller area network (CAN). However, the accuracy of these fueling estimates is uncertain to researchers who collect these data from any given vehicle. To assess the accuracy of these estimates, CAN-reported fuel consumption data are compared against fuel measurements from precise instrumentation. The data analyzed consisted of eight medium/heavy-duty vehicles and two medium-duty engines. Varying discrepancies between CAN fueling rates and the more accurate measurements emerged but without a vehicular trend-for some vehicles the CAN under-reported fuel consumption and for others the CAN over-reported fuel consumption.more » Furthermore, a qualitative real-time analysis revealed that the operating conditions under which these fueling discrepancies arose varied among vehicles. A drive cycle analysis revealed that while CAN fueling estimate accuracy differs for individual vehicles, that CAN estimates capture the relative fuel consumption differences between drive cycles within 4% for all vehicles and even more accurately for some vehicles. Furthermore, in situations where only CAN-reported data are available, CAN fueling estimates can provide relative fuel consumption trends but not accurate or precise fuel consumption rates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pink, Alex; Ragatz, Adam; Wang, Lijuan
Vehicles continuously report real-time fuel consumption estimates over their data bus, known as the controller area network (CAN). However, the accuracy of these fueling estimates is uncertain to researchers who collect these data from any given vehicle. To assess the accuracy of these estimates, CAN-reported fuel consumption data are compared against fuel measurements from precise instrumentation. The data analyzed consisted of eight medium/heavy-duty vehicles and two medium-duty engines. Varying discrepancies between CAN fueling rates and the more accurate measurements emerged but without a vehicular trend-for some vehicles the CAN under-reported fuel consumption and for others the CAN over-reported fuel consumption.more » Furthermore, a qualitative real-time analysis revealed that the operating conditions under which these fueling discrepancies arose varied among vehicles. A drive cycle analysis revealed that while CAN fueling estimate accuracy differs for individual vehicles, that CAN estimates capture the relative fuel consumption differences between drive cycles within 4% for all vehicles and even more accurately for some vehicles. Furthermore, in situations where only CAN-reported data are available, CAN fueling estimates can provide relative fuel consumption trends but not accurate or precise fuel consumption rates.« less
Recomposing consumption: defining necessities for sustainable and equitable well-being.
Gough, Ian
2017-06-13
This paper focuses on consumption in the affluent world and the resulting level, composition and distribution of consumption-based emissions. It argues that public policy should foster the recomposition of consumption, while not disadvantaging poorer groups in the population. To combine these two imperatives entails making a distinction between goods and services that are necessary for a basic level of well-being, and those that are surplus to this requirement. The argument proceeds in six stages. First, the paper outlines a theory of universal need, as an alternative conception of well-being to consumer preference satisfaction. Second, it proposes a dual strategy methodology for identifying need satisfiers or necessities in a given social context. Then, it applies this methodology to identify a minimum bundle of necessary consumption items in the UK and speculates how it might be used to identify a maximum bundle for sustainable consumption. The next part looks at corporate barriers and structural obstacles in the path of sustainable consumption. The following part reveals a further problem: mitigation policies can result in perverse distributional outcomes when operating in contexts of great inequality. The final section suggests four ecosocial public policies that would simultaneously advance sustainable and equitable consumption in rich nations.This article is part of the themed issue 'Material demand reduction'. © 2017 The Author(s).
Recomposing consumption: defining necessities for sustainable and equitable well-being
NASA Astrophysics Data System (ADS)
Gough, Ian
2017-05-01
This paper focuses on consumption in the affluent world and the resulting level, composition and distribution of consumption-based emissions. It argues that public policy should foster the recomposition of consumption, while not disadvantaging poorer groups in the population. To combine these two imperatives entails making a distinction between goods and services that are necessary for a basic level of well-being, and those that are surplus to this requirement. The argument proceeds in six stages. First, the paper outlines a theory of universal need, as an alternative conception of well-being to consumer preference satisfaction. Second, it proposes a dual strategy methodology for identifying need satisfiers or necessities in a given social context. Then, it applies this methodology to identify a minimum bundle of necessary consumption items in the UK and speculates how it might be used to identify a maximum bundle for sustainable consumption. The next part looks at corporate barriers and structural obstacles in the path of sustainable consumption. The following part reveals a further problem: mitigation policies can result in perverse distributional outcomes when operating in contexts of great inequality. The final section suggests four ecosocial public policies that would simultaneously advance sustainable and equitable consumption in rich nations. This article is part of the themed issue 'Material demand reduction'.
Renner, Fritz; Kersbergen, Inge; Field, Matt; Werthmann, Jessica
2018-01-01
A popular belief is that alcohol improves the ability to speak in a foreign language. The effect of acute alcohol consumption on perceived foreign language performance and actual foreign language performance in foreign language learners has not been investigated. The aim of the current study was to test the effects of acute alcohol consumption on self-rated and observer-rated verbal foreign language performance in participants who have recently learned this language. Fifty native German speakers who had recently learned Dutch were randomized to receive either a low dose of alcohol or a control beverage that contained no alcohol. Following the experimental manipulation, participants took part in a standardized discussion in Dutch with a blinded experimenter. The discussion was audio-recorded and foreign language skills were subsequently rated by two native Dutch speakers who were blind to the experimental condition (observer-rating). Participants also rated their own individual Dutch language skills during the discussion (self-rating). Participants who consumed alcohol had significantly better observer-ratings for their Dutch language, specifically better pronunciation, compared with those who did not consume alcohol. However, alcohol had no effect on self-ratings of Dutch language skills. Acute alcohol consumption may have beneficial effects on the pronunciation of a foreign language in people who have recently learned that language.
Solfrizzi, Vincenzo; Panza, Francesco; Imbimbo, Bruno P; D'Introno, Alessia; Galluzzo, Lucia; Gandin, Claudia; Misciagna, Giovanni; Guerra, Vito; Osella, Alberto; Baldereschi, Marzia; Di Carlo, Antonio; Inzitari, Domenico; Seripa, Davide; Pilotto, Alberto; Sabbá, Carlo; Logroscino, Giancarlo; Scafato, Emanuele
2015-01-01
Coffee, tea, or caffeine consumption may be protective against cognitive impairment and dementia. We estimated the association between change or constant habits in coffee consumption and the incidence of mild cognitive impairment (MCI). We evaluated 1,445 individuals recruited from 5,632 subjects, aged 65-84 year old, from the Italian Longitudinal Study on Aging, a population-based sample from eight Italian municipalities with a 3.5-year median follow-up. Cognitively normal older individuals who habitually consumed moderate amount of coffee (from 1 to 2 cups of coffee/day) had a lower rate of the incidence of MCI than those who never or rarely consumed coffee [1 cup/day: hazard ratio (HR): 0.47, 95% confidence interval (CI): 0.211 to 1.02 or 1-2 cups/day: HR: 0.31 95% CI: 0.13 to 0.75]. For cognitively normal older subjects who changed their coffee consumption habits, those increasing coffee consumption (>1 cup of coffee/day) had higher rate of the incidence of MCI compared to those with constant habits (up to ±1 cup of coffee/day) (HR: 1.80, 95% CI: 1.11 to 2.92) or those with reduced consumption (<1 cup of coffee/day) (HR: 2.17, 95% CI: 1.16 to 4.08). Finally, there was no significant association between subjects with higher levels of coffee consumption (>2 cups of coffee/day) and the incidence of MCI in comparison with those who never or rarely consumed coffee (HR: 0.26, 95% CI: 0.03 to 2.11). In conclusion, cognitively normal older individuals who increased their coffee consumption had a higher rate of developing MCI, while a constant in time moderate coffee consumption was associated to a reduced rate of the incidence of MCI.
Kim, Hyejung; Van Hoof, Chris; Yazicioglu, Refet Firat
2011-01-01
This paper describes a mixed-signal ECG processing platform with an 12-bit ADC architecture that can adapt its sampling rate according to the input signals rate of change. This enables the sampling of ECG signals with significantly reduced data rate without loss of information. The presented adaptive sampling scheme reduces the ADC power consumption, enables the processing of ECG signals with lower power consumption, and reduces the power consumption of the radio while streaming the ECG signals. The test results show that running a CWT-based R peak detection algorithm using the adaptively sampled ECG signals consumes only 45.6 μW and it leads to 36% less overall system power consumption.
Oxygen consumption rates by different oenological tannins in a model wine solution.
Pascual, Olga; Vignault, Adeline; Gombau, Jordi; Navarro, Maria; Gómez-Alonso, Sergio; García-Romero, Esteban; Canals, Joan Miquel; Hermosín-Gutíerrez, Isidro; Teissedre, Pierre-Louis; Zamora, Fernando
2017-11-01
The kinetics of oxygen consumption by different oenological tannins were measured in a model wine solution using the non-invasive method based on luminiscence. The results indicate that the oxygen consumption rate follows second-order kinetics depending on tannin and oxygen concentrations. They also confirm that the oxygen consumption rate is influenced by temperature in accordance with Arrhenius law. The indications are that ellagitannins are the fastest oxygen consumers of the different oenological tannins, followed in decreasing order by quebracho tannins, skin tannins, seed tannins and finally gallotannins. This methodology can therefore be proposed as an index for determining the effectiveness of different commercial tannins in protecting wines against oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.
A flexible environmental reuse/recycle policy based on economic strength.
Tsiliyannis, C A
2007-01-01
Environmental policies based on fixed recycling rates may lead to increased environmental impacts (e.g., landfilled wastes) during economic expansion. A rate policy is proposed, which is adjusted according to the overall strength or weakness of the economy, as reflected by overall packaging demand and consumption, production and imports-exports. During economic expansion featuring rising consumption, production or exports, the proposed flexible policy suggests a higher reuse/recycle rate. During economic slowdown a lower rate results in lower impacts. The flexible target rates are determined in terms of annual data, including consumption, imports-exports and production. Higher environmental gains can be achieved at lower cost if the flexible policy is applied to widely consumed packaging products and materials associated with low rates, or if cleaner recycling technology is adopted.
Fire Resistant Fuel for Military Compression Ignition Engines
2013-12-04
Turbo Diesel Maximum Power Output Figure 5. 6.5L Turbo Diesel Maximum Torque Output 40 60 80 100 120 140 160 180 1000 1200 1400 1600 1800 2000 2200...H2O & 250ppm) JP8-FRF AMA (5% H2O & 250ppm) UNCLASSIFIED 9 UNCLASSIFIED Figure 6. 6.5L Turbo Diesel Brake Specific Fuel Consumption From...mid-1980s, fire-resistant diesel fuel that self extinguished when ignited by an explosive projectile was developed. Chemically, this fire resistant
Establishing safe and potentially efficacious fortification contents for folic acid and vitamin B12.
Dary, Omar
2008-06-01
Determining the micronutrient contents infortified foods depends not only on the health goal (additional intake to complement the diet), but also on ensuring that fortification does not raise micronutrient intakes beyond the Tolerable Upper Intake Level (UL), i.e., the safe limit. Technological incompatibility and cost may also restrict the fortification contents. For folic acid, the limiting factor is safety, while for vitamin B12, it is cost. However, adequate fortification contents that are both safe and efficacious can be estimated for both nutrients. In order to obtain the maximum benefit from the fortification programs, three different formulas responding to three categories of consumption, as specified by the median and 95th percentile of consumption, are proposed. The model presented is based on the estimation of a Feasible Fortification Level (FFL), which then is used to determine the average, minimum, and maximum contents of the nutrients during production, taking into consideration the acceptable variation of the fortification process. Finally, the regulatory parameters, which support standards and enforcement, are calculated by reducing the proportion of the nutrient that is degraded during the usual marketing process of the fortified food. It is expected that this model will establish a common standard for food fortification, and improve the reliability and enforcement procedures of these programs. The model was applied to flours as vehicles for folic acid in the United States, Guatemala, and Chile. Analysis of the data revealed that, with the exception of Chile, where wheat flour consumption is very high and probably within a narrow range, supplementation with folic acid is still needed to cover individuals at the low end of consumption. This is especially true when the difference in flour consumption is too wide, as in the case of Guatemala, where the proportional difference between consumption at the 95th percentile of the nonpoor group is as high as 100 times the consumption at the 5th percentile of the extremely poor group. Adoption of fortification content for staple foods near the safe limit brings together the need of restricting the voluntary addition of the specific nutrient to other foods and to dietary supplements.
Matos, J; Lourenço, H M; Brito, P; Maulvault, A L; Martins, L L; Afonso, C
2015-11-01
This study aimed to identify the benefit and risk associated with raw and cooked blue shark consumption taking into account the bioaccessibility of Se, Hg and MeHg, by using in vitro digestion method. Selenium, Hg and MeHg levels were higher in cooked samples, particularly in grilled blue shark. Whereas Se bioaccessibility was above 83% in grilled samples, Hg and MeHg bioaccessibility was lower in grilled samples with values near 50%. In addition, all Se-Health Beneficial Values were negative and the molar MeHg:Se ratios were higher than one. The risk-benefit assessment yielded a maximum consumption of one yearly meal for raw or cooked blue shark, thus emphasizing the need to recommend the consumption of a wider variety of seafood species in a balanced and healthy diet. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kang, Donghun; Lee, Jungeon; Jung, Jongpil; Lee, Chul-Hee; Kyung, Chong-Min
2014-09-01
In mobile video systems powered by battery, reducing the encoder's compression energy consumption is critical to prolong its lifetime. Previous Energy-rate-distortion (E-R-D) optimization methods based on a software codec is not suitable for practical mobile camera systems because the energy consumption is too large and encoding rate is too low. In this paper, we propose an E-R-D model for the hardware codec based on the gate-level simulation framework to measure the switching activity and the energy consumption. From the proposed E-R-D model, an energy minimizing algorithm for mobile video camera sensor have been developed with the GOP (Group of Pictures) size and QP(Quantization Parameter) as run-time control variables. Our experimental results show that the proposed algorithm provides up to 31.76% of energy consumption saving while satisfying the rate and distortion constraints.
Green, L; Kagel, J H; Battalio, R C
1987-01-01
Pigeons' rates of responding and food reinforcement under simple random-ratio schedules were compared with those obtained under comparable ratio schedules in which free food deliveries were added, but the duration of each food delivery was halved. These ratio-with-free-food schedules were constructed so that, were the pigeon to maintain the same rate of responding as it had under the simple ratio schedule, total food obtained (earned plus free) would remain unchanged. However, any reduction in responding would reduce total food consumption below that under the simple ratio schedule. These "compensated wage decreases" led to decreases in responding and decreases in food consumption, as predicted by an economic model of labor supply. Moreover, the reductions in responding increased as the ratio value increased (i.e., as wage rates decreased). Pigeons, therefore, substituted leisure for consumption. The relationship between these procedures and negative-income-tax programs is noted.
2013-01-01
Background Despite salted fish being a classical risk factor of Nasopharyngeal Carcinoma (NPC), whether secular trends in salted fish consumption worldwide accounted for changes in NPC rates were unknown. The relationship between vegetable and cigarette consumption to NPC risk worldwide were also largely uncertain. We investigated the longitudinal trends in standardised NPC incidence/mortality rates across 8 regions and their associations with secular trends in salted fish, vegetable and tobacco consumptions. Methods Age standardised mortality rate (ASMR) and age standardised incidence rate (ASIR) of NPC were obtained from the WHO cancer mortality database and Hong Kong Cancer Registry. Per capita consumption of salted fish, tobacco and vegetables in Hong Kong and 7 countries (China, Finland, Japan, Portugal, Singapore, United Kingdom and United States) were obtained from the Food and Agriculture Organization of the United Nation (FAO) and Hong Kong Trade and Census Statistics. Pearson correlation and multivariate analysis were performed to examine both crude and adjusted associations. Results There were markedly decreasing trends of NPC ASIR and ASMR in Hong Kong over the past three decades, which were correlated with corresponding secular changes in salted fish consumption per capita (Pearson r for 10 cumulative years : ASIR = 0.729 (male), 0.674 (female); ASMR = 0.943 (male), 0.622 (female), all p < 0.05 except for female ASMR). However such associations no longer correlated with adjustments for decreasing tobacco and increasing vegetable consumption per capita (Pearson r for 10 cumulative years: ASIR = 2.007 (male), 0.339 (female), ASMR = 0.289 (male), 1.992 (female), all p > 0.05). However, there were no clear or consistent patterns in relations between NPC ASIR and ASMR with salted fish consumption across 7 regions in 3 continents. Conclusions Our results do not support the notion that changes in salted fish consumption had played an important role in explaining secular trends of NPC rates in Hong Kong and worldwide. Further studies should explore other lifestyle and genetic factors. However, our findings do support the potentially protective effects of vegetable consumption against NPC. PMID:23782497
Lau, Hiu-Ying; Leung, Chit-Ming; Chan, Yap-Hang; Lee, Anne Wing-Mui; Kwong, Dora Lai-Wan; Lung, Maria Li; Lam, Tai-Hing
2013-06-19
Despite salted fish being a classical risk factor of Nasopharyngeal Carcinoma (NPC), whether secular trends in salted fish consumption worldwide accounted for changes in NPC rates were unknown. The relationship between vegetable and cigarette consumption to NPC risk worldwide were also largely uncertain. We investigated the longitudinal trends in standardised NPC incidence/mortality rates across 8 regions and their associations with secular trends in salted fish, vegetable and tobacco consumptions. Age standardised mortality rate (ASMR) and age standardised incidence rate (ASIR) of NPC were obtained from the WHO cancer mortality database and Hong Kong Cancer Registry. Per capita consumption of salted fish, tobacco and vegetables in Hong Kong and 7 countries (China, Finland, Japan, Portugal, Singapore, United Kingdom and United States) were obtained from the Food and Agriculture Organization of the United Nation (FAO) and Hong Kong Trade and Census Statistics. Pearson correlation and multivariate analysis were performed to examine both crude and adjusted associations. There were markedly decreasing trends of NPC ASIR and ASMR in Hong Kong over the past three decades, which were correlated with corresponding secular changes in salted fish consumption per capita (Pearson r for 10 cumulative years : ASIR = 0.729 (male), 0.674 (female); ASMR = 0.943 (male), 0.622 (female), all p < 0.05 except for female ASMR). However such associations no longer correlated with adjustments for decreasing tobacco and increasing vegetable consumption per capita (Pearson r for 10 cumulative years: ASIR = 2.007 (male), 0.339 (female), ASMR = 0.289 (male), 1.992 (female), all p > 0.05). However, there were no clear or consistent patterns in relations between NPC ASIR and ASMR with salted fish consumption across 7 regions in 3 continents. Our results do not support the notion that changes in salted fish consumption had played an important role in explaining secular trends of NPC rates in Hong Kong and worldwide. Further studies should explore other lifestyle and genetic factors. However, our findings do support the potentially protective effects of vegetable consumption against NPC.
Code of Federal Regulations, 2011 CFR
2011-01-01
... OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Testing... water use rates of covered products are those found in the following standards: (1) Showerheads and... consumption, estimated annual operating cost, and energy efficiency rating, and of water use rate. 305.5...
A passive cooling system proposal for multifunction and high-power displays
NASA Astrophysics Data System (ADS)
Tari, Ilker
2013-03-01
Flat panel displays are conventionally cooled by internal natural convection, which constrains the possible rate of heat transfer from the panel. On one hand, during the last few years, the power consumption and the related cooling requirement for 1080p displays have decreased mostly due to energy savings by the switch to LED backlighting and more efficient electronics. However, on the other hand, the required cooling rate recently started to increase with new directions in the industry such as 3D displays, and ultra-high-resolution displays (recent 4K announcements and planned introduction of 8K). In addition to these trends in display technology itself, there is also a trend to integrate consumer entertainment products into displays with the ultimate goal of designing a multifunction device replacing the TV, the media player, the PC, the game console and the sound system. Considering the increasing power requirement for higher fidelity in video processing, these multifunction devices tend to generate very high heat fluxes, which are impossible to dissipate with internal natural convection. In order to overcome this obstacle, instead of active cooling with forced convection that comes with drawbacks of noise, additional power consumption, and reduced reliability, a passive cooling system relying on external natural convection and radiation is proposed here. The proposed cooling system consists of a heat spreader flat heat pipe and aluminum plate-finned heat sink with anodized surfaces. For this system, the possible maximum heat dissipation rates from the standard size panels (in 26-70 inch range) are estimated by using our recently obtained heat transfer correlations for the natural convection from aluminum plate-finned heat sinks together with the surface-to-surface radiation. With the use of the proposed passive cooling system, the possibility of dissipating very high heat rates is demonstrated, hinting a promising green alternative to active cooling.
Why a simulation system doesn`t match the plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, R.
1998-03-01
Process simulations, or mathematical models, are widely used by plant engineers and planners to obtain a better understanding of a particular process. These simulations are used to answer questions such as how can feed rate be increased, how can yields be improved, how can energy consumption be decreased, or how should the available independent variables be set to maximize profit? Although current process simulations are greatly improved over those of the `70s and `80s, there are many reasons why a process simulation doesn`t match the plant. Understanding these reasons can assist in using simulations to maximum advantage. The reasons simulationsmore » do not match the plant may be placed in three main categories: simulation effects or inherent error, sampling and analysis effects of measurement error, and misapplication effects or set-up error.« less
Sajfrtová, Marie; Licková, Ivana; Wimmerová, Martina; Sovová, Helena; Wimmer, Zdenek
2010-04-22
Supercritical fluid extraction represents an efficient and environmentally friendly technique for isolation of phytosterols from different plant sources. Sea buckthorn (Hippophae rhamnoides L.) seeds were extracted with supercritical carbon dioxide at pressures ranging from 15-60 MPa and temperatures of 40-80 degrees C. Oil and β-sitosterol yields were measured in the extraction course and compared with Soxhlet extraction with hexane. The average yield of β-sitosterol was 0.31 mg/g of seeds. The maximum concentration of β-sitosterol in the extract, 0.5% w/w, was achieved at 15 MPa, 40 degrees C, and a carbon dioxide consumption of 50 g/g of seeds. The extraction rate was maximal at 60 MPa and 40 degrees C. Both β-sitosterol yield and its concentration in the extract obtained with hexane were lower than with carbon dioxide.
Impact of industrial dry-milling on fumonisin redistribution in non-transgenic corn in Brazil.
Bordini, Jaqueline Gozzi; Ono, Mario Augusto; Garcia, Glauco Tironi; Fazani, Victor Hugo Meconi; Vizoni, Édio; Rodrigues, Karem Caroline Bonacin; Hirooka, Elisa Yoko; Ono, Elisabete Yurie Sataque
2017-04-01
The aim of this study was to evaluate the fate of fumonisins B 1 (FB 1 ) and B 2 (FB 2 ) during industrial dry-milling in two lots from 2014 (n=120) and 2015 (n=120) of non-transgenic corn and their fractions (germ, pericarp, endosperm, cornmeal and grits), collected from one of the major Brazilian milling industries. Fumonisins were concentrated in the germ and pericarp at a rate of 322% and 188% (lot 1) and 311% and 263% (lot 2), respectively. In the endosperm, cornmeal and grits fumonisin levels decreased from 60 to 95%. Fumonisin levels in cornmeal and grits were below the maximum limit tolerated by the European Commission. Therefore, corn industrial dry-milling can contribute to reducing fumonisin levels in corn products intended for human consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.
Assaying Mitochondrial Respiration as an Indicator of Cellular Metabolism and Fitness.
Smolina, Natalia; Bruton, Joseph; Kostareva, Anna; Sejersen, Thomas
2017-01-01
Mitochondrial respiration is the most important generator of cellular energy under most circumstances. It is a process of energy conversion of substrates into ATP. The Seahorse equipment allows measuring oxygen consumption rate (OCR) in living cells and estimates key parameters of mitochondrial respiration in real-time mode. Through use of mitochondrial inhibitors, four key mitochondrial respiration parameters can be measured: basal, ATP production-linked, maximal, and proton leak-linked OCR. This approach requires application of mitochondrial inhibitors-oligomycin to block ATP synthase, FCCP-to make the inner mitochondrial membrane permeable for protons and allow maximum electron flux through the electron transport chain, and rotenone and antimycin A-to inhibit complexes I and III, respectively. This chapter describes the protocol of OCR assessment in the culture of primary myotubes obtained upon satellite cell fusion.
Feng, Jie; Feng, Na; Yang, Yan; Liu, Fang; Zhang, Jingsong; Jia, Wei; Lin, Chi-Chung
2015-01-01
Triterpenes are important anticancer agents produced by batch submerged liquid fermentation, with the medicinal mushroom Ganoderma lucidum ACCC G0119, which was investigated under various dissolved oxygen levels by varying agitation speeds. Three kinetic parameters were analyzed: specific mycelial growth rate (μsmg), specific glucose consumption rate (qsgc), and specific triterpene production rate (qstp). High concentration, yield, and productivity of triterpenes were achieved by developing a simple and reproducible two-stage agitation speed control strategy. At the first 40 h, agitation speed was controlled at 150 rpm to obtain the quickest peak qstp for triterpene production, subsequently agitation speed was controlled at 100 rpm to maintain high qstp for high triterpene accumulation. The maximum concentration of triterpenes reached 0.086 g/l with the yield of 6.072 g/kg and the productivity of 6.532 × 10-4 g/(l·h), which were 39.61%, 36.48%, and 49.22%, respectively, better than the best results controlled by fixed agitation speeds. Conceivably, such a triterpene fermentation production strategy would be useful for industrial large-scale production of triterpenes with G. lucidum.
NASA Astrophysics Data System (ADS)
Werner, Thorsten; Buchholz, Cornelia; Buchholz, Friedrich
2015-09-01
Variability in upwelling events may lead to periods of constrained food availability in the northern Benguela upwelling system (NBUS), thereby affecting the physiological state and metabolic activity of euphausiids. Most attention has so far been paid to seasonal effects but little is known about regional variability. Metabolic activity (expressed by respiration and excretion rates) and physiological state (expressed by reproductive effort and moult activity) in Euphausia hanseni were examined at different stations during austral summer (minimum upwelling) and austral winter (maximum upwelling). Overall, regional differences in physiological state, influencing metabolic activity, were greater than seasonal ones, indicating favourable conditions for growth and reproduction year-round. Higher respiration rates were found for females in more advanced stages of sexual development. Moult stage did not affect oxygen consumption rates, however. The physiological state of E. hanseni at the time of capture may serve as a meaningful indicator of the associated hydrographic conditions in the NBUS, to be further used in eco-system analysis on seasonal or long-term time scales. A latitudinal comparison of species highlights the extraordinary physiological plasticity of euphausiids.
Prandini, Jean Michel; da Silva, Márcio Luís Busi; Mezzari, Melissa Paola; Pirolli, Mateus; Michelon, William; Soares, Hugo Moreira
2016-02-01
This work investigated the effects of swine wastewater-derived biogas on microalgae biomass production and nutrient removal rates from piggery wastewater concomitantly with biogas filtration. Photobioreactors with dominant Scenedesmus spp. were prepared using non-sterile digestate and exposed to different photoperiods. In the presence of biogas and autotrophic conditions microalgae yield of 1.1±0.2 g L(-1) (growth rate of 141.8±3.5 mg L(-1) d(-1)) was obtained leading to faster N-NH3 and P-PO4(3-) assimilation rate of 21.2±1.2 and 3.5±2.5 mg L(-1) d(-1), respectively. H2S up to 3000 ppmv was not inhibitory and completely removed. Maximum CO2 assimilation of 219±4.8 mg L(-1) d(-1) was achieved. Biological consumption of CH4 up to 18% v/v was verified. O2 up to 22% v/v was controlled by adding acetate to exacerbate oxygen demand by microorganisms. Microalgae-based wastewater treatment coupled to biogas purification accelerates nutrient removal concomitantly producing valuable biomass and biomethane. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Moore, C. S.; Collins, J. H. Jr
1932-01-01
The clearance distribution in a precombustion chamber cylinder head was varied so that for a constant compression ratio of 13.5 the spherical auxiliary chambers contained 20, 35, 50, and 70 per cent of the total clearance volume. Each chamber was connected to the cylinder by a single circular passage, flared at both ends, and of a cross-sectional area proportional to the chamber volume, thereby giving the same calculated air-flow velocity through each passage. Results of engine-performance tests are presented with variations of power, fuel consumption, explosion pressure, rate of pressure rise, ignition lag, heat loss to the cooling water, and motoring characteristics. For good performance the minimum auxiliary chamber volume, with the cylinder head design used, was 35 per cent of the total clearance volume; for larger volumes the performance improves but slightly. With the auxiliary chamber that contained 35 percent of the clearance volume there were obtained the lowest explosion pressures, medium rates of pressure rise, and slightly less than the maximum power. For all clearance distributions an increase in engine speed decreased the ignition lag in seconds and increased the rate of pressure rise.
Unified Performance and Power Modeling of Scientific Workloads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Shuaiwen; Barker, Kevin J.; Kerbyson, Darren J.
2013-11-17
It is expected that scientific applications executing on future large-scale HPC must be optimized not only in terms of performance, but also in terms of power consumption. As power and energy become increasingly constrained resources, researchers and developers must have access to tools that will allow for accurate prediction of both performance and power consumption. Reasoning about performance and power consumption in concert will be critical for achieving maximum utilization of limited resources on future HPC systems. To this end, we present a unified performance and power model for the Nek-Bone mini-application developed as part of the DOE's CESAR Exascalemore » Co-Design Center. Our models consider the impact of computation, point-to-point communication, and collective communication« less
In situ hydrogen consumption kinetics as an indicator of subsurface microbial activity
Harris, S.H.; Smith, R.L.; Suflita, J.M.
2007-01-01
There are few methods available for broadly assessing microbial community metabolism directly within a groundwater environment. In this study, hydrogen consumption rates were estimated from in situ injection/withdrawal tests conducted in two geochemically varying, contaminated aquifers as an approach towards developing such a method. The hydrogen consumption first-order rates varied from 0.002 nM h-1 for an uncontaminated, aerobic site to 2.5 nM h-1 for a contaminated site where sulfate reduction was a predominant process. The method could accommodate the over three orders of magnitude range in rates that existed between subsurface sites. In a denitrifying zone, the hydrogen consumption rate (0.02 nM h-1) was immediately abolished in the presence of air or an antibiotic mixture, suggesting that such measurements may also be sensitive to the effects of environmental perturbations on field microbial activities. Comparable laboratory determinations with sediment slurries exhibited hydrogen consumption kinetics that differed substantially from the field estimates. Because anaerobic degradation of organic matter relies on the rapid consumption of hydrogen and subsequent maintenance at low levels, such in situ measures of hydrogen turnover can serve as a key indicator of the functioning of microbial food webs and may be more reliable than laboratory determinations. ?? 2007 Federation of European Microbiological Societies.
Müller, Jonas; Schmidt, Dominik
2016-01-01
Summary Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47% of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine. PMID:28115896
Schneider, Volker; Müller, Jonas; Schmidt, Dominik
2016-12-01
Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47% of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine.
Cross-validation of Peak Oxygen Consumption Prediction Models From OMNI Perceived Exertion.
Mays, R J; Goss, F L; Nagle, E F; Gallagher, M; Haile, L; Schafer, M A; Kim, K H; Robertson, R J
2016-09-01
This study cross-validated statistical models for prediction of peak oxygen consumption using ratings of perceived exertion from the Adult OMNI Cycle Scale of Perceived Exertion. 74 participants (men: n=36; women: n=38) completed a graded cycle exercise test. Ratings of perceived exertion for the overall body, legs, and chest/breathing were recorded each test stage and entered into previously developed 3-stage peak oxygen consumption prediction models. There were no significant differences (p>0.05) between measured and predicted peak oxygen consumption from ratings of perceived exertion for the overall body, legs, and chest/breathing within men (mean±standard deviation: 3.16±0.52 vs. 2.92±0.33 vs. 2.90±0.29 vs. 2.90±0.26 L·min(-1)) and women (2.17±0.29 vs. 2.02±0.22 vs. 2.03±0.19 vs. 2.01±0.19 L·min(-1)) participants. Previously developed statistical models for prediction of peak oxygen consumption based on subpeak OMNI ratings of perceived exertion responses were similar to measured peak oxygen consumption in a separate group of participants. These findings provide practical implications for the use of the original statistical models in standard health-fitness settings. © Georg Thieme Verlag KG Stuttgart · New York.
Variation in Protein and Calorie Consumption Following Protein Malnutrition in Rattus norvegicus
Jones, Donna C.; German, Rebecca Z.
2013-01-01
Simple Summary Catch-up growth following malnutrition is likely influenced by available protein and calories. We measured calorie and protein consumption following the removal of protein malnutrition after 40, 60 and 90 days, in laboratory rats. Following the transition in diet, animals self-selected fewer calories, implying elevated protein is sufficient to fuel catch-up growth, eventually resulting in body weights and bone lengths greater or equal to those of control animals. Rats rehabilitated at younger ages, had more drastic alterations in consumption. Variable responses in different ages and sex highlight the plasticity of growth and how nutrition affects body form. This work furthers our understanding of how humans and livestock can recover from protein-restriction malnutrition, which seems to employ different biological responses. Abstract Catch-up growth rates, following protein malnutrition, vary with timing and duration of insult, despite unlimited access to calories. Understanding changing patterns of post-insult consumption, relative rehabilitation timing, can provide insight into the mechanisms driving those differences. We hypothesize that higher catch-up growth rates will be correlated with increased protein consumption, while calorie consumption could remain stable. As catch-up growth rates decrease with age/malnutrition duration, we predict a dose effect in protein consumption with rehabilitation timing. We measured total and protein consumption, body mass, and long bone length, following an increase of dietary protein at 40, 60 and 90 days, with two control groups (chronic reduced protein or standard protein) for 150+ days. Immediately following rehabilitation, rats’ food consumption decreased significantly, implying that elevated protein intake is sufficient to fuel catch-up growth rates that eventually result in body weights and long bone lengths greater or equal to final measures of chronically fed standard (CT) animals. The duration of protein restriction affected consumption: rats rehabilitated at younger ages had more drastic alterations in consumption of both calories and protein. While rehabilitated animals did compensate with greater protein consumption, variable responses in different ages and sex highlight the plasticity of growth and how nutrition affects body form. PMID:26487308
Wang, Pei-Yong; Long, Fei-Xiao; Fu, Lan-Ying; Li, Yue; Ding, Hai-Shu; Qu, An-Lian; Zhou, Xiao-Ping
2010-02-01
Using continuous two wavelength near-infrared technology to detect the variation in the consistency of oxygen hemoglobin in the muscle and the sports heart rate wireless real time collection technology, we devised the real time muscle tissue oxygenation and instantaneous heart rate experiment scheme and implemented it for the process of the 100 m run with two parameters given simultaneously. The experiment shows that the concentration of the oxygen hemoglobin in the muscle tissue continues decreasing after the end of the 100 m run, and the time interval between the moment when the concentration of the oxygen hemoglobin attains the minimum value and the moment when the athletes finish the 100 m run is (6.65 +/- 1.10) sec; while the heart rate continues increasing after the end of the 100 m run, and the time interval between the moment when the heart rate attains the maximum value and the moment when the athletes finish the 100 m run is (8.00 +/- 1.57) sec. The results show that the two wavelength near-infrared tissue oxygenation detection technology and the sports heart rate real time collection equipment can accurately measure the sports tissue oxygenation and the heart rate in the extreme intensity sport, and reveal the process of muscle oxygen transportation and consumption and its dynamic character with the heart rate in the extreme intensity sport.
NASA Astrophysics Data System (ADS)
Brewer, Peter G.; Peltzer, Edward T.
2017-08-01
For over 50 years, ocean scientists have oddly represented ocean oxygen consumption rates as a function of depth but not temperature in most biogeochemical models. This unique tradition or tactic inhibits useful discussion of climate change impacts, where specific and fundamental temperature-dependent terms are required. Tracer-based determinations of oxygen consumption rates in the deep sea are nearly universally reported as a function of depth in spite of their well-known microbial basis. In recent work, we have shown that a carefully determined profile of oxygen consumption rates in the Sargasso Sea can be well represented by a classical Arrhenius function with an activation energy of 86.5 kJ mol-1, leading to a Q10 of 3.63. This indicates that for 2°C warming, we will have a 29% increase in ocean oxygen consumption rates, and for 3°C warming, a 47% increase, potentially leading to large-scale ocean hypoxia should a sufficient amount of organic matter be available to microbes. Here, we show that the same principles apply to a worldwide collation of tracer-based oxygen consumption rate data and that some 95% of ocean oxygen consumption is driven by temperature, not depth, and thus will have a strong climate dependence. The Arrhenius/Eyring equations are no simple panacea and they require a non-equilibrium steady state to exist. Where transient events are in progress, this stricture is not obeyed and we show one such possible example. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.
Claireaux, Guy; Couturier, Christine; Groison, Anne-Laure
2006-09-01
This study is an attempt to gain an integrated understanding of the interactions between temperature, locomotion activity and metabolism in the European sea bass (Dicentrarchus labrax). To our knowledge this study is among the few that have investigated the influence of the seasonal changes in water temperature on swimming performance in fish. Using a Brett-type swim-tunnel respirometer the relationship between oxygen consumption and swimming speed was determined in fish acclimatised to 7, 11, 14, 18, 22, 26 and 30 degrees C. The corresponding maximum swimming speed (U(max)), optimal swimming speed (U(opt)), active (AMR) and standard (SMR) metabolic rates as well as aerobic metabolic scope (MS) were calculated. Using simple mathematical functions, these parameters were modelled as a function of water temperature and swimming speed. Both SMR and AMR were positively related to water temperature up to 24 degrees C. Above 24 degrees C SMR and AMR levelled off and MS tended to decrease. We found a tight relationship between AMR and U(max) and observed that raising the temperature increased AMR and increased swimming ability. However, although fish swam faster at high temperature, the net cost of transport (COT(net)) at a given speed was not influence by the elevation of the water temperature. Although U(opt) doubled between 7 degrees C and 30 degrees C (from 0.3 to 0.6 m s(-1)), metabolic rate at U(opt) represented a relatively constant fraction of the animal active metabolic rate (40-45%). A proposed model integrates the effects of water temperature on the interaction between metabolism and swimming performance. In particular the controlling effect of temperature on AMR is shown to be the key factor limiting maximal swimming speed of sea bass.
Impact of diet on long-term decline in gastric cancer incidence in Poland
Jarosz, Mirosław; Sekuła, Włodzimierz; Rychlik, Ewa; Figurska, Katarzyna
2011-01-01
AIM: To examine the relationship between the trends in food consumption and gastric cancer morbidity in Poland. METHODS: The study was based on gastric cancer incidence rates and consumption of vegetables, fruit, vitamin C and salt in Poland between 1960 and 2006. Food consumption data were derived from the national food balance sheets or household budget surveys. Spearman correlation coefficients were used to estimate the relationship between the variables. RESULTS: A negative correlation was found between vegetables (-0.70 both for men and women; P < 0.0001), fruit (-0.65 and -0.66; P < 0.0001) and vitamin C (-0.75 and -0.74; P < 0.0001) consumption and stomach cancer incidence rates. The same applied to the availability of refrigerators in the household (-0.77 and -0.80; P < 0.0001). A decline in these rates could also be linked to reduction in salt intake. CONCLUSION: The decline of gastric cancer incidence probably resulted from increased consumption of vegetables, fruit and vitamin C and a decrease in salt consumption. PMID:21218088