Comfort air temperature influence on heating and cooling loads of a residential building
NASA Astrophysics Data System (ADS)
Stanciu, C.; Șoriga, I.; Gheorghian, A. T.; Stanciu, D.
2016-08-01
The paper presents the thermal behavior and energy loads of a two-level residential building designed for a family of four, two adults and two students, for different inside comfort levels reflected by the interior air temperature. Results are intended to emphasize the different thermal behavior of building elements and their contribution to the building's external load. The most important contributors to the building thermal loss are determined. Daily heating and cooling loads are computed for 12 months simulation in Bucharest (44.25°N latitude) in clear sky conditions. The most important aspects regarding sizing of thermal energy systems are emphasized, such as the reference months for maximum cooling and heating loads and these loads’ values. Annual maximum loads are encountered in February and August, respectively, so these months should be taken as reference for sizing thermal building systems, in Bucharest, under clear sky conditions.
First wall structural analysis of the aqueous self-cooled blanket concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, D.A.; Steiner, D.; Embrechts, M.J.
1986-11-01
A recently proposed blanket concept using water coolant with dissolved lithium compounds for breeding employs water cooled first walls. Water cooled first walls for blankets have also been proposed for some solid breeder blankets. Design options for water cooled first walls are examined in this paper. Four geometries and three materials are analyzed for water coolant at 300/sup 0/C and 13.8 MPa (2000 psi). Maximum neutron wall loads (with surface heat loads being 25% of neutron wall load) are determined for each geometry and material combination. Of the materials studied, only vanadium alloy is found to be capable of withstandingmore » high wall loads (>10MW/m/sup 2/ neutron and >2.5 MW/m/sup 2/ heat).« less
Storage peak gas-turbine power unit
NASA Technical Reports Server (NTRS)
Tsinkotski, B.
1980-01-01
A storage gas-turbine power plant using a two-cylinder compressor with intermediate cooling is studied. On the basis of measured characteristics of a .25 Mw compressor computer calculations of the parameters of the loading process of a constant capacity storage unit (05.3 million cu m) were carried out. The required compressor power as a function of time with and without final cooling was computed. Parameters of maximum loading and discharging of the storage unit were calculated, and it was found that for the complete loading of a fully unloaded storage unit, a capacity of 1 to 1.5 million cubic meters is required, depending on the final cooling.
Analysis and Design of the NASA Langley Cryogenic Pressure Box
NASA Technical Reports Server (NTRS)
Glass, David E.; Stevens, Jonathan C.; Vause, R. Frank; Winn, Peter M.; Maguire, James F.; Driscoll, Glenn C.; Blackburn, Charles L.; Mason, Brian H.
1999-01-01
A cryogenic pressure box was designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 72 in. x 60 in. curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20K) with 54 psig maximum pressure on the concave side, and elevated temperatures and atmospheric pressure on the convex surface. The internal surface of the panel is cooled by high pressure helium as that is cooled to -423 F by liquid helium heat exchangers. An array of twelve independently controlled fans circulate the high pressure gaseous helium to provide uniform cooling on the panel surface. The load introduction structure, consisting of four stainless steel load plates and numerous fingers attaching the load plates to the test panel, is designed to introduce loads into the test panel that represent stresses that will he observed in the actual tank structure. The load plates are trace cooled with liquid nitrogen to reduce thermal gradients that may result in bending the load plates, and thus additional stresses in the test panel. The design of the cryogenic systems, load introduction structure, and control system are discussed in this report.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-16
...; (12) low voltage winding basic insulation level; (13) load loss at maximum MVA rating; (14) no-load loss; (15) cooling class designation; (16) overload requirement; (17) decibel rating; and (18... Transformers from Korea: Investigation No. 731-TA-1189 (Preliminary).'' On September 16, 2011, we selected...
Closed Form Equations for the Preliminary Design of a Heat-Pipe-Cooled Leading Edge
NASA Technical Reports Server (NTRS)
Glass, David E.
1998-01-01
A set of closed form equations for the preliminary evaluation and design of a heat-pipe-cooled leading edge is presented. The set of equations can provide a leading-edge designer with a quick evaluation of the feasibility of using heat-pipe cooling. The heat pipes can be embedded in a metallic or composite structure. The maximum heat flux, total integrated heat load, and thermal properties of the structure and heat-pipe container are required input. The heat-pipe operating temperature, maximum surface temperature, heat-pipe length, and heat pipe-spacing can be estimated. Results using the design equations compared well with those from a 3-D finite element analysis for both a large and small radius leading edge.
NASA Technical Reports Server (NTRS)
Schuller, F. T.; Pinel, S. I.; Signer, H. R.
1985-01-01
Parametric tests were conducted with a 35-mm-bore, split-inner-ring ball bearing with a double-inner-land-guided cage. Provisions were made for through-the-inner-ring lubrication. Test condictions were either a thrust load of 667 N (150 lb) or a combined load of 667 N (150 lb) thrust and 222 N (50 lb) radial, shaft speeds from 32000 to 72000 rpm, and an oil-inlet temperature of 394 K (250 deg F). Outer ring cooling was used in some tests. Tests were run with either 50 or 75 percent of the total oil flow distributed to the inner-ring raceway. Successful operation was experienced with both 50% and 75% flow patterns to 2.5 million DN. Cooling the outer ring had little effect on inner-ring temperature; however, the outer-ring temperature decreased as much as 7% at 2.5 million DN. Maximum recorded power loss was 3.1 kW (4.2 hp), and maximum cage slip was 8.7 percent. Both occurred at a shaft speed of 72000 rpm, a lubricant flow rate of 1900 cu/min (0.50 gal/min), a combined load, and no outer-ring cooling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, A. J.
In a method of the type where petrol is recovered from a mixture of petrol vapor and air by absorption of the petrol in a cooled petroleum distillate, a petroleum distillate having a boiling point range higher than that of the petrol is used, and this petroleum distillate is in sequence cooled by heat exchange with a cold reservoir, brought into direct contact with the petrol/air mixture to absorb petrol, transferred to a buffer tank and transferred from the buffer tank to a stripping means which may be a distillation column. By combining cooling condensation and absorption of the petrolmore » vapor and controlling the amount of cooled petroleum distillate brought into contact with the petrol/air mixture so that the petrol concentration in the petroleum distillate transferred to the buffer tank is substantially constant, an unprecedented optimum control of the petrol absorbing process can be obtained both in peak load and in average load operations. A system for carrying out the method is advantageous in that only the absorption means need be dimensioned for peak load operation, while the other components, such as the distillation column or a heat exchanger with associated conduits can be dimensioned for average loads, a buffer tank being provided to temporarily receive the petroleum distillate which owing to the above-mentioned control has a substantially constant, maximum petrol concentration so that the system can cope with peak loads with a surprisingly small buffer tank.« less
NASA Astrophysics Data System (ADS)
Dye, S. A.; Johnson, W. L.; Plachta, D. W.; Mills, G. L.; Buchanan, L.; Kopelove, A. B.
2014-11-01
Improvements in cryogenic propellant storage are needed to achieve reduced or Zero Boil Off of cryopropellants, critical for long duration missions. Techniques for reducing heat leak into cryotanks include using passive multi-layer insulation (MLI) and vapor cooled or actively cooled thermal shields. Large scale shields cannot be supported by tank structural supports without heat leak through the supports. Traditional MLI also cannot support shield structural loads, and separate shield support mechanisms add significant heat leak. Quest Thermal Group and Ball Aerospace, with NASA SBIR support, have developed a novel Load Bearing multi-layer insulation (LBMLI) capable of self-supporting thermal shields and providing high thermal performance. We report on the development of LBMLI, including design, modeling and analysis, structural testing via vibe and acoustic loading, calorimeter thermal testing, and Reduced Boil-Off (RBO) testing on NASA large scale cryotanks. LBMLI uses the strength of discrete polymer spacers to control interlayer spacing and support the external load of an actively cooled shield and external MLI. Structural testing at NASA Marshall was performed to beyond maximum launch profiles without failure. LBMLI coupons were thermally tested on calorimeters, with superior performance to traditional MLI on a per layer basis. Thermal and structural tests were performed with LBMLI supporting an actively cooled shield, and comparisons are made to the performance of traditional MLI and thermal shield supports. LBMLI provided a 51% reduction in heat leak per layer over a previously tested traditional MLI with tank standoffs, a 38% reduction in mass, and was advanced to TRL5. Active thermal control using LBMLI and a broad area cooled shield offers significant advantages in total system heat flux, mass and structural robustness for future Reduced Boil-Off and Zero Boil-Off cryogenic missions with durations over a few weeks.
Measurement of Vehicle Air Conditioning Pull-Down Period
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, John F.; Huff, Shean P.; Moore, Larry G.
2016-08-01
Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner systemmore » would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.« less
NASA Technical Reports Server (NTRS)
Miller, W. S.
1974-01-01
A structural analysis performed on the 1/4-watt cryogenic refrigerator. The analysis covered the complete assembly except for the cooling jacket and mounting brackets. Maximum stresses, margin of safety, and natural frequencies were calculated for structurally loaded refrigerator components shown in assembly drawings. The stress analysis indicates that the design is satisfactory for the specified vibration environment, and the proof, burst, and normal operating loads.
Optimation of cooled shields in insulations
NASA Technical Reports Server (NTRS)
Chato, J. C.; Khodadadi, J. M.; Seyed-Yagoobi, J.
1984-01-01
A method to optimize the location, temperature, and heat dissipation rate of each cooled shield inside an insulation layer was developed. The method is based on the minimization of the entropy production rate which is proportional to the heat leak across the insulation. It is shown that the maximum number of shields to be used in most practical applications is three. However, cooled shields are useful only at low values of the overall, cold wall to hot wall absolute temperature ratio. The performance of the insulation system is relatively insensitive to deviations from the optimum values of the temperature and location of the cooling shields. Design curves for rapid estimates of the locations and temperatures of cooling shields in various types of insulations, and an equation for calculating the cooling loads for the shields are presented.
The elastocaloric effect of Ni50.8Ti49.2 shape memory alloys
NASA Astrophysics Data System (ADS)
Zhou, Min; Li, Yushuang; Zhang, Chen; Li, Shaojie; Wu, Erfu; Li, Wei; Li, Laifeng
2018-04-01
Solid-state cooling technologies are considered as possible alternatives for vapor compression cooling systems. The elastocaloric cooling (whose caloric effects are driven by uniaxial stress) technology, as an efficient and clean solid-state cooling technology, is receiving a great deal of attention very recently. Herein, a NiTi-based elastocaloric bulk material was reported. A large coefficient-of-performance of the material (COPmater) of 4.5 was obtained, which was even higher than that of other NiTi bulk materials. The temperature changes (ΔT) increased with increasing applied strain (ɛ), and reached 18 K upon loading and -11 K upon unloading when the ɛ value increased to 4%. The high temperature changes were attributed to the large stress-induced entropy changes (the maximum ΔS σ value was 37 J kg-1 K-1). The temperature changes decreased with loading-unloading tensile cycles, and stabilized at 6.5 K upon loading and -6 K upon unloading after tens of mechanical cycles. The Ni50.8Ti49.2 shape memory alloy showed great promise for application in solid-state refrigeration (or as heat pumps).
Study of fail-safe abort system for an actively cooled hypersonic aircraft, volume 2
NASA Technical Reports Server (NTRS)
Peeples, M. E.; Herring, R. L.
1976-01-01
Conceptual designs of a fail-safe abort system for hydrogen fueled actively cooled high speed aircraft are examined. The fail-safe concept depends on basically three factors: (1) a reliable method of detecting a failure or malfunction in the active cooling system, (2) the optimization of abort trajectories which minimize the descent heat load to the aircraft, and (3) fail-safe thermostructural concepts to minimize both the weight and the maximum temperature the structure will reach during descent. These factors are examined and promising approaches are evaluated based on weight, reliability, ease of manufacture and cost.
Daily Air Temperature and Electricity Load in Spain.
NASA Astrophysics Data System (ADS)
Valor, Enric; Meneu, Vicente; Caselles, Vicente
2001-08-01
Weather has a significant impact on different sectors of the economy. One of the most sensitive is the electricity market, because power demand is linked to several weather variables, mainly the air temperature. This work analyzes the relationship between electricity load and daily air temperature in Spain, using a population-weighted temperature index. The electricity demand shows a significant trend due to socioeconomic factors, in addition to daily and monthly seasonal effects that have been taken into account to isolate the weather influence on electricity load. The results indicate that the relationship is nonlinear, showing a `comfort interval' of ±3°C around 18°C and two saturation points beyond which the electricity load no longer increases. The analysis has also revealed that the sensitivity of electricity load to daily air temperature has increased along time, in a higher degree for summer than for winter, although the sensitivity in the cold season is always more significant than in the warm season. Two different temperature-derived variables that allow a better characterization of the observed relationship have been used: the heating and cooling degree-days. The regression of electricity data on them defines the heating and cooling demand functions, which show correlation coefficients of 0.79 and 0.87, and predicts electricity load with standard errors of estimate of ±4% and ±2%, respectively. The maximum elasticity of electricity demand is observed at 7 cooling degree-days and 9 heating degree-days, and the saturation points are reached at 11 cooling degree-days and 13 heating degree-days, respectively. These results are helpful in modeling electricity load behavior for predictive purposes.
Transient Three-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2004-01-01
Three-dimensional numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, and pressure-based computational fluid dynamics formulation, and a simulated inlet condition based on a system calculation. Finite-rate chemistry was used throughout the study so that combustion effect is always included, and the effect of wall cooling on side load physics is studied. The side load physics captured include the afterburning wave, transition from free- shock to restricted-shock separation, and lip Lambda shock oscillation. With the adiabatic nozzle, free-shock separation reappears after the transition from free-shock separation to restricted-shock separation, and the subsequent flow pattern of the simultaneous free-shock and restricted-shock separations creates a very asymmetric Mach disk flow. With the cooled nozzle, the more symmetric restricted-shock separation persisted throughout the start-up transient after the transition, leading to an overall lower side load than that of the adiabatic nozzle. The tepee structures corresponding to the maximum side load were addressed.
Nitrate leaching from winter cereal cover crops using undisturbed soil-column lysimeters
USDA-ARS?s Scientific Manuscript database
Cover crops are important management practices for reducing nitrogen (N) leaching in the Chesapeake Bay watershed, which is under Total Maximum Daily Load restraints. Cool-season annual grasses such as barley, rye, or wheat are common cover crops, but studies are needed to directly compare field ni...
49 CFR 210.31 - Operation standards (stationary locomotives at 30 meters).
Code of Federal Regulations, 2010 CFR
2010-10-01
... stationary locomotives at load cells: (1) Each noise emission test shall begin after the engine of the locomotive has attained the normal cooling water operating temperature as prescribed by the locomotive manufacturer. (2) Noise emission testing in idle or maximum throttle setting shall start after a 40 second...
Thermal-mechanical fatigue test apparatus for metal matrix composites and joint attachments
NASA Technical Reports Server (NTRS)
Westfall, L. J.; Petrasek, D. W.
1985-01-01
Two thermal-mechanical fatigue (TMF) test facilities were designed and developed, one to test tungsten fiber reinforced metal matrix composite specimens at temperature up to 1430C (2600F) and another to test composite/metal attachment bond joints at temperatures up to 760C (1400 F). The TMF facility designed for testing tungsten fiber reinforced metal matrix composites permits test specimen temperature excursions from room temperature to 1430C (2600F) with controlled heating and loading rates. A strain-measuring device measures the strain in the test section of the specimen during each heating and cooling cycle with superimposed loads. Data is collected and recorded by a computer. The second facility is designed to test composite/metal attachment bond joints and to permit heating to a maximum temperature of 760C (1400F) within 10 min and cooling to 150C (300F) within 3 min. A computer controls specimen temperature and load cycling.
Thermal-mechanical fatigue test apparatus for metal matrix composites and joint attachments
NASA Technical Reports Server (NTRS)
Westfall, Leonard J.; Petrasek, Donald W.
1988-01-01
Two thermal-mechanical fatigue (TMF) test facilities were designed and developed, one to test tungsten fiber reinforced metal matrix composite specimens at temperature up to 1430C (2600F) and another to test composite/metal attachment bond joints at temperatures up to 760F (1400F). The TMF facility designed for testing tungsten fiber reinforced metal matrix composites permits test specimen temperature excursions from room temperature to 1430C (2600F) with controlled heating and loading rates. A strain-measuring device measures the strain in the test section of the specimen during each heating and cooling cycle with superimposed loads. Data is collected and recorded by a computer. The second facility is designed to test composite/metal attachment bond joints and to permit heating to a maximum temperature of 760C (1400F) within 10 min and cooling to 150C (300F) within 3 min. A computer controls specimen temperature and load cycling.
NASA Technical Reports Server (NTRS)
Pirello, C. J.; Herring, R. L.
1976-01-01
Conceptual designs of a fail-safe abort system for hydrogen fueled actively cooled high speed aircraft are examined. The fail-safe concept depends on basically three factors: (1) a reliable method of detecting a failure or malfunction in the active cooling system, (2) the optimization of abort trajectories which minimize the descent heat load to the aircraft, and (3) fail-safe thermostructural concepts to minimize both the weight and the maximum temperature the structure will reach during descent. These factors are examined and promising approaches are evaluated based on weight, reliability, ease of manufacture and cost.
Thermal-structural design study of an airframe-integrated Scramjet
NASA Technical Reports Server (NTRS)
Killackey, J. J.; Katinsky, E. A.; Tepper, S.; Vuigner, A. A.
1978-01-01
Design concepts are developed and evaluated for a cooled structures assembly for the Scramjet engine, for engine subsystems mass, volume, and operating requirements, and for the aircraft/engine interface. A thermal protection system was defined that makes it possible to attain a life of 100 hours and 1000 cycles. The coolant equivalence ratio at the Mach 10 maximum thermal loading condition is 0.6, indicating a capacity for airframe cooling. The mechanical design is feasible for manufacture using conventional materials. For the cooled structures in a six-module engine, the mass per unit capture area is 12.4 KN/sq m. The total weight of a six-module engine assembly including the fuel system is 14.73 KN.
Aero-Thermo-Structural Design Optimization of Internally Cooled Turbine Blades
NASA Technical Reports Server (NTRS)
Dulikravich, G. S.; Martin, T. J.; Dennis, B. H.; Lee, E.; Han, Z.-X.
1999-01-01
A set of robust and computationally affordable inverse shape design and automatic constrained optimization tools have been developed for the improved performance of internally cooled gas turbine blades. The design methods are applicable to the aerodynamics, heat transfer, and thermoelasticity aspects of the turbine blade. Maximum use of the existing proven disciplinary analysis codes is possible with this design approach. Preliminary computational results demonstrate possibilities to design blades with minimized total pressure loss and maximized aerodynamic loading. At the same time, these blades are capable of sustaining significantly higher inlet hot gas temperatures while requiring remarkably lower coolant mass flow rates. These results suggest that it is possible to design internally cooled turbine blades that will cost less to manufacture, will have longer life span, and will perform as good, if not better than, film cooled turbine blades.
A Compact, Continuous Adiabatic Demagnetization Refrigerator with High Heat Sink Temperature
NASA Technical Reports Server (NTRS)
Shirron, P. J.; Canavan, E. R.; DiPirro, M. J.; Jackson, M.; Tuttle, J. G.
2003-01-01
In the continuous adiabatic demagnetization refrigerator (ADR), the existence of a constant temperature stage attached to the load breaks the link between the requirements of the load (usually a detector array) and the operation of the ADR. This allows the ADR to be cycled much faster, which yields more than an order of magnitude improvement in cooling power density over single-shot ADRs. Recent effort has focused on developing compact, efficient higher temperature stages. An important part of this work has been the development of passive gas-gap heat switches that transition (from conductive to insulating) at temperatures around 1 K and 4 K without the use of an actively heated getter. We have found that by carefully adjusting available surface area and the number of He-3 monolayers, gas-gap switches can be made to operate passively. Passive operation greatly reduces switching time and eliminates an important parasitic heat load. The current four stage ADR provides 6 micro W of cooling at 50 mK (21 micro W at 100 mK) and weighs less than 8 kg. It operates from a 4.2 K heat sink, which can be provided by an unpumped He bath or many commercially available mechanical cryocoolers. Reduction in critical current with temperature in our fourth stage NbTi magnet presently limits the maximum temperature of our system to approx. 5 K. We are developing compact, low-current Nb3Sn magnets that will raise the maximum heat sink temperature to over 10 K.
Grahn, Dennis A; Cao, Vinh H; Nguyen, Christopher M; Liu, Mengyuan T; Heller, H Craig
2012-09-01
Body core cooling via the palm of a hand increases work volume during resistive exercise. We asked: (a) "Is there a correlation between elevated core temperatures and fatigue onset during resistive exercise?" and (b) "Does palm cooling between sets of resistive exercise affect strength and work volume training responses?" Core temperature was manipulated by 30-45 minutes of fixed load and duration treadmill exercise in the heat with or without palm cooling. Work volume was then assessed by 4 sets of fixed load bench press exercises. Core temperatures were reduced and work volumes increased after palm cooling (Control: Tes = 39.0 ± 0.1° C, 36 ± 7 reps vs. Cooling: Tes = 38.4 ± 0.2° C, 42 ± 7 reps, mean ± SD, n = 8, p < 0.001). In separate experiments, the impact of palm cooling on work volume and strength training responses were assessed. The participants completed biweekly bench press or pull-up exercises for multiple successive weeks. Palm cooling was applied for 3 minutes between sets of exercise. Over 3 weeks of bench press training, palm cooling increased work volume by 40% (vs. 13% with no treatment; n = 8, p < 0.05). Over 6 weeks of pull-up training, palm cooling increased work volume by 144% in pull-up experienced subjects (vs. 5% over 2 weeks with no treatment; n = 7, p < 0.001) and by 80% in pull-up naïve subjects (vs. 20% with no treatment; n = 11, p < 0.01). Strength (1 repetition maximum) increased 22% over 10 weeks of pyramid bench press training (4 weeks with no treatment followed by 6 weeks with palm cooling; n = 10, p < 0.001). These results verify previous observations about the effects of palm cooling on work volume, demonstrate a link between core temperature and fatigue onset during resistive exercise, and suggest a novel means for improving strength and work volume training responses.
A novel stochastic modeling method to simulate cooling loads in residential districts
An, Jingjing; Yan, Da; Hong, Tianzhen; ...
2017-09-04
District cooling systems are widely used in urban residential communities in China. Most of such systems are oversized, which leads to wasted investment, low operational efficiency and, thus, waste of energy. The accurate prediction of district cooling loads that can support the rightsizing of cooling plant equipment remains a challenge. This study develops a novel stochastic modeling method that consists of (1) six prototype house models representing most apartments in a district, (2) occupant behavior models of residential buildings reflecting their spatial and temporal diversity as well as their complexity based on a large-scale residential survey in China, and (3)more » a stochastic sampling process to represent all apartments and occupants in the district. The stochastic method was applied to a case study using the Designer's Simulation Toolkit (DeST) to simulate the cooling loads of a residential district in Wuhan, China. The simulation results agreed well with the measured data based on five performance metrics representing the aggregated cooling consumption, the peak cooling loads, the spatial load distribution, the temporal load distribution and the load profiles. Two prevalent simulation methods were also employed to simulate the district cooling loads. Here, the results showed that oversimplified assumptions about occupant behavior could lead to significant overestimation of the peak cooling load and the total cooling loads in the district. Future work will aim to simplify the workflow and data requirements of the stochastic method for its application, and to explore its use in predicting district heating loads and in commercial or mixed-use districts.« less
A novel stochastic modeling method to simulate cooling loads in residential districts
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Jingjing; Yan, Da; Hong, Tianzhen
District cooling systems are widely used in urban residential communities in China. Most of such systems are oversized, which leads to wasted investment, low operational efficiency and, thus, waste of energy. The accurate prediction of district cooling loads that can support the rightsizing of cooling plant equipment remains a challenge. This study develops a novel stochastic modeling method that consists of (1) six prototype house models representing most apartments in a district, (2) occupant behavior models of residential buildings reflecting their spatial and temporal diversity as well as their complexity based on a large-scale residential survey in China, and (3)more » a stochastic sampling process to represent all apartments and occupants in the district. The stochastic method was applied to a case study using the Designer's Simulation Toolkit (DeST) to simulate the cooling loads of a residential district in Wuhan, China. The simulation results agreed well with the measured data based on five performance metrics representing the aggregated cooling consumption, the peak cooling loads, the spatial load distribution, the temporal load distribution and the load profiles. Two prevalent simulation methods were also employed to simulate the district cooling loads. Here, the results showed that oversimplified assumptions about occupant behavior could lead to significant overestimation of the peak cooling load and the total cooling loads in the district. Future work will aim to simplify the workflow and data requirements of the stochastic method for its application, and to explore its use in predicting district heating loads and in commercial or mixed-use districts.« less
NASA Astrophysics Data System (ADS)
Browning, J.; Daoud, A.; Meredith, P. G.; Mitchell, T. M.
2017-12-01
Volcanic and geothermal systems are in part controlled by the mechanical and thermal stresses acting on them and so it is important to understand the response of volcanic rocks to thermo-mechanical loading. One such response is the well-known `Kaiser stress-memory' effect observed under cyclic mechanical loading. By contrast, the presence of an analogous `Kaiser temperature-memory effect' during cyclic thermal loading has received little attention. We have therefore explored the possibility of a Kaiser temperature-memory effect using three igneous rocks of different composition, grain size and origin; Slaufrudalur Granophyre (SGP), Nea Kameni Andesite (NKA) and Seljadalur Basalt (SB). We present results from a series of thermal stressing experiments in which acoustic emissions (AE) were recorded contemporaneously with changing temperature. Samples of each rock were subjected to both a single heating and cooling cycle to a maximum temperature of 900 °C and multiple heating/cooling cycles to peak temperatures of 350°C, 500°C, 700°C and 900 °C (all at a constant rate of 1°C/min on heating and a natural cooling rate of <1°C/min). Porosity, permeability and P-wave velocity measurements were made on each sample both before and after thermal treatment. We use the onset of AEs as a proxy for the onset of thermal cracking. This clearly demonstrates the presence of a Kaiser temperature-memory effect in SGP, but not in either NKA and SB. We further find that the vast majority of thermal crack damage is generated upon cooling in the finer grained materials (NKA and SB), but that substantial thermal crack damage is generated during heating in the coarser grained SGP. The total amount of crack damage generated due to heating or cooling is dependent on the mineral composition and, most importantly, the grain size and arrangement, as well as the maximum temperature to which the rock is exposed. Knowledge of thermal stress history and the presence of a Kaiser temperature-memory effect is potentially important in understanding magma chamber dynamics, where the cyclic nature of mechanical and thermal inflation and deflation can lead to sequential accumulation of damage, potentially leading to critical rupture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calise, F.; Dentice d'Accadia, M.; Palombo, A.
2010-03-15
In this paper, a transient simulation model of solar-assisted heating and cooling systems (SHC) is presented. A detailed case study is also discussed, in which three different configurations are considered. In all cases, the SHC system is based on the coupling of evacuated solar collectors with a single-stage LiBr-H{sub 2}O absorption chiller, and a gas-fired boiler is also included for auxiliary heating, only during the winter season. In the first configuration, the cooling capacity of the absorption chiller and the solar collector area are designed on the basis of the maximum cooling load, and an electric chiller is used asmore » the auxiliary cooling system. The second layout is similar to the first one, but, in this case, the absorption chiller and the solar collector area are sized in order to balance only a fraction of the maximum cooling load. Finally, in the third configuration, there is no electric chiller, and the auxiliary gas-fired boiler is also used in summer to feed the absorption chiller, in case of scarce solar irradiation. The simulation model was developed using the TRNSYS software, and included the analysis of the dynamic behaviour of the building in which the SHC systems were supposed to be installed. The building was simulated using a single-lumped capacitance model. An economic model was also developed, in order to assess the operating and capital costs of the systems under analysis. Furthermore, a mixed heuristic-deterministic optimization algorithm was implemented, in order to determine the set of the synthesis/design variables that maximize the energy efficiency of each configuration under analysis. The results of the case study were analyzed on monthly and weekly basis, paying special attention to the energy and monetary flows of the standard and optimized configurations. The results are encouraging as for the potential of energy saving. On the contrary, the SHC systems appear still far from the economic profitability: however, this is notoriously true for the great majority of renewable energy systems. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Jon; Booten, Chuck
Residential building codes and voluntary labeling programs are continually increasing the energy efficiency requirements of residential buildings. Improving a building's thermal enclosure and installing energy-efficient appliances and lighting can result in significant reductions in sensible cooling loads leading to smaller air conditioners and shorter cooling seasons. However due to fresh air ventilation requirements and internal gains, latent cooling loads are not reduced by the same proportion. Thus, it's becoming more challenging for conventional cooling equipment to control indoor humidity at part-load cooling conditions and using conventional cooling equipment in a non-conventional building poses the potential risk of high indoor humidity.more » The objective of this project was to investigate the impact the chosen design condition has on the calculated part-load cooling moisture load, and compare calculated moisture loads and the required dehumidification capacity to whole-building simulations. Procedures for sizing whole-house supplemental dehumidification equipment have yet to be formalized; however minor modifications to current Air-Conditioner Contractors of America (ACCA) Manual J load calculation procedures are appropriate for calculating residential part-load cooling moisture loads. Though ASHRAE 1% DP design conditions are commonly used to determine the dehumidification requirements for commercial buildings, an appropriate DP design condition for residential buildings has not been investigated. Two methods for sizing supplemental dehumidification equipment were developed and tested. The first method closely followed Manual J cooling load calculations; whereas the second method made more conservative assumptions impacting both sensible and latent loads.« less
FY 17 Q1 Commercial integrated heat pump with thermal storage milestone report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Heiba, Ahmad; Baxter, Van D.; Shen, Bo
2017-01-01
The commercial integrated heat pump with thermal storage (AS-IHP) offers significant energy saving over a baseline heat pump with electric water heater. The saving potential is maximized when the AS-IHP serves coincident high water heating and high space cooling demands. A previous energy performance analysis showed that the AS-IHP provides the highest benefit in the hot-humid and hot-dry/mixed dry climate regions. Analysis of technical potential energy savings for these climate zones based on the BTO Market calculator indicated that the following commercial building market segments had the highest water heating loads relative to space cooling and heating loads education, foodmore » service, health care, lodging, and mercantile/service. In this study, we focused on these building types to conservatively estimate the market potential of the AS-IHP. Our analysis estimates maximum annual shipments of ~522,000 units assuming 100% of the total market is captured. An early replacement market based on replacement of systems in target buildings between 15 and 35 years old was estimated at ~136,000 units. Technical potential energy savings are estimated at ~0.27 quad based on the maximum market estimate, equivalent to ~13.9 MM Ton CO2 emissions reduction.« less
Thermal Analysis for Ion-Exchange Column System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Si Y.; King, William D.
2012-12-20
Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models weremore » used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.« less
Impact of Paint Color on Rest Period Climate Control Loads in Long-Haul Trucks: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustbader, J.; Kreutzer, C.; Jeffers, M.
Cab climate conditioning is one of the primary reasons for operating the main engine in a long-haul truck during driver rest periods. In the United States, sleeper cab trucks use approximately 667 million gallons of fuel annually for rest period idling. The U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) CoolCab Project works closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining occupant comfort. Heat transfer to the vehicle interior from opaque exterior surfaces is one of the major heat pathways that contribute to air conditioning loadsmore » during long-haul truck daytime rest period idling. To quantify the impact of paint color and the opportunity for advanced paints, NREL collaborated with Volvo Group North America, PPG Industries, and Dometic Environmental Corporation. Initial screening simulations using CoolCalc, NREL's rapid HVAC load estimation tool, showed promising air-conditioning load reductions due to paint color selection. Tests conducted at NREL's Vehicle Testing and Integration Facility using long-haul truck cab sections, 'test bucks,' showed a 31.1% of maximum possible reduction in rise over ambient temperature and a 20.8% reduction in daily electric air conditioning energy use by switching from black to white paint. Additionally, changing from blue to an advanced color-matched solar reflective blue paint resulted in a 7.3% reduction in daily electric air conditioning energy use for weather conditions tested in Colorado. National-level modeling results using weather data from major U.S. cities indicated that the increase in heating loads due to lighter paint colors is much smaller than the reduction in cooling loads.« less
Effects of increasing aerosol on regional climate change in China: Observation and modeling
NASA Astrophysics Data System (ADS)
Qian, Y.; Leung, L.; Ghan, S. J.
2002-12-01
We present regional simulations of climate, aerosol properties, and direct radiative forcing and climatic effects of aerosol and analyze the pollutant emissions and observed climatic data during the latter decades of last century in China. The regional model generally captures the spatial distributions and seasonal pattern of temperature and precipitation. Aerosol extinction coefficient and aerosol optical depth are generally well simulated in both magnitude and spatial distribution, which provides a reliable foundation for estimating the radiative forcing and climatic effects of aerosol. The radiative forcing of aerosol is in the range of -1 to -14 W m-2 in autumn and summer and -1 to -9 W m-2 in spring and winter, with substantial spatial variability at the sub-regional scale. A strong maximum in negative radiative forcing corresponding to the maximum optical depth is found over the Sichuan Basin, where emission as well as relative humidity are high, and stagnant atmospheric conditions inhibit pollutants dispersion. Negative radiative forcing of aerosol induces a surface cooling, which is stronger in the range of -0.6 to -1.2oC in autumn and winter than in spring (-0.3 to -0.6oC) and summer (0.0 to -0.9oC) over the Sichuan Basin and East China due to more significant effects of cloud and precipitation in the summer and spring. Aerosol-induced cooling is mainly contributed by cooling in the daytime temperature. The cooling reaches a maximum and is statistically significant in the Sichuan Basin. The effect of aerosol on precipitation is not evident in our simulations. The temporal and spatial patterns of temperature trends observed in the second half of the twentieth century, including the asymmetric daily maximum and minimum temperature trends, are at least qualitatively consistent with the simulated aerosol-induced cooling over the Sichuan Basin and East China. It supports the hypothesis that the observed temperature trends during the latter decades of the twentieth century, especially the cooling trends over the Sichuan Basin and some parts of East China, which are exceptions to the large scale warming trend in the northern hemisphere, are at least partly related to the cooling induced by atmospheric aerosol loading that has been increasing since the middle of the last century.
NASA Astrophysics Data System (ADS)
Seino, Hiroshi; Nagashima, Ken; Tanaka, Yoshichika; Nakauchi, Masahiko
2010-06-01
The Railway Technical Research Institute conducted a study to develop a superconducting magnetic bearing applicable to the flywheel energy-storage system for railways. In the first step of the study, the thrust rolling bearing was selected for application, and adopted liquid-nitrogen-cooled HTS-bulk as a rotor, and adopted superconducting coil as a stator for the superconducting magnetic bearing. Load capacity of superconducting magnetic bearing was verified up to 10 kN in the static load test. After that, rotation test of that approximately 5 kN thrust load added was performed with maximum rotation of 3000rpm. In the results of bearing rotation test, it was confirmed that position in levitation is able to maintain with stability during the rotation. Heat transfer properties by radiation in vacuum and conductivity by tenuous gas were basically studied by experiment by the reason of confirmation of rotor cooling method. The experimental result demonstrates that the optimal gas pressure is able to obtain without generating windage drag. In the second stage of the development, thrust load capacity of the bearing will be improved aiming at the achievement of the energy capacity of a practical scale. In the static load test of the new superconducting magnetic bearing, stable 20kN-levitation force was obtained.
NASA Astrophysics Data System (ADS)
Iyyappan, I.; Ponmurugan, M.
2017-09-01
We study the performance of a three-terminal thermoelectric device such as heat engine and refrigerator with broken time-reversal symmetry by applying the unified trade-off figure of merit (\\dotΩ criterion) which accounts for both useful energy and losses. For the heat engine, we find that a thermoelectric device working under the maximum \\dotΩ criterion gives a significantly better performance than a device working at maximum power output. Within the framework of linear irreversible thermodynamics such a direct comparison is not possible for refrigerators, however, our study indicates that, for refrigerator, the maximum cooling load gives a better performance than the maximum \\dotΩ criterion for a larger asymmetry. Our results can be useful to choose a suitable optimization criterion for operating a real thermoelectric device with broken time-reversal symmetry.
Center for the Built Environment: UFAD Cooling Load Design Tool
Energy Publications Project Title: Underfloor Air Distribution (UFAD) Cooling Load Design Tool Providing . Webster, 2010. Development of a simplified cooling load design tool for underfloor air distribution Near-ZNE Buildings Setpoint Energy Savings Calculator UFAD Case Studies UFAD Cooling Design Tool UFAD
Numerical Stress Analysis during Cooldown and Compressive Loading in an Imperfect Nb 3Sn Wire
DOE Office of Scientific and Technical Information (OSTI.GOV)
d’Hauthuille, Luc; Zhai, Yuhu
In this paper, high field superconductors are critical to the success of next step magnetic fusion confinement devices such as ITER and DEMO. The low-temperature superconducting material that is currently favored for these applications, Nb 3Sn, is susceptible to performance due to its brittleness and high strain-sensitivity. Under extreme loads, an irreversible degradation in the maximum critical current density has been shown to occur and believed to be strongly influenced by two factors: plasticity and cracked filaments. Cracks in filaments are induced when sufficiently high stress concentrations occur in the wire. In this paper, we explore using finite element analysismore » the impact that voids have on the stress distributions and peak stresses under two loading conditions: transverse compressive loading in a 2D model, and a full cool down phase in a 3D model.« less
Numerical Stress Analysis during Cooldown and Compressive Loading in an Imperfect Nb 3Sn Wire
d’Hauthuille, Luc; Zhai, Yuhu
2017-07-11
In this paper, high field superconductors are critical to the success of next step magnetic fusion confinement devices such as ITER and DEMO. The low-temperature superconducting material that is currently favored for these applications, Nb 3Sn, is susceptible to performance due to its brittleness and high strain-sensitivity. Under extreme loads, an irreversible degradation in the maximum critical current density has been shown to occur and believed to be strongly influenced by two factors: plasticity and cracked filaments. Cracks in filaments are induced when sufficiently high stress concentrations occur in the wire. In this paper, we explore using finite element analysismore » the impact that voids have on the stress distributions and peak stresses under two loading conditions: transverse compressive loading in a 2D model, and a full cool down phase in a 3D model.« less
Mlynczak, Martin G; Hunt, Linda A; Mertens, Christopher J; Thomas Marshall, B; Russell, James M; Woods, Thomas; Earl Thompson, R; Gordley, Larry L
2014-04-16
Infrared radiative cooling of the thermosphere by carbon dioxide (CO 2 , 15 µm) and by nitric oxide (NO, 5.3 µm) has been observed for 12 years by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite. For the first time we present a record of the two most important thermospheric infrared cooling agents over a complete solar cycle. SABER has documented dramatic variability in the radiative cooling on time scales ranging from days to the 11 year solar cycle. Deep minima in global mean vertical profiles of radiative cooling are observed in 2008-2009. Current solar maximum conditions, evidenced in the rates of radiative cooling, are substantially weaker than prior maximum conditions in 2002-2003. The observed changes in thermospheric cooling correlate well with changes in solar ultraviolet irradiance and geomagnetic activity during the prior maximum conditions. NO and CO 2 combine to emit 7 × 10 18 more Joules annually at solar maximum than at solar minimum. First record of thermospheric IR cooling rates over a complete solar cycleIR cooling in current solar maximum conditions much weaker than prior maximumVariability in thermospheric IR cooling observed on scale of days to 11 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, C. Keith; Shen, Bo; Shrestha, Som S.
This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirementmore » (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28% increase in delivered heating load and an ~52% increase in the estimated heating operating cost over that given in the AHRI directory (AHRI 2014).« less
Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2005-01-01
Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.
Improving prediction accuracy of cooling load using EMD, PSR and RBFNN
NASA Astrophysics Data System (ADS)
Shen, Limin; Wen, Yuanmei; Li, Xiaohong
2017-08-01
To increase the accuracy for the prediction of cooling load demand, this work presents an EMD (empirical mode decomposition)-PSR (phase space reconstruction) based RBFNN (radial basis function neural networks) method. Firstly, analyzed the chaotic nature of the real cooling load demand, transformed the non-stationary cooling load historical data into several stationary intrinsic mode functions (IMFs) by using EMD. Secondly, compared the RBFNN prediction accuracies of each IMFs and proposed an IMF combining scheme that is combine the lower-frequency components (called IMF4-IMF6 combined) while keep the higher frequency component (IMF1, IMF2, IMF3) and the residual unchanged. Thirdly, reconstruct phase space for each combined components separately, process the highest frequency component (IMF1) by differential method and predict with RBFNN in the reconstructed phase spaces. Real cooling load data of a centralized ice storage cooling systems in Guangzhou are used for simulation. The results show that the proposed hybrid method outperforms the traditional methods.
Mixture optimization for mixed gas Joule-Thomson cycle
NASA Astrophysics Data System (ADS)
Detlor, J.; Pfotenhauer, J.; Nellis, G.
2017-12-01
An appropriate gas mixture can provide lower temperatures and higher cooling power when used in a Joule-Thomson (JT) cycle than is possible with a pure fluid. However, selecting gas mixtures to meet specific cooling loads and cycle parameters is a challenging design problem. This study focuses on the development of a computational tool to optimize gas mixture compositions for specific operating parameters. This study expands on prior research by exploring higher heat rejection temperatures and lower pressure ratios. A mixture optimization model has been developed which determines an optimal three-component mixture based on the analysis of the maximum value of the minimum value of isothermal enthalpy change, ΔhT , that occurs over the temperature range. This allows optimal mixture compositions to be determined for a mixed gas JT system with load temperatures down to 110 K and supply temperatures above room temperature for pressure ratios as small as 3:1. The mixture optimization model has been paired with a separate evaluation of the percent of the heat exchanger that exists in a two-phase range in order to begin the process of selecting a mixture for experimental investigation.
Development and qualification of a bulk tungsten divertor row for JET
NASA Astrophysics Data System (ADS)
Mertens, Ph.; Altmann, H.; Hirai, T.; Philipps, V.; Pintsuk, G.; Rapp, J.; Riccardo, V.; Schweer, B.; Uytdenhouwen, I.; Samm, U.
2009-06-01
A bulk tungsten divertor row has been developed in the frame of the ITER-like Wall project at JET. It consists of 96 tiles grouped in 48 modules around the torus. The outer strike point is located on those tiles for most of the ITER-relevant, high triangularity plasmas. High power loads (locally up to 10-20 MW/m 2) and erosion rates are expected, even a risk of melting, especially with the transients or ELM loads. These are demanding conditions for an inertially cooled design as prescribed. A lamella design has been selected for the tungsten, arranged to control the eddy and halo current flows. The lamellae must also withstand high temperature gradients (2200 to 220 °C over 40 mm height), without overheating the supporting carrier (600-700 °C maximum). As a consequence of the tungsten emissivity, the radiative cooling drops appreciably in comparison with the current CFC tiles, calling for interleaved plasma scenarios in terms of performance. The compromise between shadowing and power handling is discussed, as well as the consequences for operation. Prototypes have been exposed in TEXTOR and in an electron beam facility (JUDITH-2) to the nominal power density of 7 MW/m 2 for 10 s and, in addition, to higher loads leading to surface temperatures above 2000 °C.
Performance analysis for minimally nonlinear irreversible refrigerators at finite cooling power
NASA Astrophysics Data System (ADS)
Long, Rui; Liu, Zhichun; Liu, Wei
2018-04-01
The coefficient of performance (COP) for general refrigerators at finite cooling power have been systematically researched through the minimally nonlinear irreversible model, and its lower and upper bounds in different operating regions have been proposed. Under the tight coupling conditions, we have calculated the universal COP bounds under the χ figure of merit in different operating regions. When the refrigerator operates in the region with lower external flux, we obtained the general bounds (0 < ε <(√{ 9 + 8εC } - 3) / 2) under the χ figure of merit. We have also calculated the universal bounds for maximum gain in COP under different operating regions to give a further insight into the COP gain with the cooling power away from the maximum one. When the refrigerator operates in the region located between maximum cooling power and maximum COP with lower external flux, the upper bound for COP and the lower bound for relative gain in COP present large values, compared to a relative small loss from the maximum cooling power. If the cooling power is the main objective, it is desirable to operate the refrigerator at a slightly lower cooling power than at the maximum one, where a small loss in the cooling power induces a much larger COP enhancement.
Economic optimization software applied to JFK airport heating and cooling plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gay, R.R.; McCoy, L.
This paper describes the on-line economic optimization routine developed by Enter Software, Inc. for application at the heating and cooling plant for the JFK International Airport near New York City. The objective of the economic optimization is to find the optimum plant configuration (which gas turbines to run, power levels of each gas turbine, duct firing levels, which auxiliary water heaters to run, which electric chillers to run, and which absorption chillers to run) which produces maximum net income at the plant as plant loads and the prices vary. The routines also include a planner which runs a series ofmore » optimizations over multiple plant configurations to simulate the varying plant operating conditions for the purpose of predicting the overall plant results over a period of time.« less
Tympanic temperature in confined beef cattle exposed to excessive heat load
NASA Astrophysics Data System (ADS)
Mader, T. L.; Gaughan, J. B.; Johnson, L. J.; Hahn, G. L.
2010-11-01
Angus crossbred yearling steers ( n = 168) were used to evaluate effects on performance and tympanic temperature (TT) of feeding additional potassium and sodium to steers exposed to excessive heat load (maximum daily ambient temperature exceeded 32°C for three consecutive days) during seasonal summer conditions. Steers were assigned one of four treatments: (1) control; (2) potassium supplemented (diet containing 2.10% KHCO3); (3) sodium supplemented (diet containing 1.10% NaCl); or (4) potassium and sodium supplemented (diet containing 2.10% KHCO3 and 1.10% NaCl). Overall, additional KHCO3 at the 2% level or NaCl at the 1% level did not improve performance or heat stress tolerance with these diet formulations. However, the addition of KHCO3 did enhance water intake. Independent of treatment effects, TT of cattle displaying high, moderate, or low levels of stress suggest that cattle that do not adequately cool down at night are prone to achieving greater body temperatures during a subsequent hot day. Cattle that are prone to get hot but can cool at night can keep average tympanic temperatures at or near those of cattle that tend to consistently maintain lower peak and mean body temperatures. In addition, during cooler and moderately hot periods, cattle change TT in a stair-step or incremental pattern, while under hot conditions, average TT of group-fed cattle moves in conjunction with ambient conditions, indicating that thermoregulatory mechanisms are at or near maximum physiological capacity.
Modelling of steady state erosion of CFC actively water-cooled mock-up for the ITER divertor
NASA Astrophysics Data System (ADS)
Ogorodnikova, O. V.
2008-04-01
Calculations of the physical and chemical erosion of CFC (carbon fibre composite) monoblocks as outer vertical target of the ITER divertor during normal operation regimes have been done. Off-normal events and ELM's are not considered here. For a set of components under thermal and particles loads at glancing incident angle, variations in the material properties and/or assembly of defects could result in different erosion of actively-cooled components and, thus, in temperature instabilities. Operation regimes where the temperature instability takes place are investigated. It is shown that the temperature and erosion instabilities, probably, are not a critical point for the present design of ITER vertical target if a realistic variation of material properties is assumed, namely, the difference in the thermal conductivities of the neighbouring monoblocks is 20% and the maximum allowable size of a defect between CFC armour and cooling tube is +/-90° in circumferential direction from the apex.
The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers
NASA Astrophysics Data System (ADS)
Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid
2008-07-01
Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understanding the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative "dry" cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.
The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid
2008-07-08
Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understandingmore » the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative 'dry' cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.« less
Study of thermosiphon cooling scheme for the production solenoid of the Mu2e experiment at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhanaraj, N.; Kashikhin, V.; Peterson, T.
2014-01-29
A thermosiphon cooling scheme is envisioned for the Production Solenoid of the Mu2e experiment at Fermi National Accelerator Laboratory. The thermosiphon cooling is achieved by indirect cooling with helium at 4.7 K. The siphon tubes are welded to the solenoid outer structure. The anticipated heat loads in the solenoid is presented as well as the cooling scheme design. A thermal model using ANSYS to simulate the temperature gradient is presented. The thermal analysis also makes provisions for including the heat load generated in the coils and structures by the secondary radiation simulated using the MARS 15 code. The impact ofmore » the heat loads from supports on the solenoid cooling is studied. The thermosiphon cooling scheme is also validated using pertinent correlations to study flow reversals and the cooling regime.« less
Solar-heated and cooled savings and loan building-1-Leavenworth, Kanasas
NASA Technical Reports Server (NTRS)
1981-01-01
Report describes heating and cooling system which furnishes 90 percent of annual heating load, 70 percent of cooling load, and all hot water for two-story building. Roof-mounted flat-plate collectors allow three distinct flow rates and are oriented south for optimum energy collection. Building contains fully automated temperature controls is divided into five temperature-load zones, each with independent heat pump.
Temperature initiated passive cooling system
Forsberg, Charles W.
1994-01-01
A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.
Transient Three-Dimensional Startup Side Load Analysis of a Regeneratively Cooled Nozzle
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2008-01-01
The objective of this effort is to develop a computational methodology to capture the startup side load physics and to anchor the computed aerodynamic side loads with the available data from a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, a transient 5 s inlet history based on an engine system simulation, and a wall temperature distribution to reflect the effect of regenerative cooling. To understand the effect of regenerative wall cooling, two transient computations were performed using the boundary conditions of adiabatic and cooled walls, respectively. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with the pulsation of shocks across the lip, although the combustion wave is commonly eliminated with the sparklers during actual test. The test measured two side load events: a secondary and lower side load, followed by a primary and peak side load. Results from both wall boundary conditions captured the free-shock separation to restricted-shock separation transition with computed side loads matching the measured secondary side load. For the primary side load, the cooled wall transient produced restricted-shock pulsation across the nozzle lip with peak side load matching that of the test, while the adiabatic wall transient captured shock transitions and free-shock pulsation across the lip with computed peak side load 50% lower than that of the measurement. The computed dominant pulsation frequency of the cooled wall nozzle agrees with that of a separate test, while that of the adiabatic wall nozzle is more than 50% lower than that of the measurement. The computed teepee-like formation and the tangential motion of the shocks during lip pulsation also qualitatively agree with those of test observations. Moreover, a third transient computation was performed with a proportionately shortened 1 s sequence, and lower side loads were obtained with the higher ramp rate.
NASA Technical Reports Server (NTRS)
Snyder, Christopher
2017-01-01
Assessing the potential to bring 100 years of aeronautics knowledge to the entrepreneurs desktop to enable a design environment for emerging vertical lift vehicles is one goal for the NASA's Design Environment for Novel Vertical Lift Vehicles (DELIVER). As part of this effort, a system study was performed using a notional, urban aerial taxi system to better understand vehicle requirements along with the tools and methods capability to assess these vehicles and their subsystems using cryogenic cooled components. The baseline was a vertical take-off and landing (VTOL) aircraft, with all-electric propulsion system assuming 15 year technology performance levels and its capability limited to a pilot with one or two people and cargo. Hydrocarbon-fueled hybrid concepts were developed to improve mission capabilities. The hybrid systems resulted in significant improvements in maximum range and number of on demand mobility (ODM) missions that could be completed before refuel or recharge. An important consideration was thermal management, including the choice for air-cooled or cryogenic cooling using liquid natural gas (LNG) fuel. Cryogenic cooling for critical components can have important implications on component performance and size. Thermal loads were also estimated, subsequent effort will be required to verify feasibility for cooling airflow and packaging. LNG cryogenic cooling of selected components further improved vehicle range and reduced thermal loads, but the same concerns for airflow and packaging still need to be addressed. The use of the NASA Design and Analysis of Rotorcraft (NDARC) tool for vehicle sizing and mission analysis appears to be capable of supporting analyses for present and future types of vehicles, missions, propulsion, and energy sources. Further efforts are required to develop verified models for these new types of propulsion and energy sources in the size and use envisioned for these emerging vehicle and mission classes.
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2017-01-01
Assessing the potential to bring 100 years of aeronautics knowledge to the entrepreneurs desktop to enable a design environment for emerging vertical lift vehicles is one goal for the NASAs Design Environment for Novel Vertical Lift Vehicles (DELIVER). As part of this effort, a system study was performed using a notional, urban aerial taxi system to better understand vehicle requirements along with the tools and methods capability to assess these vehicles and their subsystems using cryogenic cooled components. The baseline was a vertical take-off and landing (VTOL) aircraft, with all-electric propulsion system assuming 15 year technology performance levels and its capability limited to a pilot with one or two people and cargo. Hydrocarbon-fueled hybrid concepts were developed to improve mission capabilities. The hybrid systems resulted in significant improvements in maximum range and number of on demand mobility (ODM) missions that could be completed before refuel or recharge. An important consideration was thermal management, including the choice for air-cooled or cryogenic cooling using liquid natural gas (LNG) fuel. Cryogenic cooling for critical components can have important implications on component performance and size. Thermal loads were also estimated, subsequent effort will be required to verify feasibility for cooling airflow and packaging. LNG cryogenic cooling of selected components further improved vehicle range and reduced thermal loads, but the same concerns for airflow and packaging still need to be addressed. The use of the NASA Design and Analysis of Rotorcraft (NDARC) tool for vehicle sizing and mission analysis appears to be capable of supporting analyses for present and future types of vehicles, missions, propulsion, and energy sources. Further efforts are required to develop verified models for these new types of propulsion and energy sources in the size and use envisioned for these emerging vehicle and mission classes.
Temperature initiated passive cooling system
Forsberg, C.W.
1994-11-01
A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.
Winkler, Jon; Munk, Jeffrey; Woods, Jason
2018-04-01
Increasing insulation levels and improved windows are reducing sensible cooling loads in high-efficiency homes. This trend raises concerns that the resulting shift in the balance of sensible and latent cooling loads may result in higher indoor humidity, occupant discomfort, and stunted adoption of high-efficiency homes. This study utilizes established moisture-buffering and air-conditioner latent degradation models in conjunction with an approach to stochastically model internal gains. Building loads and indoor humidity levels are compared for simulations of typical new construction homes and high-efficiency homes in 10 US cities. The sensitivity of indoor humidity to changes in cooling set point, air-conditioner capacity,more » and blower control parameters are evaluated. The results show that high-efficiency homes in humid climates have cooling loads with a higher fraction of latent loads than the typical new construction home, resulting in higher indoor humidity. Reducing the cooling set point is the easiest method to reduce indoor humidity, but it is not energy efficient, and overcooling may lead to occupant discomfort. Eliminating the blower operation at the end of cooling cycles and reducing the cooling airflow rate also reduce indoor humidity and with a smaller impact on energy use and comfort.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Jon; Munk, Jeffrey; Woods, Jason
Increasing insulation levels and improved windows are reducing sensible cooling loads in high-efficiency homes. This trend raises concerns that the resulting shift in the balance of sensible and latent cooling loads may result in higher indoor humidity, occupant discomfort, and stunted adoption of high-efficiency homes. This study utilizes established moisture-buffering and air-conditioner latent degradation models in conjunction with an approach to stochastically model internal gains. Building loads and indoor humidity levels are compared for simulations of typical new construction homes and high-efficiency homes in 10 US cities. The sensitivity of indoor humidity to changes in cooling set point, air-conditioner capacity,more » and blower control parameters are evaluated. The results show that high-efficiency homes in humid climates have cooling loads with a higher fraction of latent loads than the typical new construction home, resulting in higher indoor humidity. Reducing the cooling set point is the easiest method to reduce indoor humidity, but it is not energy efficient, and overcooling may lead to occupant discomfort. Eliminating the blower operation at the end of cooling cycles and reducing the cooling airflow rate also reduce indoor humidity and with a smaller impact on energy use and comfort.« less
Split radiator design for heat rejection optimization for a waste heat recovery system
Ernst, Timothy C.; Nelson, Christopher R.
2016-10-18
A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.
Beam Test of a Dielectric Loaded High Pressure RF Cavity for Use in Muon Cooling Channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freemire, Ben; Bowring, Daniel; Kochemirovskiy, Alexey
2016-06-01
Bright muon sources require six dimensional cooling to achieve acceptable luminosities. Ionization cooling is the only known method able to do so within the muon lifetime. One proposed cooling channel, the Helical Cooling Channel, utilizes gas filled radio frequency cavities to both mitigate RF breakdown in the presence of strong, external magnetic fields, and provide the cooling medium. Engineering constraints on the diameter of the magnets within which these cavities operate dictate the radius of the cavities be decreased at their nominal operating frequency. To accomplish this, one may load the cavities with a larger dielectric material. A 99.5% aluminamore » ring was inserted in a high pressure RF test cell and subjected to an intense proton beam at the MuCool Test Area at Fermilab. The results of the performance of this dielectric loaded high pressure RF cavity will be presented.« less
Superlattice-based thin-film thermoelectric modules with high cooling fluxes
Bulman, Gary; Barletta, Phil; Lewis, Jay; Baldasaro, Nicholas; Manno, Michael; Bar-Cohen, Avram; Yang, Bao
2016-01-01
In present-day high-performance electronic components, the generated heat loads result in unacceptably high junction temperatures and reduced component lifetimes. Thermoelectric modules can, in principle, enhance heat removal and reduce the temperatures of such electronic devices. However, state-of-the-art bulk thermoelectric modules have a maximum cooling flux qmax of only about 10 W cm−2, while state-of-the art commercial thin-film modules have a qmax <100 W cm−2. Such flux values are insufficient for thermal management of modern high-power devices. Here we show that cooling fluxes of 258 W cm−2 can be achieved in thin-film Bi2Te3-based superlattice thermoelectric modules. These devices utilize a p-type Sb2Te3/Bi2Te3 superlattice and n-type δ-doped Bi2Te3−xSex, both of which are grown heteroepitaxially using metalorganic chemical vapour deposition. We anticipate that the demonstration of these high-cooling-flux modules will have far-reaching impacts in diverse applications, such as advanced computer processors, radio-frequency power devices, quantum cascade lasers and DNA micro-arrays. PMID:26757675
Experimental evaluation of cooling efficiency of the high performance cooling device
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan
2016-06-01
This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.
Solar thermal heating and cooling. A bibliography with abstracts
NASA Technical Reports Server (NTRS)
Arenson, M.
1979-01-01
This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics.
NASA Astrophysics Data System (ADS)
Biyanto, T. R.; Matradji; Syamsi, M. N.; Fibrianto, H. Y.; Afdanny, N.; Rahman, A. H.; Gunawan, K. S.; Pratama, J. A. D.; Malwindasari, A.; Abdillah, A. I.; Bethiana, T. N.; Putra, Y. A.
2017-11-01
The development of green building has been growing in both design and quality. The development of green building was limited by the issue of expensive investment. Actually, green building can reduce the energy usage inside the building especially in utilization of cooling system. External load plays major role in reducing the usage of cooling system. External load is affected by type of wall sheathing, glass and roof. The proper selection of wall, type of glass and roof material are very important to reduce external load. Hence, the optimization of energy efficiency and conservation in green building design is required. Since this optimization consist of integer and non-linear equations, this problem falls into Mixed-Integer-Non-Linear-Programming (MINLP) that required global optimization technique such as stochastic optimization algorithms. In this paper the optimized variables i.e. type of glass and roof were chosen using Duelist, Killer-Whale and Rain-Water Algorithms to obtain the optimum energy and considering the minimal investment. The optimization results exhibited the single glass Planibel-G with the 3.2 mm thickness and glass wool insulation provided maximum ROI of 36.8486%, EUI reduction of 54 kWh/m2·year, CO2 emission reduction of 486.8971 tons/year and reduce investment of 4,078,905,465 IDR.
Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle
NASA Astrophysics Data System (ADS)
Wang, Ten-See
2009-07-01
The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, J.; Yuan, B.; Jin, M.
2012-07-01
Three-dimensional neutronics optimization calculations were performed to analyse the parameters of Tritium Breeding Ratio (TBR) and maximum average Power Density (PDmax) in a helium-cooled multi-functional experimental fusion-fission hybrid reactor named FDS (Fusion-Driven hybrid System)-MFX (Multi-Functional experimental) blanket. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this contribution, the most significant and main goal of the FDS-MFX blanket is to achieve the PDmax of about 100 MW/m3 with self-sustaining tritium (TBR {>=} 1.05) based on the second-stage test with uranium-fueled blanket to check and validate themore » demonstrator reactor blanket relevant technologies based on the viable fusion and fission technologies. Four different enriched uranium materials were taken into account to evaluate PDmax in subcritical blanket: (i) natural uranium, (ii) 3.2% enriched uranium, (iii) 19.75% enriched uranium, and (iv) 64.4% enriched uranium carbide. These calculations and analyses were performed using a home-developed code VisualBUS and Hybrid Evaluated Nuclear Data Library (HENDL). The results showed that the performance of the blanket loaded with 64.4% enriched uranium was the most attractive and it could be promising to effectively obtain tritium self-sufficiency (TBR-1.05) and a high maximum average power density ({approx}100 MW/m{sup 3}) when the blanket was loaded with the mass of {sup 235}U about 1 ton. (authors)« less
NASA Astrophysics Data System (ADS)
Deetjen, Thomas A.; Reimers, Andrew S.; Webber, Michael E.
2018-02-01
This study estimates changes in grid-wide, energy consumption caused by load shifting via cooling thermal energy storage (CTES) in the building sector. It develops a general equation for relating generator fleet fuel consumption to building cooling demand as a function of ambient temperature, relative humidity, transmission and distribution current, and baseline power plant efficiency. The results present a graphical sensitivity analysis that can be used to estimate how shifting load from cooling demand to cooling storage could affect overall, grid-wide, energy consumption. In particular, because power plants, air conditioners and transmission systems all have higher efficiencies at cooler ambient temperatures, it is possible to identify operating conditions such that CTES increases system efficiency rather than decreasing it as is typical for conventional storage approaches. A case study of the Dallas-Fort Worth metro area in Texas, USA shows that using CTES to shift daytime cooling load to nighttime cooling storage can reduce annual, system-wide, primary fuel consumption by 17.6 MWh for each MWh of installed CTES capacity. The study concludes that, under the right circumstances, cooling thermal energy storage can reduce grid-wide energy consumption, challenging the perception of energy storage as a net energy consumer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemec, Patrik, E-mail: patrik.nemec@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk
This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heatmore » of electronic components in range from 250 to 740 W.« less
24 CFR 3280.508 - Heat loss, heat gain and cooling load calculations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Thermal Protection § 3280.508 Heat loss, heat gain and cooling load calculations. (a) Information, values... Loads—Manufactured Homes—February 1992-PNL 8006, HUD User No. 0005945. (c) Areas where the insulation... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Heat loss, heat gain and cooling...
24 CFR 3280.508 - Heat loss, heat gain and cooling load calculations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Thermal Protection § 3280.508 Heat loss, heat gain and cooling load calculations. (a) Information, values... Loads—Manufactured Homes—February 1992-PNL 8006, HUD User No. 0005945. (c) Areas where the insulation... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Heat loss, heat gain and cooling...
24 CFR 3280.508 - Heat loss, heat gain and cooling load calculations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Thermal Protection § 3280.508 Heat loss, heat gain and cooling load calculations. (a) Information, values... Loads—Manufactured Homes—February 1992-PNL 8006, HUD User No. 0005945. (c) Areas where the insulation... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Heat loss, heat gain and cooling...
24 CFR 3280.508 - Heat loss, heat gain and cooling load calculations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Thermal Protection § 3280.508 Heat loss, heat gain and cooling load calculations. (a) Information, values... Loads—Manufactured Homes—February 1992-PNL 8006, HUD User No. 0005945. (c) Areas where the insulation... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Heat loss, heat gain and cooling...
24 CFR 3280.508 - Heat loss, heat gain and cooling load calculations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Thermal Protection § 3280.508 Heat loss, heat gain and cooling load calculations. (a) Information, values... Loads—Manufactured Homes—February 1992-PNL 8006, HUD User No. 0005945. (c) Areas where the insulation... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Heat loss, heat gain and cooling...
Solar heating and cooling system installed at Leavenworth, Kansas
NASA Technical Reports Server (NTRS)
1980-01-01
A solar heating and cooling is described which is designed to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2,200 square feet. Five 3 ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3,000 gallon chilled water storage tank. Two 3,000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.
Kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator.
Ye, Zhibin; Liu, Chong; Tu, Bo; Wang, Ke; Gao, Qingsong; Tang, Chun; Cai, Zhen
2016-01-25
A direct-liquid-cooled Nd:YLF thin disk laser resonator is presented, which features the use of refractive index matching liquid (RIML) as coolant. Highly uniform pump intensity distribution with rectangular shape is realized by using metallic planar waveguides. Much attention has been paid on the design of the gain module, including how to achieve excellent cooling ability with multi-channel coolers and how to choose the doping levels of the crystals for realizing well-distributed pump absorption. The flow velocity of the coolant is found to be a key parameter for laser performance and optimized to keep it in laminar flow status for dissipating unwanted heat load. A single channel device is used to measure the convective heat transfer coefficient (CHTC) at different flow velocities. Accordingly, the thermal stress in the disk is analyzed numerically and the maximum permissible thermal load is estimated. Experimentally, with ten pieces of a-cut Nd:YLF thin disks of different doping levels, a linear polarized laser with an average output power of 1120 W is achieved at the pump power of 5202 W, corresponding to an optical-optical efficiency of 21.5%, and a slope efficiency of 30.8%. Furthermore, the wavefront aberration of the gain module is measured to be quite weak, with a peak to valley (PV) value of 4.0 μm when it is pumped at 5202 W, which enables the feasibility of its application in an unstable resonator. To the best of our knowledge, this is the first demonstration of kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator.
Back to the Basics: Cooling with Ice.
ERIC Educational Resources Information Center
Estes, R. C.
1979-01-01
A new high school shifts an electrical demand charge load by using an icemaker during nonoperating hours to provide chilled water for producing cool air. A review resulted in a computer being placed in the design to control the electrical demand charge load in addition to spreading the load. (Author/MLF)
Commissioning of a 20 K Helium Refrigeration System for NASA-JSC Chamber A
NASA Technical Reports Server (NTRS)
Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.
2013-01-01
A new 20 K helium refrigerator installed at NASA Johnson Space Center s Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL s Chamber A to perform ground testing of the James Webb Space Telescope (JWST). The chamber previously and currently still has helium cryo-pumping panels (CPP) and liquid nitrogen shrouds used to create low earth orbit environments. Now with the new refrigerator and new helium shrouds the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Lab, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate an inverse coefficient of performance better than 70 W/W for a 18 kW load at 20 K (accounting for liquid nitrogen pre-cooling power) that remains essentially constant down to one third of this load. Even at 10 percent of the maximum capacity, the performance is better than 150 W/W at 20 K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10 kW at 15 K to 100 kW at 100 K. The refrigerator is capable of operating at any load temperature from 15 K to ambient with tight temperature stability. The new shroud (36 tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the process design and commissioning results.
Commissioning of a 20 K helium refrigeration system for NASA-JSC Chamber-A
NASA Astrophysics Data System (ADS)
Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.
2014-01-01
A new 20 K helium refrigerator installed at NASA Johnson Space Center's Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL's Chamber A to perform ground testing of the James Webb Space Telescope (JWST). The chamber previously and currently still has helium cryo-pumping panels (CPP) and liquid nitrogen shrouds used to create low earth orbit environments. Now with the new refrigerator and new helium shrouds the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Lab, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate an inverse coefficient of performance better than 70 W/W for a 18 kW load at 20 K (accounting for liquid nitrogen pre-cooling power) that remains essentially constant down to one third of this load. Even at 10 percent of the maximum capacity, the performance is better than 150 W/W at 20 K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10 kW at 15 K to 100 kW at 100 K. The refrigerator is capable of operating at any load temperature from 15 K to ambient with tight temperature stability. The new shroud (23 metric tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the design, project execution and commissioning results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanford, J.W.; Huang, Y.J.
The energy performance of skylights is similar to that of windows in admitting solar heat gain, while at the same time providing a pathway for convective and conductive heat transfer through the building envelope. Since skylights are typically installed at angles ranging from 0{degrees} to 45{degrees}, and differ from windows in both their construction and operation, their conductive and convective heat gains or losses, as well as solar heat gain, will differ for the same rough opening and thermal characteristics. The objective of this work is to quantify the impact of solar gain through skylights on building heating and coolingmore » loads in 45 climates, and to develop a method for including these data into the SP53 residential loads data base previously developed by LBL in support of DOE`s Automated Residential Energy Standard (ARES) program. The authors used the DOE-2.1C program to simulate the heating and cooling loads of a prototypical residential building while varying the size and solar characteristics of skylights and windows. The results are presented as Skylight Solar Loads, which are the contribution of solar gains through skylights to the overall building heating and cooling loads, and as Skylight Solar Load Ratios, which are the ratios of skylight solar loads to those for windows with the same orientation. The study shows that skylight solar loads are larger than those for windows in both heating and cooling. Skylight solar cooling loads are from three to four times greater than those for windows regardless of the skylight tilt, except for those facing north. These cooling loads are largest for south-facing skylights at a tilt angle of approximately 20{degrees}, and drop off at higher tilts and other orientations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Z.; Southwest Science and Technology Univ., No.350 Shushanhu Road, Shushan District, Hefei, Anhui, 230031; Chen, Y.
2012-07-01
China Lead-Alloy cooled Demonstration Reactor (CLEAR-III), which is the concept of lead-bismuth cooled accelerator driven sub-critical reactor for nuclear waste transmutation, was proposed and designed by FDS team in China. In this study, preliminary neutronics design studies have primarily focused on three important performance parameters including Transmutation Support Ratio (TSR), effective multiplication factor and blanket thermal power. The constraint parameters, such as power peaking factor and initial TRU loading, were also considered. In the specific design, uranium-free metallic dispersion fuel of (TRU-Zr)-Zr was used as one of the CLEAR-III fuel types and the ratio between MA and Pu was adjustedmore » to maximize transmutation ratio. In addition, three different fuel zones differing in the TRU fraction of the fuel were respectively employed for this subcritical reactor, and the zone sizes and TRU fractions were determined such that the linear powers of these zones were close to each other. The neutronics calculations and analyses were performed by using Multi-Functional 4D Neutronics Simulation System named VisualBUS and nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library). In the preliminary design, the maximum TSRLLMA was {approx}11 and the blanket thermal power was {approx}1000 MW when the effective multiplication factor was 0.98. The results showed that good performance of transmutation could be achieved based on the subcritical reactor loaded with uranium-free fuel. (authors)« less
Heat-exchanger concepts for neutral-beam calorimeters
NASA Astrophysics Data System (ADS)
Thompson, C. C.; Polk, D. H.; McFarlin, D. J.; Stone, R.
1981-10-01
Advanced cooling concepts that permit the design of water cooled heat exchangers for use as calorimeters and beam dumps for advanced neutral beam injection systems were evaluated. Water cooling techniques ranging from pool boiling to high pressure, high velocity swirl flow were considered. Preliminary performance tests were carried out with copper, inconel and molybdenum tubes ranging in size from 0.19 to 0.50 in. diameter. Coolant flow configurations included: (1) smooth tube/straight flow; (2) smooth tube with swirl flow created by tangential injection of the coolant; and (3) axial flow in internally finned tubes. Additionally, the effect of tube L/D was evaluated. A CO2 laser was employed to irradiate a sector of the tube exterior wall; the laser power was incrementally increased until burnout occurred. Absorbed heat fluxes were calculated by dividing the measured coolant heat load by the area of the burn spot on the tube surface. Two six element thermopiles were used to accurately determine the coolant temperature rise. A maximum burnout heat flux near 14 kW/sq cm was obtained for the molybdenum tube swirl flow configuration.
In vitro assessment of temperature change in the pulp chamber during cavity preparation.
Oztürk, Bora; Uşümez, Aslihan; Oztürk, A Nilgun; Ozer, Füsun
2004-05-01
Tooth preparation with a high-speed handpiece may cause thermal harm to the dental pulp. This in vitro study evaluated the temperature changes in the pulp chamber during 4 different tooth preparation techniques and the effects of 3 different levels of water cooling. The tip of a thermocouple was positioned in the center of the pulp chamber of 120 extracted Shuman premolar teeth. Four different tooth preparation techniques were compared: (1) Low air pressure plus low load (LA/LL), (2) low air pressure plus high load (LA/HL), (3) high air pressure plus low load (HA/LL), and (4) high air pressure plus high load (HA/HL) in combination with 3 different water cooling rates. Control specimens were not water cooled; low water cooling consisted of 15 mL/min, and high water cooling consisted of 40 mL/min. Twelve different groups were established (n=10). An increase of 5.5 degrees C was regarded as critical value for pulpal health. The results were analyzed with a 3-factor ANOVA and Bonferroni adjusted Mann Whitney U test (alpha=.004). For all techniques without water cooling (LA/LL/0, LA/HL/0, HA/LL/0, and HA/HL/0), the average temperature rise within the pulpal chamber exceeded 5.5 degrees C during cavity preparation (7.1 degrees C; 8.9 degrees C; 11.4 degrees C, and 19.7 degrees C, respectively). When low water cooling was used with high air pressure and high load technique (HA/HL/15), the average temperature rise exceeded 5.5 degrees C limit (5.9 degrees C). However, when high water cooling (LA/LL/40, LA/HL/40, HA/LL/40, and HA/HL/40) was utilized, the critical 5.5 degrees C value was not reached with any air pressure or load (3.1 degrees C, 2.8 degrees C, 2.2 degrees C, and -1.8 degrees C, respectively). Within the limitations of this in vitro study, the results indicate that reducing the amount of water cooling or increasing air pressure and load during cavity preparation increased the temperature of the pulp chamber in extracted teeth.
Cryogenic system for COMET experiment at J-PARC
NASA Astrophysics Data System (ADS)
Ki, Taekyung; Yoshida, Makoto; Yang, Ye; Ogitsu, Toru; Iio, Masami; Makida, Yasuhiro; Okamura, Takahiro; Mihara, Satoshi; Nakamoto, Tatsushi; Sugano, Michinaka; Sasaki, Ken-ichi
2016-07-01
Superconducting conductors and cryogenic refrigeration are key factors in the accelerator science because they enable the production of magnets needed to control and detect the particles under study. In Japan, a system for COMET (Coherent Muon to Electron Transition), which will produce muon beam lines, is under the construction at J-PARC (Japan Proton Accelerator Research Complex). The system consists of three superconducting magnets; the first is a pion-capture solenoid, the second is a muon-transport solenoid, and the third is a detector solenoid. It is necessary to cool down the magnets efficiently using two-phase helium and maintain them securely at 4.5 K. For stable cryogenic refrigeration of the magnets, a suitable cooling method, structures, and the irradiation effect on materials should be investigated. In this paper, we focus on the development of an overall cryogenic system for cooling the capture and transport solenoids. A conduction-cooling method is considered for cooling the capture and transport solenoids because of the advantages such as the reduction of total heat load, fewer components, and simplified structure. To supply cryogenic fluids (4.5 K liquid helium and 58 K gas helium) and currents to the conduction-cooled magnets subjected to high irradiation, cryogenic components (cooling paths in the magnets, transfer tubes, and a current lead box) are developed. Based on the environment of high irradiation, the conditions (temperature and pressure) of helium in cooling paths are estimated, as well as the temperature of the capture magnet. We develop a dynamic model for quench simulation and estimate the maximum pressure in the cooling pipe when the capture magnet quenches. We conclude with a discussion of the next steps and estimated challenges for the cryogenic system.
Small Scale Solar Cooling Unit in Climate Conditions of Latvia: Environmental and Economical Aspects
NASA Astrophysics Data System (ADS)
Jaunzems, Dzintars; Veidenbergs, Ivars
2010-01-01
The paper contributes to the analyses from the environmental and economical point of view of small scale solar cooling system in climate conditions of Latvia. Cost analyses show that buildings with a higher cooling load and full load hours have lower costs. For high internal gains, cooling costs are around 1,7 €/kWh and 2,5 €/kWh for buildings with lower internal gains. Despite the fact that solar cooling systems have significant potential to reduce CO2 emissions due to a reduction of electricity consumption, the economic feasibility and attractiveness of solar cooling system is still low.
Cooling system for superconducting magnet
Gamble, Bruce B.; Sidi-Yekhlef, Ahmed
1998-01-01
A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.
Cooling system for superconducting magnet
Gamble, B.B.; Sidi-Yekhlef, A.
1998-12-15
A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.
Reducing Heat Gains and Cooling Loads Through Roof Structure Configurations of A House in Medan
NASA Astrophysics Data System (ADS)
Handayani Lubis, Irma; Donny Koerniawan, Mochamad
2018-05-01
Heat gains and heat losses through building surfaces are the main factors that determine the building’s cooling and heating loads. Roof as a building surface that has the most exposed area to the sun, contribute most of heat gains in the building. Therefore, the amount of solar heat gains on the roofs need to be minimized by roof structure configurations. This research aims to discover the optimization of roof structure configurations (coating material, structure material, inclination, overhang, and insulation) as one of passive design strategies that reduce heat gains and cooling loads of a house in Medan. The result showed that case four, white-painted metal roof combined with 45° roof pitched, 1.5m overhang, and addition of insulation, indicates the minimum heat gains production and the less cooling loads during clear sky day but not in the overcast sky condition. In conclusion, heat gains and cooling loads of a house in Medan could be diminished during clear sky day by the addition of roof coating with high reflectance low solar absorbtance, the slope roof, the extension of wider veranda, and the addition of insulation in the roof structure.
Defining the market for gas cooling--
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodrick, J.R.; Patel, R.
1990-01-01
This paper looks at the market prospects for emerging gas cooling technologies. Many factors are found influence market decisions, and a number of factors have been set aside for reasons of conservatism and expediency. By considering some of these motivators, a fuller understanding of the market is made. Relative to this information, the potential success of gas cooling systems are estimated. Three gas cooling systems are evaluated as possible approaches for base-loaded and peak-loaded commercial buildings. Other system concepts may be appropriate.
Wright St Univ Participation in AFRL University Engineering Design Challenge
2014-12-23
18 Figure 9: Loading results from 10 min. heat treatment cure on 1 square inch Kevlar Patch, air cool, and concrete...loading and Average for Three Trials of 10 min heat treatment cure, 1 square inch Kevlar Patch, air cool, and concrete...19 Figure 11: Loading results from 10 min. heat treatment cure on 1 square
Solar-Energy System for a Commercial Building--Topeka, Kansas
NASA Technical Reports Server (NTRS)
1982-01-01
Report describes a solar-energy system for space heating, cooling and domestic hot water at a 5,600 square-foot (520-square-meter) Topeka, Kansas, commercial building. System is expected to provide 74% of annual cooling load, 47% of heating load, and 95% of domestic hot-water load. System was included in building design to maximize energy conservation.
District heating and cooling feasibility study, Dunkirk, New York
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The objective of this project is to perform a preliminary investigation of the technical and economic feasibility of implementing a district heating and cooling (DHC) system in the City of Dunkirk, New York. The study was conducted by first defining a heating and cooling (HC) load service area. Then, questionnaires were sent to prospective DHC customers. After reviewing the owners responses, large consumers of energy were interviewed for more detail of their HC systems, including site visits, to determine possibilities of retrofitting their systems to district heating and cooling. Peak HC loads for the buildings were estimated by Burns andmore » Roe's in-house computer programs. Based on the peak loads, certain customers were determined for suitability as anchor customers. Various options using cogeneration were investigated for possible HC sources. Equipment for HC sources and HC loads were sized and their associated costs estimated. Finally, economic analyses were performed. The conclusion is that it is technically and economically feasible to implement a district heating and cooling system in the City of Dunkirk. 14 figs., 15 tabs.« less
40 CFR 471.44 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2013 CFR
2013-07-01
... chill casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any one...) Shot casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/off-kg (pounds per million off-pounds) of precious metals shot cast...
40 CFR 471.44 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2014 CFR
2014-07-01
... chill casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any one...) Shot casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/off-kg (pounds per million off-pounds) of precious metals shot cast...
40 CFR 471.44 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2011 CFR
2011-07-01
... chill casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any one...) Shot casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/off-kg (pounds per million off-pounds) of precious metals shot cast...
40 CFR 471.44 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
... chill casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any one...) Shot casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/off-kg (pounds per million off-pounds) of precious metals shot cast...
40 CFR 471.44 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2012 CFR
2012-07-01
... chill casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any one...) Shot casting contact cooling water. Subpart D—PSES Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/off-kg (pounds per million off-pounds) of precious metals shot cast...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renlund, Anita Mariana; Tappan, Alexander Smith; Miller, Jill C.
The HMX {beta}-{delta} solid-solid phase transition, which occurs as HMX is heated near 170 C, is linked to increased reactivity and sensitivity to initiation. Thermally damaged energetic materials (EMs) containing HMX therefore may present a safety concern. Information about the phase transition is vital to predictive safety models for HMX and HMX-containing EMs. We report work on monitoring the phase transition with real-time Raman spectroscopy aimed towards obtaining a better understanding of physical properties of HMX through the phase transition. HMX samples were confined in a cell of minimal free volume in a displacement-controlled or load-controlled arrangement. The cell wasmore » heated and then cooled at controlled rates while real-time Raman spectroscopic measurements were performed. Raman spectroscopy provides a clear distinction between the phases of HMX because the vibrational transitions of the molecule change with conformational changes associated with the phase transition. Temperature of phase transition versus load data are presented for both the heating and cooling cycles in the load-controlled apparatus, and general trends are discussed. A weak dependence of the temperature of phase transition on load was discovered during the heating cycle, with higher loads causing the phase transition to occur at a higher temperature. This was especially true in the temperature of completion of phase transition data as opposed to the temperature of onset of phase transition data. A stronger dependence on load was observed in the cooling cycle, with higher loads causing the reverse phase transitions to occur at a higher cooling temperature. Also, higher loads tended to cause the phase transition to occur over a longer period of time in the heating cycle and over a shorter period of time in the cooling cycle. All three of the pure HMX phases ({alpha}, {beta} and {delta}) were detected on cooling of the heated samples, either in pure form or as a mixture.« less
Strategy Guideline: HVAC Equipment Sizing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdick, A.
The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understandingmore » of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.« less
Design and Development of a Residential Gas-Fired Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vineyard, Edward Allan; Abu-Heiba, Ahmad; Mahderekal, Dr. Isaac
2017-01-01
Heating, ventilating, and air-conditioning equipment consumes 43% of the total primary energy consumption in U.S. households. Presently, conventional gas furnaces have maximum heating efficiencies of 98%. Electric air conditioners used in association with the furnace for cooling have a minimum seasonal energy efficiency ratio (SEER) of 14.0. A residential gas-fired heat pump (RGHP) was developed and tested under standard rating conditions, resulting in a significant increase in heating efficiency of over 40% versus conventional natural gas furnaces. The associated efficiency of the RGHP in cooling mode is comparable in efficiency to an electric air conditioner (14.0 SEER) when compared onmore » a primary energy basis. The RGHP is similar in nature to a conventional heat pump but with two main differences. First, the primary energy savings are higher, based on a site versus source comparison, as the result of using natural gas to supply shaft power to the compressor rather than an electric motor. Second, waste heat is recovered from the engine to supplement space heating and reduce the energy input. It can also be used to provide supplemental water heating. The system utilizes a programmable logic controller that allows variable-speed operation to achieve improved control to meet building loads. RGHPs significantly reduce peak electric use during periods of high demand, especially peak summer loads, as well as peak winter loads in regions with widespread use of electric heating. This contributes to leveling year-round gas loads, with the potential to increase annual gas demand in some regions. The widespread adoption of RGHPs will contribute to significant reductions in primary energy consumption and carbon emissions through improved efficiencies.« less
Remote actuated cryocooler for superconducting generator and method of assembling the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stautner, Ernst Wolfgang; Haran, Kiruba Sivasubramaniam; Fair, Ruben Jeevanasan
2017-02-14
In one embodiment, a cryocooler assembly for cooling a heat load is provided. The cryocooler assembly includes a vacuum vessel surrounding the heat load and a cryocooler at least partially inserted into the vacuum vessel, the cryocooler including a coldhead. The assembly further includes an actuator coupled to the cryocooler. The actuator is configured to translate the cryocooler coldhead into thermal engagement with the heat load and to maintain constant pressure of the coldhead against the heat load to facilitate maintaining thermal engagement with the heat load as the heat load shrinks during a cool down process.
The Effect of Valve Cooling upon Maximum Permissible Engine Output as Limited by Knock
NASA Technical Reports Server (NTRS)
Munger, Maurice; Wilsted, H D; Mulcahy, B A
1942-01-01
A Wright GR-1820-G200 cylinder was tested over a wide range of fuel-air ratios at maximum permissible power output as limited by knock with three different degrees of valve cooling. The valves used were stock valves (solid inlet valve and hollow sodium-cooled exhaust valve), hollow valves with no coolant, and hollow valves with flowing water as a coolant. Curves showing the variation in maximum permissible values of inlet-air pressure, indicated mean effective pressure, cylinder charge, and indicated specific fuel consumption with change in fuel-air ratio and valve cooling are shown. The use of valves cooled by a stream of water passing through their hollow interiors permitted indicated mean effective pressures 10 percent higher than the mean effective pressures permissible with stock valves when the engine was operated with fuel-air ratios from 0.055 to 0.065. Operation of the engine with lean mixtures with uncooled hollow valves resulted in power output below the output obtained with the stock valves. The data show an increase in maximum permissible indicated mean effective pressure due to cooling the valves, which averages only 2.1 percent with fuel-air ratios from 0.075 to 0.105.
Ocean Cooling Pattern at the Last Glacial Maximum
Zhuang, Kelin; Giardino, John R.
2012-01-01
Ocean temperature and ocean heat content change are analyzed based on four PMIP3 model results at the Last Glacial Maximum relative to the prehistorical run. Ocean cooling mostly occurs in the upper 1000 m depth and varies spatially in the tropical and temperate zones. The Atlantic Ocean experiences greater cooling than the rest of the ocean basins. Ocean cooling is closely related to the weakening of meridional overturning circulation and enhanced intrusion of Antarctic Bottom Water into the North Atlantic.
NASA Astrophysics Data System (ADS)
Warlick, Kent M.
While the addition of short fiber to 3D printed articles has increased structural performance, ultimate gains will only be realized through the introduction of continuous reinforcement placed along pre-planned load paths. Most additive manufacturing research focusing on the addition of continuous reinforcement has revolved around utilization of a prefrabricated composite filament or a fiber and matrix mixed within a hot end prior to deposition on a printing surface such that conventional extrusion based FDM can be applied. Although stronger 3D printed parts can be made in this manner, high quality homogenous composites are not possible due to fiber dominated regions, matrix dominated regions, and voids present between adjacent filaments. Conventional composite manufacturing processes are much better at creating homogeneous composites; however, the layer by layer approach in which they are made is inhibiting the alignment of reinforcement with loads. Automated Fiber Placement techniques utilize in plane bending deformation of the tow to facilitate tow steering. Due to buckling fibers on the inner radius of curves, manufacturers recommend a minimum curvature for path placement with this technique. A method called continuous tow shearing has shown promise to enable the placement of tows in complex patterns without tow buckling, spreading, and separation inherent in conventional forms of automated reinforcement positioning. The current work employs fused deposition modeling hardware and the continuous tow shearing technique to manufacture high quality fiber reinforced composites with high positional fidelity, varying continuous reinforcement orientations within a layer, and plastic elements incorporated enabling the ultimate gains in structural performance possible. A mechanical system combining concepts of additive manufacturing with fiber placement via filament winding was developed. Paths with and without tension inherent in filament winding were analyzed through microscopy in order to examine best and worst case scenarios. High quality fiber reinforced composite materials, in terms of low void content, high fiber volume fractions and homogeneity in microstructure, were manufactured in both of these scenarios. In order to improve fidelity and quality in fiber path transition regions, a forced air cooling manifold was designed, printed, and implemented into the current system. To better understand the composite performance that results from varying pertinent manufacturing parameters, the effect of feed rate, hot end temperature, forced air cooling, and deposition surface (polypropylene and previously deposited glass polypropylene commingled tow) on interply performance, microstructure, and positional fidelity were analyzed. Interply performance, in terms of average maximum load and average peel strength, was quantified through a t-peel test of the bonding quality between two surfaces. With use of forced air cooling, minor decreases in average peel strength were present due to a reduction in tow deposition temperature which was found to be the variable most indicative of performance. Average maximum load was comparable between the forced air cooled and non-air cooled samples. Microstructure was evaluated through characterization of composite area, void content, and flash percentage. Low void contents mostly between five to seven percent were attained. Further reduction of this void content to two percent is possible through higher processing temperatures; however, reduced composite area, low average peel strength performance, and the presence of smoke during manufacturing implied thermal degradation of the polypropylene matrix occurred in these samples with higher processing temperatures. Positional fidelity was measured through calculations of shear angle, shift width, and error of a predefined path. While positional fidelity variation was low with a polypropylene deposition surface, forced air cooling is necessary to achieve fidelity on top of an already deposited tow surface as evident by the fifty-six percent reduction in error tolerance profile achieved. Lastly, proof of concept articles with unique fiber paths and neat plastic elements incorporated were produced to demonstrate fiber placement along pre-planned load paths and the ability to achieve greater structural efficiency through the use of less material. The results show that high positional fidelity and high quality composites can be produced through the use of the tow shearing technique implemented in the developed mechanical system. The implementation of forced air cooling was critical in achieving fidelity and quality in transition regions. Alignment of continuous reinforcement with pre-planned load paths was demonstrated in the proof of concept article with varying fiber orientations within a layer. Combining fused deposition modeling of plastic with the placement of continuous reinforcement enabled a honeycomb composite to be produced with higher specific properties than traditional composites. Thus, the current system demonstrated a greater capability of achieving ultimate gains in structural performance than previously possible.
Investigation of the Fermi-Hubbard model with 6Li in an optical lattice
NASA Astrophysics Data System (ADS)
Hart, R. A.; Duarte, P. M.; Yang, T.-L.; Hulet, R. G.
2013-05-01
We present our results on investigation of the physics of the Fermi-Hubbard model using an ultracold gas of 6Li loaded into an optical lattice. We use all-optical methods to efficiently cool and load the lattice beginning with laser cooling on the 2S1 / 2 --> 2P3 / 2 transition and then further cooling using the narrow 2S1 / 2 --> 3P3 / 2 transition to T ~ 59 μK. The second stage of laser cooling greatly enhances loading to an optical dipole trap where a two spin state mixture of atoms is evaporatively cooled to degeneracy. We then adiabatically load ~106 degenerate fermions into a 3D optical lattice formed by three orthogonal standing waves of 1064 nm light. Overlapped with each of the three lattice beams is a non-retroreflected beam at 532 nm. This light cancels the harmonic trapping caused by the lattice beams, which extends the number of lattice sites over which a Néel phase can exist and may allow evaporative cooling in the lattice. By using Bragg scattering of light, we investigate the possibility of observing long-range antiferromagnetic ordering of spins in the lattice. Supported by NSF, ONR, DARPA, and the Welch Foundation.
Müller, Tobias K H; Cao, Ping; Ewert, Stephanie; Wohlgemuth, Jonas; Liu, Haiyang; Willett, Thomas C; Theodosiou, Eirini; Thomas, Owen R T; Franzreb, Matthias
2013-04-12
An integrated approach to temperature-controlled chromatography, involving copolymer modified agarose adsorbents and a novel travelling cooling zone reactor (TCZR) arrangement, is described. Sepharose CL6B was transformed into a thermoresponsive cation exchange adsorbent (thermoCEX) in four synthetic steps: (i) epichlorohydrin activation; (ii) amine capping; (iii) 4,4'-azobis(4-cyanovaleric acid) immobilization; and 'graft from' polymerization of poly(N-isopropylacrylamide-co-N-tert-butylacrylamide-co-acrylic acid-co-N,N'-methylenebisacrylamide). FT-IR, (1)H NMR, gravimetry and chemical assays allowed precise determination of the adsorbent's copolymer composition and loading, and identified the initial epoxy activation step as a critical determinant of 'on-support' copolymer loading, and in turn, protein binding performance. In batch binding studies with lactoferrin, thermoCEX's binding affinity and maximum adsorption capacity rose smoothly with temperature increase from 20 to 50 °C. In temperature shifting chromatography experiments employing thermoCEX in thermally jacketed columns, 44-51% of the lactoferrin adsorbed at 42 °C could be desorbed under binding conditions by cooling the column to 22 °C, but the elution peaks exhibited strong tailing. To more fully exploit the potential of thermoresponsive chromatography adsorbents, a new column arrangement, the TCZR, was developed. In TCZR chromatography, a narrow discrete cooling zone (special assembly of copper blocks and Peltier elements) is moved along a bespoke fixed-bed separation columnfilled with stationary phase. In tests with thermoCEX, it was possible to recover 65% of the lactoferrin bound at 35 °C using 8 successive movements of the cooling zone at a velocity of 0.1mm/s; over half of the recovered protein was eluted in the first peak in more concentrated form than in the feed. Intra-particle diffusion of desorbed protein out of the support pores, and the ratio between the velocities of the cooling zone and mobile phase were identified as the main parameters affecting TCZR performance. In contrast to conventional systems, which rely on cooling the whole column to effect elution and permit only batch-wise operation, TCZR chromatography generates sharp concentrated elution peaks without tailing effects and appears ideally suited for continuous operation. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Faulkner, F. E.
1971-01-01
A study was conducted to determine the effect of chord size on air cooled turbine blades. In the preliminary design phase, eight turbine blade cooling configurations in 0.75-in., 1.0-in., and 1.5-in. chord sizes were analyzed to determine the maximum turbine inlet temperature capabilities. A pin fin convection cooled configuration and a film-impingement cooled configuration were selected for a final design analysis in which the maximum turbine inlet temperature was determined as a function of the cooling air inlet temperature and the turbine inlet total pressure for each of the three chord sizes. The cooling air flow requirements were also determined for a varying cooling air inlet temperature with a constant turbine inlet temperature. It was determined that allowable turbine inlet temperature increases with increasing chord for the convection cooled and transpiration cooled designs, however, the film-convection cooled designs did not have a significant change in turbine inlet temperature with chord.
Stratospheric Cooling and Arctic Ozone Recovery
NASA Technical Reports Server (NTRS)
Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.
1998-01-01
We present sensitivity studies using the AER( box model for an idealized parcel in the lower stratosphere at 70 N during winter/spring with different assumed stratospheric coolings and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K cooling could provide the same local ozone depletion as an increase of chlorine by 0.4-0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.
Stratospheric Cooling and Arctic Ozone Recovery
NASA Technical Reports Server (NTRS)
Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.
1998-01-01
We present sensitivity studies using the AER box model for an idealized parcel in the lower stratosphere at 70 deg N during winter/spring with different assumed stratospheric cooling and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K Cooling could provide the same local ozone depletion as an increase of chlorine by 0.4-0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudd, A.
This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. In older homes in warm-humid climates, cooling loads are typically high and cooling equipment runs a lot to cool the air. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisturemore » being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and some winter days. In warm-humid climates, those long off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and avoids adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudd, Armin
This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. Cooling loads are typically high and cooling equipment runs a lot to cool the air in older homes in warm-humid climates. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisturemore » being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and winter days. In warm-humid climates, those long-off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.« less
Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project
NASA Technical Reports Server (NTRS)
Tower, L. K.; Kaufman, W. B.
1977-01-01
A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions.
Rocket engine hot-spot detector
NASA Astrophysics Data System (ADS)
Collamore, F. N.
1985-04-01
On high performance devices such as rocket engines it is desirable to know if local hot spots or areas of reduced cooling margin exist. The objective of this program is to design, fabricate and test an electronic hot spot detector capable of sensing local hot spot on the exterior circumference of a regeneratively cooled combustion chamber in order to avoid hardware damage. The electronic hot spot sensor consists of an array of 120 thermocouple elements which are bonded in a flexible belt of polyimide film. The design temperature range is from +30 F to +400 F continuously with an intermittent temperature of 500 F maximum. The thermocouple belt consists of 120 equally spaced copper-Constantan thermocouple junctions which is wrapped around the OMS liquid rocket engine combustion chamber, to monitor temperatures of individual cooling channels. Each thermocouple is located over a cooling channel near the injector end of the combustion chamber. The thermocouple array sensor is held in place by a spring loaded clamp band. Analyses show that in the event of a blocked cooling channel the surface temperature of the chamber over the blocked channel will rise from a normal operating temperature of approx. 300 F to approx. 600 F. The hot spot detector will respond quickly to this change with a response time constant less than 0.05 seconds. The hot spot sensor assembly is fabricated with a laminated construction of layers of Kapton film and an outer protective layer of fiberglass reinforced silicone rubber.
NASA Astrophysics Data System (ADS)
Shao, Yue; Shi, Frank G.
2017-07-01
The effective passive radiation cooling that is enabled by silicone-based composites is investigated for its dependence on coating thickness and filler size in the range of nanometers to micrometers. It is established, contrary to prior reports, that the effective passive radiation cooling does not exhibit a filler size dependence, i.e., there is no optimal size at which a maximum cooling would be reached. However, the apparent cooling effect is filler type dependent and among the fillers investigated, Al2O3 exhibits the best apparent cooling effect. In addition, the apparent cooling effect is dependent on coating thickness: the thickness dependence is non-monotonic, and the maximum cooling occurs at an optimal thickness of 70 μm, regardless of filler type. Potential significant implications of the findings are also discussed.
Method for thermoelectric cooler utilization using manufacturer's technical information
NASA Astrophysics Data System (ADS)
Ajiwiguna, Tri Ayodha; Nugroho, Rio; Ismardi, Abrar
2018-03-01
Thermoelectric cooler (TEC) module has been widely used for many applications. In this study, a procedure to use TEC module for specific requirement is developed based on manufacturer's technical data. For study case, the cooling system using TEC module is designed and tested to maintain 6.6 liter of water at 24 °C while surrounding temperature is 26 °C. First, cooling load estimation is performed empirically by observing the temperature change when cold water is inside the container. Second, the working temperature on hot side and cold side of TEC are determined. Third, the parameters of Seebeck coefficient, thermal resistance and electrical resistance are predicted by using information from the manufacturer. Fourth, the operating current is determined by the assumption the voltage across the TEC is 12V. Fifth, cooling capacity of TEC module is calculated by using energy balance equation of TEC. Sixth, the cooling load and cooling capacity are compared to determine the number of TEC module needed. The result of these calculations showed that one TEC module is enough for cooling system since the cooling load is 17.5 W while the cooling capacity is 18.87 W. From the experimental result, the set point temperature was achieved using one TEC module as predicted in calculations steps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Eric; Withers, Chuck; McIlvaine, Janet
The well-sealed, highly insulated building enclosures constructed by today's home building industry coupled with efficient lighting and appliances are achieving significantly reduced heating and cooling loads. These low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. Even if fixed-capacity equipment can be properly specified for peak loads, it remains oversized for use during much of the year. During these part-load cooling hours, oversized equipment meets the target dry-bulb temperatures very quickly, often without sufficient opportunity for moisture control. Themore » problem becomes more acute for high-performance houses in humid climates when meeting ASHRAE Standard 62.2 recommendations for wholehouse mechanical ventilation.« less
Zhang, Lin; Sánchez del Río, Manuel; Monaco, Giulio; Detlefs, Carsten; Roth, Thomas; Chumakov, Aleksandr I.; Glatzel, Pieter
2013-01-01
X-ray crystal monochromators exposed to white-beam X-rays in third-generation synchrotron light sources are subject to thermal deformations that must be minimized using an adequate cooling system. A new approach was used to measure the crystal shape profile and slope of several cryogenically cooled (liquid nitrogen) silicon monochromators as a function of beam power in situ and under heat load. The method utilizes multiple angular scans across the Bragg peak (rocking curve) at various vertical positions of a narrow-gap slit downstream from the monochromator. When increasing the beam power, the surface of the liquid-nitrogen-cooled silicon crystal deforms from a concave shape at low heat load to a convex shape at high heat load, passing through an approximately flat shape at intermediate heat load. Finite-element analysis is used to calculate the crystal thermal deformations. The simulated crystal profiles and slopes are in excellent agreement with experiments. The parameters used in simulations, such as material properties, absorbed power distribution on the crystal and cooling boundary conditions, are described in detail as they are fundamental for obtaining accurate results. PMID:23765298
Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffers, M. A.; Chaney, L.; Rugh, J. P.
Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehiclemore » climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation. An advanced thermal test manikin was used to assess a zonal approach to climate control. In addition, vehicle thermal analysis was used to support testing by exploring thermal load reduction strategies, evaluating occupant thermal comfort, and calculating EV range impacts. Through stationary cooling tests and vehicle simulations, a zonal cooling configuration demonstrated range improvement of 6%-15%, depending on the drive cycle. A combined cooling configuration that incorporated thermal load reduction and zonal cooling strategies showed up to 33% improvement in EV range.« less
Cooled Water Production System,
The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Danny S.; Cummings, Jamie E.; Vieira, Robin K.
Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moisseytsev, Anton; Sienicki, James J.
2016-01-01
Supercritical carbon dioxide (S-CO2) Brayton cycles are under development as advanced energy converters for advanced nuclear reactors, especially the Sodium-Cooled Fast Reactor (SFR). The use of dry air cooling for direct heat rejection to the atmosphere ultimate heat sink is increasingly becoming a requirement in many regions due to restrictions on water use. The transient load following and control behavior of an SFR with an S-CO2 cycle power converter utilizing dry air cooling have been investigated. With extension and adjustment of the previously existing control strategy for direct water cooling, S-CO2 cycle power converters can also be used for loadmore » following operation in regions where dry air cooling is a requirement« less
Stratospheric Cooling and Arctic Ozone Recovery. Appendix L
NASA Technical Reports Server (NTRS)
Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriguez, Jose M.; Tabazadeh, Azadeh
1998-01-01
We present sensitivity studies using the AER box model for an idealized parcel in the lower stratosphere at 70 deg N during winter/spring with different assumed stratospheric cooling and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K cooling could provide the same local ozone depletion as an increase of chlorine by 0.4 - 0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, P.; Pham, K.
1995-12-31
Under emergency conditions, a bare overhead conductor can carry an increased amount of current that is well in excess of its normal rating. When there is this increase in current flow on a bare overhead conductor, the temperature does not rise instantaneously. but increases along a curve determined by the current, the conductor properties and the ambient conditions. The conductor temperature at the end of a short-time overload period must be restricted to its maximum design value. This paper presents a simplified approach in analyzing the dynamic performance for bare overhead conductors during short-time overload condition. A computer program wasmore » developed to calculate the short-time ratings for bare overhead conductors. The following parameters: current induced heating. solar load, convective/conductive cooling, radiative cooling, altitude, wind velocity and ampacity of the bare conductor were considered. Several sample graphical output lots are included with the paper.« less
Design and Control of Hydronic Radiant Cooling Systems
NASA Astrophysics Data System (ADS)
Feng, Jingjuan
Improving energy efficiency in the Heating Ventilation and Air conditioning (HVAC) systems in buildings is critical to achieve the energy reduction in the building sector, which consumes 41% of all primary energy produced in the United States, and was responsible for nearly half of U.S. CO2 emissions. Based on a report by the New Building Institute (NBI), when HVAC systems are used, about half of the zero net energy (ZNE) buildings report using a radiant cooling/heating system, often in conjunction with ground source heat pumps. Radiant systems differ from air systems in the main heat transfer mechanism used to remove heat from a space, and in their control characteristics when responding to changes in control signals and room thermal conditions. This dissertation investigates three related design and control topics: cooling load calculations, cooling capacity estimation, and control for the heavyweight radiant systems. These three issues are fundamental to the development of accurate design/modeling tools, relevant performance testing methods, and ultimately the realization of the potential energy benefits of radiant systems. Cooling load calculations are a crucial step in designing any HVAC system. In the current standards, cooling load is defined and calculated independent of HVAC system type. In this dissertation, I present research evidence that sensible zone cooling loads for radiant systems are different from cooling loads for traditional air systems. Energy simulations, in EnergyPlus, and laboratory experiments were conducted to investigate the heat transfer dynamics in spaces conditioned by radiant and air systems. The results show that the magnitude of the cooling load difference between the two systems ranges from 7-85%, and radiant systems remove heat faster than air systems. For the experimental tested conditions, 75-82% of total heat gain was removed by radiant system during the period when the heater (simulating the heat gain) was on, while for air system, 61-63% were removed. From a heat transfer perspective, the differences are mainly because the chilled surfaces directly remove part of the radiant heat gains from a zone, thereby bypassing the time-delay effect caused by the interaction of radiant heat gain with non-active thermal mass in air systems. The major conclusions based on these findings are: 1) there are important limitations in the definition of cooling load for a mixing air system described in Chapter 18 of ASHRAE Handbook of Fundamentals when applied to radiant systems; 2) due to the obvious mismatch between how radiant heat transfer is handled in traditional cooling load calculation methods compared to its central role in radiant cooling systems, this dissertation provides improvements for the current cooling load calculation method based on the Heat Balance procedure. The Radiant Time Series method is not appropriate for radiant system applications. The findings also directly apply to the selection of space heat transfer modeling algorithms that are part of all energy modeling software. Cooling capacity estimation is another critical step in a design project. The above mentioned findings and a review of the existing methods indicates that current radiant system cooling capacity estimation methods fail to take into account incident shortwave radiation generated by solar and lighting in the calculation process. This causes a significant underestimation (up to 150% for some instances) of floor cooling capacity when solar load is dominant. Building performance simulations were conducted to verify this hypothesis and quantify the impacts of solar for different design scenarios. A new simplified method was proposed to improve the predictability of the method described in ISO 11855 when solar radiation is present. The dissertation also compares the energy and comfort benefits of the model-based predictive control (MPC) method with a fine-tuned heuristic control method when applied to a heavyweight embedded surface system. A first order dynamic model of a radiant slab system was developed for implementation in model predictive controllers. A calibrated EnergyPlus model of a typical office building in California was used as a testbed for the comparison. The results indicated that MPC is able to reduce the cooling tower energy consumption by 55% and pumping power consumption by 26%, while maintaining equivalent or even better thermal comfort conditions. In summary, the dissertation work has: (1) provided clear evidence that the fundamental heat transfer mechanisms differ between radiant and air systems. These findings have important implications for the development of accurate and reliable design and energy simulation tools; (2) developed practical design methods and guidance to aid practicing engineers who are designing radiant systems; and (3) outlined future research and design tools need to advance the state-of-knowledge and design and operating guidelines for radiant systems.
Fracture analysis near the mid-ocean plate boundary, Reykjavik-Hvalfjördur area, Iceland
NASA Astrophysics Data System (ADS)
Jefferis, Robert G.; Voight, Barry
1981-07-01
The geometry and thermal history of fractures have been determined at 59 stations from Reykjavik to Hvalfjördur in southwestern Iceland. The data provide information on crustal stress regimes in the vicinity of mid-ocean ridges. Two major, generalized fracture orientations are present (1) a northeast system, trend 010°-030°, except on Akranes where the orientation is 040°-060° (2) a broad east—west system containing one or more sets with strike between 070°-130°. Thermal history of the host rock and fractures was determined from secondary minerals in vugs and fractures. The thermal history indicates that the northeast fracture set opened while the area was within the relatively hot axial zone of active volcanism and rifting. Some of the east—west trending fractures also opened at this time but many formed later, after the area had begun to cool and drift from the active zone. The northeast fracture set is essentially parallel to the trend of dikes and normal faults in southwestern Iceland. They have been interpreted as extension fractures (resulting in about 0.4% maximum extension) forming generally from the same stress field associated with normal faulting and dike injection in the active zone. Fracturing in an east-west direction (estimated 0.1% maximum extension), mainly near the edge and outside the active zone, indicates a reorientation of this stress field. The dominant mechanism related to the origin of the east—west fractures may be thermoelastic stresses arising from axial and basal accretion and cooling of lithospheric plates. Both fracture systems are inferred to have formed, in the Griffiths idealization, under nearly biaxial effective compressive loading on the order of 200 bar. The discrepancy between this value and the kilobar-order strengths of short-time laboratory tests reflects such factors as high temperature stress corrosion and fatigue. Fracture propagation is assumed to have been stable, but governed primarily by lateral load-diminishing mechanisms rather than by progressive loading. These relaxation mechanisms may have been episodic (northeast-system fissure swarm activity) or steady-state (thermoelastic contraction) in time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; Zhang, Xingyi, E-mail: zhangxingyi@lzu.edu.cn; Liu, Cong
We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strandmore » is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.« less
NASA Astrophysics Data System (ADS)
Shaanika, E.; Yamaguchi, K.; Miki, M.; Ida, T.; Izumi, M.; Murase, Y.; Oryu, T.; Yanamoto, T.
2017-12-01
Superconducting generators offer numerous advantages over conventional generators of the same rating. They are lighter, smaller and more efficient. Amongst a host of methods for cooling HTS machinery, thermosyphon-based cooling systems have been employed due to their high heat transfer rate and near-isothermal operating characteristics associated with them. To use them optimally, it is essential to study thermal characteristics of these cryogenic thermosyphons. To this end, a stand-alone neon thermosyphon cooling system with a topology resembling an HTS rotating machine was studied. Heat load tests were conducted on the neon thermosyphon cooling system by applying a series of heat loads to the evaporator at different filling ratios. The temperature at selected points of evaporator, adiabatic tube and condenser as well as total heat leak were measured. A further study involving a computer thermal model was conducted to gain further insight into the estimated temperature distribution of thermosyphon components and heat leak of the cooling system. The model employed boundary conditions from data of heat load tests. This work presents a comparison between estimated (by model) and experimental (measured) temperature distribution in a two-phase cryogenic thermosyphon cooling system. The simulation results of temperature distribution and heat leak compared generally well with experimental data.
Experiences in solar cooling systems
NASA Astrophysics Data System (ADS)
Ward, D. S.
The results of performance evaluations for nine solar cooling systems are presented, and reasons fow low or high net energy balances are discussed. Six of the nine systems are noted to have performed unfavorably compared to standard cooling systems due to thermal storage losses, excessive system electrical demands, inappropriate control strategies, poor system-to-load matching, and poor chiller performance. A reduction in heat losses in one residential unit increased the total system efficiency by 2.5%, while eliminating heat losses to the building interior increased the efficiency by 3.3%. The best system incorporated a lithium bromide absorption chiller and a Rankine cycle compression unit for a commercial application. Improvements in the cooling tower and fan configurations to increase the solar cooling system efficiency are indicated. Best performances are expected to occur in climates inducing high annual cooling loads.
Waiting time effect of a GM type orifice pulse tube refrigerator
NASA Astrophysics Data System (ADS)
Zhu, Shaowei; Kakimi, Yasuhiro; Matsubara, Yoichi
In a general GM type orifice pulse tube refrigerator, there are two short periods during which both the high pressure valve and the low pressure valve are closed in one cycle. We call the short period `waiting time'. The pressure differences across the high pressure valve and the low pressure valve are decreased by using long waiting time. The pressure difference loss is decreased. Thus, the cooling capacity and the efficiency are increased, and the no-load temperature is decreased. The mechanism of the waiting time is discussed with numerical analysis and verified by experiments. Experiments show that there is an optimum waiting time for the no-load temperature, the cooling capacity and the efficiency, respectively. The no-load temperature of 40.3 K was achieved with a 90° waiting time. The cooling capacity of 58 W at 80 K was achieved with a 60° waiting time. The no-load temperature of 45.1 K and the cooling capacity of 45 W at 80 K were achieved with a 1° waiting time.
Optimization of cooling strategy and seeding by FBRM analysis of batch crystallization
NASA Astrophysics Data System (ADS)
Zhang, Dejiang; Liu, Lande; Xu, Shijie; Du, Shichao; Dong, Weibing; Gong, Junbo
2018-03-01
A method is presented for optimizing the cooling strategy and seed loading simultaneously. Focused beam reflectance measurement (FBRM) was used to determine the approximating optimal cooling profile. Using these results in conjunction with constant growth rate assumption, modified Mullin-Nyvlt trajectory could be calculated. This trajectory could suppress secondary nucleation and has the potential to control product's polymorph distribution. Comparing with linear and two step cooling, modified Mullin-Nyvlt trajectory have a larger size distribution and a better morphology. Based on the calculating results, the optimized seed loading policy was also developed. This policy could be useful for guiding the batch crystallization process.
Ninagawa, Takako; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira
2016-08-01
Cryopreservation techniques are expected to evolve further to preserve biomaterials and foods in a fresh state for extended periods of time. Long-term cryopreservation of living materials such as food and biological tissue is generally achieved by freezing; thus, intracellular freezing occurs. Intracellular freezing injures the cells and leads to cell death. Therefore, a dream cryopreservation technique would preserve the living materials without internal ice crystal formation at a temperature low enough to prevent bacterial activity. This study was performed to investigate the effect of micro electrical current loading during cooling as a new cryopreservation technique. The behavior of intracellular ice crystal formation in plant tissues with or without an electric current load was evaluated using the degree of supercooling, degree of cell deformation, and grain size and growing rate of intracellular ice crystal. Moreover, the transition of intracellular pH during plant tissue cooling with or without electric current loading was also examined using the fluorescence intensity ratio to comprehend cell activity at lower temperatures. The results indicated that micro electric current load did not only decrease the degree of cell deformation and grain size of intracellular ice crystal but also reduced the decline in intracellular pH due to temperature lowering, compared with tissues subjected to the same cooling rate without an electric current load. Thus, the effect of electric current load on cryopreservation and the potential of a new cryopreservation technique using electric current load were discussed based on these results. Copyright © 2016 Elsevier Inc. All rights reserved.
Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike
2010-01-01
The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests and/or deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four degrees of ovalization of the nozzle: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The computed side load physics caused by the nozzle out-of-roundness and its effect on nozzle side load are reported and discussed.
Influence of Shading on Cooling Energy Demand
NASA Astrophysics Data System (ADS)
Rabczak, Sławomir; Bukowska, Maria; Proszak-Miąsik, Danuta; Nowak, Krzysztof
2017-10-01
The article presents an analysis of the building cooling load taking into account the variability of the factors affecting the size of the heat gains. In order to minimize the demand for cooling, the effect of shading elements installed on the outside on the windows and its effect on size of the cooling capacity of air conditioning system for the building has been estimated. Multivariate building cooling load calculations to determine the size of the reduction in cooling demand has derived. Determination of heat gain from the sun is laborious, but gives a result which reflects the influence of the surface transparent partitions, devices used as sunscreen and its location on the building envelope in relation to the world, as well as to the internal heat gains has great attention in obtained calculation. In this study, included in the balance sheet of solar heat gains are defined in three different shading of windows. Calculating the total demand cooling is made for variants assuming 0% shading baffles transparent, 50% shading baffles transparent external shutters at an angle of 45 °, 100% shading baffles transparent hours 12 from the N and E and from 12 from the S and W of the outer slat blinds. The calculation of the average hourly cooling load was taken into account the option assuming the hypothetical possibility of default by up to 10% of the time assumed the cooling season temperatures in the rooms. To reduce the consumption of electricity energy in the cooling system of the smallest variant identified the need for the power supply for the operation of the cooling system. Also assessed the financial benefits of the temporary default of comfort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desjarlais, Andre Omer; Kriner, Scott; Miller, William A
An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool wasmore » then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.« less
Control system for thermoelectric refrigerator
NASA Technical Reports Server (NTRS)
Nelson, John L. (Inventor); Criscuolo, Lance (Inventor); Gilley, Michael D. (Inventor); Park, Brian V. (Inventor)
1996-01-01
Apparatus including a power supply (202) and control system is provided for maintaining the temperature within an enclosed structure (40) using thermoelectric devices (92). The apparatus may be particularly beneficial for use with a refrigerator (20) having superinsulation materials (46) and phase change materials (112) which cooperate with the thermoelectric device (92) to substantially enhance the overall operating efficiency of the refrigerator (20). The electrical power supply (202) and control system allows increasing the maximum power capability of the thermoelectric device (92) in response to increased heat loads within the refrigerator (20). The electrical power supply (202) and control system may also be used to monitor the performance of the cooling system (70) associated with the refrigerator (20).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davlin, Thomas
The overall deliverable from the project is the design, construction and commissioning of a detention facility heating and cooling system that minimizes ownership costs and maximizes efficiency (and therefore minimizes environmental impact). The primary deliverables were the proof of concept for the application of geothermal systems for an institutional facility and the ongoing, quarterly system operating data downloads to the Department of Energy . The primary advantage of geothermal based heat pump systems is the higher efficiency of the system compared to a conventional chiller, boiler, cooling tower based system. The higher efficiency results in a smaller environmental foot printmore » and lower energy costs for the detention facility owner, Lancaster County. The higher efficiency for building cooling is primarily due to a more constant compressor condensing temperature with the geothermal well field acting as a thermal “sink” (in place of the conventional system’s cooling tower). In the heating mode, Ground Couple Heat Pump (GCHP) systems benefits from the advantage of a heat pump Coefficient of Performance (COP) of approximately 3.6, significantly better than a conventional gas boiler. The geothermal well field acting as a thermal “source” allows the heat pumps to operate efficiently in the heating mode regardless of ambient temperatures. The well field is partially located in a wetland with a high water table so, over time, the project will be able to identify the thermal loading characteristics of a well field located in a high water table location. The project demonstrated how a large geothermal well field can be installed in a wetland area in an economical and environmentally sound manner. Finally, the SW 40th Street Thermal Energy Plant project demonstrates the benefits of providing domestic hot water energy, as well as space heating, to help balance well filed thermal loading in a cooling dominated application. During the period of August 2012 thru March 2014, with the detention facility occupied for the final seven months, the well field supply water temperatures to the heat pumps dropped to a minimum of 39°F and reached a maximum temperature of 68 °F while providing 15,819 MMBtu of cooling energy and 27,467 MMBtu of heating energy. During this period the peak recorded system cooling load was 610 tons and the peak heating load was 8.4 MMBtu. The DEC is currently evaluating the most beneficial electric rate for plant operations. Total project cost of $16.9 million was approximately $3.2 million less than the estimate provided in the grant application. The reduction in project costs were primarily due to favorable construction material prices as well as strong competition in the local construction contractor market. The DEC plant reached the substantial completion milestone in December 2011 and began providing thermal service to the detention facility in January 2012 when the building’s HVAC system was ready to accept heating service. The plant reached commercial operating status on August 1, 2012. However, due to construction delays, the detention facility was not occupied until September of 2013. The detention facility construction delays also impacted the installation and commissioning of the project’s dedicated domestic hot water heat pump. Final coordination with the detention facility’s building management system vendor to establish network links for the exchange of date is currently being completed. This will allow the development of control sequences for the optimal operation of the domestic hot water system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradin, Michael; Anderson, M.; Muci, M.
This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintainmore » similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.« less
NASA Astrophysics Data System (ADS)
Kiesel, Nikolai; Blaser, Florian; Delic, Uros; Grass, David; Dechant, Andreas; Lutz, Eric; Bathaee, Marzieh; Aspelmeyer, Markus
2015-08-01
Combining optical levitation and cavity optomechanics constitutes a promising approach to prepare and control the motional quantum state of massive objects (>10^9 amu). This, in turn, would represent a completely new type of light-matter interface and has, for example, been predicted to enable experimental tests of macrorealistic models or of non-Newtonian gravity at small length scales. Such ideas have triggered significant experimental efforts to realizing such novel systems. To this end, we have recently successfully demonstrated cavity-cooling of a levitated sub-micron silica particle in a classical regime at a pressure of approximately 1mbar. Access to higher vacuum of approx. 10^-6 mbar has been demonstrated using 3D-feedback cooling in optical tweezers without cavity-coupling. Here we will illustrate our strategy towards trapping, 3D-cooling and quantum control of nanoparticles in ultra-high vacuum using cavity-based feedback cooling methods and clean particle loading with hollow-core photonic crystal fibers. We will also discuss the current experimental progress both in 3D-cavity cooling and HCPCF-based transport of nanoparticles. As yet another application of cavity-controlled levitated nanoparticles we will show how to implement a thermodynamic Sterling cycle operating in the underdamped regime. We present optimized protocols with respect to efficiency at maximum power in this little explored regime. We also show that the excellent level of control in our system will allow reproducing all relevant features of such optimized protocols. In a next step, this will enable studies of thermodynamics cycles in a regime where the quantization of the mechanical motion becomes relevant.
Systematic optimization of laser cooling of dysprosium
NASA Astrophysics Data System (ADS)
Mühlbauer, Florian; Petersen, Niels; Baumgärtner, Carina; Maske, Lena; Windpassinger, Patrick
2018-06-01
We report on an apparatus for cooling and trapping of neutral dysprosium. We characterize and optimize the performance of our Zeeman slower and 2D molasses cooling of the atomic beam by means of Doppler spectroscopy on a 136 kHz broad transition at 626 nm. Furthermore, we demonstrate the characterization and optimization procedure for the loading phase of a magneto-optical trap (MOT) by increasing the effective laser linewidth by sideband modulation. After optimization of the MOT compression phase, we cool and trap up to 10^9 atoms within 3 seconds in the MOT at temperatures of 9 μK and phase space densities of 1.7 \\cdot 10^{-5}, which constitutes an ideal starting point for loading the atoms into an optical dipole trap and for subsequent forced evaporative cooling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dafen; Jiang, Jiuchun; Kim, Gi-Heon
Choosing a proper cooling method for a lithium-ion (Li-ion) battery pack for electric drive vehicles (EDVs) and making an optimal cooling control strategy to keep the temperature at a optimal range of 15 degrees C to 35 degrees C is essential to increasing safety, extending the pack service life, and reducing costs. When choosing a cooling method and developing strategies, trade-offs need to be made among many facets such as costs, complexity, weight, cooling effects, temperature uniformity, and parasitic power. This paper considers four cell-cooling methods: air cooling, direct liquid cooling, indirect liquid cooling, and fin cooling. To evaluate theirmore » effectiveness, these methods are assessed using a typical large capacity Li-ion pouch cell designed for EDVs from the perspective of coolant parasitic power consumption, maximum temperature rise, temperature difference in a cell, and additional weight used for the cooling system. We use a state-of-the-art Li-ion battery electro-chemical thermal model. The results show that under our assumption an air-cooling system needs 2 to 3 more energy than other methods to keep the same average temperature; an indirect liquid cooling system has the lowest maximum temperature rise; and a fin cooling system adds about 40% extra weight of cell, which weighs most, when the four kinds cooling methods have the same volume. Indirect liquid cooling is a more practical form than direct liquid cooling though it has slightly lower cooling performance.« less
The integration of liquid cryogen cooling and cryocoolers withsuperconducting electronic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Michael A.
2003-07-09
The need for cryogenic cooling has been a critical issuethat has kept superconducting electronic devices from reaching the marketplace. Even though the performance of many of the superconductingcircuits is superior to silicon electronics, the requirement forcryogenic cooling has put the superconducting devices at a seriousdisadvantage. This report discusses the process of refrigeratingsuperconducting devices with cryogenic liquids and small cryocoolers.Three types of cryocoolers are compared for vibration, efficiency, andreliability. The connection of a cryocooler to the load is discussed. Acomparison of using flexible copper straps to carry the heat load andusing heat pipe is shown. The type of instrumentation needed formonitoringmore » and controlling the cooling is discussed.« less
Advanced Liquid-Cooling Garment Using Highly Thermally Conductive Sheets
NASA Technical Reports Server (NTRS)
Ruemmele, Warren P.; Bue, Grant C.; Orndoff, Evelyne; Tang, Henry
2010-01-01
This design of the liquid-cooling garment for NASA spacesuits allows the suit to remove metabolic heat from the human body more effectively, thereby increasing comfort and performance while reducing system mass. The garment is also more flexible, with fewer restrictions on body motion, and more effectively transfers thermal energy from the crewmember s body to the external cooling unit. This improves the garment s performance in terms of the maximum environment temperature in which it can keep a crewmember comfortable. The garment uses flexible, highly thermally conductive sheet material (such as graphite), coupled with cooling water lines of improved thermal conductivity to transfer the thermal energy from the body to the liquid cooling lines more effectively. The conductive sheets can be layered differently, depending upon the heat loads, in order to provide flexibility, exceptional in-plane heat transfer, and good through-plane heat transfer. A metal foil, most likely aluminum, can be put between the graphite sheets and the external heat source/sink in order to both maximize through-plane heat transfer at the contact points, and to serve as a protection to the highly conductive sheets. Use of a wicking layer draws excess sweat away from the crewmember s skin and the use of an outer elastic fabric ensures good thermal contact of the highly conductive underlayers with the skin. This allows the current state of the art to be improved by having cooling lines that can be more widely spaced to improve suit flexibility and to reduce weight. Also, cooling liquid does not have to be as cold to achieve the same level of cooling. Specific areas on the human body can easily be targeted for greater or lesser cooling to match human physiology, a warmer external environment can be tolerated, and spatial uniformity of the cooling garment can be improved to reduce vasoconstriction limits. Elements of this innovation can be applied to other embodiments to provide effective heat transfer over a flexible and surface-conformable fashion without the limitation of fluid freeze points.
Site dependent factors affecting the economic feasibility of solar powered absorption cooling
NASA Technical Reports Server (NTRS)
Bartlett, J. C.
1978-01-01
A procedure was developed to evaluate the cost effectiveness of combining an absorption cycle chiller with a solar energy system. A basic assumption of the procedure is that a solar energy system exists for meeting the heating load of the building, and that the building must be cooled. The decision to be made is to either cool the building with a conventional vapor compression cycle chiller or to use the existing solar energy system to provide a heat input to the absorption chiller. Two methods of meeting the cooling load not supplied by solar energy were considered. In the first method, heat is supplied to the absorption chiller by a boiler using fossil fuel. In the second method, the load not met by solar energy is net by a conventional vapor compression chiller. In addition, the procedure can consider waste heat as another form of auxiliary energy. Commercial applications of solar cooling with an absorption chiller were found to be more cost effective than the residential applications. In general, it was found that the larger the chiller, the more economically feasible it would be. Also, it was found that a conventional vapor compression chiller is a viable alternative for the auxiliary cooling source, especially for the larger chillers. The results of the analysis gives a relative rating of the sites considered as to their economic feasibility of solar cooling.
NASA Astrophysics Data System (ADS)
Kirtley, J. D.; Qadri, S. N.; Steinhurst, D. A.; Owrutsky, J. C.
2016-12-01
Various in situ probes of solid oxide fuel cells (SOFCs) have advanced recently to provide detailed, real time data regarding materials and chemical processes that relate to device performance and degradation. These techniques offer insights into complex fuel chemistry at the anode in particular, especially in the context of model predictions. However, cell-to-cell variations can hinder mechanistic interpretations of measurements from separate, independent techniques. The present study describes an in situ technique that for the first time simultaneously measures surface temperature changes using near infrared thermal imaging and gas species using Fourier-transform infrared emission spectra at the anodes of operating SOFCs. Electrolyte-supported SOFCs with Ni-based anodes are operated at 700 °C with internal, dry-reformed methane at 75% maximum current and at open circuit voltage (OCV) while electrochemical and optical measurements are collected. At OCV, more cooling is observed coincident with more CO reforming products. Under load, CO decreases while the anode cools less, especially near the current collectors. The extent of cooling is more sensitive to polarization for electrolyte-supported cells because their anodes are thinner relative to anode-supported cells. This study exemplifies how this duplex technique can be a useful probe of electrochemical processes in SOFCs.
Process simulations for the LCLS-II cryogenic systems
NASA Astrophysics Data System (ADS)
Ravindranath, V.; Bai, H.; Heloin, V.; Fauve, E.; Pflueckhahn, D.; Peterson, T.; Arenius, D.; Bevins, M.; Scanlon, C.; Than, R.; Hays, G.; Ross, M.
2017-12-01
Linac Coherent Light Source II (LCLS-II), a 4 GeV continuous-wave (CW) superconducting electron linear accelerator, is to be constructed in the existing two mile Linac facility at the SLAC National Accelerator Laboratory. The first light from the new facility is scheduled to be in 2020. The LCLS-II Linac consists of thirty-five 1.3 GHz and two 3.9 GHz superconducting cryomodules. The Linac cryomodules require cryogenic cooling for the super-conducting niobium cavities at 2.0 K, low temperature thermal intercept at 5.5-7.5 K, and a thermal shield at 35-55 K. The equivalent 4.5 K refrigeration capacity needed for the Linac operations range from a minimum of 11 kW to a maximum of 24 kW. Two cryogenic plants with 18 kW of equivalent 4.5 K refrigeration capacity will be used for supporting the Linac cryogenic cooling requirements. The cryogenic plants are based on the Jefferson Lab’s CHL-II cryogenic plant design which uses the “Floating Pressure” design to support a wide variation in the cooling load. In this paper, the cryogenic process for the integrated LCLS-II cryogenic system and the process simulation for a 4.5 K cryoplant in combination with a 2 K cold compressor box, and the Linac cryomodules are described.
Gaseous oxygen cooling of the Space Transportation System launch pad environment
NASA Astrophysics Data System (ADS)
Ahmad, R. A.; Mathias, E. C.; Boraas, S.
1991-12-01
The external tank (ET) of the Space Transportation System (STS) contains liquid oxygen and hydrogen as oxidizer and fuel for the Space Shuttle main engines (SSMEs). During and subsequent to the loading of the ET prior to the launch of an STS, the cryogens boil in the near atmospheric conditions existing within their respective tanks. The gaseous oxygen (GOX) formed as a result of this boiling is vented overboard, mixes with air, and may, under certain wind conditions, be transported toward the STS to cause a cooling of its environment. This paper describes a two-dimensional computational fliud dynamics analysis to determine the magnitude of this cooling effect by determining the temperature depression and stratification caused by this GOX/air mixture in the region around the east redesigned solid rocket motor (RSRM), the ET, and below the STS assembly. For a severe wintertime launch temperature of -4.44 C, the maximum local temperature depression of the mixture was calculated to be 32.22 C in the inboard region next to the ET surface, and a surface temperature on the east RSRM was found to be as much as 13.89 C colder than ambient. The computed average surface temperatures on either side of the RSRM were in excellent agreement with a temperature determined from a correlation of prelaunch temperature measurements.
Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Guidos, Mike
2008-01-01
Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.
Modeling Hybrid Nuclear Systems With Chilled-Water Storage
Misenheimer, Corey T.; Terry, Stephen D.
2016-06-27
Air-conditioning loads during the warmer months of the year are large contributors to an increase in the daily peak electrical demand. Traditionally, utility companies boost output to meet daily cooling load spikes, often using expensive and polluting fossil fuel plants to match the demand. Likewise, heating, ventilation, and air conditioning (HVAC) system components must be sized to meet these peak cooling loads. However, the use of a properly sized stratified chilled-water storage system in conjunction with conventional HVAC system components can shift daily energy peaks from cooling loads to off-peak hours. This process is examined in light of the recentmore » development of small modular nuclear reactors (SMRs). In this paper, primary components of an air-conditioning system with a stratified chilled-water storage tank were modeled in FORTRAN 95. A basic chiller operation criterion was employed. Simulation results confirmed earlier work that the air-conditioning system with thermal energy storage (TES) capabilities not only reduced daily peaks in energy demand due to facility cooling loads but also shifted the energy demand from on-peak to off-peak hours, thereby creating a more flattened total electricity demand profile. Thus, coupling chilled-water storage-supplemented HVAC systems to SMRs is appealing because of the decrease in necessary reactor power cycling, and subsequently reduced associated thermal stresses in reactor system materials, to meet daily fluctuations in cooling demand. Finally and also, such a system can be used as a thermal sink during reactor transients or a buffer due to renewable intermittency in a nuclear hybrid energy system (NHES).« less
Modeling Hybrid Nuclear Systems With Chilled-Water Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misenheimer, Corey T.; Terry, Stephen D.
Air-conditioning loads during the warmer months of the year are large contributors to an increase in the daily peak electrical demand. Traditionally, utility companies boost output to meet daily cooling load spikes, often using expensive and polluting fossil fuel plants to match the demand. Likewise, heating, ventilation, and air conditioning (HVAC) system components must be sized to meet these peak cooling loads. However, the use of a properly sized stratified chilled-water storage system in conjunction with conventional HVAC system components can shift daily energy peaks from cooling loads to off-peak hours. This process is examined in light of the recentmore » development of small modular nuclear reactors (SMRs). In this paper, primary components of an air-conditioning system with a stratified chilled-water storage tank were modeled in FORTRAN 95. A basic chiller operation criterion was employed. Simulation results confirmed earlier work that the air-conditioning system with thermal energy storage (TES) capabilities not only reduced daily peaks in energy demand due to facility cooling loads but also shifted the energy demand from on-peak to off-peak hours, thereby creating a more flattened total electricity demand profile. Thus, coupling chilled-water storage-supplemented HVAC systems to SMRs is appealing because of the decrease in necessary reactor power cycling, and subsequently reduced associated thermal stresses in reactor system materials, to meet daily fluctuations in cooling demand. Finally and also, such a system can be used as a thermal sink during reactor transients or a buffer due to renewable intermittency in a nuclear hybrid energy system (NHES).« less
NASA Astrophysics Data System (ADS)
Alam, Md. Ferdous; Sazidy, Ahmad Sharif; Kabir, Asif; Mridha, Gowtam; Litu, Nazmul Alam; Rahman, Md. Ashiqur
2017-06-01
The present study aimed to evaluate the feasibility of coconut coir pads, jute fiber pads and sackcloth pads as alternative pad materials. Experimental measurements were conducted and the experimental data were quantitative. The experimental work mainly focused on the effects of different types and thicknesses of evaporative cooling pads by using forced draft fan while changing the environmental conditions. Experiments are conducted in a specifically constructed test chamber having dimensions of 12'X8'X8', using a number of cooling pads (36"X26") with a variable thickness parameters of the evaporative cooling pads i.e., 50, 75 and 100 mm. Moreover, the experimental work involved the measurement of environmental parameters such as temperature, relative humidity, air velocity, water mass flow rate and pressure drops at different times during the day. Experiments were conducted at three different water mass flow rates (0.25 kgs-1, 0.40 kgs-1 & 0.55 kgs-1) and three different air velocities (3.6 ms-1, 4.6 ms-1& 5.6 ms-1). There was a significant difference between evaporative cooling pad types and cooling efficiency. The coconut coir pads yielded maximum cooling efficiency of 85%, whereas other pads yielded the following maximum cooling efficiency: jute fiber pads 78% and sackcloth 69% for higher air velocity and minimum mass flow rate. It is found that the maximum reduction in temperature between cooling pad inlet and outlet is 4°C with a considerable increase in humidity. With the increase of pad thickness there was an increment of cooling efficiency. The results obtained for environmental factors, indicated that there was a significant difference between environmental factors and cooling efficiency. In terms of the effect of air velocity on saturation efficiency and pressure drop, higher air velocity decreases saturation efficiency and increases pressure drop across the wetted pad for maximum flow rate. Convective heat transfer co-efficient has an almost linear relationship with air Velocity. Water consumption or evaporation rate increases with the increase in air velocity. Finally, the present study indicated that the coconut coir pads perform better than the other evaporative cooling pads and have higher potential as wetted-pad material. The outcomes of this study can provide an effective and low-cost solution in the form of evaporative cooling system, especially in an agricultural country like Bangladesh.
Energy-efficient miniature-scale heat pumping based on shape memory alloys
NASA Astrophysics Data System (ADS)
Ossmer, Hinnerk; Wendler, Frank; Gueltig, Marcel; Lambrecht, Franziska; Miyazaki, Shuichi; Kohl, Manfred
2016-08-01
Cooling and thermal management comprise a major part of global energy consumption. The by far most widespread cooling technology today is vapor compression, reaching rather high efficiencies, but promoting global warming due to the use of environmentally harmful refrigerants. For widespread emerging applications using microelectronics and micro-electro-mechanical systems, thermoelectrics is the most advanced technology, which however hardly reaches coefficients of performance (COP) above 2.0. Here, we introduce a new approach for energy-efficient heat pumping using the elastocaloric effect in shape memory alloys. This development is mainly targeted at applications on miniature scales, while larger scales are envisioned by massive parallelization. Base materials are cold-rolled textured Ti49.1Ni50.5Fe0.4 foils of 30 μm thickness showing an adiabatic temperature change of +20/-16 K upon superelastic loading/unloading. Different demonstrator layouts consisting of mechanically coupled bridge structures with large surface-to-volume ratios are developed allowing for control by a single actuator as well as work recovery. Heat transfer times are in the order of 1 s, being orders of magnitude faster than for bulk geometries. Thus, first demonstrators achieve values of specific heating and cooling power of 4.5 and 2.9 W g-1, respectively. A maximum temperature difference of 9.4 K between heat source and sink is reached within 2 min. Corresponding COP on the device level are 4.9 (heating) and 3.1 (cooling).
NASA Astrophysics Data System (ADS)
Wang, H. C.; Chen, G. F.; Gong, M. Q.; Li, X.
2017-12-01
Thermodynamic performance comparison of single-stage mixed-refrigerant Joule-Thomson cycle (MJTR) and pure refrigerant reverse Brayton cycle (RBC) for cooling 80 to 120 K temperature-distributed heat loads was conducted in this paper. Nitrogen under various liquefaction pressures was employed as the heat load. The research was conducted under nonideal conditions by exergy analysis methods. Exergy efficiency and volumetric cooling capacity are two main evaluation parameters. Exergy loss distribution in each process of refrigeration cycle was also investigated. The exergy efficiency and volumetric cooling capacity of MJTR were obviously superior to RBC in 90 to 120 K temperature zone, but still inferior to RBC at 80 K. The performance degradation of MJTR was caused by two main reasons: The high fraction of neon resulted in large entropy generation and exergy loss in throttling process. Larger duty and WLMTD lead to larger exergy losses in recuperator.
Expected benefits of federally-funded thermal energy storage research
NASA Astrophysics Data System (ADS)
Spanner, G. E.; Daellenbach, K. K.; Hughes, K. R.; Brown, D. R.; Drost, M. K.
1992-09-01
Pacific Northwest Laboratory (PNL) conducted this study for the Office of Advanced Utility Concepts of the US Department of Energy (DOE). The objective of this study was to develop a series of graphs that depict the long-term benefits of continuing DOE's thermal energy storage (TES) research program in four sectors: building heating, building cooling, utility power production, and transportation. The study was conducted in three steps. The first step was to assess the maximum possible benefits technically achievable in each sector. In some sectors, the maximum benefit was determined by a 'supply side' limitation, and in other sectors, the maximum benefit is determined by a 'demand side' limitation. The second step was to apply economic cost and diffusion models to estimate the benefits that are likely to be achieved by TES under two scenarios: (1) with continuing DOE funding of TES research; and (2) without continued funding. The models all cover the 20-year period from 1990 to 2010. The third step was to prepare graphs that show the maximum technical benefits achievable, the estimated benefits with TES research funding, and the estimated benefits in the absence of TES research funding. The benefits of federally-funded TES research are largely in four areas: displacement of primary energy, displacement of oil and natural gas, reduction in peak electric loads, and emissions reductions.
Influence of Transient Atmospheric Circulation on the Surface Heating of the Pacific Warm Pool
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chou, Shu-Hsien; Chan, Pui-King
2003-01-01
Analyses of data on clouds, winds, and surface heat fluxes show that the transient behavior of basin-wide large-scale circulation has a significant influence on the warm pool sea surface temperature (SST). Trade winds converge to regions of the highest SST in the equatorial western Pacific. These regions have the largest cloud cover and smallest wind speed. Both surface solar heating and evaporative cooling are weak. The reduced evaporative cooling due to weakened winds exceeds the reduced solar heating due to enhanced cloudiness. The result is a maximum surface heating in the strong convective and high SST regions. Data also show that the maximum surface heating in strong convective regions is interrupted by transient atmospheric and oceanic circulation. Due to the seasonal variation of the insolation at the top of the atmosphere, trade winds and clouds also experience seasonal variations. Regions of high SST and low-level convergence follow the Sun, where the surface heating is a maximum. As the Sun moves away from a convective region, the strong trade winds set in, and the evaporative cooling enhances, resulting in a net cooling of the surface. During an El Nino, the maximum SST and convective region shifts eastward from the maritime continent to the equatorial central Pacific. Following the eastward shift of the maximum SST, the region of maximum cloudiness and surface heating also shift eastward. As the atmospheric and oceanic circulation returns to normal situations, the trade winds increase and the surface heating decreases. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds is one of the major factors that modulate the SST distribution of the Pacific warm pool.
Zone descriptions and response characterization for CLF/CLTD calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, E.F.; Chiles, D.C.
1985-01-01
This paper presents the results of an extensive parametric study of the dynamic response of building cooling loads to heat gains. These results are in the form of tables that classify zones in terms of seven of their physical properties and according to their dynamic response characteristics. Weighting factors and other data are also given. The principal application of these results will be to allow calculation of tables of Cooling Load Temperature Differences (CLTDs) and Cooling Load Factors (CLFs) for a small number of representative zones that cover the wide range of zones found in practice. Additionally, they will allowmore » for adjustment to the solar CLFs in the ASHRAE Handbook -1981 Fundamentals to account for carpets, room size, ceiling and exterior wall weight.« less
NASA Astrophysics Data System (ADS)
Bartlett, J.; Hardy, G.; Hepburn, I. D.
2015-12-01
The performance of a fast thermal response miniature Adiabatic Demagnetisation Refrigerator (ADR) is presented. The miniature ADR is comprised of a fast thermal response Chromium Potassium Alum (CPA) salt pill, two superconducting magnets and unconventionally, a single crystal tungsten magnetoresistive (MR) heat switch. The development of this ADR is a result of the ongoing development of a continuously operating millikelvin cryocooler (mKCC), which will use only magnetoresistive heat switches. The design and performance of the MR heat switch developed for the mKCC and used in the miniature ADR is presented in this paper; the heat switch has a measured Residual Resistivity Ratio of 32,000 ± 3000 and an estimated switching ratio (on thermal conductivity divided by the off thermal conductivity) of 15,200 at 3.6 K and 38,800 at 0.2 K when using a 3 T magnetic field. The performance of the miniature ADR operating from a 3.6 K bath is presented, demonstrating that a complete cycle (magnetisation, cooling to the bath and demagnetisation) can be accomplished in 82 s. A magnet current step test, conducted when the ADR is cold and fully demagnetised, has shown the thermal response of the ADR to be sub-second. The measured hold times of the ADR with just parasitic heat load are given, ranging from 3 min at 0.2 K with 13.14 μW of parasitics, to 924 min at 3 K with 4.55 μW of parasitics. The cooling power has been measured for operating temperatures in the range 0.25-3 K by applying an additional heat load to the ADR via a heater, in order to reduce the hold time to 3 min (i.e. approximately double the recycle time); the maximum cooling power of the miniature ADR (in addition to parasitic load) when operating at 250 mK is 20 μW, which increases to 45 μW at 300 mK and continues to increase linearly to nearly 1.1 mW at 3 K. To conclude, the predicted performance of a tandem continuous ADR utilising two of the miniature ADRs is presented.
Venus Surface Power and Cooling System Design
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Mellott, Kenneth D.
2004-01-01
A radioisotope power and cooling system is designed to provide electrical power for the a probe operating on the surface of Venus. Most foreseeable electronics devices and sensors simply cannot operate at the 450 C ambient surface temperature of Venus. Because the mission duration is substantially long and the use of thermal mass to maintain an operable temperature range is likely impractical, some type of active refrigeration may be required to keep certain components at a temperature below ambient. The fundamental cooling requirements are comprised of the cold sink temperature, the hot sink temperature, and the amount of heat to be removed. In this instance, it is anticipated that electronics would have a nominal operating temperature of 300 C. Due to the highly thermal convective nature of the high-density atmosphere, the hot sink temperature was assumed to be 50 C, which provided a 500 C temperature of the cooler's heat rejecter to the ambient atmosphere. The majority of the heat load on the cooler is from the high temperature ambient surface environment on Venus. Assuming 5 cm radial thickness of ceramic blanket insulation, the ambient heat load was estimated at approximately 77 watts. With an estimated quantity of 10 watts of heat generation from electronics and sensors, and to accommodate some level of uncertainty, the total heat load requirement was rounded up to an even 100 watts. For the radioisotope Stirling power converter configuration designed, the Sage model predicts a thermodynamic power output capacity of 478.1 watts, which slightly exceeds the required 469.1 watts. The hot sink temperature is 1200 C, and the cold sink temperature is 500 C. The required heat input is 1740 watts. This gives a thermodynamic efficiency of 27.48 %. The maximum theoretically obtainable efficiency is 47.52 %. It is estimated that the mechanical efficiency of the power converter design is on the order of 85 %, based on experimental measurements taken from 500 watt power class, laboratory-tested Stirling engines at GRC. The overall efficiency is calculated to be 23.36 %. The mass of the power converter is estimated at approximately 21.6 kg.
Solar heating and cooling: Technical data and systems analysis
NASA Technical Reports Server (NTRS)
Christensen, D. L.
1975-01-01
The solar energy research is reported including climatic data, architectural data, heating and cooling equipment, thermal loads, and economic data. Lists of data sources presented include: selected data sources for solar energy heating and cooling; bibliography of solar energy, and other energy sources; sources for manufacturing and sales, solar energy collectors; and solar energy heating and cooling projects.
NASA Technical Reports Server (NTRS)
Macks, E Fred; Nemeth, Zolton N
1951-01-01
A comparison of the operating characteristics of 75-millimeter-bore (size 215) cylindrical-roller one-piece inner-race-riding cage-type bearings was made using a laboratory test rig and a turbojet engine. Cooling correlation parameters were determined by means of dimensional analysis, and the generalized results for both the inner- and outer-race bearing operating temperatures are compared for the laboratory test rig and the turbojet engine. Inner- and outer-race cooling-correlation curves were obtained for the turbojet-engine turbine-roller bearing with the same inner- and outer-race correlation parameters and exponents as those determined for the laboratory test-rig bearing. The inner- and outer-race turbine roller-bearing temperatures may be predicted from a single curve, regardless of variations in speed, load, oil flow, oil inlet temperature, oil inlet viscosity, oil-jet diameter or any combination of these parameters. The turbojet-engine turbine-roller-bearing inner-race temperatures were 30 to 60 F greater than the outer-race-maximum temperatures, the exact values depending on the operating condition and oil viscosity; these results are in contrast to the laboratory test-rig results where the inner-race temperatures were less than the outer-race-maximum temperatures. The turbojet-engine turbine-roller bearing, maximum outer-race circumferential temperature variation was approximately 30 F for each of the oils used. The effect of oil viscosity on inner- and outer-race turbojet-engine turbine-roller-bearing temperatures was found to be significant. With the lower viscosity oil (6x10(exp -7) reyns (4.9 centistokes) at 100 F; viscosity index, 83), the inner-race temperature was approximately 30 to 35 F less than with the higher viscosity oil (53x10(exp -7) reyns (42.8 centistokes) at 100 F; viscosity index, 150); whereas the outer-race-maximum temperatures were 12 to 28 F lower with the lower viscosity oil over the DN range investigated.
Heat Deposition and Heat Removal in the UCLA Continuous Current Tokamak
NASA Astrophysics Data System (ADS)
Brown, Michael Lee
1990-01-01
Energy transfer processes in a steady-state tokamak are examined both theoretically and experimentally in order to determine the patterns of plasma heat deposition to material surfaces and the methods of heat removal. Heat transfer experiments involving actively cooled limiters and heat flux probes were performed in the UCLA Continuous Current Tokamak (CCT). The simple exponential model of plasma power deposition was extended to describe the global heat deposition to the first wall of a steady-state tokamak. The heat flux distribution in CCT was determined from measurements of heat flow to 32 large-area water-cooled Faraday shield panels. Significant toroidal and poloidal asymmetries were observed, with the maximum heat fluxes tending to fall on the lower outside panels. Heat deposition to the water-cooled guard limiters of an ion Bernstein wave antenna in CCT was measured during steady-state operation. Very strong asymmetries were observed. The heat distribution varied greatly with magnetic field. Copper heat flux sensors incorporating internal thermocouples were developed to measure plasma power deposition to exterior probe surfaces and heat removal from water -cooled interior surfaces. The resulting inverse heat conduction problem was solved using the function specification method. Cooling by an impinging liquid jet was investigated. One end of a cylindrical copper heat flux sensor was heated by a DC electrical arc and the other end was cooled by a low velocity water jet at 1 atm. Critical heat flux (CHF) values for the 55-80 ^circC sub-cooled free jets were typically 2.5 times published values for saturated free jets. For constrained jets, CHF values were about 20% lower. Heat deposition and heat removal in thick (3/4 inch diameter) cylindrical metal probes (SS304 or copper) inserted into a steady-state tokamak plasma were measured for a broad range of heat loads. The probes were cooled internally by a constrained jet of either air or water. Steady -state heat removal rates of up to 400 W/cm^2 were attained at the water cooled surface, and conditions of CHF were experimentally identified. Heat transfer in a hemispherical limiter is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.
QM-8 final performance evaluation report: SEALS, volume 4
NASA Technical Reports Server (NTRS)
Nelsen, L. V.
1989-01-01
The Space Shuttle Redesigned Solid Rocket Motor (RSRM) static test of Qualification Motor-8 (QM-8) was conducted. The QM-8 test article was the fifth full-scale, full-duration test, and the third qualification motor to incorporate the redesigned case field joint and nozzle-to-case joint. This was the second static test conducted in the T-97 test facility, which is equipped with actuators for inducing external side loads to a 360 degree external tank (ET) attach ring during test motor operation, and permits heating/cooling of an entire motor. The QM-8 motor was cooled to a temperature which ensured that the maximum propellant mean bulk temperature (PMBT) of 40 F was achieved at firing. All test results are not included, but rather, the performance of the metal case, field joints, and nozzle-to-case joint is addressed. The involvement is studied of the Structural Applications and Structural Design Groups with the QM-8 test which includes: assembly procedures of the field and nozzle-to-case joints, joint leak check results, structural test results, and post-test inspection evaluations.
NASA Astrophysics Data System (ADS)
Melnikov, A. A.; Kostishin, V. G.; Alenkov, V. V.
2017-05-01
Real operating conditions of a thermoelectric cooling device are in the presence of thermal resistances between thermoelectric material and a heat medium or cooling object. They limit performance of a device and should be considered when modeling. Here we propose a dimensionless mathematical steady state model, which takes them into account. Analytical equations for dimensionless cooling capacity, voltage, and coefficient of performance (COP) depending on dimensionless current are given. For improved accuracy a device can be modeled with use of numerical or combined analytical-numerical methods. The results of modeling are in acceptable accordance with experimental results. The case of zero temperature difference between hot and cold heat mediums at which the maximum cooling capacity mode appears is considered in detail. Optimal device parameters for maximal cooling capacity, such as fraction of thermal conductance on the cold side y, fraction of current relative to maximal j' are estimated in range of 0.38-0.44 and 0.48-0.95, respectively, for dimensionless conductance K' = 5-100. Also, a method for determination of thermal resistances of a thermoelectric cooling system is proposed.
Study on load forecasting to data centers of high power density based on power usage effectiveness
NASA Astrophysics Data System (ADS)
Zhou, C. C.; Zhang, F.; Yuan, Z.; Zhou, L. M.; Wang, F. M.; Li, W.; Yang, J. H.
2016-08-01
There is usually considerable energy consumption in data centers. Load forecasting to data centers is in favor of formulating regional load density indexes and of great benefit to getting regional spatial load forecasting more accurately. The building structure and the other influential factors, i.e. equipment, geographic and climatic conditions, are considered for the data centers, and a method to forecast the load of the data centers based on power usage effectiveness is proposed. The cooling capacity of a data center and the index of the power usage effectiveness are used to forecast the power load of the data center in the method. The cooling capacity is obtained by calculating the heat load of the data center. The index is estimated using the group decision-making method of mixed language information. An example is given to prove the applicability and accuracy of this method.
Influence of the cooling degree upon performances of internal combustion engine
NASA Astrophysics Data System (ADS)
Grǎdinariu, Andrei Cristian; Mihai, Ioan
2016-12-01
Up to present, air cooling systems still raise several unsolved problems due to conditions imposed by the environment in terms of temperature and pollution levels. The present paper investigates the impact of the engine cooling degree upon its performances, as important specific power is desired for as low as possible fuel consumption. A technical solution advanced by the authors[1], consists of constructing a bi-flux compressor, which can enhance the engine's performances. The bi-flux axial compressor accomplishes two major functions, that is it cools down the engine and it also turbocharges it. The present paper investigates the temperature changes corresponding to the fresh load, during the use of a bi-flux axial compressor. This compressor is economically simple, compact, and offers an optimal response at low rotational speeds of the engine, when two compression steps are used. The influence of the relative coefficient of air temperature drop upon working agent temperature at the intercooler exit is also investigated in the present work. The variation of the thermal load coefficient by report to the working agent temperature is also investigated during engine cooling. The variation of the average combustion temperature is analyzed in correlation to the thermal load coefficient and the temperatures of the working fluid at its exit from the cooling system. An exergetic analysis was conducted upon the influence of the cooling degree on the motor fluid and the gases resulted from the combustion process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munk, Jeffrey D; Odukomaiya, Adewale O; Gehl, Anthony C
2014-01-01
With the recent advancements in the application of variable-speed (VS) compressors to residential HVAC systems, opportunities are now available to size heat pumps (HPs) to more effectively meet heating and cooling loads in many of the climate zones in the US with limited use of inefficient resistance heat. This is in contrast to sizing guidance for traditional single-speed HPs that limits the ability to oversize with regard to cooling loads, because of risks of poor dehumidification during the cooling season and increased cycling losses. VS-drive HPs can often run at 30-40% of their rated cooling capacity to reduce cycling losses,more » and can adjust fan speed to provide better indoor humidity control. Detailed air-side performance data was collected on two VS-drive heat pumps installed in a single unoccupied research house in Knoxville, TN, a mixed-humid climate. One system provided space conditioning for the upstairs, while the other unit provided space conditioning for the downstairs. Occupancy was simulated by operating the lights, shower, appliances, other plug loads, etc. to simulate the sensible and latent loads imposed on the building space by internal electric loads and human occupants according to the Building America Research Benchmark (2008). The seasonal efficiency and energy use of the units are calculated. Annual energy use is compared to that of the single speed minimum efficiency HPs tested in the same house previously. Sizing of the units relative to the measured building load and manual J design load calculations is examined. The impact of the unit sizing with regards to indoor comfort is also evaluated.« less
Advanced cooling techniques for high-pressure hydrocarbon-fueled engines
NASA Technical Reports Server (NTRS)
Cook, R. T.
1979-01-01
The regenerative cooling limits (maximum chamber pressure) for 02/hydrocarbon gas generator and staged combustion cycle rocket engines over a thrust range of 89,000 N (20,000lbf) to 2,669,000 N (600,000 lbf) for a reusable life of 250 missions were defined. Maximum chamber pressure limits were first determined for the three propellant combinations (O2/CH4, O2/C3H8, and O2/RP-1 without a carbon layer (unenhanced designs). Chamber pressure cooling enhancement limits were then established for seven thermal barriers. The thermal barriers evaluated for these designs were: carbon layer, ceramic coating, graphite liner, film cooling, transpiration cooling, zoned combustion, and a combination of two of the above. All fluid barriers were assessed a 3 percent performance loss. Sensitivity studies were then conducted to determine the influence of cycle life and RP-1 decomposition temperature on chamber pressure limits. Chamber and nozzle design parameters are presented for the unenahanced and enhanced designs. The maximum regenerative cooled chamber pressure limits were attained with the O2/CH4 propellant combination. The O2/RP-1 designs relied on a carbon layer and liquid gas injection chamber contours, short chamber, to be competitive with the other two propellant combinations. This was attributed to the low decomposition temperature of RP-1.
NASA Astrophysics Data System (ADS)
Liu, Wei; Zhang, Xingyi; Liu, Cong; Zhang, Wentao; Zhou, Jun; Zhou, YouHe
2016-07-01
We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strand is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.
Liu, Wei; Zhang, Xingyi; Liu, Cong; Zhang, Wentao; Zhou, Jun; Zhou, YouHe
2016-07-01
We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strand is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.
Optimization and Verification of a Brushless DC-Motor for Cryogenic Mechanisms
NASA Astrophysics Data System (ADS)
Eggens, M.; van Loon, D.; Smit, H. P.; Jellema, W.; Dieleman, P.; Detrain, A.; Stokroos, M.; Nieuwenhuizen, A. C. T.
2013-09-01
In this paper we report on the results of the investigation on the feasibility of a cryogenic motor for a Filter Wheel Mechanism (FWM) for the instrument SpicA FAR-infrared Instrument (SAFARI). The maximum allowed dissipation of 1 mW is a key requirement, as a result of the limited cooling resources of the satellite. Therefore a quasi 3D electromagnetic (EM) model of a Brushless DC (BLDC) motor has been developed. To withstand the severe launch loads a mechanical concept has been designed to limit the friction torque in the bearings. The model was verified by room temperature and cryogenic measurements on an existing motor from the test setup. The model shows that the proposed BLDC motor design fulfills the requirements.
Multi-physics optimization of three-dimensional microvascular polymeric components
NASA Astrophysics Data System (ADS)
Aragón, Alejandro M.; Saksena, Rajat; Kozola, Brian D.; Geubelle, Philippe H.; Christensen, Kenneth T.; White, Scott R.
2013-01-01
This work discusses the computational design of microvascular polymeric materials, which aim at mimicking the behavior found in some living organisms that contain a vascular system. The optimization of the topology of the embedded three-dimensional microvascular network is carried out by coupling a multi-objective constrained genetic algorithm with a finite-element based physics solver, the latter validated through experiments. The optimization is carried out on multiple conflicting objective functions, namely the void volume fraction left by the network, the energy required to drive the fluid through the network and the maximum temperature when the material is subjected to thermal loads. The methodology presented in this work results in a viable alternative for the multi-physics optimization of these materials for active-cooling applications.
Thermal Design of Vapor Cooling of Flight Vehicle Structures Using LH2 Boil-Off
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen; Zoeckler, Joseph
2015-01-01
Using hydrogen boil-off vapor to cool the structure of a flight vehicle cryogenic upper stage can reduce heat loads to the stage and increase the usable propellant in the stage or extend the life of the stage. The hydrogen vapor can be used to absorb incoming heat as it increases in temperature before being vented overboard. In theory, the amount of heat leaking into the hydrogen tank from the structure will be reduced if the structure is cooled using the propellant boil-off vapor. However, the amount of boil-off vapor available to be used for cooling and the reduction in heat leak to the propellant tank are dependent to each other. The amount of heat leak reduction to the LH2 tank also depends on the total heat load on the stage and the vapor cooling configurations.
Megalopoulos, Fivos A; Ochsenkuehn-Petropoulou, Maria T
2015-01-01
A statistical model based on multiple linear regression is developed, to estimate the bromine residual that can be expected after the bromination of cooling water. Make-up water sampled from a power plant in the Greek territory was used for the creation of the various cooling water matrices under investigation. The amount of bromine fed to the circuit, as well as other important operational parameters such as concentration at the cooling tower, temperature, organic load and contact time are taken as the independent variables. It is found that the highest contribution to the model's predictive ability comes from cooling water's organic load concentration, followed by the amount of bromine fed to the circuit, the water's mean temperature, the duration of the bromination period and finally its conductivity. Comparison of the model results with the experimental data confirms its ability to predict residual bromine given specific bromination conditions.
Fail-safe system for activity cooled supersonic and hypersonic aircraft. [using liquid hydrogen fuel
NASA Technical Reports Server (NTRS)
Jones, R. A.; Braswell, D. O.; Richie, C. B.
1975-01-01
A fail-safe-system concept was studied as an alternative to a redundant active cooling system for supersonic and hypersonic aircraft which use the heat sink of liquid-hydrogen fuel for cooling the aircraft structure. This concept consists of an abort maneuver by the aircraft and a passive thermal protection system (TPS) for the aircraft skin. The abort manuever provides a low-heat-load descent from normal cruise speed to a lower speed at which cooling is unnecessary, and the passive TPS allows the aircraft skin to absorb the abort heat load without exceeding critical skin temperature. On the basis of results obtained, it appears that this fail-safe-system concept warrants further consideration, inasmuch as a fail-safe system could possibly replace a redundant active cooling system with no increase in weight and would offer other potential advantages.
NASA Astrophysics Data System (ADS)
Gupta, Tanmay; Kumar, Manoj
2017-06-01
Usually, the design moments in the simply supported bridges are obtained as the sum of moments due to dead loads and live load where the live load moments are calculated using the rolling load concept neglecting the effect of dead loads. For the simply supported bridges, uniformly distributed dead load produces maximum moment at mid-span while the absolute maximum bending moment due to multi-axel vehicles occur under a wheel which usually do not lie at mid-span. Since, the location of absolute maximum bending moment due to multi-axel vehicle do not coincide with the location of maximum moment due to dead loads occurring at mid-span, the design moment may not be obtained by simply superimposing the effect of dead load and live load. Moreover, in case of Class-A and Class-70R wheeled vehicular live loads, which consists of several axels, the number of axels to be considered over the bridge of given span and their location is tedious to find out and needs several trials. The aim of the present study is to find the number of wheels for Class-A and Class-70R wheeled vehicles and their precise location to produce absolute maximum moment in the bridge considering the effect of dead loads and impact factor. Finally, in order to enable the designers, the design moments due to Class-70R wheeled and Class-A loading have been presented in tabular form for the spans from 10 to 50 m.
Electrothermal fracturing of tensile specimens
NASA Technical Reports Server (NTRS)
Blinn, H. O.; Hanks, J. G.; Perkins, H. P.
1970-01-01
Pulling device consisting of structural tube, connecting rod, spring-loaded nuts, loading rod, heating element, and three bulkheads fractures tensile specimens. Alternate heating and cooling increases tensile loading by increments until fracturing occurs. Load cell or strain gage, applied to pulling rod, determines forces applied.
Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozubal, E.; Herrmann, L.; Deru, M.
2014-09-01
Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by firstmore » overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.« less
Current Pulses Momentarily Enhance Thermoelectric Cooling
NASA Technical Reports Server (NTRS)
Snyder, G. Jeffrey; Fleurial, Jean-Pierre; Caillat, Thierry; Chen, Gang; Yang, Rong Gui
2004-01-01
The rates of cooling afforded by thermoelectric (Peltier) devices can be increased for short times by applying pulses of electric current greater than the currents that yield maximum steady-state cooling. It has been proposed to utilize such momentary enhancements of cooling in applications in which diode lasers and other semiconductor devices are required to operate for times of the order of milliseconds at temperatures too low to be easily obtainable in the steady state. In a typical contemplated application, a semiconductor device would be in contact with the final (coldest) somewhat taller stage of a multistage thermoelectric cooler. Steady current would be applied to the stages to produce steady cooling. Pulsed current would then be applied, enhancing the cooling of the top stage momentarily. The principles of operation are straightforward: In a thermoelectric device, the cooling occurs only at a junction at one end of the thermoelectric legs, at a rate proportional to the applied current. However, Joule heating occurs throughout the device at a rate proportional to the current squared. Hence, in the steady state, the steady temperature difference that the device can sustain increases with current only to the point beyond which the Joule heating dominates. If a pulse of current greater than the optimum current (the current for maximum steady cooling) is applied, then the junction becomes momentarily cooled below its lowest steady temperature until thermal conduction brings the resulting pulse of Joule heat to the junction and thereby heats the junction above its lowest steady temperature. A theoretical and experimental study of such transient thermoelectric cooling followed by transient Joule heating in response to current pulses has been performed. The figure presents results from one of the experiments. The study established the essential parameters that characterize the pulse cooling effect, including the minimum temperature achieved, the maximum temperature overshoot, the time to reach minimum temperature, the time while cooled, and the time between pulses. It was found that at large pulse amplitude, the amount of pulse supercooling is about a fourth of the maximum steady-state temperature difference. For the particular thermoelectric device used in one set of the experiments, the practical optimum pulse amplitude was found to be about 3 times the optimum steady-state current. In a further experiment, a pulse cooler was integrated into a small commercial thermoelectric threestage cooler and found to provide several degrees of additional cooling for a time long enough to operate a semiconductor laser in a gas sensor.
NASA Astrophysics Data System (ADS)
Datta, T. S.; Kar, S.; Kumar, M.; Choudhury, A.; Chacko, J.; Antony, J.; Babu, S.; Sahu, S. K.
2015-12-01
Five beam line cryomodules with total 27 superconducting Radio Frequency (RF) cavities are installed and commissioned at IUAC to enhance the energy of heavy ion from 15 UD Pelletron. To reduce the heat load at 4.2 K, liquid nitrogen (LN2) cooled intermediate thermal shield is used for all these cryomodules. For three linac cryomodules, concept of forced flow LN2 cooling is used and for superbuncher and rebuncher, thermo-siphon cooling is incorporated. It is noticed that the shield temperature of superbuncher varies from 90 K to 110 K with respect to liquid nitrogen level. The temperature difference can't be explained by using the basic concept of thermo-siphon with the heat load on up flow line. A simple thermo-siphon experimental set up is developed to simulate the thermal shield temperature profile. Mass flow rate of liquid nitrogen is measured with different heat load on up flow line for different liquid levels. It is noticed that small amount of heat load on down flow line have a significant effect on mass flow rate. The present paper will be investigating the data generated from the thermosiphon experimental set up and a theoretical analysis will be presented here to validate the measured temperature profile of the cryomodule shield.
NASA Astrophysics Data System (ADS)
Li, lingxue
2017-08-01
The paper designs a new wind-water cooling and heating water conditioner system, connects cooling tower with heat recovery device, which uses cooling water to completely remove the heat that does not need heat recollection, in order to ensure that the system can work efficiently with higher performance coefficient. After the test actual engineering operation, the system’s maximum cooling coefficient of performance can reach 3.5. Its maximum comprehensive coefficient of performance can reach 6.5. After the analysis of its economic and environmental, we conclude that the new system can save 89822 kw per year. It reflects energy-saving and environmental benefits of the cold and hot water air conditioning system.
Maximum von Mises Stress in the Loading Environment of Mass Acceleration Curve
NASA Technical Reports Server (NTRS)
Glaser, Robert J.; Chen, Long Y.
2006-01-01
Method for calculating stress due to acceleration loading: 1) Part has been designed by FEA and hand calculation in one critical loading direction judged by the analyst; 2) Maximum stress can be due to loading in another direction; 3) Analysis procedure to be presented determines: a) The maximum Mises stress at any point; and b) The direction of maximum loading associated with the "stress". Concept of Mass Acceleration Curves (MAC): 1) Developed by JPL to perform preliminary structural sizing (i.e. Mariners, Voyager, Galileo, Pathfinder, MER,...MSL); 2) Acceleration of physical masses are bounded by a curve; 3) G-levels of vibro-acoustic and transient environments; 4) Convergent process before the couple loads cycle; and 5) Semi-empirical method to effectively bound the loads, not a simulation of the actual response.
NASA Astrophysics Data System (ADS)
Artemov, V. I.; Minko, K. B.; Yan'kov, G. G.; Kiryukhin, A. V.
2016-05-01
A mathematical model was developed to be used for numerical analysis of heat and mass transfer processes in the experimental section of the air condenser (ESAC) created in the Scientific Production Company (SPC) "Turbocon" and mounted on the territory of the All-Russia Thermal Engineering Institute. The simulations were performed using the author's CFD code ANES. The verification of the models was carried out involving the experimental data obtained in the tests of ESAC. The operational capability of the proposed models to calculate the processes in steam-air mixture and cooling air and algorithms to take into account the maldistribution in the various rows of tube bundle was shown. Data on the influence of temperature and flow rate of the cooling air on the pressure in the upper header of ESAC, effective heat transfer coefficient, steam flow distribution by tube rows, and the dimensions of the ineffectively operating zones of tube bundle for two schemes of steam-air mixture flow (one-pass and two-pass ones) were presented. It was shown that the pressure behind the turbine (in the upper header) increases significantly at increase of the steam flow rate and reduction of the flow rate of cooling air and its temperature rise, and the maximum value of heat transfer coefficient is fully determined by the flow rate of cooling air. Furthermore, the steam flow rate corresponding to the maximum value of heat transfer coefficient substantially depends on the ambient temperature. The analysis of the effectiveness of the considered schemes of internal coolant flow was carried out, which showed that the two-pass scheme is more effective because it provides lower pressure in the upper header, despite the fact that its hydraulic resistance at fixed flow rate of steam-air mixture is considerably higher than at using the one-pass schema. This result is a consequence of the fact that, in the two-pass scheme, the condensation process involves the larger internal surface of tubes, results in lower values of Δ t (the temperature difference between internal and external coolant) for a given heat load.
NASA Astrophysics Data System (ADS)
Thiébaut, E.; Goupil, C.; Pesty, F.; D'Angelo, Y.; Guegan, G.; Lecoeur, P.
2017-12-01
Increasing the maximum cooling effect of a Peltier cooler can be achieved through material and device design. The use of inhomogeneous, functionally graded materials may be adopted in order to increase maximum cooling without improvement of the Z T (figure of merit); however, these systems are usually based on the assumption that the local optimization of the Z T is the suitable criterion to increase thermoelectric performance. We solve the heat equation in a graded material and perform both analytical and numerical analysis of a graded Peltier cooler. We find a local criterion that we use to assess the possible improvement of graded materials for thermoelectric cooling. A fair improvement of the cooling effect (up to 36%) is predicted for semiconductor materials, and the best graded system for cooling is described. The influence of the equation of state of the electronic gas of the material is discussed, and the difference in term of entropy production between the graded and the classical system is also described.
Actively driven thermal radiation shield
Madden, Norman W.; Cork, Christopher P.; Becker, John A.; Knapp, David A.
2002-01-01
A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.
Design Optimization of a Thermoelectric Cooling Module Using Finite Element Simulations
NASA Astrophysics Data System (ADS)
Abid, Muhammad; Somdalen, Ragnar; Rodrigo, Marina Sancho
2018-05-01
The thermoelectric industry is concerned about the size reduction, cooling performance and, ultimately, the production cost of thermoelectric modules. Optimization of the size and performance of a commercially available thermoelectric cooling module is considered using finite element simulations. Numerical simulations are performed on eight different three-dimensional geometries of a single thermocouple, and the results are further extended for a whole module as well. The maximum temperature rise at the hot and cold sides of a thermocouple is determined by altering its height and cross-sectional area. The influence of the soldering layer is analyzed numerically using temperature dependent and temperature independent thermoelectric properties of the solder material and the semiconductor pellets. Experiments are conducted to test the cooling performance of the thermoelectric module and the results are compared with the results obtained through simulations. Finally, cooling rate and maximum coefficient of performance (COPmax) are computed using convective and non-convective boundary conditions.
NASA Astrophysics Data System (ADS)
Marx, Benjamin; Rath, Alexander; Kolm, Frederick; Schröder, Andreas; Buntebarth, Christian; Dreß, Albrecht; Hill, Wieland
2016-05-01
For high-voltage cables, the maximum temperature of the insulation must never be exceeded at any location and at any load condition. The local temperatures depend not only on the cable design and load history, but also on the local thermal environment of the cable. Therefore, distributed temperature monitoring of high-voltage cables is essential to ensure the integrity of the cable at high load. Especially, the load of the export cables of wind farms varies strongly in dependence on weather conditions. In this field study, we demonstrate the measurement performance of a new, robust Brillouin distributed temperature sensing system (Brillouin-DTS). The system is based on spontaneous Brillouin scattering and does not require a fibre loop. This is essential for long submarine high-voltage cables, where normally no loop can be formed in the seabed. It is completely passively cooled and does not contain any moving or wearing parts. The instrument is dedicated for use in industrial and other rough environments. With a measuring time below 10 min, the temperature resolution is better than 1 °C for distances up to 50 km. In the field study, the submarine export cable of an off-shore wind farm has been monitored. The temperature profile of the export cable shows several hot spots, mostly located at cable joints, and also several cold spots.
NASA Astrophysics Data System (ADS)
Suru, Marius-Gabriel; Paraschiv, Adrian-Liviu; Lohan, Nicoleta Monica; Pricop, Bogdan; Ozkal, Burak; Bujoreanu, Leandru-Gheorghe
2014-07-01
The present work reports the influence of the loading mode provided during training under constant stress, in bending, applied to lamellar specimens of Cu-Zn-Al shape memory alloys (SMAs). During training, the specimens were bent by a load fastened at their free end, while being martensitic at room temperature and they lifted the load by one-way effect (1WE), during heating up to austenitic field. On cooling to martensite field, the lower concave surface of bent specimens was compressed, and during heating it was elongated, being subjected to a series of tension-compression cycles, during heating-cooling, respectively. Conversely, the upper convex surface of bent specimens was elongated during cooling and compressed during heating, being subjected to compression-tension cycles. Furthermore, 2WE-trained actuators were tested by means of a hydraulic installation where, this time heating-cooling cycles were performed in oil conditions. Considering that the lower concave surface of the specimens was kept in compressed state, while the upper convex surface was kept in elongated state, the study reveals the influence of the two loading modes and environments on the width of martensite plates of the specimens trained under various numbers of cycles. In this purpose, Cu-Zn-Al specimens, trained under 100-300-500 cycles, were prepared and analyzed by atomic force microscopy (AFM) as well as optical and scanning electron microscopy (OM and SEM, respectively). The analysis also included AFM micrographs corroborated with statistical evaluations in order to reveal the effects of loading mode (tension or compression) in different environmental conditions of the specimens, on the surface profile characteristics of martensite plates, revealed by electropolishing.
NASA Technical Reports Server (NTRS)
Dickey, Daniel W.; Vinyard, Shannon; Keribar, Rifat
1988-01-01
The combustion chamber of a single-cylinder, direct-injected diesel engine was insulated with ceramic coatings to determine the effect of low heat rejection (LHR) operation on engine performance, emissions, and combustion. In comparison to the baseline cooled engine, the LHR engine had lower thermal efficiency, with higher smoke, particulate, and full load carbon monoxide emissions. The unburned hydrocarbon emissions were reduced across the load range. The nitrous oxide emissions increased at some part-load conditions and were reduced slightly at full loads. The poor LHR engine performance was attributed to degraded combustion characterized by less premixed burning, lower heat release rates, and longer combustion duration compared to the baseline cooled engine.
Effects of a New Cooling Technology on Physical Performance in US Air Force Military Personnel.
O'Hara, Reginald; Vojta, Christopher; Henry, Amy; Caldwell, Lydia; Wade, Molly; Swanton, Stacie; Linderman, Jon K; Ordway, Jason
2016-01-01
Heat-related illness is a critical factor for military personnel operating in hyperthermic environments. Heat illness can alter cognitive and physical performance during sustained operations missions. Therefore, the primary purpose of this investigation was to determine the effects of a novel cooling shirt on core body temperature in highly trained US Air Force personnel. Twelve trained (at least 80th percentile for aerobic fitness according to the American College of Sports Medicine, at least 90% on the US Air Force fitness test), male Air Force participants (mean values: age, 25 ± 2.8 years; height, 178 ± 7.9cm; body weight 78 ± 9.6kg; maximal oxygen uptake, 57 ± 1.9mL/kg/ min; and body fat, 10% ± 0.03%) completed this study. Subjects performed a 70-minute weighted treadmill walking test and 10-minute, 22.7kg sandbag shuttle test under two conditions: (1) "loaded" (shirt with cooling inserts) and (2) "unloaded" (shirt with no cooling inserts). Core body temperature, exercise heart rate, capillary blood lactate, and ratings of perceived exertion were recorded. Core body temperature was lower (ρ = .001) during the 70-minute treadmill walking test in the loaded condition. Peak core temperature during the 70-minute walking test was also significantly lower (ρ = .038) in the loaded condition. This lightweight (471g), passive cooling technology offers multiple hours of sustained cooling and reduced core and peak body temperature during a 70-minute, 22.7kg weighted-vest walking test. 2016.
Thermal performance of phase change wallboard for residential cooling application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feustel, H.E.; Stetiu, C.
1997-04-01
Cooling of residential California buildings contributes significantly to electrical consumption and peak power demand mainly due to very poor load factors in milder climates. Thermal mass can be utilized to reduce the peak-power demand, downsize the cooling systems, and/or switch to low-energy cooling sources. Large thermal storage devices have been used in the past to overcome the shortcomings of alternative cooling sources, or to avoid high demand charges. The manufacturing of phase change material (PCM) implemented in gypsum board, plaster or other wall-covering material, would permit the thermal storage to become part of the building structure. PCMs have two importantmore » advantages as storage media: they can offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. This allows the storage of high amounts of energy without significantly changing the temperature of the room envelope. As heat storage takes place inside the building, where the loads occur, rather than externally, additional transport energy is not required. RADCOOL, a thermal building simulation program based on the finite difference approach, was used to numerically evaluate the latent storage performance of treated wallboard. Extended storage capacity obtained by using double PCM-wallboard is able to keep the room temperatures close to the upper comfort limits without using mechanical cooling. Simulation results for a living room with high internal loads and weather data for Sunnyvale, California, show significant reduction of room air temperature when heat can be stored in PCM-treated wallboards.« less
NASA Technical Reports Server (NTRS)
Lomax, Curtis (Inventor); Webbon, Bruce (Inventor)
1995-01-01
A cooling apparatus includes a container filled with a quantity of coolant fluid initially cooled to a solid phase, a cooling loop disposed between a heat load and the container, a pump for circulating a quantity of the same type of coolant fluid in a liquid phase through the cooling loop, and a pair of couplings for communicating the liquid phase coolant fluid into the container in a direct interface with the solid phase coolant fluid.
The study on a gas-coupled two-stage stirling-type pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Wu, X. L.; Chen, L. B.; Zhu, X. S.; Pan, C. Z.; Guo, J.; Wang, J. J.; Zhou, Y.
2017-12-01
A two-stage gas-coupled Stirling-type pulse tube cryocooler (SPTC) driven by a linear dual-opposed compressor has been designed, manufactured and tested. Both of the stages adopted coaxial structure for compactness. The effect of a cold double-inlet at the second stage on the cooling performance was investigated. The test results show that the cold double-inlet will help to achieve a lower cooling temperature, but it is not conducive to achieving a higher cooling capacity. At present, without the cold double-inlet, the second stage has achieved a no-load temperature of 11.28 K and a cooling capacity of 620 mW/20 K with an input electric power of 450 W. With the cold double-inlet, the no-load temperature is lowered to 9.4 K, but the cooling capacity is reduced to 400 mW/20 K. The structure of the developed cryocooler and the influences of charge pressure, operating frequency and hot end temperature will also be introduced in this paper.
Examination of Buckling Behavior of Thin-Walled Al-Mg-Si Alloy Extrusions
NASA Astrophysics Data System (ADS)
Vazdirvanidis, Athanasios; Koumarioti, Ioanna; Pantazopoulos, George; Rikos, Andreas; Toulfatzis, Anagnostis; Kostazos, Protesilaos; Manolakos, Dimitrios
To achieve the combination of improved crash tolerance and maximum strength in aluminium automotive extrusions, a research program was carried out. The main objective was to study AA6063 alloy thin-walled square tubes' buckling behavior under axial quasi-static load after various artificial aging treatments. Variables included cooling rate after solid solution treatment, duration of the 1st stage of artificial aging and time and temperature of the 2nd stage of artificial aging. Metallography and tensile testing were employed for developing deeper knowledge on the effect of the aging process parameters. FEM analysis with the computer code LS-DYNA was supplementary applied for deformation mode investigation and crashworthiness prediction. Results showed that data from actual compression tests and numerical modeling were in considerable agreement.
Power Generation Evaluated on a Bismuth Telluride Unicouple Module
NASA Astrophysics Data System (ADS)
Hu, Xiaokai; Nagase, Kazuo; Jood, Priyanka; Ohta, Michihiro; Yamamoto, Atsushi
2015-06-01
The power generated by a thermoelectric unicouple module made of Bi2Te3 alloy was evaluated by use of a newly developed instrument. An electrical load was connected to the module, and the terminal voltage and output power of the module were obtained by altering electric current. Water flow was used to cool the cold side of the module and for heat flow measurement, by monitoring inlet and outlet temperatures. When the electric current was increased, heat flow was enhanced as a result of the Peltier effect and Joule heating. Voltage, power, heat flow, and efficiency as functions of current were determined for hot-side temperatures from 50 to 220°C. Maximum power output and peak conversion efficiency could thus be easily derived for each temperature.
Simultaneous trapping of rubidium-85 and rubidium-87 in a far off resonant trap
NASA Astrophysics Data System (ADS)
Gorges, Anthony R.
The experiments described in this thesis were focused on the physics of simultaneous trapping of 85Rb and 87 Rb into a Far Off Resonant Trap (FORT), with a view towards the implementation of a nonevaporative cooling scheme. Atoms were first trapped in a Magneto Optical Trap (MOT) and from there loaded into the FORT. We investigated the effects of loading the FORT from a MOT vs. an optical molasses; observing that the molasses significantly improved the trapped atom number. The ultimate number of atoms trapped is determined by a balance between efficient laser cooling into the FORT and light-assisted collisional losses from the FORT. We have studied and measured the loss rates associated with light-assisted collisions for our FORT, measuring both heteronuclear and homonuclear collisions. It was discovered that induced long range dipole-dipole interactions between 85Rb and 87Rb have a significant impact on FORT loading. This interaction interferes with the loading into the trap and thus limits the number of atoms which can be trapped in the FORT under simultaneous load conditions. Despite this limitation, all required experimental parameters for our future measurements have been met. In addition to these FORT studies, we have found a technique which can successfully mitigate the effects of reabsorption in optically thick clouds, which is a limitation to the ultimate temperature an atom cloud will reach during light-based cooling. Planned future measurements for this project include the creation of a variable aspect ratio FORT; along with investigating collision assisted Zeeman cooling.
NASA Technical Reports Server (NTRS)
Nainiger, J. J.
1978-01-01
An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.
LIQHYSMES - spectral power distributions of imbalances and implications for the SMES
NASA Astrophysics Data System (ADS)
Sander, M.; Gehring, R.; Neumann, H.
2014-05-01
LIQHYSMES, the recently proposed hybrid energy storage concept for variable renewable energies, combines the storage of LIQuid HYdrogen (LH2) with Superconducting Magnetic Energy Storage (SMES). LH2 as the bulk energy carrier is used for the large scale stationary longer-term energy storage, and the SMES cooled by the LH2 bath, provides highest power over shorter periods and at superior efficiencies. Both together contribute to the balancing of electric load or supply fluctuations from seconds to several hours, days or even weeks. Here different spectral power distributions of such imbalances between electricity supply and load reflecting different sources of fluctuations in the range between 1 sec and 15 minutes are considered. Some related implications for MgB2-based 100 MW-SMES operated at maximum fields of 2 T and 4 T, are considered for these buffering scenarios. Requirements as regards the storage capacity and correspondingly the minimum size of the LH2 storage tank are derived. The related loss contributions with a particular focus on the ramping losses are analysed.
High Performance Pulse Tube Cryocoolers
NASA Astrophysics Data System (ADS)
Olson, J. R.; Roth, E.; Champagne, P.; Evtimov, B.; Nast, T. C.
2008-03-01
Lockheed Martin's Advanced Technology Center has been developing pulse tube cryocoolers for more than ten years. Recent innovations include successful testing of four-stage coldheads, no-load temperature below 4 K, and the recent development of a high-efficiency compressor. This paper discusses the predicted performance of single and multiple stage pulse tube coldheads driven by our new 6 kg "M5Midi" compressor, which is capable of 90% efficiency with 200 W input power, and a maximum input power of 1000 W. This compressor retains the simplicity of earlier LM-ATC compressors: it has a moving magnet and an external electrical coil, minimizing organics in the working gas and requiring no electrical penetrations through the pressure wall. Motor losses were minimized during design, resulting in a simple, easily-manufactured compressor with state-of-the-art motor efficiency. The predicted cryocooler performance is presented as simple formulae, allowing an engineer to include the impact of a highly-optimized cryocooler into a full system analysis. Performance is given as a function of the heat rejection temperature and the cold tip temperatures and cooling loads.
14 CFR 23.1583 - Operating limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) The maximum zero wing fuel weight, where relevant, as established in accordance with § 23.343. (d... passenger seating configuration. The maximum passenger seating configuration. (k) Allowable lateral fuel loading. The maximum allowable lateral fuel loading differential, if less than the maximum possible. (l...
Solar Heating and Cooling of Buildings (Phase O). Volume 1: Executive Summary.
ERIC Educational Resources Information Center
TRW Systems Group, Redondo Beach, CA.
The purpose of this study was to establish the technical and economic feasibility of using solar energy for the heating and cooling of buildings. Five selected building types in 14 selected cities were used to determine loads for space heating, space cooling and dehumidification, and domestic service hot water heating. Relying on existing and…
Rewetting of hot vertical rod during jet impingement surface cooling
NASA Astrophysics Data System (ADS)
Agrawal, Chitranjan; Kumar, Ravi; Gupta, Akhilesh; Chatterjee, Barun
2016-06-01
A stainless steel (SS-316) vertical rod of 12 mm diameter at 800 ± 10 °C initial temperature was cooled by normal impinging round water jet. The surface rewetting phenomenon was investigated for a range of jet diameter 2.5-4.8 mm and jet Reynolds number 5000-24,000 using a straight tube type nozzle. The investigation were made from the stagnation point to maximum 40 mm downstream locations, simultaneously for both upside and downside directions. The cooling performance of the vertical rod was evaluated on the basis of rewetting parameters i.e. rewetting temperature, wetting delay, rewetting velocity and the maximum surface heat flux. Two separate Correlations have been proposed for the dimensionless rewetting velocity in terms of rewetting number and the maximum surface heat flux that predicts the experimental data within an error band of ±20 and ±15 % respectively.
High quantum yield of the Egyptian blue family of infrared phosphors (MCuSi4O10, M = Ca, Sr, Ba)
NASA Astrophysics Data System (ADS)
Berdahl, Paul; Boocock, Simon K.; Chan, George C.-Y.; Chen, Sharon S.; Levinson, Ronnen M.; Zalich, Michael A.
2018-05-01
The alkaline earth copper tetra-silicates, blue pigments, are interesting infrared phosphors. The Ca, Sr, and Ba variants fluoresce in the near-infrared (NIR) at 909, 914, and 948 nm, respectively, with spectral widths on the order of 120 nm. The highest quantum yield ϕ reported thus far is ca. 10%. We use temperature measurements in sunlight to determine this parameter. The yield depends on the pigment loading (mass per unit area) ω with values approaching 100% as ω → 0 for the Ca and Sr variants. Although maximum quantum yield occurs near ω = 0, maximum fluorescence occurs near ω = 70 g m-2, at which ϕ = 0.7. The better samples show fluorescence decay times in the range of 130 to 160 μs. The absorbing impurity CuO is often present. Good phosphor performance requires long fluorescence decay times and very low levels of parasitic absorption. The strong fluorescence enhances prospects for energy applications such as cooling of sunlit surfaces (to reduce air conditioning requirements) and luminescent solar concentrators.
Comparison Evaluations of VRF and RTU Systems Performance on Flexible Research Platform
Lee, Je-hyeon; Im, Piljae; Munk, Jeffrey D.; ...
2018-04-05
The energy performance of a variable refrigerant flow (VRF) system was evaluated using an occupancy-emulated research building in the southeastern region of the United States. Full- and part-load performance of the VRF system in heating and cooling seasons was compared with a conventional rooftop unit (RTU) variable-air-volume system with electric resistance heating. During both the heating and cooling seasons, full- and part-load conditions (i.e., 100%, 75%, and 50% thermal loads) were maintained alternately for 2 to 3 days each, and the energy use, thermal conditions, and coefficient of performance (COP) for the RTU and VRF system were measured. During themore » cooling season, the VRF system had an average COP of 4.2, 3.9, and 3.7 compared with 3.1, 3.0, and 2.5 for the RTU system under 100%, 75%, and 50% load conditions and resulted in estimated energy savings of 30%, 37%, and 47%, respectively. Finally, during the heating season, the VRF system had an average COP ranging from 1.2 to 2.0, substantially higher than the COPs of the RTU system, and resulted in estimated energy savings of 51%, 47%, and 27% under the three load conditions, respectively.« less
Comparison Evaluations of VRF and RTU Systems Performance on Flexible Research Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Je-hyeon; Im, Piljae; Munk, Jeffrey D.
The energy performance of a variable refrigerant flow (VRF) system was evaluated using an occupancy-emulated research building in the southeastern region of the United States. Full- and part-load performance of the VRF system in heating and cooling seasons was compared with a conventional rooftop unit (RTU) variable-air-volume system with electric resistance heating. During both the heating and cooling seasons, full- and part-load conditions (i.e., 100%, 75%, and 50% thermal loads) were maintained alternately for 2 to 3 days each, and the energy use, thermal conditions, and coefficient of performance (COP) for the RTU and VRF system were measured. During themore » cooling season, the VRF system had an average COP of 4.2, 3.9, and 3.7 compared with 3.1, 3.0, and 2.5 for the RTU system under 100%, 75%, and 50% load conditions and resulted in estimated energy savings of 30%, 37%, and 47%, respectively. Finally, during the heating season, the VRF system had an average COP ranging from 1.2 to 2.0, substantially higher than the COPs of the RTU system, and resulted in estimated energy savings of 51%, 47%, and 27% under the three load conditions, respectively.« less
Mechanical design of experimental apparatus for FIREX cryo-target cooling
NASA Astrophysics Data System (ADS)
Iwamoto, A.; Norimatsu, T.; Nakai, M.; Sakagami, H.; Fujioka, S.; Shiraga, H.; Azechi, H.
2016-05-01
Mechanical design of an experimental apparatus for FIREX cryo-target cooling is described. Gaseous helium (GHe) sealing system at a cryogenic environment is an important issue for laser fusion experiments. The dedicated loading system was designed for a metal gasket. We take U-TIGHTSEAL® (Usui Kokusai Sangyo Kaisha. Ltd.) with an indium plated copper jacket as an example. According to its specification, a linear load of 110 N/m along its circumference is the optimum compression; however a lower load would still maintain helium (He) leak below the required level. Its sealing performance was investigated systematically. Our system demanded 27 N/mm of the load to keep He leak tightness in a cryogenic environment. Once leak tightness was obtained, it could be reduced to 9.5 N/mm.
40 CFR 63.654 - Heat exchange systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... pressure on the cooling water side at least 35 kilopascals greater than the maximum pressure on the process... HAP listed in Table 1 to this subpart, between the process and the cooling water. This intervening fluid must serve to isolate the cooling water from the process fluid and must not be sent through a...
NASA Astrophysics Data System (ADS)
Greco, Angelo; Jiang, Xi; Cao, Dongpu
2015-03-01
The thermal management of a cylindrical battery cell by a phase change material (PCM)/compressed expanded natural graphite (CENG) is investigated in this study. The transient thermal behaviour of both the battery and the PCM/CENG is described with a simplified one-dimensional model taking into account the physical and phase change properties of the PCM/CENG composite. The 1D analytical/computational model yielded nearly identical results to the three-dimensional simulation results for various cooling strategies. Therefore, the 1D model is sufficient to describe the transient behaviour of the battery cooled by a PCM/CENG composite. Moreover, the maximum temperature reached by the PCM/CENG cooling strategy is much lower than that by the forced convection in the same configuration. In the test case studied, the PCM showed superior transient characteristics to forced convection cooling. The PCM cooling is able to maintain a lower maximum temperature during the melting process and to extend the transient time for temperature rise. Furthermore, the graphite-matrix bulk density is identified as an important parameter for optimising the PCM/CENG cooling strategy.
Hydrostatic Bearing Pad Maximum Load and Overturning Conditions for the 70-meter Antenna
NASA Technical Reports Server (NTRS)
Mcginness, H. D.
1985-01-01
The reflector diameters of the 64-m antennas were increased to 70-m. In order to evaluate the minimum film thickness of the hydrostatic bearing which supports the antenna weight, it is first necessary to have a good estimation of the maximum operational load on the most heavily loaded bearing pad. The maximum hydrostatic bearing load is shown to be sufficiently small and the ratios of stabilizing to over turning moments are ample.
NASA Technical Reports Server (NTRS)
Stone, J. E.
1975-01-01
The effects of fuselage cross section and structural arrangement on the performance of actively cooled hypersonic cruise vehicles are investigated. An active cooling system which maintains the aircraft's entire surface area at temperatures below 394 K at Mach 6 is developed along with a hydrogen fuel tankage thermal protection system. Thermodynamic characteristics of the actively cooled thermal protection systems established are summarized. Design heat loads and coolant flowrate requirements are defined for each major structural section and for the total system. Cooling system weights are summarized at the major component level. Conclusions and recommendations are included.
Determination of Strength Exercise Intensities Based on the Load-Power-Velocity Relationship
Jandačka, Daniel; Beremlijski, Petr
2011-01-01
The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s−1) to maximal velocity (m•s−1). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function. PMID:23486484
Determination of strength exercise intensities based on the load-power-velocity relationship.
Jandačka, Daniel; Beremlijski, Petr
2011-06-01
The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s(-1)) to maximal velocity (m•s(-1)). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function.
Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams
NASA Astrophysics Data System (ADS)
Kotnig, C.; Tavian, L.
2015-12-01
Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets’ refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.
Heat load studies of a water-cooled minichannel monochromator for synchrotron x-ray beams
NASA Astrophysics Data System (ADS)
Freund, Andreas K.; Arthur, John R.; Zhang, Lin
1997-12-01
We fabricated a water-cooled silicon monochromator crystal with small channels for the special case of a double-crystal fixed-exit monochromator design where the beam walks across the crystal when the x-ray energy is changed. The two parts of the cooled device were assembled using a new technique based on low melting point solder. The bending of the system produced by this technique could be perfectly compensated by mechanical counter-bending. Heat load tests of the monochromator in a synchrotron beam of 75 W total power, 3 mm high and 15 mm wide, generated by a multipole wiggler at SSRL, showed that the thermal slope error of the crystal is 1 arcsec/40 W power, in full agreement with finite element analysis. The cooling scheme is adequate for bending magnet beamlines at the ESRF and present wiggler beamlines at the SSRL.
High-heat-load monochromator options for the RIXS beamline at the APS with the MBA lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zunping, E-mail: zpliu@anl.gov; Gog, Thomas, E-mail: gog@aps.anl.gov; Stoupin, Stanislav A.
2016-07-27
With the MBA lattice for APS-Upgrade, tuning curves of 2.6 cm period undulators meet the source requirements for the RIXS beamline. The high-heat-load monochromator (HHLM) is the first optical white beam component. There are four options for the HHLM such as diamond monochromators with refrigerant of either water or liquid nitrogen (LN{sub 2}), and silicon monochromators of either direct or indirect cooling system. Their performances are evaluated at energy 11.215 keV (Ir L-III edge). The cryo-cooled diamond monochromator has similar performance as the water-cooled diamond monochromator because GaIn of the Cu-GaIn-diamond interface becomes solid. The cryo-cooled silicon monochromators perform better,more » not only in terms of surface slope error due to thermal deformation, but also in terms of thermal capacity.« less
Sustained Load Crack Growth in Inconel 718 Under Non-Isothermal Conditions.
1983-12-01
AD- R136 925 SUSTINED LOAD CRCK GROWTH IN INCONEL 7±8 UNDER / NON-ISOTHERM L ONDITIONS(U) IR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF...thermocouples. This unit provides pre-programmed independent control of the four heat- Iing lamps. It also turns the cooling system on and off at the appropri...relationship between them. The microcomputer controls temperature as a function of time. The system is capable of heating and cooling a specimen at a rate of 8C
NASA Astrophysics Data System (ADS)
Vasil'ev, E. N.
2017-09-01
A mathematical model has been proposed for analyzing and optimizing thermoelectric cooling regimes for heat-loaded elements of engineering and electronic devices. The model based on analytic relations employs the working characteristics of thermoelectric modules as the initial data and makes it possible to determine the temperature regime and the optimal values of the feed current for the modules taking into account the thermal resistance of the heat-spreading system.
Non-Evaporative Cooling via Inelastic Collisions in an Optical Trap
2013-02-28
Simultaneous loading of 85 Rb and 87 Rb into an optical trap from a Magneto - optic Trap (MOT) As was mentioned in the previous section, when both...potential in an 85 Rb magneto - optical trap , Phys. Rev. A 83, 033419 (2011) I.D Ultracold plasma response to few-cycle rf pulses As will be detailed in...ultracold atoms of each isotope were cooled into overlapping Magneto - optic Traps (MOTs). From there, the atoms were then loaded into a Far-off
Analysis and comparison of wall cooling schemes for advanced gas turbine applications
NASA Technical Reports Server (NTRS)
Colladay, R. S.
1972-01-01
The relative performance of (1) counterflow film cooling, (2) parallel-flow film cooling, (3) convection cooling, (4) adiabatic film cooling, (5) transpiration cooling, and (6) full-coverage film cooling was investigated for heat loading conditions expected in future gas turbine engines. Assumed in the analysis were hot-gas conditions of 2200 K (3500 F) recovery temperature, 5 to 40 atmospheres total pressure, and 0.6 gas Mach number and a cooling air supply temperature of 811 K (1000 F). The first three cooling methods involve film cooling from slots. Counterflow and parallel flow describe the direction of convection cooling air along the inside surface of the wall relative to the main gas flow direction. The importance of utilizing the heat sink available in the coolant for convection cooling prior to film injection is illustrated.
Developments on GM-Type Pulse Tube Cryorefrigerators with Large Cooling Power
NASA Astrophysics Data System (ADS)
Köttig, T.; Waldauf, A.; Thürk, M.; Seidel, P.
2004-06-01
Over the past several years the authors have participated in basic and prototype developments of four valve pulse tube refrigerators (FVPTR). Systematic studies have been carried out to characterize the basics of energy transport mechanisms, the flow distribution and loss mechanisms of this type of pulse tube refrigerator (PTR) with its active type of phase shifting. Based on the comprehension of these phenomena, several prototypes have been built and optimized for various applications. Recently a single-stage PTR in coaxial arrangement has been designed for maximum refrigeration power in the temperature range between 20 and 80 K limited by an available electrical input power of 7 kW. To reach this goal we used lead screens in the coldest part of the regenerator instead of spheres in order to decrease the pressure drop. The improvement of the regenerator prevents the reported fact that at higher temperatures the performance of a pulse tube with a regenerator partially filled with lead spheres can even be worse than a regenerator totally made of stainless steel. At the moment the cooler provides a cooling power of 120 W@74 K and 40 W@34 K. The minimum no-load temperature achieved is 18.6 K.
Cui, Borui; Gao, Dian-ce; Xiao, Fu; ...
2016-12-23
This article provides a method in comprehensive evaluation of cost-saving potential of active cool thermal energy storage (CTES) integrated with HVAC system for demand management in non-residential building. The active storage is beneficial by shifting peak demand for peak load management (PLM) as well as providing longer duration and larger capacity of demand response (DR). In this research, a model-based optimal design method using genetic algorithm is developed to optimize the capacity of active CTES aiming for maximizing the life-cycle cost saving concerning capital cost associated with storage capacity as well as incentives from both fast DR and PLM. Inmore » the method, the active CTES operates under a fast DR control strategy during DR events while under the storage-priority operation mode to shift peak demand during normal days. The optimal storage capacities, maximum annual net cost saving and corresponding power reduction set-points during DR event are obtained by using the proposed optimal design method. Lastly, this research provides guidance in comprehensive evaluation of cost-saving potential of CTES integrated with HVAC system for building demand management including both fast DR and PLM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Borui; Gao, Dian-ce; Xiao, Fu
This article provides a method in comprehensive evaluation of cost-saving potential of active cool thermal energy storage (CTES) integrated with HVAC system for demand management in non-residential building. The active storage is beneficial by shifting peak demand for peak load management (PLM) as well as providing longer duration and larger capacity of demand response (DR). In this research, a model-based optimal design method using genetic algorithm is developed to optimize the capacity of active CTES aiming for maximizing the life-cycle cost saving concerning capital cost associated with storage capacity as well as incentives from both fast DR and PLM. Inmore » the method, the active CTES operates under a fast DR control strategy during DR events while under the storage-priority operation mode to shift peak demand during normal days. The optimal storage capacities, maximum annual net cost saving and corresponding power reduction set-points during DR event are obtained by using the proposed optimal design method. Lastly, this research provides guidance in comprehensive evaluation of cost-saving potential of CTES integrated with HVAC system for building demand management including both fast DR and PLM.« less
Performance calculations for 200-1000 MWe MHD/steam power plants
NASA Technical Reports Server (NTRS)
Staiger, P. J.
1981-01-01
The effects of MHD generator length, level of oxygen enrichment, and oxygen production power on the performance of MHD/steam power plants ranging from 200 to 1000 MW in electrical output are investigated. The plants considered use oxygen enriched combustion air preheated to 1100 F. Both plants in which the MHD generator is cooled with low temperature and pressure boiler feedwater and plants in which the generator is cooled with high temperature and pressure boiler feedwater are considered. For plants using low temperature boiler feedwater for generator cooling the maximum thermodynamic efficiency is obtained with shorter generators and a lower level of oxygen enrichment compared to plants using high temperature boiler feedwater for generator cooling. The generator length at which the maximum plant efficiency occurs increases with power plant size for plants with a generator cooled by low temperature feedwater. Also shown is the relationship of the magnet stored energy requirement of the generator length and the power plant performance. Possible cost/performance tradeoffs between magnet cost and plant performance are indicated.
Field-Based Pre-Cooling for On-Court Tennis Conditioning Training in the Heat
Duffield, Rob; Bird, Stephen P.; Ballard, Robert J.
2011-01-01
The present study investigated the effects of pre-cooling for on- court, tennis-specific conditioning training in the heat. Eight highly-trained tennis players performed two on-court conditioning sessions in 35°C, 55% Relative Humidity. Sessions were randomised, involved either a pre-cooling or control session, and consisted of 30-min of court- based, tennis movement drills. Pre-cooling involved 20-min of an ice-vest and cold towels to the head/neck and legs, followed by warm-up in a cold compression garment. On-court movement distance was recorded by 1Hz Global Positioning Satellite (GPS) devices, while core temperature, heart rate and perceptual exertion and thermal stress were also recorded throughout the session. Additionally, mass and lower-body peak power during repeated counter-movement jumps were measured before and after each session. No significant performance differences were evident between conditions, although a moderate-large effect (d = 0.7-1.0; p > 0.05) was evident for total (2989 ± 256 v 2870 ± 159m) and high-intensity (805 ± 340 v 629 ± 265m) distance covered following pre-cooling. Further, no significant differences were evident between conditions for rise in core temperature (1.9 ± 0.4 v 2. 2 ± 0.4°C; d > 0.9; p > 0.05), although a significantly smaller change in mass (0.9 ± 0.3 v 1. 3 ± 0.3kg; p < 0.05) was present following pre-cooling. Perceived thermal stress and exertion were significantly lower (d > 1.0; p < 0.05) during the cooling session. Finally, lower-body peak power did not differ between conditions before or after training (d < 0.3; p > 0.05). Conclusions: Despite trends for lowered physiological load and increased distances covered following cooling, the observed responses were not significantly different or as explicit as previously reported laboratory-based pre-cooling research. Key points Pre-cooling did not significantly enhance training performance or reduce physiological load for tennis training in the heat, although trends indicate some benefits for both. Pre-cooling can reduce perceptual strain of on-court tennis training in the heat to improve perceptual load of training sessions. Court-side pre-cooling may not be of sufficient volume to invoke large physiological changes. PMID:24149886
Strong Electron Self-Cooling in the Cold-Electron Bolometers Designed for CMB Measurements
NASA Astrophysics Data System (ADS)
Kuzmin, L. S.; Pankratov, A. L.; Gordeeva, A. V.; Zbrozhek, V. O.; Revin, L. S.; Shamporov, V. A.; Masi, S.; de Bernardis, P.
2018-03-01
We have realized cold-electron bolometers (CEB) with direct electron self-cooling of the nanoabsorber by SIN (Superconductor-Insulator-Normal metal) tunnel junctions. This electron self-cooling acts as a strong negative electrothermal feedback, improving noise and dynamic properties. Due to this cooling the photon-noise-limited operation of CEBs was realized in array of bolometers developed for the 345 GHz channel of the OLIMPO Balloon Telescope in the power range from 10 pW to 20 pW at phonon temperature Tph =310 mK. The negative electrothermal feedback in CEB is analogous to TES but instead of artificial heating we use cooling of the absorber. The high efficiency of the electron self-cooling to Te =100 mK without power load and to Te=160 mK under power load is achieved by: - a very small volume of the nanoabsorber (0.02 μm3) and a large area of the SIN tunnel junctions, - effective removal of hot quasiparticles by arranging double stock at both sides of the junctions and close position of the normal metal traps, - self-protection of the 2D array of CEBs against interferences by dividing them between N series CEBs (for voltage interferences) and M parallel CEBs (for current interferences), - suppression of Andreev reflection by a thin layer of Fe in the AlFe absorber. As a result even under high power load the CEBs are working at electron temperature Te less than Tph . To our knowledge, there is no analogue in the bolometers technology in the world for bolometers working at electron temperature colder than phonon temperature.
A Robust Cooling Platform for NIS Junction Refrigeration and sub-Kelvin Cryogenic Systems
NASA Astrophysics Data System (ADS)
Wilson, B.; Atlas, M.; Lowell, P.; Moyerman, S.; Stebor, N.; Ullom, J.; Keating, B.
2014-08-01
Recent advances in Normal metal-insulator-superconductor (NIS) tunnel junctions (Clark et al. Appl Phys Lett 86: 173508, 2005, Appl Phys Lett 84: 4, 2004) have proven these devices to be a viable technology for sub-Kelvin refrigeration. NIS junction coolers, coupled to a separate cold stage, provide a flexible platform for cooling a wide range of user-supplied payloads. Recently, a stage was cooled from 290 to 256 mK (Lowell et al. Appl Phys Lett 102: 082601 2013), but further mechanical and electrical improvements are necessary for the stage to reach its full potential. We have designed and built a new Kevlar suspended cooling platform for NIS junction refrigeration that is both lightweight and well thermally isolated; the calculated parasitic loading is pW from 300 to 100 mK. The platform is structurally rigid with a measured deflection of 25 m under a 2.5 kg load and has an integrated mechanical heat switch driven by a superconducting stepper motor with thermal conductivity G W/K at 300 mK. An integrated radiation shield limits thermal loading and a modular platform accommodates enough junctions to provide nanowatts of continuous cooling power. The compact stage size of 7.6 cm 8.6 cm 4.8 cm and overall radiation shield size of 8.9 cm 10.0 cm 7.0 cm along with minimal electrical power requirements allow easy integration into a range of cryostats. We present the design, construction, and performance of this cooling platform as well as projections for coupling to arrays of NIS junctions and other future applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chih-Yuan, E-mail: chen6563@gmail.com; Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan; Yang, Jer-Ren, E-mail: jryang@ntu.edu.tw
Nanometer-sized carbides that precipitated in a Ti–Mo bearing steel after interrupted continuous cooling in a temperature range of 620–700 °C with or without hot deformation were investigated by field-emission-gun transmission electron microscopy. The nanometer-sized carbides were identified as randomly homogeneous precipitation carbides and interphase precipitation carbides coexisting in the ferrite matrix. It is found that this dual precipitation morphology of carbides in the steel leads to the non-uniform mechanical properties of individual ferrite grains. Vickers hardness data mainly revealed that, in the specimens cooled at a rate of 0.5 °C/s without hot deformation, the range of Vickers hardness distribution wasmore » 230–340 HV 0.1 when cooling was interrupted at 680 °C, and 220–360 HV 0.1 when cooling was interrupted at 650 °C. For the specimens cooled at a rate of 0.5 °C/s with hot deformation, the range of Vickers hardness distribution was 290–360 HV 0.1 when cooling was interrupted at 680 °C, and 280–340 HV 0.1 when cooling was interrupted at 650 °C. Therefore, a narrower range of hardness distribution occurred in the specimens that underwent hot deformation and were then cooled with a lower interrupted cooling temperature. The uniform precipitation status in each ferrite grain can lead to ferrite grains with a narrower Vickers hardness distribution. On the other hand, interrupted cooling produced a maximum Vickers hardness of 320–330 HV 0.1 for the hot deformed specimens and 290–310 HV 0.1 for the non-deformed specimens with cooling interrupted in the temperature range of 660–670 °C. The maximum Vickers hardness obtained in such a temperature range can be ascribed to the full precipitation of the microalloying elements in the supersaturated ferrite matrix with a tiny size (~ 4–7 nm). - Highlight: • The interrupted continuous cooling temperatures were 620 °C to 700 °C. • Precipitation carbides with dual dispersed morphology coexisted in the matrix. • Heavy hot deformation narrowed the range of hardness distribution. • Full precipitation of nano-sized carbides achieved maximum hardening.« less
46 CFR 154.411 - Cargo tank thermal loads.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo tank thermal loads. 154.411 Section 154.411... Containment Systems § 154.411 Cargo tank thermal loads. For the calculations required under § 154.406(a)(4... thermal loads for the cooling down periods of cargo tanks for design temperatures lower than −55 °C (−67...
46 CFR 154.411 - Cargo tank thermal loads.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank thermal loads. 154.411 Section 154.411... Containment Systems § 154.411 Cargo tank thermal loads. For the calculations required under § 154.406(a)(4... thermal loads for the cooling down periods of cargo tanks for design temperatures lower than −55 °C (−67...
Document describes the protocol used to determine the total load and refrigerant charge of stores that have placed all sub-cooling on a rack separate from all other commercial refrigeration equipment.
Cooling devices and methods for use with electric submersible pumps
Jankowski, Todd A; Hill, Dallas D
2014-12-02
Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.
Cooling devices and methods for use with electric submersible pumps
Jankowski, Todd A.; Hill, Dallas D.
2016-07-19
Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.
High-Performance Computing Data Center Cooling System Energy Efficiency |
approaches involve a cooling distribution unit (CDU) (2), which interfaces with the facility cooling loop and to the energy recovery water (ERW) loop (5), which is a closed-loop system. There are three heat rejection options for this IT load: When possible, heat energy from the energy recovery loop is transferred
Rounds, Stewart A.
2007-01-01
Water temperature is an important factor influencing the migration, rearing, and spawning of several important fish species in rivers of the Pacific Northwest. To protect these fish populations and to fulfill its responsibilities under the Federal Clean Water Act, the Oregon Department of Environmental Quality set a water temperature Total Maximum Daily Load (TMDL) in 2006 for the Willamette River and the lower reaches of its largest tributaries in northwestern Oregon. As a result, the thermal discharges of the largest point sources of heat to the Willamette River now are limited at certain times of the year, riparian vegetation has been targeted for restoration, and upstream dams are recognized as important influences on downstream temperatures. Many of the prescribed point-source heat-load allocations are sufficiently restrictive that management agencies may need to expend considerable resources to meet those allocations. Trading heat allocations among point-source dischargers may be a more economical and efficient means of meeting the cumulative point-source temperature limits set by the TMDL. The cumulative nature of these limits, however, precludes simple one-to-one trades of heat from one point source to another; a more detailed spatial analysis is needed. In this investigation, the flow and temperature models that formed the basis of the Willamette temperature TMDL were used to determine a spatially indexed 'heating signature' for each of the modeled point sources, and those signatures then were combined into a user-friendly, spreadsheet-based screening tool. The Willamette River Point-Source Heat-Trading Tool allows the user to increase or decrease the heating signature of each source and thereby evaluate the effects of a wide range of potential point-source heat trades. The predictions of the Trading Tool were verified by running the Willamette flow and temperature models under four different trading scenarios, and the predictions typically were accurate to within about 0.005 degrees Celsius (?C). In addition to assessing the effects of point-source heat trades, the models were used to evaluate the temperature effects of several shade-restoration scenarios. Restoration of riparian shade along the entire Long Tom River, from its mouth to Fern Ridge Dam, was calculated to have a small but significant effect on daily maximum temperatures in the main-stem Willamette River, on the order of 0.03?C where the Long Tom River enters the Willamette River, and diminishing downstream. Model scenarios also were run to assess the effects of restoring selected 5-mile reaches of riparian vegetation along the main-stem Willamette River from river mile (RM) 176.80, just upstream of the point where the McKenzie River joins the Willamette River, to RM 116.87 near Albany, which is one location where cumulative point-source heating effects are at a maximum. Restoration of riparian vegetation along the main-stem Willamette River was shown by model runs to have a significant local effect on daily maximum river temperatures (0.046 to 0.194?C) at the site of restoration. The magnitude of the cooling depends on many factors including river width, flow, time of year, and the difference in vegetation characteristics between current and restored conditions. Downstream of the restored reach, the cooling effects are complex and have a nodal nature: at one-half day of travel time downstream, shade restoration has little effect on daily maximum temperature because water passes the restoration site at night; at 1 full day of travel time downstream, cooling effects increase to a second, diminished maximum. Such spatial complexities may complicate the trading of heat allocations between point and nonpoint sources. Upstream dams have an important effect on water temperature in the Willamette River system as a result of augmented flows as well as modified temperature releases over the course of the summer and autumn. The TMDL was formulated prior t
Lunar Portable Life Support System Heat Rejection Study
NASA Technical Reports Server (NTRS)
Conger, Bruce; Sompayrac,Robert G.; Trevino, Luis A.; Bue, Grant C.
2009-01-01
Performing extravehicular activity (EVA) at various locations of the lunar surface presents thermal challenges that exceed those experienced in space flight to date. The lunar Portable Life Support System (PLSS) cooling unit must maintain thermal conditions within the space suit and reject heat loads generated by the crewmember and the PLSS equipment. The amount of cooling required varies based on the lunar location and terrain due to the heat transferred between the suit and its surroundings. A study has been completed which investigated the resources required to provide cooling under various lunar conditions, assuming three different thermal technology categories: 1. Spacesuit Water Membrane Evaporator (SWME) 2. Subcooled Phase Change Material (SPCM) 3. Radiators with and without heat pumps Results from the study are presented that show mass and power impacts on the cooling system as a function of the location and terrain on the lunar surface. Resources (cooling equipment mass and consumables) are greater at the equator and inside sunlit craters due to the additional heat loads on the cooling system. While radiator and SPCM technologies require minimal consumables, they come with carry-weight penalties and have limitations. A wider investigation is recommended to determine if these penalties and limitations are offset by the savings in consumables.
Parametric study of the lubrication of thrust loaded 120-mm bore ball bearings to 3 million DN
NASA Technical Reports Server (NTRS)
Signer, H.; Bamberger, E. N.; Zaretsky, E. V.
1973-01-01
A parametric study was performed with 120-mm bore angular-contact ball bearings under varying thrust loads, bearing and lubricant temperatures, and cooling and lubricant flow rates. Contact angles were nominally 20 and 24 deg with bearing speeds to 3 million DN. Endurance tests were run at 3 million DN and a temperature of 492 K (425 F) with 10 bearings having a nominal 24 deg contact angle at a thrust load of 22241 N (5000 lb). Bearing operating temperature, differences in temperatures between the inner and outer races, and bearing power consumption can be tuned to any desirable operating requirement by varying 4 parameters. These parameters are outer-race cooling, inner-race cooling, lubricant flow to the inner race, and oil inlet temperature. Preliminary endurance tests at 3 million DN and 492 K (425 F) indicate that long term bearing operation can be achieved with a high degree of reliability.
NASA Astrophysics Data System (ADS)
Vasil'ev, E. N.
2018-04-01
Numerical simulation is performed for heat transfer in a heat distributer of a thermoelectric cooling system, which is located between the heat-loaded element and the thermoelectric module, for matching their sizes and for heat flux equalization. The dependences of the characteristic values of temperature and thermal resistance of the copper and aluminum heat distributer on its thickness and on the size of the heatloaded element. Comparative analysis is carried out for determining the effect of the thermal conductivity of the material and geometrical parameters on the heat resistance. The optimal thickness of the heat distributer depending on the size of the heat-loaded element is determined.
NASA Technical Reports Server (NTRS)
Caton, R.; Selim, R.; Buoncristiani, A. M.
1992-01-01
The electronic link connecting cryogenically cooled radiation detectors to data acquisition and signal processing electronics at higher temperatures contributes significantly to the total heat load on spacecraft cooling systems that use combined mechanical and cryogenic liquid cooling. Using high transition temperature superconductors for this link has been proposed to increase the lifetime of space missions. Herein, several YBCO (YBa2Cu3O7) superconductor-substrate combinations were examined and total heat loads were compared to manganin wire technology in current use. Using numerical solutions to the heat-flow equations, it is shown that replacing manganin technology with YBCO thick film technology can extend a 7-year mission by up to 1 year.
Some ideas on the choice of designs and materials for cooled mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howells, M.R.
1994-12-01
This paper expresses some views on the fabrication of future synchrotron beam-line optics; more particularly the metallurgical issues in high-quality metal mirrors. A simple mirror with uniform cooling channels is first analyzed theoretically, followed by the cullular-pin-post system with complex coolant flow path. Choice of mirror material is next considered. For the most challenging situations (need for intensive cooling), the present practice is to use nickel-plated glidcop or silicon; for less severe challenges, Si carbide may be used and cooling may be direct or indirect; and for the mildest heat loads, fused silica or ulf are popular. For the highestmore » performance mirrors (extreme heat load), the glidcop developments should be continued perhaps to cellular-pin-post systems. For extreme distortion, Si is indicated and invar offers both improved performance and lower price. For less extreme challenges but still with cooling, Ni-plated metals have the cost advantage and SXA and other Al alloys can be added to glidcop and invar. For mirrors with mild cooling requirements, stainless steel would have many advantages. Once the internal cooling designs are established, they will be seen as more cost-effective and reliable than clamp-on schemes. Where no cooling is needed, Si, Si carbide, and the glasses can be used. For the future, the effect of electroless Ni layers on cooling design need study, and a way to finish nickel that is compatible with multilayers should be developed.« less
Minor Actinides-Loaded FBR Core Concept Suitable for the Introductory Period in Japan
NASA Astrophysics Data System (ADS)
Fujimura, Koji; Sasahira, Akira; Yamashita, Junichi; Fukasawa, Tetsuo; Hoshino, Kuniyoshi
According to the Japan's Framework for Nuclear Energy Policy(1), a basic scenario for fast breeder reactors (FBRs) is that they will be introduced on a commercial basis starting around 2050 replacing light water reactors (LWRs). During the FBR introduction period, the Pu from LWR spent fuel is used for FBR startup. Howerver, the FBR core loaded with this Pu has a larger burnup reactivity due to its larger isotopic content of Pu-241 than a core loaded with Pu from an FBR multi-recycling core. The increased burnup reactivity may reduce the cycle length of an FBR. We investigated, an FBR transitional core concept to confront the issues of the FBR introductory period in Japan. Core specifications are based on the compact-type sodium-cooled mixed oxide (MOX)-fueled core designed from the Japanese FBR cycle feasibility studies, because lower Pu inventory should be better for the FBR introductory period in view of its flexibility for the required reprocessing amount of LWR spent fuel to start up FBRs. The reference specifications were selected as follows. Output of 1500MWe and average discharge fuel burnup of about 150GWd/t. Minor Actinides (MAs) recovered from LWR spent fuels which provide Pu to startup FBRs are loaded to the initial loading fuels and exchanged fuels during few cycles until equilibrium. We made the MA content of the initial loading fuel four kinds like 0%, 3%, 4%, 5%. The average of the initial loading fuel is assumed to be 3%, and that of the exchange fuel is set as 5%. This 5% maximum of the MA content is based on the irradiation results of the experimental fast reactor Joyo. We evaluated the core performances including burnup characteristics and the reactivity coefficient and confirmed that transitional core from initial loading until equilibrium cycle with loaded Pu from LWR spent fuel performs similary to an FBR multi-recycling core.
Reliability and Creep/Fatigue Analysis of a CMC Component
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Mital, Subodh K.; Gyekenyesi, John Z.; Gyekenyesi, John P.
2007-01-01
High temperature ceramic matrix composites (CMC) are being explored as viable candidate materials for hot section gas turbine components. These advanced composites can potentially lead to reduced weight and enable higher operating temperatures requiring less cooling; thus leading to increased engine efficiencies. There is a need for convenient design tools that can accommodate various loading conditions and material data with their associated uncertainties to estimate the minimum predicted life as well as the failure probabilities of a structural component. This paper presents a review of the life prediction and probabilistic analyses performed for a CMC turbine stator vane. A computer code, NASALife, is used to predict the life of a 2-D woven silicon carbide fiber reinforced silicon carbide matrix (SiC/SiC) turbine stator vane due to a mission cycle which induces low cycle fatigue and creep. The output from this program includes damage from creep loading, damage due to cyclic loading and the combined damage due to the given loading cycle. Results indicate that the trends predicted by NASALife are as expected for the loading conditions used for this study. In addition, a combination of woven composite micromechanics, finite element structural analysis and Fast Probability Integration (FPI) techniques has been used to evaluate the maximum stress and its probabilistic distribution in a CMC turbine stator vane. Input variables causing scatter are identified and ranked based upon their sensitivity magnitude. Results indicate that reducing the scatter in proportional limit strength of the vane material has the greatest effect in improving the overall reliability of the CMC vane.
Transient Side Load Analysis of Out-of-Round Film-Cooled Nozzle Extensions
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike
2012-01-01
There was interest in understanding the impact of out-of-round nozzle extension on the nozzle side load during transient startup operations. The out-of-round nozzle extension could be the result of asymmetric internal stresses, deformation induced by previous tests, and asymmetric loads induced by hardware attached to the nozzle. The objective of this study was therefore to computationally investigate the effect of out-of-round nozzle extension on the nozzle side loads during an engine startup transient. The rocket engine studied encompasses a regeneratively cooled chamber and nozzle, along with a film cooled nozzle extension. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and transient inlet boundary flow properties derived from an engine system simulation. Six three-dimensional cases were performed with the out-of-roundness achieved by three different degrees of ovalization, elongated on lateral y and z axes: one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation line jump was the primary source of the peak side loads. Comparing to the peak side load of the perfectly round nozzle, the peak side loads increased for the slightly and more ovalized nozzle extensions, and either increased or decreased for the two significantly ovalized nozzle extensions. A theory based on the counteraction of the flow destabilizing effect of an exacerbated asymmetrical flow caused by a lower degree of ovalization, and the flow stabilizing effect of a more symmetrical flow, created also by ovalization, is presented to explain the observations obtained in this effort.
Development of a Pressure Box to Evaluate Reusable-Launch-Vehicle Cryogenic-Tank Panels
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Sikora, Joseph; Maguire, James F.; Winn, Peter M.
1996-01-01
A cryogenic pressure-box test machine has been designed and is being developed to test full-scale reusable-launch-vehicle cryogenic-tank panels. This machine is equipped with an internal pressurization system, a cryogenic cooling system, and a heating system to simulate the mechanical and thermal loading conditions that are representative of a reusable-launch-vehicle mission profile. The cryogenic cooling system uses liquid helium and liquid nitrogen to simulate liquid hydrogen and liquid oxygen tank internal temperatures. A quartz lamp heating system is used for heating the external surface of the test panels to simulate cryogenic-tank external surface temperatures during re-entry of the launch vehicle. The pressurization system uses gaseous helium and is designed to be controlled independently of the cooling system. The tensile loads in the axial direction of the test panel are simulated by means of hydraulic actuators and a load control system. The hoop loads in the test panel are reacted by load-calibrated turnbuckles attached to the skin and frame elements of the test panel. The load distribution in the skin and frames can be adjusted to correspond to the tank structure by using these turnbuckles. The seal between the test panel and the cryogenic pressure box is made from a reinforced Teflon material which can withstand pressures greater than 52 psig at cryogenic temperatures. Analytical results and tests on prototype test components indicate that most of the cryogenic-tank loading conditions that occur in flight can be simulated in the cryogenic pressure-box test machine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croft,M.; Jisrawi, N.; Zhong, Z.
High-energy synchrotron X-ray diffraction experiments are used to perform local crack plane strain profiling of 4140 steel compact tension specimens fatigued at constant amplitude, subjected to a single overload cycle, then fatigued some more at constant amplitude. X-ray strain profiling results on a series of samples employing in-situ load cycling are correlated with the crack growth rate (da/dN) providing insight into the da/dN retardation known as the 'overload effect'. Immediately after the overload, the strain under maximum load is greatly reduced but the range of strain, between zero and maximum load, remains unchanged compared to the pre-overload values. At themore » point of maximum retardation, it is the strain range that is greatly reduced while the maximum-load strain has begun to recover to the pre-overload value. For a sample that has recovered to approximately half of the original da/dN value following the overload, the strain at maximum load is fully recovered while the strain range, though partially recovered, is still substantially reduced. The dominance of the strain range in the overload effect is clearly indicated. Subject to some assumptions, strong quantitative support for a crack growth rate driving force of the suggested form [(K{sub max}){sup -p}({Delta}K){sup p}]{sup {gamma}} is found. A dramatic nonlinear load dependence in the spatial distribution of the strain at maximum retardation is also demonstrated: at low load the response is dominantly at the overload position; whereas at high loads it is dominantly at the crack tip position. This transfer of load response away from the crack tip to the overload position appears fundamental to the overload effect for high R-ratio fatigue as studied here.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battye, W.; Brown, P.; Misenheimer, D.
1981-07-01
The report gives results of a study of the capabilities of refrigeration systems, operated at three temperatures, to control volatile organic compound (VOC) emissions from truck loading at bulk gasoline terminals. Achievable VOC emission rates were calculated for refrigeration systems cooling various gasoline/air mixtures to -62 C, -73 C, and -84 C by estimating vapor/liquid equilibrium compositions for VOC/air mixtures. Emission rates were calculated for inlet streams containing vapors from low- and high-volatility gasolines at concentrations of 15, 30, and 50% by volume (22.5, 45, and 75% measured as propane). Predicted VOC emission rates for systems cooling various inlet streamsmore » to -62 C ranged from 48 to 59 mg VOC/liter of gasoline loaded. Predicted VOC were 21 to 28 mg/l loaded for systems operating at -73 C and 8.7 to 12 mg/l loaded for systems operating at -84 C. Compressor electrical requirements and relative capital costs for systems operating at the above temperatures were estimated for model systems using the results of a computer simulation. Compressor electrical requirements ranged from 0.11 to 0.45 Whr/l loaded, depending on the inlet VOC concentration and the outlet temperature. The capital cost to build a system designed to cool vapors to -84 C is estimated to be about 9% higher than for a system designed to operate at -73 C.« less
NASA Astrophysics Data System (ADS)
Strasser, Matthew N.
Structural loading produced by an impacting vortex is a hazardous phenomenon that is encountered in numerous applications ranging from the destruction of residences by tornados to the chopping of tip vortices by rotors. Adequate design of structures to resist vortex-induced structural loading necessitates study of the phenomenon that control the structural loading produced by an impacting vortex. This body of work extends the current knowledge base of vortex-structure interaction by evaluating the influence of the relative vortex-to-structure size on the structural loading that the vortex produces. A computer model is utilized to directly simulate the two-dimensional impact of an impinging vortex with a slender, cylindrical structure. The vortex's tangential velocity profile (TVP) is defined by a normalization of the Vatistas analytical (TVP) which realistically replicates the documented spectrum of measured vortex TVPs. The impinging vortex's maximum tangential velocity is fixed, and the vortex's critical radius is incremented from one to one-hundred times the structure's diameter. When the impinging vortex is small, it interacts with vortices produced on the structure by the free stream, and maximum force coefficient amplitudes vary by more than 400% when the impinging vortex impacts the structure at different times. Maximum drag and lift force coefficient amplitudes reach asymptotic values as the impinging vortex's size increases that are respectively 94.77% and 10.66% less than maximum force coefficients produced by an equivalent maximum velocity free stream. The vortex produces maximum structural loading when its path is shifted above the structure's centerline, and maximum drag and lift force coefficients are respectively up to 4.80% and 34.07% greater than maximum force coefficients produced by an equivalent-velocity free stream. Finally, the dynamic load factor (DLF) concept is used to develop a generalized methodology to assess the dynamic amplification of a structure's response to vortex loading and to assess the dynamic loading threat that tornados pose. Typical civil and residential structures will not experience significant response amplification, but responses of very flexible structures may be amplified by up to 2.88 times.
Numerical simulation of CO2 scroll compressor in transcritical compression cycle
NASA Astrophysics Data System (ADS)
Wang, Hongli; Tian, JingRui; Du, Yuanhang; Hou, Xiujuan
2018-05-01
Based on the theory of thermodynamics and kinetics, the mathematical model of an orbiting scroll was established and the stress deformations were employed by ANSYS software. Under the action of pressure load, the results show that the serious displacement part is located in the center of the gear head and the maximum deformation is about 7.33 μm. The maximum radial displacement is about 4.42 μm. The maximum radial stress point occurs in the center of the gear head and the maximum stress is about 40.9 MPa. The maximum axial displacement is about 2.31 μm. The maximum axial stress point occurs in the gear head and the maximum stress is about 44.7 MPa. Under the action of temperature load, the results show that the serious deformation part is located in the center of the gear head and the maximum deformation is about 6.3 μm. The maximum thermal stress occurs in the center of the gear head and the maximum thermal stress is about 86.36 MPa. Under the combined action of temperature load and pressure load, the results show that the serious deformation part and the maximum stress are located in the center of the gear head, and the value are about 7.79 μm and 74.19 MPa, respectively.
Effects of Aerosol on Atmospheric Dynamics and Hydrologic Processes During Boreal Spring and Summer
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Kim, M. K.; Kim, K. M.; Chin, Mian
2005-01-01
Global and regional climate impacts of present-day aerosol loading during boreal spring are investigated using the NASA finite volume General Circulation Model (fvGCM). Three-dimensional distributions of loadings of five species of tropospheric aerosols, i.e., sulfate, black carbon, organic carbon, soil dust, and sea salt are prescribed from outputs of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol loadings are used to calculate the extinction coefficient, single scattering albedo, and asymmetric factor at eleven spectral wavelengths in the radiative transfer code. We find that aerosol-radiative forcing during boreal spring excites a wavetrain-like pattern in tropospheric temperature and geopotential height that emanates from Northern Africa, through Eurasia, to northeastern Pacific. Associated with the teleconnection is strong surface cooling over regions with large aerosol loading, i.e., China, India, and Africa. Low-to-mid tropospheric heating due to shortwave absorption is found in regions with large loading of dust (Northern Africa, and central East Asia), and black carbon (South and East Asia). In addition pronounced surface cooling is found over the Caspian Sea and warming over Eurasian and northeastern Asia, where aerosol loadings are relatively low. These warming and cooling are components of teleconnection pattern produced primarily by atmospheric heating from absorbing aerosols, i.e., dust from North Africa and black carbon from South and East Asia. Effects of aerosols on atmospheric hydrologic cycle in the Asian monsoon region are also investigated. Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in an early onset of the Indian summer monsoon. Absorbing aerosols also enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol-induced large-scale surface tempera- cooling leads to a reduction of monsoon rainfall over the East Asia continent, and adjacent oceanic regions.
Effects of Aerosol on Atmospheric Dynamics and Hydrologic Processes during Boreal Spring and Summer
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Kim, M. K.; Chin, Mian; Kim, K. M.
2005-01-01
Global and regional climate impacts of present-day aerosol loading during boreal spring are investigated using the NASA finite volume General Circulation Model (fvGCM). Three-dimensional distributions of loadings of five species of tropospheric aerosols, i.e., sulfate, black carbon, organic carbon, soil dust, and sea salt are prescribed from outputs of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol loadings are used to calculate the extinction coefficient, single scattering albedo, and asymmetric factor at eleven spectral wavelengths in the radiative transfer code. We find that aerosol-radiative forcing during boreal spring excites a wavetrain-like pattern in tropospheric temperature and geopotential height that emanates from Northern Africa, through Eurasia, to northeastern Pacific. Associated with the teleconnection is strong surface cooling over regions with large aerosol loading, i.e., China, India, and Africa. Low-to-mid tropospheric heating due to shortwave absorption is found in regions with large loading of dust (Northern Africa, and central East Asia), and black carbon (South and East Asia). In addition pronounced surface cooling is found over the Caspian Sea and warming over Eurasian and northeastern Asia, where aerosol loadings are relatively low. These warming and cooling are components of teleconnection pattern produced primarily by atmospheric heating from absorbing aerosols, i.e., dust from North Africa and.black carbon from South and East Asia. Effects of aerosols on atmospheric hydrologic cycle in the Asian monsoon region are also investigated. Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in an early onset of the Indian summer monsoon. Absorbing aerosols also enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol-induced large-scale surface temperature cooling leads to a reduction of monsoon rainfall over the East Asia continent, and adjacent oceanic regions.
Report on FY15 Two-Bar Thermal Ratcheting Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanli; Jetter, Robert I; Baird, Seth T
2015-06-22
Alloy 617 is a reference structural material for very high temperature components of advanced-gas cooled reactors with outlet temperatures in the range of . In order for designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. A plan has been developed to submit a draft code for Alloy 617 to ASME Section III by 2015. However, the current rules in Subsection NH* for the evaluation of strain limits andmore » creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above . The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep deformation, which is the basis for the current simplified rules. This temperature, , is well below the temperature range of interest for this material in High Temperature Gas Cooled Reactor (HTGR) applications. The only current alternative is, thus, a full inelastic analysis which requires sophisticated material models which have been formulated but not yet verified. To address this issue, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (EPP) analysis methods and which are expected to be applicable to very high temperatures. These newly proposed rules also address a long-term objective to provide an option for more simple, comprehensive and easily applied rules than the current so called simplified rules These two-bar tests discussed herein are part of an ongoing series of tests with cyclic loading at high temperatures using specimens representing key features of potential component designs. The initial focus of the two-bar ratcheting test program, to verify the procedure for evaluation of strain limits for Alloy 617 at very high temperatures, has been expanded to respond to guidance from ASME Code committees that the proposed EPP methodology should also apply to other Subsection NH materials throughout their allowed temperature range. To support these objectives, two suites of tests have been accomplished during this reporting period. One suite addresses the issue of the response of Alloy 617 at a lower temperature with tests in range of 500 800oC and a few at 350 650°C. The other suite addresses the response of SS316H up to its current maximum allowed temperature of 1500°F (815°C) In the two-bar test methodology, the two bars can be viewed as specimens taken out of a tubular component across the wall thickness representing the inner wall element and the outer wall element respectively. The two bars are alternately heated and cooled under sustained axial loading to generate ratcheting. A sustained hold time is introduced at the hot extreme of the cycle to capture the accelerated ratcheting and strain accumulation due to creep. Since the boundary conditions are a combination of strain control and load control it is necessary to use two coupled servo-controlled testing machines to achieve the key features of the two-bar representation of actual component behavior. Two-bar thermal ratcheting test results with combinations of applied mean stresses, transient temperature difference and heating and cooling rates were recorded. Tests performed at heating and cooling rates of 30°C/min are comparable to a strain rate of 10 ⁻⁵/sec. At high mean stresses in tension the direction of ratcheting was in-phase with the load, e.g. tensile strain ratcheting under high tensile loading; however, at lower loads, strain ratcheting in compression was observed under net tensile mean stresses. The strain accumulation was proportional to the applied thermal load. However, there was a narrow range of applied load in which the high applied thermal loading did not result in significant strain accumulation. Unfortunately, when the proposed EPP strain limit evaluation rules were applied to the loading history for the two-bar configuration, the predicted narrow range of low strain accumulation did not coincide with the experimental data. However, by the use of inelastic analysis in conjunction with an analytic experiment it was possible to show that the EPP strain limit code case rules could be applied to high temperature structures where the stress and temperature is not uniform throughout which is the general case. Interestingly, the suite of tests on Alloy 617 at the lower temperature range of 500°C to 800oC showed good agreement with the proposed EPP strain limit rules with a much wider band of applied load that exhibited minimal ratcheting. The four tests conducted at the lower temperature range of 350°C to 650°C showed no ratcheting. The suite of tests on SS316H at a temperature range of 515°C to 815°C resembled the results from the tests on Alloy 617 at 650°C to 950°C. Both exhibited a narrow band of applied load wher...« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranson, W.F.; Schaeffel, J.A.; Murphree, E.A.
The response of prestressed and preheated plates subject to an exponentially decaying blast load was experimentally determined. A grid was reflected from the front surface of the plate and the response was recorded with a high speed camera. The camera used in this analysis was a rotating drum camera operating at 20,000 frames per second with a maximum of 224 frames at 39 microseconds separation. Inplane tension loads were applied to the plate by means of air cylinders. Maximum biaxial load applied to the plate was 500 pounds. Plate preheating was obtained with resistance heaters located in the specimen platemore » holder with a maximum capability of 500F. Data analysis was restricted to the maximum conditions at the center of the plate. Strains were determined from the photographic data and the stresses were calculated from the strain data. Results were obtained from zero preload conditions to a maximum of 480 pounds inplane tension loads and a plate temperature of 490F. The blast load ranged from 6 to 23 psi.« less
Control Algorithms For Liquid-Cooled Garments
NASA Technical Reports Server (NTRS)
Drew, B.; Harner, K.; Hodgson, E.; Homa, J.; Jennings, D.; Yanosy, J.
1988-01-01
Three algorithms developed for control of cooling in protective garments. Metabolic rate inferred from temperatures of cooling liquid outlet and inlet, suitably filtered to account for thermal lag of human body. Temperature at inlet adjusted to value giving maximum comfort at inferred metabolic rate. Applicable to space suits, used for automatic control of cooling in suits worn by workers in radioactive, polluted, or otherwise hazardous environments. More effective than manual control, subject to frequent, overcompensated adjustments as level of activity varies.
Wei, Qionghua; Keck, Cornelia M; Müller, Rainer H
2017-02-25
The oral bioavailability of poorly soluble drugs can be improved by amorphization generated by loading into the pores of mesoporous particles (pore size 2-50nm). The main mechanisms are increased kinetic saturation solubility and dissolution velocity due to the amorphous drug state and the nano-size of the drug (=increased dissolution pressure). In this study, the maximum achievable drug loading compared to the theoretical drug loading, and the effect of drug loading degree on the dissolution properties (solubility, dissolution velocity) were investigated. Hesperidin was used as the model active (having also practical relevance for e.g. nutraceutical products), loading was performed onto AEROPERL ® 300 Pharma. Degree of successful drug loading could be easily followed by simple light microscopy (=useful tool for formulation optimization), and was in agreement with scanning electron microscopy. Amorphous versus crystalline state was followed by X-ray diffraction and differential scanning calorimetry. Loadings prepared were 28.6wt.%, 54.5wt.% and 60.0wt.%, the maximum theoretical loading was 72.5wt.%. Obviously the maximum drug loading is not achievable, the 54.5wt.% drug loading was the practical maximum with already some minor crystalline hesperidin on the surface. Interestingly, the maximum kinetic saturation solubility was obtained for the 54.5wt.% drug loading (941.74μg/ml in pH 6.8 PBS), versus 408.80μg/ml for the 60.0wt.% drug loading (=overloaded system). The raw drug powder had a thermodynamic solubility of only 18.40μg/ml. The fastest in vitro release was obtained with the 28.6wt.% loaded system, followed by the 54.5wt.% and 60.0wt.% loadings. The dissolution properties (solubility, dissolution velocity) can obviously be influenced by a "controlled loading". This is a simple, cost-effective technological alternative to modulating this property by chemical modification of silica, requiring a new costly regulatory approval of these chemically modified materials. Copyright © 2016. Published by Elsevier B.V.
Reactor vessel lower head integrity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, A.M.
1997-02-01
On March 28, 1979, the Three Mile Island Unit 2 (TMI-2) nuclear power plant underwent a prolonged small break loss-of-coolant accident that resulted in severe damage to the reactor core. Post-accident examinations of the TMI-2 reactor core and lower plenum found that approximately 19,000 kg (19 metric tons) of molten material had relocated onto the lower head of the reactor vessel. Results of the OECD TMI-2 Vessel Investigation Project concluded that a localized hot spot of approximately 1 meter diameter had existed on the lower head. The maximum temperature on the inner surface of the reactor pressure vessel (RPV) inmore » this region reached 1100{degrees}C and remained at that temperature for approximately 30 minutes before cooling occurred. Even under the combined loads of high temperature and high primary system pressure, the TMI-2 RPV did not fail. (i.e. The pressure varied from about 8.5 to 15 MPa during the four-hour period following the relocation of melt to the lower plenum.) Analyses of RPV failure under these conditions, using state-of-the-art computer codes, predicted that the RPV should have failed via local or global creep rupture. However, the vessel did not fail; and it has been hypothesized that rapid cooling of the debris and the vessel wall by water that was present in the lower plenum played an important role in maintaining RPV integrity during the accident. Although the exact mechanism(s) of how such cooling occurs is not known, it has been speculated that cooling in a small gap between the RPV wall and the crust, and/or in cracks within the debris itself, could result in sufficient cooling to maintain RPV integrity. Experimental data are needed to provide the basis to better understand these phenomena and improve models of RPV failure in severe accident codes.« less
40 CFR 63.1084 - What heat exchange systems are exempt from the requirements of this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... requires monitoring of a parameter or condition to detect a leak of process fluids to cooling water. (2... you to report and correct leaks to the cooling water when the parameter or condition exceeds the... the cooling water side at least 35 kilopascals greater than the maximum pressure on the process side...
Quantum speed limit constraints on a nanoscale autonomous refrigerator
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Chiranjib; Misra, Avijit; Bhattacharya, Samyadeb; Pati, Arun Kumar
2018-06-01
Quantum speed limit, furnishing a lower bound on the required time for the evolution of a quantum system through the state space, imposes an ultimate natural limitation to the dynamics of physical devices. Quantum absorption refrigerators, however, have attracted a great deal of attention in the past few years. In this paper, we discuss the effects of quantum speed limit on the performance of a quantum absorption refrigerator. In particular, we show that there exists a tradeoff relation between the steady cooling rate of the refrigerator and the minimum time taken to reach the steady state. Based on this, we define a figure of merit called "bounding second order cooling rate" and show that this scales linearly with the unitary interaction strength among the constituent qubits. We also study the increase of bounding second-order cooling rate with the thermalization strength. We subsequently demonstrate that coherence in the initial three qubit system can significantly increase the bounding second-order cooling rate. We study the efficiency of the refrigerator at maximum bounding second-order cooling rate and, in a limiting case, we show that the efficiency at maximum bounding second-order cooling rate is given by a simple formula resembling the Curzon-Ahlborn relation.
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan
2018-06-01
This work deal with experimental measurement and calculation cooling efficiency of the cooling device working with a heat pipe technology. The referred device in the article is cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description, working principle and construction of cooling device. The main factor affected the dissipation of high heat flux from electronic elements through the cooling device to the surrounding is condenser construction, its capacity and option of heat removal. Experimental part describe the measuring method cooling efficiency of the cooling device depending on ambient temperature in range -20 to 40°C and at heat load of electronic components 750 W. Measured results are compared with results calculation based on physical phenomena of boiling, condensation and natural convection heat transfer.
Radiative, actively cooled panel tests results
NASA Technical Reports Server (NTRS)
Shore, C. P.; Nowak, R. J.; Sharpe, E. L.
1978-01-01
The radiative, actively cooled panel designed to withstand a uniform incident heat flux of 136 kW/sq m to a 444 K surface temperature was evaluated. The test program consisted of preliminary static thermal mechanical loading and aerothermal flow tests. Test results are briefly discussed.
Loss measurement and analysis for the prototype generator with HTS stator and permanent magnet rotor
NASA Astrophysics Data System (ADS)
Song, Peng; Qu, Timing; Yu, Xiaoyu; Li, Longnian; Gu, Chen; Li, Xiaohang; Wang, Dewen; Hu, Boping; Chen, Duxing; Han, Zhenghe
2013-11-01
A prototype HTS synchronous generator with a permanent magnet rotor and HTS armature windings was developed. The rated armature frequency is 10 Hz. The cryogenic Dewar is tightly surrounded outside the iron core. Both HTS coils and the iron core were cooled by using conduction cooling method. During the process of no-load running, the no-load loss power data were obtained through the torque measurement. The temperature evolution characteristics of the stator was measured by PT-100 temperature sensors. These results show that the no-load loss power at around 77 K are much larger than that at room temperature. The possible reason for the no-load loss increment is discussed. The ac loss power of one individual HTS coil used in this generator was also tested. Compared with the iron loss power, the ac loss power is rather small and could be neglected.
NASA Technical Reports Server (NTRS)
Clauss, R. C.; Quinn, R. B. (Inventor)
1980-01-01
A dielectrically loaded four port waveguide circulator is used with a reflected wave maser connected to a second port between first and third ports to form one of a plurality of cascaded maser waveguide structures. The fourth port is connected to a waveguide loaded with microwave energy absorbing material. The third (output signal) port of one maser waveguide structure is connected by a waveguide loaded with dielectric material to the first (input) port of an adjacent maser waveguide structure, and the second port is connected to a reflected wave maser by a matching transformer which passes the signal to be amplified into and out of the reflected wavemaser and blocks pumping energy in the reflected wave maser from entering the circulator. A number of cascaded maser waveguide structures are thus housed in a relatively small volume of conductive material placed within a cryogenically cooled magnet assembly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This appendix summarizes building characteristics used to determine heating and cooling loads for each of the five building types in each of the four regions. For the selected five buildings, the following data are attached: new and existing construction characteristics; new and existing construction thermal resistance; floor plan and elevation; people load schedule; lighting load schedule; appliance load schedule; ventilation schedule; and hot water use schedule. For the five building types (single family, apartment buildings, commercial buildings, office buildings, and schools), data are compiled in 10 appendices. These are Building Characteristics; Alternate Energy Sources and Energy Conservation Techniques Description, Costs,more » Fuel Price Scenarios; Life Cycle Cost Model; Simulation Models; Solar Heating/Cooling System; Condensed Weather; Single and Multi-Family Dwelling Characteristics and Energy Conservation Techniques; Mixed Strategies for Energy Conservation and Alternative Energy Utilization in Buildings. An extensive bibliography is given in the final appendix. (MCW)« less
Site-specific investigations on aquifer thermal energy storage for space and process cooling
NASA Astrophysics Data System (ADS)
Brown, D. R.
1991-08-01
The Pacific Northwest Laboratory (PNL) has completed three preliminary site-specific feasibility studies that investigated aquifer thermal energy storage (ATES) for reducing space and process cooling costs. Chilled water stored in an ATES system could be used to meet all or part of the process and/or space cooling loads at the three facilities investigated. Seasonal or diurnal chill ATES systems could be significantly less expensive than a conventional electrically-driven, load-following chiller system at one of the three sites, depending on the cooling water loop return temperature and presumed future electricity escalation rate. For the other two sites investigated, a chill ATES system would be economically competitive with conventional chillers if onsite aquifer characteristics were improved. Well flow rates at one of the sites were adequate, but the expected thermal recovery efficiency was too low. The reverse of this situation was found at the other site, where the thermal recovery efficiency was expected to be adequate, but well flow rates were too low.
Maximum heat of mass concrete - phase 2 [summary].
DOT National Transportation Integrated Search
2016-12-01
Concrete hardens through a chemical reaction that produces heat and expansion, followed by contraction as the concrete cools. Concrete near the edge of a pour cools faster and shrinks earlier than concrete further from the edge. Most concrete pours a...
Stress and strain analysis from dynamic loads of mechanical hand using finite element method
NASA Astrophysics Data System (ADS)
Hasanuddin, Iskandar; Husaini; Syahril Anwar, M.; Yudha, B. Z. Sandy; Akhyar, Hasan
2018-05-01
This research discusses the distribution of stress and strain due to the dynamic loads of mechanical hand. The stress and strain that occur on mechanical hand are the main concern for comparing the value of finite element analysis (FEA) and calculating for its material properties. The stress and strain analysis are done with a loading condition. The given loading condition is dynamic. The loading input condition in the simulation of using hydraulic hand dynamometer is from the grip strength measurement of ten samples. The form of the given loading to the mechanical hand is the increment value with a maximum of 708 N/m2 within 1 minute. The amount of maximum stress (von Mises) simulation is 1.731 x 105 Pa, and the amount of maximum strain is 7.441 x 10-7. The amount of maximum reaction force is 5.864 x 10-2 N, while the amount of maximum displacement that occurs on the distal part is 1.223 x 10 m. Based on the analysis, the maximum stress and strain were found both to occur at the extension part. The result of this study has shown that the stress and strain still occur far below from the yield strength and the shear strength from the material AISI 1010. It can be concluded that the mechanical hand is durable for the given loading and can hold an object with a minimum diameter of 45 mm.
Kong, Liang; Gu, Zexu; Li, Tao; Wu, Junjie; Hu, Kaijin; Liu, Yanpu; Zhou, Hongzhi; Liu, Baolin
2009-01-01
A nonlinear finite element method was applied to examine the effects of implant diameter and length on the maximum von Mises stresses in the jaw, and to evaluate the maximum displacement of the implant-abutment complex in immediate-loading models. The implant diameter (D) ranged from 3.0 to 5.0 mm and implant length (L) ranged from 6.0 to 16.0 mm. The results showed that the maximum von Mises stress in cortical bone was decreased by 65.8% under a buccolingual load with an increase in D. In cancellous bone, it was decreased by 71.5% under an axial load with an increase in L. The maximum displacement in the implant-abutment complex decreased by 64.8% under a buccolingual load with an increase in D. The implant was found to be more sensitive to L than to D under axial loads, while D played a more important role in enhancing its stability under buccolingual loads. When D exceeded 4.0 mm and L exceeded 11.0 mm, both minimum stress and displacement were obtained. Therefore, these dimensions were the optimal biomechanical selections for immediate-loading implants in type B/2 bone.
Advanced Power Conditioning System
NASA Technical Reports Server (NTRS)
Johnson, N. L.
1971-01-01
The second portion of the advanced power conditioning system development program is reported. Five 100-watt parallel power stages with majority-vote-logic feedback-regulator were breadboarded and tested to the design goals. The input voltage range was 22.1 to 57.4 volts at loads from zero to 500 watts. The maximum input ripple current was 200 mA pk-pk (not including spikes) at 511 watts load; the output voltage was 56V dc with a maximum change of 0.89 volts for all variations of line, load, and temperature; the maximum output ripple was 320 mV pk-pk at 512 watts load (dependent on filter capacitance value); the maximum efficiency was 93.9% at 212 watts and 50V dc input; the minimum efficiency was 87.2% at 80-watt load and 50V dc input; the efficiency was above 90% from 102 watts to 372 watts; the maximum excursion for an 80-watt load change was 2.1 volts with a recovery time of 7 milliseconds; and the unit performed within regulation limits from -20 C to +85 C. During the test sequence, margin tests and failure mode tests were run with no resulting degradation in performance.
A feasibility study of reactor-based deep-burn concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, T. K.; Taiwo, T. A.; Hill, R. N.
2005-09-16
A systematic assessment of the General Atomics (GA) proposed Deep-Burn concept based on the Modular Helium-Cooled Reactor design (DB-MHR) has been performed. Preliminary benchmarking of deterministic physics codes was done by comparing code results to those from MONTEBURNS (MCNP-ORIGEN) calculations. Detailed fuel cycle analyses were performed in order to provide an independent evaluation of the physics and transmutation performance of the one-pass and two-pass concepts. Key performance parameters such as transuranic consumption, reactor performance, and spent fuel characteristics were analyzed. This effort has been undertaken in close collaborations with the General Atomics design team and Brookhaven National Laboratory evaluation team.more » The study was performed primarily for a 600 MWt reference DB-MHR design having a power density of 4.7 MW/m{sup 3}. Based on parametric and sensitivity study, it was determined that the maximum burnup (TRU consumption) can be obtained using optimum values of 200 {micro}m and 20% for the fuel kernel diameter and fuel packing fraction, respectively. These values were retained for most of the one-pass and two-pass design calculations; variation to the packing fraction was necessary for the second stage of the two-pass concept. Using a four-batch fuel management scheme for the one-pass DB-MHR core, it was possible to obtain a TRU consumption of 58% and a cycle length of 286 EFPD. By increasing the core power to 800 MWt and the power density to 6.2 MW/m{sup 3}, it was possible to increase the TRU consumption to 60%, although the cycle length decreased by {approx}64 days. The higher TRU consumption (burnup) is due to the reduction of the in-core decay of fissile Pu-241 to Am-241 relative to fission, arising from the higher power density (specific power), which made the fuel more reactivity over time. It was also found that the TRU consumption can be improved by utilizing axial fuel shuffling or by operating with lower material temperatures (colder core). Results also showed that the transmutation performance of the one-pass deep-burn concept is sensitive to the initial TRU vector, primarily because longer cooling time reduces the fissile content (Pu-241 specifically.) With a cooling time of 5 years, the TRU consumption increases to 67%, while conversely, with 20-year cooling the TRU consumption is about 58%. For the two-pass DB-MHR (TRU recycling option), a fuel packing fraction of about 30% is required in the second pass (the recycled TRU). It was found that using a heterogeneous core (homogeneous fuel element) concept, the TRU consumption is dependent on the cooling interval before the 2nd pass, again due to Pu-241 decay during the time lag between the first pass fuel discharge and the second pass fuel charge. With a cooling interval of 7 years (5 and 2 years before and after reprocessing) a TRU consumption of 55% is obtained. With an assumed ''no cooling'' interval, the TRU consumption is 63%. By using a cylindrical core to reduce neutron leakage, TRU consumption of the case with 7-year cooling interval increases to 58%. For a two-pass concept using a heterogeneous fuel element (and homogeneous core) with first and second pass volume ratio of 2:1, the TRU consumption is 62.4%. Finally, the repository loading benefits arising from the deep-burn and Inert Matrix Fuel (IMF) concepts were estimated and compared, for the same initial TRU vector. The DB-MHR concept resulted in slightly higher TRU consumption and repository loading benefit compared to the IMF concept (58.1% versus 55.1% for TRU consumption and 2.0 versus 1.6 for estimated repository loading benefit).« less
Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike
2010-01-01
The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads at a high altitude, with an anchored computational methodology. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests, and deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four different degrees of ovalization: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation-line-jump is the peak side load physics for the round, slightly our-of-round, and more out-of-round cases, and the peak side load increases as the degree of out-of-roundness increases. For the significantly out-of-round nozzle, however, the peak side load reduces to comparable to that of the round nozzle and the separation line jump is not the peak side load physics. The counter-intuitive result of the significantly out-of-round case is found to be related to a side force reduction mechanism that splits the effect of the separation-line-jump into two parts, not only in the circumferential direction and most importantly in time.
Cooling of Water in a Flask: Convection Currents in a Fluid with a Density Maximum
ERIC Educational Resources Information Center
Velasco, S.; White, J. A.; Roman, F. L.
2010-01-01
The effect of density inversion on the convective flow of water in a spherical glass flask cooled with the help of an ice-water bath is shown. The experiment was carried out by temperature measurements (cooling curves) taken at three different heights along the vertical diameter of the flask. Flows inside the flask are visualized by seeding the…
NASA Technical Reports Server (NTRS)
Wiener, Bernard; Harris, Agnes E
1950-01-01
Time histories are presented of horizontal-tail loads, elevator loads, and deformations on a jet-powered bomber during abrupt pitching maneuvers at a pressure altitude of approximately 20,000 feet. The normal and pitching accelerations measured varied from -0.90b to 3.41g and from -0.73 to 0.80 radian per second per second (sic), respectively, with a Mach number variation of from 0.40 to o.75. The maximum horizontal-tail load measured was 17,250 pounds down. The maximum elevator load was 1900 pounds up. The stabilizer twisted a maximum of 0.76 degrees leading edge down at the tip. The greatest fuselage deflection at the tail was about 1.7 inches down.
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or pressure; and maximum...
NASA Astrophysics Data System (ADS)
Modi, Ashishkumar Jashvantlal; Gosai, Dipak Chimangiri; Solanki, Chandresh Maheshchandra
2018-04-01
Energy conservation and efficiency have been the quest of engineers concerned with internal combustion engine. Theoretically, if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. For current work a ceramic coated twin cylinder water-cooled diesel engine using blends of diesel and Neem biodiesel as fuel was evaluated for its performance and exhaust emissions. Multi cylinder vertical water cooled self-governed diesel engine, piston, top surface of cylinder head and liners were fully coated with partially stabilized zirconia as ceramic material attaining an adiabatic condition. Previous studies have reported that combustion of Neem biodiesel emitted higher NOx, while hydrocarbon and smoke emissions were lower than conventional diesel fuel. Exhaust gas recirculation (EGR) is one of the techniques being used to reduce NOx emission from diesel engines; because it decreases both flame temperature and oxygen concentration in the combustion chamber. The stationary diesel engine was run in laboratory at a high load condition (85% of maximum load), fixed speed (2000 rpm) and various EGR rates of 5-40% (with 5% increment). Various measurements like fuel flow, exhaust temperature, exhaust emission measurement and exhaust smoke test were carried out. The results indicate improved fuel economy and reduced pollution levels for the low heat rejection (LHR) engine. The results showed that, at 5% EGR with TB10, both NOx and smoke opacity were reduced by 26 and 15%, respectively. Furthermore, TB20 along with 10% EGR was also able to reduce both NOx and smoke emission by 34 and 30%, respectively compared to diesel fuel without EGR.
Design and Certification of the Extravehicular Activity Mobility Unit (EMU) Water Processing Jumper
NASA Technical Reports Server (NTRS)
Peterson, Laurie J.; Neumeyer, Derek J.; Lewis, John F.
2006-01-01
The Extravehicular Mobility Units (EMUs) onboard the International Space Station (ISS) experienced a failure due to cooling water contamination from biomass and corrosion byproducts forming solids around the EMU pump rotor. The coolant had no biocide and a low pH which induced biofilm growth and corrosion precipitates, respectively. NASA JSC was tasked with building hardware to clean the ionic, organic, and particulate load from the EMU coolant loop before and after Extravehicular Activity (EVAs). Based on a return sample of the EMU coolant loop, the chemical load was well understood, but there was not sufficient volume of the returned sample to analyze particulates. Through work with EMU specialists, chemists, (EVA) Mission Operations Directorate (MOD) representation, safety and mission assurance, astronaut crew, and team engineers, requirements were developed for the EMU Water Processing hardware (sometimes referred to as the Airlock Coolant Loop Recovery [A/L CLR] system). Those requirements ranged from the operable level of ionic, organic, and particulate load, interfaces to the EMU, maximum cycle time, operating pressure drop, flow rate, and temperature, leakage rates, and biocide levels for storage. Design work began in February 2005 and certification was completed in April 2005 to support a return to flight launch date of May 12, 2005. This paper will discuss the details of the design and certification of the EMU Water Processing hardware and its components
Solar Energy system performance evaluation: El Toro, California, March 1981-November 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pakkala, P.A.
The El Toro Library is a public library facility in California with an active solar energy system designed to supply 97% of the heating load and 60% of the cooling load. The system is equipped with 1427 square feet of evacuated tube collectors, a 1500-gallon steel storage tank, and an auxiliary natural-gas-fired heating unit. During the period from March 1981 through November 1981 the system supplied only 16% of the space cooling load, far short of the 60% design value. Problems are reported related to control of a valve and of collection, low absorption chiller coefficient of performance during partmore » of the period, and small collector area. Performance data are reported for the system, including solar savings ratio, conventional fuel savings, system performance factor, system coefficient of performance, solar energy utilization, and system operation. Subsystem performance data are also given for the collector, storage, and space cooling subsystems and absorption chiller. The system is briefly described along with performance evaluation techniques and sensors, and typical data are presented for one month. Some weather data are also included. (LEW)« less
Franklin, Craig E; Seebacher, Frank
2003-04-01
The effect of heating and cooling on heart rate in the estuarine crocodile Crocodylus porosus was studied in response to different heat transfer mechanisms and heat loads. Three heating treatments were investigated. C. porosus were: (1) exposed to a radiant heat source under dry conditions; (2) heated via radiant energy while half-submerged in flowing water at 23 degrees C and (3) heated via convective transfer by increasing water temperature from 23 degrees C to 35 degrees C. Cooling was achieved in all treatments by removing the heat source and with C. porosus half-submerged in flowing water at 23 degrees C. In all treatments, the heart rate of C. porosus increased markedly in response to heating and decreased rapidly with the removal of the heat source. Heart rate during heating was significantly faster than during cooling at any given body temperature, i.e. there was a significant heart rate hysteresis. There were two identifiable responses to heating and cooling. During the initial stages of applying or removing the heat source, there was a dramatic increase or decrease in heart rate ('rapid response'), respectively, indicating a possible cardiac reflex. This rapid change in heart rate with only a small change or no change in body temperature (<0.5 degrees C) resulted in Q(10) values greater than 4000, calling into question the usefulness of this measure on heart rate during the initial stages of heating and cooling. In the later phases of heating and cooling, heart rate changed with body temperature, with Q(10) values of 2-3. The magnitude of the heart rate response differed between treatments, with radiant heating during submergence eliciting the smallest response. The heart rate of C. porosus outside of the 'rapid response' periods was found to be a function of the heat load experienced at the animal surface, as well as on the mode of heat transfer. Heart rate increased or decreased rapidly when C. porosus experienced large positive (above 25 W) or negative (below -15 W) heat loads, respectively, in all treatments. For heat loads between -15 W and 20 W, the increase in heart rate was smaller for the 'unnatural' heating by convection in water compared with either treatment using radiant heating. Our data indicate that changes in heart rate constitute a thermoregulatory mechanism that is modulated in response to the thermal environment occupied by the animal, but that heart rate during heating and cooling is, in part, controlled independently of body temperature.
Solar heating and cooling demonstration project at the Florida solar energy center
NASA Technical Reports Server (NTRS)
1980-01-01
The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. The system was designed to supply approximately 70 percent of the annual cooling and 100 percent of the heating load. The project provides unique high temperature, nonimaging, nontracking, evacuated tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection. Information is provided on the system's acceptance test results operation, controls, hardware and installation, including detailed drawings.
46 CFR 154.408 - Cargo tank external pressure load.
Code of Federal Regulations, 2010 CFR
2010-10-01
... minimum internal pressure (maximum vacuum), and the maximum external pressure to which any portion of the... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank external pressure load. 154.408 Section 154... Equipment Cargo Containment Systems § 154.408 Cargo tank external pressure load. For the calculation...
14 CFR 25.365 - Pressurized compartment loads.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Pressurized compartment loads. For airplanes with one or more pressurized compartments the following apply: (a... differential loads from zero up to the maximum relief valve setting. (b) The external pressure distribution in... zero up to the maximum allowed during landing. (d) The airplane structure must be designed to be able...
Tamáska, István; Kértész, Krisztién; Vértesy, Zofia; Bálint, Zsolt; Kun, András; Yen, ShenHorn; Biró, Lászlo Péter
2013-01-01
The effects produced by the condensation of water vapor from the environment in the various intricate nanoarchitectures occurring in the wing scales of several Lepidoptera species were investigated by controlled cooling (from 23° C, room temperature to -5 to -10° C) combined with in situ measurements of changes in the reflectance spectra. It was determined that all photonic nanoarchitectures giving a reflectance maximum in the visible range and having an open nanostructure exhibited alteration of the position of the reflectance maximum associated with the photonic nanoarchitectures. The photonic nanoarchitectures with a closed structure exhibited little to no alteration in color. Similarly, control specimens colored by pigments did not exhibit a color change under the same conditions. Hence, this method can be used to identify species with open photonic nanoarchitectures in their scales. For certain species, an almost complete disappearance of the reflectance maximum was found. All specimens recovered their original colors following warming and drying. Cooling experiments using thin copper wires demonstrated that color alterations could be limited to a width of a millimeter or less. Dried museum specimens did not exhibit color changes when cooled in the absence of a heat sink due to the low heat capacity of the wings. PMID:24206534
Tamáska, István; Kértész, Krisztién; Vértesy, Zofia; Bálint, Zsolt; Kun, András; Yen, Shenhorn; Biró, Lászlo Péter
2013-01-01
The effects produced by the condensation of water vapor from the environment in the various intricate nanoarchitectures occurring in the wing scales of several Lepidoptera species were investigated by controlled cooling (from 23° C, room temperature to -5 to -10° C) combined with in situ measurements of changes in the reflectance spectra. It was determined that all photonic nanoarchitectures giving a reflectance maximum in the visible range and having an open nanostructure exhibited alteration of the position of the reflectance maximum associated with the photonic nanoarchitectures. The photonic nanoarchitectures with a closed structure exhibited little to no alteration in color. Similarly, control specimens colored by pigments did not exhibit a color change under the same conditions. Hence, this method can be used to identify species with open photonic nanoarchitectures in their scales. For certain species, an almost complete disappearance of the reflectance maximum was found. All specimens recovered their original colors following warming and drying. Cooling experiments using thin copper wires demonstrated that color alterations could be limited to a width of a millimeter or less. Dried museum specimens did not exhibit color changes when cooled in the absence of a heat sink due to the low heat capacity of the wings.
Numerical Calculation of the Peaking Factor of a Water-Cooled W/Cu Monoblock for a Divertor
NASA Astrophysics Data System (ADS)
Han, Le; Chang, Haiping; Zhang, Jingyang; Xu, Tiejun
2015-09-01
In order to accurately predict the incident critical heat flux (ICHF, the heat flux at the heated surface when CHF occurs) of a water-cooled W/Cu monoblock for a divertor, the exact knowledge of its peaking factors (fp) under one-sided heating conditions with different design parameters is a key issue. In this paper, the heat conduction in the solid domain of a water-cooled W/Cu monoblock is calculated numerically by assuming the local heat transfer coefficients (HTC) of the cooling wall to be functions of the local wall temperature, so as to obtain fp. The reliability of the calculation method is validated by an experimental example result, with the maximum error of 2.1% only. The effects of geometric and flow parameters on the fp of a water-cooled W/Cu monoblock are investigated. Within the scope of this study, it is shown that the fp increases with increasing dimensionless W/Cu monoblock width and armour thickness (the shortest distance between the heated surface and Cu layer), and the maximum increases are 43.8% and 22.4% respectively. The dimensionless W/Cu monoblock height and Cu thickness have little effect on fp. The increase of Reynolds number and Jakob number causes the increase of fp, and the maximum increases are 6.8% and 9.6% respectively. Based on the calculated results, an empirical correlation on peaking factor is obtained via regression. These results provide a valuable reference for the thermal-hydraulic design of water-cooled divertors. supported by National Magnetic Confinement Fusion Science Program of China (No. 2010GB104005) and Funding of Jiangsu Innovation Program for Graduate Education, China (CXLX12_0170), the Fundamental Research Funds for the Central Universities of China
Rafique, Y; AlBader, M; Oriowo, M
2017-09-01
In addition to providing mechanical support for blood vessels, the perivascular adipose tissue (PVAT) secretes a number of vasoactive substances and exerts an anticontractile effect. The main objective of this study was to find out whether the anticontractile effect of cooling in the rat aorta is affected by PVAT. Our hypothesis was that PVAT would enhance the anticontractile effect of cooling in the rat aorta. Aorta segments, with or without PVAT, were used in this investigation. Cumulative concentration-response curves were established for phenylephrine at 37°C or 24°C. Phenylephrine (10 -9 M - 10 -5 M) induced concentration-dependent contractions of aorta segments with or without PVAT at 37°C. The maximum response, but not pD 2 value, was reduced in aorta segments with PVAT. Cooling the tissues to 24 °C resulted in a significant reduction in the maximum response in aorta segments without PVAT with no change in pD 2 values. However, the anticontractile effect of cooling was attenuated in the presence of PVAT with no significant (p > 0.05) change in either the maximum response or pD 2 value. L-NAME potentiated PE-induced contractions and this was greater in aorta segments without PVAT at both temperatures. The expression of eNOS protein and basal tissue level of nitric oxide (NO) were greater in aorta segments with PVAT at both temperatures. However, PE significantly increased tissue levels of NO only in aorta segments without PVAT. We concluded that PVAT-induced loss of anticontractile effect of cooling against PE-induced contractions could be due to impaired generation of NO in aorta segments with PVAT. © 2017 John Wiley & Sons Ltd.
Noakes, Matthew J; Wolf, Blair O; McKechnie, Andrew E
2016-03-01
Intraspecific variation in avian thermoregulatory responses to heat stress has received little attention, despite increasing evidence that endothermic animals show considerable physiological variation among populations. We investigated seasonal (summer versus winter) variation in heat tolerance and evaporative cooling in an Afrotropical ploceid passerine, the white-browed sparrow-weaver (Plocepasser mahali; ∼ 47 g) at three sites along a climatic gradient with more than 10 °C variation in mid-summer maximum air temperature (Ta). We measured resting metabolic rate (RMR) and total evaporative water loss (TEWL) using open flow-through respirometry, and core body temperature (Tb) using passive integrated transponder tags. Sparrow-weavers were exposed to a ramped profile of progressively higher Ta between 30 and 52 °C to elicit maximum evaporative cooling capacity (N=10 per site per season); the maximum Ta birds tolerated before the onset of severe hyperthermia (Tb ≈ 44 °C) was considered to be their hyperthermia threshold Ta (Ta,HT). Our data reveal significant seasonal acclimatisation of heat tolerance, with a desert population of sparrow-weavers reaching significantly higher Ta in summer (49.5 ± 1.4 °C, i.e. higher Ta,HT) than in winter (46.8 ± 0.9 °C), reflecting enhanced evaporative cooling during summer. Moreover, desert sparrow-weavers had significantly higher heat tolerance and evaporative cooling capacity during summer compared with populations from more mesic sites (Ta,HT=47.3 ± 1.5 and 47.6 ± 1.3 °C). A better understanding of the contributions of local adaptation versus phenotypic plasticity to intraspecific variation in avian heat tolerance and evaporative cooling capacity is needed for modelling species' responses to changing climates. © 2016. Published by The Company of Biologists Ltd.
Thermal analysis of EAST neutral beam injectors for long-pulse beam operation
NASA Astrophysics Data System (ADS)
Chundong, HU; Yongjian, XU; Yuanlai, XIE; Yahong, XIE; Lizhen, LIANG; Caichao, JIANG; Sheng, LIU; Jianglong, WEI; Peng, SHENG; Zhimin, LIU; Ling, TAO; the NBI Team
2018-04-01
Two sets of neutral beam injectors (NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with in-depth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that (1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline, (2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and (3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.
Cooling atomic ions with visible and infra-red light
NASA Astrophysics Data System (ADS)
Lindenfelser, F.; Marinelli, M.; Negnevitsky, V.; Ragg, S.; Home, J. P.
2017-06-01
We demonstrate the ability to load, cool and detect singly charged calcium ions in a surface electrode trap using only visible and infrared lasers for the trapped-ion control. As opposed to the standard methods of cooling using dipole-allowed transitions, we combine power broadening of a quadrupole transition at 729 nm with quenching of the upper level using a dipole allowed transition at 854 nm. By observing the resulting 393 nm fluorescence we are able to perform background-free detection of the ion. We show that this system can be used to smoothly transition between the Doppler cooling and sideband cooling regimes, and verify theoretical predictions throughout this range. We achieve scattering rates which reliably allow recooling after collision events and allow ions to be loaded from a thermal atomic beam. This work is compatible with recent advances in optical waveguides, and thus opens a path in current technologies for large-scale quantum information processing. In situations where dielectric materials are placed close to trapped ions, it carries the additional advantage of using wavelengths which do not lead to significant charging, which should facilitate high rate optical interfaces between remotely held ions.
An approach for the regularization of a power flow solution around the maximum loading point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kataoka, Y.
1992-08-01
In the conventional power flow solution, the boundary conditions are directly specified by active power and reactive power at each node, so that the singular point coincided with the maximum loading point. For this reason, the computations are often disturbed by ill-condition. This paper proposes a new method for getting the wide-range regularity by giving some modifications to the conventional power flow solution method, thereby eliminating the singular point or shifting it to the region with the voltage lower than that of the maximum loading point. Then, the continuous execution of V-P curves including maximum loading point is realized. Themore » efficiency and effectiveness of the method are tested in practical 598-nodes system in comparison with the conventional method.« less
NASA Technical Reports Server (NTRS)
Boshar, John
1947-01-01
Results are presented of a flight investigation conducted on a fighter-type airplane to determine the factors which affect the loads and load distributions on the vertical tail surfaces in maneuvers. An analysis is made of the data obtained in steady flight, rudder kicks, and fishtail maneuvers. For the rudder kicks, the significant loads were the "deflection load" resulting from an abrupt control deflection and the "dynamic load" consisting of a load corresponding to the new static equilibrium condition for the rudder deflected plus a load due to a transient overshoot. The minimum time to reach the maximum control deflection attainable by the pilot in any flight condition was found to be a constant. In the fishtail maneuvers, it was found that the pilot tends to deflect the rudder in phase with the natural frequency of the airplane. The maximum loads measured in fishtails were of the same order of magnitude as those from a rudder kick in which the rudder is returned to zero at the time of maximum sideslip.
A Mechanistic Study of Failure of Concrete Subjected to Cyclic Thermal Loads
1991-07-01
After Cooling due to Shrinkage ............... 27 ix LIST OF TABLES TABLE I. Cleavage Strength of Composite Samples Prepared with Different Kinds of...microcracking - a possible fatigue mechanism - due to heating and cooling . Therefore the first part of the experimental program concentrated on obtaining...propagation of cracks (7). For temperatures up to 662F cracking happens during the cooling phase, for temperatures above 842F the majority of cracking takes
Database Reorganization in Parallel Disk Arrays with I/O Service Stealing
NASA Technical Reports Server (NTRS)
Zabback, Peter; Onyuksel, Ibrahim; Scheuermann, Peter; Weikum, Gerhard
1996-01-01
We present a model for data reorganization in parallel disk systems that is geared towards load balancing in an environment with periodic access patterns. Data reorganization is performed by disk cooling, i.e. migrating files or extents from the hottest disks to the coldest ones. We develop an approximate queueing model for determining the effective arrival rates of cooling requests and discuss its use in assessing the costs versus benefits of cooling.
Effects of vest loading on sprint kinetics and kinematics.
Cross, Matt R; Brughelli, Matt E; Cronin, John B
2014-07-01
The effects of vest loading on sprint kinetics and kinematics during the acceleration and maximum velocity phases of sprinting are relatively unknown. A repeated measures analysis of variance with post hoc contrasts was used to determine whether performing 6-second maximal exertion sprints on a nonmotorized force treadmill, under 2 weighted vest loading conditions (9 and 18 kg) and an unloaded baseline condition, affected the sprint mechanics of 13 males from varying sporting backgrounds. Neither vest load promoted significant change in peak vertical ground reaction force (GRF-z) outputs compared with baseline during acceleration, and only 18-kg loading increased GRF-z at the maximum velocity (8.8%; effect size [ES] = 0.70). The mean GRF-z significantly increased with 18-kg loading during acceleration and maximum velocity (11.8-12.4%; ES = 1.17-1.33). Horizontal force output was unaffected, although horizontal power was decreased with the 18-kg vest during maximum velocity (-14.3%; ES = -0.48). Kinematic analysis revealed decreasing velocity (-3.6 to -5.6%; ES = -0.38 to -0.61), decreasing step length (-4.2%; ES = -0.33 to -0.34), increasing contact time (5.9-10.0%; ES = 1.01-1.71), and decreasing flight time (-17.4 to -26.7%; ES = -0.89 to -1.50) with increased loading. As a vertical vector-training stimulus, it seems that vest loading decreases flight time, which in turn reduces GRF-z. Furthermore, it seems that heavier loads than that are traditionally recommended are needed to promote increases in the GRF-z output during maximum velocity sprinting. Finally, vest loading offers little as a horizontal vector-training stimulus and actually compromises horizontal power output.
Design and Implementation of a Thermal Load Reduction System in a Hyundai PHEV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreutzer, Cory J; Rugh, John P
Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles including limited vehicle range and the elevated cost of EDVs as compared to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. In order to minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata PHEV. Technologies that impact vehicle cabin heating in cold weather conditions andmore » cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning. Heated surfaces and increased insulation demonstrated significant reductions in energy use from steady-state heating, including a 29% - 59% reduction from heated surfaces. Solar control glass packages demonstrated significant reductions in energy use for both transient and steady-state cooling, with up to a 42% reduction in transient and 12.8% reduction in steady-state energy use for the packages evaluated. Technologies that demonstrated significant climate control load reduction were selected for incorporation into a complete thermal load reduction package. The complete package is set to be evaluated in the second phase of the ongoing project.« less
Heat transfer optimization for air-mist cooling between a stack of parallel plates
NASA Astrophysics Data System (ADS)
Issa, Roy J.
2010-06-01
A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow. The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances, and for dilute mist conditions. Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio, and reach a limit for a critical loading. For these dilute spray conditions, complete evaporation of the droplets takes place. Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate. The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.
A Methodology for Multihazards Load Combinations of Earthquake and Heavy Trucks for Bridges
Wang, Xu; Sun, Baitao
2014-01-01
Issues of load combinations of earthquakes and heavy trucks are important contents in multihazards bridge design. Current load resistance factor design (LRFD) specifications usually treat extreme hazards alone and have no probabilistic basis in extreme load combinations. Earthquake load and heavy truck load are considered as random processes with respective characteristics, and the maximum combined load is not the simple superimposition of their maximum loads. Traditional Ferry Borges-Castaneda model that considers load lasting duration and occurrence probability well describes random process converting to random variables and load combinations, but this model has strict constraint in time interval selection to obtain precise results. Turkstra's rule considers one load reaching its maximum value in bridge's service life combined with another load with its instantaneous value (or mean value), which looks more rational, but the results are generally unconservative. Therefore, a modified model is presented here considering both advantages of Ferry Borges-Castaneda's model and Turkstra's rule. The modified model is based on conditional probability, which can convert random process to random variables relatively easily and consider the nonmaximum factor in load combinations. Earthquake load and heavy truck load combinations are employed to illustrate the model. Finally, the results of a numerical simulation are used to verify the feasibility and rationality of the model. PMID:24883347
Supercooling Preservation Of The Rat Liver For Transplantation
Bruinsma, Bote G.; Berendsen, Tim A.; Izamis, Maria-Louisa; Yeh, Heidi; Yarmush, Martin L.; Uygun, Korkut
2015-01-01
The current standard for liver preservation is limited in duration. Employing a novel subzero preservation technique that includes supercooling and machine perfusion can significantly improve preservation and prolong storage times. By loading rat livers with cryoprotectants to prevent both intra- and extracellular ice formation and protect against hypothermic injury, livers can be cooled to −6 °C without freezing and kept viable for up to 96 hours. Here, we describe the procedures of loading cryoprotectants by means of subnormothermic machine perfusion (SNMP), controlled cooling to a supercooled state, followed by SNMP recovery and orthotopic liver transplantation. PMID:25692985
NASA Astrophysics Data System (ADS)
Gohari, Iman; Korobenko, Artem; Yan, Jinhui; Bazilevs, Yuri; Sarkar, Sutanu
2016-11-01
Wind is a renewable energy resource that offers several advantages including low pollutant emission and inexpensive construction. Wind turbines operate in conditions dictated by the Atmospheric Boundary Layer (ABL) and that motivates the study of coupling ABL simulations with wind turbine dynamics. The ABL simulations can be used for realistic modeling of the environment which, with the use of fluid-structure interaction, can give realistic predictions of extracted power, rotor loading, and blade structural response. The ABL simulations provide inflow boundary conditions to the wind-turbine simulator which uses arbitrary Lagrangian-Eulerian variational multiscale formulation. In the present work, ABL simulations are performed to examine two different scenarios: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the wind turbine experiences maximum mean shear; (2) A shallow ABL with the surface cooling-rate of -1 K/hr, in which the wind turbine experiences maximum mean velocity at the low-level-jet nose height. We will discuss differences in the unsteady flow between the two different ABL conditions and their impact on the performance of the wind turbine cluster in the coupled ABL-wind turbine simulations.
NASA Astrophysics Data System (ADS)
Ritz, G.; Hirai, T.; Norajitra, P.; Reiser, J.; Giniyatulin, R.; Makhankov, A.; Mazul, I.; Pintsuk, G.; Linke, J.
2009-12-01
Tungsten was selected as armor material for the helium-cooled divertor in future DEMO-type fusion reactors and fusion power plants. After realizing the design and testing of them under cyclic thermal loads of up to ~14 MW m-2, the tungsten divertor plasma-facing units were examined by metallography; they revealed failures such as cracks at the thermal loaded and as-machined surfaces, as well as degradation of the brazing layers. Furthermore, in order to optimize the machining processes, the quality of tungsten surfaces prepared by turning, milling and using a diamond cutting wheel were examined. This paper presents a metallographic examination of the tungsten plasma-facing units as well as technical studies and the characterization on machining of tungsten and alternative brazing joints.
Shakouri, Ehsan; Haghighi Hassanalideh, Hossein; Gholampour, Seifollah
2018-01-01
Bone fracture occurs due to accident, aging, and disease. For the treatment of bone fractures, it is essential that the bones are kept fixed in the right place. In complex fractures, internal fixation or external methods are used to fix the fracture position. In order to immobilize the fracture position and connect the holder equipment to it, bone drilling is required. During the drilling of the bone, the required forces to chip formation could cause an increase in the temperature. If the resulting temperature increases to 47 °C, it causes thermal necrosis of the bone. Thermal necrosis decreases bone strength in the hole and, subsequently, due to incomplete immobilization of bone, fracture repair is not performed correctly. In this study, attempts have been made to compare local temperature increases in different processes of bone drilling. This comparison has been done between drilling without cooling, drilling with gas cooling, and liquid cooling on bovine femur. Drilling tests with gas coolant using direct injection of CO 2 and N 2 gases were carried out by internal coolant drill bit. The results showed that with the use of gas coolant, the elevation of temperature has limited to 6 °C and the thermal necrosis is prevented. Maximum temperature rise reached in drilling without cooling was 56 °C, using gas and liquid coolant, a maximum temperature elevation of 43 °C and 42 °C have been obtained, respectively. This resulted in decreased possibility of thermal necrosis of bone in drilling with gas and liquid cooling. However, the results showed that the values obtained with the drilling method with direct gas cooling are independent of the rotational speed of drill.
NASA Technical Reports Server (NTRS)
Heinicke, Orville H.; Vandeman, Jack E.
1945-01-01
An investigation was conducted to determine the effect of a coolant solution of 25 percent ethyl alcohol, 25 percent methyl alcohol, and 50 percent water by volume and maximum-economy spark advance on knock-limited performance and fuel economy of a large air-cooled cylinder. The knock-limited performance of the cylinder at engine speeds of 2100 and 2500 rpm was determined for coolant-fuel ratios of 0.0, 0.2, and 0.4. The effect of water-alcohol injection on fuel economy was determined in constant charge-air flow tests. The tests were conducted at a spark advance of 20 deg B.T.C. and maximum-economy spark advance.
Cooling the dark energy camera instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, R.L.; Cease, H.; /Fermilab
2008-06-01
DECam, camera for the Dark Energy Survey (DES), is undergoing general design and component testing. For an overview see DePoy, et al in these proceedings. For a description of the imager, see Cease, et al in these proceedings. The CCD instrument will be mounted at the prime focus of the CTIO Blanco 4m telescope. The instrument temperature will be 173K with a heat load of 113W. In similar applications, cooling CCD instruments at the prime focus has been accomplished by three general methods. Liquid nitrogen reservoirs have been constructed to operate in any orientation, pulse tube cryocoolers have been usedmore » when tilt angles are limited and Joule-Thompson or Stirling cryocoolers have been used with smaller heat loads. Gifford-MacMahon cooling has been used at the Cassegrain but not at the prime focus. For DES, the combined requirements of high heat load, temperature stability, low vibration, operation in any orientation, liquid nitrogen cost and limited space available led to the design of a pumped, closed loop, circulating nitrogen system. At zenith the instrument will be twelve meters above the pump/cryocooler station. This cooling system expected to have a 10,000 hour maintenance interval. This paper will describe the engineering basis including the thermal model, unbalanced forces, cooldown time, the single and two-phase flow model.« less
Zhu, Weibin; White, Michael J; Nellis, Gregory F; Klein, Sanford A; Gianchandani, Yogesh B
2010-02-01
This paper reports on a micromachined Si/glass stack recuperative heat exchanger with in situ temperature sensors. Numerous high-conductivity silicon plates with integrated platinum resistance temperature detectors (Pt RTDs) are stacked, alternating with low-conductivity Pyrex spacers. The device has a 1 x 1-cm(2) footprint and a length of up to 3.5 cm. It is intended for use in Joule-Thomson (J-T) coolers and can sustain pressure exceeding 1 MPa. Tests at cold-end inlet temperatures of 237 K-252 K show that the heat exchanger effectiveness is 0.9 with 0.039-g/s helium mass flow rate. The integrated Pt RTDs present a linear response of 0.26%-0.30%/K over an operational range of 205 K-296 K but remain usable at lower temperatures. In self-cooling tests with ethane as the working fluid, a J-T system with the heat exchanger drops 76.1 K below the inlet temperature, achieving 218.7 K for a pressure of 835.8 kPa. The system reaches 200 K in transient state; further cooling is limited by impurities that freeze within the flow stream. In J-T self-cooling tests with an external heat load, the system reaches 239 K while providing 1 W of cooling. In all cases, there is an additional parasitic heat load estimated at 300-500 mW.
Advanced Pier Concepts Users Guide.
1985-10-01
about 4-5 inches. 0 Resistance to Lateral Loads Using the environmental conditions at NAVSTA Charleston and assuming the highest ship lateral loading ...near the channel and non-uniform loading is exper- ienccd; i.e. the lateral forces on an AD-41 and DD-9o3 are ab- sorbed by only 16 bents, the worst...maximum wind and C(lrrell [ - w 3-8 %. S..’.* ,. load acting on 4 berthed ships, then a maximum lateral force would be experienced. For a load of 1365
The Impact of Vocal Cool-down Exercises: A Subjective Study of Singers' and Listeners' Perceptions.
Ragan, Kari
2016-11-01
Using subjective measures, this study investigated singers' and listeners' perceptions of changes in voice condition after vocal cool-down exercises. A single-subject crossover was designed to evaluate whether there were discernible differences in either singer or listener perceptions from pre (no vocal cool downs) to post (with cool downs) test. Subjective questionnaires were completed throughout the study. Twenty classically trained female singers documented self-ratings and perceptual judgments through the Evaluation of the Ability to Sing Easily survey, the Singing Voice Handicap Index, and Self-Perceptual Questionnaires after a 60-minute voice load. Recordings were made and assessed by four expert listeners. The assessed data from the Singing Voice Handicap Index, the Evaluation of the Ability to Sing Easily, and Daily Perceptual Questionnaires show 68%, 67%, and 74% of singers reported improvement, respectively. However, because of significant variability in the underlying scores, the amount of improvement was not deemed to be statistically significant. Expert listeners correctly identified the cool-down week 46% of the time. Singers strongly perceived positive impact from the cool-down exercises on both their speaking and singing voices. Even though the objective data were statistically insignificant, the singers' subjective data clearly indicates a perceived sense of vocal well-being after utilizing the vocal cool-down protocol. The variability in the daily life of a singer (eg, stress, menses, reflux, vocal load, and vocal hygiene) makes it difficult to objectively quantify the impact of vocal cool downs. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
29 CFR 1917.111 - Maintenance and load limits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... maintained. (b) Maximum safe load limits, in pounds per square foot (kilograms per square meter), of floors elevated above ground level, and pier structures over the water shall be conspicuously posted in all cargo areas. (c) Maximum safe load limits shall not be exceeded. (d) All walking and working surfaces in the...
The Effect of Suspension-Line Length on Viking Parachute Inflation Loads
NASA Technical Reports Server (NTRS)
Talay, Theodore A.; Poole, Lamont R.; Whitlock, Charles H.
1971-01-01
Analytical calculations have considered the effect on maximum load of increasing the suspension-line length on the Viking parachute. Results indicate that unfurling time is increased to 1.85 seconds from 1.45 seconds, and that maximum loads are increased approximately 5 percent with an uncertainty of -4 percent to +3 percent.
NASA Technical Reports Server (NTRS)
Smiley, Robert F.; Haines, Gilbert A.
1949-01-01
Bureau of Aeronautics Design Specifications SS-IC-2 for water loads in sheltered water are compared with experimental water loads obtained during a full--scale landing investigation. This investigation was conducted with a JRS-1 flying boat which has a 20 degrees dead-rise V-bottom with a partial chine flare. The range of landing conditions included airspeeds between 88 and 126 feet per second, sinking speeds between 1.6 and 9.1 feet per second, flight angles less than 6 degrees, and trims between 2 degrees and 12 degrees. Landings were moderate and were made in calm water. Measurements were obtained of maximum over-all loads, maximum pitching moments, and pressure distributions. Maximum experimental loads include over-all load factors of 2g, moments of 128,000 pound-feet, and maximum local pressures greater than 40 pounds per square inch. Experimental over-all loads are approximately one-half the design values, while local pressures are of the same order as or larger than pressures calculated from specifications for plating, stringer, floor, and frame design. The value of this comparison is limited, to some extent, by the moderate conditions of the test and by the necessary simplifying assumptions used in comparing the specifications with the experimental loads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozubal, E.
2013-02-01
This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systemsmore » work, and describes a refrigerant free liquid desiccant based cooling system.« less
Robinson, James R; Frank, Evelyn G; Hunter, Alan J; Jermin, Paul J; Gill, Harinderjit S
2018-03-01
A simple suture technique in transosseous meniscal root repair can provide equivalent resistance to cyclic load and is less technically demanding to perform compared with more complex suture configurations, yet maximum yield loads are lower. Various suture materials have been investigated for repair, but it is currently not clear which material is optimal in terms of repair strength. Meniscal root anatomy is also complex; consisting of the ligamentous mid-substance (root ligament), the transition zone between the meniscal body and root ligament; the relationship between suture location and maximum failure load has not been investigated in a simulated surgical repair. (A) Using a knottable, 2-mm-wide, ultra-high-molecular-weight polyethylene (UHMWPE) braided tape for transosseous meniscal root repair with a simple suture technique will give rise to a higher maximum failure load than a repair made using No. 2 UHMWPE standard suture material for simple suture repair. (B) Suture position is an important factor in determining the maximum failure load. Controlled laboratory study. In part A, the posterior root attachment of the medial meniscus was divided in 19 porcine knees. The tibias were potted, and repair of the medial meniscus posterior root was performed. A suture-passing device was used to place 2 simple sutures into the posterior root of the medial meniscus during a repair procedure that closely replicated single-tunnel, transosseous surgical repair commonly used in clinical practice. Ten tibias were randomized to repair with No. 2 suture (Suture group) and 9 tibias to repair with 2-mm-wide knottable braided tape (Tape group). The repair strength was assessed by maximum failure load measured by use of a materials testing machine. Micro-computed tomography (CT) scans were obtained to assess suture positions within the meniscus. The wide range of maximum failure load appeared related to suture position. In part B, 10 additional porcine knees were prepared. Five knees were randomized to the Suture group and 5 to the Tape group. All repairs were standardized for location, and the repair was placed in the body of the meniscus. A custom image registration routine was created to coregister all 29 menisci, which allowed the distribution of maximum failure load versus repair location to be visualized with a heat map. In part A, higher maximum failure load was found for the Tape group (mean, 86.7 N; 95% CI, 63.9-109.6 N) compared with the Suture group (mean, 57.2 N; 95% CI, 30.5-83.9 N). The 3D micro-CT analysis of suture position showed that the mean maximum failure load for repairs placed in the meniscus body (mean, 104 N; 95% CI, 81.2-128.0 N) was higher than for those placed in the root ligament (mean, 35.1 N; 95% CI, 15.7-54.5 N). In part B, the mean maximum failure load was significantly greater for the Tape group, 298.5 N ( P = .016, Mann-Whitney U; 95% CI, 183.9-413.1 N), compared with that for the Suture group, 146.8 N (95% CI, 82.4-211.6 N). Visualization with the heat map revealed that small variations in repair location on the meniscus were associated with large differences in maximum failure load; moving the repair entry point by 3 mm could reduce the failure load by 50%. The use of 2-mm braided tape provided higher maximum failure load than the use of a No. 2 suture. The position of the repair in the meniscus was also a highly significant factor in the properties of the constructs. The results provide insight into material and location for optimal repair strength.
NASA Technical Reports Server (NTRS)
Sheffler, K. D.; Jackson, J. J.
1976-01-01
Thermomechanical fatigue (TMF) and root subcomponent tensile, creep, and low cycle fatigue (LCF) tests were conducted to determine the capability of a fully lamellar directionally solidified eutectic alloy to sustain the airfoil thermal fatigue and root attachment loads anticipated in advanced, hollow, high work turbine blades. A three dimensional finite element elastic stress analysis was performed on typical advanced hollow eutectic airfoil and root-platform designs to determine appropriate conditions for these tests. Results of TMF tests conducted on longitudinal specimens (stress axis parallel to the solidification direction) containing a simulated leading edge cooling hole pattern indicated the longitudinal TMF properties to be more than adequate for the particular advanced hollow blade analyzed, with the strain range for a 10,000 cycle life being more than 50% above the maximum strain range calculated for the advanced hollow blade.
Algorithm for Controlling a Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Benedict, Scott M.
2004-01-01
An algorithm has been developed for controlling a centrifugal compressor that serves as the prime mover in a heatpump system. Experimental studies have shown that the operating conditions for maximum compressor efficiency are close to the boundary beyond which surge occurs. Compressor surge is a destructive condition in which there are instantaneous reversals of flow associated with a high outlet-to-inlet pressure differential. For a given cooling load, the algorithm sets the compressor speed at the lowest possible value while adjusting the inlet guide vane angle and diffuser vane angle to maximize efficiency, subject to an overriding requirement to prevent surge. The onset of surge is detected via the onset of oscillations of the electric current supplied to the compressor motor, associated with surge-induced oscillations of the torque exerted by and on the compressor rotor. The algorithm can be implemented in any of several computer languages.
Macrophyte Community Response to Nitrogen Loading and ...
Empirical determination of nutrient loading thresholds that negatively impact seagrass communities have been elusive due to the multitude of factors involved. Using a mesocosm system that simulated Pacific Northwest estuaries, we evaluated macrophyte metrics across gradients of NO3 loading (0, 1.5, 3 and 6x ambient) and temperature (10 and 20 °C). Macroalgal growth, biomass, and C:N responded positively to increased NO3 load and floating algal mats developed at 20 ºC. Zostera japonica metrics, including C:N, responded more to temperature than to NO3 loading. Z. marina biomass exhibited a negative temperature effect and in some cases a negative NO3 effect, while growth rate increased with temperature. Shoot survival decreased at 20 ºC but was not influenced by NO3 loading. Wasting disease index exhibited a significant temperature by NO3 interaction consistent with increased disease susceptibility. Community shifts observed were consistent with the nutrient loading hypothesis at 20 ºC, but there was no evidence of other eutrophication symptoms due to the short residence time. The Nutrient Pollution Index tracked the NO3 gradient at 10 ºC but exhibited no response at 20 ºC. We suggest that systems characterized by cool temperatures, high NO3 loads, and short residence time may be resilient to many symptoms of eutrophication. Estuarine systems characterized by cool temperatures, high nutrient loads and rapid flushing may be resilient to some symptoms
Response of shallow geothermal energy pile from laboratory model tests
NASA Astrophysics Data System (ADS)
Marto, A.; Amaludin, A.
2015-09-01
In shallow geothermal energy pile systems, the thermal loads from the pile, transferred and stored in the soil will cause thermally induced settlement. This factor must be considered in the geotechnical design process to avoid unexpected hazards. Series of laboratory model tests were carried out to study the behaviour of energy piles installed in kaolin soil, subjected to thermal loads and a combination of axial and thermal loads (henceforth known as thermo-axial loads). Six tests which included two thermal load tests (35°C and 40°C) and four thermo-axial load tests (100 N and 200 N, combined with 35°C and 40°C thermal loads) were conducted. To simulate the behaviour of geothermal energy piles during its operation, the thermo-axial tests were carried out by applying an axial load to the model pile head, and a subsequent application of thermal load. The model soil was compacted at 90% maximum dry density and had an undrained shear strength of 37 kPa, thus classified as having a firm soil consistency. The behaviour of model pile, having the ultimate load capacity of 460 N, was monitored using a linear variable displacement transducer, load cell and wire thermocouple, to measure the pile head settlement, applied axial load and model pile temperature. The acquired data from this study was used to define the thermo-axial response characteristics of the energy pile model. In this study, the limiting settlement was defined as 10% of the model pile diameter. For thermal load tests, higher thermal loads induced higher values of thermal settlement. At 40°C thermal load an irreversible settlement was observed after the heating and cooling cycle was applied to the model pile. Meanwhile, the pile response to thermo-axial loads were attributed to soil consistency and the magnitude of both the axial and thermal loads applied to the pile. The higher the thermoaxial loads, the higher the settlements occurred. A slight hazard on the model pile was detected, since the settlement occurred was greater than the limiting value when the pile was loaded with thermo-axial loads of 40°C and 200 N. It is therefore recommended that the global factor of safety to be applied for energy pile installed in firm soil should be more than 2.3 to prevent any hazard to occur in the future, should the pile also be subjected to thermal load of 40°C or greater.
14 CFR 29.1109 - Carburetor air cooling.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air cooling. 29.1109 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1109 Carburetor air... to maintain the air temperature, at the carburetor inlet, at or below the maximum established value...
14 CFR 29.1109 - Carburetor air cooling.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air cooling. 29.1109 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1109 Carburetor air... to maintain the air temperature, at the carburetor inlet, at or below the maximum established value...
14 CFR 29.1109 - Carburetor air cooling.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1109 Carburetor air... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air cooling. 29.1109 Section 29... to maintain the air temperature, at the carburetor inlet, at or below the maximum established value...
20 K Helium Refrigeration System for NASA-JSC Chamber-A
NASA Technical Reports Server (NTRS)
Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhelef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.
2013-01-01
A new 20 K helium refrigerator installed at NASA Johnson Space Center's Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL s Chamber A to perform ground testing of the James Webb Space Telescope. The chamber previously and currently still has helium cryopumping panels (CPP) and LN2 shrouds used to create Low Earth Orbit environments. Now with the new refrigerator and new helium shrouds (45 x 65 ) the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Labs, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate a inverse coefficient of performance better than 70 W/W for a 18 KW load at 20 K (accounting for liquid nitrogen precooling power) that remains essentially constant down to 1/3 of this load. Even at 10 percent of the maximum capacity, the performance is better than 140 W/W at 20K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10kW at 15 K to 100 kW at 100K. The refrigerator is capable of operating at any load temperature from 15K to ambient with tight temperature stability. The new shroud (36 tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the process design and commissioning results.
Press-hardening of zinc coated steel - characterization of a new material for a new process
NASA Astrophysics Data System (ADS)
Kurz, T.; Larour, P.; Lackner, J.; Steck, T.; Jesner, G.
2016-11-01
Press-hardening of zinc-coated PHS has been limited to the indirect process until a pre-cooling step was introduced before the hot forming to prevent liquid metal embrittlement. Even though that's only a minor change in the process itself it does not only eliminate LME, but increases also the demands on the base material especially in terms of hardenability or phase transformations at temperatures below 700 °C in general. This paper deals with the characterization of a modified zinc-coated material for press-hardening with pre-cooling that assures a robust process. The pre-cooling step itself and especially the transfer of the blank in the hot-forming die is more demanding than the standard 22MnB5 can stand to ensure full hardenability. Therefore the transformation behavior of the modified material is shown in CCT and TTT diagrams. Of the same importance are the changed hot forming temperature and flow curves for material at lower temperatures than typically used in direct hot forming. The resulting mechanical properties after hardening from tensile testing and bending tests are shown in detail. Finally some results from side impact crash tests and correlations of the findings with mechanical properties such as fracture elongation, tensile strength, VDA238 bending angle at maximum force as well as postuniform bending slope are given as well. Fracture elongation is shown to be of little help for damage prediction in side impact crash. Tensile strength and VDA bending properties enable however some accurate prediction of the PHS final damage behavior in bending dominated side impact load case.
NASA Astrophysics Data System (ADS)
Wati, Elvis; Meukam, Pierre; Damfeu, Jean Claude
2017-12-01
Uninsulated concrete block walls commonly found in tropical region have to be retrofitted to save energy. The thickness of insulation layer used can be reduced with the help of modified laterite based bricks layer (with the considerably lower thermal conductivity than that of concrete block layer) during the retrofit building fabrics. The aim of this study is to determine the optimum location and distribution of different materials. The investigation is carried out under steady periodic conditions under the climatic conditions of Garoua in Cameroon using a Simulink model constructed from H-Tools (the library of Simulink models). Results showed that for the continuous air-conditioned space, the best wall configuration from the maximum time lag, minimum decrement factor and peak cooling transmission load perspective, is dividing the insulation layer into two layers and placing one at the exterior surface and the other layer between the two different massive layers with the modified laterite based bricks layer at the interior surface. For intermittent cooling space, the best wall configuration from the minimum energy consumption depends on total insulation thickness. For the total insulation thickness less than 8 cm approximately, the best wall configuration is placing the half layer of insulation material at the interior surface and the other half between the two different massive layers with the modified earthen material at the exterior surface. Results also showed that, the optimum insulation thickness calculated from the yearly cooling transmission (estimated only during the occupied period) and some economic considerations slightly depends on the location of that insulation.
The effects of age and type of carrying task on lower extremity kinematics
Gillette, Jason C.; Stevermer, Catherine A.; Miller, Ross H.; Meardon, Stacey A.; Schwab, Charles V.
2009-01-01
The purpose of this study was to determine the effects of age, load amount, and load symmetry on lower extremity kinematics during carrying tasks. Forty-two participants in four age groups (8-10 years, 12-14 years, 15-17 years, and adults) carried loads of 0%, 10%, and 20% body weight (BW) in large or small buckets unilaterally and bilaterally. Reflective markers were tracked to determine total joint ROM and maximum joint angles during the stance phase of walking. Maximum hip extension, hip adduction, and hip internal rotation angles were significantly greater for each of the child/adolescent age groups as compared to adults. In addition, maximum hip internal rotation angles significantly increased when carrying a 20% BW load. The observation that the 8-10 year old age group carried the lightest absolute loads and still displayed the highest maximum hip internal rotation angles suggests a particular necessity in setting carrying guidelines for the youngest children. PMID:20191410
Cloud and radiative heating profiles associated with the boreal summer intraseasonal oscillation
NASA Astrophysics Data System (ADS)
Kim, Jinwon; Waliser, Duane E.; Cesana, Gregory V.; Jiang, Xianan; L'Ecuyer, Tristan; Neena, J. M.
2018-03-01
The cloud water content (CW) and radiative heating rate (QR) structures related to northward propagating boreal summer intraseasonal oscillations (BSISOs) are analyzed using data from A-train satellites in conjunction with the ERA-Interim reanalysis. It is found that the northward movement of CW- and QR anomalies are closely synchronized with the northward movement of BSISO precipitation maxima. Commensurate with the northward propagating BSISO precipitation maxima, the CW anomalies exhibit positive ice (liquid) CW maxima in the upper (middle/low) troposphere with a prominent tilting structure in which the low-tropospheric (upper-tropospheric) liquid (ice) CW maximum leads (lags) the BSISO precipitation maximum. The BSISO-related shortwave heating (QSW) heats (cools) the upper (low) troposphere; the longwave heating (QLW) cools (heats) the upper (middle/low) troposphere. The resulting net radiative heating (QRN), being dominated by QLW, cools (heats) the atmosphere most prominently above the 200 hPa level (below the 600 hPa level). Enhanced clouds in the upper and middle troposphere appears to play a critical role in increasing low-level QLW and QRN. The vertically-integrated QSW, QLW and QRN are positive in the region of enhanced CW with the maximum QRN near the latitude of the BSISO precipitation maximum. The bottom-heavy radiative heating anomaly resulting from the cloud-radiation interaction may act to strengthen convection.
Energy efficiency evaluation of hospital building office
NASA Astrophysics Data System (ADS)
Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.
2017-01-01
One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.
NASA Astrophysics Data System (ADS)
Wang, Yufeng; Cai, Le; Wang, Songtao; Zhou, Xun
2018-04-01
Unsteady numerical simulations of a high-load transonic turbine stage have been carried out to study the influences of vane trailing edge outer-extending shockwave on rotor blade leading edge film cooling performance. The turbine stage used in this paper is composed of a vane section and a rotor one which are both near the root section of a transonic high-load turbine stage. The Mach number is 0.94 at vane outlet, and the relative Mach number is above 1.10 at rotor outlet. Various positions and oblique angles of film cooling holes were investigated in this research. Results show that the cooling efficiency on the blade surface of rotor near leading edge is significantly affected by vane trailing edge outer-extending shockwave in some cases. In the cases that film holes are close to leading edge, cooling performance suffers more from the sweeping vane trailing edge outer-extending shockwave. In addition, coolant flow ejected from oblique film holes is harder to separate from the blade surface of rotor, and can cover more blade area even under the effects of sweeping vane trailing edge shockwave. As a result, oblique film holes can provide better film cooling performance than vertical film holes do near the leading edge on turbine blade which is swept by shockwaves.
NASA Astrophysics Data System (ADS)
Huang, Haiyun; Zhang, Junping; Li, Yonghe
2018-05-01
Under the weight charge policy, the weigh in motion data at a toll station on the Jing-Zhu Expressway were collected. The statistic analysis of vehicle load data was carried out. For calculating the operating vehicle load effects on bridges, by Monte Carlo method used to generate random traffic flow and influence line loading method, the maximum bending moment effect of simple supported beams were obtained. The extreme value I distribution and normal distribution were used to simulate the distribution of the maximum bending moment effect. By the extrapolation of Rice formula and the extreme value I distribution, the predicted values of the maximum load effects were obtained. By comparing with vehicle load effect according to current specification, some references were provided for the management of the operating vehicles and the revision of the bridge specifications.
Determining the optimal load for jump squats: a review of methods and calculations.
Dugan, Eric L; Doyle, Tim L A; Humphries, Brendan; Hasson, Christopher J; Newton, Robert U
2004-08-01
There has been an increasing volume of research focused on the load that elicits maximum power output during jump squats. Because of a lack of standardization for data collection and analysis protocols, results of much of this research are contradictory. The purpose of this paper is to examine why differing methods of data collection and analysis can lead to conflicting results for maximum power and associated optimal load. Six topics relevant to measurement and reporting of maximum power and optimal load are addressed: (a) data collection equipment, (b) inclusion or exclusion of body weight force in calculations of power, (c) free weight versus Smith machine jump squats, (d) reporting of average versus peak power, (e) reporting of load intensity, and (f) instructions given to athletes/ participants. Based on this information, a standardized protocol for data collection and reporting of jump squat power and optimal load is presented.
Load evaluation of the da Vinci surgical system for transoral robotic surgery.
Fujiwara, Kazunori; Fukuhara, Takahiro; Niimi, Koji; Sato, Takahiro; Kitano, Hiroya
2015-12-01
Transoral robotic surgery, performed with the da Vinci surgical system (da Vinci), is a surgical approach for benign and malignant lesions of the oral cavity and laryngopharynx. It provides several unique advantages, which include a 3-dimensional magnified view and ability to see and work around curves or angles. However, the current da Vinci surgical system does not provide haptic feedback. This is problematic because the potential risks specific to the transoral use of the da Vinci include tooth injury, mucosal laceration, ocular injury and mandibular fracture. To assess the potential for intraoperative injuries, we measured the load of the endoscope and the instrument of the da Vinci Si surgical system. We pressed the endoscope and instrument of the da Vinci Si against Load cell six times each and measured the dynamic load and the time-to-maximum load. We also struck the da Vinci Si endoscope and instrument against the Load cell six times each and measured the impact load. The maximum dynamic load was 7.27 ± 1.31 kg for the endoscope and 1.90 ± 0.72 for the instrument. The corresponding time-to-maximum loads were 1.72 ± 0.22 and 1.29 ± 0.34 s, but the impact loads were significantly lower than the dynamic load. It remains possible that a major load is exerted on adjacent structures by continuous contact with the endoscope and instrument of da Vinci Si. However, there is a minor delay in reaching the maximum load. Careful monitoring by an on-site assistant may, therefore, help prevent contiguous injury.
49 CFR 178.812 - Top lift test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... no loss of contents. [Amdt. 178-103, 59 FR 38074, July 26, 1994, as amended at 66 FR 33452, June 21... types must be loaded to twice the maximum permissible gross mass with the load being evenly distributed. (2) Flexible IBC design types must be filled to six times the maximum net mass, the load being evenly...
Evaporative Cooling in a Holographic Atom Trap
NASA Technical Reports Server (NTRS)
Newell, Raymond
2003-01-01
We present progress on evaporative cooling of Rb-87 atoms in our Holographic Atom Trap (HAT). The HAT is formed by the interference of five intersecting YAG laser beams: atoms are loaded from a vapor-cell MOT into the bright fringes of the interference pattern through the dipole force. The interference pattern is composed of Talbot fringes along the direction of propagation of the YAG beams, prior to evaporative cooling each Talbot fringe contains 300,000 atoms at 50 micro-K and peak densities of 2 x 10(exp 14)/cu cm. Evaporative cooling is achieved through adiabatically decreasing the intensity of the YAG laser. We present data and calculations covering a range of HAT geometries and cooling procedures.
Experimental study of hybrid interface cooling system using air ventilation and nanofluid
NASA Astrophysics Data System (ADS)
Rani, M. F. H.; Razlan, Z. M.; Bakar, S. A.; Desa, H.; Wan, W. K.; Ibrahim, I.; Kamarrudin, N. S.; Bin-Abdun, Nazih A.
2017-09-01
The hybrid interface cooling system needs to be established to chill the battery compartment of electric car and maintained its ambient temperature inside the compartment between 25°C to 35°C. The air cooling experiment has been conducted to verify the cooling capacity, compressor displacement volume, dehumidifying value and mass flow rate of refrigerant (R-410A). At the same time, liquid cooling system is analysed theoretically by comparing the performance of two types of nanofluid, i.e., CuO + Water and Al2O3 + Water, based on the heat load generated inside the compartment. In order for the result obtained to be valid and reliable, several assumptions are considered during the experimental and theoretical analysis. Results show that the efficiency of the hybrid interface cooling system is improved as compared to the individual cooling system.
75 FR 32185 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-07
...: Stuart R. Maudsley et al. (NIA). Patent Status: HHS Reference No. E-143-2010/0--Research Tool. Patent... grilles are moved or accessed. The canopy has an added benefit of reducing heating or cooling loss which.... Also, the canopy controls leakage of heating and cooling, reducing loads on the central building...
29 CFR 1910.254 - Arc welding and cutting.
Code of Federal Regulations, 2013 CFR
2013-07-01
... rated load with rated temperature rises where the temperature of the cooling air does not exceed 40 °C... work; magnetic work clamps shall be freed from adherent metal particles of spatter on contact surfaces... given to safety ground connections of portable machines. (4) Leaks. There shall be no leaks of cooling...
29 CFR 1910.254 - Arc welding and cutting.
Code of Federal Regulations, 2012 CFR
2012-07-01
... rated load with rated temperature rises where the temperature of the cooling air does not exceed 40 °C... work; magnetic work clamps shall be freed from adherent metal particles of spatter on contact surfaces... given to safety ground connections of portable machines. (4) Leaks. There shall be no leaks of cooling...
29 CFR 1910.254 - Arc welding and cutting.
Code of Federal Regulations, 2014 CFR
2014-07-01
... rated load with rated temperature rises where the temperature of the cooling air does not exceed 40 °C... work; magnetic work clamps shall be freed from adherent metal particles of spatter on contact surfaces... given to safety ground connections of portable machines. (4) Leaks. There shall be no leaks of cooling...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankowski, Todd Andrew; Gamboa, Jose A
Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.
Thermal Load Considerations for Detonative Combustion-Based Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Perkins, H. Douglas
2004-01-01
An analysis was conducted to assess methods for, and performance implications of, cooling the passages (tubes) of a pulse detonation-based combustor conceptually installed in the core of a gas turbine engine typical of regional aircraft. Temperature-limited material stress criteria were developed from common-sense engineering practice, and available material properties. Validated, one-dimensional, numerical simulations were then used to explore a variety of cooling methods and establish whether or not they met the established criteria. Simulation output data from successful schemes were averaged and used in a cycle-deck engine simulation in order to assess the impact of the cooling method on overall performance. Results were compared to both a baseline engine equipped with a constant-pressure combustor and to one equipped with an idealized detonative combustor. Major findings indicate that thermal loads in these devices are large, but potentially manageable. However, the impact on performance can be substantial. Nearly one half of the ideally possible specific fuel consumption (SFC) reduction is lost due to cooling of the tubes. Details of the analysis are described, limitations are presented, and implications are discussed.
Apparatus and methods for supplying auxiliary steam in a combined cycle system
Gorman, William G.; Carberg, William George; Jones, Charles Michael
2002-01-01
To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.
Benafan, O; Padula, S A; Skorpenske, H D; An, K; Vaidyanathan, R
2014-10-01
A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel(®) 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ∼1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.
NASA Astrophysics Data System (ADS)
Benafan, O.; Padula, S. A.; Skorpenske, H. D.; An, K.; Vaidyanathan, R.
2014-10-01
A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel® 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N.m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ˜1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.
14 CFR 29.1047 - Takeoff cooling test procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... minutes after the occurence of the highest temperature recorded. (5) The cooling test must be conducted at... takeoff and subsequent climb as follows: (1) Each temperature must be stabilized while hovering in ground...; and (iii) The maximum weight. (2) After the temperatures have stabilized, a climb must be started at...
14 CFR 29.1047 - Takeoff cooling test procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... minutes after the occurance of the highest temperature recorded. (5) The cooling test must be conducted at... takeoff and subsequent climb as follows: (1) Each temperature must be stabilized while hovering in ground...; and (iii) The maximum weight. (2) After the temperatures have stabilized, a climb must be started at...
14 CFR 29.1047 - Takeoff cooling test procedures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... minutes after the occurance of the highest temperature recorded. (5) The cooling test must be conducted at... takeoff and subsequent climb as follows: (1) Each temperature must be stabilized while hovering in ground...; and (iii) The maximum weight. (2) After the temperatures have stabilized, a climb must be started at...
14 CFR 29.1047 - Takeoff cooling test procedures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... minutes after the occurence of the highest temperature recorded. (5) The cooling test must be conducted at... takeoff and subsequent climb as follows: (1) Each temperature must be stabilized while hovering in ground...; and (iii) The maximum weight. (2) After the temperatures have stabilized, a climb must be started at...
14 CFR 29.1047 - Takeoff cooling test procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... minutes after the occurence of the highest temperature recorded. (5) The cooling test must be conducted at... takeoff and subsequent climb as follows: (1) Each temperature must be stabilized while hovering in ground...; and (iii) The maximum weight. (2) After the temperatures have stabilized, a climb must be started at...
14 CFR 23.343 - Design fuel loads.
Code of Federal Regulations, 2012 CFR
2012-01-01
... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...
14 CFR 23.343 - Design fuel loads.
Code of Federal Regulations, 2014 CFR
2014-01-01
... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...
14 CFR 23.343 - Design fuel loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...
14 CFR 23.343 - Design fuel loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...
Daylighting performance and thermal implications of skylights vs. south-facing roof monitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenbaum, M.; Coldham, B.
1997-12-31
This paper reports the results of a comparison of skylights vs. south-facing roof monitors for daylighting the north wall zone of a 10,000 ft{sup 2} office building near Manchester, NH. A physical model was constructed and tested. Simultaneously, the building`s annual thermal performance was modeled with Energy-10 hourly simulation software, and its peak heating and cooling load performance was modeled with the Carrier Corp. Hourly Analysis Program (HAP). Apertures were built into the roof of the model, and several skylight and south-facing roof monitor configurations were tested in both clear and overcast conditions. A design goal was to have themore » building be daylit on overcast as well as clear days. This goal was based more on enhancement of the working environment than it was on electrical energy savings. Monitors with overhangs performed poorly in the overcast conditions--it was determined that 2.4 times as much monitor aperture was needed to yield equivalent light levels in overcast conditions. The thermal models showed that the annual heating and cooling energy cost for the building was the same for either strategy, but that peak cooling loads and peak heating loads were lower with the skylit version. The authors concluded that skylights were preferred over monitors in this application, due to similar annual energy costs, lower peak loads, and lower construction cost.« less
Method of energy load management using PCM for heating and cooling of buildings
Stovall, T.K.; Tomlinson, J.J.
1996-03-26
A method is described for energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt.% phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably ``fully charged``. In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboards that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degrees. In some applications, air circulation at a rate greater than normal convection provides additional comfort. 7 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreutzer, Cory J.; Rugh, John; Tomerlin, Jeff
Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles, including limited vehicle range and the elevated cost in comparison to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. To minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata plug-in hybrid electric vehicle. Technologies that impact vehicle cabin heating in cold weather conditions and cabinmore » cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning. Heated surfaces demonstrated significant reductions in energy use from steady-state heating, including a 29%-59% reduction from heated surfaces. Solar control glass packages demonstrated significant reductions in energy use for both transient and steady-state cooling, with up to a 42% reduction in transient and 12.8% reduction in steady-state energy use for the packages evaluated. Technologies that demonstrated significant climate control load reduction were selected for incorporation into a complete thermal load reduction package. The complete package is set to be evaluated in the second phase of the ongoing project.« less
Method of energy load management using PCM for heating and cooling of buildings
Stovall, Therese K.; Tomlinson, John J.
1996-01-01
A method of energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt. % a phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably "fully charged". In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboard that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degree. In some applications, air circulation at a rate greater than normal convection provides additional comfort.
Method of energy load management using PCM for heating and cooling of buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stovall, T.K.; Tomlinson, J.J.
1996-03-26
A method is described for energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt.% phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material ismore » preferably ``fully charged``. In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboards that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degrees. In some applications, air circulation at a rate greater than normal convection provides additional comfort. 7 figs.« less
Feasibility and operating costs of an air cycle for CCHP in a fast food restaurant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Blanco, Horacio; Vineyard, Edward
This work considers the possibilities of an air-based Brayton cycle to provide the power, heating and cooling needs of fast-food restaurants. A model of the cycle based on conventional turbomachinery loss coefficients is formulated. The heating, cooling and power capabilities of the cycle are extracted from simulation results. Power and thermal loads for restaurants in Knoxville, TN and in International Falls, MN, are considered. It is found that the cycle can meet the loads by setting speed and mass flow-rate apportionment between the power and cooling functional sections. The associated energy costs appear elevated when compared to the cost ofmore » operating individual components or a more conventional, absorption-based CHP system. Lastly, a first-order estimate of capital investments is provided. Suggestions for future work whereby the operational costs could be reduced are given in the conclusions.« less
Energy-Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Withers, Jr., Charles R.
2016-12-01
In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split onmore » seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-01-01
In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split onmore » seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murav’ev, V. P., E-mail: murval@mail.ru; Kochetkov, A. V.; Glazova, E. G.
An algorithm and software for calculating the optimal operating regimes of the process water supply system at the Kalininskaya NPP are described. The parameters of the optimal regimes are determined for time varying meteorological conditions and condensation loads of the NPP. The optimal flow of the cooling water in the turbines is determined computationally; a regime map with the data on the optimal water consumption distribution between the coolers and displaying the regimes with an admissible heat load on the natural cooling lakes is composed. Optimizing the cooling system for a 4000-MW NPP will make it possible to conserve atmore » least 155,000 MW · h of electricity per year. The procedure developed can be used to optimize the process water supply systems of nuclear and thermal power plants.« less
Feasibility and operating costs of an air cycle for CCHP in a fast food restaurant
Perez-Blanco, Horacio; Vineyard, Edward
2016-05-06
This work considers the possibilities of an air-based Brayton cycle to provide the power, heating and cooling needs of fast-food restaurants. A model of the cycle based on conventional turbomachinery loss coefficients is formulated. The heating, cooling and power capabilities of the cycle are extracted from simulation results. Power and thermal loads for restaurants in Knoxville, TN and in International Falls, MN, are considered. It is found that the cycle can meet the loads by setting speed and mass flow-rate apportionment between the power and cooling functional sections. The associated energy costs appear elevated when compared to the cost ofmore » operating individual components or a more conventional, absorption-based CHP system. Lastly, a first-order estimate of capital investments is provided. Suggestions for future work whereby the operational costs could be reduced are given in the conclusions.« less
High efficiency 40 K single-stage Stirling-type pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Wu, X. L.; Chen, L. B.; Pan, C. Z.; Cui, C.; Wang, J. J.; Zhou, Y.
2017-12-01
A high efficiency single-stage Stirling-type coaxial pulse tube cryocooler (SPTC) operating at around 40 K has been designed, built and tested. The double-inlet and the inertance tubes together with the gas reservoir were adopted as the phase shifters. Under the conditions of 2.5 MPa charging pressure and 30 Hz operating frequency, the prototype has achieved a no-load temperature of 23.8 K with 330 W of electric input power at a rejection temperature of 279 K. When the input power increases to 400 W, it can achieve a cooling capacity of 4.7 W/40 K while rejecting heat at 279 K yielding an efficiency of 7.02% relative to Carnot. It achieves a cooling capacity of 5 W/40 K with an input power of 450 W. It takes 10 minutes for the SPTC to cool to its no-load temperature of 40 K from 295 K.
Experimental parametric study of servers cooling management in data centers buildings
NASA Astrophysics Data System (ADS)
Nada, S. A.; Elfeky, K. E.; Attia, Ali M. A.; Alshaer, W. G.
2017-06-01
A parametric study of air flow and cooling management of data centers servers is experimentally conducted for different design conditions. A physical scale model of data center accommodating one rack of four servers was designed and constructed for testing purposes. Front and rear rack and server's temperatures distributions and supply/return heat indices (SHI/RHI) are used to evaluate data center thermal performance. Experiments were conducted to parametrically study the effects of perforated tiles opening ratio, servers power load variation and rack power density. The results showed that (1) perforated tile of 25% opening ratio provides the best results among the other opening ratios, (2) optimum benefit of cold air in servers cooling is obtained at uniformly power loading of servers (3) increasing power density decrease air re-circulation but increase air bypass and servers temperature. The present results are compared with previous experimental and CFD results and fair agreement was found.
Method of operating a thermoelectric generator
Reynolds, Michael G; Cowgill, Joshua D
2013-11-05
A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.
Coolant and ambient temperature control for chillerless liquid cooled data centers
Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.
2016-02-02
Cooling control methods include measuring a temperature of air provided to a plurality of nodes by an air-to-liquid heat exchanger, measuring a temperature of at least one component of the plurality of nodes and finding a maximum component temperature across all such nodes, comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold, and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the plurality of nodes based on the comparisons.
Flow Analysis of Isobutane (R-600A) Inside AN Adiabatic Capillary Tube
NASA Astrophysics Data System (ADS)
Alok, Praveen; Sahu, Debjyoti
2018-02-01
Capillary tubes are simple narrow tubes but the phase change which occurs inside the capillary tubes is complex to analyze. In the present investigation, an attempt is made to analyze the flow of Isobutane (R-600a) inside the coiled capillary tubes for different load conditions by Homogeneous Equilibrium Model. The Length and diameter of the capillary tube not only depend on the pressure and temperature of the condenser and evaporator but also on the cooling load. The present paper investigates the change in dimensions of the coil capillary tube with respect to the change in cooling load on the system for the constant condenser and evaporator conditions. ANSYS CFX (Central Florida Expressway) software is used to study the flow characteristics of the refrigerant. Appropriate helical coil is selected for this analysis.
Debris trap in a turbine cooling system
Wilson, Ian David
2002-01-01
In a turbine having a rotor and a plurality of stages, each stage comprising a row of buckets mounted on the rotor for rotation therewith; and wherein the buckets of at least one of the stages are cooled by steam, the improvement comprising at least one axially extending cooling steam supply conduit communicating with an at least partially annular steam supply manifold; one or more axially extending cooling steam feed tubes connected to the manifold at a location radially outwardly of the cooling steam supply conduit, the feed tubes arranged to supply cooling steam to the buckets of at least one of the plurality of stages; the manifold extending radially beyond the feed tubes to thereby create a debris trap region for collecting debris under centrifugal loading caused by rotation of the rotor.
46 CFR 172.087 - Cargo loading assumptions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...
46 CFR 172.087 - Cargo loading assumptions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...
46 CFR 172.087 - Cargo loading assumptions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...
46 CFR 172.087 - Cargo loading assumptions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...
46 CFR 172.087 - Cargo loading assumptions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...
Comparative study of control strategies for hybrid GSHP system in the cooling dominated climate
Wang, Shaojie; Liu, Xiaobing; Gates, Steve
2015-01-06
The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixedmore » setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7 [1]. In the end, the simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the reduced size well field.« less
The Fatigue Behavior of Built-Up Welded Beams of Commercially Pure Titanium
NASA Astrophysics Data System (ADS)
Patnaik, Anil; Poondla, Narendra; Bathini, Udaykar; Srivatsan, T. S.
2011-10-01
In this article, the results of a recent study aimed at evaluating, understanding, and rationalizing the extrinsic influence of fatigue loading on the response characteristics of built-up welded beams made from commercially pure titanium (Grade 2) are presented and discussed. The beams were made from welding plates and sheets of titanium using the pulsed gas metal arc welding technique to form a structural beam having an I-shaped cross section. The welds made for the test beams of the chosen metal were fillet welds using a matching titanium filler metal wire. The maximum and minimum load values at which the built-up beams were cyclically deformed were chosen to be within the range of 22-45% of the maximum predicted flexural static load. The beams were deformed in fatigue at a stress ratio of 0.1 and constant frequency of 5 Hz. The influence of the ratio of maximum load with respect to the ultimate failure load on fatigue performance, quantified in terms of fatigue life, was examined. The percentage of maximum load to ultimate load that resulted in run-out of one million cycles was established. The overall fracture behavior of the failed beam sample was characterized by scanning electron microscopy observations to establish the conjoint influence of load severity, intrinsic microstructural effects, and intrinsic fracture surface features in governing failure by fracture.
Simulation of cooling efficiency via miniaturised channels in multilayer LTCC for power electronics
NASA Astrophysics Data System (ADS)
Pietrikova, Alena; Girasek, Tomas; Lukacs, Peter; Welker, Tilo; Müller, Jens
2017-03-01
The aim of this paper is detailed investigation of thermal resistance, flow analysis and distribution of coolant as well as thermal distribution inside multilayer LTCC substrates with embedded channels for power electronic devices by simulation software. For this reason four various structures of internal channels in the multilayer LTCC substrates were designed and simulated. The impact of the volume flow, structures of channels, and power loss of chip was simulated, calculated and analyzed by using the simulation software Mentor Graphics FloEFDTM. The structure, size and location of channels have the significant impact on thermal resistance, pressure of coolant as well as the effectivity of cooling power components (chips) that can be placed on the top of LTCC substrate. The main contribution of this paper is thermal analyze, optimization and impact of 4 various cooling channels embedded in LTCC multilayer structure. Paper investigate, the effect of volume flow in cooling channels for achieving the least thermal resistance of LTCC substrate that is loaded by power thermal chips. Paper shows on the impact of the first chips thermal load on the second chip as well as. This possible new technology could ensure in the case of practical realization effective cooling and increasing reliability of high power modules.
Modeling and Comparison of Options for the Disposal of Excess Weapons Plutonium in Russia
2002-04-01
fuel LWR cooling time LWR Pu load rate LWR net destruction frac ~ LWR reactors op life mox core frac Excess Separated Pu HTGR Cycle Pu in Waste LWR MOX...reflecting the cycle used in this type of reactor. For the HTGR , the entire core consists of plutonium fuel , therefore a core fraction is not specified...cooling time Time spent fuel unloaded from HTGR reactor must cool before permanently stored 3 years Mox core fraction Fraction of
A simplified model of a mechanical cooling tower with both a fill pack and a coil
NASA Astrophysics Data System (ADS)
Van Riet, Freek; Steenackers, Gunther; Verhaert, Ivan
2017-11-01
Cooling accounts for a large amount of the global primary energy consumption in buildings and industrial processes. A substantial part of this cooling demand is produced by mechanical cooling towers. Simulations benefit the sizing and integration of cooling towers in overall cooling networks. However, for these simulations fast-to-calculate and easy-to-parametrize models are required. In this paper, a new model is developed for a mechanical draught cooling tower with both a cooling coil and a fill pack. The model needs manufacturers' performance data at only three operational states (at varying air and water flow rates) to be parametrized. The model predicts the cooled, outgoing water temperature. These predictions were compared with experimental data for a wide range of operational states. The model was able to predict the temperature with a maximum absolute error of 0.59°C. The relative error of cooling capacity was mostly between ±5%.
[Tibial press-fit fixation of flexor tendons for reconstruction of the anterior cruciate ligament].
Ettinger, M; Liodakis, E; Haasper, C; Hurschler, C; Breitmeier, D; Krettek, C; Jagodzinski, M
2012-09-01
Press-fit fixation of hamstring tendon autografts for anterior cruciate ligament reconstruction is an interesting technique because no hardware is necessary. This study compares the biomechanical properties of press-fit fixations to an interference screw fixation. Twenty-eight human cadaveric knees were used for hamstring tendon explantation. An additional bone block was harvested from the tibia. We used 28 porcine femora for graft fixation. Constructs were cyclically stretched and then loaded until failure. Maximum load to failure, stiffness and elongation during failure testing and cyclic loading were investigated. The maximum load to failure was 970±83 N for the press-fit tape fixation (T), 572±151 N for the bone bridge fixation (TS), 544±109 N for the interference screw fixation (I), 402±77 N for the press-fit suture fixation (S) and 290±74 N for the bone block fixation technique (F). The T fixation had a significantly better maximum load to failure compared to all other techniques (p<0.001). This study demonstrates that a tibial press-fit technique which uses an additional bone block has better maximum load to failure results compared to a simple interference screw fixation.
Method to Increase Performance of Foil Bearings Through Passive Thermal Management
NASA Technical Reports Server (NTRS)
Bruckner, Robert
2013-01-01
This invention is a new approach to designing foil bearings to increase their load capacity and improve their reliability through passive thermal management. In the present case, the bearing is designed in such a way as to prevent the carryover of lubricant from the exit of one sector to the inlet of the ensuing sector of the foil bearing. When such passive thermal management techniques are used, bearing load capacity is improved by multiples, and reliability is enhanced when compared to current foil bearings. This concept has recently been tested and validated, and shows that load capacity performance of foil bearings can be improved by a factor of two at relatively low speeds with potentially greater relative improvements at higher speeds. Such improvements in performance with respect to speed are typical of foil bearings. Additionally, operation of these newly conceived bearings shows much more reliability and repeatable performance. This trait can be exploited in machine design to enhance safety, reliability, and overall performance. Finally, lower frictional torque has been demonstrated when operating at lower (non-load capacity) loads, thus providing another improvement above the current state of the art. The objective of the invention is to incorporate features into a foil bearing that both enhance passive thermal management and temperature control, while at the same time improve the hydrodynamic (load capacity) performance of the foil bearing. Foil bearings are unique antifriction devices that can utilize the working fluid of a machine as a lubricant (typically air for turbines and motors, liquids for pumps), and as a coolant to remove excess energy due to frictional heating. The current state of the art of foil bearings utilizes forced cooling of the bearing and shaft, which represents poor efficiency and poor reliability. This invention embodies features that utilize the bearing geometry in such a manner as to both support load and provide an inherent and passive cooling mechanism. This cooling mechanism functions in such a way as to prevent used (higher temperature) lubricant from being carried over from the exit of one sector into the entry of the next sector of the foil bearing. The disclosed innovation is an improved foil bearing design that reduces or eliminates the need for force cooling of the bearing, while at the same time improving the load capacity of the bearing by at least a factor of two. These improvements are due to the elimination of lubricant carryover from the trailing edge of one sector into the leading edge of the next, and the mixing of used lubricant with the surrounding ambient fluid.
Structural Design and Thermal Analysis for Thermal Shields of the MICE Coupling Magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Michael A.; Pan, Heng; Liu, X. K.
2009-07-01
A superconducting coupling magnet made from copper matrix NbTi conductors operating at 4 K will be used in the Muon Ionization Cooling Experiment (MICE) to produce up to 2.6 T on the magnet centerline to keep the muon beam within the thin RF cavity indows. The coupling magnet is to be cooled by two cryocoolers with a total cooling capacity of 3 W at 4.2 K. In order to keep a certain operating temperature margin, the most important is to reduce the heat leakage imposed on cold surfaces of coil cold mass assembly. An ntermediate temperature shield system placed betweenmore » the coupling coil and warm vacuum chamber is adopted. The shield system consists of upper neck shield, main shields, flexible connections and eight supports, which is to be cooled by the first stage cold heads of two ryocoolers with cooling capacity of 55 W at 60 K each. The maximum temperature difference on the shields should be less than 20 K, so the thermal analyses for the shields with different thicknesses, materials, flexible connections for shields' cooling and structure design for heir supports were carried out. 1100 Al is finally adopted and the maximum temperature difference is around 15 K with 4 mm shield thickness. The paper is to present detailed analyses on the shield system design.« less
Report #2007-P-00036, September 19, 2007. EPA does not have comprehensive information on the outcomes of the Total Maximum Daily Load (TMDL) program nationwide, nor national data on TMDL implementation activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rugh, John P; Kreutzer, Cory J; Scott, Matthew
Increased adoption of electric-drive vehicles requires overcoming hurdles including limited vehicle range. Vehicle cabin heating and cooling demand for occupant climate control requires energy from the main battery and has been shown to significantly degrade vehicle range. During peak cooling and heating conditions, climate control can require as much as or more energy than propulsion. As part of an ongoing project, the National Renewable Energy Laboratory and project partners Hyundai America Technical Center, Inc., Gentherm, Pittsburgh Glass Works, PPG Industries, Sekisui, 3 M, and Hanon Systems developed a thermal load reduction system to reduce the range penalty associated with electricmore » vehicle climate control. Solar reflective paint, solar control glass, heated and cooled/ventilated seats, heated surfaces, and a heated windshield with door demisters were integrated into a Hyundai Sonata plug-in hybrid electric vehicle. Cold weather field-testing was conducted in Fairbanks, Alaska, and warm weather testing was conducted in Death Valley, California, to assess the system performance in comparison to the baseline production vehicle. In addition, environmental chamber testing at peak heating and cooling conditions was performed to assess the performance of the system in standardized conditions compared to the baseline. Experimental results are presented in this paper, providing quantitative data to automobile manufacturers on the impact of climate control thermal load reduction technologies to increase the advanced thermal technology adoption and market penetration of electric drive vehicles.« less
Simulation of tree shade impacts on residential energy use for space conditioning in Sacramento
NASA Astrophysics Data System (ADS)
Simpson, J. R.; McPherson, E. G.
Tree shade reduces summer air conditioning demand and increases winter heating load by intercepting solar energy that would otherwise heat the shaded structure. We evaluate the magnitude of these effects here for 254 residential properties participating in a utility sponsored tree planting program in Sacramento, California. Tree and building characteristics and typical weather data are used to model hourly shading and energy used for space conditioning for each building for a period of one year. There were an average of 3.1 program trees per property which reduced annual and peak (8 h average from 1 to 9 p.m. Pacific Daylight Time) cooling energy use 153 kWh (7.1%) and 0.08 kW (2.3%) per tree, respectively. Annual heating load increased 0.85 GJ (0.80 MBtu, 1.9%) per tree. Changes in cooling load were smaller, but percentage changes larger, for newer buildings. Averaged over all homes, annual cooling savings of 15.25 per tree were reduced by a heating penalty of 5.25 per tree, for net savings of 10.00 per tree from shade. We estimate an annual cooling penalty of 2.80 per tree and heating savings of 6.80 per tree from reduced wind speed, for a net savings of 4.00 per tree, and total annual savings of 14.00 per tree (43.00 per property). Results are found to be consistent with previous simulations and the limited measurements available.
Zhu, Weibin; White, Michael J.; Nellis, Gregory F.; Klein, Sanford A.; Gianchandani, Yogesh B.
2010-01-01
This paper reports on a micromachined Si/glass stack recuperative heat exchanger with in situ temperature sensors. Numerous high-conductivity silicon plates with integrated platinum resistance temperature detectors (Pt RTDs) are stacked, alternating with low-conductivity Pyrex spacers. The device has a 1 × 1-cm2 footprint and a length of up to 3.5 cm. It is intended for use in Joule–Thomson (J–T) coolers and can sustain pressure exceeding 1 MPa. Tests at cold-end inlet temperatures of 237 K–252 K show that the heat exchanger effectiveness is 0.9 with 0.039-g/s helium mass flow rate. The integrated Pt RTDs present a linear response of 0.26%–0.30%/K over an operational range of 205 K–296 K but remain usable at lower temperatures. In self-cooling tests with ethane as the working fluid, a J–T system with the heat exchanger drops 76.1 K below the inlet temperature, achieving 218.7 K for a pressure of 835.8 kPa. The system reaches 200 K in transient state; further cooling is limited by impurities that freeze within the flow stream. In J–T self-cooling tests with an external heat load, the system reaches 239 K while providing 1 W of cooling. In all cases, there is an additional parasitic heat load estimated at 300–500 mW. PMID:20490284
Cooling performance and evaluation of automotive refrigeration system for a passenger car
NASA Astrophysics Data System (ADS)
Prajitno, Deendarlianto, Majid, Akmal Irfan; Mardani, Mahardeka Dhias; Wicaksono, Wendi; Kamal, Samsul; Purwanto, Teguh Pudji; Fauzun
2016-06-01
A new design of automotive refrigeration system for a passenger car was proposed. To ensure less energy consumption and optimal thermal comfort, the performance of the system were evaluated. This current research was aimed to evaluate the refrigeration characteristics of the system for several types of cooling load. In this present study, a four-passenger wagon car with 1500 cc gasoline engine that equipped by a belt driven compressor (BDC) was used as the tested vehicle. To represent the tropical condition, a set of lamps and wind sources are installed around the vehicle. The blower capacity inside a car is varied from 0.015 m/s to 0.027 m/s and the compressor speed is varied at variable 820, 1400, and 2100 rpm at a set temperature of 22°C. A set of thermocouples that combined by data logger were used to measure the temperature distribution. The system uses R-134a as the refrigerant. In order to determine the cooling capacity of the vehicle, two conditions were presented: without passengers and full load conditions. As the results, cooling capacity from any possible heating sources and transient characteristics of temperature in both systems for the cabin, engine, compressor, and condenser are presented in this work. As the load increases, the outlet temperature of evaporator also increases due to the increase of condensed air. This phenomenon also causes the increase of compressor work and compression ratio which associated to the addition of specific volume in compressor inlet.
Performance Evaluation of a Thermal Load Reduction System in a Hyundai Sonata PHEV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreutzer, Cory J; Rugh, John P; Titov, Eugene V
Increased adoption of electric-drive vehicles (EDVs) requires overcoming hurdles including limited vehicle range. Vehicle cabin heating and cooling demand for occupant climate control requires energy from the main battery and has been shown to significantly degrade vehicle range. During peak cooling and heating conditions, climate control can require as much or more energy as propulsion. As part of an ongoing project, NREL and project partners Hyundai America Technical Center, Inc. (HATCI), Gentherm , Pittsburgh Glass Works (PGW), PPG Industries, Sekisui, 3M, and Hanon Systems developed a thermal load reduction system in order to reduce the range penalty associated with electricmore » vehicle climate control. Solar reflective paint, solar control glass, heated and cooled/ventilated seats, heated surfaces, and heated windshield with door demisters were integrated into a Hyundai Sonata plug-in hybrid electric vehicle (PHEV). Cold weather field-testing was conducted in Fairbanks, Alaska while warm weather testing was conducted in Death Valley, California to assess the system performance in comparison to the baseline production vehicle. In addition, environmental chamber testing at peak heating and cooling conditions was performed to assess the performance of the system in standardized conditions compared to the baseline. Experimental results are presented in this paper providing quantitative data to automobile manufacturers on the impact of climate control thermal load reduction technologies to increase the advanced thermal technology adoption and market penetration of electric drive vehicles.« less
Lin, Shi-Ming; Lin, Chen-Chun; Chen, Wei-Ting; Chen, Yi-Chen; Hsu, Chao-Wei
2007-09-01
To compare the effectiveness of ablation techniques for hepatocellular carcinoma (HCC) with the use of four radiofrequency (RF) devices. One hundred patients with 133 HCC lesions no larger than 4 cm were treated with one of four RF devices: RF 2000 (maximum power, 100 W) and RF 3000 generators (maximum power, 200 W) with LeVeen expandable electrodes with a maximum dimension of 3.5 cm or 4 cm, internally cooled single electrode with a thermal dimension of 3 cm, and a RITA RF generator with expandable electrodes with a maximum dimension of 5 cm. Numbers of RF sessions needed per HCC to achieve complete necrosis were 1.4 +/- 0.5 with the RF 2000 device and greater than 1.1 +/- 0.3 with the other three devices (P < .05). The RF 2000 device required a more interactive algorithm than the RF 3000 device. Session times per patient were 31.7 minutes +/- 13.2 in the RF 2000 group and longer than 16.6 minutes +/- 7.5 in the RF 3000 group, 28.3 minutes +/- 12 in the RITA device group, and 27.1 minutes +/- 12 with the internally cooled electrode device (P < .005 for RF 2000 vs other devices and for RF 3000 vs RITA or internally cooled electrode device). Complete necrosis and local tumor progression rates at 2 years in the RF 2000, RF 3000, RITA, and internally cooled electrode device groups were 91.1%, 97.1%, 96.7%, and 96.8% and 12%, 8%, 8.2%, and 8.3%, respectively (P = .37). Ablation with the RF 3000 device required a shorter time than the other three devices and required a less interactive algorithm than the RF 2000 device. However, complete necrosis and local tumor progression rates were similar among devices.
Investigation into the Cyclic Strength of the Bodies of Steam Shutoff Valves from 10Kh9MFB-Sh Steel
NASA Astrophysics Data System (ADS)
Skorobogatykh, V. N.; Kunavin, S. A.; Prudnikov, D. A.; Shchenkova, I. A.; Bazhenov, A. M.; Zadoinyi, V. A.; Starkovskii, G. L.
2018-02-01
Steam shutoff valves are operated under complex loading conditions at thermal and nuclear power stations. In addition to exposure to high temperature and stresses resulting in fatigue, these valves are subjected to cyclic loads in heating-up-cooling down, opening-closing, etc. cycles. The number of these cycles to be specified in designing the valves should not exceed the maximum allowable value. Hence, the problem of cyclic failure rate of steam shutoff valve bodies is critical. This paper continues the previous publications about properties of the construction material for steam shutoff valve bodies (grade 10Kh9MFB-Sh steel) produced by electroslag melting and gives the results of investigation into the cyclic strength of this material. Fatigue curves for the steal used for manufacturing steam shutoff valve bodies are presented. The experimental data are compared with the calculated fatigue curves plotted using the procedures outlined in PNAE G-002-986 and RD 10-249-98. It is confirmed that these procedures may be used in designing valve bodies from 10Kh9MFB-Sh steel. The effect of the cyclic damage after preliminary cyclic loading of the specimens according to the prescribed load conditions on the high-temperature strength of the steel is examined. The influence of cyclic failure rate on the long-term strength was investigated using cylindrical specimens with a smooth working section in the as-made conditions and after two regimes of preliminary cyclic loading (training) at a working temperature of 570°C and the number of load cycles exceeding the design value, which was 2 × 103 cycles. The experiments corroborated that the material (10Kh9MFB-Sh steel) of the body manufactured by the method of electroslag melting had high resistance to cyclic failure rate. No effect of cyclic damages in the metal of the investigated specimens on the high-temperature strength has been found.
Flow Separation Side Loads Excitation of Rocket Nozzle FEM
NASA Technical Reports Server (NTRS)
Smalley, Kurt B.; Brown, Andrew; Ruf, Joseph; Gilbert, John
2007-01-01
Modern rocket nozzles are designed to operate over a wide range of altitudes, and are also built with large aspect ratios to enable high efficiencies. Nozzles designed to operate over specific regions of a trajectory are being replaced in modern launch vehicles by those that are designed to operate from earth to orbit. This is happening in parallel with modern manufacturing and wall cooling techniques allowing for larger aspect ratio nozzles to be produced. Such nozzles, though operating over a large range of altitudes and ambient pressures, are typically designed for one specific altitude. Above that altitude the nozzle flow is 'underexpanded' and below that altitude, the nozzle flow is 'overexpanded'. In both conditions the nozzle produces less than the maximum possible thrust at that altitude. Usually the nozzle design altitude is well above sea level, leaving the nozzle flow in an overexpanded state for its start up as well as for its ground testing where, if it is a reusable nozzle such as the Space Shuttle Main Engine (SSME), the nozzle will operate for the majority of its life. Overexpansion in a rocket nozzle presents the critical, and sometimes design driving, problem of flow separation induced side loads. To increase their understanding of nozzle side loads, engineers at MSFC began an investigation in 2000 into the phenomenon through a task entitled "Characterization and Accurate Modeling of Rocket Engine Nozzle Side Loads", led by A. Brown. The stated objective of this study was to develop a methodology to accurately predict the character and magnitude of nozzle side loads. The study included further hot-fire testing of the MC-l engine, cold flow testing of subscale nozzles, CFD analyses of both hot-fire and cold flow nozzle testing, and finite element (fe.) analysis of the MC-1 engine and cold flow tested nozzles. A follow on task included an effort to formulate a simplified methodology for modeling a side load during a two nodal diameter fluid/structure interaction for a single moment in time.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., from other State or local agencies. Temperature effects on sediment transport capacity 1 SMALL. These... cooling ponds and is not expected to be a problem. Effects of cooling water discharge on dissolved oxygen... mitigated. Eutrophication (nutrient loading) and resulting effects on chemical and biological oxygen demands...
Proceedings from the Workshop on Nanoscience for the Soldier
2001-02-09
Affordable, Durable, Flexible Enabled by Active Devices Miniature Ventilation, Cooling & Heating Multi-Functional, Hybrid Power Embedded Micro-Sensors...functional element • Rifle protection, back support & comfort, load bearing stability & interfaces with family of back packs & cooling/ heating system...Integrated physiological & medical sensors – Conductive or Fiber Optic fibers for Data & Power Distribution – Carbon Fiber Heating at wrists
Ultra-low-vibration pulse-tube cryocooler system - cooling capacity and vibration
NASA Astrophysics Data System (ADS)
Ikushima, Yuki; Li, Rui; Tomaru, Takayuki; Sato, Nobuaki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira
2008-09-01
This report describes the development of low-vibration cooling systems with pulse-tube (PT) cryocoolers. Generally, PT cryocoolers have the advantage of lower vibrations in comparison to those of GM cryocoolers. However, cooling systems for the cryogenic laser interferometer observatory (CLIO), which is a gravitational wave detector, require an operational vibration that is sufficiently lower than that of a commercial PT cryocooler. The required specification for the vibration amplitude in cold stages is less than ±1 μm. Therefore, during the development of low-vibration cooling systems for the CLIO, we introduced advanced countermeasures for commercial PT cryocoolers. The cooling performance and the vibration amplitude were evaluated. The results revealed that 4 K and 80 K PT cooling systems with a vibration amplitude of less than ±1 μm and cooling performance of 4.5 K and 70 K at heat loads of 0.5 W and 50 W, respectively, were developed successfully.
NASA Astrophysics Data System (ADS)
Nwe, Y. Y.; Grundmann, G.
1990-11-01
Fluid inclusions in emeralds from the Habachtal, Central Tauern Window, have been studied by microthermometry. Results allow a detailed reconstruction of trapping history and evolution of the metamorphic fluids during the Middle Alpine Tauernkristallisation metamorphic event and some of the subsequent cooling period. Five different types of fluid inclusions, corresponding to at least five trapping periods, have been distinguished. In general, the earliest primary (type 1) inclusions, which occur as negative crystals or thin long tubes, are represented by low salinity ( < 10 wt. % NaCl equivalent) aqueous fluids with or without CO 2 with up to XCO 2 ≈ 0.04. Later primary type 2 inclusions are distinguished by different morphologies and distribution patterns. Lower salinity CO 2-free brines and CO 2-bearing denser inclusions with higher CO 2 contents (up to XCO 2 ≈ 0.11) are characteristic of this stage. The type 2 inclusions may also occur as pseudosecondary arrays. The effects of necking have been studied, and found to be considerable in the type 1 primary inclusions. This mechanism has occasionally resulted in the appearance of almost pure CO 2 fluids. The possibility of fluid immiscibility has been examined, and rejected, for the apparent "coexistence" of primary brine and CO 2-bearing inclusions. Instead, mixing of fluids which fluctuated between two different compositions is proposed. The fluctuation was probably due to the sequence of hydration reactions during the Tauernkristallisation. Maximum trapping pressures (3.6 kbar) obtained for stage 1 of the Tauernkristallisation are thought to represent a situation where sublithostatic fluid pressures exested in shear zones during the crystallisation period of many of the emerald cores and coexisting biotite and actinolite. Maximum fluid pressures of 7 kbar were obtained from the type 2 inclusions. This is similar to pressure estimates obtained from mineral equilibria. At least four phases of deformation are indicated by the trapping history. A pressure-temperature-time path for the Tauernkristallisation and the subsequent cooling/uplift period has been constructed for the Habachtal area, using the maximum pressure estimates obtained in this work together with previously existing data. In the cooling period, fluid pressures lower than the lithostatic load again prevailed. This difference, about 1-2 kbar, was probably due to late stage fracturing and/or the development of an open system. At least two more phases of minor deformation and three more stages of entrapment have been defined for this period. During this time, fluids gradually evolved towards more CO 2-poor, and less saline compositions. The present work shows that the possibility of fluctuations in fluid pressures must be considered seriously when attempting to define the PT cooling path from fluid inclusions in metamorphic rocks, especially those in shear zones. Postulations of retrograde PT paths based on fluid inclusions alone may result in pressure estimates which are too low.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auslander, David; Culler, David; Wright, Paul
The goal of the 2.5 year Distributed Intelligent Automated Demand Response (DIADR) project was to reduce peak electricity load of Sutardja Dai Hall at UC Berkeley by 30% while maintaining a healthy, comfortable, and productive environment for the occupants. We sought to bring together both central and distributed control to provide “deep” demand response1 at the appliance level of the building as well as typical lighting and HVAC applications. This project brought together Siemens Corporate Research and Siemens Building Technology (the building has a Siemens Apogee Building Automation System (BAS)), Lawrence Berkeley National Laboratory (leveraging their Open Automated Demand Responsemore » (openADR), Auto-Demand Response, and building modeling expertise), and UC Berkeley (related demand response research including distributed wireless control, and grid-to-building gateway development). Sutardja Dai Hall houses the Center for Information Technology Research in the Interest of Society (CITRIS), which fosters collaboration among industry and faculty and students of four UC campuses (Berkeley, Davis, Merced, and Santa Cruz). The 141,000 square foot building, occupied in 2009, includes typical office spaces and a nanofabrication laboratory. Heating is provided by a district heating system (steam from campus as a byproduct of the campus cogeneration plant); cooling is provided by one of two chillers: a more typical electric centrifugal compressor chiller designed for the cool months (Nov- March) and a steam absorption chiller for use in the warm months (April-October). Lighting in the open office areas is provided by direct-indirect luminaries with Building Management System-based scheduling for open areas, and occupancy sensors for private office areas. For the purposes of this project, we focused on the office portion of the building. Annual energy consumption is approximately 8053 MWh; the office portion is estimated as 1924 MWh. The maximum peak load during the study period was 1175 kW. Several new tools facilitated this work, such as the Smart Energy Box, the distributed load controller or Energy Information Gateway, the web-based DR controller (dubbed the Central Load-Shed Coordinator or CLSC), and the Demand Response Capacity Assessment & Operation Assistance Tool (DRCAOT). In addition, an innovative data aggregator called sMAP (simple Measurement and Actuation Profile) allowed data from different sources collected in a compact form and facilitated detailed analysis of the building systems operation. A smart phone application (RAP or Rapid Audit Protocol) facilitated an inventory of the building’s plug loads. Carbon dioxide sensors located in conference rooms and classrooms allowed demand controlled ventilation. The extensive submetering and nimble access to this data provided great insight into the details of the building operation as well as quick diagnostics and analyses of tests. For example, students discovered a short-cycling chiller, a stuck damper, and a leaking cooling coil in the first field tests. For our final field tests, we were able to see how each zone was affected by the DR strategies (e.g., the offices on the 7th floor grew very warm quickly) and fine-tune the strategies accordingly.« less
Maximum and minimum return losses from a passive two-port network terminated with a mismatched load
NASA Technical Reports Server (NTRS)
Otoshi, T. Y.
1993-01-01
This article presents an analytical method for determining the exact distance a load is required to be offset from a passive two-port network to obtain maximum or minimum return losses from the terminated two-port network. Equations are derived in terms of two-port network S-parameters and load reflection coefficient. The equations are useful for predicting worst-case performances of some types of networks that are terminated with offset short-circuit loads.
Demonstration of a non-contact x-ray source using an inductively heated pyroelectric accelerator
NASA Astrophysics Data System (ADS)
Klopfer, Michael; Satchouk, Vladimir; Cao, Anh; Wolowiec, Thomas; Alivov, Yahya; Molloi, Sabee
2015-04-01
X-ray emission from pyroelectric sources can be produced through non-contact thermal cycling using induction heating. In this study, we demonstrated a proof of concept non-contact x-ray source powered via induction heating. An induction heater operating at 62.5 kHz provided a total of 6.5 W of delivered peak thermal power with 140 V DC of driving voltage. The heat was applied to a ferrous substrate mechanically coupled to a cubic 1 cm3 Lithium Niobate (LiNbO3) pyroelectric crystal maintained in a 3-12 mTorr vacuum. The maximum temperature reached was 175 °C in 86 s of heating. The cooling cycle began immediately after heating and was provided by passive radiative cooling. The total combined cycle time was 250 s. x-ray photons were produced and analyzed in both heating and cooling phases. Maximum photon energies of 59 keV and 55 keV were observed during heating and cooling, respectively. Non-contact devices such as this, may find applications in cancer therapy (brachytherapy), non-destructive testing, medical imaging, and physics education fields.
The Potential of Different Concepts of Fast Breeder Reactor for the French Fleet Renewal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massara, Simone; Tetart, Philippe; Lecarpentier, David
2006-07-01
The performances of different concepts of Fast Breeder Reactor (Na-cooled, He-cooled and Pb-cooled FBR) for the current French fleet renewal are analyzed in the framework of a transition scenario to a 100% FBR fleet at the end of the 21. century. Firstly, the modeling of these three FBR types by means of a semi-analytical approach in TIRELIRE - STRATEGIE, the EDF fuel cycle simulation code, is presented, together with some validation elements against ERANOS, the French reference code system for neutronic FBR analysis (CEA). Afterwards, performances comparisons are made in terms of maximum deployable power, natural uranium consumption and wastemore » production. The results show that the FBR maximum deployable capacity, independently from the FBR technology, is highly sensitive to the fuel cycle options, like the spent nuclear fuel cooling time or the Minor Actinides management strategy. Thus, some of the key parameters defining the dynamic of FBR deployment are highlighted, to inform the orientation of R and D in the development and optimization of these systems. (authors)« less
NASA Technical Reports Server (NTRS)
David, Laurence P.; Jones, Christine; Forman, William; Daines, Stuart
1994-01-01
The NGC 5044 group of galaxies was observed by the ROSAT Position Sensitive Proportional Counter (PSPC) for 30 ks during its reduced pointed phase (1991 July). Due to the relatively cool gas temperature in the group (kT = 0.98 +/- 0.02 keV) and the excellent photon statistics (65,000 net counts), we are able to determine precisely a number of fundamental properties of the group within 250 kpc of the central galaxy. In particular, we present model-independent measurements of the total gravitating mass, the temperature and abundance profiles of the gas, and the mass accretion rate. Between 60 and 250 kpc, the gas is nearly isothermal with T varies as r(exp (-0.13 +/- 0.03)). The total gravitating mass of the group can be unambiguously determined from the observed density and temperature profiles of the gas using the equation of hydrostatic equilibrium. Within 250 kpc, the gravitating mass is 1.6 x 10(exp 13) solar mass, yielding a mass-to-light ratio of 130 solar mass/solar luminosity. The baryons (gas and stars) comprise 12% of the total mass within this radius. At small radii, the temperature clearly increases outward and attains a maximum value at 60 kpc. The positive temperature gradient in the center of the group confirms the existence of a cooling flow. The cooling flow region extends well beyond the temperature maximum with a cooling radius between 100 and 150 kpc. There are two distinct regions in the cooling flow separated by the temperature maximum. In the outer region, the gas is nearly isothermal with a unifor m Fe abundance of approximately 80% solar, the flow is nearly homogeneous with dot-M= 20 to 25 solar mass/year, the X-ray contours are spherically symmetric, and rho(sub gas) varies as r(exp -1.6). In the inner region, the temperature profile has a positive gradient, the mass accretion rate decreases rapidly inward, the gas density profile is steeper, and the X-ray image shows some substrucutre. NGC 5044 is offset from the centroid of the outer X-ray contours indicating that the central galaxy may have a residual velocity with respect to the center of the group potential. There is also a linear X-ray feature with an extent of approximately 30 kpc with one end coincident with NGC 5044. The X-ray emission from this feature is softer than the ambient gas. We interpret this feature as a 'cooling wake' formed by the accreting gas as it is gravitationally focused into the wake of NGC 5044. One of the most surprising results of our PSPC observation is the discovery of a nearly homogeneous cooling flow. Prior results concerning the mass accretion profile in cooling flows indicate that dot-M varies as r. This relation implies that significant mass deposition occurs at large radii which generates an inhomogeneous flow. The mass accretion rate in the NGC 5044 group is essentially a constant beyond 40 kpc (well within the cooling radius). Significant mass deposition (a declining dot-M) does not commence until the gas accretes to within 40 kpc of the group center where the radiative cooling time is approximately equals 10(exp 9) year. Th is radius also corresponds to the temperature maximum, the break in gas density profile, and the onset of structure in the X-ray image. A Hubble constant of H(sub 0) = 50 km/sec/Mpc is used throughout the paper.
NASA Technical Reports Server (NTRS)
Batterson, Sidney A.
1959-01-01
An experimental investigation was made at the Langley landing loads track to obtain data on the maximum spin-up coefficients of friction developed by a landing gear having a static-load rating of 20,000 pounds. The forward speeds ranged from 0 to approximately 180 feet per second and the sinking speeds, from 2.7 feet per second to 9.4 feet per second. The results indicated the variation of the maximum spin-up coefficient of friction with forward speed and vertical load. Data obtained during this investigation are also compared with some results previously obtained for nonrolling tires to show the effect of forward speed.
Energy Integrated Lighting-Heating-Cooling System.
ERIC Educational Resources Information Center
Meckler, Gershon; And Others
1964-01-01
Energy balance problems in the design of office buildings are analyzed. Through the use of integrated systems utilizing dual purpose products, a controlled environment with minimum expenditure of energy, equipment and space can be provided. Contents include--(1) office building occupancy loads, (2) office building heating load analysis, (3) office…
Microprocessor-controlled step-down maximum-power-point tracker for photovoltaic systems
NASA Astrophysics Data System (ADS)
Mazmuder, R. K.; Haidar, S.
1992-12-01
An efficient maximum power point tracker (MPPT) has been developed and can be used with a photovoltaic (PV) array and a load which requires lower voltage than the PV array voltage to be operated. The MPPT makes the PV array to operate at maximum power point (MPP) under all insolation and temperature, which ensures the maximum amount of available PV power to be delivered to the load. The performance of the MPPT has been studied under different insolation levels.
Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines
NASA Technical Reports Server (NTRS)
ng, Ten-See
2005-01-01
Nozzle side loads are potentially detrimental to the integrity and life of almost all launch vehicles. the lack of a detailed prediction capability results in reducing life and increased weight for reusable nozzle systems. A clear understanding of the mechanism that contribute to side loads during engine startup, shutdown, and steady-state operations must be established. A CFD based predictive tool must be developed to aid the understanding of side load physics and development of future reusable engine.
NASA Astrophysics Data System (ADS)
Dutta, R. K.; Huizenga, R. M.; Amirthalingam, M.; Hermans, M. J. M.; King, A.; Richardson, I. M.
2013-09-01
In situ phase transformation behavior of a high strength S690QL1 steel during continuous cooling under different mechanical loading conditions has been used to investigate the effect of small external loads on the transformation-induced plasticity during bainitic and martensitic transformations. The results show that during phase transformations, the untransformed austenite undergoes plastic deformation, thereby retarding further transformation to bainite/martensite. This occurs independent of external load.
Brazaitis, Marius; Skurvydas, Albertas; Pukėnas, Kazimieras; Daniuseviciūtė, Laura; Mickevicienė, Dalia; Solianik, Rima
2012-11-01
In this study, we questioned whether local cooling of muscle or heating involving core and muscle temperatures are the main indicators for force variability. Ten volunteers performed a 2-min maximum voluntary contraction (MVC) of the knee extensors under control (CON) conditions after passive heating (HT) and cooling (CL) of the lower body. HT increased muscle and rectal temperatures, whereas CL lowered muscle temperature but did not affect rectal temperature. During 2-min MVC, peak force decreased to a lower level in HT compared with CON and CL experiments. Greater central fatigue was found in the HT experiment, and there was less in the CL experiment than in the CON experiment. Increased core and muscle temperature increased physiological tremor and the amount and structural complexity of force variability of the exercising muscles, whereas local muscle cooling decreased all force variability variables measured. Copyright © 2012 Wiley Periodicals, Inc.
Efficiency and its bounds for thermal engines at maximum power using Newton's law of cooling.
Yan, H; Guo, Hao
2012-01-01
We study a thermal engine model for which Newton's cooling law is obeyed during heat transfer processes. The thermal efficiency and its bounds at maximum output power are derived and discussed. This model, though quite simple, can be applied not only to Carnot engines but also to four other types of engines. For the long thermal contact time limit, new bounds, tighter than what were known before, are obtained. In this case, this model can simulate Otto, Joule-Brayton, Diesel, and Atkinson engines. While in the short contact time limit, which corresponds to the Carnot cycle, the same efficiency bounds as that from Esposito et al. [Phys. Rev. Lett. 105, 150603 (2010)] are derived. In both cases, the thermal efficiency decreases as the ratio between the heat capacities of the working medium during heating and cooling stages increases. This might provide instructions for designing real engines. © 2012 American Physical Society
Zhu, Weibin; Park, Jong M.; White, Michael J.; Nellis, Gregory F.; Gianchandani, Yogesh B.
2011-01-01
This article reports the evaluation of a Joule–Thomson (JT) cooling system that combines two custom micromachined components—a Si/glass-stack recuperative heat exchanger and a piezoelectrically actuated expansion microvalve. With the microvalve controlling the flow rate, this system can modulate cooling to accommodate varying refrigeration loads. The perforated plate Si/glass heat exchanger is fabricated with a stack of alternating silicon plates and Pyrex glass spacers. The microvalve utilizes a lead zirconate titanate actuator to push a Si micromachined valve seat against a glass plate, thus modulating the flow passing through the gap between the valve seat and the glass plate. The fabricated heat exchanger has a footprint of 1×1 cm2 and a length of 35 mm. The size of the micromachined piezoelectrically actuated valve is about 1×1×1 cm3. In JT cooling tests, the temperature of the system was successfully controlled by adjusting the input voltage of the microvalve. When the valve was fully opened (at an input voltage of −30 V), the system cooled down to a temperature as low as 254.5 K at 430 kPa pressure difference between inlet and outlet at steady state and 234 K at 710 kPa in a transient state. The system provided cooling powers of 75 mW at 255 K and 150 mW at 258 K. Parasitic heat loads at 255 K are estimated at approximately 700 mW. PMID:21552354
Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D
2012-10-01
The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using the wavelet analysis of blood flow oscillations in rats. Twelve Sprague-Dawley rats were randomly assigned to three protocols, including pressure with local cooling (Δt = -10 °C), pressure with local heating (Δt = 10 °C) and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The 3 h loading period was divided into non-overlapping 30 min epochs for the analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased under the conditions of pressure with heating and of pressure without temperature changes, but maintained stable under the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers.
Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D.
2012-01-01
The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using wavelet analysis of blood flow oscillations in rats. Twelve Sprague Dawley rats were randomly assigned into three protocols, including pressure with local cooling (Δt= −10°C), pressure with local heating (Δt= 10°C), and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 hours. Skin blood flow was measured using laser Doppler flowmetry. The 3-hour loading period was divided into non-overlapping 30 min epochs for analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased in the conditions of pressure with heating and of pressure without temperature changes, but maintained stable in the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers. PMID:23010955
Trends in 1970-2010 southern California surface maximum temperatures: extremes and heat waves
NASA Astrophysics Data System (ADS)
Ghebreegziabher, Amanuel T.
Daily maximum temperatures from 1970-2010 were obtained from the National Climatic Data Center (NCDC) for 28 South Coast Air Basin (SoCAB) Cooperative Network (COOP) sites. Analyses were carried out on the entire data set, as well as on the 1970-1974 and 2006-2010 sub-periods, including construction of spatial distributions and time-series trends of both summer-average and annual-maximum values and of the frequency of two and four consecutive "daytime" heat wave events. Spatial patterns of average and extreme values showed three areas consistent with climatological SoCAB flow patterns: cold coastal, warm inland low-elevation, and cool further-inland mountain top. Difference (2006-2010 minus 1970-1974) distributions of both average and extreme-value trends were consistent with the shorter period (1970-2005) study of previous study, as they showed the expected inland regional warming and a "reverse-reaction" cooling in low elevation coastal and inland areas open to increasing sea breeze flows. Annual-extreme trends generally showed cooling at sites below 600 m and warming at higher elevations. As the warming trends of the extremes were larger than those of the averages, regional warming thus impacts extremes more than averages. Spatial distributions of hot-day frequencies showed expected maximum at inland low-elevation sites. Regional warming again thus induced increases at both elevated-coastal areas, but low-elevation areas showed reverse-reaction decreases.
Impacts of Climate Change on Electricity Consumption in Baden-Wuerttemberg
NASA Astrophysics Data System (ADS)
Mimler, S.
2009-04-01
Changes in electricity consumption due to changes in mean air temperatures were examined for the German federal state Baden-Wuerttemberg. Unlike in most recent studies on future electricity demand variations due to climate change, other load influencing factors like the economic, technological and demographic situation were fixed to the state of 2006. This allows isolating the climate change effect on electricity demand. The analysis was realised in two major steps. Firstly, an electricity forecast model based on multiple regressions was estimated on the region of Baden-Wuerttemberg by using historical load and temperature data. The estimation of the forecast model provides information on the temperature sensitivity of electricity demand in the given region. The overall heating and cooling gradients are estimated with -59 and 84 MW / °C respectively. These results already point out a low temperature sensitivity of demand in the region of Baden-Wuerttemberg mostly due to a low share of households equipped with electric heating and air conditioning systems. Secondly, near surface air temperature data of the regional climate model REMO [1] was used to simulate load curves for the control period 1971 to 2000 and for three future scenarios 2006 to 2035, 2036 to 2065 and 2066 to 2095. The results show that the overall load decreases throughout all future scenario periods in comparison to the control period. This is due to a higher decrease in heating than increase in cooling load. Nevertheless, the weather dependent part in Baden-Wuerttemberg loads only accounts for 0.05 % of the average load level. Within this weather dependent part, the heating load decreases are highest in June to September concentrated on the day times evening and afternoon. The cooling period broadens from May to September in the control period to April to October by 2095. The highest relative increases occur in October. Regarding day times, the increase in cooling load is concentrated on afternoons, evenings and nights. [1] Jacob, D. (2005a), "REMO A1B Scenario run, UBA project, 0.088 degree resolution, run no.006211, 1H data", World Data Center for Climate, CERA-DB "REMO_UBA_A1B_1_R006211_1H", http://cera-www.dkrz.de/WDCC/ui/Compact.jsp? acronym=REMO_UBA_A1B_1_R006211_1H Jacob, D. (2005b), "REMO climate of the 20th century run, UBA project, 0.088 degree resolution, run no. 006210, 1H data", World Data Center for Climate, CERA-DB "REMO_UBA_C20_1_R006210_1H", http://cera-www.dkrz.de/WDCC/ui/Compact. jsp?acronym=REMO_UBA_C20_1_R006210_1H
Steele, Timothy Doak; Hillier, Donald E.
1981-01-01
Expanded mining and use of coal resources in the Rocky Mountain region of the western United States will have substantial impacts on water resources, environmental amenities, and social and economic conditions. The U.S. Geological Survey has completed a 3-year assessment of the Yampa River basin, Colorado and Wyoming, where increased coal-resource development has begun to affect the environment and quality of life. Economic projections of the overall effects of coal-resource development were used to estimate water use and the types and amounts of waste residuals that need to be assimilated into the environment. Based in part upon these projections, several physical-based models and other semiquantitative assessment methods were used to determine possible effects upon the basin's water resources. Depending on the magnitude of mining and use of coal resources in the basin, an estimated 0.7 to 2.7 million tons (0.6 to 2.4 million metric tons) of waste residuals may be discharged annually into the environment by coal-resource development and associated economic activities. If the assumed development of coal resources in the basin occurs, annual consumptive use of water, which was approximately 142,000 acre-feet (175 million cubic meters) during 1975, may almost double by 1990. In a related analysis of alternative cooling systems for coal-conversion facilities, four to five times as much water may be used consumptively in a wet-tower, cooling-pond recycling system as in once-through cooling. An equivalent amount of coal transported by slurry pipeline would require about one-third the water used consumptively by once-through cooling for in-basin conversion. Current conditions and a variety of possible changes in the water resources of the basin resulting from coal-resource development were assessed. Basin population may increase by as much as threefold between 1975 and 1990. Volumes of wastes requiring treatment will increase accordingly. Potential problems associated with ammonia-nitrogen concentrations in the Yampa River downstream from Steamboat Springs were evaluated using a waste-load assimilative-capacity model. Changes in sediment loads carried by streams due to increased coal mining and construction of roads and buildings may be apparent only locally; projected increases in sediment loads relative to historic loads from the basin are estimated to be 2 to 7 percent. Solid-waste residuals generated by coal-conversion processes and disposed of into old mine pits may cause widely dispersed ground-water contamination, based on simulation-modeling results. Projected increases in year-round water use will probably result in the construction of several proposed reservoirs. Current seasonal patterns of streamflow and of dissolvedsolids concentrations in streamflow will be altered appreciably by these reservoirs. Decreases in time-weighted mean-annual dissolved-solids concentrations of as much as 34 percent are anticipated, based upon model simulations of several configurations of proposed reservoirs. Detailed statistical analyses of water-quality conditions in the Yampa River basin were made. Regionalized maximum waterquality concentrations were estimated for possible comparison with future conditions. Using Landsat imagery and aerial photographs, potential remote-sensing applications were evaluated to monitor land-use changes and to assess both snow cover and turbidity levels in streams. The technical information provided by the several studies of the Yampa River basin assessment should be useful to regional planners and resource managers in evaluating the possible impacts of development on the basin's water resources.
NASA Technical Reports Server (NTRS)
Markey, Melvin F.
1959-01-01
A theory is derived for determining the loads and motions of a deeply immersed prismatic body. The method makes use of a two-dimensional water-mass variation and an aspect-ratio correction for three-dimensional flow. The equations of motion are generalized by using a mean value of the aspect-ratio correction and by assuming a variation of the two-dimensional water mass for the deeply immersed body. These equations lead to impact coefficients that depend on an approach parameter which, in turn, depends upon the initial trim and flight-path angles. Comparison of experiment with theory is shown at maximum load and maximum penetration for the flat-bottom (0 deg dead-rise angle) model with bean-loading coefficients from 36.5 to 133.7 over a wide range of initial conditions. A dead-rise angle correction is applied and maximum-load data are compared with theory for the case of a model with 300 dead-rise angle and beam-loading coefficients from 208 to 530.
Effects of load proportioning on the capacity of multiple-hole composite joints
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Chastain, P. A.
1985-01-01
This study addresses the issue of adjusting the proportion of load transmitted by each hole in a multiple-hole joint so that the joint capacity is a maximum. Specifically two-hole-in-series joints are examined. The results indicate that when each hole reacts 50% of the total load, the joint capacity is not a maximum. One hole generally is understressed at joint failure. The algorithm developed to determine the load proportion at each hole which results in maximum capacity is discussed. The algorithm includes two-dimensional finite-element stress analysis and failure criteria. The algorithm is used to study the effects of joint width, hole spacing, and hole to joint-end distance on load proportioning and capacity. To study hole size effects, two hole diameters are considered. Three laminates are considered: a quasi-isotropic laminate; a cross-ply laminate; and a 45 degree angle-ply laminate. By proportioning the load, capacity can be increased generally from 5 to 10%. In some cases a greater increase is possible.
NASA Technical Reports Server (NTRS)
Montogomery, Leslie D.; Ku, Yu-Tsuan E.; Webbon, Bruce W. (Technical Monitor)
1995-01-01
We have prepared a computer program (RHEOSYS:RHEOencephalographic impedance trace scanning SyStem) that can be used to automate the analysis of segmental impedance blood flow waveforms. This program was developed to assist in the post test analysis of recorded impedance traces from multiple segments of the body. It incorporates many of the blood flow, segmental volume, and vascular state indices reported in the world literature. As it is currently programmed, seven points are selected from each blood flow pulse and associated ECG waveforrn: 1. peak of the first ECG QRS complex, 2. start of systolic slope on the blood flow trace, 3. maximum amplitude of the impedance pulse, 4. position of the dicrotic notch, 5. maximum amplitude of the postdicrotic segment, 6. peak of the second ECG QRS complex, and 7. start of the next blood flow pulse. These points we used to calculate various geometric, area, and time-related values associated with the impedance pulse morphology. RHEOSYS then calculates a series of 34 impedance and cardiac cycle parameters which include pulse amplitudes; areas; pulse propagation times; cardiac cycle times; and various measures of arterial and various tone, contractility, and pulse volume. We used this program to calculate the scalp and intracranial blood flow responses to head and neck cooling as it may be applied to lower the body temperatures of multiple sclerosis patients. Twelve women and twelve men were tested using a commercially available head and neck cooling system operated at its maximum cooling capacity for a period of 30 minutes. Head and neck cooling produced a transient change in scalp blood flow and a significant, (P<0.05) decrease of approx. 30% in intracranial blood flow. Results of this experiment will illustrate how REG and RHEOSYS can be used in biomedical applications.
2012-06-01
calculates a constant convection heat transfer coefficient on the hot and cold side of the cooling jacket wall. The calculated maximum wall temperature for...regeneratively cools the combustion chamber and nozzle. The heat transferred to the fuel from cooling provides enough power to the turbine to power both... heat transfer at the throat compared to a bell nozzle. This increase in heat transfer surface area means more power to the turbine, increased chamber
NASA Astrophysics Data System (ADS)
Shu, Gequn; Pan, Jiaying; Wei, Haiqiao; Shi, Ning
2013-03-01
Knock in spark-ignition(SI) engines severely limits engine performance and thermal efficiency. The researches on knock of downsized SI engine have mainly focused on structural design, performance optimization and advanced combustion modes, however there is little for simulation study on the effect of cooled exhaust gas recirculation(EGR) combined with downsizing technologies on SI engine performance. On the basis of mean pressure and oscillating pressure during combustion process, the effect of different levels of cooled EGR ratio, supercharging and compression ratio on engine dynamic and knock characteristic is researched with three-dimensional KIVA-3V program coupled with pressure wave equation. The cylinder pressure, combustion temperature, ignition delay timing, combustion duration, maximum mean pressure, and maximum oscillating pressure at different initial conditions are discussed and analyzed to investigate potential approaches to inhibiting engine knock while improving power output. The calculation results of the effect of just cooled EGR on knock characteristic show that appropriate levels of cooled EGR ratio can effectively suppress cylinder high-frequency pressure oscillations without obvious decrease in mean pressure. Analysis of the synergistic effect of cooled EGR, supercharging and compression ratio on knock characteristic indicates that under the condition of high supercharging and compression ratio, several times more cooled EGR ratio than that under the original condition is necessarily utilized to suppress knock occurrence effectively. The proposed method of synergistic effect of cooled EGR and downsizing technologies on knock characteristic, analyzed from the aspects of mean pressure and oscillating pressure, is an effective way to study downsized SI engine knock and provides knock inhibition approaches in practical engineering.
Effect of Cooling Units on the Performance of an Automotive Exhaust-Based Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Su, C. Q.; Zhu, D. C.; Deng, Y. D.; Wang, Y. P.; Liu, X.
2017-05-01
Currently, automotive exhaust-based thermoelectric generators (AETEGs) are a hot topic in energy recovery. In order to investigate the influence of coolant flow rate, coolant flow direction and cooling unit arrangement in the AETEG, a thermoelectric generator (TEG) model and a related test bench are constructed. Water cooling is adopted in this study. Due to the non-uniformity of the surface temperature of the heat source, the coolant flow direction would affect the output performance of the TEG. Changing the volumetric flow rate of coolant can increase the output power of multi-modules connected in series or/and parallel as it can improve the temperature uniformity of the cooling unit. Since the temperature uniformity of the cooling unit has a strong influence on the output power, two cooling units are connected in series or parallel to research the effect of cooling unit arrangements on the maximum output power of the TEG. Experimental and theoretical analyses reveal that the net output power is generally higher with cooling units connected in parallel than cooling units connected in series in the cooling system with two cooling units.
Stress-strain state of reinforced bimodulus beam on an elastic foundation
NASA Astrophysics Data System (ADS)
Beskopylny, A. N.; Kadomtseva, E. E.; Strelnikov, G. P.; Berdnik, Y. A.
2017-10-01
The paper provides the calculation theory of an arbitrary supported and arbitrary loaded reinforced beam filled with bimodulus material. The formulas determining normal stresses, bending moments, shear forces, rotation angles and a deflection of a rectangular crosssection beam reinforced with any number of bars aligned parallel to the beam axis have been obtained. The numerical study has been carried out to investigate an influence of a modulus of subgrade reaction on values of maximum normal stresses, maximum bending moments and a maximum deflection of a hinged supported beam loaded with a point force or uniform distributed load. The estimation is based on the method of initial parameters for a beam on elastic foundation and the Bubnov-Galerkin method. Values of maximum deflections, maximum bending moments and maximum stresses obtained by these methods coincide. The numerical studies show that taking into consideration the bimodulus of material leads to the necessity to calculate the strength analysis of both tensile stresses and compressive stresses.
Coolant and ambient temperature control for chillerless liquid cooled data centers
Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.
2017-08-29
Cooling control methods and systems include measuring a temperature of air provided to one or more nodes by an air-to-liquid heat exchanger; measuring a temperature of at least one component of the one or more nodes and finding a maximum component temperature across all such nodes; comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold; and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the one or more nodes based on the comparisons.
Observed Evolution of the Upper-level Thermal Structure in Tropical Cyclones
NASA Astrophysics Data System (ADS)
Rivoire, L.; Birner, T.; Knaff, J. A.
2016-12-01
Tropical cyclones (TCs) are associated with tropopause-level cooling above the well-known tropospheric warm core. While the investigation of tropopause-level structures started as early as 1951, there is no clear consensus on the mechanisms involved. In addition, the large-scale average vertical and radial structure of the tropopause-level cooling is yet to be examined. Tropopause-level cooling destabilizes the upper atmosphere to convection, which potentially allows existing convection to reach higher altitudes. This is of particular importance during the early stages of tropical cyclogenesis. Other important characteristics of the tropopause-level cooling include its amplitude, its position relative to that of the warm core, its radial extent, and its evolution during the lifetime of TCs. These potentially influence TC structure, surface pressure gradients and maximum winds, intensity evolution, and outflow entropy. We use the 322 hurricane-strength TCs from the best-track archive in 2007-2014, along with high vertical resolution temperature measurements from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC). These measurements are composited about the Lifetime Maximum Intensity (LMI) to examine the evolution of the fine-scale upper-level thermal structure inside TCs. We find that the tropopause-cooling has an amplitude similar to that of the warm core. Relative to the far-field structure (the area average between 1300-1500 km radii), tropopause-level cooling is found to occur several days before the warm core is established. Cold anomalies extend up to 1000 km away from the storm center, and may take part in a large-scale poleward transport of cold, dry air in the UTLS. Lastly, cold air masses move away from the storm center (and warm core) after LMI, and their remains lie around the 400-700 km radius -essentially inward of the radius of maximum tangential anticyclonic winds in the outflow layer. We discuss these results in the light of the previously cited TC characteristics, and highlight the importance of an improved description of the upper-level thermal structure in TCs. We also discuss the likely mechanisms involved in TC-induced tropopause-level cooling.
Thermodynamic Analysis of TEG-TEC Device Including Influence of Thomson Effect
NASA Astrophysics Data System (ADS)
Feng, Yuanli; Chen, Lingen; Meng, Fankai; Sun, Fengrui
2018-01-01
A thermodynamic model of a thermoelectric cooler driven by thermoelectric generator (TEG-TEC) device is established considering Thomson effect. The performance is analyzed and optimized using numerical calculation based on non-equilibrium thermodynamic theory. The influence characteristics of Thomson effect on the optimal performance and variable selection are investigated by comparing the condition with and without Thomson effect. The results show that Thomson effect degrades the performance of TEG-TEC device, it decreases the cooling capacity by 27 %, decreases the coefficient of performance (COP) by 19 %, decreases the maximum cooling temperature difference by 11 % when the ratio of thermoelectric elements number is 0.6, the cold junction temperature of thermoelectric cooler (TEC) is 285 K and the hot junction temperature of thermoelectric generator (TEG) is 450 K. Thomson effect degrades the optimal performance of TEG-TEC device, it decreases the maximum cooling capacity by 28 % and decreases the maximum COP by 28 % under the same junction temperatures. Thomson effect narrows the optimal variable range and optimal working range. In the design of the devices, limited-number thermoelectric elements should be more allocated appropriately to TEG when consider Thomson effect. The results may provide some guidelines for the design of TEG-TEC devices.
Modeling and optimization of an enhanced battery thermal management system in electric vehicles
NASA Astrophysics Data System (ADS)
Li, Mao; Liu, Yuanzhi; Wang, Xiaobang; Zhang, Jie
2018-06-01
This paper models and optimizes an air-based battery thermal management system (BTMS) in a battery module with 36 battery lithium-ion cells. A design of experiments is performed to study the effects of three key parameters (i.e., mass flow rate of cooling air, heat flux from the battery cell to the cooling air, and passage spacing size) on the battery thermal performance. Three metrics are used to evaluate the BTMS thermal performance, including (i) the maximum temperature in the battery module, (ii) the temperature uniformity in the battery module, and (iii) the pressure drop. It is found that (i) increasing the total mass flow rate may result in a more non-uniform distribution of the passage mass flow rate among passages, and (ii) a large passage spacing size may worsen the temperature uniformity on the battery walls. Optimization is also performed to optimize the passage spacing size. Results show that the maximum temperature difference of the cooling air in passages is reduced from 23.9 to 2.1 K by 91.2%, and the maximum temperature difference among the battery cells is reduced from 25.7 to 6.4 K by 75.1%.
The United States of America as represented by the United States Department of Energy
2009-12-15
An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.
NASA Technical Reports Server (NTRS)
Rajulu, Sudhakar L.; Klute, Glenn K.
1993-01-01
Astronauts have the task of retrieving and deploying satellites and handling massive objects in a around the payload bay. Concerns were raised that manual handling of such massive objects might induce loads to the shuttle suits exceeding the design-certified loads. The Crew and Thermal Division of NASA JSC simulated the satellite handling tasks (Satellite Manload Tests 1 and 3) and determined the maximum possible load that a suited member could impart onto the suit. In addition, the tests revealed that the load to the suit by an astronaut could be calculated from the astronaut's maximum hand grasp breakaway strength. Thus, this study was conducted to document that hand grasp breakaway strengths of the astronauts who were scheduled to perform EVA during the upcoming missions. In addition, this study verified whether the SML 3 test results were sufficient for documenting the maximum possible load. An attempt was made to predict grasp strength from grip strength and hand anthropometry. Based on the results from this study, the SML 3 test results were deemed sufficient to document the maximum possible load on the suit. Finally, prediction of grasp strength from grip strength was not as accurate as expected. Hence, it was recommended that grasp strength be collected from the astronauts in order to obtain accurate load estimation.
Impact Damage and Strain Rate Effects for Toughened Epoxy Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Minnetyan, Levon
2006-01-01
Structural integrity of composite systems under dynamic impact loading is investigated herein. The GENOA virtual testing software environment is used to implement the effects of dynamic loading on fracture progression and damage tolerance. Combinations of graphite and glass fibers with a toughened epoxy matrix are investigated. The effect of a ceramic coating for the absorption of impact energy is also included. Impact and post impact simulations include verification and prediction of (1) Load and Impact Energy, (2) Impact Damage Size, (3) Maximum Impact Peak Load, (4) Residual Strength, (5) Maximum Displacement, (6) Contribution of Failure Modes to Failure Mechanisms, (7) Prediction of Impact Load Versus Time, and (8) Damage, and Fracture Pattern. A computer model is utilized for the assessment of structural response, progressive fracture, and defect/damage tolerance characteristics. Results show the damage progression sequence and the changes in the structural response characteristics due to dynamic impact. The fundamental premise of computational simulation is that the complete evaluation of composite fracture requires an assessment of ply and subply level damage/fracture processes as the structure is subjected to loads. Simulation results for the graphite/epoxy composite were compared with the impact and tension failure test data, correlation and verification was obtained that included: (1) impact energy, (2) damage size, (3) maximum impact peak load, (4) residual strength, (5) maximum displacement, and (6) failure mechanisms of the composite structure.
Philp, Calvin P; Buchheit, Martin; Kitic, Cecilia M; Minson, Christopher T; Fell, James W
2017-07-01
To investigate whether a 5-d cycling training block in the heat (35°C) in Australian Rules footballers was superior to exercising at the same relative intensity in cool conditions (15°C) for improving intermittent-running performance in a cool environment (<18°C). Using a parallel-group design, 12 semiprofessional football players performed 5 d of cycling exercise (70% heart-rate reserve [HRR] for 45 min [5 × 50-min sessions in total]) in a hot (HEAT, 35°C ± 1°C, 56% ± 9% RH) or cool environment (COOL, 15°C ± 3°C, 81% ± 10% RH). A 30-15 Intermittent Fitness Test to assess intermittent running performance (V IFT ) was conducted in a cool environment (17°C ± 2°C, 58 ± 5% RH) before and twice after (1 and 3 d) the intervention. There was a likely small increase in V IFT in each group (HEAT, 0.5 ± 0.3 km/h, 1.5 ± 0.8 × smallest worthwhile change [SWC]; COOL, 0.4 ± 0.4 km/h, 1.6 ± 1.2 × SWC) 3 d postintervention, with no difference in change between the groups (0.5% ± 1.9%, 0.4 ± 1.4 × SWC). Cycle power output during the intervention was almost certainly lower in the HEAT group (HEAT 1.8 ± 0.2 W/kg vs COOL 2.5 ± 0.3 W/kg, -21.7 ± 3.2 × SWC, 100/0/0). When cardiovascularexercise intensity is matched (ie, 70% HRR) between environmental conditions, there is no additional performance benefit from short-duration moderate-intensity heat exposure (5 × 50 min) for semiprofessional footballers exercising in cool conditions. However, the similar positive adaptations may occur in HEAT with 30% lower mechanical load, which may be of interest for load management during intense training or rehabilitation phases.
Numerical Simulation of Non-Rotating and Rotating Coolant Channel Flow Fields. Part 1
NASA Technical Reports Server (NTRS)
Rigby, David L.
2000-01-01
Future generations of ultra high bypass-ratio jet engines will require far higher pressure ratios and operating temperatures than those of current engines. For the foreseeable future, engine materials will not be able to withstand the high temperatures without some form of cooling. In particular the turbine blades, which are under high thermal as well as mechanical loads, must be cooled. Cooling of turbine blades is achieved by bleeding air from the compressor stage of the engine through complicated internal passages in the turbine blades (internal cooling, including jet-impingement cooling) and by bleeding small amounts of air into the boundary layer of the external flow through small discrete holes on the surface of the blade (film cooling and transpiration cooling). The cooling must be done using a minimum amount of air or any increases in efficiency gained through higher operating temperature will be lost due to added load on the compressor stage. Turbine cooling schemes have traditionally been based on extensive empirical data bases, quasi-one-dimensional computational fluid dynamics (CFD) analysis, and trial and error. With improved capabilities of CFD, these traditional methods can be augmented by full three-dimensional simulations of the coolant flow to predict in detail the heat transfer and metal temperatures. Several aspects of turbine coolant flows make such application of CFD difficult, thus a highly effective CFD methodology must be used. First, high resolution of the flow field is required to attain the needed accuracy for heat transfer predictions, making highly efficient flow solvers essential for such computations. Second, the geometries of the flow passages are complicated but must be modeled accurately in order to capture all important details of the flow. This makes grid generation and grid quality important issues. Finally, since coolant flows are turbulent and separated the effects of turbulence must be modeled with a low Reynolds number turbulence model to accurately predict details of heat transfer.
NASA Astrophysics Data System (ADS)
Tripathi, D.; Dey, T. K.
2014-12-01
A series of MgB2 pellets with and without addition of carbon from different sources (viz. starch, polystyrene and carbon nanotubes) have been synthesized by solid state reaction under argon atmosphere. XRD analysis indicates a decrease in lattice parameters of MgB2 with addition of starch, polystyrene (PS) and MWCNT and confirms substitution of carbon in boron sites. The presence of nanosized carbon inclusions between the grain boundaries in the present set of samples is evident in TEM photographs. Resistivity data confirms a decrease in superconducting transition temperature (Tc0) for MgB2 doped with starch/PS/MWCNT. The effect of different field cooling heights (HIFC) at 20 K on maximum levitation force (FMLF) and maximum attractive force (FMAF) of pure MgB2 and MgB2 doped with starch/PS/MWCNT have been investigated. Except for MWCNT, doping of starch and PS in MgB2 is found to improve FMLF and FMAF and the best result is obtained for MgB2 doped with 1 wt.% PS. Levitation force measured as a function of decreasing initial field cooling height indicates exponential dependence of both maximum levitation force (FMLF) and maximum attractive force (FMAF). However, the gap distance between PM and the sample (H0AF and HMAF) corresponding to maximum attractive force (FMAF) and zero attractive force (F0AF) varies linearly and their difference remains constant. This constancy in (HMAF - H0AF) is understood in terms of constant reduction rate of magnetic flux density between H0AF and HMAF.
Load reduction test method of similarity theory and BP neural networks of large cranes
NASA Astrophysics Data System (ADS)
Yang, Ruigang; Duan, Zhibin; Lu, Yi; Wang, Lei; Xu, Gening
2016-01-01
Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.
Electronic cooling using thermoelectric devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu; Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854
2015-05-18
Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, andmore » one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.« less
NASA Technical Reports Server (NTRS)
Wood, Jessica J.; Foster, Lee W.
2013-01-01
A Multilayer Insulation (MLI) and Broad Area Cooling (BAC) shield thermal control system shows promise for long-duration storage of cryogenic propellant. The NASA Cryogenic Propellant Storage and Transfer (CPST) project is investigating the thermal and structural performance of this tank-applied integrated system. The MLI/BAC Shield Acoustic and Thermal Test was performed to evaluate the MLI/BAC shield's structural performance by subjecting it to worst-case launch acoustic loads. Identical thermal tests using Liquid Nitrogen (LN2) were performed before and after the acoustic test. The data from these tests was compared to determine if any degradation occurred in the thermal performance of the system as a result of exposure to the acoustic loads. The thermal test series consisted of two primary components: a passive boil-off test to evaluate the MLI performance and an active cooling test to evaluate the integrated MLI/BAC shield system with chilled vapor circulating through the BAC shield tubes. The acoustic test used loads closely matching the worst-case envelope of all launch vehicles currently under consideration for CPST. Acoustic test results yielded reasonable responses for the given load. The thermal test matrix was completed prior to the acoustic test and successfully repeated after the acoustic test. Data was compared and yielded near identical results, indicating that the MLI/BAC shield configuration tested in this series is an option for structurally implementing this thermal control system concept.
A miniature Joule-Thomson cooler for optical detectors in space.
Derking, J H; Holland, H J; Tirolien, T; ter Brake, H J M
2012-04-01
The utilization of single-stage micromachined Joule-Thomson (JT) coolers for cooling small optical detectors is investigated. A design of a micromachined JT cold stage-detector system is made that focuses on the interface between a JT cold stage and detector, and on the wiring of the detector. Among various techniques, adhesive bonding is selected as most suitable technique for integrating the detector with the JT cold stage. Also, the optimum wiring of the detector is discussed. In this respect, it is important to minimize the heat conduction through the wiring. Therefore, each wire should be optimized in terms of acceptable impedance and thermal heat load. It is shown that, given a certain impedance, the conductive heat load of electrically bad conducting materials is about twice as high as that of electrically good conducting materials. A micromachined JT cold stage is designed and integrated with a dummy detector. The JT cold stage is operated at 100 K with nitrogen as the working fluid and at 140 K with methane. Net cooling powers of 143 mW and 117 mW are measured, respectively. Taking into account a radiative heat load of 40 mW, these measured values make the JT cold stage suitable for cooling a photon detector with a power dissipation up to 50 mW, allowing for another 27 to 53 mW heat load arising from the electrical leads. © 2012 American Institute of Physics
NASA Astrophysics Data System (ADS)
Hosseini-Bioki, M. M.; Rashidinejad, M.; Abdollahi, A.
2013-11-01
Load shedding is a crucial issue in power systems especially under restructured electricity environment. Market-driven load shedding in reregulated power systems associated with security as well as reliability is investigated in this paper. A technoeconomic multi-objective function is introduced to reveal an optimal load shedding scheme considering maximum social welfare. The proposed optimization problem includes maximum GENCOs and loads' profits as well as maximum loadability limit under normal and contingency conditions. Particle swarm optimization (PSO) as a heuristic optimization technique, is utilized to find an optimal load shedding scheme. In a market-driven structure, generators offer their bidding blocks while the dispatchable loads will bid their price-responsive demands. An independent system operator (ISO) derives a market clearing price (MCP) while rescheduling the amount of generating power in both pre-contingency and post-contingency conditions. The proposed methodology is developed on a 3-bus system and then is applied to a modified IEEE 30-bus test system. The obtained results show the effectiveness of the proposed methodology in implementing the optimal load shedding satisfying social welfare by maintaining voltage stability margin (VSM) through technoeconomic analyses.
Viscoelasticity of human oral mucosa: implications for masticatory biomechanics.
Sawada, A; Wakabayashi, N; Ona, M; Suzuki, T
2011-05-01
The dynamic behavior of oral soft tissues supporting removable prostheses is not well understood. We hypothesized that the stress and strain of the mucosa exhibited time-dependent behavior under masticatory loadings. Displacement of the mucosa on the maxillary residual ridge was measured in vivo by means of a magnetic actuator/sensor under vertical loading in partially edentulous individuals. Subject-specific finite element models of homogeneous bone and mucosa were constructed based on computed tomography images. A mean initial elastic modulus of 8.0 × 10(-5) GPa and relaxation time of 494 sec were obtained from the curve adaptation of the finite element output to the in vivo time-displacement relationship. Delayed increase of the maximum compressive strain on the surface of the mucosa was observed under sustained load, while the maximum strain inside the mucosa was relatively low and uninfluenced by the duration of the load. The compressive stress showed a slight decrease with sustained load, due to stress relaxation of the mucosa. On simulation of cyclic load, the increment of the maximum strain and the evidence of residual strain were revealed after each loading. The results support our hypothesis, and suggest that sustained and repetitive loads accumulate as surface strain on the mucosa.
High-power closed-cycle 4He cryostat with top-loading sample exchange
NASA Astrophysics Data System (ADS)
Piegsa, F. M.; van den Brandt, B.; Kirch, K.
2017-10-01
We report on the development of a versatile cryogen-free laboratory cryostat based upon a commercial pulse tube cryocooler. It provides enough cooling power for continuous recondensation of circulating 4He gas at a condensation pressure of approximately 250 mbar. Moreover, the cryostat allows for exchange of different cryostat-inserts as well as fast and easy ;wet; top-loading of samples directly into the 1 K pot with a turn-over time of less than 75 min. Starting from room temperature and using a 4He cryostat-insert, a base temperature of 1.0 K is reached within approximately seven hours and a cooling power of 250 mW is established at 1.24 K.
NASA Technical Reports Server (NTRS)
Lansing, F. L.; Strain, D. M.; Chai, V. W.; Higgins, S.
1979-01-01
The energy Comsumption Computer Program was developed to simulate building heating and cooling loads and compute thermal and electric energy consumption and cost. This article reports on the new additional algorithms and modifications made in an effort to widen the areas of application. The program structure was rewritten accordingly to refine and advance the building model and to further reduce the processing time and cost. The program is noted for its very low cost and ease of use compared to other available codes. The accuracy of computations is not sacrificed however, since the results are expected to lie within + or - 10% of actual energy meter readings.
Heat dissipation in water-cooled reflectors
NASA Technical Reports Server (NTRS)
Kozai, Toyoki
1994-01-01
The energy balance of a lamp varies with the thermal and optical characteristics of the reflector. The photosynthetic radiation efficiency of lamps, defined as input power divided by photosynthetically active radiation (PAR, 400-700 nm) emitted from the lamp ranges between 0.17 and 0.26. The rest of the energy input is wasted as longwave (3000 nm and over) and non-PAR shortwave radiation (from 700 nm to 3000 nm), convective, and conductive heat from the lamp, reflector, and ballast, and simply for increasing the cooling load. Furthermore, some portion of the PAR is uselessly absorbed by the inner walls, shelves, vessels, etc. and some portion of the PAR received by the plantlets is converted into sensible and latent heat. More than 98% of the energy input is probably converted into heat, with only less than 2% of the energy input being converted into chemical energy as carbohydrates by photosynthesis. Therefore, it is essential to reduce the generation of heat in the culture room in order to reduce the cooling load. Through use of a water-cooled reflector, the generation of convective and conductive heat and longwave radiation from the reflector can be reduced, without reduction of PAR.
Integrative Analysis of Desert Dust Size and Abundance Suggests Less Dust Climate Cooling
NASA Technical Reports Server (NTRS)
Kok, Jasper F.; Ridley, David A.; Zhou, Qing; Miller, Ron L.; Zhao, Chun; Heald, Colette L.; Ward, Daniel S.; Albani, Samuel; Haustein, Karsten
2017-01-01
Desert dust aerosols affect Earths global energy balance through interactions with radiation, clouds, and ecosystems. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change, and the climate impact of possible future alterations in dust loading is similarly disputed. Here we use an integrative analysis of dust aerosol sizes and abundance to constrain the climatic impact of dust through direct interactions with radiation. Using a combination of observational, experimental, and model data, we find that atmospheric dust is substantially coarser than represented in current climate models. Since coarse dust warms global climate, the dust direct radiative effect (DRE) is likely less cooling than the 0.4 W m superscript 2 estimated by models in a current ensemble. We constrain the dust DRE to -0.20 (-0.48 to +0.20) W m superscript 2, which suggests that the dust DRE produces only about half the cooling that current models estimate, and raises the possibility that dust DRE is actually net warming the planet.
NASA Astrophysics Data System (ADS)
Javed, Hassan; Armstrong, Peter
2015-08-01
The efficiency bar for a Minimum Equipment Performance Standard (MEPS) generally aims to minimize energy consumption and life cycle cost of a given chiller type and size category serving a typical load profile. Compressor type has a significant chiller performance impact. Performance of screw and reciprocating compressors is expressed in terms of pressure ratio and speed for a given refrigerant and suction density. Isentropic efficiency for a screw compressor is strongly affected by under- and over-compression (UOC) processes. The theoretical simple physical UOC model involves a compressor-specific (but sometimes unknown) volume index parameter and the real gas properties of the refrigerant used. Isentropic efficiency is estimated by the UOC model and a bi-cubic, used to account for flow, friction and electrical losses. The unknown volume index, a smoothing parameter (to flatten the UOC model peak) and bi-cubic coefficients are identified by curve fitting to minimize an appropriate residual norm. Chiller performance maps are produced for each compressor type by selecting optimized sub-cooling and condenser fan speed options in a generic component-based chiller model. SEER is the sum of hourly load (from a typical building in the climate of interest) and specific power for the same hourly conditions. An empirical UAE cooling load model, scalable to any equipment capacity, is used to establish proposed UAE MEPS. Annual electricity use and cost, determined from SEER and annual cooling load, and chiller component cost data are used to find optimal chiller designs and perform life-cycle cost comparison between screw and reciprocating compressor-based chillers. This process may be applied to any climate/load model in order to establish optimized MEPS for any country and/or region.
Cooling System to Treat Exercise-Induced Hyperthermia
2016-06-01
temperatures . Additionally, individual variations in sweat rates, ventilation rates, fitness levels, and oxygen consumption were not...gastrointestinal MHR maximum heart rate NASA National Aeronautics and Space Administration Tc core temperature UCHS uncompensated heat stress VO2peak peak oxygen consumption ...the effectiveness of a cooling pump based patient thermal management system supplied by Aspen Systems on lowering core body temperature
Code of Federal Regulations, 2010 CFR
2010-10-01
... receive LIHEAP heating, cooling, and crisis assistance benefits that are provided from Federal LIHEAP... crisis assistance benefits received by the grantee's service population that are provided from Federal... source(s) of the data used; (ii) A statement of the grantee's LIHEAP heating, cooling, and crisis...
40 CFR 463.14 - New source performance standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... contact cooling and heating water processes at a new source times the following pollutant concentrations: Subpart A [Contact cooling and heating water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) BOD5 26 Oil and grease 29 TSS 19 pH (1) 1 Within the range of 6.0 to...
Development of a Residential Ground-Source Integrated Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, C Keith; Baxter, Van D; Hern, Shawn
2013-01-01
A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internalmore » control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.« less
Avian thermoregulation in the heat: efficient evaporative cooling in two southern African nightjars.
O'Connor, Ryan S; Wolf, Blair O; Brigham, R Mark; McKechnie, Andrew E
2017-04-01
Nightjars represent a model taxon for investigating physiological limits of heat tolerance because of their habit of roosting and nesting in sunlit sites during the heat of the day. We investigated the physiological responses of Rufous-cheeked nightjars (Caprimulgus rufigena) and Freckled nightjars (Caprimulgus tristigma) to high air temperatures (T a ) by measuring body temperature (T b ), resting metabolic rate (RMR) and total evaporative water loss (TEWL) at T a ranging from 10 to 56 °C. Both species became hyperthermic at T a > T b . Lower critical limits of thermoneutrality occurred at T a between 35 and 37 °C, whereas we detected no clear upper critical limits of thermoneutrality. Between T a ≈ 37.0 and 39.9 °C, rates of TEWL increased rapidly with T a . At T a ≥ 40 °C, fractional increases in mass-specific TEWL rates were 78-106% of allometric predictions. Increasing evaporative heat dissipation incurred only small metabolic costs, with the RMR of neither species ever increasing by more than 20% above thermoneutral values. Consequently, both species displayed extremely efficient evaporative cooling; maximum evaporative heat dissipation was equivalent to 515% of metabolic heat production (MHP) at T a ≈ 56 °C in C. rufigena and 452% of MHP at T a ≈ 52 °C in C. tristigma. Our data reiterate that caprimulgids have evolved an efficient mechanism of evaporative cooling via gular fluttering, which minimizes metabolic heat production at high T a and reduces total heat loads. This likely aids in reducing TEWL rates and helps nightjars cope with some of the most thermally challenging conditions experienced by any bird.
The memoranda clarify existing EPA regulatory requirements for, and provide guidance on, establishing wasteload allocations (WLAs) for storm water discharges in total maximum daily loads (TMDLs) approved or established by EPA.
SELECTION OF CANDIDATE EUTROPHICATION MODELS FOR TOTAL MAXIMUM DAILY LOADS ANALYSES
A tiered approach was developed to evaluate candidate eutrophication models to select a common suite of models that could be used for Total Maximum Daily Loads (TMDL) analyses in estuaries, rivers, and lakes/reservoirs. Consideration for linkage to watershed models and ecologica...
The effect of alcohol blends on the performance of an air cooled Rotary Trochoidal Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutman, M.; Iuster, I.
Results obtained from tests on an air cooled Rotary Trochoidal Engine fueled with a gasoline-alcohol mixture, without modification of the carburetor, are presented in this paper. The tests were performed with one and two spark plugs. Amongst the obtained results, lower thermal load, better economy and improvement in cycling uniformity when running with two spark plugs were observed. The observed reduction in the rotor housing wall temperature and in the oil sump temperature presents particular advantages for an air cooled engine.
The effect of alcohol blends on the performance of an air cooled rotary trochoidal engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutman, M.; Iuster, I.
Results obtained from tests on an air cooled Rotary Trochoidal Engine fueled with a gasoline-alcohol mixture, without modification of the carburetor, are presented in this paper. The tests were performed with one and two spark plugs. Amongst the obtained results, lower thermal load, better economy and improvement in cycling uniformity when running with two spark plugs were observed. The observed reduction in the rotor housing wall temperature and in the oil sump temperature presents particular advantages for an air cooled engine.
Advanced measurement techniques to characterize thermo-mechanical aspects of solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Malzbender, J.; Steinbrech, R. W.
Advanced characterization methods have been used to analyze the thermo-mechanical behaviour of solid oxide fuel cells in a model stack. The primarily experimental work included contacting studies, sealing of a model stack, thermal and re-oxidation cycling. Also an attempt was made to correlate cell fracture in the stack with pore sizes determined from computer tomography. The contacting studies were carried out using pressure sensitive foils. The load to achieve full contact on anode and cathode side of the cell was assessed and applied in the subsequent model stack test. The stack experiment permitted a detailed analysis of stack compaction during sealing. During steady state operation thermal and re-oxidation cycling the changes in open cell voltage and acoustic emissions were monitored. Significant softening of the sealant material was observed at low temperatures. Heating in the thermal cycling loop of the stack appeared to be less critical than the cooling. Re-oxidation cycling led to significant damage if a critical re-oxidation time was exceeded. Microstructural studies permitted further insight into the re-oxidation mechanism. Finally, the maximum defect size in the cell was determined by computer tomography. A limit of maximum anode stress was estimated and the result correlated this with the failure strength observed during the model stack testing.
Calculated Condenser Performance for a Mercury-Turbine Power Plant for Aircraft
NASA Technical Reports Server (NTRS)
Doyle, Ronald B.
1948-01-01
As part of an investigation af the application of nuclear energy to various types of power plants for aircraft, calculations have been made to determine the effect of several operating conditions on the performance of condensers for mercury-turbine power plants. The analysis covered 8 range of turbine-outlet pressures from 1 to 200 pounds per square inch absolute, turbine-inlet pressures from 300 to 700 pounds per square inch absolute,and a range of condenser cooling-air pressure drops, airplane flight speeds, and altitudes. The maximum load-carrying capacity (available for the nuclear reactor, working fluid, and cargo) of a mercury-turbine powered aircraft would be about half the gross weight of the airplane at a flight speed of 509 miles per hour and an altitude of 30,000 feet. This maximum is obtained with specific condenser frontal areas of 0.0063 square foot per net thrust horsepower with the condenser in a nacelle and 0.0060 square foot per net thrust horsepower with the condenser submerged in the wings (no external condenser drag) for a turbine-inlet pressure of 500 pounds per square inch absolute, a turbine-outlet pressure of 10 pounds per square inch absolute, and 8 turbine-inlet temperature of 1600 F.
Conceptual design of a 24-32 MW radially-cooled insert for a greater than or = 45 T hybrid system
NASA Astrophysics Data System (ADS)
Weggel, Robert J.; Hake, Michael E.; Stejskal, Vladimir
1994-07-01
The FBNML is designing and will fabricate a radially-cooled insert magnet to generate 70% of the field of a system, Hybrid V, to surpass 45 T in a 32 mm bore. The insert is to have an overall diameter and a maximum active coil length of 610 mm. With a background field of 14 T the system should generate 47 T at 24 MW and nearly 49 T at 32 MW. The peak stress is extremely high, calling for conductors such as Be-Cu (UNS C17510) and 24% Ag-Cu with strengths up to 1100 MPa. The peak heat flux density also is high, nearly 12 W/mm(exp 2). Because the water is coldest and its velocity highest where the heat flux is highest, however, the peak temperature is only 80 C. The water flow is approximately = 200 l/s at 27 atm. The system is to be very user friendly. Access is completely unobstructed at the top. Insert removal leaves the plumbing and electrical connections intact. The massive and expensive outer coils should be long lived, the inner coil easily replaceable. During an inner coil burnout, a sleeve intercepts arcing from the inner coil to the middle one, reducing burnout severity and fault loads. The insert should be a worthy successor to those of the FBNML's world-record holding systems, Hybrids II and III.
Installation and Commissioning of the Super Conducting RF Linac Cryomodules for the Erlp
NASA Astrophysics Data System (ADS)
Goulden, A. R.; Bate, R.; Buckley, R. K.; Pattalwar, S. M.
2008-03-01
An Energy Recovery Linac Prototype (ERLP) is currently being constructed at Daresbury Laboratory, (UK) to promote the necessary skills in science & technology, particularly in photocathode electron gun and Superconducting RF (SRF), to enable the construction of a fourth generation light source, based on energy recovery linacs-4GLS [1]. The ERLP uses two identical cryomodules, one as a booster Linac used to accelerate the beam to 8.5 MeV, the other as an Energy Recovery Linac (ERL) module with an energy gain of 26.5 MeV. Each module consists of two 9- cell cavities operating at a frequency of 1.3 GHz and a temperature of 2 K. As there is no energy recovery in the booster it requires a peak power of 53 kW; whereas the linac module only requires 8 kW. The RF power is supplied by Inductive Output Tube (IOT) amplifiers. The maximum heat load (or the cooling power) required in the SRF system is 180 W at 2 K and is achieved in two stages: a LN2 pre-cooled Linde TCF50 liquefier produces liquid helium at 4.5 K, followed by a 2 K cold box consisting of a JT valve, recuperator and an external room temperature vacuum pumping system. This presentation reports the experience gained during, installation, commissioning and the initial operation of the cryomodules.
NASA Astrophysics Data System (ADS)
Ezoe, Yuichiro; DiPirro, Michael; Fujimoto, Ryuichi; Ishikawa, Kumi; Ishisaki, Yoshitaka; Kanao, Kenichi; Kimball, Mark; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Murakami, Masahide; Noda, Hirofumi; Ohashi, Takaya; Okamoto, Atsushi; Satoh, Yohichi; Sato, Kosuke; Shirron, Peter; Tsunematsu, Shoji; Yamaguchi, Hiroya; Yoshida, Seiji
2018-01-01
When using superfluid helium in low-gravity environments, porous plug phase separators are commonly used to vent boil-off gas while confining the bulk liquid to the tank. Invariably, there is a flow of superfluid film from the perimeter of the porous plug down the vent line. For the soft x-ray spectrometer onboard ASTRO-H (Hitomi), its approximately 30-liter helium supply has a lifetime requirement of more than 3 years. A nominal vent rate is estimated as ˜30 μg/s, equivalent to ˜0.7 mW heat load. It is, therefore, critical to suppress any film flow whose evaporation would not provide direct cooling of the remaining liquid helium. That is, the porous plug vent system must be designed to both minimize film flow and to ensure maximum extraction of latent heat from the film. The design goal for Hitomi is to reduce the film flow losses to <2 μg/s, corresponding to a loss of cooling capacity of <40 μW. The design adopts the same general design as implemented for Astro-E and E2, using a vent system composed of a porous plug, combined with an orifice, a heat exchanger, and knife-edge devices. Design, on-ground testing results, and in-orbit performance are described.
Predicting the safe load on backpacker's arm using Lagrange multipliers method
NASA Astrophysics Data System (ADS)
Abdalla, Faisal Saleh; Rambely, Azmin Sham
2014-09-01
In this study, a technique has been suggested to reduce a backpack load by transmitting determined loads to the children arm. The purpose of this paper is to estimate school children arm muscles while load carriage as well as to determine the safe load can be carried at wrist while walking with backpack. A mathematical model, as three DOFs model, was investigated in the sagittal plane and Lagrange multipliers method (LMM) was utilized to minimize a quadratic objective function of muscle forces. The muscle forces were minimized with three different load conditions which are termed as 0-L=0 N, 1-L=21.95 N, and 2-L=43.9 N. The investigated muscles were estimated and compared to their maximum forces throughout the load conditions. Flexor and extensor muscles were estimated and the results showed that flexor muscles were active while extensor muscles showed inactivity. The estimated muscle forces were didn't exceed their maximum forces with 0-L and 1-L conditions whereas biceps and FCR muscles exceeded their maximum forces with 2-L condition. Consequently, 1-L condition is quiet safe to be carried by hand whereas 2-L condition is not. Thus to reduce the load in the backpack the transmitted load shouldn't exceed 1-L condition.
The seasonal performance of a liquid-desiccant air conditioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowenstein, A.; Novosel, D.
1995-08-01
Prior reports on liquid-desiccant systems have focused on their steady-state operation at ARI design conditions. By studying their performance during an entire cooling season, the computer modeling presented here shows that liquid-desiccant systems can have a very high seasonal coefficient of performance (COP). For a liquid-desiccant system that uses a double-effect boiler, COPs ranging from 1.44 in a humid location (Houston) to 2.24 in a dry location (Phoenix) are achieved by fully exploiting indirect evaporative cooling and providing only the minimum latent cooling needed to meet the loads on the building. This minimizes the amount of water absorbed by themore » desiccant and, hence, the amount of thermal energy needed to regenerate it. In applications where latent loads are very high, such as processing the high volumes of ventilation air required to maintain good indoor air quality, the liquid-desiccant air conditioner again has an advantage over vapor-compression equipment. In this study, a liquid-desiccant system is modeled that cools and dehumidifies only the ventilation air of an office building in Atlanta. Although processing an airstream that is only 25% of the total air delivered to the building, the liquid-desiccant system is able to meet 52% of the building`s seasonal cooling requirements and reduce the building`s peak electrical demand by about 47%.« less
Yeung, S S; Ng, G Y
2000-06-01
Manual lifting is a frequent cause of back injury, and there is no evidence as to which training mode can provide the best training effect for lifting performance and muscle force. The purpose of this study was to examine the effects of a squat lift training and a free weight muscle training program on the maximum lifting load and isokinetic peak torque in subjects without known neuromuscular or musculoskeletal impairments. Thirty-six adults (20 male, 16 female) without known neuromuscular or musculoskeletal impairments participated. The subjects' mean age was 21.25 years (SD=1.16, range=20-24). Subjects were divided into 3 groups. Subjects in group 1 (n=12) performed squat lift training. Subjects in group 2 (n=12) participated in free weight resistance training of their shoulder abductors, elbow flexors, knee extensors and trunk extensors. Subjects in group 3 (n=12) served as controls. The maximum lifting load and isokinetic peak torques of the trunk extensors, knee extensors, elbow flexors, and shoulder abductors of each subject were measured before and after the study. Training was conducted on alternate days for 4 weeks, with an initial load of 80% of each subject's maximum capacity and with the load increased by 5% weekly. All groups were comparable for all measured variables before the study. After 4 weeks, subjects in groups 1 and 2 demonstrated more improvement in maximum lifting load and isokinetic peak torque of the back extensors compared with the subjects in group 3, but the 2 training groups were not different. The findings demonstrate that both squat lift and free weight resistance training are equally effective in improving the lifting load and isokinetic back extension performance of individuals without impairments.
MEMS Device Being Developed for Active Cooling and Temperature Control
NASA Technical Reports Server (NTRS)
Moran, Matthew E.
2001-01-01
High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.
Zhai, Haibo; Rubin, Edward S
2016-04-05
Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.
Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems
NASA Technical Reports Server (NTRS)
Martin, R. A.; Merrigan, M. A.; Elder, M. G.; Sena, J. T.; Keddy, E. S.; Silverstein, C. C.
1992-01-01
Analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, it is found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700 F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90,000 ft lowers the peak hot-section temperatures to around 2800 F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature.
Stress analysis on passenger deck due to modification from passenger ship to vehicle-carrying ship
NASA Astrophysics Data System (ADS)
Zubaydi, A.; Sujiatanti, S. H.; Hariyanto, T. R.
2018-03-01
Stress is a basic concept in learning about material mechanism. The main focus that needs to be brought to attention in analyzing stress is strength, which is the structural capacity to carry or distribute loads. The structural capacity not only measured by comparing the maximum stress with the material’s yield strength but also with the permissible stress required by the Indonesian Classification Bureau (BKI), which certainly makes it much safer. This final project analyzes stress in passenger deck that experiences modification due to load changes, from passenger load to vehicle one, carrying: 6-wheels truck with maximum weight of 14 tons, a passenger car with maximum weight of 3.5 tons, and a motorcycle with maximum weight of 0.4 tons. The deck structure is modelled using finite element software. The boundary conditions given to the structural model are fix and simple constraint. The load that works on this deck is the deck load which comes from the vehicles on deck with three vehicles’ arrangement plans. After that, software modelling is conducted for analysis purpose. Analysis result shows a variation of maximum stress that occurs i.e. 135 N/mm2, 133 N/mm2, and 152 N/mm2. Those maximum stresses will not affect the structure of passenger deck’s because the maximum stress that occurs indicates smaller value compared to the Indonesian Classification Bureau’s permissible stress (175 N/mm2) as well as the material’s yield strength (235 N/mm2). Thus, the structural strength of passenger deck is shown to be capable of carrying the weight of vehicles in accordance with the three vehicles’ arrangement plans.
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2011 CFR
2011-07-01
... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2013 CFR
2013-07-01
... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2014 CFR
2014-07-01
... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...
40 CFR 204.55-3 - Configuration identification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters; (ii) Type of filters. (5) The engine system: (i) Number of cylinders and configuration (L-6, V-8, V-12..., water cooled. (7) Fan: (i) Diameter; (ii) Maximum fan rpm. (8) The compressor enclosure: (i) Height...
40 CFR 204.55-3 - Configuration identification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters; (ii) Type of filters. (5) The engine system: (i) Number of cylinders and configuration (L-6, V-8, V-12..., water cooled. (7) Fan: (i) Diameter; (ii) Maximum fan rpm. (8) The compressor enclosure: (i) Height...
40 CFR 204.55-3 - Configuration identification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters; (ii) Type of filters. (5) The engine system: (i) Number of cylinders and configuration (L-6, V-8, V-12..., water cooled. (7) Fan: (i) Diameter; (ii) Maximum fan rpm. (8) The compressor enclosure: (i) Height...
40 CFR 204.55-3 - Configuration identification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters; (ii) Type of filters. (5) The engine system: (i) Number of cylinders and configuration (L-6, V-8, V-12..., water cooled. (7) Fan: (i) Diameter; (ii) Maximum fan rpm. (8) The compressor enclosure: (i) Height...
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.
2001-01-01
Two- and three-dimensional finite element analyses were performed on uncoated and thermal barrier coated (TBC) silicon nitride plates with and without internal cooling by air. Steady-state heat-transfer analyses were done to optimize the size and the geometry of the cooling channels to reduce thermal stresses, and to evaluate the thermal environment experienced by the plate during burner rig testing. The limited experimental data available were used to model the thermal profile exerted by the flame on the plate. Thermal stress analyses were performed to assess the stress response due to thermal loading. Contours for the temperature and the representative stresses for the plates were generated and presented for different cooling hole sizes and shapes. Analysis indicates that the TBC experienced higher stresses, and the temperature gradient was much reduced when the plate was internally cooled by air. The advantages and disadvantages of several cooling channel layouts were evaluated.
Magnetic suspension using high temperature superconducting cores
NASA Technical Reports Server (NTRS)
Scurlock, R. G.
1992-01-01
The development of YBCO high temperature superconductors, in wire and tape forms, is rapidly approaching the point where the bulk transport current density j vs magnetic field H characteristics with liquid nitrogen cooling will enable its use in model cores. On the other hand, BSCCO high temperature superconductor in wire form has poor j-H characteristics at 77 K today, although with liquid helium or hydrogen cooling, it appears to be superior to NbTi superconductor. Since liquid nitrogen cooling is approx. 100 times cheaper than liquid helium cooling, the use of YBCO is very attractive for use in magnetic suspension. The design is discussed of a model core to accommodate lift and drag loads up to 6000 and 3000 N respectively. A comparison is made between the design performance of a liquid helium cooled NbTi (or BSCCO) superconducting core and a liquid nitrogen cooled YBCO superconducting core.
Jabs, Douglas A.; Forman, Michael; Enger, Cheryl; Jackson, J. Brooks
1999-01-01
Cytomegalovirus (CMV) DNA loads in paired leukocyte and plasma samples from 199 patient visits by 66 patients with CMV retinitis were determined. Leukocyte CMV load determinations had a greater range of values (mean, 24,587 copies/106 leukocytes; maximum, 539,000) than did plasma CMV load determinations (mean, 10,302 copies/ml; maximum, 386,000), and leukocyte viral loads were detectable in a greater proportion of patients at the time of diagnosis of CMV retinitis prior to initiation of anti-CMV therapy (82%) than were plasma viral loads (64%) (P = 0.0078). Agreement with CMV blood cultures was slightly better for plasma (κ = 0.68) than for leukocytes (κ = 0.53), due to a greater proportion of patients with detectable viral loads in leukocytes having negative blood cultures. PMID:10203500
Patterson, Carson; Raschner, Christian; Platzer, Hans-Peter
2009-05-01
The purpose of this paper was to investigate the power-load relationship and to compare power variables and bilateral force imbalances between sexes with squat jumps. Twenty men and 17 women, all members of the Austrian alpine ski team (junior and European Cup), performed unloaded and loaded (barbell loads equal to 25, 50, 75, and 100% body weight [BW]) squat jumps with free weights using a specially designed spotting system. Ground reaction force records from 2 force platforms were used to calculate relative average power (P), relative average power in the first 100 ms of the jump (P01), relative average power in the first 200 ms of the jump (P02), jump height, percentage of best jump height (%Jump), and maximal force difference between dominant and nondominant leg (Fmaxdiff). The men displayed significantly higher values at all loads for P and jump height (p < 0.05). No significant differences were found in P01. The men had significantly higher P02 at all loads except 75% BW). Maximum P was reached at light loads (men at 25% BW and women at 0% BW), and P decreased uniformly thereafter. Individual power-load curves show a deflection point. It is proposed that the load where the power-load deflection point occurs be used as the power training load and not the load at which maximum P is reached. It is also proposed that loads not be described in %1-repetition maximum (RM), but as %BW. This system can be used to safely assess and train power with loaded jumps and free weights.
Turbomachinery for Low-to-High Mach Number Flight
NASA Technical Reports Server (NTRS)
Tan, Choon S.; Shah, Parthiv N.
2004-01-01
The thrust capability of turbojet cycles is reduced at high flight Mach number (3+) by the increase in inlet stagnation temperature. The 'hot section' temperature limit imposed by materials technology sets the maximum heat addition and, hence, sets the maximum flight Mach number of the operating envelope. Compressor pre-cooling, either via a heat exchanger or mass-injection, has been suggested as a means to reduce compressor inlet temperature and increase mass flow capability, thereby increasing thrust. To date, however, no research has looked at compressor cooling (i.e., using a compressor both to perform work on the gas path air and extract heat from it simultaneously). We wish to assess the feasibility of this novel concept for use in low-to-high Mach number flight. The results to-date show that an axial compressor with cooling: (1) relieves choking in rear stages (hence opening up operability), (2) yields higher-pressure ratio and (3) yields higher efficiency for a given corrected speed and mass flow. The performance benefit is driven: (i) at the blade passage level, by a decrease in the total pressure reduction coefficient and an increase in the flow turning; and (ii) by the reduction in temperature that results in less work required for a given pressure ratio. The latter is a thermodynamic effect. As an example, calculations were performed for an eight-stage compressor with an adiabatic design pressure ratio of 5. By defining non-dimensional cooling as the percentage of compressor inlet stagnation enthalpy removed by a heat sink, the model shows that a non-dimensional cooling of percent in each blade row of the first two stages can increase the compressor pressure ratio by as much as 10-20 percent. Maximum corrected mass flow at a given corrected speed may increase by as much as 5 percent. In addition, efficiency may increase by as much as 5 points. A framework for characterizing and generating the performance map for a cooled compressor has been developed. The approach is based upon CFD computations and mean line analysis. Figures of merit that characterize the bulk performance of blade passage flows with and without cooling are extracted from CFD solutions. Such performance characterization is then applied to a preliminary compressor design framework (mean line). The generic nature of this approach makes it suitable for assessing the effect of different types of compressor cooling schemes, such as heat exchange or evaporative cooling (mass injection). Future work will focus on answering system level questions regarding the feasibility of compressor cooling. Specifically, we wish to determine the operational parametric space in which compressor cooling would be advantageous over other high flight Mach number propulsion concepts. In addition, we will explore the design requirements of cooled compressor turbomachinery, as well as the flow phenomena that limit and control its operation, and the technology barriers that must be crossed for its implementation.
NASA Technical Reports Server (NTRS)
Celino, V. A.
1977-01-01
An appendix providing the technical data required for computerized control and/or monitoring of selected MIST subsystems is presented. Specific computerized functions to be performed are as follows: (1) Control of the MIST heating load simulator and monitoring of the diesel engine generators' cooling system; (2) Control of the MIST heating load simulator and MIST heating subsystem including the heating load simulator; and (3) Control of the MIST air conditioning load simulator subsystem and the MIST air conditioning subsystem, including cold thermal storage and condenser water flows.
Chilled water study EEAP program for Walter Reed Army Medical Center: Book 2. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-02-01
The Energy Engineering Analysis Program (EEAP) Study for Walter Reed Army Medical Center (WRAMC) was to provide a thorough examination of the central chilled water plants on site. WRAMC is comprised of seventy-one (71) buildings located on a 113-acre site in Washington, D.C. There are two (2) central chilled water plants (Buildings 48 and 49) each with a primary chilled water distribution system. In addition to the two (2) central plants, three (3) buildings utilize their own independent chillers. Two (2) of the independent chillers (Buildings 7 and T-2), one of which is inoperative (T-2), are smaller air-cooled units, whilemore » the third (Building 54) has a 1,900-ton chilled water plant comprised of three (3) centrifugal chillers. Of the two (2) central chilled water plants, Building 48 houses six (6) chillers totalling 7,080 tons of cooling and Building 49 houses one (1) chiller with 660 tons of cooling. The total chiller cooling capacity available on site is 9,840 tons. The chilled water systems were reviewed for alternative ways of conserving energy on site and reducing the peak-cooling load. Distribution systems were reviewed to determine which buildings were served by each of the chilled water plants and to determine chilled water usage on site. Evaluations were made of building exterior and interior composition in order to estimate cooling loads. Interviews with site personnel helped Entech better understand the chilled water plants, the distribution systems, and how each system was utilized.« less
49 CFR 178.812 - Top lift test.
Code of Federal Regulations, 2013 CFR
2013-10-01
... renders the IBC, including the base pallets when applicable, unsafe for transportation, and no loss of... twice the maximum permissible gross mass with the load being evenly distributed. (2) Flexible IBC design types must be filled to six times the maximum net mass, the load being evenly distributed. (c) Test...
49 CFR 178.812 - Top lift test.
Code of Federal Regulations, 2014 CFR
2014-10-01
... renders the IBC, including the base pallets when applicable, unsafe for transportation, and no loss of... twice the maximum permissible gross mass with the load being evenly distributed. (2) Flexible IBC design types must be filled to six times the maximum net mass, the load being evenly distributed. (c) Test...
49 CFR 178.812 - Top lift test.
Code of Federal Regulations, 2012 CFR
2012-10-01
... renders the IBC, including the base pallets when applicable, unsafe for transportation, and no loss of... twice the maximum permissible gross mass with the load being evenly distributed. (2) Flexible IBC design types must be filled to six times the maximum net mass, the load being evenly distributed. (c) Test...
49 CFR 178.812 - Top lift test.
Code of Federal Regulations, 2011 CFR
2011-10-01
... renders the IBC, including the base pallets when applicable, unsafe for transportation, and no loss of... twice the maximum permissible gross mass with the load being evenly distributed. (2) Flexible IBC design types must be filled to six times the maximum net mass, the load being evenly distributed. (c) Test...
Low-level nocturnal wind maximum over the Central Amazon Basin
NASA Technical Reports Server (NTRS)
Greco, Steven; Ulanski, Stanley; Garstang, Michael; Houston, Samuel
1992-01-01
A low-level nocturnal wind maximum is shown to exist over extensive and nearly undisturbed rainforest near the central Amazon city of Manaus. Meteorological data indicate the presence of this nocturnal wind maximum during both the wet and dry seasons of the Central Amazon Basin. Daytime wind speeds which are characteristically 3-7 m/s between 300 and 1000 m increase to 10-15 m/s shortly after sunset. The wind-speed maximum is reached in the early evening, with wind speeds remaining high until several hours after sunrise. The nocturnal wind maximum is closely linked to a strong low-level inversion formed by radiational cooling of the rainforest canopy. Surface and low-level pressure gradients between the undisturbed forest and the large Amazon river system and the city of Manaus are shown to be responsible for much of the nocturnal wind increase. The pressure gradients are interpreted as a function of the thermal differences between undisturbed forest and the river/city. The importance of both the frictional decoupling and the horizontal pressure gradient suggest that the nocturnal wind maximum does not occur uniformly over all Amazonia. Low-level winds are thought to be pervasive under clear skies and strong surface cooling and that, in many places (i.e., near rivers), local pressure gradients enhance the low-level nocturnal winds.
Serial cooling of a combustor for a gas turbine engine
Abreu, Mario E.; Kielczyk, Janusz J.
2001-01-01
A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.
Cycle Design of Reverse Brayton Cryocooler for HTS Cable Cooling Using Exergy Analysis
NASA Astrophysics Data System (ADS)
Gupta, Sudeep Kumar; Ghosh, Parthasarathi
2017-02-01
The reliability and price of cryogenic refrigeration play an important role in the successful commercialization of High Temperature Superconducting (HTS) cables. For cooling HTS cable, sub-cooled liquid nitrogen (LN2) circulation system is used. One of the options to maintain LN2 in its sub-cooled state is by providing refrigeration with the help of Reverse Brayton Cryo-cooler (RBC). The refrigeration requirement is 10 kW for continuously sub-cooling LN2 from 72 K to 65 K for cooling 1 km length of HTS cable [1]. In this paper, a parametric evaluation of RBC for sub-cooling LN2 has been performed using helium as a process fluid. Exergy approach has been adopted for this analysis. A commercial process simulator, Aspen HYSYS® V8.6 has been used for this purpose. The critical components have been identified and their exergy destruction and exergy efficiency have been obtained for a given heat load condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freemire, Ben; Bowring, Daniel; Kochemirovskiy, Alexey
Bright muon sources require six dimensional cooling to achieve acceptable luminosities. Ionization cooling is the only known method able to do so within the muon lifetime. One proposed cooling channel, the Helical Cooling Channel, utilizes gas filled radio frequency cavities to both mitigate RF breakdown in the presence of strong, external magnetic fields, and provide the cooling medium. Engineering constraints on the diameter of the magnets within which these cavities operate dictate the radius of the cavities be decreased at their nominal operating frequency. To accomplish this, one may load the cavities with a larger dielectric material. Alumina of puritiesmore » ranging from 96 to 99.8% was tested in a high pressure RF test cell at the MuCool Test Area at Fermilab. The results of breakdown studies with pure nitrogen gas, and oxygen-doped nitrogen gas indicate the peak surface electric field on the alumina ranges between 10 and 15 MV/m. How these results affect the design of a prototype cooling channel cavity will be discussed.« less
NASA Astrophysics Data System (ADS)
Albatayneh, Aiman; Alterman, Dariusz; Page, Adrian; Moghtaderi, Behdad
2017-05-01
The design of low energy buildings requires accurate thermal simulation software to assess the heating and cooling loads. Such designs should sustain thermal comfort for occupants and promote less energy usage over the life time of any building. One of the house energy rating used in Australia is AccuRate, star rating tool to assess and compare the thermal performance of various buildings where the heating and cooling loads are calculated based on fixed operational temperatures between 20 °C to 25 °C to sustain thermal comfort for the occupants. However, these fixed settings for the time and temperatures considerably increase the heating and cooling loads. On the other hand the adaptive thermal model applies a broader range of weather conditions, interacts with the occupants and promotes low energy solutions to maintain thermal comfort. This can be achieved by natural ventilation (opening window/doors), suitable clothes, shading and low energy heating/cooling solutions for the occupied spaces (rooms). These activities will save significant amount of operating energy what can to be taken into account to predict energy consumption for a building. Most of the buildings thermal assessment tools depend on energy-based approaches to predict the thermal performance of any building e.g. AccuRate in Australia. This approach encourages the use of energy to maintain thermal comfort. This paper describes the advantages of a temperature-based approach to assess the building's thermal performance (using an adaptive thermal comfort model) over energy based approach (AccuRate Software used in Australia). The temperature-based approach was validated and compared with the energy-based approach using four full scale housing test modules located in Newcastle, Australia (Cavity Brick (CB), Insulated Cavity Brick (InsCB), Insulated Brick Veneer (InsBV) and Insulated Reverse Brick Veneer (InsRBV)) subjected to a range of seasonal conditions in a moderate climate. The time required for heating and/or cooling using the adaptive thermal comfort approach and AccuRate predictions were estimated. Significant savings (of about 50 %) in energy consumption in minimising the time required for heating and cooling were achieved by using the adaptive thermal comfort model.
Code of Federal Regulations, 2013 CFR
2013-07-01
... contact cooling and heating water processes at a point source times the following pollutant concentrations: Subpart A [Contact cooling and heating water] Concentration used to calculate BCT effluent limitations Pollutant or pollutant property Maximum for any 1 day (mg/l) BOD5 26 Oil and grease 29 TSS 19 pH (1) 1...
Code of Federal Regulations, 2014 CFR
2014-07-01
... contact cooling and heating water processes at a point source times the following pollutant concentrations: Subpart A [Contact cooling and heating water] Concentration used to calculate BCT effluent limitations Pollutant or pollutant property Maximum for any 1 day (mg/l) BOD5 26 Oil and grease 29 TSS 19 pH (1) 1...
Code of Federal Regulations, 2012 CFR
2012-07-01
... contact cooling and heating water processes at a point source times the following pollutant concentrations: Subpart A [Contact cooling and heating water] Concentration used to calculate BCT effluent limitations Pollutant or pollutant property Maximum for any 1 day (mg/l) BOD5 26 Oil and grease 29 TSS 19 pH (1) 1...
Code of Federal Regulations, 2011 CFR
2011-07-01
... cooling and heating water processes at a point source times the following pollutant concentrations: Subpart A [Contact cooling and heating water] Concentration used to calculate BCT effluent limitations Pollutant or pollutant property Maximum for any 1 day (mg/l) BOD5 26 Oil and grease 29 TSS 19 pH (1) 1...
Performance assessment of a photonic radiative cooling system for office buildings
Wang, Weimin; Fernandez, Nick; Katipamula, Srinivas; ...
2017-11-08
Recent advances in materials have demonstrated the ability to maintain radiator surfaces at below-ambient temperatures in the presence of intense, direct sunlight. Daytime radiative cooling is promising for building applications. Here, this paper estimates the energy savings from daytime radiative cooling, specifically based on photonic materials. A photonic radiative cooling system was proposed and modeled using the whole energy simulation program EnergyPlus. A typical medium-sized office building was used for the simulation analysis. Several reference systems were established to quantify the potential of energy savings from the photonic radiative cooling system. The reference systems include a variable-air-volume (VAV) system, amore » hydronic radiant system, and a nighttime radiative cooling system. The savings analysis was made for a number of locations with different climates. Simulation results showed that the photonic radiative cooling system saved between 45% and 68% cooling electricity relative to the VAV system and between 9% and 23% relative to the nighttime radiative cooling system featured with the best coating commercially available on market. Finally, a simple economic analysis was also made to estimate the maximum acceptable incremental cost for upgrading from nighttime cooling to photonic radiative cooling.« less
Performance assessment of a photonic radiative cooling system for office buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weimin; Fernandez, Nick; Katipamula, Srinivas
Recent advances in materials have demonstrated the ability to maintain radiator surfaces at below-ambient temperatures in the presence of intense, direct sunlight. Daytime radiative cooling is promising for building applications. Here, this paper estimates the energy savings from daytime radiative cooling, specifically based on photonic materials. A photonic radiative cooling system was proposed and modeled using the whole energy simulation program EnergyPlus. A typical medium-sized office building was used for the simulation analysis. Several reference systems were established to quantify the potential of energy savings from the photonic radiative cooling system. The reference systems include a variable-air-volume (VAV) system, amore » hydronic radiant system, and a nighttime radiative cooling system. The savings analysis was made for a number of locations with different climates. Simulation results showed that the photonic radiative cooling system saved between 45% and 68% cooling electricity relative to the VAV system and between 9% and 23% relative to the nighttime radiative cooling system featured with the best coating commercially available on market. Finally, a simple economic analysis was also made to estimate the maximum acceptable incremental cost for upgrading from nighttime cooling to photonic radiative cooling.« less
NASA Astrophysics Data System (ADS)
Uysal, Selcuk Can
In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan
An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the ‘direct-DC house’ with respect to today’s typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative ofmore » the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector—because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation—this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.« less
Multicompartment Liquid-Cooling/Warming Protective Garments
NASA Technical Reports Server (NTRS)
Koscheyev, Victor S.; Leon, Gloria R.; Dancisak, Michael J.
2005-01-01
Shortened, multicompartment liquid-cooling / warming garments (LCWGs) for protecting astronauts, firefighters, and others at risk of exposure to extremes of temperature are undergoing development. Unlike prior liquid-circulation thermal-protection suits that provide either cooling or warming but not both, an LCWG as envisioned would provide cooling at some body locations and/or heating at other locations, as needed: For example, sometimes there is a need to cool the body core and to heat the extremities simultaneously. An LCWG garment of the type to be developed is said to be shortened because the liquid-cooling and - heating zones would not cover the whole body and, instead, would cover reduced areas selected for maximum heating and cooling effectiveness. Physiological research is under way to provide a rational basis for selection of the liquid-cooling and -heating areas. In addition to enabling better (relative to prior liquid-circulation garments) balancing of heat among different body regions, the use of selective heating and cooling in zones would contribute to a reduction in the amount of energy needed to operate a thermal-protection suit.
A feasibility study of heat-pipe-cooled leading edges for hypersonic cruise aircraft
NASA Technical Reports Server (NTRS)
Silverstein, C. C.
1971-01-01
A theoretical study of the use of heat pipe structures for cooling the leading edges of hypersonic cruise aircraft was carried out over a Mach number range of 6 to 12. Preliminary design studies showed that a heat pipe cooling structure with a 33-in. chordwise length could maintain the maximum temperature of a 65 deg sweepback wing with a 0.5-in. leading edge radius below 1600 F during cruise at Mach 8. A few relatively minor changes in the steady-state design of the structure were found necessary to insure satisfactory cooling during the climb to cruise speed and altitude. It was concluded that heat pipe cooling is an attractive, feasible technique for limiting leading edge temperatures of hypersonic cruise aircraft.
NASA Astrophysics Data System (ADS)
Mysore, Abhishek Arun Babu
A medium data center consists of servers performing operations such as file sharing, collaboration and email. There are a large number of small and medium data centers across the world which consume more energy and are less efficient when compared to large data center facilities of companies such as GOOGLE, APPLE and FACEBOOK. Such companies are making their data center facilities more environmental friendly by employing renewable energy solutions such as wind and solar to power the data center or in data center cooling. This not only reduces the carbon footprint significantly but also decreases the costs incurred over a period of time. Cooling of data center play a vital role in proper functioning of the servers. It is found that cooling consumes about 50% of the total power consumed by the data center. Traditional method of cooling includes the use of mechanical compression chillers which consume lot of power and is not desirable. In order to eliminate the use of mechanical compressor chillers renewable energy resources such as solar and wind should be employed. One such technology is solar thermal cooling by means of absorption chiller which is powered by solar energy. The absorption chiller unit can be coupled with either flat plate or evacuated tube collectors in order to achieve the required inlet temperature for the generator of the absorption chiller unit. In this study a modular data center is considered having a cooling load requirement of 23kw. The performance characteristics of a single stage Lithium Bromide/ water refrigeration is presented in this study considering the cooling load of 23kw. Performance characteristics of each of the 4 heat exchangers within the unit is discussed which helps in customizing the unit according to the users' specific needs. This analysis helps in studying the importance of different properties such as the effect of inlet temperatures of hot water for generator, inlet temperatures of cooling water for absorber and condenser and outlet chilled water temperatures of the evaporator.
A SURVEY OF CONVENTIONAL STEAM BOILER EXPERIENCE APPLICABLE TO THE HTGR STEAM GENERATORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paget, J.A.
1959-10-01
BS>The steam generator of a high temperature gas-cooled reactor consists of tubular heating surface inside a shell which forms part of the primary He circuit of the reactor. When a tube fails in such a steam generator, moisture in the form of steam is released into the He steam and is carried through the reactor where it will cause corrosion and mass transfer of C in the core. A paramount consideration in the design of a steam generator for a high temperature gas-cooled reactor is the prevention of tube failures. Preference, therefore, should be given to a forced circulation design.more » The Loeffler Boiler would be the best from this standpoint alone since only steam enters the tubes, and its circulation rate can be maintained at an adequate value to insure cool tubes regardless of load fluctuations. The next type in the order of preference would be the forced recirculation boiler, since at least the boiier tubes always have an adequate cooling flow regardless of output. The third type in order of preference would be a Sulzer Type boiler since it has a separator to remove dissolved material from the water which is comparible in efficiency to a standard boiler drum and although the flow through evaporator and superheater fluctuates with load, the Sulzer Boiler can be operated as a forced recirculation boiler at low loads. The least desirable type would be a Benson or supercritical boiler which is completely dependent on input water purity for its survival. It is not claimed that Benson or supercritical boilers should not or will not be used in the future for gas-cooled reactors, but only that their use would be the least conservative choice from a tube failure standpoint at the present time. (auth)« less
Modeling ARRM Xenon Tank Pressurization Using 1D Thermodynamic and Heat Transfer Equations
NASA Technical Reports Server (NTRS)
Gilligan, Patrick; Tomsik, Thomas
2016-01-01
As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.
Modeling Xenon Tank Pressurization using One-Dimensional Thermodynamic and Heat Transfer Equations
NASA Technical Reports Server (NTRS)
Gilligan, Ryan P.; Tomsik, Thomas M.
2017-01-01
As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.
High-Temperature, High-Load-Capacity Radial Magnetic Bearing
NASA Technical Reports Server (NTRS)
Provenza, Andrew; Montague, Gerald; Kascak, Albert; Palazzolo, Alan; Jansen, Ralph; Jansen, Mark; Ebihara, Ben
2005-01-01
A radial heteropolar magnetic bearing capable of operating at a temperature as high as 1,000 F (=540 C) has been developed. This is a prototype of bearings for use in gas turbine engines operating at temperatures and speeds much higher than can be withstood by lubricated rolling-element bearings. It is possible to increase the maximum allowable operating temperatures and speeds of rolling-element bearings by use of cooling-air systems, sophisticated lubrication systems, and rotor-vibration- damping systems that are subsystems of the lubrication systems, but such systems and subsystems are troublesome. In contrast, a properly designed radial magnetic bearing can suspend a rotor without contact, and, hence, without need for lubrication or for cooling. Moreover, a magnetic bearing eliminates the need for a separate damping system, inasmuch as a damping function is typically an integral part of the design of the control system of a magnetic bearing. The present high-temperature radial heteropolar magnetic bearing has a unique combination of four features that contribute to its suitability for the intended application: 1. The wires in its electromagnet coils are covered with an insulating material that does not undergo dielectric breakdown at high temperature and is pliable enough to enable the winding of the wires to small radii. 2. The processes used in winding and potting of the coils yields a packing factor close to 0.7 . a relatively high value that helps in maximizing the magnetic fields generated by the coils for a given supplied current. These processes also make the coils structurally robust. 3. The electromagnets are of a modular C-core design that enables replacement of components and semiautomated winding of coils. 4. The stator is mounted in such a manner as to provide stable support under radial and axial thermal expansion and under a load as large as 1,000 lb (.4.4 kN).
Thermal and Energy Performance of Conditioned Building Due To Insulated Sloped Roof
NASA Astrophysics Data System (ADS)
Irwan, Suhandi Syiful; Ahmed, Azni Zain; Zakaria, Nor Zaini; Ibrahim, Norhati
2010-07-01
For low-rise buildings in equatorial region, the roof is exposed to solar radiation longer than other parts of the envelope. Roofs are to be designed to reject heat and moderate the thermal impact. These are determined by the design and construction of the roofing system. The pitch of roof and the properties of construction affect the heat gain into the attic and subsequently the indoor temperature of the living spaces underneath. This finally influences the thermal comfort conditions of naturally ventilated buildings and cooling load of conditioned buildings. This study investigated the effect of insulated sloping roof on thermal energy performance of the building. A whole-building thermal energy computer simulation tool, Integrated Environmental Solution (IES), was used for the modelling and analyses. A building model with dimension of 4.0 m × 4.0 m × 3.0 m was designed with insulated roof and conventional construction for other parts of the envelope. A 75 mm conductive insulation material with thermal conductivity (k-value) of 0.034 Wm-1K-1 was installed underneath the roof tiles. The building was modelled with roof pitch angles of 0° , 15°, 30°, 45°, 60° and simulated for the month of August in Malaysian climate conditions. The profile for attic temperature, indoor temperature and cooling load were downloaded and evaluated. The optimum roof pitch angle for best thermal performance and energy saving was identified. The results show the pitch angle of 0° is able to mitigate the thermal impact to provide the best thermal condition with optimum energy savings. The maximum temperature difference between insulated and non-insulted roof for attic (AtticA-B) and indoor condition (IndoorA-B) is +7.8 °C and 0.4 °C respectively with an average energy monthly savings of 3.9 %.
USDA-ARS?s Scientific Manuscript database
A 3-year field study was developed to determine relationships between crop load metrics and berry composition for ‘Pinot noir’ in a cool-climate through the manipulation of vegetative growth and fruit yield using competitive cover cropping and cluster thinning, respectively. To alter vine vigor, per...
Note: Motor-piezoelectricity coupling driven high temperature fatigue device
NASA Astrophysics Data System (ADS)
Ma, Z. C.; Du, X. J.; Zhao, H. W.; Ma, X. X.; Jiang, D. Y.; Liu, Y.; Ren, L. Q.
2018-01-01
The design and performance evaluation of a novel high temperature fatigue device simultaneously driven by servo motor and piezoelectric actuator is our focus. The device integrates monotonic and cyclic loading functions with a maximum tensile load of 1800 N, driving frequency of 50 Hz, alternating load of 95 N, and maximum service temperature of 1200 °C. Multimodal fatigue tests with arbitrary combinations of static and dynamic loads are achieved. At temperatures that range from RT to 1100 °C, the tensile and tensile-fatigue coupling mechanical behaviors of UM Co50 alloys are investigated to verify the feasibility of the device.
Intercooler cooling-air weight flow and pressure drop for minimum drag loss
NASA Technical Reports Server (NTRS)
Reuter, J George; Valerino, Michael F
1944-01-01
An analysis has been made of the drag losses in airplane flight of cross-flow plate and tubular intercoolers to determine the cooling-air weight flow and pressure drop that give a minimum drag loss for any given cooling effectiveness and, thus, a maximum power-plant net gain due to charge-air cooling. The drag losses considered in this analysis are those due to (1) the extra drag imposed on the airplane by the weight of the intercooler, its duct, and its supports and (2) the drag sustained by the cooling air in flowing through the intercooler and its duct. The investigation covers a range of conditions of altitude, airspeed, lift-drag ratio, supercharger-pressure ratio, and supercharger adiabatic efficiency. The optimum values of cooling air pressure drop and weight flow ratio are tabulated. Curves are presented to illustrate the results of the analysis.
NASA Astrophysics Data System (ADS)
Zhao, Junhua; Jiang, Jin-Wu; Rabczuk, Timon
2013-12-01
The temperature-dependent mechanical properties of single-layer molybdenum disulphide (MoS2) are obtained using molecular dynamics (MD) nanoindentation simulations. The Young's moduli, maximum load stress, and maximum loading strain decrease with increasing temperature from 4.2 K to 500 K. The obtained Young's moduli are in good agreement with those using our MD uniaxial tension simulations and the available experimental results. The tendency of maximum loading strain with different temperature is opposite with that of metal materials due to the short range Stillinger-Weber potentials in MoS2. Furthermore, the indenter tip radius and fitting strain effect on the mechanical properties are also discussed.
Mouse Embryo Cryopreservation by Rapid Cooling.
Shaw, Jillian
2018-05-01
Embryo cryopreservation has been used to archive mouse strains. Protocols have evolved over this time and now vary considerably in terms of cryoprotectant solution, cooling and warming rates, methods to add and remove cryoprotectant, container or carrier type, volume of cryoprotectant, the stage of preimplantation development, and the use of additional treatments such as blastocyst puncture and microinjection. The rapid cooling methods use concentrated solutions of cryoprotectants to reduce the water content of the cell before cooling commences, thus preventing the formation of ice crystals. Embryos are equilibrated with the cryoprotectants, loaded into a carrier, and then rapidly cooled (e.g., by being plunged directly into LN 2 or onto a surface cooled in LN 2 ). The rapid cooling methods eliminate the need for controlled-rate freezers and seeding procedures. However, they are much more sensitive to minor variations when performing the steps. The rapid-cooling protocol described here is suitable for use with plastic insemination straws. Because it uses relatively large volumes, it is less technically demanding than some other methods that use minivolume devices. © 2018 Cold Spring Harbor Laboratory Press.
Design of the Cryostat for HT-7U Superconducting Tokamak
NASA Astrophysics Data System (ADS)
Yu, Jie; Wu, Song-tao; Song, Yun-tao; Weng, Pei-de
2002-06-01
The cryostat of HT-7U tokamak is a large vacuum vessel surrounding the entire basic machine with a cylindrical shell, a dished top and a flat bottom. The main function of HT-7U cryostat is to provide a thermal barrier between an ambient temperature test hall and a liquid helium-cooled superconducting magnet. The loads applied to the cryostat are from sources of vacuum pressure, dead weight, seismic events and electromagnetic forces originated by eddy currents. It also provides feed-through penetrations for all the connecting elements inside and outside the cryostat. The main material selected for the cryostat is stainless steel 304L. The structural analyses including buckling for the cryostat vessel under the plasma operation condition have been carried out by using a finite element code. Stress analysis results show that the maximum stress intensity was below the allowable value. In this paper, the structural analyses and design of HT-7U cryostat are emphasized.