49 CFR 230.25 - Maximum allowable stress on stays and braces.
Code of Federal Regulations, 2012 CFR
2012-10-01
... maximum allowable stress per square inch of net cross sectional area on fire box and combustion chamber stays shall be 7,500 psi. The maximum allowable stress per square inch of net cross sectional area on...
49 CFR 230.25 - Maximum allowable stress on stays and braces.
Code of Federal Regulations, 2014 CFR
2014-10-01
... maximum allowable stress per square inch of net cross sectional area on fire box and combustion chamber stays shall be 7,500 psi. The maximum allowable stress per square inch of net cross sectional area on...
49 CFR 230.25 - Maximum allowable stress on stays and braces.
Code of Federal Regulations, 2011 CFR
2011-10-01
... maximum allowable stress per square inch of net cross sectional area on fire box and combustion chamber stays shall be 7,500 psi. The maximum allowable stress per square inch of net cross sectional area on...
49 CFR 230.25 - Maximum allowable stress on stays and braces.
Code of Federal Regulations, 2013 CFR
2013-10-01
... maximum allowable stress per square inch of net cross sectional area on fire box and combustion chamber stays shall be 7,500 psi. The maximum allowable stress per square inch of net cross sectional area on...
Electron-impact ionization of silicon tetrachloride (SiCl4).
Basner, R; Gutkin, M; Mahoney, J; Tarnovsky, V; Deutsch, H; Becker, K
2005-08-01
We measured absolute partial cross sections for the formation of various singly charged and doubly charged positive ions produced by electron impact on silicon tetrachloride (SiCl4) using two different experimental techniques, a time-of-flight mass spectrometer (TOF-MS) and a fast-neutral-beam apparatus. The energy range covered was from the threshold to 900 eV in the TOF-MS and to 200 eV in the fast-neutral-beam apparatus. The results obtained by the two different experimental techniques were found to agree very well (better than their combined margins of error). The SiCl3(+) fragment ion has the largest partial ionization cross section with a maximum value of slightly above 6x10(-20) m2 at about 100 eV. The cross sections for the formation of SiCl4(+), SiCl+, and Cl+ have maximum values around 4x10(-20) m2. Some of the cross-section curves exhibit an unusual energy dependence with a pronounced low-energy maximum at an energy around 30 eV followed by a broad second maximum at around 100 eV. This is similar to what has been observed by us earlier for another Cl-containing molecule, TiCl4 [R. Basner, M. Schmidt, V. Tamovsky, H. Deutsch, and K. Becker, Thin Solid Films 374 291 (2000)]. The maximum cross-section values for the formation of the doubly charged ions, with the exception of SiCl3(++), are 0.05x10(-20) m2 or less. The experimentally determined total single ionization cross section of SiCl4 is compared with the results of semiempirical calculations.
Cross sections for the dissociative attachment of electrons to NO
NASA Technical Reports Server (NTRS)
Krishnakumar, E.; Srivastava, S. K.
1988-01-01
Cross sections for the production of O(-) by electron attachment to NO are reported. It is found that the maximum value of the cross section is about 52 percent higher than the measurement of Rapp and Briglia (1965). Cross sections for the process of polar dissociation, e + NO yields N(+) + O(_), have also been measured, and the threshold energy for this process has been obtained.
1978-02-28
of type I). 2.6 (1,5) Interference factor 2.7 (1,6) Number of bodies of type I 2.8 (1,7)* Maximum cross -sectional area 2.9 (1,8...height, cross -sectional area, etc. listed for each body type describes a single body. The total number of bodies of each type must also be specified even...71+1) (1,6) Number of bodies of Type I (78+1) (1,7)** Maximum cross -sectional area (85+1) (1,8) Base atreamtube area (92+1) (119) Nose length
Bridge-scour analysis using the water surface profile (WSPRO) model
Mueller, David S.; ,
1993-01-01
A program was developed to extract hydraulic information required for bridge-scour computations, from the Water-Surface Profile computation model (WSPRO). The program is written in compiled BASIC and is menu driven. Using only ground points, the program can compute average ground elevation, cross-sectional area below a specified datum, or create a Drawing Exchange Format (DXF) fie of cross section. Using both ground points ad hydraulic information form the equal-conveyance tubes computed by WSPRO, the program can compute hydraulic parameters at a user-specified station or in a user-specified subsection of the cross section. The program can identify the maximum velocity in a cross section and the velocity and depth at a user-specified station. The program also can identify the maximum velocity in the cross section and the average velocity, average depth, average ground elevation, width perpendicular to the flow, cross-sectional area of flow, and discharge in a subsection of the cross section. This program does not include any help or suggestions as to what data should be extracted; therefore, the used must understand the scour equations and associated variables to the able to extract the proper information from the WSPRO output.
High resolution ultrasonography of the tibial nerve in diabetic peripheral neuropathy.
Singh, Kunwarpal; Gupta, Kamlesh; Kaur, Sukhdeep
2017-12-01
High-resolution ultrasonography of the tibial nerve is a fast and non invasive tool for diagnosis of diabetic peripheral neuropathy. Our study was aimed at finding out the correlation of the cross sectional area and maximum thickness of nerve fascicles of the tibial nerve with the presence and severity of diabetic peripheral neuropathy. 75 patients with type 2 diabetes mellitus clinically diagnosed with diabetic peripheral neuropathy were analysed, and the severity of neuropathy was determined using the Toronto Clinical Neuropathy Score. 58 diabetic patients with no clinical suspicion of diabetic peripheral neuropathy and 75 healthy non-diabetic subjects were taken as controls. The cross sectional area and maximum thickness of nerve fascicles of the tibial nerves were calculated 3 cm cranial to the medial malleolus in both lower limbs. The mean cross sectional area (22.63 +/- 2.66 mm 2 ) and maximum thickness of nerve fascicles (0.70 mm) of the tibial nerves in patients with diabetic peripheral neuropathy compared with both control groups was significantly larger, and statistically significant correlation was found with the Toronto Clinical Neuropathy Score ( p < 0.001). The diabetic patients with no signs of peripheral neuropathy had a larger mean cross sectional area (14.40 +/- 1.72 mm 2 ) and maximum thickness of nerve fascicles of the tibial nerve (0.40 mm) than healthy non-diabetic subjects (12.42 +/- 1.01 mm 2 and 0.30 mm respectively). The cross sectional area and maximum thickness of nerve fascicles of the tibial nerve is larger in diabetic patients with or without peripheral neuropathy than in healthy control subjects, and ultrasonography can be used as a good screening tool in these patients.
NASA Technical Reports Server (NTRS)
Li, Zi-Wei; Adams, James H., Jr.
2007-01-01
Space radiation from galactic cosmic rays (GCR) is a major hazard to space crews, especially in long duration human space explorations. For this reason, they will be protected by radiation shielding that fragments the GCR heavy ions. Here we investigate how sensitive the crew's radiation exposure is to nuclear fragmentation cross sections at different energies. We find that in deep space cross sections between about 0.2 and 1.2 GeV/u have the strongest effect on dose equivalent behind shielding in solar minimum GCR environments, and cross sections between about 0.6 and 1.7 GeV/u are the most important at solar maximum'. On the other hand, at the location of the International Space Station, cross sections at_higher -energies, between about 0.6 and 1.7 GeV /u at solar minimum and between about 1.7 and 3.4 GeV/u'at,solar maximum, are the most important This is. due-to the average geomagnetic cutoff for the ISS orbit. We also show the effect of uncertainties in the fragmentation cross sections on the elemental energy spectra behind shielding. These results help to focus the studies of fragmentation cross sections on the proper energy range in order to improve our predictions of crew exposures.
Cross section of resonant Raman scattering of light by polyenes
NASA Astrophysics Data System (ADS)
Verdyugin, V. V.; Burshteyn, K. Ya.; Shorygin, P. P.
1987-03-01
An experimental study is presented of the resonant Raman spectra of beta carotene. Absolute differential cross sections are obtained for the most intensive Raman spectral lines with excitation at the absorption maximum. A theoretical analysis is presented of the variation in absolute differential cross section as a function of a number of conjunct double bonds in the polyenes.
Nucleon-Nucleon Total Cross Section
NASA Technical Reports Server (NTRS)
Norbury, John W.
2008-01-01
The total proton-proton and neutron-proton cross sections currently used in the transport code HZETRN show significant disagreement with experiment in the GeV and EeV energy ranges. The GeV range is near the region of maximum cosmic ray intensity. It is therefore important to correct these cross sections, so that predictions of space radiation environments will be accurate. Parameterizations of nucleon-nucleon total cross sections are developed which are accurate over the entire energy range of the cosmic ray spectrum.
NASA Astrophysics Data System (ADS)
Grozdanov, Tasko P.; Solov'ev, Evgeni A.
2018-04-01
Within the framework of dynamical adiabatic approach the hidden crossing theory of inelastic transitions is applied to charge exchange in H+ + He+(1 s) collisions in the wide range of center of mass collision energies E cm = (1.6 -70) keV. The good agreement with experiment and molecular close coupling calculations is obtained. At low energies our 4-state results are closest to the experiment and correctly reproduce the shoulder in energy dependence of the cross section around E cm = 6 keV. The 2-state results correctly predict the position of the maximum of the cross section at E cm ≈ 40 keV, whereas 4-state results fail to correctly describe the region around the maximum. The reason for this is the fact that adiabatic approximation for a given two-state hidden crossing is applicable for values of the Schtueckelberg parameter >1. But with increase of principal quantum number N the Schtueckelberg parameter decreases as N -3. That is why the 4-state approach involving higher excited states fails at smaller collision energies E cm ≈ 15 keV, while the 2-state approximation which involves low lying states can be extended to higher collision energies.
Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Gaohua; Department of Applied Physics and Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082; Luo, Ning
We report on a theoretical study of the electronic structures of InSb and GaSb nanowires oriented along the [001] and [111] crystallographic directions. The nanowires are described by atomistic, tight-binding models, including spin-orbit interaction. The band structures and the wave functions of the nanowires are calculated by means of a Lanczos iteration algorithm. For the [001]-oriented InSb and GaSb nanowires, the systems with both square and rectangular cross sections are considered. Here, it is found that all the energy bands are doubly degenerate. Although the lowest conduction bands in these nanowires show good parabolic dispersions, the top valence bands showmore » rich and complex structures. In particular, the topmost valence bands of the nanowires with a square cross section show a double maximum structure. In the nanowires with a rectangular cross section, this double maximum structure is suppressed, and the top valence bands gradually develop into parabolic bands as the aspect ratio of the cross section is increased. For the [111]-oriented InSb and GaSb nanowires, the systems with hexagonal cross sections are considered. It is found that all the bands at the Γ-point are again doubly degenerate. However, some of them will split into non-degenerate bands when the wave vector moves away from the Γ-point. Although the lowest conduction bands again show good parabolic dispersions, the topmost valence bands do not show the double maximum structure. Instead, they show a single maximum structure with its maximum at a wave vector slightly away from the Γ-point. The wave functions of the band states near the band gaps of the [001]- and [111]-oriented InSb and GaSb nanowires are also calculated and are presented in terms of probability distributions in the cross sections. It is found that although the probability distributions of the band states in the [001]-oriented nanowires with a rectangular cross section could be qualitatively described by one-band effective mass theory, the probability distributions of the band states in the [001]-oriented nanowires with a square cross section and the [111]-oriented nanowires with a hexagonal cross section show characteristic patterns with symmetries closely related to the irreducible representations of the relevant double point groups and, in general, go beyond the prediction of a simple one-band effective mass theory. We also investigate the effects of quantum confinement on the band structures of the [001]- and [111]-oriented InSb and GaSb nanowires and present an empirical formula for the description of quantization energies of the band edge states in the nanowires, which could be used to estimate the enhancement of the band gaps of the nanowires as a result of quantum confinement. The size dependencies of the electron and hole effective masses in these nanowires are also investigated and discussed.« less
Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires
NASA Astrophysics Data System (ADS)
Liao, Gaohua; Luo, Ning; Yang, Zhihu; Chen, Keqiu; Xu, H. Q.
2015-09-01
We report on a theoretical study of the electronic structures of InSb and GaSb nanowires oriented along the [001] and [111] crystallographic directions. The nanowires are described by atomistic, tight-binding models, including spin-orbit interaction. The band structures and the wave functions of the nanowires are calculated by means of a Lanczos iteration algorithm. For the [001]-oriented InSb and GaSb nanowires, the systems with both square and rectangular cross sections are considered. Here, it is found that all the energy bands are doubly degenerate. Although the lowest conduction bands in these nanowires show good parabolic dispersions, the top valence bands show rich and complex structures. In particular, the topmost valence bands of the nanowires with a square cross section show a double maximum structure. In the nanowires with a rectangular cross section, this double maximum structure is suppressed, and the top valence bands gradually develop into parabolic bands as the aspect ratio of the cross section is increased. For the [111]-oriented InSb and GaSb nanowires, the systems with hexagonal cross sections are considered. It is found that all the bands at the Γ-point are again doubly degenerate. However, some of them will split into non-degenerate bands when the wave vector moves away from the Γ-point. Although the lowest conduction bands again show good parabolic dispersions, the topmost valence bands do not show the double maximum structure. Instead, they show a single maximum structure with its maximum at a wave vector slightly away from the Γ-point. The wave functions of the band states near the band gaps of the [001]- and [111]-oriented InSb and GaSb nanowires are also calculated and are presented in terms of probability distributions in the cross sections. It is found that although the probability distributions of the band states in the [001]-oriented nanowires with a rectangular cross section could be qualitatively described by one-band effective mass theory, the probability distributions of the band states in the [001]-oriented nanowires with a square cross section and the [111]-oriented nanowires with a hexagonal cross section show characteristic patterns with symmetries closely related to the irreducible representations of the relevant double point groups and, in general, go beyond the prediction of a simple one-band effective mass theory. We also investigate the effects of quantum confinement on the band structures of the [001]- and [111]-oriented InSb and GaSb nanowires and present an empirical formula for the description of quantization energies of the band edge states in the nanowires, which could be used to estimate the enhancement of the band gaps of the nanowires as a result of quantum confinement. The size dependencies of the electron and hole effective masses in these nanowires are also investigated and discussed.
Wigner, E.P.
1958-04-22
A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.
Three-dimensional object surface identification
NASA Astrophysics Data System (ADS)
Celenk, Mehmet
1995-03-01
This paper describes a computationally efficient matching method for inspecting 3D objects using their serial cross sections. Object regions of interest in cross-sectional binary images of successive slices are aligned with those of the models. Cross-sectional differences between the object and the models are measured in the direction of the gradient of the cross section boundary. This is repeated in all the cross-sectional images. The model with minimum average cross-sectional difference is selected as the best match to the given object (i.e., no defect). The method is tested using various computer generated surfaces and matching results are presented. It is also demonstrated using Symult S-2010 16-node system that the method is suitable for parallel implementation in massage passing processors with the maximum attainable speedup (close to 16 for S-2010).
A physiological basis for variation in the contractile properties of isolated rat heart.
Lin, L E; McClellan, G; Weisberg, A; Winegrad, S
1991-01-01
1. The maximum Ca(2+)-activated force, maximum velocity of unloaded shortening and both Ca(2+)- and actin-activated ATPase activities of myosin have been measured in detergent-skinned preparations of isolated bundles of rat right ventricle after exposure of the intact tissue to different conditions of superfusion, mechanical activity and temperature. 2. Maximum Ca(2+)-activated force per unit cross-sectional area decreases with increasing cross-sectional area, and, in the absence of electrical stimulation, with the duration of superfusion. Maximum velocity of unloaded shortening is not influenced by these differences. 3. Actin-activated ATPase activity of myosin decreases as cross-sectional area increases and duration of superfusion increases, but the extent of the decrease in enzymatic activity is less than that of developed force. Ca(2+)-activated ATPase activity is independent of these differences. 4. Actin-activated ATPase activity in cryostatic sections of quickly frozen tissue is not uniform across the transverse section. In thin bundles, it is highest in the centre and lowest at the edge of the section, which correspond, respectively, to the centre and the surface of the tissue bundle. Exposure of the tissue section to 1 microM-cyclic AMP increases the actin-activated ATPase activity of myosin with the largest increase in activity occurring at or near the surface of the bundle. 5. Ca(2+)-activated ATPase activity of myosin is uniform across the transverse section and is not changed by cyclic AMP. 6. Electrical stimulation, elevated Ca2+ concentration in the superfusion medium, or isoprenaline partially or completely reverse the decline in maximum Ca(2+)-activated force produced by prolonged superfusion of the bundle before its skinning. 7. These observations are similar in many ways to those made on frog skeletal muscles by Elzinga, Howarth, Rull, Wilson & Woledge (1989a). An explanation based on the existence of a physiological mechanism for regulating the properties of force generators is proposed. Regulation of the attachment of the cross-bridge to an actin filament may be the basis for the regulatory mechanism. Images Fig. 4 Fig. 7 PMID:1667804
Holden, Daniel; Socha, John J; Cardwell, Nicholas D; Vlachos, Pavlos P
2014-02-01
A prominent feature of gliding flight in snakes of the genus Chrysopelea is the unique cross-sectional shape of the body, which acts as the lifting surface in the absence of wings. When gliding, the flying snake Chrysopelea paradisi morphs its circular cross-section into a triangular shape by splaying its ribs and flattening its body in the dorsoventral axis, forming a geometry with fore-aft symmetry and a thick profile. Here, we aimed to understand the aerodynamic properties of the snake's cross-sectional shape to determine its contribution to gliding at low Reynolds numbers. We used a straight physical model in a water tunnel to isolate the effects of 2D shape, analogously to studying the profile of an airfoil of a more typical flyer. Force measurements and time-resolved (TR) digital particle image velocimetry (DPIV) were used to determine lift and drag coefficients, wake dynamics and vortex-shedding characteristics of the shape across a behaviorally relevant range of Reynolds numbers and angles of attack. The snake's cross-sectional shape produced a maximum lift coefficient of 1.9 and maximum lift-to-drag ratio of 2.7, maintained increases in lift up to 35 deg, and exhibited two distinctly different vortex-shedding modes. Within the measured Reynolds number regime (Re=3000-15,000), this geometry generated significantly larger maximum lift coefficients than many other shapes including bluff bodies, thick airfoils, symmetric airfoils and circular arc airfoils. In addition, the snake's shape exhibited a gentle stall region that maintained relatively high lift production even up to the highest angle of attack tested (60 deg). Overall, the cross-sectional geometry of the flying snake demonstrated robust aerodynamic behavior by maintaining significant lift production and near-maximum lift-to-drag ratios over a wide range of parameters. These aerodynamic characteristics help to explain how the snake can glide at steep angles and over a wide range of angles of attack, but more complex models that account for 3D effects and the dynamic movements of aerial undulation are required to fully understand the gliding performance of flying snakes.
49 CFR 230.25 - Maximum allowable stress on stays and braces.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Maximum allowable stress on stays and braces. 230... Boilers and Appurtenances Allowable Stress § 230.25 Maximum allowable stress on stays and braces. The maximum allowable stress per square inch of net cross sectional area on fire box and combustion chamber...
Radar Cross Section (RCS) Simulation for Wind Turbines
2013-06-01
SECTION (RCS) SIMULATION FOR WIND TURBINES by Cuong Ton June 2013 Thesis Advisor: David C. Jenn Second Reader: Ric Romero THIS PAGE...TITLE AND SUBTITLE RADAR CROSS SECTION (RCS) SIMULATION FOR WIND TURBINES 5. FUNDING NUMBERS 6. AUTHOR(S) Cuong Ton 7. PERFORMING ORGANIZATION...ABSTRACT (maximum 200 words) Wind - turbine power provides energy-independence and greenhouse-gas reduction benefits, but if wind turbines are built
Validity of linear encoder measurement of sit-to-stand performance power in older people.
Lindemann, U; Farahmand, P; Klenk, J; Blatzonis, K; Becker, C
2015-09-01
To investigate construct validity of linear encoder measurement of sit-to-stand performance power in older people by showing associations with relevant functional performance and physiological parameters. Cross-sectional study. Movement laboratory of a geriatric rehabilitation clinic. Eighty-eight community-dwelling, cognitively unimpaired older women (mean age 78 years). Sit-to-stand performance power and leg power were assessed using a linear encoder and the Nottingham Power Rig, respectively. Gait speed was measured on an instrumented walkway. Maximum quadriceps and hand grip strength were assessed using dynamometers. Mid-thigh muscle cross-sectional area of both legs was measured using magnetic resonance imaging. Associations of sit-to-stand performance power with power assessed by the Nottingham Power Rig, maximum gait speed and muscle cross-sectional area were r=0.646, r=0.536 and r=0.514, respectively. A linear regression model explained 50% of the variance in sit-to-stand performance power including muscle cross-sectional area (p=0.001), maximum gait speed (p=0.002), and power assessed by the Nottingham Power Rig (p=0.006). Construct validity of linear encoder measurement of sit-to-stand power was shown at functional level and morphological level for older women. This measure could be used in routine clinical practice as well as in large-scale studies. DRKS00003622. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Angular distributions for H- formation in single collisions of H+ on Mg
NASA Astrophysics Data System (ADS)
Alvarez, I.; Cisneros, C.; Russek, A.
1982-07-01
Absolute differential cross sections have been measured for H- formation in single collisions of H+ on Mg in the energy range from 0.5 to 5.0 keV. Total cross sections, obtained by direct integration of these differential cross sections, are in good agreement with earlier total-cross-section measurements of Morgan and Eriksen in the energy range common to the two experiments and are in good agreement with the calculated total cross sections of Olson and Liu. The differential cross sections are strongly peaked in the forward direction. The functional form and scaling properties of this forward peak strongly indicate that it is a glory maximum, which occurs when the classical deflection function changes over from attractive to repulsive at some finite impact parameter. The differential cross sections from 1.0 to 5.0 keV show no other structure, but below 1.0 keV a τ-dependent structure is observed which becomes more pronounced as the collision energy decreases. 1982 The American Physical Society.
Calculation of linearized supersonic flow over slender cones of arbitrary cross section
NASA Technical Reports Server (NTRS)
Mascitti, V. R.
1972-01-01
Supersonic linearized conical-flow theory is used to determine the flow over slender pointed cones having horizontal and vertical planes of symmetry. The geometry of the cone cross sections and surface velocities are expanded in Fourier series. The symmetry condition permits the uncoupling of lifting and nonlifting solutions. The present method reduces to Ward's theory for flow over a cone of elliptic cross section. Results are also presented for other shapes. Results by this method diverge for cross-sectional shapes where the maximum thickness is large compared with the minimum thickness. However, even for these slender-body shapes, lower order solutions are good approximations to the complete solution.
Photoabsorption cross section of acetylene in the EUV region
NASA Technical Reports Server (NTRS)
Wu, C. Y. R.; Judge, D. L.
1985-01-01
The measurement of the absolute photoabsorption cross sections of C2H2 in the 175-740 A region by means of a double ionization chamber is reported. The continuum background source is the synchrotron radiation emitted by the Wisconsin 240 MeV electron storage ring. It is found that the cross sections range from 2 to a maximum of 36 Mb. Two new Rydberg series are identified and the cross section data are applied in the analysis of various sum rules. From the rules, it is shown that the data of C2H2 in the 580-1088 A range may be too low, while the measured ionization transition moment may be too high.
Lin, Z W; Adams, J H
2007-03-01
The radiation hazard for astronauts from galactic cosmic rays (GCR) is a major obstacle to long-duration human space exploration. Space radiation transport codes have been developed to calculate the radiation environment on missions to the Moon, Mars, and beyond. We have studied how uncertainties in fragmentation cross sections at different energies affect the accuracy of predictions from such radiation transport calculations. We find that, in deep space, cross sections at energies between 0.3 and 0.85 GeV/nucleon have the largest effect in solar maximum GCR environments. At the International Space Station, cross sections at higher energies have the largest effect due to the geomagnetic cutoff.
Effects of target shape and reflection on laser radar cross sections.
Steinvall, O
2000-08-20
Laser radar cross sections have been evaluated for a number of ideal targets such as cones, spheres, paraboloids, and cylinders by use of different reflection characteristics. The time-independent cross section is the ratio of the cross section of one of these forms to that of a plate with the same maximum radius. The time-dependent laser radar cross section involves the impulse response from the object shape multiplied by the beam's transverse profile and the surface bidirectional reflection distribution function. It can be clearly seen that knowledge of the combined effect of object shape and reflection characteristics is important for determining the shape and the magnitude of the laser radar return. The results of this study are of interest for many laser radar applications such as ranging, three-dimensional imaging-modeling, tracking, antisensor lasers, and target recognition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridolfi, E.; Napolitano, F., E-mail: francesco.napolitano@uniroma1.it; Alfonso, L.
2016-06-08
The description of river topography has a crucial role in accurate one-dimensional (1D) hydraulic modelling. Specifically, cross-sectional data define the riverbed elevation, the flood-prone area, and thus, the hydraulic behavior of the river. Here, the problem of the optimal cross-sectional spacing is solved through an information theory-based concept. The optimal subset of locations is the one with the maximum information content and the minimum amount of redundancy. The original contribution is the introduction of a methodology to sample river cross sections in the presence of bridges. The approach is tested on the Grosseto River (IT) and is compared to existingmore » guidelines. The results show that the information theory-based approach can support traditional methods to estimate rivers’ cross-sectional spacing.« less
NASA Technical Reports Server (NTRS)
Lin, Z. W.; Adams, J. H., Jr.
2006-01-01
The radiation hazard for astronauts from galactic cosmic rays is a major obstacle in long duration human space explorations. Space radiation transport codes have been developed to calculate radiation environment on missions to the Moon, Mars or beyond. We have studied how uncertainties in fragmentation cross sections at different energies affect the accuracy of predictions from such radiation transport. We find that, in deep space, cross sections between 0.3 and 0.85 GeV/u usually have the largest effect on dose-equivalent behind shielding in solar minimum GCR environments, and cross sections between 0.85 and 1.2 GeV/u have the largest effect in solar maximum GCR environments. At the International Space Station, cross sections at higher energies have the largest effect due to the geomagnetic cutoff.
Electron induced inelastic and ionization cross section for plasma modeling
NASA Astrophysics Data System (ADS)
Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby
2016-09-01
The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.
NASA Astrophysics Data System (ADS)
Tomaschitz, R.
2005-02-01
The interaction of superluminal radiation with matter in atomic bound-bound and bound-free transitions is investigated. We study transitions in the relativistic hydrogen atom effected by superluminal quanta. The superluminal radiation field is coupled by minimal substitution to the Dirac equation in a Coulomb potential. We quantize the interaction to obtain the transition matrix for induced and spontaneous superluminal radiation in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, the cross-sections for ground state ionization by transversal and longitudinal tachyons are derived. We examine the relativistic regime, high electronic ejection energies, as well as the first order correction to the non-relativistic cross-sections. In the ultra-relativistic limit, both the longitudinal and transversal cross-sections are peaked at small but noticeably different scattering angles. In the non-relativistic limit, the longitudinal cross-section has two maxima, and its minimum is located at the transversal maximum. Ionization cross-sections can thus be used to discriminate longitudinal radiation from transversal tachyons and photons.
Geometric effect on second harmonic generation from gold grating
NASA Astrophysics Data System (ADS)
Lu, Jiao; Ding, Baoyong; Huo, Yanyan; Ning, Tingyin
2018-05-01
We numerically investigate second harmonic generation from gold gratings of an ideal rectangular and ladder-shaped cross-section. The SHG efficiency from the gold gratings of the ladder-shaped cross-section is significantly enhanced compared with that from the ideal rectangular cross-section with a maximum enhancement factor of around two. The enhancement is ascribe to the nanostructure dependent local fundamental electric field, the nonlinear sources and thus the far field radiation. Our results have a practical meaning in the explanation of experimental SHG measurement, and the modulation of SHG response in the metallic nanostructure.
NASA Astrophysics Data System (ADS)
Yang, Hongliang; Zhao, Hao; Xing, Zhongwen
2017-11-01
For the demand of energy conservation and security improvement, high-strength steel (HSS) is increasingly being used to produce safety related automotive components. However, cross-section distortion occurs easily in bending of HSS tube with rectangular section (RS), affecting the forming precision. HSS BR1500HS tube by rotary draw bending is taken as the study object and a description method of cross-section distortion is proposed in this paper. The influence on cross-section precision of geometric parameters including cross-section position, thickness of tube, bend radius etc. are studied by experiment. Besides, simulation of the rotary draw bending of HSS tube with rectangular section by ABAQUS are carried out and compared to the experiment. The results by simulation agree well with the experiment and show that the cross-section is approximately trapezoidal after distortion; the maximum of distortion exists at 45 ∼ 60° of the bending direction; and the absolute and relative distortion values increase with the decreasing of tube thickness or bending radius. Therefore, the results can provide a reference for the design of geometric parameters of HSS tube with rectangular section in rotary draw bending.
Nuclear-Recoil Differential Cross Sections for the Two Photon Double Ionization of Helium
NASA Astrophysics Data System (ADS)
Abdel Naby, Shahin; Ciappina, M. F.; Lee, T. G.; Pindzola, M. S.; Colgan, J.
2013-05-01
In support of the reaction microscope measurements at the free-electron laser facility at Hamburg (FLASH), we use the time-dependent close-coupling method (TDCC) to calculate fully differential nuclear-recoil cross sections for the two-photon double ionization of He at photon energy of 44 eV. The total cross section for the double ionization is in good agreement with previous calculations. The nuclear-recoil distribution is in good agreement with the experimental measurements. In contrast to the single-photon double ionization, maximum nuclear recoil triple differential cross section is obtained at small nuclear momenta. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California and the National Institute for Computational Sciences in Knoxville, Tennessee.
NASA Astrophysics Data System (ADS)
Ozen, Murat; Guler, Murat
2014-02-01
Aggregate gradation is one of the key design parameters affecting the workability and strength properties of concrete mixtures. Estimating aggregate gradation from hardened concrete samples can offer valuable insights into the quality of mixtures in terms of the degree of segregation and the amount of deviation from the specified gradation limits. In this study, a methodology is introduced to determine the particle size distribution of aggregates from 2D cross sectional images of concrete samples. The samples used in the study were fabricated from six mix designs by varying the aggregate gradation, aggregate source and maximum aggregate size with five replicates of each design combination. Each sample was cut into three pieces using a diamond saw and then scanned to obtain the cross sectional images using a desktop flatbed scanner. An algorithm is proposed to determine the optimum threshold for the image analysis of the cross sections. A procedure was also suggested to determine a suitable particle shape parameter to be used in the analysis of aggregate size distribution within each cross section. Results of analyses indicated that the optimum threshold hence the pixel distribution functions may be different even for the cross sections of an identical concrete sample. Besides, the maximum ferret diameter is the most suitable shape parameter to estimate the size distribution of aggregates when computed based on the diagonal sieve opening. The outcome of this study can be of practical value for the practitioners to evaluate concrete in terms of the degree of segregation and the bounds of mixture's gradation achieved during manufacturing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmittroth, F.
1978-01-01
Applications of a new data-adjustment code are given. The method is based on a maximum-likelihood extension of generalized least-squares methods that allow complete covariance descriptions for the input data and the final adjusted data evaluations. The maximum-likelihood approach is used with a generalized log-normal distribution that provides a way to treat problems with large uncertainties and that circumvents the problem of negative values that can occur for physically positive quantities. The computer code, FERRET, is written to enable the user to apply it to a large variety of problems by modifying only the input subroutine. The following applications are discussed:more » A 75-group a priori damage function is adjusted by as much as a factor of two by use of 14 integral measurements in different reactor spectra. Reactor spectra and dosimeter cross sections are simultaneously adjusted on the basis of both integral measurements and experimental proton-recoil spectra. The simultaneous use of measured reaction rates, measured worths, microscopic measurements, and theoretical models are used to evaluate dosimeter and fission-product cross sections. Applications in the data reduction of neutron cross section measurements and in the evaluation of reactor after-heat are also considered. 6 figures.« less
NASA Astrophysics Data System (ADS)
Friedman, B.; DuCharme, G.
2017-06-01
We present a semi-empirical scaling law for non-resonant ion-atom single charge exchange cross sections for collisions with velocities from {10}7 {{t}}{{o}} {10}9 {cm} {{{s}}}-1 and ions with positive charge q< 8. Non-resonant cross sections tend to have a velocity peak at collision velocities v≲ 1 {{a}}{{u}} with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, {{Δ }}E, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters {v}{{m}},{I}{{T}},{Z}{{T}},{and} {Z}{{P}}, where the {Z}{{T},{{P}}} are the target and projectile atomic numbers. For the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-05-01
The influence of nonisothermal and quantum shielding on the electron-ion collision process is investigated in strongly coupled two-temperature plasmas. The eikonal method is employed to obtain the eikonal scattering phase shift and eikonal cross section as functions of the impact parameter, collision energy, electron temperature, ion temperature, Debye length, and de Broglie wavelength. The results show that the quantum effect suppresses the eikonal scattering phase shift for the electron-ion collision in two-temperature dense plasmas. It is also found that the differential eikonal cross section decreases for small impact parameters. However, it increases for large impact parameters with increasing de Broglie wavelength. It is also found that the maximum position of the differential eikonal cross section is receded from the collision center with an increase in the nonisothermal character of the plasma. In addition, it is found that the total eikonal cross sections in isothermal plasmas are always greater than those in two-temperature plasmas. The variations of the eikonal cross section due to the two-temperature and quantum shielding effects are also discussed.
Fluoresence cross section of the H2O(+) A 2A1(0,7,0) produced through photoionization of H2O
NASA Technical Reports Server (NTRS)
Wu, C. Y. Robert; Hwang, M. Y.
1988-01-01
The cross section for the production of the H2O(+) A 2A1(0,7,0) - X 2B1(0,0,0) fluorescence through photoionization of H2O was measured in the 14.5-20.5 eV region. The maximum quantum yield is 1.4 x 10 to the -3rd at 16.5 eV.
Velocity dependence of heavy-ion stopping below the maximum
NASA Astrophysics Data System (ADS)
Sigmund, P.; Schinner, A.
2015-01-01
In the slowing-down of heavy ions in materials, the standard description by Lindhard and Scharff assumes the electronic stopping cross section to be proportional to the projectile speed v up to close to a stopping maximum, which is related to the Thomas-Fermi speed vTF . It is well known that strict proportionality with v is rarely observed, but little is known about the systematics of observed deviations. In this study we try to identify factors that determine positive or negative curvature of stopping cross sections on the basis of experimental data and of binary stopping theory. We estimate the influence of shell structure of the target and of the equilibrium charge of the ion and comment the role of dynamic screening.
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Booth, P.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Brambilla, E.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Bright-Thomas, P. G.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E. J.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camard, A.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Cazzato, A.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, L.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Comune, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Rocha Gesualdi Mello, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dankers, R.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A. R.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lotto, B.; de Mora, L.; de Nooij, L.; de Oliveira Branco, M.; de Pedis, D.; de Saintignon, P.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietl, H.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J. G.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Efthymiopoulos, I.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fasching, D.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flammer, J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gieraltowski, G. F.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Gris, P. L. Y.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Gruwe, M.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, C. J.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heldmann, M.; Heller, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hooft van Huysduynen, L.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hott, T.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; König, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lapin, V. V.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Leahu, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, G. H.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchesotti, M.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McLaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikulec, B.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Moneta, L.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero Y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Øye, O. K.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rajek, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rensch, B.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandhu, P.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmidt, M. P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, H. S.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Treis, J.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; van der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vovenko, A. S.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; Zur Nedden, M.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration
2011-09-01
The inclusive J/ψ production cross-section and fraction of J/ψ mesons produced in B-hadron decays are measured in proton-proton collisions at √{s}=7 TeV with the ATLAS detector at the LHC, as a function of the transverse momentum and rapidity of the J/ψ, using 2.3 pb -1 of integrated luminosity. The cross-section is measured from a minimum p of 1 GeV to a maximum of 70 GeV and for rapidities within |y|<2.4 giving the widest reach of any measurement of J/ψ production to date. The differential production cross-sections of prompt and non-prompt J/ψ are separately determined and are compared to Colour Singlet NNLO, Colour Evaporation Model, and FONLL predictions.
Unclassified Publications of Lincoln Laboratory, 1 January - 31 December 1990. Volume 16
1990-12-31
Apr. 1990 ADA223419 Hopped Communication Systems with Nonuniform Hopping Distributions 880 Bistatic Radar Cross Section of a Fenn, A.J. 2 May1990...EXPERIMENT JA-6241 MS-8424 LUNAR PERTURBATION MAXIMUM LIKELIHOOD ALGORITHM JA-6241 JA-6467 LWIR SPECTRAL BAND MAXIMUM LIKELIHOOD ESTIMATOR JA-6476 MS-8466
Weber, Thorsten; Foucar, Lutz; Jahnke, Till; ...
2017-07-07
In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less
Maximum likelihood orientation estimation of 1-D patterns in Laguerre-Gauss subspaces.
Di Claudio, Elio D; Jacovitti, Giovanni; Laurenti, Alberto
2010-05-01
A method for measuring the orientation of linear (1-D) patterns, based on a local expansion with Laguerre-Gauss circular harmonic (LG-CH) functions, is presented. It lies on the property that the polar separable LG-CH functions span the same space as the 2-D Cartesian separable Hermite-Gauss (2-D HG) functions. Exploiting the simple steerability of the LG-CH functions and the peculiar block-linear relationship among the two expansion coefficients sets, maximum likelihood (ML) estimates of orientation and cross section parameters of 1-D patterns are obtained projecting them in a proper subspace of the 2-D HG family. It is shown in this paper that the conditional ML solution, derived by elimination of the cross section parameters, surprisingly yields the same asymptotic accuracy as the ML solution for known cross section parameters. The accuracy of the conditional ML estimator is compared to the one of state of art solutions on a theoretical basis and via simulation trials. A thorough proof of the key relationship between the LG-CH and the 2-D HG expansions is also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Thorsten; Foucar, Lutz; Jahnke, Till
In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less
NASA Astrophysics Data System (ADS)
Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.
2016-05-01
The inelastic electron scattering cross section spectra of Fe have been calculated based on experimental spectra of characteristic reflection electron energy loss as dependences of the product of the inelastic mean free path by the differential inelastic electron scattering cross section on the electron energy loss. It has been shown that the inelastic electron scattering cross-section spectra have certain advantages over the electron energy loss spectra in the analysis of the interaction of electrons with substance. The peaks of energy loss in the spectra of characteristic electron energy loss and inelastic electron scattering cross sections have been determined from the integral and differential spectra. It has been shown that the energy of the bulk plasmon is practically independent of the energy of primary electrons in the characteristic electron energy loss spectra and monotonically increases with increasing energy of primary electrons in the inelastic electron scattering cross-section spectra. The variation in the maximum energy of the inelastic electron scattering cross-section spectra is caused by the redistribution of intensities over the peaks of losses due to various excitations. The inelastic electron scattering cross-section spectra have been analyzed using the decomposition of the spectra into peaks of the energy loss. This method has been used for the quantitative estimation of the contributions from different energy loss processes to the inelastic electron scattering cross-section spectra of Fe and for the determination of the nature of the energy loss peaks.
Friedman, B.; DuCharme, G.
2017-05-11
We present a semi-empirical scaling law for non-resonant ion–atom single charge exchange cross sections for collisions with velocities frommore » $${10}^{7}\\,{\\rm{t}}{\\rm{o}}\\,{10}^{9}\\,\\mathrm{cm}\\,{{\\rm{s}}}^{-1}$$ and ions with positive charge $$q\\lt 8$$. Non-resonant cross sections tend to have a velocity peak at collision velocities $$v\\lesssim 1\\ {\\rm{a}}{\\rm{u}}$$ with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, $${\\rm{\\Delta }}E$$, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters $${v}_{{\\rm{m}}},{I}_{{\\rm{T}}},{Z}_{{\\rm{T}}},\\mathrm{and}\\ {Z}_{{\\rm{P}}}$$, where the $${Z}_{{\\rm{T}},{\\rm{P}}}$$ are the target and projectile atomic numbers. In conclusion, for the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, B.; DuCharme, G.
We present a semi-empirical scaling law for non-resonant ion–atom single charge exchange cross sections for collisions with velocities frommore » $${10}^{7}\\,{\\rm{t}}{\\rm{o}}\\,{10}^{9}\\,\\mathrm{cm}\\,{{\\rm{s}}}^{-1}$$ and ions with positive charge $$q\\lt 8$$. Non-resonant cross sections tend to have a velocity peak at collision velocities $$v\\lesssim 1\\ {\\rm{a}}{\\rm{u}}$$ with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, $${\\rm{\\Delta }}E$$, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters $${v}_{{\\rm{m}}},{I}_{{\\rm{T}}},{Z}_{{\\rm{T}}},\\mathrm{and}\\ {Z}_{{\\rm{P}}}$$, where the $${Z}_{{\\rm{T}},{\\rm{P}}}$$ are the target and projectile atomic numbers. In conclusion, for the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.« less
Formation of negative hydrogen ion: polarization electron capture and nonthermal shielding.
Ki, Dae-Han; Jung, Young-Dae
2012-09-07
The influence of the nonthermal shielding on the formation of the negative hydrogen ion (H(-)) by the polarization electron capture are investigated in partially ionized generalized Lorentzian plasmas. The Bohr-Lindhard method has been applied to obtain the negative hydrogen formation radius and cross section as functions of the collision energy, de Broglie wave length, Debye length, impact parameter, and spectral index of the plasma. The result shows that the nonthermal character of the plasma enhances the formation radius of the negative hydrogen, especially, for small Debye radii. It is found that the nonthermal effect increases the formation cross section of the negative hydrogen. It is also found that the maximum position of the formation cross section approaches to the collision center with an increase of the spectral index. In addition, it is found that the formation cross section significantly decreases with an increase of the Debye length, especially, for small spectral indices.
S-193 scatterometer backscattering cross section precision/accuracy for Skylab 2 and 3 missions
NASA Technical Reports Server (NTRS)
Krishen, K.; Pounds, D. J.
1975-01-01
Procedures for measuring the precision and accuracy with which the S-193 scatterometer measured the background cross section of ground scenes are described. Homogeneous ground sites were selected, and data from Skylab missions were analyzed. The precision was expressed as the standard deviation of the scatterometer-acquired backscattering cross section. In special cases, inference of the precision of measurement was made by considering the total range from the maximum to minimum of the backscatter measurements within a data segment, rather than the standard deviation. For Skylab 2 and 3 missions a precision better than 1.5 dB is indicated. This procedure indicates an accuracy of better than 3 dB for the Skylab 2 and 3 missions. The estimates of precision and accuracy given in this report are for backscattering cross sections from -28 to 18 dB. Outside this range the precision and accuracy decrease significantly.
CCC calculated integrated cross sections of electron-H2 scattering
NASA Astrophysics Data System (ADS)
Zammit, Mark; Fursa, Dmitry; Savage, Jeremy; Bray, Igor
2016-09-01
Recently we applied the molecular convergent close-coupling (CCC) method to electron scattering from molecular hydrogen H2. Convergence of the major integrated cross sections has been explicitly demonstrated in the fixed-nuclei approximation by increasing the number of H2 target states in the close-coupling expansion from 9 to 491. The calculations have been performed using a projectile partial wave expansion with maximum orbital angular momentum Lmax = 8 and total orbital angular momentum projections | M | <= 8 . Coupling to the ionization continuum is modeled via a large pseudo state expansion, which we found is required to obtain reliable elastic and excitation cross sections. Here we present benchmark elastic, single-ionization, electronic excitation and total integrated cross sections over a broad energy range (0.1 to 300 eV) and compare with available experiment and previous calculations. Los Alamos National Laboratory and Curtin University.
Applications and Engineering Analysis of Lotus Roots under External Water Pressure
Wang, Chang Jiang; Mynors, Diane
2016-01-01
Engineers can learn from nature for inspirations to create new designs. The internal structure of lotus roots with several oval holes was studied in this paper for engineering inspirations. The structural performance of lotus roots under outside water pressure was simulated and compared with various cross-sectional areas. The distribution of stresses in the cross-sectional area of lotus roots was analysed and presented. It was found that the maximum compressive stresses in the cross-sectional area of lotus roots were occurring at the long axis ends of the holes. This was very different from that of circular holes. Further analysis on the triaxiality factors revealed that the cross-sectional area of the lotus root resulted in large areas of high triaxiality factors. The resulting hydrostatic stress in the cross-sectional area of lotus root ranges from zero to 2.7 times the applied outside pressure. In contrast, the hydrostatic stress in a cylindrical cross-sectional area is a fixed value. The study showed that the lotus root and the orientation of the oval holes could be mimicked in the design of new structures, for example, underwater pipes and vessels. PMID:28127228
Electron impact ionization of cycloalkanes, aldehydes, and ketones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com
The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the crossmore » sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.« less
Electron impact ionization cross sections of beryllium-tungsten clusters*
NASA Astrophysics Data System (ADS)
Sukuba, Ivan; Kaiser, Alexander; Huber, Stefan E.; Urban, Jan; Probst, Michael
2016-01-01
We report calculated electron impact ionization cross sections (EICSs) of beryllium-tungsten clusters, BenW with n = 1,...,12, from the ionization threshold to 10 keV using the Deutsch-Märk (DM) and the binary-encounter-Bethe (BEB) formalisms. The positions of the maxima of DM and BEB cross sections are mostly close to each other. The DM cross sections are more sensitive with respect to the cluster size. For the clusters smaller than Be4W they yield smaller cross sections than BEB and vice versa larger cross sections than BEB for clusters larger than Be6W. The maximum cross section values for the singlet-spin groundstate clusters range from 7.0 × 10-16 cm2 at 28 eV (BeW) to 54.2 × 10-16 cm2 at 43 eV (Be12W) for the DM cross sections and from 13.5 × 10-16 cm2 at 43 eV (BeW) to 38.9 × 10-16 cm2 at 43 eV (Be12W) for the BEB cross sections. Differences of the EICSs in different isomers and between singlet and triplet states are also explored. Both the DM and BEB cross sections could be fitted perfectly to a simple expression used in modeling and simulation codes in the framework of nuclear fusion research. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2015-60583-7
Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L
NASA Astrophysics Data System (ADS)
Mendonca, C. R.; Correa, D. S.; Baldacchini, T.; Tayalia, P.; Mazur, E.
2008-03-01
Two-photon absorption induced polymerization provides a powerful method for the fabrication of intricate three-dimensional microstructures. Recently, Lucirin TPO-L was shown to be a photoinitiator with several advantageous properties for two-photon induced polymerization. Here we measure the two-photon absorption cross-section spectrum of Lucirin TPO-L, which presents a maximum of 1.2 GM at 610 nm. Despite its small two-photon absorption cross-section, it is possible to fabricate excellent microstructures by two-photon polymerization due to the high polymerization quantum yield of Lucirin TPO-L. These results indicate that optimization of the two-photon absorption cross-section is not the only material parameter to be considered when searching for new photoinitiators for microfabrication via two-photon absorption.
Duan, Qiangling; Xiao, Huahua; Gao, Wei; Gong, Liang; Sun, Jinhua
2016-12-15
An experimental investigation of spontaneous ignition and flame propagation at high-pressure hydrogen release via cylindrical tubes with varying cross-section is presented. Tubes with different transverse cross-sections are considered in the experiments: (1) local contraction, (2) local enlargement, (3) abrupt contraction, and (4) abrupt enlargement. The results show that the presence of the varying cross-section geometries can significantly promote the occurrence of spontaneous ignition. Compared to the tube with constant cross-section, the minimum pressure release needed for spontaneous ignition for the varying cross-sections tubes is considerably lower. Moreover, the initial ignition location is closer to the disk in the presence of varying cross-section geometries in comparison with straight channel. As the flame emerges from the outlet of the tube, the velocity of the flame front in the vicinity of the nozzle increases sharply. Then, a deflagration develops across the mixing zone of hydrogen/air mixture. The maximum deflagration overpressure increases linearly with the release pressure. Subsequently, a hydrogen jet flame is produced and evolves different shapes at different release stages. A fireball is formed after the jet flame spouts in the open air. Later, the fireball develops into a jet flame which shifts upward and continues to burn in the vertical direction. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuo, Ching Yi; Pan, Chin
2010-09-01
This study experimentally investigates steam condensation in rectangular microchannels with uniform and converging cross-sections and a mean hydraulic diameter of 135 µm. The steam flow in the microchannels was cooled by water cross-flowing along its bottom surface, which is different from other methods reported in the literature. The flow patterns, two-phase flow pressure drop and condensation heat transfer coefficient are determined. The microchannels with the uniform cross-section design have a higher heat transfer coefficient than those with the converging cross-section under condensation in the mist/annular flow regimes, although the latter work best for draining two-phase fluids composed of uncondensed steam and liquid water, which is consistent with the result of our previous study. From the experimental results, dimensionless correlations of condensation heat transfer for the mist and annular flow regions and a two-phase frictional multiplier are developed for the microchannels with both types of cross-section designs. The experimental data agree well with the obtained correlations, with the maximum mean absolute errors of 6.4% for the two-phase frictional multiplier and 6.0% for the condensation heat transfer.
NASA Astrophysics Data System (ADS)
Loiko, Pavel; Volokitina, Anna; Mateos, Xavier; Dunina, Elena; Kornienko, Alexey; Vilejshikova, Elena; Aguiló, Magdalena; Díaz, Francesc
2018-04-01
The spectroscopic properties of Tb3+ ions in monoclinic KLu(WO4)2 double tungstate crystal are studied with polarized light. The absorption spectra in the visible, near- and mid-IR including the transitions to all lower-lying 7FJ (J = 0 … 5) excited states are measured. The maximum absorption cross-section for the 7F6 → 5D4 transition is 3.42 × 10-21 cm2 at 486.7 nm for light polarization E || Nm. The transition probabilities for Tb3+ ions are calculated within the Judd-Ofelt theory modified for the case of an intermediate configuration interaction (ICI). The radiative lifetime of the 5D4 state is 450 μs and the luminescence quantum yield is >90%. The polarized stimulated-emission cross-section spectra for all 5D4 → 7FJ (J = 0 … 6) emission channels are evaluated. The maximum σSE is 11.4 × 10-21 cm2 at 549.4 nm (for E || Nm). Tb3+:KLu(WO4)2 features high transition cross-sections for polarized light being promising for color-tunable visible lasers and imaging.
Lee, Ju-Yeun; Bae, Kunho; Park, Kyung-Ah; Lyu, In Jeong; Oh, Sei Yeul
2016-01-01
The aim of this study was to investigate extraocular muscle (EOM) volume and cross-sectional area using computed tomography (CT), and to determine the relationship between EOM size and the vertical angle of deviation in thyroid eye disease (TED). Twenty-nine TED patients (58 orbits) with vertical strabismus were enrolled in the study. All patients underwent complete ophthalmic examination including prism, alternate cover, and Krimsky tests. Orbital CT scans were also performed on each patient. Digital image analysis was used to quantify superior rectus (SR) and inferior rectus (IR) muscle cross-sectional areas and volumes. Measurements were compared with those of controls. The correlation between muscle size and degree of vertical angle deviation was evaluated. The mean vertical angle of deviation was 26.2 ± 4.1 prism diopters. The TED group had a greater maximum cross-sectional area and EOM volume in the SR and IR than the control group (all p<0.001). Area and volume of the IR were correlated with the angle of deviation, but the SR alone did not show a significant correlation. The maximum cross-sectional area and volume of [Right IR + Left SR − Right SR − Left IR] was strongly correlated with the vertical angle of deviation (P<0.001). Quantitative CT of the orbit with evaluation of the area and volume of EOMs may be helpful in anticipating and monitoring vertical strabismus in TED patients. PMID:26820406
Kato, T; Yamashita, T; Mizutani, S; Honda, A; Matumoto, M; Umemura, Y
2009-12-01
To investigate whether childhood sports participation, particularly weight-bearing sports, has any effect on bone mineral content (BMC), areal bone mineral density (aBMD) and bone geometric characteristics in middle-aged postmenopausal women. Design/ In this cross-sectional comparison of two groups, 46 middle-aged women (mean age, 60.2 (SD 5.6) years; range, 52-73 years) were grouped according to sport participation during growth: weight-bearing sports, including high-impact weight-bearing activities; and low-impact non-weight-bearing sports or no participation. Dual energy X-ray absorptiometry (DXA)-measured BMC, aBMD in the lumbar spine and femur. Magnetic resonance imaging (MRI) determined bone geometric characteristics in the femur, such as femoral mid-diaphyseal cross-sectional area, periosteal and endosteal perimeters and maximum and minimum second moment of area. Postmenopausal middle-aged women with participation in weight-bearing sports during junior high to high school (12-18 years old) displayed significantly greater BMC in both lumbar spine and femoral neck regions, and also significantly greater femoral mid-diaphyseal bone cross-sectional area, periosteal perimeter and maximum and minimum second moment of area than the non-weight-bearing sports group. Adolescent weight-bearing exercise exerts preservational effects on femoral mid-diaphyseal size and shape, while DXA-measured BMC effectively identified the same tendency. Weight-bearing exercise in youth affects bone, and these effects may be preserved as BMC, geometric and structural advantages even after 40 years.
Lee, Ju-Yeun; Bae, Kunho; Park, Kyung-Ah; Lyu, In Jeong; Oh, Sei Yeul
2016-01-01
The aim of this study was to investigate extraocular muscle (EOM) volume and cross-sectional area using computed tomography (CT), and to determine the relationship between EOM size and the vertical angle of deviation in thyroid eye disease (TED). Twenty-nine TED patients (58 orbits) with vertical strabismus were enrolled in the study. All patients underwent complete ophthalmic examination including prism, alternate cover, and Krimsky tests. Orbital CT scans were also performed on each patient. Digital image analysis was used to quantify superior rectus (SR) and inferior rectus (IR) muscle cross-sectional areas and volumes. Measurements were compared with those of controls. The correlation between muscle size and degree of vertical angle deviation was evaluated. The mean vertical angle of deviation was 26.2 ± 4.1 prism diopters. The TED group had a greater maximum cross-sectional area and EOM volume in the SR and IR than the control group (all p<0.001). Area and volume of the IR were correlated with the angle of deviation, but the SR alone did not show a significant correlation. The maximum cross-sectional area and volume of [Right IR + Left SR - Right SR - Left IR] was strongly correlated with the vertical angle of deviation (P<0.001). Quantitative CT of the orbit with evaluation of the area and volume of EOMs may be helpful in anticipating and monitoring vertical strabismus in TED patients.
High energy γ-ray production from Be, C, and Al targets with 65 MeV 3He bombardment
NASA Astrophysics Data System (ADS)
Hosaka, M.; Ishii, K.; Ohura, M.; Terakawa, A.; Miyamoto, S.; Guan, Z.; Orihara, H.; Kasagi, J.
1996-11-01
High-energy γ rays from targets of Be, C, and Al bombarded with 65 MeV 3He ions have been measured by the use of a γ-ray detector system consisting of seven BaF2 scintillators. The energy spectra were obtained up to the maximum energy kinematically permitted in each collision at detection angles of 35°-144°. The experimental cross sections are compared with calculations of the potential bremsstrahlung on which the theory has been developed by Nakayama and Bertsch. It is shown that the prediction of potential bremsstrahlung can well reproduce the production cross sections of γ rays of energy near the kinematical maximum energy in collisions, while this result is contrary to the previous one of Tam et al. in α and d bombardments.
NASA Astrophysics Data System (ADS)
Tyynelä, J.; Leinonen, J.; Westbrook, C. D.; Moisseev, D.; Nousiainen, T.
2013-02-01
The applicability of the Rayleigh-Gans approximation (RGA) for scattering by snowflakes is studied in the microwave region of the electromagnetic spectrum. Both the shapes of the single ice crystals, or monomers, and their amounts in the modeled snowflakes are varied. For reference, the discrete-dipole approximation (DDA) is used to produce numerically accurate solutions to the single-scattering properties, such as the backscattering and extinction cross-sections, single-scattering albedo, and the asymmetry parameter. We find that the single-scattering albedo is the most accurate with only about 10% relative bias at maximum. The asymmetry parameter has about 0.12 absolute bias at maximum. The backscattering and extinction cross-sections show about - 65% relative biases at maximum, corresponding to about - 4.6 dB difference. Overall, the RGA agrees well with the DDA computations for all the cases studied and is more accurate for the integrated quantities, such as the single-scattering albedo and the asymmetry parameter than the cross-sections for the same snowflakes. The accuracy of the RGA seems to improve, when the number of monomers is increased in an aggregate, and decrease, when the frequency increases. It is also more accurate for less dense monomer shapes, such as stellar dendrites. The DDA and RGA results are well correlated; the sample correlation coefficients of those are close to unity throughout the study. Therefore, the accuracy of the RGA could be improved by applying appropriate correction factors.
Velocity associated characteristics of force production in college weight lifters.
Kanehisa, H; Fukunaga, T
1999-04-01
To determine velocity specific isokinetic forces and cross sectional areas of reciprocal muscle groups in Olympic weight lifters. The cross sectional area of the flexor or extensor muscles of the elbow or knee joint was determined by a B-mode ultrasonic apparatus in 34 college weight lifters and 31 untrained male subjects matched for age. Maximum voluntary force produced in the flexion and extension of the elbow and knee joints was measured on an isokinetic dynamometer at 60, 180, and 300 degrees/s. The average cross sectional area was 31-65% higher, and the force was 19-62% higher in weight lifters than in the untrained subjects. The ratio of force to cross sectional area was the same in both groups. The weight lifters showed a lower velocity associated decline in force than untrained subjects in the elbow and knee flexors but not in the extensors. These results indicate that for muscle contractions with velocities between 60 degrees/s and 300 degrees/s the difference in isokinetic force between weight lifters and untrained subjects can be primarily attributed to the difference in the muscle cross sectional area. However, the lower velocity associated decline in force implies that weight lifters may have a higher force per cross sectional area than untrained subjects at velocities above 300 degrees/s.
A Study of Thick-Target X-Ray Spectra Using Photonuclear Reactions
1983-01-01
energy k will be given by kmln-BV1+(BEb/Mxc2)] (2) Where M Is the mass of the target nucleus, c is the velocity of light , and BE. , the binding...3-8 MeV (18,23,26). The energy B at which the cross section is a maximum is approximately 20 MeV for light elements (23,26). For heavy elements, E...Detailed inspection of the giant reaonance of photonuclear reactions in light elements reveals cross section maxima and minima, or "atructure
Length and temperature dependence of the mechanical properties of finite-size carbyne
NASA Astrophysics Data System (ADS)
Yang, Xueming; Huang, Yanhui; Cao, Bingyang; To, Albert C.
2017-09-01
Carbyne is an ideal one-dimensional conductor and the thinnest interconnection in an ultimate nano-device and it requires an understanding of the mechanical properties that affect device performance and reliability. Here, we report the mechanical properties of finite-size carbyne, obtained by a molecular dynamics simulation study based on the adaptive intermolecular reactive empirical bond order potential. To avoid confusion in assigning the effective cross-sectional area of carbyne, the value of the effective cross-sectional area of carbyne (4.148 Å2) was deduced via experiment and adopted in our study. Ends-constraints effects on the ultimate stress (maximum force) of the carbyne chains are investigated, revealing that the molecular dynamics simulation results agree very well with the experimental results. The ultimate strength, Young's Modulus and maximum strain of carbyne are rather sensitive to the temperature and all decrease with the temperature. Opposite tendencies of the length dependence of the overall ultimate strength and maximum strain of carbyne at room temperature and very low temperature have been found, and analyses show that this originates in the ends effect of carbyne.
Dual-wavelength and efficient continuous-wave operation of a Yb:CaGd0.1Y0.9AlO4 laser
NASA Astrophysics Data System (ADS)
Di, J. Q.; Sai, Q. L.; Sun, X. H.; Xu, X. D.; Kong, L. C.; Xie, G. Q.; Liu, Y. L.; Teng, F.; Zhu, L.
2018-05-01
The spectra and laser properties of single crystalline Yb:CaGd0.1Y0.9AlO4 were investigated for the first time. The peak absorption cross-sections of 4.01 cm2 and 1.39 × 10‑20 cm2 with full width at half maximum of 17 and 32 nm, and the maximum emission cross-sections of 2.11 and 1.53 × 10‑20 cm2 were obtained for π and σ polarizations, respectively. The fluorescence decay time was 638 µs. The maximum continuous-wave laser achieved was 1.60 W with a slope efficiency of 23.4% for an a-cut Yb:CaGd0.1Y0.9AlO4 crystal. Dual-wavelength lasers at 1041.7 and 1044.9 nm were also demonstrated. The results show that Yb:CaGd0.1Y0.9AlO4 crystal is a promising ultra-short and dual-wavelength laser medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strait, J.; Mokhov, N.V.; Striganov, S.I.
2010-06-09
Cross-section data from the HARP experiment for pion production by protons from a tantalum target have been convoluted with the acceptance of the front-end channel for the proposed neutrino factory or muon collider and integrated over the full phase space measured by HARP, to determine the beam-energy dependence of the muon yield. This permits a determination of the optimal beam energy for the proton driver for these projects. The cross-section data are corrected for the beam-energy dependent 'amplification' due to the development of hadronic showers in a thick target. The conclusion is that, for constant beam power, the yield ismore » maximum for a beam energy of about 7 GeV, but it is within 10% of this maximum for 4 < T{sub beam} < 11 GeV, and within 20% of the maximum for T{sub beam} as low as 2 GeV. This result is insensitive to which of the two HARP groups results are used, and to which pion generator is used to compute the thick target effects.« less
Design and Numerical Simulation of Radial Inflow Turbine Volute
NASA Astrophysics Data System (ADS)
Shah, Samip P.; Channiwala, S. A.; Kulshreshtha, D. B.; Chaudhari, Gaurang
2014-12-01
The volute of a radial inflow turbine has to be designed to ensure that the desired rotor inlet conditions like absolute Mach number, flow angle etc. are attained. For the reasonable performance of vaneless volute turbine care has to be taken for reduction in losses at an appropriate flow angle at the rotor inlet, in the direction of volute, whose function is to convert gas energy into kinetic energy and direct the flow towards the rotor inlet at an appropriate flow angle with reduced losses. In literature it was found that the incompressible approaches failed to provide free vortex and uniform flow at rotor inlet for compressible flow regimes. So, this paper describes a non-dimensional design procedure for a vaneless turbine volute for compressible flow regime and investigates design parameters, such as the distribution of area ratio and radius ratio as a function of azimuth angle. The nondimensional design is converted in dimensional form for three different volute cross sections. A commercial computational fluid dynamics code is used to develop numerical models of three different volute cross sections. From the numerical models, losses generation in the different volutes are identified and compared. The maximum pressure loss coefficient for Trapezoidal cross section is 0.1075, for Bezier-trapezoidal cross section is 0.0677 and for circular cross section is 0.0438 near tongue region, which suggested that the circular cross section will give a better efficiency than other types of volute cross sections.
Laser and spectroscopic properties of Sr[sub 5](PO[sub 4])[sub 3]F:Yb
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLoach, L.D.; Payne, S.A.; Smith, L.K.
Sr[sub 5](PO[sub 4])[sub 3]F (S-FAP) has been investigated as a new Yb-doped laser crystal belonging to the apatite structural family. The spectroscopy of the Yb[sup 3+] ion and the laser properties of the medium have been investigated. The maximum absorption cross section of Yb in S-FAP is 8.6 [times] 10[sup [minus]20] cm[sup 2], and the maximum emission cross section is 7.3 [times] 10[sup [minus]20] cm[sup 2]. The measured emission lifetime of Yb[sup 3+] is 1.26 ms. An Yb:S-FAP laser has been demonstrated with a Ti:sapphire laser pump operating at 899 nm. The Yb:S-FAP laser was measured to have slope efficienciesmore » as high as 71%. The spectroscopy and laser studies are reported, as well as certain thermal, mechanical, and optical properties.« less
Advanced Antennas Enabled by Electromagnetic Metamaterials
2014-12-01
radiation patterns of a conical horn antenna and three soft horns with various homogeneous metasurface liners. The maximum cross-polarization level was...inhomogencous metasurface liners covering both the flared horn section and the straight waveguide section. The mctahorn is fed by a circular waveguide...with a diameter of 20 mm. (b) The sizes of the metallic patches at each row of the metasurface in the flared horn section. Both the length and width
NASA Astrophysics Data System (ADS)
Chen, Wei; de Swart, Huib E.
2018-03-01
This study investigates the longitudinal variation of lateral entrapment of suspended sediment, as is observed in some tidal estuaries. In particular, field data from the Yangtze Estuary are analysed, which reveal that in one cross-section, two maxima of suspended sediment concentration (SSC) occur close to the south and north sides, while in a cross-section 2 km down-estuary, only one SSC maximum on the south side is present. This pattern is found during both spring tide and neap tide, which are characterised by different intensities of turbulence. To understand longitudinal variation in lateral trapping of sediment, results of a new three-dimensional exploratory model are analysed. The hydrodynamic part contains residual flow due to fresh water input, density gradients and Coriolis force and due to channel curvature-induced leakage. Moreover, the model includes a spatially varying eddy viscosity that accounts for variation of intensity of turbulence over the spring-neap cycle. By imposing morphodynamic equilibrium, the two-dimensional distribution of sediment in the domain is obtained analytically by a novel procedure. Results reveal that the occurrence of the SSC maxima near the south side of both cross-sections is due to sediment entrapment by lateral density gradients, while the second SSC maximum near the north side of the first cross-section is by sediment transport due to curvature-induced leakage. Coriolis deflection of longitudinal flow also contributes the trapping of sediment near the north side. This mechanism is important in the upper estuary, where the flow due to lateral density gradients is weak.
Abdalbary, Sahar Ahmed; Elshaarawy, Ehab A A; Khalid, Bahaa E A
2016-02-01
The deep transverse metatarsal ligament (DTML) connects the neighboring2 metatarsal heads and is one of the stabilizers connecting the lateral sesamoid and second metatarsal head. In this study, we aimed to determine the tensile properties of the DTML in normal specimens and to compare these results with hallux valgus specimens. We hypothesized that the tensile properties of the DTML would be different between the 2 groups of specimens.The DTML in the first interspace was dissected from 12 fresh frozen human cadaveric specimens. Six cadavers had bilateral hallux valgus and the other 6 cadavers had normal feet. The initial length (L0) and cross-sectional area (A0) of the DTML were measured using a digital caliper, and tensile tests with load failure were performed using a material testing machine.There were significant between-groups differences in the initial length (L0) P = 0.009 and cross-sectional area (A0) of the DTML P = 0.007. There were also significant between-groups differences for maximum force (N) P = 0.004, maximum distance (mm) P = 0.005, maximum stress (N/mm) P = 0.003, and maximum strain (%) P = 0.006.The DTML is an anatomical structure for which the tensile properties differ in hallux valgus.
Velocity associated characteristics of force production in college weight lifters
Kanehisa, H.; Fukunaga, T.
1999-01-01
OBJECTIVE: To determine velocity specific isokinetic forces and cross sectional areas of reciprocal muscle groups in Olympic weight lifters. METHODS: The cross sectional area of the flexor or extensor muscles of the elbow or knee joint was determined by a B-mode ultrasonic apparatus in 34 college weight lifters and 31 untrained male subjects matched for age. Maximum voluntary force produced in the flexion and extension of the elbow and knee joints was measured on an isokinetic dynamometer at 60, 180, and 300 degrees/s. RESULTS: The average cross sectional area was 31-65% higher, and the force was 19-62% higher in weight lifters than in the untrained subjects. The ratio of force to cross sectional area was the same in both groups. The weight lifters showed a lower velocity associated decline in force than untrained subjects in the elbow and knee flexors but not in the extensors. CONCLUSIONS: These results indicate that for muscle contractions with velocities between 60 degrees/s and 300 degrees/s the difference in isokinetic force between weight lifters and untrained subjects can be primarily attributed to the difference in the muscle cross sectional area. However, the lower velocity associated decline in force implies that weight lifters may have a higher force per cross sectional area than untrained subjects at velocities above 300 degrees/s. PMID:10205693
Bathymetric survey of Carroll Creek Tributary to Lake Tuscaloosa, Tuscaloosa County, Alabama, 2010
Lee, K.G.; Kimbrow, D.R.
2011-01-01
The U.S. Geological Survey, in cooperation with the City of Tuscaloosa, conducted a bathymetric survey of Carroll Creek, on May 12-13, 2010. Carroll Creek is one of the major tributaries to Lake Tuscaloosa and contributes about 6 percent of the surface drainage area. A 3.5-mile reach of Carroll Creek was surveyed to prepare a current bathymetric map, determine storage capacities at specified water-surface elevations, and compare current conditions to historical cross sections. Bathymetric data were collected using a high-resolution interferometric mapping system consisting of a phase-differencing bathymetric sonar, navigation and motion-sensing system, and a data acquisition computer. To assess the accuracy of the interferometric mapping system and document depths in shallow areas of the study reach, an electronic total station was used to survey 22 cross sections spaced 50 feet apart. The data were combined and processed and a Triangulated Irregular Network (TIN) and contour map were generated. Cross sections were extracted from the TIN and compared with historical cross sections. Between 2004 and 2010, the area (cross section 1) at the confluence of Carroll Creek and the main run of LakeTuscaloosa showed little to no change in capacity area. Another area (cross section 2) showed a maximum change in elevation of 4 feet and an average change of 3 feet. At the water-surface elevation of 224 feet (National Geodetic Vertical Datum of 1929), the cross-sectional area has changed by 260 square feet for a total loss of 28 percent of cross-sectional storage area. The loss of area may be attributed to sedimentation in Carroll Creek and (or) the difference in accuracy between the two surveys.
Evaluation of neutron capture cross section on 205Pb with photonuclear data
NASA Astrophysics Data System (ADS)
Iwamoto, Nobuyuki; Shizuma, Toshiyuki
2018-05-01
The neutron capture cross section of long-lived radioactive 205Pb is derived by using the nuclear reaction calculation code CCONE, based on photonuclear data. The present result is smaller than that of TENDL-2015 by a factor of 4. The derived Maxwellian averaged capture cross section (MACS) is the smallest compared to the existing data. The produced amount of 205Pb is explored with a simulated neutron flux in the Pb-Bi eutectic (LBE) target. The continuous use of the system in 25 years creates 205Pb with about 6 kg at maximum in the LBE (including natural Pb of 103 kg). The impact of the derived MACS on the stellar nucleosynthesis is investigated. It is found that the abundance of Tl is slightly enhanced due to the increase in the remaining abundance of 205Pb.
Characteristics of heat exchange in the region of injection into a supersonic high-temperature flow
NASA Technical Reports Server (NTRS)
Bakirov, F. G.; Shaykhutdinov, Z. G.
1985-01-01
An experimental investigation of the local heat transfer coefficient distribution during gas injection into the supersonic-flow portion of a Laval nozzle is discussed. The controlling dimensionless parameters of the investigated process are presented in terms of a generalized relation for the maximum value of the heat transfer coefficient in the nozzle cross section behind the injection hole. Data on the heat transfer coefficient variation along the nozzle length as a function of gas injection rate are also presented, along with the heat transfer coefficient distribution over a cross section of the nozzle.
Developing Turbulent Flow in Strongly Curved Passages of Square and Circular Cross-Section
1984-03-01
laser-velocimetry study known to us for developing tur- bulent flow in curved pipes, Enayet , et al. E113 investigated the motion in a 90* bend with Rc...flows are very similar, being De - Re (D/Rc) 1 / 2 6.8 x 104in Rowe’s bend and 2.6 x 104 in the bend of Enayet , et al., the difference in the maximum...a curved duct of square cross section. In addition to the data taken at three longitudioal stations in the curved pipe, (0 9 300, 60° and 900), Enayet
1980-11-01
IZPT,ITH,IDEL,NTAP7,IAR,IAN,IUB, IGB(7) ,IVB,IU,IV,IW,IVA,IWA, ICP, IPHI,IYB,NAG,NAP,NAV,NAS, NASHK, NAFLD ,IAO,IDO,ISKO,TYIMI,IZIM,ISVN,ISKP,NRING,IROW...locations in blank common required in SOLVE NASHIK maximum locations in blank common required in BSHOCK NAFLD maximum locations in blank common
Hydrogen and Nitrogen Broadened Ethane and Propane Absorption Cross Sections
NASA Astrophysics Data System (ADS)
Hargreaves, Robert J.; Appadoo, Dominique; Billinghurst, Brant E.; Bernath, Peter F.
2015-06-01
High-resolution infrared absorption cross sections are presented for the ν9 band of ethane (C2H6) at 823 cm-1. These cross sections make use of spectra recorded at the Australian Synchrotron using a Fourier transform infrared spectrometer with maximum resolution of 0.00096 cm-1. The spectra have been recorded at 150, 120 and 90 K for hydrogen and nitrogen broadened C2H6. They cover appropriate temperatures, pressures and broadening gases associated with the atmospheres of the Outer Planets and Titan, and will improve atmospheric retrievals. The THz/Far-IR beamline at the Australian Synchrotron is unique in combining a high-resolution Fourier transform spectrometer with an 'enclosive flow cooling' (EFC) cell designed to study molecules at low temperatures. The EFC cell is advantageous at temperatures for which the vapor pressure is very low, such as C2H6 at 90 K. Hydrogen broadened absorption cross sections of propane between 700 and 1200 cm-1 will also be presented based on spectra obtained at the Canadian Light Source.
Energy transfer and 2.0 μm emission in Tm{sup 3+}/Ho{sup 3+} co-doped α-NaYF{sub 4} single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhigang; Yang, Shuo; Xia, Haiping, E-mail: hpxcm@nbu.edu.cn
2016-04-15
Highlights: • Cubic NaYF{sub 4} single crystals co-doped with ∼1.90 mol% Tm{sup 3+} and various Ho{sup 3+} concentrations were grown by Bridgman method. • The maximum fluorescence lifetime was 23.23 ms for Tm{sup 3+} (1.90 mol%)/Ho{sup 3+} (3.89 mol%) co-doped α-NaYF{sub 4}. • The obtained energy transfer rate (W{sub ET}) and energy transfer efficiency (η) of Tm{sup 3+}:{sup 3}F{sub 4} are 1077 s{sup −1} and 95.0%, respectively. • The maximum emission cross section reached 1.06 × 10{sup −20} cm{sup 2}. - Abstract: Cubic NaYF{sub 4} single crystals co-doped with ∼1.90 mol% Tm{sup 3+} and various Ho{sup 3+} concentrations were grownmore » by Bridgman method. The energy transfer from Tm{sup 3+} to Ho{sup 3+} and the optimum fluorescence emission around 2.04 μm of Ho{sup 3+} ion were investigated based on the measured absorption spectra, emission spectra, emission cross section and decay curves under excitation of 800 nm LD. The emission intensity at 2.04 μm increased with the increase of Ho{sup 3+} concentration from 0.96 mol% to 3.89 mol% when the concentration of Tm{sup 3+} was held constantly at ∼1.90 mol%. Moreover, the maximum emission cross section reached 1.06 × 10{sup −20} cm{sup 2} and the maximum fluorescence lifetime was 23.23 ms for Tm{sup 3+}(1.90 mol%)/Ho{sup 3+}(3.89 mol%) co-doped one. According to the measured lifetime of Tm{sup 3+} single-doped and Tm{sup 3+}/Ho{sup 3+} co-doped samples, the maximum energy transfer efficiency of Tm{sup 3+}:{sup 3}F{sub 4} level was 95.0%. Analysis on the fluorescence dynamics indicated that electric dipole–dipole is dominant for the energy transfer from Tm{sup 3+} to Ho{sup 3+}.« less
Effect of the cross sectional aspect ratio on the flow past a twisted cylinder
NASA Astrophysics Data System (ADS)
Jung, Jae Hwan; Yoon, Hyun Sik
2013-11-01
The cross-flow around twisted cylinders of cross sectional aspect ratio (A/B) from 1 to 2.25 is investigated at a subcritical Reynolds number (Re) of 3000 using large eddy simulation (LES). The flow past a corresponding smooth and wavy cylinder is also calculated for comparison and validation against experimental data. The effect of twisted surface assessed in terms of the mean drag and root-mean-square (RMS) value of fluctuating lift. The shear layer of the twisted cylinder covering the recirculation region is more elongated than those of the smooth and the wavy cylinder. Successively, vortex shedding of the twisted cylinder is considerably suppressed, compared with those of the smooth and the wavy cylinder. The maximum drag reduction of up to 13% compared with a smooth cylinder is obtained at a certain cross sectional aspect ratio. The fluctuating lift coefficient of the twisted cylinder is also significantly suppressed. We found that the cross sectional cross sectional aspect ratio (A/B) plays an essential role in determining the vortical structures behind the twisted cylinder which has a significant effect on the reduction of the fluctuating lift and suppression of flow-induced vibration. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) through GCRC-SOP (No. 2011-0030013).
Chang, Yang; Zhao, Xiao-zhuo; Wang, Cheng; Ning, Fang-gang; Zhang, Guo-an
2015-01-01
Inhalation injury is an important cause of death after thermal burns. This study was designed to simulate the velocity and temperature distribution of inhalation thermal injury in the upper airway in humans using computational fluid dynamics. Cervical computed tomography images of three Chinese adults were imported to Mimics software to produce three-dimensional models. After grids were established and boundary conditions were defined, the simulation time was set at 1 minute and the gas temperature was set to 80 to 320°C using ANSYS software (ANSYS, Canonsburg, PA) to simulate the velocity and temperature distribution of inhalation thermal injury. Cross-sections were cut at 2-mm intervals, and maximum airway temperature and velocity were recorded for each cross-section. The maximum velocity peaked in the lower part of the nasal cavity and then decreased with air flow. The velocities in the epiglottis and glottis were higher than those in the surrounding areas. Further, the maximum airway temperature decreased from the nasal cavity to the trachea. Computational fluid dynamics technology can be used to simulate the velocity and temperature distribution of inhaled heated air.
Spazzin, Aloísio Oro; Costa, Ana Rosa; Correr, Américo Bortolazzo; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço; dos Santos, Mateus Bertolini Fernandes
2013-08-09
This study evaluated the influence of cross-section geometry of the bar framework on the distribution of static stresses in an overdenture-retaining bar system simulating horizontal misfit and bone loss. Three-dimensional FE models were created including two titanium implants and three cross-section geometries (circular, ovoid or Hader) of bar framework placed in the anterior part of a severely resorbed jaw. One model with 1.4-mm vertical loss of the peri-implant tissue was also created. The models set were exported to mechanical simulation software, where horizontal displacement (10, 50 or 100 μm) was applied simulating the settling of the framework, which suffered shrinkage during the laboratory procedures. The bar material used for the bar framework was a cobalt--chromium alloy. For evaluation of bone loss effect, only the 50-μm horizontal misfit was simulated. Data were qualitatively and quantitatively evaluated using von Mises stress for the mechanical part and maximum principal stress and μ-strain for peri-implant bone tissue given by the software. Stresses were concentrated along the bar and in the join between the bar and cylinder. In the peri-implant bone tissue, the μ-strain was higher in the cervical third. Higher stress levels and μ-strain were found for the models using the Hader bar. The bone loss simulated presented considerable increase on maximum principal stresses and μ-strain in the peri-implant bone tissue. In addition, for the amplification of the horizontal misfit, the higher complexity of the bar cross-section geometry and bone loss increases the levels of static stresses in the peri-implant bone tissue. Copyright © 2013 Elsevier Ltd. All rights reserved.
Studies on the synthesis of isotopes of superheavy element Lv (Z = 116)
NASA Astrophysics Data System (ADS)
Santhosh, K. P.; Safoora, V.
2017-11-01
The probable projectile-target combinations for the synthesis of superheavy nucleus 296Lv found in the cold valley of 296Lv have been identified by studying the interaction barrier of the colliding nuclei, probability of compound nucleus formation, P_{CN}, and survival probability W_{sur}. At energies near and above the Coulomb barrier, the capture, fusion and evaporation residue (ER) cross sections for the probable combinations for the hot and cold fusion reactions are systematically investigated. By considering intensities of the projectile beams, availabilities of the targets and half lives of the colliding nuclei, the combination 48Ca+248Cm is found to be the most probable projectile-target pair for the synthesis of 296Lv. The calculated maximum value of 2n, 3n, 4n and 5n channel cross section for the reaction 48Ca+248Cm are 0.599 pb, 5.957 pb, 4.805 pb, and 0.065 pb, respectively. Moreover, the production cross sections for the synthesis of isotopes 291-295,298Lv using 48Ca projectile on 243-247,250Cm targets are calculated. Among these reactions, the reactions 48Ca+247Cm → 295Lv and 48Ca+250Cm → 298Lv have maximum production cross section in 3n (10.697 pb) and 4n (12.006 pb) channel, respectively. Our studies on the SHE Lv using the combinations 48Ca+245Cm → 293Lv and 48Ca+248Cm → 296Lv are compared with available experimental data and with other theoretical studies. Our studies are in agreement with experimental data and we hope that these studies will be a guide for the future experiments to synthesize the isotopes of Lv.
NASA Astrophysics Data System (ADS)
Hasan, Md. Fahad; Wang, James; Berndt, Christopher
2015-06-01
The microhardness and elastic modulus of plasma-sprayed hydroxyapatite coatings were evaluated using Knoop indentation on the cross section and on the top surface. The effects of indentation angle, testing direction, measurement location and applied load on the microhardness and elastic modulus were investigated. The variability and distribution of the microhardness and elastic modulus data were statistically analysed using the Weibull modulus distribution. The results indicate that the dependence of microhardness and elastic modulus on the indentation angle exhibits a parabolic shape. Dependence of the microhardness values on the indentation angle follows Pythagoras's theorem. The microhardness, Weibull modulus of microhardness and Weibull modulus of elastic modulus reach their maximum at the central position (175 µm) on the cross section of the coatings. The Weibull modulus of microhardness revealed similar values throughout the thickness, and the Weibull modulus of elastic modulus shows higher values on the top surface compared to the cross section.
NASA Astrophysics Data System (ADS)
Li, Rui; Li, Dandan; Fei, Wenwen; Tan, Jingyun; Li, Shengli; Zhou, Hongping; Zhang, Shengyi; Wu, Jieying; Tian, Yupeng
2014-06-01
A series of triphenylamine-based chromophores (L1-3) with donor-π-donor (D-π-D) model have been designed and synthesized via solid phase Wittig reaction. Their one/two-photon fluorescence and electrochemical properties have been investigated. The results show that L2 and L3 exhibited strong and wide-dispersed two-photon-excited fluorescence (TPEF) in different solvents. Chromophore L3 displays the strongest intensity two-photon absorption activity and large cross-sections (>3600 GM) in the range of 680-840 nm in THF, the largest δ up to 8899 GM in the near-IR range, and the measured maximum TPA cross-sections per molecular weight (δmax/MW) is 8.64 GM/g (L3) in THF. Significantly, it also exhibits good solubility in common organic solvents when the chromophore was modified by polyether units as peripheral groups.
NASA Astrophysics Data System (ADS)
Stefan, I.; Fornal, B.; Leoni, S.; Azaiez, F.; Portail, C.; Thomas, J. C.; Karpov, A. V.; Ackermann, D.; Bednarczyk, P.; Blumenfeld, Y.; Calinescu, S.; Chbihi, A.; Ciemala, M.; Cieplicka-Oryńczak, N.; Crespi, F. C. L.; Franchoo, S.; Hammache, F.; Iskra, Ł. W.; Jacquot, B.; Janssens, R. V. F.; Kamalou, O.; Lauritsen, T.; Lewitowicz, M.; Olivier, L.; Lukyanov, S. M.; Maccormick, M.; Maj, A.; Marini, P.; Matea, I.; Naumenko, M. A.; de Oliveira Santos, F.; Petrone, C.; Penionzhkevich, Yu. E.; Rotaru, F.; Savajols, H.; Sorlin, O.; Stanoiu, M.; Szpak, B.; Tarasov, O. B.; Verney, D.
2018-04-01
Cross sections and corresponding momentum distributions have been measured for the first time at zero degrees for the exotic nuclei obtained from a beam of 18O at 8.5 MeV/A impinging on a 1 mg/cm2238U target. Sizable cross sections were found for the production of exotic species arising from the neutron transfer and proton removal from the projectile. Comparisons of experimental results with calculations based on deep-inelastic reaction models, taking into account the particle evaporation process, indicate that zero degree is a scattering angle at which the differential reaction cross section for production of exotic nuclei is at its maximum. This result is important in view of the new generation of zero degrees spectrometers under construction, such as the S3 separator at GANIL, for example.
Coverage of health-related articles in major local newspapers of Manipur.
Paul, Sourabh; Singh, Akoijam Brogen
2016-01-01
Newspapers have immense potential for generating health awareness on diverse issues such as hygiene, immunization, environmental pollution, and communicable disease. The present study was conducted to determine the frequency of coverage and types of health-related articles published in local newspapers of Manipur. This was a cross-sectional study conducted among the most regularly published 10 local newspapers (4 English and 6 Manipuri) of Manipur from February 2011 to January 2012. Health-related articles published in everyday local newspapers were collected after careful search and finally entered into a design Proforma under different categories. Data were analyzed using SPSS version 16. Total health-related articles published were 10,874 and maximum articles were published during February (12.8%). Maximum health-related articles were published on Wednesday (16.1%). Among all the health-related articles, almost half were related with injury followed by public health articles. Maximum public health and injury-related articles were published on Monday, but medical topics were published more on Wednesday. Newspapers of both the languages were publishing public health articles more compared to medical topics. Public health (72.9%) and injury-related articles (95.9%) were published maximum in the news items section, but medical topics (45.8%) were published maximum in the health section of the newspaper. Newspapers of both the languages published maximum small size articles. There is a room for improvement for newspapers of both the languages regarding number of health-related articles' publication, section of publication, and size of the health articles.
NASA Astrophysics Data System (ADS)
Tanaka, Taiki; Narikiyo, Yoshihiro; Morita, Kosuke; Fujita, Kunihiro; Kaji, Daiya; Morimoto, Kouji; Yamaki, Sayaka; Wakabayashi, Yasuo; Tanaka, Kengo; Takeyama, Mirei; Yoneda, Akira; Haba, Hiromitsu; Komori, Yukiko; Yanou, Shinya; Jean-Paul Gall, Benoît; Asfari, Zouhair; Faure, Hugo; Hasebe, Hiroo; Huang, Minghui; Kanaya, Jumpei; Murakami, Masashi; Yoshida, Atsushi; Yamaguchi, Takayuki; Tokanai, Fuyuki; Yoshida, Tomomi; Yamamoto, Shoya; Yamano, Yuki; Watanabe, Kenyu; Ishizawa, Satoshi; Asai, Masato; Aono, Ryuji; Goto, Shin-ichi; Katori, Kenji; Hagino, Kouichi
2018-01-01
In order to study the nucleus-nucleus interactions for syntheses of superheavy nuclei, we measured excitation functions for the quasielastic scattering of 48Ca+208Pb, 50Ti+208Pb, and 48Ca+248Cm using the gas-filled-type recoil ion separator GARIS. The quasielastic scattering events were clearly separated from deep-inelastic events by using GARIS and its focal plan detectors, except for high-incident-energy points. The quasielastic barrier distributions were successfully extracted for these systems, and compared with coupled-channels calculations. The results of the calculations indicate that vibrational and rotational excitations of the colliding nuclei, as well as neutron transfers before contact, strongly affect the structure of the barrier distribution. For the reactions of 48Ca+208Pb and 50Ti+208Pb, a local maximum of the barrier distribution occurred at the same energy as the peak of the 2n evaporation cross section of the system. On the other hand, for the hot fusion reaction of 48Ca+248Cm, the 4n evaporation cross section of the system peaks at energies well above the maximum of the barrier distribution. This may be attributed to the deformation of the target nucleus. We argue that these findings can be utilized to locate the optimal energy for future searches for undiscovered superheavy nuclei.
An entropy-based method for determining the flow depth distribution in natural channels
NASA Astrophysics Data System (ADS)
Moramarco, Tommaso; Corato, Giovanni; Melone, Florisa; Singh, Vijay P.
2013-08-01
A methodology for determining the bathymetry of river cross-sections during floods by the sampling of surface flow velocity and existing low flow hydraulic data is developed . Similar to Chiu (1988) who proposed an entropy-based velocity distribution, the flow depth distribution in a cross-section of a natural channel is derived by entropy maximization. The depth distribution depends on one parameter, whose estimate is straightforward, and on the maximum flow depth. Applying to a velocity data set of five river gage sites, the method modeled the flow area observed during flow measurements and accurately assessed the corresponding discharge by coupling the flow depth distribution and the entropic relation between mean velocity and maximum velocity. The methodology unfolds a new perspective for flow monitoring by remote sensing, considering that the two main quantities on which the methodology is based, i.e., surface flow velocity and flow depth, might be potentially sensed by new sensors operating aboard an aircraft or satellite.
Fluorescence investigation of Ho3+ in Yb3+ sensitized mixed-alkali bismuth gallate glasses.
Lin, H; Zhang, Y Y; Pun, E Y B
2008-12-15
Efficient 2.0 microm infrared and visible upconversion emissions have been observed in Ho3+/Yb3+ co-doped mixed-alkali bismuth gallate (LKBBG) glasses having a maximum-phonon energy of 673 cm(-1). The Judd-Ofelt parameters Omega2, Omega4 and Omega6 of Ho3+ indicate that there is a high asymmetry and strong covalent environment in LKBBG glasses. The large absorption and emission cross-sections of Yb3+ confirm that it is a suitable sensitizer for capturing and transferring pump energy to Ho3+. The emission cross-section profile for the 5I7-->5I8 transition is derived using the reciprocity method and the peak value is 5.54 x 10(-21)cm2, which is much larger than the value in fluorozircoaluminate glasses. LKBBG glasses exhibit low maximum-phonon energy and large refractive index, and it is possible to achieve an effective 1.66 microm U-band emission of Ho3+ under 900 nm laser radiation.
Kajisa, E; Tohara, H; Nakane, A; Wakasugi, Y; Hara, K; Yamaguchi, K; Yoshimi, K; Minakuchi, S
2018-03-01
We conducted a clinical cross-sectional study to examine the relationship between jaw-opening force and the cross-sectional area of the suprahyoid muscles and whole skeletal muscle mass. Subjects were healthy 39 males and 51 females without dysphagia and sarcopenia, aged 65 years and older. Jaw-opening force was measured three times using a jaw-opening sthenometer; the maximum of these three was taken as the measurement value. The cross-sectional area of the geniohyoid and anterior belly of the digastric muscles were evaluated using ultrasonography. The skeletal muscle mass index, gait speed and grip strength were evaluated according to the diagnostic criteria of the Asian Working Group for Sarcopenia. For each sex, a multiple regression analysis determined the factors that affect jaw-opening force. Jaw-opening force was associated with the cross-sectional area of the geniohyoid muscle in males (regression coefficient [β] = 0.441, 95% confidence interval [CI] = 14.28-56.09) and females (β = 0.28, 95% CI = 3.10-54.57). Furthermore, in females only, jaw-opening force was associated with the skeletal muscle mass index (β = 0.40, 95% CI = 3.67-17.81). In contrast, jaw-opening force was not associated with the cross-sectional area of the anterior belly of the digastric muscle in either sex. In healthy elderly males and females, jaw-opening force was positively associated with the cross-sectional area of the geniohyoid muscle. However, the jaw-opening force was positively associated with the skeletal muscle mass index only in females. © 2017 John Wiley & Sons Ltd.
1.083 μm laser operation in Nd,Mg:LiTaO3 crystal
NASA Astrophysics Data System (ADS)
Hu, P. C.; Hang, Y.; Li, R.; Gong, J.; Yin, J. G.; Zhao, C. C.; He, X. M.; Yu, T.; Zhang, L. H.; Chen, W. B.; Zhu, Y. Y.
2011-10-01
Nd,Mg:LiTaO3 single crystal with high optical quality was grown by Czochralski technique. Absorption and fluorescence spectra were investigated. The peak absorption cross section at 806.5 nm and peak emission cross section at 1091 nm are 6.81×10-20 and 3.28×10-20 cm2, respectively. The fluorescence lifetime was measured to be 129 μs. With a laser-diode as the pump source, a maximum 375 mW continuous-wave laser output at 1083 nm has been obtained with a slope efficiency of 7.2% with respect to the pump power.
Maximum angular accuracy of pulsed laser radar in photocounting limit.
Elbaum, M; Diament, P; King, M; Edelson, W
1977-07-01
To estimate the angular position of targets with pulsed laser radars, their images may be sensed with a fourquadrant noncoherent detector and the image photocounting distribution processed to obtain the angular estimates. The limits imposed on the accuracy of angular estimation by signal and background radiation shot noise, dark current noise, and target cross-section fluctuations are calculated. Maximum likelihood estimates of angular positions are derived for optically rough and specular targets and their performances compared with theoretical lower bounds.
Bull, Marta E; Heath, Laura M; McKernan-Mullin, Jennifer L; Kraft, Kelli M; Acevedo, Luis; Hitti, Jane E; Cohn, Susan E; Tapia, Kenneth A; Holte, Sarah E; Dragavon, Joan A; Coombs, Robert W; Mullins, James I; Frenkel, Lisa M
2013-04-15
Whether unique human immunodeficiency type 1 (HIV) genotypes occur in the genital tract is important for vaccine development and management of drug resistant viruses. Multiple cross-sectional studies suggest HIV is compartmentalized within the female genital tract. We hypothesize that bursts of HIV replication and/or proliferation of infected cells captured in cross-sectional analyses drive compartmentalization but over time genital-specific viral lineages do not form; rather viruses mix between genital tract and blood. Eight women with ongoing HIV replication were studied during a period of 1.5 to 4.5 years. Multiple viral sequences were derived by single-genome amplification of the HIV C2-V5 region of env from genital secretions and blood plasma. Maximum likelihood phylogenies were evaluated for compartmentalization using 4 statistical tests. In cross-sectional analyses compartmentalization of genital from blood viruses was detected in three of eight women by all tests; this was associated with tissue specific clades containing multiple monotypic sequences. In longitudinal analysis, the tissues-specific clades did not persist to form viral lineages. Rather, across women, HIV lineages were comprised of both genital tract and blood sequences. The observation of genital-specific HIV clades only in cross-sectional analysis and an absence of genital-specific lineages in longitudinal analyses suggest a dynamic interchange of HIV variants between the female genital tract and blood.
Determination of vessel cross-sectional area by thresholding in Radon space
Gao, Yu-Rong; Drew, Patrick J
2014-01-01
The cross-sectional area of a blood vessel determines its resistance, and thus is a regulator of local blood flow. However, the cross-sections of penetrating vessels in the cortex can be non-circular, and dilation and constriction can change the shape of the vessels. We show that observed vessel shape changes can introduce large errors in flux calculations when using a single diameter measurement. Because of these shape changes, typical diameter measurement approaches, such as the full-width at half-maximum (FWHM) that depend on a single diameter axis will generate erroneous results, especially when calculating flux. Here, we present an automated method—thresholding in Radon space (TiRS)—for determining the cross-sectional area of a convex object, such as a penetrating vessel observed with two-photon laser scanning microscopy (2PLSM). The thresholded image is transformed back to image space and contiguous pixels are segmented. The TiRS method is analogous to taking the FWHM across multiple axes and is more robust to noise and shape changes than FWHM and thresholding methods. We demonstrate the superior precision of the TiRS method with in vivo 2PLSM measurements of vessel diameter. PMID:24736890
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Inamullah; François, Raoul; Castel, Arnaud
2014-02-15
This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a givenmore » opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied.« less
Is localized infrared spectroscopy now possible in the electron microscope?
Rez, Peter
2014-06-01
The recently developed in-column monochromators make it possible to record energy-c spectra with resolutions better than 30 meV from nanometer-sized regions. It should therefore in principle be possible to detect localized vibrational excitations. The scattering geometry in the electron microscope means that bond stretching in the specimen plane or longitudinal optic phonons dominate the scattering. Most promising for initial studies are vibrations with energies between 300 and 400 meV from hydrogen bonded to other atoms. Estimates of the scattering cross-sections on the basis of a simple model show that they are about the same as inner shell scattering cross-sections. Cross-sections also increase with charge transfer between the atoms, and theory incorporating realistic charge distributions shows that signal/noise is the only limitation to high-resolution imaging. Given the magnitude of the scattering cross-sections, minimizing the tail of the zero-loss peak is just as important as achieving a small-width at half-maximum. Improvements in both resolution and controlling the zero-loss tail will be necessary before it is practical to detect optic phonons in solids between 40 and 60 meV.
Vanmechelen, Inti M; Shortland, Adam P; Noble, Jonathan J
2018-01-01
Deficits in muscle volume may be a significant contributor to physical disability in young people with cerebral palsy. However, 3D measurements of muscle volume using MRI or 3D ultrasound may be difficult to make routinely in the clinic. We wished to establish whether accurate estimates of muscle volume could be made from a combination of anatomical cross-sectional area and length measurements in samples of typically developing young people and young people with bilateral cerebral palsy. Lower limb MRI scans were obtained from the lower limbs of 21 individuals with cerebral palsy (14.7±3years, 17 male) and 23 typically developing individuals (16.8±3.3years, 16 male). The volume, length and anatomical cross-sectional area were estimated from six muscles of the left lower limb. Analysis of Covariance demonstrated that the relationship between the length*cross-sectional area and volume was not significantly different depending on the subject group. Linear regression analysis demonstrated that the product of anatomical cross-sectional area and length bore a strong and significant relationship to the measured muscle volume (R 2 values between 0.955 and 0.988) with low standard error of the estimates of 4.8 to 8.9%. This study demonstrates that muscle volume may be estimated accurately in typically developing individuals and individuals with cerebral palsy by a combination of anatomical cross-sectional area and muscle length. 2D ultrasound may be a convenient method of making these measurements routinely in the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège
2015-03-15
The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser-solid experiments through the K-shell emission cross section. In addition, copper is a material that has been often used in those experiments because it has a maximum total K-shell emission yield. Furthermore, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al., 2012), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the copper isonuclear ions have been calculated. In this study, the K-shell EII crossmore » sections connecting the ground and the metastable levels of the parent copper ions to the daughter ions K-vacancy levels considered in Palmeri et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 10 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic form proposed by Davies et al. (2013)« less
The deuterium puzzle in the symmetric universe
NASA Technical Reports Server (NTRS)
Leroy, B.; Nicolle, J. P.; Schatzman, E.
1973-01-01
An attempt was made to use deuterium abundance in the symmetric universe to prove that no nucleosynthesis takes place during annihilation and therefore neutrons were loss before nucleosynthesis. Data cover nucleosynthesis during the radiative era, cross section estimates, maximum abundance of He-4 at the end of nucleosynthesis area, and loss rate.
Coverage of health-related articles in major local newspapers of Manipur
Paul, Sourabh; Singh, Akoijam Brogen
2016-01-01
Background: Newspapers have immense potential for generating health awareness on diverse issues such as hygiene, immunization, environmental pollution, and communicable disease. The present study was conducted to determine the frequency of coverage and types of health-related articles published in local newspapers of Manipur. Materials and Methods: This was a cross-sectional study conducted among the most regularly published 10 local newspapers (4 English and 6 Manipuri) of Manipur from February 2011 to January 2012. Health-related articles published in everyday local newspapers were collected after careful search and finally entered into a design Proforma under different categories. Data were analyzed using SPSS version 16. Results: Total health-related articles published were 10,874 and maximum articles were published during February (12.8%). Maximum health-related articles were published on Wednesday (16.1%). Among all the health-related articles, almost half were related with injury followed by public health articles. Maximum public health and injury-related articles were published on Monday, but medical topics were published more on Wednesday. Newspapers of both the languages were publishing public health articles more compared to medical topics. Public health (72.9%) and injury-related articles (95.9%) were published maximum in the news items section, but medical topics (45.8%) were published maximum in the health section of the newspaper. Newspapers of both the languages published maximum small size articles. Conclusions: There is a room for improvement for newspapers of both the languages regarding number of health-related articles’ publication, section of publication, and size of the health articles. PMID:27512695
SU-E-I-43: Photoelectric Cross Section Revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haga, A; Nakagawa, K; Kotoku, J
2015-06-15
Purpose: The importance of the precision in photoelectric cross-section value increases for recent developed technology such as dual energy computed tomography, in which some reconstruction algorithms require the energy dependence of the photo-absorption in each material composition of human being. In this study, we revisited the photoelectric cross-section calculation by self-consistent relativistic Hartree-Fock (HF) atomic model and compared with that widely distributed as “XCOM database” in National Institute of Standards and Technology, which was evaluated with localdensity approximation for electron-exchange (Fock)z potential. Methods: The photoelectric cross section can be calculated with the electron wave functions in initial atomic state (boundmore » electron) and final continuum state (photoelectron). These electron states were constructed based on the selfconsistent HF calculation, where the repulsive Coulomb potential from the electron charge distribution (Hartree term) and the electron exchange potential with full electromagnetic interaction (Fock term) were included for the electron-electron interaction. The photoelectric cross sections were evaluated for He (Z=2), Be (Z=4), C (Z=6), O (Z=8), and Ne (Z=10) in energy range of 10keV to 1MeV. The Result was compared with XCOM database. Results: The difference of the photoelectric cross section between the present calculation and XCOM database was 8% at a maximum (in 10keV for Be). The agreement tends to be better as the atomic number increases. The contribution from each atomic shell has a considerable discrepancy with XCOM database except for K-shell. However, because the photoelectric cross section arising from K-shell is dominant, the net photoelectric cross section was almost insensitive to the different handling in Fock potential. Conclusion: The photoelectric cross-section program has been developed based on the fully self-consistent relativistic HF atomic model. Due to small effect on the Fock potential for K-shell electrons, the difference from XCOM database was limited: 1% to 8% for low-Z elements in 10keV-1MeV energy ranges. This work was partly supported by the JSPS Core-to-Core Program (No. 23003)« less
Design of Tools for Press-countersinking or Dimpling 0.040-inch-thick-24S-T Sheet
NASA Technical Reports Server (NTRS)
Templin, R L; Fogwell, J W
1942-01-01
A set of dimpling tools was designed for 0.040-inch 24S-T sheet and flush-type rivets 1/8 inch in diameter with 100 degree countersunk heads. The dimples produced under different conditions of pressure, sheet thickness, and drill diameter are presented as cross-sectional photographs magnified 20 times. The most satisfactory values for the dimpling tools were found to be: maximum punch diameter, 0.231 inch; maximum die diameter, 0.223 inch; maximum mandrel diameter, 0.128 inch; dimple angle, 100 degree; punch springback angle, 1 1/2 degree; and die springback angle, 2 degree.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bretschneider, C.L.
1980-06-01
This volume is an extension of and consists of several modifications to the earlier report by Bretschneider (April 1979) on the subject of hurricane design wind, wave and current criteria for the four potential OTEC sites. The 100-year hurricane criteria for the design of OTEC plants is included. The criteria, in addition to the maximum conditions of winds, waves and surface current, include: hurricane fields for wind speed U/sub s/ and significant wave height H/sub s/; hurricane fields for modal wave period f/sub 0//sup -1/ and maximum energy density S/sub max/ of the wave spectrum; the corresponding Ekman wind-driven surfacemore » current V/sub s/; tabulated cross-sections for U/sub s/, H/sub s/, f/sub 0//sup -1/ and S/sub max/ through max U/sub s/ and through max H/sub s/ along traverses at right angles to and along traverses parallel to the forward movement of the hurricane; most probable maximum wave height and the expected corresponding wave period, based on statistical analysis of maximum wave heights from five hurricanes; design wave spectra for maximum U/sub s/ and also maximum H/sub s/, since maximum U/sub s/ and maximum H/sub s/ do not occur simultaneously; the envelope of wave spectra through maximum U/sub s/ and through maximum H/sub s/ along traverses parallel to the forward movement of the hurricane; the above same determinations for Hurricane Camille (1969) as for the four OTEC locations; and alternative methods (suggested) for obtaining design wave spectra from the joint probability distribution functions for wave height and period given by Longuet-Higgins (1975) and C.N.E.X.O. after Arhan, et al (1976).« less
Shear thinning effects on blood flow in straight and curved tubes
NASA Astrophysics Data System (ADS)
Cherry, Erica M.; Eaton, John K.
2013-07-01
Simulations were performed to determine the magnitude and types of errors one can expect when approximating blood in large arteries as a Newtonian fluid, particularly in the presence of secondary flows. This was accomplished by running steady simulations of blood flow in straight and curved tubes using both Newtonian and shear-thinning viscosity models. In the shear-thinning simulations, the viscosity was modeled as a shear rate-dependent function fit to experimental data. Simulations in straight tubes were modeled after physiologically relevant arterial flows, and flow parameters for the curved tube simulations were chosen to examine a variety of secondary flow strengths. The diameters ranged from 1 mm to 10 mm and the Reynolds numbers from 24 to 1500. Pressure and velocity data are reported for all simulations. In the straight tube simulations, the shear-thinning flows had flattened velocity profiles and higher pressure gradients compared to the Newtonian simulations. In the curved tube flows, the shear-thinning simulations tended to have blunted axial velocity profiles, decreased secondary flow strengths, and decreased axial vorticity compared to the Newtonian simulations. The cross-sectionally averaged pressure drops in the curved tubes were higher in the shear-thinning flows at low Reynolds number but lower at high Reynolds number. The maximum deviation in secondary flow magnitude averaged over the cross sectional area was 19% of the maximum secondary flow and the maximum deviation in axial vorticity was 25% of the maximum vorticity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, C. L.; Santiago-Gonzalez, D.; Almaraz-Calderon, S.
Carbon burning is a critical phase for nucleosynthesis in massive stars. The conditions for igniting this burning stage, and the subsequent isotope composition of the resulting ashes, depend strongly on the reaction rate for 12C+ 12C fusion at very low energies. Results for the cross sections for this reaction are influenced by various backgrounds encountered in measurements at such energies. In this paper, we report on a new measurement of 12C+ 12C fusion cross sections where these backgrounds have been minimized. In conclusion, it is found that the astrophysical S factor exhibits a maximum around E cm=3.5–4.0 MeV, which leadsmore » to a reduction of the previously predicted astrophysical reaction rate.« less
Reaction rate for carbon burning in massive stars
NASA Astrophysics Data System (ADS)
Jiang, C. L.; Santiago-Gonzalez, D.; Almaraz-Calderon, S.; Rehm, K. E.; Back, B. B.; Auranen, K.; Avila, M. L.; Ayangeakaa, A. D.; Bottoni, S.; Carpenter, M. P.; Dickerson, C.; DiGiovine, B.; Greene, J. P.; Hoffman, C. R.; Janssens, R. V. F.; Kay, B. P.; Kuvin, S. A.; Lauritsen, T.; Pardo, R. C.; Sethi, J.; Seweryniak, D.; Talwar, R.; Ugalde, C.; Zhu, S.; Bourgin, D.; Courtin, S.; Haas, F.; Heine, M.; Fruet, G.; Montanari, D.; Jenkins, D. G.; Morris, L.; Lefebvre-Schuhl, A.; Alcorta, M.; Fang, X.; Tang, X. D.; Bucher, B.; Deibel, C. M.; Marley, S. T.
2018-01-01
Carbon burning is a critical phase for nucleosynthesis in massive stars. The conditions for igniting this burning stage, and the subsequent isotope composition of the resulting ashes, depend strongly on the reaction rate for 12C+12C fusion at very low energies. Results for the cross sections for this reaction are influenced by various backgrounds encountered in measurements at such energies. In this paper, we report on a new measurement of 12C+12C fusion cross sections where these backgrounds have been minimized. It is found that the astrophysical S factor exhibits a maximum around Ecm=3.5 -4.0 MeV, which leads to a reduction of the previously predicted astrophysical reaction rate.
Best estimate of luminal cross-sectional area of coronary arteries from angiograms
NASA Technical Reports Server (NTRS)
Lee, P. L.; Selzer, R. H.
1988-01-01
We have reexamined the problem of estimating the luminal area of an elliptically-shaped coronary artery cross section from two or more radiographic diameter measurements. The expected error is found to be much smaller than the maximum potential error. In the cae of two orthogonal views, closed form expressions have been derived for calculating the area and the uncertainty. Assuming that the underlying ellipse has limited ellipticity (major/minor axis ratio less than five), it is shown that the average uncertainty in the area is less than 14 percent. When more than two views are available, we suggest using a least-squares fit method to extract all available information from the data.
Estimation of the sea surface's two-scale backscatter parameters
NASA Technical Reports Server (NTRS)
Wentz, F. J.
1978-01-01
The relationship between the sea-surface normalized radar cross section and the friction velocity vector is determined using a parametric two-scale scattering model. The model parameters are found from a nonlinear maximum likelihood estimation. The estimation is based on aircraft scatterometer measurements and the sea-surface anemometer measurements collected during the JONSWAP '75 experiment. The estimates of the ten model parameters converge to realistic values that are in good agreement with the available oceanographic data. The rms discrepancy between the model and the cross section measurements is 0.7 db, which is the rms sum of a 0.3 db average measurement error and a 0.6 db modeling error.
Congenital anatomic variants of the kidney and ureter: a pictorial essay.
Srinivas, M R; Adarsh, K M; Jeeson, Riya; Ashwini, C; Nagaraj, B R
2016-03-01
Congenital renal parenchymal and pelvicalyceal abnormalities have a wide spectrum. Most of them are asymptomatic, like that of ectopia, cross fused kidney, horseshoe kidney, etc., while a few of them become complicated, leading to renal failure and death. It is very important for the radiologist to identify these anatomic variants and guide the clinicians for surgical and therapeutic procedures. Cross-sectional imaging with a volume rendered technique/maximum intensity projection has overcome ultrasonography and IVU for identification and interpretation of some of these variants.
Deformation effect in the fast neutron total cross section of aligned /sup 59/Co
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasoli, U.; Pavan, P.; Toniolo, D.
1983-05-01
The variation of the total neutron cross section, ..delta..sigma/sub align/, on /sup 59/Co due to nuclear alignment of the target has been measured over the energy range from 0.8 to 20 MeV employing a cobalt single crystal with a 34% nuclear alignment. The results show that ..delta..sigma/sub align/ oscillates from a minimum of -5% at about 2.5 MeV to a maximum of +1% at about 10 MeV. The data were successfully fitted by optical model coupled-channel calculations. The coupling terms were deduced from a model representing the /sup 59/Co nucleus as a vibrational /sup 60/Ni core coupled to a protonmore » hole in a (1f/sub 7/2/) shell, without free parameters. The optical model parameters were determined by fitting the total cross section, which was independently measured. The theoretical calculations show that, at lower energies, ..delta..sigma/sub align/ depends appreciably on the coupling with the low-lying levels.« less
Takamiya, K; Imanaka, T; Ota, Y; Akamine, M; Shibata, S; Shibata, T; Ito, Y; Imamura, M; Uwamino, Y; Nogawa, N; Baba, M; Iwasaki, S; Matsuyama, S
2008-07-01
The upper and lower limits of the excitation function of the (63)Cu(n,p)(63)Ni reaction were experimentally determined, and the number of (63)Ni nuclei produced in copper samples exposed to atomic bomb neutrons in Hiroshima was estimated by using the experimental excitation functions and the neutron fluences given in the DS02 dosimetry system. The estimated number of (63)Ni nuclei was compared with that measured and with that calculated using the DS02 dosimetry system and the corresponding ENDF/B-VI cross section. In comparison with DS02, there is about a 60% maximum difference in (63)Ni production at the hypocenter when the experimental upper cross section values are used. The difference becomes smaller at greater distances from the hypocenter and decreases, for example, to less than 30 and 5% when using the upper and lower experimental cross sections at 1,000 m, respectively.
Photodetachment process for beam neutralization
Fink, Joel H. [Livermore, CA; Frank, Alan M. [Livermore, CA
1979-02-20
A process for neutralization of accelerated ions employing photo-induced charge detachment. The process involves directing a laser beam across the path of a negative ion beam such as to effect photodetachment of electrons from the beam ions. The frequency of the laser beam employed is selected to provide the maximum cross-section for the photodetachment process.
40 CFR 61.67 - Emission tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... being tested is operating at the maximum production rate at which the equipment will be operated and... cross section. The sample is to be extracted at a rate proportional to the gas velocity at the sampling... apply. The average is to be computed on a time weighted basis. (iii) For gas streams containing more...
40 CFR 146.34 - Information to be considered by the Director.
Code of Federal Regulations, 2010 CFR
2010-07-01
... injected; (ii) Average and maximum injection pressure; and (iii) Qualitative analysis and ranges in..., cross sections, tabulations of wells within the area of review, and other data may be included in the... this map. (3) A tabulation of data reasonably available from public records or otherwise known to the...
Length bias correction in one-day cross-sectional assessments - The nutritionDay study.
Frantal, Sophie; Pernicka, Elisabeth; Hiesmayr, Michael; Schindler, Karin; Bauer, Peter
2016-04-01
A major problem occurring in cross-sectional studies is sampling bias. Length of hospital stay (LOS) differs strongly between patients and causes a length bias as patients with longer LOS are more likely to be included and are therefore overrepresented in this type of study. To adjust for the length bias higher weights are allocated to patients with shorter LOS. We determined the effect of length-bias adjustment in two independent populations. Length-bias correction is applied to the data of the nutritionDay project, a one-day multinational cross-sectional audit capturing data on disease and nutrition of patients admitted to hospital wards with right-censoring after 30 days follow-up. We applied the weighting method for estimating the distribution function of patient baseline variables based on the method of non-parametric maximum likelihood. Results are validated using data from all patients admitted to the General Hospital of Vienna between 2005 and 2009, where the distribution of LOS can be assumed to be known. Additionally, a simplified calculation scheme for estimating the adjusted distribution function of LOS is demonstrated on a small patient example. The crude median (lower quartile; upper quartile) LOS in the cross-sectional sample was 14 (8; 24) and decreased to 7 (4; 12) when adjusted. Hence, adjustment for length bias in cross-sectional studies is essential to get appropriate estimates. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Bull, Marta E.; Heath, Laura M.; McKernan-Mullin, Jennifer L.; Kraft, Kelli M.; Acevedo, Luis; Hitti, Jane E.; Cohn, Susan E.; Tapia, Kenneth A.; Holte, Sarah E.; Dragavon, Joan A.; Coombs, Robert W.; Mullins, James I.; Frenkel, Lisa M.
2013-01-01
Background. Whether unique human immunodeficiency type 1 (HIV) genotypes occur in the genital tract is important for vaccine development and management of drug resistant viruses. Multiple cross-sectional studies suggest HIV is compartmentalized within the female genital tract. We hypothesize that bursts of HIV replication and/or proliferation of infected cells captured in cross-sectional analyses drive compartmentalization but over time genital-specific viral lineages do not form; rather viruses mix between genital tract and blood. Methods. Eight women with ongoing HIV replication were studied during a period of 1.5 to 4.5 years. Multiple viral sequences were derived by single-genome amplification of the HIV C2-V5 region of env from genital secretions and blood plasma. Maximum likelihood phylogenies were evaluated for compartmentalization using 4 statistical tests. Results. In cross-sectional analyses compartmentalization of genital from blood viruses was detected in three of eight women by all tests; this was associated with tissue specific clades containing multiple monotypic sequences. In longitudinal analysis, the tissues-specific clades did not persist to form viral lineages. Rather, across women, HIV lineages were comprised of both genital tract and blood sequences. Conclusions. The observation of genital-specific HIV clades only in cross-sectional analysis and an absence of genital-specific lineages in longitudinal analyses suggest a dynamic interchange of HIV variants between the female genital tract and blood. PMID:23315326
NASA Astrophysics Data System (ADS)
Troive, L.
2017-09-01
Friction-free 3-point bending has become a common test-method since the VDA 238-100 plate-bending test [1] was introduced. According to this test the criterion for failure is when the force suddenly drops. It was found by the author that the evolution of the cross-section moment is a more preferable measure regarding the real material response instead of the force. Beneficially, the cross-section moment gets more or less a constant maximum steady-state level when the cross-section becomes fully plastified. An expression for the moment M is presented that fulfils the criteria for energy of conservation at bending. Also an expression calculating the unit-free moment, M/Me, i.e. current moment to elastic-moment ratio, is demonstrated specifically proposed for detection of failures. The mathematical expressions are simple making it easy to transpose measured force F and stroke position S to the corresponding cross-section moment M. From that point of view it’s even possible to implement, e.g. into a conventional measurement system software, studying the cross-section moment in real-time during a test. It’s even possible to calculate other parameters such as flow-stress and shape of curvature at every stage. It has been tested on different thicknesses and grades within the range from 1.0 to 10 mm with very good results. In this paper the present model is applied on a 6.1 mm hot-rolled high strength steel from the same batch at three different conditions, i.e. directly quenched, quenched and tempered, and a third variant quench and tempered with levelling. It will be shown that very small differences in material-response can be predicted by this method.
NASA Astrophysics Data System (ADS)
Leukhin, Yu L.; Pankratov, E. V.; Karpov, S. V.
2017-11-01
We have carried out Investigation into aerodynamic and convective heat transfer of the annular channel. Inner or outer surface of annular channel has shape of blunt-nosed cone tapering to outlet end. Truncated cone connects to a cyclone swirling flow generator. Asymmetric and unsteady flow from the swirling generator in the shape of periodic process gives rise to the formation of secondary flows of the type Taylor-Görtler vortices. These vortices occupy the whole space of the annular channel, with the axes, which coincide with the motion direction of the major stream. Contraction of cross-sectional area of channel (in both cases 52%) causes a marked increase in total velocity of flow, primarily due to its axial component and promotes a more intensive vortex generation. Vortex structures have a significant influence on both average heat transfer and surface distribution. At cross-sections of the annular channel we observe similarity of curves describing distribution of total velocity about wall and heat flux density on the surface. The coordinates of maximum and minimum values of velocity and heat flux coincide. At the average cross-section channel of maximum value of heat transfer is greater than minimum of about by a factor of 2.7 times for outer heat transfer surface and about by a factor of 1.7 times for inner heat transfer surface. Taper channel has a much higher influence on heat transfer of the inner surface than the outer surface and manifests itself at lower values of dimensionless axial coordinate. For the investigated taper cone geometry of the annular channel the heat transfer coefficient of inner surface increases at the outlet section and exceeds value in comparison with straight-line section by 91 … 98%. Heat transfer of the outer cylinder in the same section increases only by 5 … 11%. The increase in average heat transfer over the surfaces is 36% and 4% respectively.
Axial Crushing of Thin-Walled Columns with Octagonal Section: Modeling and Design
NASA Astrophysics Data System (ADS)
Liu, Yucheng; Day, Michael L.
This chapter focus on numerical crashworthiness analysis of straight thinwalled columns with octagonal cross sections. Two important issues in this analysis are demonstrated here: computer modeling and crashworthiness design. In the first part, this chapter introduces a method of developing simplified finite element (FE) models for the straight thin-walled octagonal columns, which can be used for the numerical crashworthiness analysis. Next, this chapter performs a crashworthiness design for such thin-walled columns in order to maximize their energy absorption capability. Specific energy absorption (SEA) is set as the design objective, side length of the octagonal cross section and wall thickness are selected as design variables, and maximum crushing force (Pm) occurs during crashes is set as design constraint. Response surface method (RSM) is employed to formulate functions for both SEA and Pm.
NASA Astrophysics Data System (ADS)
Endo, Yoshiaki; Danielache, Sebastian O.; Ueno, Yuichiro; Hattori, Shohei; Johnson, Matthew S.; Yoshida, Naohiro; Kjaergaard, Henrik G.
2015-03-01
The ultraviolet absorption cross sections of the SO2 isotopologues are essential to understanding the photochemical fractionation of sulfur isotopes in planetary atmospheres. We present measurements of the absorption cross sections of 32SO2, 33SO2, 34SO2, and 36SO2, recorded from 190 to 220 nm at room temperature with a resolution of 0.1 nm (~25 cm-1) made using a dual-beam photospectrometer. The measured absorption cross sections show an apparent pressure dependence and a newly developed analytical model shows that this is caused by underresolved fine structure. The model made possible the calculation of absorption cross sections at the zero-pressure limit that can be used to calculate photolysis rates for atmospheric scenarios. The 32SO2, 33SO2, and 34SO2 cross sections improve upon previously published spectra including fine structure and peak widths. This is the first report of absolute absorption cross sections of the 36SO2 isotopologue for the C1B2-X1A2 band where the amplitude of the vibrational structure is smaller than the other isotopologues throughout the spectrum. Based on the new results, solar UV photodissociation of SO2 produces 34ɛ, 33Ε, and 36Ε isotopic fractionations of +4.6 ± 11.6‰, +8.8 ± 9.0‰, and -8.8 ± 19.6‰, respectively. From these spectra isotopic effects during photolysis in the Archean atmosphere can be calculated and compared to the Archean sedimentary record. Our results suggest that broadband solar UV photolysis is capable of producing the mass-independent fractionation observed in the Archean sedimentary record without involving shielding by specific gaseous compounds in the atmosphere including SO2 itself. The estimated magnitude of 33Ε, for example, is close to the maximum Δ33S observed in the geological record.
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Lopez, S. Calvente; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; El Moursli, R. Cherkaoui; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Pietra, M. Della; della Volpe, D.; Delmastro, M.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Cornell, S. Díez; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Da Costa, J. Goncalves Pinto Firmino; Gonella, G.; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakel, G.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koehler, N. M.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, C.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; López, J. A.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; de Andrade Filho, L. Manhaes; Ramos, J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; dit Latour, B. Martin; Martinez, M.; Outschoorn, V. I. Martinez; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Garcia, B. R. Mellado; Melo, M.; Meloni, F.; Meng, X.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Rodriguez, L. Pacheco; Aranda, C. Padilla; Pagáčová, M.; Griso, S. Pagan; Paganini, M.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Martinez, V. Sanchez; Pineda, A. Sanchez; Sandaker, H.; Sandbach, R. L.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shirabe, S.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolf, T. M. H.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zwalinski, L.
2017-04-01
A measurement of the t-channel single-top-quark and single-top-antiquark production cross-sections in the lepton+jets channel is presented, using 3.2 fb-1 of proton-proton collision data at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC in 2015. Events are selected by requiring one charged lepton (electron or muon), missing transverse momentum, and two jets with high transverse momentum, exactly one of which is required to be b-tagged. Using a binned maximum-likelihood fit to the discriminant distribution of a neural network, the cross-sections are determined to be σ( tq) = 156 ± 5 (stat.) ± 27 (syst.) ± 3 (lumi.) pb for single top-quark production and σ (\\overline{t}q)=91± 4 (stat.) ± 18 (syst.) ± 2 (lumi.) pb for single top-antiquark production, assuming a top-quark mass of 172.5 GeV. The cross-section ratio is measured to be {R}_t=σ (tq)/σ (\\overline{t}q)=1.72± 0.09 (stat.) ± 0.18 (syst.). All results are in agreement with Standard Model predictions. [Figure not available: see fulltext.
Aaboud, M.; Aad, G.; Abbott, B.; ...
2017-04-14
A measurement of the t-channel single-top-quark and single-top-antiquark production cross-sections in the lepton+jets channel is presented, using 3.2 fb –1 of proton-proton collision data at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC in 2015. Events are selected by requiring one charged lepton (electron or muon), missing transverse momentum, and two jets with high transverse momentum, exactly one of which is required to be b-tagged. Using a binned maximum-likelihood fit to the discriminant distribution of a neural network, the cross-sections are determined to be σ(tq) = 156 ± 5 (stat.) ± 27 (syst.) ±more » 3 (lumi.) pb for single top-quark production and σ(t¯q)=91±4 (stat.) ± 18 (syst.) ± 2 (lumi.) pb for single top-antiquark production, assuming a top-quark mass of 172.5 GeV. The cross-section ratio is measured to be R t = σ(tq)/σ(t¯q)=1.72±0.09 (stat.) ± 0.18 (syst.). All results are in agreement with Standard Model predictions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
A measurement of the t-channel single-top-quark and single-top-antiquark production cross-sections in the lepton+jets channel is presented, using 3.2 fb –1 of proton-proton collision data at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC in 2015. Events are selected by requiring one charged lepton (electron or muon), missing transverse momentum, and two jets with high transverse momentum, exactly one of which is required to be b-tagged. Using a binned maximum-likelihood fit to the discriminant distribution of a neural network, the cross-sections are determined to be σ(tq) = 156 ± 5 (stat.) ± 27 (syst.) ±more » 3 (lumi.) pb for single top-quark production and σ(t¯q)=91±4 (stat.) ± 18 (syst.) ± 2 (lumi.) pb for single top-antiquark production, assuming a top-quark mass of 172.5 GeV. The cross-section ratio is measured to be R t = σ(tq)/σ(t¯q)=1.72±0.09 (stat.) ± 0.18 (syst.). All results are in agreement with Standard Model predictions.« less
Simpson, R.G.
1972-01-01
This study evaluates the adequacy of a 39-mile reach of the Mokelumne River in San Joaquin and Sacramento Counties, California, to carry planned flood releases between Camanche Reservoir and the Bensons Ferry Bridge near Thornton. The flood releases from Camanche Reservoir are to be restricted, insofar as possible, so that the flows in the Mokelumne River will not exceed 5,000 cfs (cubic feet per second) as measured at the gaging station below Camanche Dam. Areas of inundation and computed floodwater profiles are based on channel conditions in late 1970 and on observed water-surface profiles during flood releases of about 5,000 cfs in January 1969 and January 1970. The inundated area shown on the maps (appendix A) and the water-surface elevations indicated on the cross sections (appendix G) are for the flood releases of those dates. The following conclusions are contingent on there being no levee failures during periods of high flow and no significant channel changes since the flood release of January 1970. 1. High tides in San Francisco Bay and, to a greater degree, flood stages on the Cosumnes River, cause backwater in the study reach. Severe backwater conditions occurring simultaneously with a flow of 5,000 cfs in the Mokelumne River can increase the flood stage 4 to 6 feet at Bensons Ferry Bridge (cross section 1). Backwater effects decrease in an upstream direction and are less than 0.5 foot at cross section 35, a river distance of 8.6 miles upstream from cross section 1, and 1.5 miles downstream from the Peltier Road bridge. 2. In the reach between cross sections 1 and 35, a 5,000 cfs release from Camanche Reservoir with maximum backwater effect (measured at cross section 1 at the mouth of the Cosumnes River) is confined within the natural or leveed banks except on the right bank flood plain between cross sections 12 and 19. 3. Upstream from cross section 35, there is overbank flooding at a flow of 5,000 cfs between cross sections 48 and 51, and 62 and 67.5. An increase in flow from 5,000 to 6,000 cfs will cause flooding between cross sections 43 and 47, 52 and 56, and 73 and 85. 4. A discharge of 5,000 cfs will pass through all bridge openings in the study reach except that of the Western Pacific Railroad Co. bridge at cross section 4. If large amounts of debris lodge on the railroad bridge when backwater from the Cosumnes River occurs, the debris could cause higher stages and flooding along the right bank between cross sections 5 and 12.
The atom-molecule reaction D plus H2 yields HD plus H studied by molecular beams
NASA Technical Reports Server (NTRS)
Geddes, J.; Krause, H. F.; Fite, W. L.
1972-01-01
Collisions between deuterium atoms and hydrogen molecules were studied in a modulated crossed beam experiment. The relative signal intensity and the signal phase for the product HD from reactive collisions permitted determination of both the angular distribution and HD mean velocity as a function of angle. From these a relative differential reactive scattering cross section in center-of-mass coordinates was deduced. The experiment indicates that reactively formed HD which has little or no internal excitation departs from the collision anisotropically, with maximum amplitude 180 deg from the direction of the incident D beam in center-of-mass coordinates, which shows that the D-H-H reacting configuration is short-lived compared to its rotation time. Non reactive scattering of D by H2 was used to assign absolute values to the differential reactive scattering cross sections.
Two-photon double ionization of helium in the region of photon energies 42-50eV
NASA Astrophysics Data System (ADS)
Ivanov, I. A.; Kheifets, A. S.
2007-03-01
We report the total integrated cross section (TICS) of two-photon double ionization of helium in the photon energy range from 42to50eV . Our computational procedure relies on a numerical solution of the time-dependent Schrödinger equation on a square-integrable basis and subsequent projection of this solution on a set of final field-free states describing correlation in the two-electron continuum. Our results suggest that the TICS grows monotonically as a function of photon energy in the region of 42-50eV , possibly reaching a maximum in the vicinity of 50eV . We also present fully resolved triple-differential cross sections for selected photon energies.
Reaction rate for carbon burning in massive stars
Jiang, C. L.; Santiago-Gonzalez, D.; Almaraz-Calderon, S.; ...
2018-01-10
Carbon burning is a critical phase for nucleosynthesis in massive stars. The conditions for igniting this burning stage, and the subsequent isotope composition of the resulting ashes, depend strongly on the reaction rate for 12C+ 12C fusion at very low energies. Results for the cross sections for this reaction are influenced by various backgrounds encountered in measurements at such energies. In this paper, we report on a new measurement of 12C+ 12C fusion cross sections where these backgrounds have been minimized. In conclusion, it is found that the astrophysical S factor exhibits a maximum around E cm=3.5–4.0 MeV, which leadsmore » to a reduction of the previously predicted astrophysical reaction rate.« less
NASA Astrophysics Data System (ADS)
Tang, Jiang; Hasegawa, Hideyuki; Kanai, Hiroshi
2005-06-01
For the assessment of the elasticity of the arterial wall, we have developed the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791] for measuring the minute change in thickness due to heartbeats and the elasticity of the arterial wall with transcutaneous ultrasound. For various reasons, for example, an extremely small deformation of the wall, the minute change in wall thickness during one heartbeat is largely influenced by noise in these cases and the reliability of the elasticity distribution obtained from the maximum change in thickness deteriorates because the maximum value estimation is largely influenced by noise. To obtain a more reliable cross-sectional image of the elasticity of the arterial wall, in this paper, a matching method is proposed to evaluate the waveform of the measured change in wall thickness by comparing the measured waveform with a template waveform. The maximum deformation, which is used in the calculation of elasticity, was determined from the amplitude of the matched model waveform to reduce the influence of noise. The matched model waveform was obtained by minimizing the difference between the measured and template waveforms. Furthermore, a random error, which was obtained from the reproducibility among the heartbeats of the measured waveform, was considered useful for the evaluation of the reliability of the measured waveform.
NASA Astrophysics Data System (ADS)
Tiutiunnyk, Anton; Akimov, Volodymyr; Tulupenko, Viktor; Mora-Ramos, Miguel E.; Kasapoglu, Esin; Morales, Alvaro L.; Duque, Carlos Alberto
2016-04-01
The differential cross-section of electron Raman scattering and the Raman gain are calculated and analysed in the case of prismatic quantum dots with equilateral triangle base shape. The study takes into account their dependencies on the size of the triangle, the influence of externally applied electric field as well as the presence of an ionized donor center located at the triangle's orthocenter. The calculations are made within the effective mass and parabolic band approximations, with a diagonalization scheme being applied to obtain the eigenfunctions and eigenvalues of the x- y Hamiltonian. The incident and secondary (scattered) radiation have been considered linearly-polarized along the y-direction, coinciding with the direction of the applied electric field. For the case with an impurity center, Raman scattering with the intermediate state energy below the initial state one has been found to show maximum differential cross-section more than by an order of magnitude bigger than that resulting from the scheme with lower intermediate state energy. The Raman gain has maximum magnitude around 35 nm dot size and electric field of 40 kV/cm for the case without impurity and at maximum considered values of the input parameters for the case with impurity. Values of Raman gain of the order of up to 104cm-1 are predicted in both cases.
Photodetachment process for beam neutralization
Fink, J.H.; Frank, A.M.
1979-02-20
A process for neutralization of accelerated ions employing photo-induced charge detachment is disclosed. The process involves directing a laser beam across the path of a negative ion beam such as to effect photodetachment of electrons from the beam ions. The frequency of the laser beam employed is selected to provide the maximum cross-section for the photodetachment process. 2 figs.
Research on Substance Abuse: Alcohol, Drugs, Tobacco. Matrix No. 14.
ERIC Educational Resources Information Center
Robins, Lee N.
In the last few years, a vast amount of research has accumulated with respect to American children's use of legal and illicit drugs. This research has included cross-sectional studies (which have attempted to determine current drug usage, age of onset for each drug used, and maximum frequency of use in the lifetime); longitudinal studies (which…
Calibration Tunnel for High Speed
NASA Technical Reports Server (NTRS)
Pretsch, J.
1946-01-01
For the nvestigation of measuring instruments at higher speeds up to a Mach number 0.7 a tunnel with closed test section was built in 1942 which was as simple and cheap as possble. The blower was a radial blower with straight sheet vanes of 800-millimeter diameter the tips of which were bent backward a little. The blower sucks the air through a honeycomb of diameter 1.2 neter with wide meshes. The air is then accelerated in a short cone with smooth transition to the test section. The cylindrical test section of 200-milimeter diameter has two windows (which are displaced 180 deg from each other. The instruments may be introduced and observed through and observed through these windows. . The cross section is then enlarged by a straight diffuser 3.5 meters long and reaches the ninefold cross section. The air flows back into the room through a disk diffuser of 2-meter diameter. The maximum speed in the jet is 250 m/s for a drive power of 35 kT., if there are no installations in the jet. The velocity is determined by pressure holed along the test section.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2015-12-16
Differential cross sections for the production of at least four jets have been measured in proton-proton collisions at √s = 8 TeV at the Large Hadron Collider using the ATLAS detector. Events are selected if the four anti-k t R = 0.4 jets with the largest transverse momentum (p T) within the rapidity range |y| < 2.8 are well separated (ΔR 4j min > 0.65), all have p T > 64 GeV, and include at least one jet with p T > 100 GeV. The dataset corresponds to an integrated luminosity of 20.3 fb -1. As a result, the crossmore » sections, corrected for detector effects, are compared to leading-order and next-to-leading-order calculations as a function of the jet momenta, invariant masses, minimum and maximum opening angles and other kinematic variables.« less
Heavy ion-induced DNA double-strand breaks in yeast.
Kiefer, Jürgen; Egenolf, Ralf; Ikpeme, Samuel
2002-02-01
Induction of DSBs in the diploid yeast, Saccharomyces cerevisiae, was measured by pulsed-field gel electrophoresis (PFGE) after the cells had been exposed on membrane filters to a variety of energetic heavy ions with values of linear energy transfer (LET) ranging from about 2 to 11,500 keV/microm, (241)Am alpha particles, and 80 keV X rays. After irradiation, the cells were lysed, and the chromosomes were separated by PFGE. The gels were stained with ethidium bromide, placed on a UV transilluminator, and analyzed using a computer-coupled camera. The fluorescence intensities of the larger bands were found to decrease exponentially with dose or particle fluence. The slope of this line corresponds to the cross section for at least one double-strand break (DSB), but closely spaced multiple breaks cannot be discriminated. Based on the known size of the native DNA molecules, breakage cross sections per base pair were calculated. They increased with LET until they reached a transient plateau value of about 6 x 10(-7) microm(2) at about 300-2000 keV/microm; they then rose for the higher LETs, probably reflecting the influence of delta electrons. The relative biological effectiveness for DNA breakage displays a maximum of about 2.5 around 100-200 keV/microm and falls below unity for LET values above 10(3) keV/microm. For these yeast cells, comparison of the derived breakage cross sections with the corresponding cross section for inactivation derived from the terminal slope of the survival curves shows a strong linear relationship between these cross sections, extending over several orders of magnitude.
Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Luyckx, S; Ochesanu, S; Rougny, R; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Daci, N; Heracleous, N; Keaveney, J; Lowette, S; Maes, M; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Caillol, C; Clerbaux, B; De Lentdecker, G; Dobur, D; Favart, L; Gay, A P R; Grebenyuk, A; Léonard, A; Mohammadi, A; Perniè, L; Reis, T; Seva, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Zenoni, F; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Costantini, S; Crucy, S; Dildick, S; Fagot, A; Garcia, G; Mccartin, J; Ocampo Rios, A A; Ryckbosch, D; Salva Diblen, S; Sigamani, M; Strobbe, N; Thyssen, F; Tytgat, M; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bruno, G; Castello, R; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Nuttens, C; Pagano, D; Perrini, L; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Júnior, W L Aldá; Alves, G A; Brito, L; Correa Martins Junior, M; Martins, T Dos Reis; Mora Herrera, C; Pol, M E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Malbouisson, H; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santaolalla, J; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Novaes, S F; Padula, Sandra S; Aleksandrov, A; Genchev, V; Iaydjiev, P; Marinov, A; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Vutova, M; Dimitrov, A; Glushkov, I; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Chen, M; Du, R; Jiang, C H; Plestina, R; Romeo, F; Tao, J; Wang, Z; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Zou, W; Avila, C; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Mekterovic, D; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Bodlak, M; Finger, M; Finger, M; Assran, Y; Ellithi Kamel, A; Mahmoud, M A; Radi, A; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Baffioni, S; Beaudette, F; Busson, P; Charlot, C; Dahms, T; Dalchenko, M; Dobrzynski, L; Filipovic, N; Florent, A; Granier de Cassagnac, R; Mastrolorenzo, L; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Veelken, C; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Chabert, E C; Collard, C; Conte, E; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Van Hove, P; Gadrat, S; Beauceron, S; Beaupere, N; Boudoul, G; Bouvier, E; Brochet, S; Carrillo Montoya, C A; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Xiao, H; Bagaturia, I; Autermann, C; Beranek, S; Bontenackels, M; Edelhoff, M; Feld, L; Hindrichs, O; Klein, K; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Millet, P; Olschewski, M; Padeken, K; Papacz, P; Reithler, H; Schmitz, S A; Sonnenschein, L; Teyssier, D; Thüer, S; Weber, M; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Heister, A; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Künsken, A; Lingemann, J; Nowack, A; Nugent, I M; Perchalla, L; Pooth, O; Stahl, A; Asin, I; Bartosik, N; Behr, J; Behrenhoff, W; Behrens, U; Bell, A J; Bergholz, M; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Choudhury, S; Costanza, F; Diez Pardos, C; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Garcia, J Garay; Geiser, A; Gunnellini, P; Hauk, J; Hempel, M; Horton, D; Jung, H; Kalogeropoulos, A; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Krücker, D; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Naumann-Emme, S; Nayak, A; Novgorodova, O; Ntomari, E; Perrey, H; Pitzl, D; Placakyte, R; Raspereza, A; Ribeiro Cipriano, P M; Roland, B; Ron, E; Sahin, M Ö; Salfeld-Nebgen, J; Saxena, P; Schmidt, R; Schoerner-Sadenius, T; Schröder, M; Seitz, C; Spannagel, S; Vargas Trevino, A D R; Walsh, R; Wissing, C; Aldaya Martin, M; Blobel, V; Centis Vignali, M; Draeger, A R; Erfle, J; Garutti, E; Goebel, K; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Kirschenmann, H; Klanner, R; Kogler, R; Lange, J; Lapsien, T; Lenz, T; Marchesini, I; Ott, J; Peiffer, T; Pietsch, N; Poehlsen, J; Poehlsen, T; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Seidel, M; Sola, V; Stadie, H; Steinbrück, G; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Frensch, F; Giffels, M; Hartmann, F; Hauth, T; Husemann, U; Katkov, I; Kornmayer, A; Kuznetsova, E; Lobelle Pardo, P; Mozer, M U; Müller, Th; Nürnberg, A; Quast, G; Rabbertz, K; Ratnikov, F; Röcker, S; Sieber, G; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Psallidas, A; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Stiliaris, E; Aslanoglou, X; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Paradas, E; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Palinkas, J; Szillasi, Z; Raics, P; Trocsanyi, Z L; Ujvari, B; Swain, S K; Beri, S B; Bhatnagar, V; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, M; Kumar, R; Mittal, M; Nishu, N; Singh, J B; Kumar, Ashok; Kumar, Arun; Ahuja, S; Bhardwaj, A; Choudhary, B C; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, V; Banerjee, S; Bhattacharya, S; Chatterjee, K; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Modak, A; Mukherjee, S; Roy, D; Sarkar, S; Sharan, M; Abdulsalam, A; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Goldouzian, R; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Barbone, L; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Selvaggi, G; Silvestris, L; Venditti, R; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Primavera, F; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gallo, E; Gonzi, S; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Ferretti, R; Ferro, F; Lo Vetere, M; Robutti, E; Tosi, S; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Lucchini, M T; Malvezzi, S; Manzoni, R A; Martelli, A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Galanti, M; Gasparini, F; Gasparini, U; Giubilato, P; Gozzelino, A; Kanishchev, K; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Vanini, S; Ventura, S; Zotto, P; Zucchetta, A; Gabusi, M; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vitulo, P; Biasini, M; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Spiezia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Fiori, F; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Moon, C S; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Vernieri, C; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Grassi, M; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Rovelli, C; Santanastasio, F; Soffi, L; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Casasso, S; Costa, M; Degano, A; Demaria, N; Finco, L; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Ortona, G; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Tamponi, U; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Schizzi, A; Umer, T; Zanetti, A; Chang, S; Kropivnitskaya, T A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Park, H; Sakharov, A; Son, D C; Kim, T J; Kim, J Y; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, Y; Lee, B; Lee, K S; Park, S K; Roh, Y; Choi, M; Kim, J H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Choi, Y K; Goh, J; Kim, D; Kwon, E; Lee, J; Seo, H; Yu, I; Juodagalvis, A; Komaragiri, J R; Md Ali, M A B; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Krofcheck, D; Butler, P H; Reucroft, S; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khalid, S; Khan, W A; Khurshid, T; Shah, M A; Shoaib, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Wolszczak, W; Bargassa, P; Da Cruz E Silva, C Beir Ao; Faccioli, P; Parracho, P G Ferreira; Gallinaro, M; Lloret Iglesias, L; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Konoplyanikov, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Skatchkov, N; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Spiridonov, A; Stolin, V; Vlasov, E; Zhokin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Ekmedzic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Domínguez Vázquez, D; Escalante Del Valle, A; Fernandez Bedoya, C; Ramos, J P Fernández; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Yzquierdo, A Pérez-Calero; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Albajar, C; de Trocóniz, J F; Missiroli, M; Moran, D; Brun, H; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Duarte Campderros, J; Fernandez, M; Gomez, G; Graziano, A; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Benitez, J F; Bernet, C; Bianchi, G; Bloch, P; Bocci, A; Bonato, A; Bondu, O; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Colafranceschi, S; D'Alfonso, M; d'Enterria, D; Dabrowski, A; David, A; De Guio, F; De Roeck, A; De Visscher, S; Di Marco, E; Dobson, M; Dordevic, M; Dorney, B; Dupont-Sagorin, N; Elliott-Peisert, A; Eugster, J; Franzoni, G; Funk, W; Gigi, D; Gill, K; Giordano, D; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Hansen, M; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Magini, N; Malgeri, L; Mannelli, M; Marrouche, J; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Musella, P; Orsini, L; Pape, L; Perez, E; Perrozzi, L; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Plagge, M; Racz, A; Rolandi, G; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Steggemann, J; Stieger, B; Stoye, M; Takahashi, Y; Treille, D; Tsirou, A; Veres, G I; Wardle, N; Wöhri, H K; Wollny, H; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Buchmann, M A; Casal, B; Chanon, N; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eller, P; Grab, C; Hits, D; Hoss, J; Lustermann, W; Mangano, B; Marini, A C; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meister, D; Mohr, N; Nägeli, C; Nessi-Tedaldi, F; Pandolfi, F; Pauss, F; Peruzzi, M; Quittnat, M; Rebane, L; Rossini, M; Starodumov, A; Takahashi, M; Theofilatos, K; Wallny, R; Weber, H A; Amsler, C; Canelli, M F; Chiochia, V; De Cosa, A; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Millan Mejias, B; Ngadiuba, J; Robmann, P; Ronga, F J; Taroni, S; Verzetti, M; Yang, Y; Cardaci, M; Chen, K H; Ferro, C; Kuo, C M; Lin, W; Lu, Y J; Volpe, R; Yu, S S; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Grundler, U; Hou, W-S; Kao, K Y; Lei, Y J; Liu, Y F; Lu, R-S; Majumder, D; Petrakou, E; Tzeng, Y M; Wilken, R; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sunar Cerci, D; Tali, B; Topakli, H; Vergili, M; Akin, I V; Bilin, B; Bilmis, S; Gamsizkan, H; Isildak, B; Karapinar, G; Ocalan, K; Sekmen, S; Surat, U E; Yalvac, M; Zeyrek, M; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Cankocak, K; Vardarlı, F I; Levchuk, L; Sorokin, P; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Senkin, S; Smith, V J; Williams, T; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Womersley, W J; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Burton, D; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Della Negra, M; Dunne, P; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Hall, G; Iles, G; Jarvis, M; Karapostoli, G; Kenzie, M; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mathias, B; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Raymond, D M; Rogerson, S; Rose, A; Seez, C; Sharp, P; Tapper, A; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Martin, W; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Dittmann, J; Hatakeyama, K; Kasmi, A; Liu, H; Scarborough, T; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Lawson, P; Richardson, C; Rohlf, J; St John, J; Sulak, L; Alimena, J; Berry, E; Bhattacharya, S; Christopher, G; Cutts, D; Demiragli, Z; Dhingra, N; Ferapontov, A; Garabedian, A; Heintz, U; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Segala, M; Sinthuprasith, T; Speer, T; Swanson, J; Breedon, R; Breto, G; De La Barca Sanchez, M Calderon; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Gardner, M; Ko, W; Lander, R; Miceli, T; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Searle, M; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Cousins, R; Everaerts, P; Farrell, C; Hauser, J; Ignatenko, M; Rakness, G; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Rikova, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Luthra, A; Malberti, M; Nguyen, H; Negrete, M Olmedo; Shrinivas, A; Sumowidagdo, S; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Evans, D; Holzner, A; Kelley, R; Klein, D; Lebourgeois, M; Letts, J; Macneill, I; Olivito, D; Padhi, S; Palmer, C; Pieri, M; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Welke, C; Würthwein, F; Yagil, A; Barge, D; Bradmiller-Feld, J; Campagnari, C; Danielson, T; Dishaw, A; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Incandela, J; Justus, C; Mccoll, N; Richman, J; Stuart, D; To, W; West, C; Yoo, J; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Rogan, C; Spiropulu, M; Timciuc, V; Vlimant, J R; Wilkinson, R; Xie, S; Zhu, R Y; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Iiyama, Y; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Luiggi Lopez, E; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chatterjee, A; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Ryd, A; Salvati, E; Skinnari, L; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Kaadze, K; Klima, B; Kreis, B; Kwan, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lykken, J; Maeshima, K; Marraffino, J M; Martinez Outschoorn, V I; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mishra, K; Mrenna, S; Musienko, Y; Nahn, S; Newman-Holmes, C; O'Dell, V; Prokofyev, O; Sexton-Kennedy, E; Sharma, S; Soha, A; Spalding, W J; Spiegel, L; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitbeck, A; Whitmore, J; Yang, F; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Carver, M; Cheng, T; Curry, D; Das, S; De Gruttola, M; Di Giovanni, G P; Field, R D; Fisher, M; Furic, I K; Hugon, J; Konigsberg, J; Korytov, A; Kypreos, T; Low, J F; Matchev, K; Milenovic, P; Mitselmakher, G; Muniz, L; Rinkevicius, A; Shchutska, L; Snowball, M; Sperka, D; Yelton, J; Zakaria, M; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Hohlmann, M; Kalakhety, H; Yumiceva, F; Adams, M R; Apanasevich, L; Bazterra, V E; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kurt, P; Moon, D H; O'Brien, C; Silkworth, C; Turner, P; Varelas, N; Albayrak, E A; Bilki, B; Clarida, W; Dilsiz, K; Duru, F; Haytmyradov, M; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Rahmat, R; Sen, S; Tan, P; Tiras, E; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Fehling, D; Gritsan, A V; Maksimovic, P; Martin, C; Swartz, M; Baringer, P; Bean, A; Benelli, G; Bruner, C; Kenny, R P; Malek, M; Murray, M; Noonan, D; Sanders, S; Sekaric, J; Stringer, R; Wang, Q; Wood, J S; Barfuss, A F; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Saini, L K; Shrestha, S; Skhirtladze, N; Svintradze, I; Gronberg, J; Lange, D; Rebassoo, F; Wright, D; Baden, A; Belloni, A; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, A C; Pedro, K; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Bauer, G; Busza, W; Cali, I A; Chan, M; Di Matteo, L; Dutta, V; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Klute, M; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Ma, T; Paus, C; Ralph, D; Roland, C; Roland, G; Stephans, G S F; Stöckli, F; Sumorok, K; Velicanu, D; Veverka, J; Wyslouch, B; Yang, M; Zanetti, M; Zhukova, V; Dahmes, B; Gude, A; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Singovsky, A; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Gonzalez Suarez, R; Keller, J; Knowlton, D; Kravchenko, I; Lazo-Flores, J; Malik, S; Meier, F; Snow, G R; Zvada, M; Dolen, J; Godshalk, A; Iashvili, I; Kharchilava, A; Kumar, A; Rappoccio, S; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Trocino, D; Wang, R J; Wood, D; Zhang, J; Hahn, K A; Kubik, A; Mucia, N; Odell, N; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Sung, K; Velasco, M; Won, S; Brinkerhoff, A; Chan, K M; Drozdetskiy, A; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Pearson, T; Planer, M; Ruchti, R; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hill, C; Hughes, R; Kotov, K; Ling, T Y; Puigh, D; Rodenburg, M; Smith, G; Winer, B L; Wolfe, H; Wulsin, H W; Driga, O; Elmer, P; Hebda, P; Hunt, A; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Brownson, E; Mendez, H; Ramirez Vargas, J E; Barnes, V E; Benedetti, D; Bortoletto, D; De Mattia, M; Gutay, L; Hu, Z; Jha, M K; Jones, M; Jung, K; Kress, M; Leonardo, N; Lopes Pegna, D; Maroussov, V; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Yoo, H D; Zablocki, J; Zheng, Y; Parashar, N; Stupak, J; Adair, A; Akgun, B; Ecklund, K M; Geurts, F J M; Li, W; Michlin, B; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Khukhunaishvili, A; Petrillo, G; Vishnevskiy, D; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Kaplan, S; Lath, A; Panwalkar, S; Park, M; Patel, R; Salur, S; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Rose, K; Spanier, S; York, A; Bouhali, O; Castaneda Hernandez, A; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Krutelyov, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Rose, A; Safonov, A; Sakuma, T; Suarez, I; Tatarinov, A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kovitanggoon, K; Kunori, S; Lee, S W; Libeiro, T; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Johns, W; Maguire, C; Mao, Y; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Wood, J; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Cepeda, M; Dasu, S; Dodd, L; Duric, S; Friis, E; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Lazaridis, C; Levine, A; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ross, I; Sarangi, T; Savin, A; Smith, W H; Taylor, D; Verwilligen, P; Vuosalo, C; Woods, N; Collaboration, Authorinst The Cms
This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5[Formula: see text]collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to the strong coupling constant [Formula: see text] is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of [Formula: see text].
Limit Theory for Panel Data Models with Cross Sectional Dependence and Sequential Exogeneity.
Kuersteiner, Guido M; Prucha, Ingmar R
2013-06-01
The paper derives a general Central Limit Theorem (CLT) and asymptotic distributions for sample moments related to panel data models with large n . The results allow for the data to be cross sectionally dependent, while at the same time allowing the regressors to be only sequentially rather than strictly exogenous. The setup is sufficiently general to accommodate situations where cross sectional dependence stems from spatial interactions and/or from the presence of common factors. The latter leads to the need for random norming. The limit theorem for sample moments is derived by showing that the moment conditions can be recast such that a martingale difference array central limit theorem can be applied. We prove such a central limit theorem by first extending results for stable convergence in Hall and Hedye (1980) to non-nested martingale arrays relevant for our applications. We illustrate our result by establishing a generalized estimation theory for GMM estimators of a fixed effect panel model without imposing i.i.d. or strict exogeneity conditions. We also discuss a class of Maximum Likelihood (ML) estimators that can be analyzed using our CLT.
Birds and insects as radar targets - A review
NASA Technical Reports Server (NTRS)
Vaughn, C. R.
1985-01-01
A review of radar cross-section measurements of birds and insects is presented. A brief discussion of some possible theoretical models is also given and comparisons made with the measurements. The comparisons suggest that most targets are, at present, better modeled by a prolate spheroid having a length-to-width ratio between 3 and 10 than by the often used equivalent weight water sphere. In addition, many targets observed with linear horizontal polarization have maximum cross sections much better estimated by a resonant half-wave dipole than by a water sphere. Also considered are birds and insects in the aggregate as a local radar 'clutter' source. Order-of-magnitude estimates are given for many reasonable target number densities. These estimates are then used to predict X-band volume reflectivities. Other topics that are of interest to the radar engineer are discussed, including the doppler bandwidth due to the internal motions of a single bird, the radar cross-section probability densities of single birds and insects, the variability of the functional form of the probability density functions, and the Fourier spectra of single birds and insects.
A new automated method for the determination of cross-section limits in ephemeral gullies
NASA Astrophysics Data System (ADS)
Castillo, Carlos; Ángel Campo-Bescós, Miguel; Casalí, Javier; Giménez, Rafael
2017-04-01
The assessment of gully erosion relies on the estimation of the soil volume enclosed by cross sections limits. Both 3D and 2D methods require the application of a methodology for the determination of the cross-section limits what has been traditionally carried out in two ways: a) by visual inspection of the cross-section by a certain expert operator; b) by the automated identification of thresholds for different geometrical variables such as elevation, slope or plan curvature obtained from the cross-section profile. However, for these last methods, typically, the thresholds are not of general application because they depend on absolute values valid only for the local gully conditions where they were derived. In this communication we evaluate an automated method for cross-section delimitation of ephemeral gullies and compare its performance with the visual assessment provided by five scientists experienced in gully erosion assessment, defining gully width, depth and area for a total of 60 ephemeral gullies cross-sections obtained from field surveys conducted on agricultural plots in Navarra (Spain). The automated method only depends on the calculation of a simple geometrical measurement, which is the bank trapezoid area for every point of each gully bank. This rectangle trapezoid (right-angled trapezoid) is defined by the elevation of a given point, the minimum elevation and the extremes of the cross-section. The gully limit for each bank is determined by the point in the bank with the maximum trapezoid area. The comparison of the estimates among the different expert operators showed large variation coefficients (up to 70%) in a number of cross-sections, larger for cross sections width and area and smaller for cross sections depth. The automated method produced comparable results to those obtained by the experts and was the procedure with the highest average correlation with the rest of the methods for the three dimensional parameters. The errors of the automated method when compared with the average estimate of the experts were occasionally high (up to 40%), in line with the variability found among experts. The automated method showed no apparent systematic errors which approximately followed a normal distribution, although these errors were slightly biased towards overestimation for the depth and area parameters. In conclusion, this study shows that there is not a single definition of gully limits even among gully experts where a large variability was found. The bank trapezoid method was found to be an automated, easy-to-use (readily implementable in a basic excel spread-sheet or programming scripts), threshold-independent procedure to determine consistently gully limits similar to expert-derived estimates. Gully width and area calculations were more prone to errors than gully depth, which was the least sensitive parameter.
NASA Technical Reports Server (NTRS)
Sturm, R. E.; Ritman, E. L.; Wood, E. H.
1975-01-01
The background for, and design of a third generation, general purpose, all electronic spatial scanning system, the DSR is described. Its specified performance capabilities provide dynamic and stop action three dimensional spatial reconstructions of any portion of the body based on a minimum exposure time of 0.01 second for each 28 multiplanar 180 deg scanning set, a maximum scan repetition rate of sixty 28 multiplane scan sets per second, each scan set consisting of a maximum of 240 parallel cross sections of a minimum thickness of 0.9 mm, and encompassing a maximum cylindrical volume about 23 cm in length and up to 38 cm in diameter.
Passive and Active Contributions to Glenohumeral Stability
2001-10-25
physiological muscle contraction during free arm suspension and proportional to muscle physiological cross- sectional area [15] (Phys Load); ditto...of muscle contraction around GH-joint. Stiffness of the GH capsuloligamentous structure, which is the ratio of the force required to stretch the...important active stabilizer in inferior stability. Our results also suggested that low-level muscle activity (2% of maximum muscle contraction ), representing
Excitation Spectra and Brightness Optimization of Two-Photon Excited Probes
Mütze, Jörg; Iyer, Vijay; Macklin, John J.; Colonell, Jennifer; Karsh, Bill; Petrášek, Zdeněk; Schwille, Petra; Looger, Loren L.; Lavis, Luke D.; Harris, Timothy D.
2012-01-01
Two-photon probe excitation data are commonly presented as absorption cross section or molecular brightness (the detected fluorescence rate per molecule). We report two-photon molecular brightness spectra for a diverse set of organic and genetically encoded probes with an automated spectroscopic system based on fluorescence correlation spectroscopy. The two-photon action cross section can be extracted from molecular brightness measurements at low excitation intensities, while peak molecular brightness (the maximum molecular brightness with increasing excitation intensity) is measured at higher intensities at which probe photophysical effects become significant. The spectral shape of these two parameters was similar across all dye families tested. Peak molecular brightness spectra, which can be obtained rapidly and with reduced experimental complexity, can thus serve as a first-order approximation to cross-section spectra in determining optimal wavelengths for two-photon excitation, while providing additional information pertaining to probe photostability. The data shown should assist in probe choice and experimental design for multiphoton microscopy studies. Further, we show that, by the addition of a passive pulse splitter, nonlinear bleaching can be reduced—resulting in an enhancement of the fluorescence signal in fluorescence correlation spectroscopy by a factor of two. This increase in fluorescence signal, together with the observed resemblance of action cross section and peak brightness spectra, suggests higher-order photobleaching pathways for two-photon excitation. PMID:22385865
Gambhir, Ramandeep S.; Sogi, Girish M.; Veeresha, Koratagere Lingappa; Sohi, Ramandeep K.; Randhawa, Amaninder; Kakar, Heena
2013-01-01
Aim: To assess the dental health status and treatment needs of transport workers working in Chandigarh Transport Undertaking (C.T.U.) buses, Chandigarh. Materials and Methods: A cross-sectional study was conducted on all the available C.T.U. workers at all three bus depots. The data were recorded on a modified W.H.O. format (1997). A total of 1008 subjects constituted the final sample size. Results: The mean age of the subjects was 45.3 ± 7.8 years, and 97% (978) were males. Prevalence of dental caries was 63.4% and mean DMFT was 5.02. 47.6% of subjects needed some prosthesis in the maxillary arch while 53.3% needed some prosthesis in the mandibular arch. Regarding highest CPI (Community Periodontal Index) score, 8.13% of the subjects had healthy periodontium while maximum subjects (73.2%) had a score 2 (Calculus). Conclusion: Mean DMFT (Decayed, Missing and Filled Teeth) was satisfactory. Prosthetic need of the subjects was high with only a few subjects possessing prosthesis. Advanced periodontal disease (CPI score, 4) affected small number of subjects with maximum subjects (73%) having a CPI score of 2. PMID:24082750
PO calculation for reduction in radar cross section of hypersonic targets using RAM
NASA Astrophysics Data System (ADS)
Liu, Song-hua; Guo, Li-xin; Pan, Wei-tao; Chen, Wei; Xiao, Yi-fan
2018-06-01
The radar cross section (RCS) reduction of hypersonic targets by radar absorbing materials (RAM) coating under different reentry cases is analyzed in the C and X bands frequency range normally used for radar detection. The physical optics method is extended to both the inhomogeneous plasma sheath and RAM layer present simultaneously. The simulation results show that the absorbing coating can reduce the RCS of the plasma cloaking system and its effectiveness is related to the maximum plasma frequency. Moreover, the amount of the RCS decrease, its maxima, and the corresponding optimal RAM thickness depend on the non-uniformity and parameters of the plasma sheath. In addition, the backward RCS of the flight vehicle shrouded by plasma shielding and man-made absorber is calculated and compared to the bare cone.
Radar cross section models for limited aspect angle windows
NASA Astrophysics Data System (ADS)
Robinson, Mark C.
1992-12-01
This thesis presents a method for building Radar Cross Section (RCS) models of aircraft based on static data taken from limited aspect angle windows. These models statistically characterize static RCS. This is done to show that a limited number of samples can be used to effectively characterize static aircraft RCS. The optimum models are determined by performing both a Kolmogorov and a Chi-Square goodness-of-fit test comparing the static RCS data with a variety of probability density functions (pdf) that are known to be effective at approximating the static RCS of aircraft. The optimum parameter estimator is also determined by the goodness of-fit tests if there is a difference in pdf parameters obtained by the Maximum Likelihood Estimator (MLE) and the Method of Moments (MoM) estimators.
Should conventional angiography be the gold standard for carotid stenosis?
Zhang, Wayne W; Harris, Linda M; Dryjski, Maciej L
2006-12-01
To compare conventional angiography (CA) and rotational angiography (RA) to assess the degree of angiographically-measured stenosis versus cross-sectional area (CSA) stenosis in an in vitro carotid model. Various grades of stenosis were created by adhering different amounts of silicone rubber sealant onto the inner wall of clear, radiolucent tubes. Following 2- and 3-projection CA and 20-projection RA, the tubes were transected at the actual maximum stenosis. The cross-sectional areas were digitally photographed, and CSA stenosis was calculated using ImageJ planimeter software. The differences among CA, RA, and CSA stenosis measurements were compared statistically. There was no significant difference between RA and CSA stenosis measurements (p=0.46). Conventional angiography with 2 or 3 projections between 0 degrees and 90 degrees underestimated the severity of disease in 19 (63%) of 30 samples. The maximum stenosis percentage was significantly lower in CA versus RA (p<0.0001 in 2-projection, p<0.0003 in 3-projection) and in CA versus CSA stenosis (p<0.0004 in 2-projection, p<0.001 in 3-projection). The maximum stenosis percentages measured by RA were less than CSA stenosis in 5 (71.4%) of 7 tubes (p=NS) containing 50% to 69% stenoses. Eight tubes had mountain-shaped lesions, which was significantly overestimated by RA (11.5%+/-9.7%, p<0.012). CA with 2 or 3 projections significantly underestimates the maximum stenosis in an in vitro model. RA may overestimate disease in patients with mountain-shaped plaques and may underestimate disease if the stenosis is <70%. Our data suggest that CA should not be the gold standard for the qualification of carotid endarterectomy in asymptomatic patients, nor for vascular laboratory quality assurance analysis.
Basheer Ahamed, Shadir Bughari; Vanajassun, Purushothaman Pranav; Rajkumar, Kothandaraman; Mahalaxmi, Sekar
2018-04-01
Single cross-sectional nickel-titanium (NiTi) rotary instruments during continuous rotations are subjected to constant and variable stresses depending on the canal anatomy. This study was intended to create 2 new experimental, theoretic single-file designs with combinations of triple U (TU), triangle (TR), and convex triangle (CT) cross sections and to compare their bending stresses in simulated root canals with a single cross-sectional instrument using finite element analysis. A 3-dimensional model of the simulated root canal with 45° curvature and NiTi files with 5 cross-sectional designs were created using Pro/ENGINEER Wildfire 4.0 software (PTC Inc, Needham, MA) and ANSYS software (version 17; ANSYS, Inc, Canonsburg, PA) for finite element analysis. The NiTi files of 3 groups had single cross-sectional shapes of CT, TR, and TU designs, and 2 experimental groups had a CT, TR, and TU (CTU) design and a TU, TR, and CT (UTC) design. The file was rotated in simulated root canals to analyze the bending stress, and the von Mises stress value for every file was recorded in MPa. Statistical analysis was performed using the Kruskal-Wallis test and the Bonferroni-adjusted Mann-Whitney test for multiple pair-wise comparison with a P value <.05 (95 %). The maximum bending stress of the rotary file was observed in the apical third of the CT design, whereas comparatively less stress was recorded in the CTU design. The TU and TR designs showed a similar stress pattern at the curvature, whereas the UTC design showed greater stress in the apical and middle thirds of the file in curved canals. All the file designs showed a statistically significant difference. The CTU designed instruments showed the least bending stress on a 45° angulated simulated root canal when compared with all the other tested designs. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bolling, Denzell Tamarcus
A significant amount of research has been devoted to the characterization of new engineering materials. Searching for new alloys which may improve weight, ultimate strength, or fatigue life are just a few of the reasons why researchers study different materials. In support of that mission this study focuses on the effects of specimen geometry and size on the dynamic failure of AA2219 aluminum alloy subjected to impact loading. Using the Split Hopkinson Pressure Bar (SHPB) system different geometric samples including cubic, rectangular, cylindrical, and frustum samples are loaded at different strain rates ranging from 1000s-1 to 6000s-1. The deformation properties, including the potential for the formation of adiabatic shear bands, of the different geometries are compared. Overall the cubic geometry achieves the highest critical strain and the maximum stress values at low strain rates and the rectangular geometry has the highest critical strain and the maximum stress at high strain rates. The frustum geometry type consistently achieves the lowest the maximum stress value compared to the other geometries under equal strain rates. All sample types clearly indicated susceptibility to strain localization at different locations within the sample geometry. Micrograph analysis indicated that adiabatic shear band geometry was influenced by sample geometry, and that specimens with a circular cross section are more susceptible to shear band formation than specimens with a rectangular cross section.
Yamashiro, Tsuneo; Tsubakimoto, Maho; Nagatani, Yukihiro; Moriya, Hiroshi; Sakuma, Kotaro; Tsukagoshi, Shinsuke; Inokawa, Hiroyasu; Kimoto, Tatsuya; Teramoto, Ryuichi; Murayama, Sadayuki
2015-01-01
The purpose of this study was to evaluate the feasibility of continuous quantitative measurement of the proximal airways, using dynamic ventilation computed tomography (CT) and our research software. A porcine lung that was removed during meat processing was ventilated inside a chest phantom by a negative pressure cylinder (eight times per minute). This chest phantom with imitated respiratory movement was scanned by a 320-row area-detector CT scanner for approximately 9 seconds as dynamic ventilatory scanning. Obtained volume data were reconstructed every 0.35 seconds (total 8.4 seconds with 24 frames) as three-dimensional images and stored in our research software. The software automatically traced a designated airway point in all frames and measured the cross-sectional luminal area and wall area percent (WA%). The cross-sectional luminal area and WA% of the trachea and right main bronchus (RMB) were measured for this study. Two radiologists evaluated the traceability of all measurable airway points of the trachea and RMB using a three-point scale. It was judged that the software satisfactorily traced airway points throughout the dynamic ventilation CT (mean score, 2.64 at the trachea and 2.84 at the RMB). From the maximum inspiratory frame to the maximum expiratory frame, the cross-sectional luminal area of the trachea decreased 17.7% and that of the RMB 29.0%, whereas the WA% of the trachea increased 6.6% and that of the RMB 11.1%. It is feasible to measure airway dimensions automatically at designated points on dynamic ventilation CT using research software. This technique can be applied to various airway and obstructive diseases.
Hur, Jae-Sik; Kim, Hyoung-Ho; Choi, Jin-Young; Suh, Sang-Ho
2017-01-01
Objective The objective of this study was to investigate the effects of miniscrew-assisted rapid palatal expansion (MARPE) on changes in airflow in the upper airway (UA) of an adult patient with obstructive sleep apnea syndrome (OSAS) using computational fluid-structure interaction analysis. Methods Three-dimensional UA models fabricated from cone beam computed tomography images obtained before (T0) and after (T1) MARPE in an adult patient with OSAS were used for computational fluid dynamics with fluid-structure interaction analysis. Seven and nine cross-sectional planes (interplane distance of 10 mm) in the nasal cavity (NC) and pharynx, respectively, were set along UA. Changes in the cross-sectional area and changes in airflow velocity and pressure, node displacement, and total resistance at maximum inspiration (MI), rest, and maximum expiration (ME) were investigated at each plane after MARPE. Results The cross-sectional areas at most planes in NC and the upper half of the pharynx were significantly increased at T1. Moreover, airflow velocity decreased in the anterior NC at MI and ME and in the nasopharynx and oropharynx at MI. The decrease in velocity was greater in NC than in the pharynx. The airflow pressure in the anterior NC and entire pharynx exhibited a decrease at T1. The amount of node displacement in NC and the pharynx was insignificant at both T0 and T1. Absolute values for the total resistance at MI, rest, and ME were lower at T1 than at T0. Conclusions MARPE improves airflow and decreases resistance in UA; therefore, it may be an effective treatment modality for adult patients with moderate OSAS. PMID:29090123
Transfer products from the reactions of heavy ions with heavy nuclei. [394 to 1156 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, K.E. III
1979-11-01
Production of nuclides heavier than the target from /sup 86/Kr- and /sup 136/Xe-induced reactions with /sup 181/Ta and /sup 238/U was investigated. Attempts were made to produce new neutron-excess Np and Pu isotopes by the deep inelastic mechanism. No evidence was found for /sup 242/Np or /sup 247/Pu. Estimates were made for the production of /sup 242/Np, /sup 247/Pu, and /sup 248/Am from heavy-ion reactions with uranium targets. Comparisons of reactions of /sup 86/Kr and /sup 136/Xe ions with thick /sup 181/Ta targets and /sup 86/Kr, /sup 136/Xe and /sup 238/U ions with thick /sup 238/U targets indicate that themore » most probable products are not dependent on the projectile. The most probable products can be predicted by the equation Z - Z/sub target/ = 0.43 (A - A/sub target/) + 1.0. The major effect of the projectile is the magnitude of the production cross section of the heavy products. Based on these results, estimates are made of the most probable mass of element 114 produced from heavy-ion reactions with /sup 248/Cm and /sup 254/Es targets. These estimates give the mass number of element 114 as approx. 287 if produced in heavy-ion reactions with these very heavy targets. Excitation functions of gold and bismuth isotopes arising from /sup 86/Kr- and /sup 136/Xe-induced reactions with thin /sup 181/Ta targets were measured. These results indicate that the shape and location (in Z and A above the target) of the isotopic distributions are not strongly dependent on the projectile incident energy. Also, the nuclidic cross sections are found to increase with an increase in projectile energy to a maximum at approximately 1.4 to 1.5 times the Coulomb barrier. Above this maximum, the nuclidic cross sections are found to decrease with an increase in projectile energy. This decrease in cross section is believed to be due to fission of the heavy products caused by high excitation energy and angular momentum. 111 references, 39 figures, 34 tables.« less
Zhang, Jingjing; Chen, Gui; Li, Weiran; Xu, Tianmin; Gao, Xuemei
2015-01-01
Objective Whether the orthodontic treatment with premolar extraction and maximum anchorage in adults will lead to a narrowed upper airway remains under debated. The study aims to investigate the airway changes after orthodontic extraction treatment in adult patients with Class II and hyperdivergent skeletal malocclusion. Materials and Methods This retrospective study enrolled 18 adults with Class II and hyperdivergent skeletal malocclusion (5 males and 13 females, 24.1 ± 3.8 years of age, BMI 20.33 ± 1.77 kg/m2). And 18 untreated controls were matched 1:1 with the treated patients for age, sex, BMI, and skeletal pattern. CBCT images before and after treatment were obtained. DOLPHIN 11.7 software was used to reconstruct and measure the airway size, hyoid position, and craniofacial structures. Changes in the airway and craniofacial parameters from pre to post treatment were assessed by Wilcoxon signed rank test. Mann-Whitney U test was used in comparisons of the airway parameters between the treated patients and the untreated controls. Significant level was set at 0.05. Results The upper and lower incisors retracted 7.87 mm and 6.10 mm based on the measurement of U1-VRL and L1-VRL (P < 0.01), while the positions of the upper and lower molars (U6-VRL, and L6-VRL) remained stable. Volume, height, and cross-sectional area of the airway were not significantly changed after treatment, while the sagittal dimensions of SPP-SPPW, U-MPW, PAS, and V-LPW were significantly decreased (P < 0.05), and the morphology of the cross sections passing through SPP-SPPW, U-MPW, PAS, and V-LPW became anteroposteriorly compressed (P <0.001). No significant differences in the airway volume, height, and cross-sectional area were found between the treated patients and untreated controls. Conclusions The airway changes after orthodontic treatment with premolar extraction and maximum anchorage in adults are mainly morphological changes with anteroposterior dimension compressed in airway cross sections, rather than a decrease in size. PMID:26588714
Zhang, En-Wei; Cheung, Gary S P; Zheng, Yu-Feng
2010-08-01
The aim of this study was to examine the influence of the cross-sectional configuration and dimensions (size and taper) on the torsional and bending behavior of nickel-titanium rotary instruments, taking into account the nonlinear mechanical properties of material. Ten cross-sectional configurations, square, triangular, U-type, S-type (large and small), convex-triangle, and 4 proprietary ones (Mani NRT and RT2, Quantec, and Mtwo), were analyzed under torsion or bending by using a 3-dimensional finite element method. The von Mises stresses were correlated with the critical values for various phases of the nickel-titanium material. Different loading conditions led to unequal patterns of stress distribution. Increasing the applied torque or bending angle resulted in a rise in the corresponding stresses in the instrument. Favorable stress distribution without dangerous stress concentration was observed if the material was undergoing superelastic transformation at that applied load. The ultimate strength of the material was not exceeded when the instrument was bent up to a 50-degree curvature. On the other hand, when a torsional moment of greater than 1.0 N*mm was applied, the maximum stresses developed in some designs would exceed the ultimate strength of the material. Little variation in the von Mises stresses was observed for instruments of different nominal sizes and tapers on bending to similar extent. The cross-sectional design has a greater impact than taper or size of the instrument on the stresses developed in the instrument under either torsion or bending. Certain cross-sectional configurations are prone to fracture by excess torsional stresses. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Statistical Properties of SEE Rate Calculation in the Limits of Large and Small Event Counts
NASA Technical Reports Server (NTRS)
Ladbury, Ray
2007-01-01
This viewgraph presentation reviews the Statistical properties of Single Event Effects (SEE) rate calculations. The goal of SEE rate calculation is to bound the SEE rate, though the question is by how much. The presentation covers: (1) Understanding errors on SEE cross sections, (2) Methodology: Maximum Likelihood and confidence Contours, (3) Tests with Simulated data and (4) Applications.
Johnson, K A; Skinner, G A; Muir, P
2001-05-01
To quantify geometric, inertial, and histomorphometric properties at the mid-diaphyseal level of left and right metacarpal bones (MCB) of racing Greyhounds. MCB from 7 racing Greyhounds euthanatized for reasons unrelated to MCB abnormalities. Mid-diaphyseal transverse sections of left and right MCB were stained with H&E or microradiographed. Images of stained sections were digitized, and cross-sectional area, cortical area, and maximum and minimum area moments of inertia of each bone were determined. Histomorphometric data (osteonal density, osteonal birefringence, and endosteal new lamellar bone thickness) were collected in 4 quadrants (dorsal, palmar, lateral, medial). Values were compared between limbs and among bones and quadrants. Cross-sectional area, cortical area, and maximum and minimum moments of inertia of left MCB-IV and -V were significantly greater, compared with contralateral bones. Overall osteonal densities in the dorsal quadrants of left MCB were greater, compared with lateral and medial quadrants. Also, percentage of birefringent osteons was significantly greater in the dorsal quadrant of left MCB-III, -IV, and -V, compared with the palmar quadrant. Thickness of new endosteal lamellar bone was not significantly influenced by limb, bone, or quadrant. Increased cortical thickness and geometric properties of left MCB-IV and -V of Greyhounds, together with altered turnover and orientation of osteons in the dorsal quadrants of left MCB, are site-specific adaptive responses associated with asymmetric cyclic loading as a result of racing on circular tracks. Site-specific adaptive remodeling may be important in the etiopathogenesis of fatigue fractures in racing Greyhounds.
Unconventional bearing capacity analysis and optimization of multicell box girders.
Tepic, Jovan; Doroslovacki, Rade; Djelosevic, Mirko
2014-01-01
This study deals with unconventional bearing capacity analysis and the procedure of optimizing a two-cell box girder. The generalized model which enables the local stress-strain analysis of multicell girders was developed based on the principle of cross-sectional decomposition. The applied methodology is verified using the experimental data (Djelosevic et al., 2012) for traditionally formed box girders. The qualitative and quantitative evaluation of results obtained for the two-cell box girder is realized based on comparative analysis using the finite element method (FEM) and the ANSYS v12 software. The deflection function obtained by analytical and numerical methods was found consistent provided that the maximum deviation does not exceed 4%. Multicell box girders are rationally designed support structures characterized by much lower susceptibility of their cross-sectional elements to buckling and higher specific capacity than traditionally formed box girders. The developed local stress model is applied for optimizing the cross section of a two-cell box carrier. The author points to the advantages of implementing the model of local stresses in the optimization process and concludes that the technological reserve of bearing capacity amounts to 20% at the same girder weight and constant load conditions.
Graf, Neil J; Bowser, Michael T
2013-10-07
Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM). The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold's bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold's bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries.
Wei, Jianbing; Feng, Hao; Cheng, Quanguo; Gao, Shiqian; Liu, Haiyan
2017-02-01
The objective of this study was to test the hypothesis that environmental regulators of riparian zone soil denitrification potential differ according to spatial scale within a watershed; consequently, a second objective was to provide spatial strategies for conserving and restoring the purification function of runoff in riparian ecosystems. The results show that soil denitrification in riparian zones was more heterogeneous at the profile scale than at the cross-section and landscape scales. At the profile scale, biogeochemical factors (including soil total organic carbon, total nitrogen, and nitrate-nitrogen) were the major direct regulators of the spatial distribution of soil denitrification enzyme activity (DEA). At the cross-section scale, factors included distance from river bank and vegetation density, while landscape-scale factors, including topographic index, elevation, and land use types, indirectly regulated the spatial distribution of DEA. At the profile scale, soil DEA was greatest in the upper soil layers. At the cross-section scale, maximum soil DEA occurred in the mid-part of the riparian zone. At the landscape scale, soil DEA showed an increasing trend towards downstream sites, except for those in urbanized areas.
Limit Theory for Panel Data Models with Cross Sectional Dependence and Sequential Exogeneity
Kuersteiner, Guido M.; Prucha, Ingmar R.
2013-01-01
The paper derives a general Central Limit Theorem (CLT) and asymptotic distributions for sample moments related to panel data models with large n. The results allow for the data to be cross sectionally dependent, while at the same time allowing the regressors to be only sequentially rather than strictly exogenous. The setup is sufficiently general to accommodate situations where cross sectional dependence stems from spatial interactions and/or from the presence of common factors. The latter leads to the need for random norming. The limit theorem for sample moments is derived by showing that the moment conditions can be recast such that a martingale difference array central limit theorem can be applied. We prove such a central limit theorem by first extending results for stable convergence in Hall and Hedye (1980) to non-nested martingale arrays relevant for our applications. We illustrate our result by establishing a generalized estimation theory for GMM estimators of a fixed effect panel model without imposing i.i.d. or strict exogeneity conditions. We also discuss a class of Maximum Likelihood (ML) estimators that can be analyzed using our CLT. PMID:23794781
Electron Stark Broadening Database for Atomic N, O, and C Lines
NASA Technical Reports Server (NTRS)
Liu, Yen; Yao, Winifred M.; Wray, Alan A.; Carbon, Duane F.
2012-01-01
A database for efficiently computing the electron Stark broadening line widths for atomic N, O, and C lines is constructed. The line width is expressed in terms of the electron number density and electronatom scattering cross sections based on the Baranger impact theory. The state-to-state cross sections are computed using the semiclassical approximation, in which the atom is treated quantum mechanically whereas the motion of the free electron follows a classical trajectory. These state-to-state cross sections are calculated based on newly compiled line lists. Each atomic line list consists of a careful merger of NIST, Vanderbilt, and TOPbase line datasets from wavelength 50 nm to 50 micrometers covering the VUV to IR spectral regions. There are over 10,000 lines in each atomic line list. The widths for each line are computed at 13 electron temperatures between 1,000 K 50,000 K. A linear least squares method using a four-term fractional power series is then employed to obtain an analytical fit for each line-width variation as a function of the electron temperature. The maximum L2 error of the analytic fits for all lines in our line lists is about 5%.
Khachatryan, Vardan
2015-05-01
This article presents a measurement of the inclusive 3-jet production differential cross section at a proton–proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5fb –1 collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445–3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD atmore » next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to the strong coupling constant αS is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of α S(M Z) = 0.1171 ± 0.0013(exp) +0.0073 –0.0047(theo).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.
A measurement is presented of themore » $$t\\bar{t}$$ cross section $$(\\sigma_{t\\bar{t}})$$ in proton-proton collisions at a centre-of-mass energy of 7 TeV, in the all-jet final state that contains at least six jets, two of which are tagged as likely originating from b quarks. The data correspond to an integrated luminosity of 3.54 inverse femtobarns, collected with the CMS detector at the LHC. The cross section is determined through an unbinned maximum likelihood fit of contributions from background and t t-bar signal to the reconstructed mass spectrum of t t-bar candidates in the data, in which events are subjected to a kinematic fit assuming a $$t\\bar{t} \\to W^+ b W^- \\bar{b} \\to 6$$ jets hypothesis. The measurement yields $$\\sigma_{t\\bar{t}} = 139 \\pm 10 (stat.) \\pm 26 (syst.) \\pm 3 (lum.)$$ pb, a result consistent with those obtained in other $$t\\bar{t}$$ decay channels, as well as with predictions of the standard model.« less
Triple-α reaction rate constrained by stellar evolution models
NASA Astrophysics Data System (ADS)
Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.
2012-11-01
We investigate the quantitative constraint on the triple-α reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8<=M/Msolar<=25 and in the metallicity range between Z = 0 and Z = 0.02. The revised rate has a significant impact on the evolution of low-and intermediate-mass stars, while its influence on the evolution of massive stars (M > 10Msolar) is minimal. We find that employing the revised rate suppresses helium shell flashes on AGB phase for stars in the initial mass range 0.8<=M/Msolar<=6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-α reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least ν > 10 at T = 1-1.2×108K where the cross section is proportional to Tν. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than ~ 10-29 cm6 s-1 mole-2 at ~ 107.8 K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation.
NASA Astrophysics Data System (ADS)
Yan, S. Q.; Li, Z. H.; Wang, Y. B.; Nishio, K.; Lugaro, M.; Karakas, A. I.; Makii, H.; Mohr, P.; Su, J.; Li, Y. J.; Nishinaka, I.; Hirose, K.; Han, Y. L.; Orlandi, R.; Shen, Y. P.; Guo, B.; Zeng, S.; Lian, G.; Chen, Y. S.; Liu, W. P.
2017-10-01
The 95Zr(n, γ)96Zr reaction cross section is crucial in the modeling of s-process nucleosynthesis in asymptotic giant branch stars because it controls the operation of the branching point at the unstable 95Zr and the subsequent production of 96Zr. We have carried out the measurement of the 94Zr(18O, 16O) and 90Zr(18O, 16O) reactions and obtained the γ-decay probability ratio of 96Zr* and 92Zr* to determine the 95Zr(n, γ)96Zr reaction cross sections with the surrogate ratio method. Our deduced Maxwellian-averaged cross section of 66 ± 16 mb at 30 keV is close to the value recommended by Bao et al., but 30% and more than a factor of two larger than the values proposed by Toukan & Käppeler and Lugaro et al., respectively, and routinely used in s-process models. We tested the new rate in stellar models with masses between 2 and 6 M ⊙ and metallicities of 0.014 and 0.03. The largest changes—up to 80% variations in 96Zr—are seen in models of mass 3–4 M ⊙, where the 22Ne neutron source is mildly activated. The new rate can still provide a match to data from meteoritic stardust silicon carbide grains, provided that the maximum mass of the parent stars is below 4 M ⊙, for a metallicity of 0.03.
Photoproduction of Λ and Σ0 hyperons off protons with linearly polarized photons at Eγ=1.5 -3.0 GeV
NASA Astrophysics Data System (ADS)
Shiu, S. H.; Kohri, H.; Chang, W. C.; Ahn, D. S.; Ahn, J. K.; Chen, J. Y.; Daté, S.; Ejiri, H.; Fujimura, H.; Fujiwara, M.; Fukui, S.; Gohn, W.; Hicks, K.; Hotta, T.; Hwang, S. H.; Imai, K.; Ishikawa, T.; Joo, K.; Kato, Y.; Kon, Y.; Lee, H. S.; Maeda, Y.; Mibe, T.; Miyabe, M.; Mizutani, K.; Morino, Y.; Muramatsu, N.; Nakano, T.; Nakatsugawa, Y.; Niiyama, M.; Noumi, H.; Ohashi, Y.; Ohta, T.; Oka, M.; Parker, J. D.; Rangacharyulu, C.; Ryu, S. Y.; Sawada, T.; Shimizu, H.; Sugaya, Y.; Sumihama, M.; Tsunemi, T.; Uchida, M.; Ungaro, M.; Yosoi, M.; LEPS Collaboration
2018-01-01
We report the measurement of the γ p →K+Λ and γ p →K+Σ0 reactions at SPring-8. The differential cross sections and photon-beam asymmetries are measured at forward K+ production angles using linearly polarized tagged-photon beams in the range of Eγ=1.5 -3.0 GeV. With increasing photon energy, the cross sections for both γ p →K+Λ and γ p →K+Σ0 reactions decrease slowly. Distinct narrow structures in the production cross section have not been found at Eγ=1.5 -3.0 GeV. The forward peaking in the angular distributions of cross sections, a characteristic feature of t -channel exchange, is observed for the production of Λ in the whole observed energy range. A lack of similar feature for Σ0 production reflects a less dominant role of t -channel contribution in this channel. The photon-beam asymmetries remain positive for both reactions, suggesting the dominance of K* exchange in the t channel. These asymmetries increase gradually with the photon energy, and have a maximum value of +0.6 for both reactions. Comparison with theoretical predictions based on the Regge trajectory in the t channel and the contributions of nucleon resonances indicates the major role of t -channel contributions as well as non-negligible effects of nucleon resonances in accounting for the reaction mechanism of hyperon photoproduction in this photon energy regime.
Middle cerebral artery diameter changes during rhythmic handgrip exercise in humans.
Verbree, J; Bronzwaer, Agt; van Buchem, M A; Daemen, Mjap; van Lieshout, J J; van Osch, Mjp
2017-08-01
Transcranial Doppler (TCD) sonography is a frequently employed technique for quantifying cerebral blood flow by assuming a constant arterial diameter. Given that exercise increases arterial pressure by sympathetic activation, we hypothesized that exercise might induce a change in the diameter of large cerebral arteries. Middle cerebral artery (MCA) cross-sectional area was assessed in response to handgrip exercise by direct magnetic resonance imaging (MRI) observations. Twenty healthy subjects (11 female) performed three 5 min bouts of rhythmic handgrip exercise at 60% maximum voluntary contraction, alternated with 5 min of rest. High-resolution 7 T MRI scans were acquired perpendicular to the MCA. Two blinded observers manually determined the MCA cross-sectional area. Sufficient image quality was obtained in 101 MCA-scans of 19 subjects (age-range 20-59 years). Mixed effects modelling showed that the MCA cross-sectional area decreased by 2.1 ± 0.8% (p = 0.01) during handgrip, while the heart rate increased by 11 ± 2% (p < 0.001) at constant end-tidal CO 2 (p = 0.10). In conclusion, the present study showed a 2% decrease in MCA cross-sectional area during rhythmic handgrip exercise. This further strengthens the current concept of sympathetic control of large cerebral arteries, showing in vivo vasoconstriction during exercise-induced sympathetic activation. Moreover, care must be taken when interpreting TCD exercise studies as diameter constancy cannot be assumed.
Eto, Maki; Miyauchi, Shinji
2018-05-09
Falls may cause serious health conditions among older population. Fall-related physical factors are thought to be associated with occlusal conditions. However, few studies examined the relationship between occlusal force and falls. To identify the association between occlusal force and falls among community-dwelling elderly individuals in Japan, public health nurses conducted a cross-sectional descriptive study. We performed extensive physical assessments of five items: maximum occlusal force, handgrip strength, maximal knee extensor strength, one-leg standing time with eyes open and body sway. We also conducted a questionnaire survey concerning the participants' demographic characteristics, health status and fall experience during the past year. Mean scores and standard deviations were calculated for age and the total points of the index of activities of daily living. Associations were examined using Mann-Whitney tests and logistic regression. We examined 159 community-dwelling people aged ≥65 years, who were independent and active, including 38 participants (24.5%) with experience of falls in the past year. Maximum occlusal force had significant correlation with handgrip strength, maximal knee extensor strength, and one-leg standing time and body sway (P < .05, respectively). We found weak associations between participants with and without a history of falls in terms of the five physical measurements. Logistic regression analysis showed that fall experience was significantly associated with maximum occlusal force (P = 0.004). This is the first study, led by public health nursing researchers, to examine the associations between maximum occlusal force and falls among community-dwelling elderly in Japan. The results showed that maximum occlusal force was significantly related to the other four extensive physical assessments, and might also suggest that maximum occlusal force assessment by public health nurses could contribute to more sophisticated and precise prediction of fall risks among the community-dwelling elderly. The latest occlusal force measurement device is non-invasive and easy to use. Public health nurses can introduce it at periodical community health checkup assembly events, which might contribute to raising awareness among community-dwelling elderly individuals and public health nurses about fall prevention and prediction.
Maximum Power Training and Plyometrics for Cross-Country Running.
ERIC Educational Resources Information Center
Ebben, William P.
2001-01-01
Provides a rationale for maximum power training and plyometrics as conditioning strategies for cross-country runners, examining: an evaluation of training methods (strength training and maximum power training and plyometrics); biomechanic and velocity specificity (role in preventing injury); and practical application of maximum power training and…
Turbulent Mixing in Exponential Transverse Jets
1990-09-30
parameter. The flame length of the jets is a direct measurement of the molecular scale mixing rate. ACCOMPLISHMENTS From observations of the trajectory...and cross-sectional size of the vortices, as well as the flame length , our measurements reveal the following: i) Under acceleration, the roll up and... flame lengths are a weak maximum when the acceleration parameter (x is about unity. For large cc, flame lengths slowly decline with increasing a, in
1988-02-05
for understanding the microscopic processes of electrical discharges and for designing gaseous discharge switches. High power gaseous discharge switches...half-maximum) energy resolution. The electron gun and ion extraction were of the same design of Srivastava at the Jet Propulsion Laboratory. Ions...photons. - The observed current switching can be applied to the design of discharge switches. Elec- tron transport parameters are needed for the
2013-09-01
75 Figure 25: Swing Weight Analysis....................................................................................76 Figure 26...AN/SPY-1D radar “can track golf ball-sized targets at ranges in excess of 165 kilometers” (Robinson, 2004). Given the radar cross section (RCS) of a... golf ball (calculated as a simple metallic sphere), it was determined that this would correspond to a maximum detection range beyond the Launch
NASA Astrophysics Data System (ADS)
Stout, Matthew
The purpose of this study is to explore the feasibility of yttria-stabilized zirconia (Y-TZP) in fixed lingual retention as an alternative to stainless steel. Exploratory Y-TZP specimens were milled to establish design parameters. Next, specimens were milled according to ASTM standard C1161-13 and subjected to four-point flexural test to determine materials properties. Finite Element (FE) Analysis was employed to evaluate nine novel cross-sectional designs and compared to stainless steel wire. Each design was analyzed under the loading conditions to determine von Mises and bond stress. The most promising design was fabricated to assess accuracy and precision of current CAD/CAM milling technology. The superior design had a 1.0 x 0.5 mm semi-elliptical cross section and was shown to be fabricated reliably. Overall, the milling indicated a maximum percent standard deviation of 9.3 and maximum percent error of 13.5 with a cost of $30 per specimen. Y-TZP can be reliably milled to dimensions comparable to currently available metallic retainer wires. Further research is necessary to determine the success of bonding protocol and clinical longevity of Y-TZP fixed retainers. Advanced technology is necessary to connect the intraoral scan to an aesthetic and patient-specific Y-TZP fixed retainer.
NASA Astrophysics Data System (ADS)
Schaeffner, Maximilian; Platz, Roland
2016-09-01
For slender beam-columns loaded by axial compressive forces, active buckling control provides a possibility to increase the maximum bearable axial load above that of a purely passive structure. In this paper, the potential of active buckling control of an imperfect beam-column with circular cross-section using piezo-elastic supports is investigated numerically. Imperfections are given by an initial deformation of the beam-column caused by a constant imperfection force. With the piezo-elastic supports, active bending moments in arbitrary directions orthogonal to the beam-column's longitudinal axis can be applied at both beam- column's ends. The imperfect beam-column is loaded by a gradually increasing axial compressive force resulting in a lateral deformation of the beam-column. First, a finite element model of the imperfect structure for numerical simulation of the active buckling control is presented. Second, an integral linear-quadratic regulator (LQR) that compensates the deformation via the piezo-elastic supports is derived for a reduced modal model of the ideal beam-column. With the proposed active buckling control it is possible to stabilize the imperfect beam-column in arbitrary lateral direction for axial loads above the theoretical critical buckling load and the maximum bearable load of the passive structure.
Ruiz-Muñoz, Maria; González-Sánchez, Manuel; Martín-Martín, Jaime; Cuesta-Vargas, Antonio I
2017-06-01
To analyse the torque variation level that could be explained by the muscle activation (EMG) amplitude of the three major foot dorsiflexor muscles (tibialis anterior (TA), extensor digitorum longus (EDL), extensor hallucis longus (EHL)) during isometric foot dorsiflexion at different intensities. In a cross-sectional study, forty-one subjects performed foot dorsiflexion at 100%, 75%, 50% and 25% of maximal voluntary contractions (MVC) with the hip and knee flexed 90° and the ankle in neutral position (90° between leg and foot). Three foot dorsiflexions were performed for each intensity. Outcome variables were: maximum (100% MVC) and relative torque (75%, 50%, 25% MVC), maximum and relative EMG amplitude. A linear regression analysis was calculated for each intensity of the isometric foot dorsiflexion. The degree of torque variation (dependent variable) from the independent variables explain (EMG amplitude of the three major foot dorsiflexor muscles) the increases when the foot dorsiflexion intensity is increased, with values of R 2 that range from 0.194 (during 25% MVC) to 0.753 (during 100% MVC). The reliability of the outcome variables was excellent. The EMG amplitude of the three main foot dorsiflexors exhibited more variance in the dependent variable (torque) when foot dorsiflexion intensity increases. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ashby, G. C., Jr.
1974-01-01
Experimental data have been obtained for two series of bodies at Mach 6 and Reynolds numbers, based on model length, from 1.4 million to 9.5 million. One series consisted of axisymmetric power-law bodies geometrically constrained for constant length and base diameter with values of the exponent n of 0.25, 0.5, 0.6, 0.667, 0.75, and 1.0. The other series consisted of positively and negatively cambered bodies of polygonal cross section, each having a constant longitudinal area distribution conforming to that required for minimizing zero-lift wave drag at hypersonic speeds under the geometric constraints of given length and volume. At the highest Reynolds number, the power-law body for minimum drag is blunter (exponent n lower) than predicted by inviscid theory (n approximately 0.6 instead of n = 0.667); however, the peak value of lift-drag ratio occurs at n = 0.667. Viscous effects were present on the bodies of polygonal cross section but were less pronounced than those on the power-law bodies. The trapezoidal bodies with maximum width at the bottom were found to have the highest maximum lift-drag ratio and the lowest mimimum drag.
Akashi, Satoko; Downard, Kevin M
2016-09-01
The first systematic and comprehensive study of the charging behaviour and effect of charge on the conformation of specifically constructed arginine-rich peptides and its significance to the N- and C-terminal basic tail regions of histone proteins was conducted using ion mobility mass spectrometry (IM-MS). Among the basic amino acids, arginine has the greatest impact on the charging behaviour and structures of gas phase ions by virtue of its high proton affinity. A close linear correlation was found between either the maximum charge, or most abundant charge state, that the peptides support and their average collision cross section (CCS) values measured by ion mobility mass spectrometry. The calculated collision cross sections for the lowest energy solution state models predicted by the PEP-FOLD algorithm using a modified MOBCAL trajectory method were found to best correlate with the values measured by IM-MS. In the case of the histone peptides, more compact folded structures, supporting less than the maximum number of charges, were observed. These results are consistent with those previously reported for histone dimers where neutralization of the charge at the basic residues of the tail regions did not affect their CCS values.
NASA Technical Reports Server (NTRS)
Selna, James; Schlaff, Bernard A
1951-01-01
The drag and pressure recovery of an NACA submerged-inlet model and an NACA series I nose-inlet model were investigated in the transonic flight range. The tests were conducted over a mass-flow-ratio range of 0.4 to 0.8 and a Mach number range of about 0.8 to 1.10 employing large-scale recoverable free-fall models. The results indicate that the Mach number of drag divergence of the inlet models was about the same as that of a basic model without inlets. The external drag coefficients of the nose-inlet model were less than those of the submerged-inlet model throughout the test range. The difference in drag coefficient based on the maximum cross-sectional area of the models was about 0.02 at supersonic speeds and about 0.015 at subsonic speeds. For a hypothetical airplane with a ratio of maximum fuselage cross-sectional area to wing area of 0.06, the difference in airplane drag coefficient would be relatively small, about 0.0012 at supersonic speeds and about 0.0009 at subsonic speeds. Additional drag comparisons between the two inlet models are made considering inlet incremental and additive drag.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, J.; Richard, P.; Gray, T.J.
The systematics of single and double K-shell-vacancy production in titanium has been investigated in the limit of zero target thickness (approx.1 ..mu..g/cm/sup 2/) for incident C, N, O, F, Mg, Al, Si, S, and Cl ions over a maximum energy range of 0.5 to 6.5 MeV/amu. This corresponds to collision systems with 0.27< or =Z/sub 1//Z/sub 2/< or =0.77 and 0.24< or =v/sub 1//vK< or =0.85, where v/sub 1/ is the projectile nuclear velocity and vK is the mean velocity of an electron in the target K shell. The present work is divided into four major sections. (1) Single K-shell-vacancymore » production has been investigated by measuring K..cap alpha.. and K..beta.. p satellite x-ray-production cross sections for projectiles incident with no K-shell vacancies. For incident ions with Z/sub 1/> or =9, the contribution due to electron-transfer processes from the target K shell to outer shells of the projectile has also been noted. (2) Single K-shell--to--K-shell electron-transfer cross sections have been obtained indirectly by the measuring of the enhancement in the Ti K x-ray production cross section for bare incident projectiles over ions incident with no initial K-shell vacancies. (3) Double K-vacancy production has been investigated by measuring the K..cap alpha.. hypersatellite intensity in ratio to the total K..cap alpha.. intensity. (4) Double K-shell--to--K-shell electron-transfer cross sections have been obtained indirectly with the use of a procedure similar to that used for single K to K transfer. The measured cross sections have been compared to theoretical models for direct Coulomb ionization and inner-shell electron transfer and have been used to investigate the relative importance of these mechanisms for K-vacancy production in heavy-ion--atom collisions.« less
2011-01-01
Background Evidence is mounting regarding the clinically significant effect of temperature on blood pressure. Methods In this cross-sectional study the authors obtained minimum and maximum temperatures and their respective previous week variances at the geographic locations of the self-reported residences of 26,018 participants from a national cohort of blacks and whites, aged 45+. Linear regression of data from 20,623 participants was used in final multivariable models to determine if these temperature measures were associated with levels of systolic or diastolic blood pressure, and whether these relations were modified by stroke-risk region, race, education, income, sex hypertensive medication status, or age. Results After adjustment for confounders, same-day maximum temperatures 20°F lower had significant associations with 1.4 mmHg (95% CI: 1.0, 1.9) higher systolic and 0.5 mmHg (95% CI: 0.3, 0.8) higher diastolic blood pressures. Same-day minimum temperatures 20°F lower had a significant association with 0.7 mmHg (95% CI: 0.3, 1.0) higher systolic blood pressures but no significant association with diastolic blood pressure differences. Maximum and minimum previous-week temperature variabilities showed significant but weak relationships with blood pressures. Parameter estimates showed effect modification of negligible magnitude. Conclusions This study found significant associations between outdoor temperature and blood pressure levels, which remained after adjustment for various confounders including season. This relationship showed negligible effect modification. PMID:21247466
Evaluation of handle design characteristics in a maximum screwdriving torque task.
Kong, Y-K; Lowe, B D; Lee, S-J; Krieg, E F
2007-09-01
The purpose of this study was to evaluate the effects of screwdriver handle shape, surface material and workpiece orientation on torque performance, finger force distribution and muscle activity in a maximum screwdriving torque task. Twelve male subjects performed maximum screw-tightening exertions using screwdriver handles with three longitudinal shapes (circular, hexagonal and triangular), four lateral shapes (cylindrical, double frustum, cone and reversed double frustum) and two surfaces (rubber and plastic). The average finger force contributions to the total hand force were 28.1%, 39.3%, 26.5% and 6.2%, in order from index to little fingers; the average phalangeal segment force contributions were 47.3%, 14.0%, 20.5% and 18.1% for distal, middle, proximal and metacarpal phalanges, respectively. The plastic surface handles were associated with 15% less torque output (4.86 Nm) than the rubber coated handles (5.73 Nm). In general, the vertical workpiece orientation was associated with higher torque output (5.9 Nm) than the horizontal orientation (4.69 Nm). Analysis of handle shapes indicates that screwdrivers designed with a circular or hexagonal cross-sectional shape result in greater torque outputs (5.49 Nm, 5.57 Nm), with less total finger force (95 N, 105 N). In terms of lateral shape, reversed double frustum handles were associated with less torque output (5.23 Nm) than the double frustum (5.44 Nm) and cone (5.37 Nm) handles. Screwdriver handles designed with combinations of circular or hexagonal cross-sectional shapes with double frustum and cone lateral shapes were optimal in this study.
NASA Astrophysics Data System (ADS)
Kulakhmetov, Marat; Gallis, Michael; Alexeenko, Alina
2016-05-01
Quasi-classical trajectory (QCT) calculations are used to study state-specific ro-vibrational energy exchange and dissociation in the O2 + O system. Atom-diatom collisions with energy between 0.1 and 20 eV are calculated with a double many body expansion potential energy surface by Varandas and Pais [Mol. Phys. 65, 843 (1988)]. Inelastic collisions favor mono-quantum vibrational transitions at translational energies above 1.3 eV although multi-quantum transitions are also important. Post-collision vibrational favoring decreases first exponentially and then linearly as Δv increases. Vibrationally elastic collisions (Δv = 0) favor small ΔJ transitions while vibrationally inelastic collisions have equilibrium post-collision rotational distributions. Dissociation exhibits both vibrational and rotational favoring. New vibrational-translational (VT), vibrational-rotational-translational (VRT) energy exchange, and dissociation models are developed based on QCT observations and maximum entropy considerations. Full set of parameters for state-to-state modeling of oxygen is presented. The VT energy exchange model describes 22 000 state-to-state vibrational cross sections using 11 parameters and reproduces vibrational relaxation rates within 30% in the 2500-20 000 K temperature range. The VRT model captures 80 × 106 state-to-state ro-vibrational cross sections using 19 parameters and reproduces vibrational relaxation rates within 60% in the 5000-15 000 K temperature range. The developed dissociation model reproduces state-specific and equilibrium dissociation rates within 25% using just 48 parameters. The maximum entropy framework makes it feasible to upscale ab initio simulation to full nonequilibrium flow calculations.
NASA Technical Reports Server (NTRS)
Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.
1994-01-01
The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.
Correlation analysis of the optics of progressive addition lenses.
Sheedy, James E
2004-05-01
To investigate the relations between selected key optical parameters and the sizes of the clear viewing areas of progressive addition lenses (PALs). The optics of 28 PALs (plano with +2.00 D add) currently on the market were measured with a Rotlex Class Plus lens analyzer. Horizontal cross sections were analyzed in 1 mm vertical steps with respect to the fitting cross. Distance, intermediate, and near viewing zone widths and areas were calculated from the measurements. The maximum amount of unwanted astigmatism, minimum zone width (0.50 DC limit), and maximum power rate in the corridor were also recorded for each lens. Correlation coefficients were determined for all relations. Each of the three viewing zone areas had a significant negative relation with the other (r of -0.4 to -0.8), indicating design tradeoff. Maximum power rate was significantly related to minimum zone width (r = -0.695), which was significantly related to maximum astigmatism (r = -0.616), but there was not a significant relation between maximum power rate and maximum astigmatism. Higher power rates and narrower minimum zones were significantly related to smaller intermediate and larger near zones (r = 0.4 to 0.9). Maximum astigmatism was related to distance zone width (r = 0.42) and to intermediate zone size (r = -0.4 to -0.56), but not significantly related to near viewing zone. Power rate and astigmatism each vary relatively uniformly across each lens. The fundamental relation appears to be between power rate and zone width, each of which is highly related to sizes of the intermediate and near viewing zones. The maximum amount of astigmatism is related to zone width, but not to maximum power rate. The amount of astigmatism is unrelated to the size of the near zone. The pattern of correlations between the optical and viewing zone parameters help identify the underlying optical relations of PALs.
Compliance and stress intensity coefficients for short bar specimens with chevron notches
NASA Technical Reports Server (NTRS)
Munz, D.; Bubsey, R. T.; Srawley, J. E.
1980-01-01
For the determination of fracture toughness especially with brittle materials, a short bar specimen with rectangular cross section and chevron notch can be used. As the crack propagates from the tip of the triangular notch, the load increases to a maximum then decreases. To obtain the relation between the fracture toughness and maximum load, calculations of Srawley and Gross for specimens with a straight-through crack were applied to the specimens with chevron notches. For the specimens with a straight-through crack, an analytical expression was obtained. This expression was used for the calculation of the fracture toughness versus maximum load relation under the assumption that the change of the compliance with crack length for the specimen with a chevron notch is the same as for a specimen with a straight-through crack.
A sub-GeV charged-current quasi-elastic $$\
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walding, Joseph James
2009-12-01
Neutrino-nucleus charged-current quasi-elastic scattering is the signal interaction used by many neutrino oscillation experiments. For muon disappearance studies the signal mode is ν μn → μp. Modern oscillation experiments, such as T2K, produce neutrino beams with peak beam energies of order a few-GeV. It is therefore vitally important to have accurate measurements of the charged-current quasi-elastic crosssection for future neutrino oscillation experiments. Neutrino-nucleus cross-sections in the few-GeV region are not well understood, with the main uncertainties coming from understanding of the neutrino beam flux and the final state interactions within nuclei. SciBooNE is a sub-GeV neutrino-nucleus cross-section experiment based atmore » Fermilab, Batavia, USA, with the goal to measure neutrino cross-sections with precision of order 5%. SciBooNE took data from June 2007 until August 2008, in total 0.99×10 20 and 1.53×10 20 protons on target were collected in neutrino and anti-neutrino mode, respectively. In this thesis a ν μ charged-current quasi-elastic (CCQE) cross-section contained within the SciBar sub-detector is presented. A method to tag muons in SciBar was developed and three samples were isolated. An excess in backwards tracks in the one-track sample is observed. A Poisson maximum likelihood is used to extract the CCQE cross-section. The fit was applied using a basic fit parameter model, successfully used to obtain the cross-section in the SciBar-MRD matched CCQE analysis. This method was found to be insufficient in describing the data for the SciBarcontained CCQE analysis. By adding two migration parameters the cross-section was calculated to be 1.004 ± 0.031 (stat) +0.101 -0.150(sys) × 10 -38 cm 2/neutron, excluding backwards tracks with a χ 2 = 203.8/76 d.o.f. and 1.083 ± 0.030(stat) +0.115 -0.177(sys) × 10 -38 cm 2/neutron, including backwards tracks with a χ 2 = 659.8/133 d.o.f. Only neutrino beam and detector systematics have been considered. Further study of the SciBar-contained sample is suggested, introducing additional fit parameters and considering the remaining systematics. The end goal is to extract a SciBooNE CCQE cross-section using the SciBar-contained and SciBar-MRD matched samples.« less
Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.
2016-01-01
We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula. PMID:27307081
Rheology of U-Shaped Granular Particles
NASA Astrophysics Data System (ADS)
Hill, Matthew; Franklin, Scott
We study the response of cylindrical samples of U-shaped granular particles (staples) to extensional loads. Samples elongate in discrete bursts (events) corresponding to particles rearranging and re-entangling. Previous research on samples of constant cross-sectional area found a Weibullian weakest-link theory could explain the distribution of yield points. We now vary the cross-sectional area, and find that the maximum yield pressure (force/area) is a function of particle number density and independent of area. The probability distribution function of important event characteristics -- the stress increase before an event and stress released during an event -- both fall of inversely with magnitude, reminiscent of avalanche dynamics. Fourier transforms of the fluctuating force (or stress) scales inversely with frequency, suggesting dry friction plays a role in the rearrangements. Finally, there is some evidence that dynamics are sensitive to the stiffness of the tensile testing machine, although an explanation for this behavior is unknown.
Modeling the field of a passive scalar in a nonisothermal turbulent plane gas jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrashin, V.N.; Barykin, V.N.; Martynenko, O.G.
The problem of the distribution of thermal characteristics in a plane nonisothermal turbulent gas jet in the case of large Reynolds numbers and a small temperature difference, allowing heat to be regarded as a passive impurity, is solved in the range of jet cross sections 20-100 caliber by a second-order correlational model of turbulence and an effective numerical algorithm. Analysis of the results show that the model allows computational data in good agreement with experiment to be obtained in the range of jet cross section 20-100 diameters. The relative error in determining the maximum values of the functions is 3-10%more » for the dynamic characteristics while the mean temperature and its mean square pulsations are determined with an accuracy of 5-10%; the corresponding figures for the thermal characteristics are 5-15% and 5-10%.« less
The X-beam as a deployable boom for the space station
NASA Technical Reports Server (NTRS)
Adams, Louis R.
1988-01-01
Extension of antennas and thrust modules from the primary structure of the space station will require deployable beams of high stiffness and strength, as well as low mass and package volume. A square boom cross section is desirable for interface reasons. These requirements and others are satisfied by the X-beam. The X-beam folds by simple geometry, using single-degree-of-freedom hinges at simple angles, with no strain during deployment. Strut members are of large diameter with unidirectional graphite fibers for maximum beam performance. Fittings are aluminum with phosphor bronze bushings so that compliance is low and joint lifetime is high. The several beam types required for different applications on the space station will use the same basic design, with changes in strut cross section where necessary. Deployment is by a BI-STEM which pushes the beam out; retraction is by cables which cause initial folding and pull the beam in.
Lemelin, V; Bass, A D; Cloutier, P; Sanche, L
2016-02-21
Absolute cross sections (CSs) for vibrational excitation by 1-19 eV electrons impacting on condensed tetrahydrofuran (THF) were measured with a high-resolution electron energy loss spectrometer. Experiments were performed under ultra-high vacuum (3 × 10(-11) Torr) at a temperature of about 20 K. The magnitudes of the vibrational CSs lie within the 10(-17) cm(2) range. Features observed near 4.5, 9.5, and 12.5 eV in the incident energy dependence of the CSs were compared to the results of theoretical calculations and other experiments on gas and solid-phase THF. These three resonances are attributed to the formation of shape or core-excited shape resonances. Another maximum observed around 2.5 eV is not found in the calculations but has been observed in gas-phase studies; it is attributed to the formation of a shape resonance.
NASA Astrophysics Data System (ADS)
Burdeinyi, D.; Brudvik, J.; Fissum, K.; Ganenko, V.; Hansen, K.; Isaksson, L.; Livingston, K.; Lundin, M.; Nilsson, B.; Schroder, B.
2017-01-01
The cross section asymmetry of 12C (γ ,p01)11B and 12C (γ ,p2-6)11B reactions has been studied at the energy range 40-55 MeV, using linearly polarized tagged photons of the MAX-lab facility. The asymmetry of the 12C (γ ,p01)11B processes, which assume the one-body mechanism of the reaction, is Σ ≈ 0.82 ± 0.05 for photon energies 45-50 MeV. The asymmetry for the 12C (γ ,p2-6)11B reactions, which produce a maximum at excitation energy ∼ 6 MeV, is Σ ≈ 0.53 ± 0.13 for a photon energy 49 MeV. It is close to the asymmetry of reaction of the free deuteron photodisintegration, and can be resulted from the two-body mechanism of the photon absorption.
Production cross sections of neutron-rich No-263261 isotopes
NASA Astrophysics Data System (ADS)
Li, Jingjing; Li, Cheng; Zhang, Gen; Zhu, Long; Liu, Zhong; Zhang, Feng-Shou
2017-05-01
The fusion excitation functions of No-263249 are studied by using various reaction systems based on the dinuclear system model. The neutron-rich radioactive beam 22O is used to produce neutron-rich nobelium isotopes, and the new neutron-rich isotopes No-263261 are synthesized by 242Pu(22O,3 n )261No , 244Pu(22O,4 n )262No , and 244Pu(22O,3 n )263No reactions, respectively. The corresponding maximum evaporation residue cross sections are 0.628, 4.649, and 1.638 μ b , respectively. The effects of the three processes (capture, fusion, and survival) in the complete fusion reaction are also analyzed. From investigation, a neutron-rich radioactive beam as the projectile and neutron-rich actinide as the target could be a new selection of the projectile-target combination to produce a neutron-rich heavy nuclide.
Laskaris, G.; Yan, X.; Mueller, J. M.; ...
2015-10-01
We report new measurements of the double-polarized photodisintegration of 3He at an incident photon energy of 16.5 MeV, carried out at the High Intensity γ-ray Source (HIγS) facility located at Triangle Universities Nuclear Laboratory (TUNL). The spin-dependent double-differential cross sections and the contribution from the three-body channel to the Gerasimov–Drell–Hearn (GDH) integrand were extracted and compared with the state-of-the-art three-body calculations. The calculations, which include the Coulomb interaction and are in good agreement with the results of previous measurements at 12.8 and 14.7 MeV, deviate from the new cross section results at 16.5 MeV. Lastly, the GDH integrand was foundmore » to be about one standard deviation larger than the maximum value predicted by the theories.« less
Ultraviolet absorption spectrum of HOCl
NASA Technical Reports Server (NTRS)
Burkholder, James B.
1993-01-01
The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.
Plans for a sensitivity analysis of bridge-scour computations
Dunn, David D.; Smith, Peter N.
1993-01-01
Plans for an analysis of the sensitivity of Level 2 bridge-scour computations are described. Cross-section data from 15 bridge sites in Texas are modified to reflect four levels of field effort ranging from no field surveys to complete surveys. Data from United States Geological Survey (USGS) topographic maps will be used to supplement incomplete field surveys. The cross sections are used to compute the water-surface profile through each bridge for several T-year recurrence-interval design discharges. The effect of determining the downstream energy grade-line slope from topographic maps is investigated by systematically varying the starting slope of each profile. The water-surface profile analyses are then used to compute potential scour resulting from each of the design discharges. The planned results will be presented in the form of exceedance-probability versus scour-depth plots with the maximum and minimum scour depths at each T-year discharge presented as error bars.
Axially Tapered And Bilayer Microchannels For Evaporative Cooling Devices
Nilson, Robert; Griffiths, Stewart
2005-10-04
The invention consists of an evaporative cooling device comprising one or more microchannels whose cross section is axially reduced to control the maximum capillary pressure differential between liquid and vapor phases. In one embodiment, the evaporation channels have a rectangular cross section that is reduced in width along a flow path. In another embodiment, channels of fixed width are patterned with an array of microfabricated post-like features such that the feature size and spacing are gradually reduced along the flow path. Other embodiments incorporate bilayer channels consisting of an upper cover plate having a pattern of slots or holes of axially decreasing size and a lower fluid flow layer having channel widths substantially greater than the characteristic microscale dimensions of the patterned cover plate. The small dimensions of the cover plate holes afford large capillary pressure differentials while the larger dimensions of the lower region reduce viscous flow resistance.
Dissociation of CH4 by electron impact: Production of metastable hydrogen and carbon fragments
NASA Technical Reports Server (NTRS)
Finn, T. G.; Carnahan, B. L.; Zipf, E. C.
1974-01-01
Metastable fragments produced by electron impact excitation of CH4 have been investigated for incident electron energies from threshold to 300 eV. Only metastable hydrogen and carbon atoms were observed. Onset energies for the production of metastable hydrogen atoms were observed at electron impact energies of 22.0 + or - .5 eV, 25.5 + or - .6 eV, 36.7 + or - .6 eV and 66 + or - 3 eV, and at 26.6 + or - .6 eV for the production of metastable carbon atoms. Most of the fragments appear to have been formed in high-lying Rydberg states. The total metastable hydrogen cross section reaches a maximum value of approximately 1 X 10 to the minus 18th power sq cm at 100 eV. At the same energy, the metastable carbon cross section is 2 x 10 to the minus 19th power sq cm.
Spectral properties of Er3+/Yb3+ codoped tungsten-tellurite glasses.
Shen, Xiang; Nie, QiuHua; Xu, TieFeng; Gao, Yuan
2005-07-01
The spectral properties of Er3+/Yb3+ codoped tungsten-tellurite (WT) glasses have been investigated. The measured absorption spectra are analyzed by Judd-Ofelt theory. The compositional change of intensity parameter omega2 is attributed to the change in the covalency between the Er3+ and oxygen ions, the asymmetry in the local structures around the Er3+ ions can be neglected. The lifetimes of 4I(13/2) level of Er3+ in WT glasses are measured and comparable with other TeO2-based glasses. The stimulated emission cross-section is calculated based on McCumber theory. The fluorescence full width at half maximum (FWHM) and the emission cross-section (sigma(peak)) of the 4I(13/2) --> 4I(15/2) transition of Er3+ in different glass hosts have been compared. The suitability of such WT glasses as host materials for 1.5 microm broadband amplification is discussed.
Optical transitions of Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 glass.
Shen, Xiang; Nie, Qiuhua; Xu, Tiefeng; Gao, Yuan
2005-10-01
Optical absorption and emission properties of the Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 (TWB) glass has been investigated. The transition probabilities, excited state lifetimes, and the branching ratios have been predicted for Er3+ based on the Judd-Ofelt theory. The broad 1.5 microm fluorescence was observed under 970 nm excitation, and its full width at half maximum (FWHM) is 77 nm. The emission cross-section is calculated using the McCumber theory, and the peak emission cross-section is 1.03 x 10(-21) cm2 at 1.531 microm. This value is much larger than those of the silicate and phosphate glasses. Efficient green and weak red upconversion luminescence from Er3+ centers in the glass sample was observed at room temperature, and the upconversion excitation processes have been analyzed.
NASA Technical Reports Server (NTRS)
Wang, Dunyou; Stallcop, James R.; Dateo, Christopher E.; Schwenke, David W.; Huo, Winifred M.
2004-01-01
A three-dimensional time-dependent quantum dynamics approach using a recently developed ab initio potential energy surface is applied to study ro-vibrational excitation in N+N2 exchange scattering for collision energies in the range 2.1- 3.2 eV. State-to-state integral exchange cross sections are examined to determine the distribution of excited rotational states of N(sub 2). The results demonstrate that highly-excited rotational states are produced by exchange scattering and furthermore, that the maximum value of (Delta)j increases rapidly with increasing collision energies. Integral exchange cross sections and exchange rate constants for excitation to the lower (upsilon = 0-3) vibrational energy levels are presented as a function of the collision energy. Excited-vibrational-state distributions for temperatures at 2,000 K and 10,000 K are included.
NASA Technical Reports Server (NTRS)
Hantzsche, W.; Wendt, H.
1942-01-01
For the tunnel corrections of compressible flows those profiles are of interest for which at least the second approximation of the Janzen-Rayleigh method can be applied in closed form. One such case is presented by certain elliptical symmetrical cylinders located in the center of a tunnel with fixed walls and whose maximum velocity, incompressible, is twice the velocity of flow. In the numerical solution the maximum velocity at the profile and the tunnel wall as well as the entry of sonic velocity is computed. The velocity distribution past the contour and in the minimum cross section at various Mach numbers is illustrated on a worked out-example.
NASA Astrophysics Data System (ADS)
Hagino, K.; Balantekin, A. B.; Lwin, N. W.; Thein, Ei Shwe Zin
2018-03-01
The hindrance phenomenon of heavy-ion fusion cross sections at deep subbarrier energies often accompanies a maximum of an astrophysical S factor at a threshold energy for fusion hindrance. We argue that this phenomenon can naturally be explained when the fusion excitation function is fitted with two potentials, with a larger (smaller) logarithmic slope at energies lower (higher) than the threshold energy. This analysis clearly suggests that the astrophysical S factor provides a convenient tool to analyze the deep subbarrier hindrance phenomenon, even though the S factor may have a strong energy dependence for heavy-ion systems unlike that for astrophysical reactions.
Aerothermodynamic optimization of Earth entry blunt body heat shields for Lunar and Mars return
NASA Astrophysics Data System (ADS)
Johnson, Joshua E.
A differential evolutionary algorithm has been executed to optimize the hypersonic aerodynamic and stagnation-point heat transfer performance of Earth entry heat shields for Lunar and Mars return manned missions with entry velocities of 11 and 12.5 km/s respectively. The aerothermodynamic performance of heat shield geometries with lift-to-drag ratios up to 1.0 is studied. Each considered heat shield geometry is composed of an axial profile tailored to fit a base cross section. Axial profiles consist of spherical segments, spherically blunted cones, and power laws. Heat shield cross sections include oblate and prolate ellipses, rounded-edge parallelograms, and blendings of the two. Aerothermodynamic models are based on modified Newtonian impact theory with semi-empirical correlations for convection and radiation. Multi-objective function optimization is performed to determine optimal trade-offs between performance parameters. Objective functions consist of minimizing heat load and heat flux and maximizing down range and cross range. Results indicate that skipping trajectories allow for vehicles with L/D = 0.3, 0.5, and 1.0 at lunar return flight conditions to produce maximum cross ranges of 950, 1500, and 3000 km respectively before Qs,tot increases dramatically. Maximum cross range increases by ˜20% with an increase in entry velocity from 11 to 12.5 km/s. Optimal configurations for all three lift-to-drag ratios produce down ranges up to approximately 26,000 km for both lunar and Mars return. Assuming a 10,000 kg mass and L/D = 0.27, the current Orion configuration is projected to experience a heat load of approximately 68 kJ/cm2 for Mars return flight conditions. For both L/D = 0.3 and 0.5, a 30% increase in entry vehicle mass from 10,000 kg produces a 20-30% increase in Qs,tot. For a given L/D, highly-eccentric heat shields do not produce greater cross range or down range. With a 5 g deceleration limit and L/D = 0.3, a highly oblate cross section with an eccentricity of 0.968 produces a 35% reduction in heat load over designs with zero eccentricity due to the eccentric heat shield's greater drag area that allows the vehicle to decelerate higher in the atmosphere. In this case, the heat shield's drag area is traded off with volumetric efficiency while fulfilling the given set of mission requirements. Additionally, the high radius-of-curvature of the spherical segment axial profile provides the best combination of heat transfer and aerodynamic performance for both entry velocities and a 5 g deceleration limit.
Habitat use by a freshwater dolphin in the low-water season
Braulik, Gill T.; Reichert, Albert P.; Ehsan, Tahir; Khan, Samiullah; Northridge, Simon P.; Alexander, Jason S.; Garstang, Richard
2012-01-01
1. Many river dolphin populations are most vulnerable during the low-water season when habitat is limited. Indus River dolphin habitat selection in the dry season was investigated using Generalized Linear Models of dolphin distribution and abundance in relation to physical features of river geomorphology and channel geometry in cross-section. 2. Dolphins selected locations in the river with significantly greater mean depth, maximum depth, cross-sectional area, and hydraulic radius, and significantly narrower river width and a lower degree of braiding than areas where dolphins were absent. They were also recorded with higher frequency at river constrictions and at confluences. 3. Channel cross-sectional area was the most important factor affecting dolphin presence and abundance, with the area of water below 1 m in depth exerting the greatest influence. Indus dolphins avoided channels with small cross-sectional area (2), presumably owing to the risk of entrapment and reduced foraging opportunities. 4. Channel geometry had a greater ability to explain dolphin distribution than river geomorphology; however, both analyses indicated similar types of habitat selection. The dolphin–habitat relationships identified in the river geomorphology analysis were scale-dependent, indicating that dolphin distribution is driven by the occurrence of discrete small-scale features, such as confluences and constrictions, as well as by broader-scale habitat complexes. 5. There are numerous plans to impound or extract more water from the Indus River system. If low-water season flows are allowed to decrease further, the amount of deeper habitat will decline, there may be insufficient patches of suitable habitat to support the dolphin population through the low-water season, and dolphins may become isolated within deeper river sections, unable or unwilling to traverse through shallows between favourable patches of habitat.
[Effect of biological electric stimulation on free muscle transfer].
Yuang, F; Guan, W; Cao, Y
1997-01-01
The rectus femoris muscles of rabbits were used as muscle model. The electrical stimulation which resembled the normal motor-unit activity was used to observe its effects on free transferred muscle. After three months, the moist muscle weight (MW), its maximum cross-section area, its contractility and its histochemical characteristics were examined. The results showed that the function and morphology of the muscles were well preserved. These findings might encourage its clinical application.
Yoriyaz, Hélio; Moralles, Maurício; Siqueira, Paulo de Tarso Dalledone; Guimarães, Carla da Costa; Cintra, Felipe Belonsi; dos Santos, Adimir
2009-11-01
Radiopharmaceutical applications in nuclear medicine require a detailed dosimetry estimate of the radiation energy delivered to the human tissues. Over the past years, several publications addressed the problem of internal dose estimate in volumes of several sizes considering photon and electron sources. Most of them used Monte Carlo radiation transport codes. Despite the widespread use of these codes due to the variety of resources and potentials they offered to carry out dose calculations, several aspects like physical models, cross sections, and numerical approximations used in the simulations still remain an object of study. Accurate dose estimate depends on the correct selection of a set of simulation options that should be carefully chosen. This article presents an analysis of several simulation options provided by two of the most used codes worldwide: MCNP and GEANT4. For this purpose, comparisons of absorbed fraction estimates obtained with different physical models, cross sections, and numerical approximations are presented for spheres of several sizes and composed as five different biological tissues. Considerable discrepancies have been found in some cases not only between the different codes but also between different cross sections and algorithms in the same code. Maximum differences found between the two codes are 5.0% and 10%, respectively, for photons and electrons. Even for simple problems as spheres and uniform radiation sources, the set of parameters chosen by any Monte Carlo code significantly affects the final results of a simulation, demonstrating the importance of the correct choice of parameters in the simulation.
DNA double strand break induction in yeast.
Kiefer, J; Egenolf, R; Ikpeme, S E
2002-01-01
The induction of DNA double strand breaks (DSBs) by accelerated heavy ions was systematically measured in diploid yeast cells. Particles were provided by the accelerators at GSI, Darmstadt, and HMI, Berlin. DNA was separated using pulsed field gel electrophoresis and the intensity of the largest bands used to determine the loss of molecular weight. Since the DNA content of each chromosome is exactly known absolute values for DSB induction can be measured without calibration procedures. Ions used range from protons to uranium with LET values between 2 and about 15,000 keV.micron-1. Induction cross sections increase in the lower LET region approaching a plateau around 200 keV.micron-1. With higher LET values the dependence can no longer be described by a common curve with each ion showing a specific behaviour. With very heavy particles the influence of the penumbra becomes obvious: cross sections decrease with LET because of the reduced penumbra extensions. Classical target theory would predict cross sections to follow a simple saturation function which is not substantiated by the data. Track structure analysis as introduced by Butts and Katz in 1967 is also not able to predict the experimental results. A semi-empirical fit indicates a linear-quadratic dependence of induction cross sections on LET up to about 1000 keV.micron-1. RBE for DSB induction rises above unity reaching a maximum of about 2.5 around 200 keV.micron-1. This is different from many experiments in mammalian cells and is presumably due to differences in chromatin structure since yeast cells seem to lack a functional III histone.
Study of Cold Fusion Reactions Using Collective Clusterization Approach
NASA Astrophysics Data System (ADS)
Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.
2017-10-01
Within the framework of the dynamical cluster decay model (DCM), the 1n evaporation cross-sections ({σ }1n) of cold fusion reactions (Pb and Bi targets) are calculated for {Z}{CN}=104-113 superheavy nuclei. The calculations are carried out in the fixed range of excitation energy {E}{CN}* =15+/- 1 {MeV}, so that the comparative analysis of reaction dynamics can be worked out. First of all, the fission barriers (B f ) and neutron separation energies ({S}1n) are estimated to account the decreasing cross-sections of cold fusion reactions. In addition to this, the importance of hot optimum orientations of β 2i-deformed nuclei over cold one is explored at fixed angular momentum and neck-length parameters. The hot optimum orientations support all the target-projectile (t,p) combinations, which are explored experimentally in the cold fusion reactions. Some new target-projectile combinations are also predicted for future exploration. Further, the 1n cross-sections are addressed for {Z}{CN}=104-113 superheavy nuclei at comparable excitation energies which show the decent agrement with experimental data upto {Z}{CN}=109 nuclei. Finally, to understand the dynamics of higher-Z superheavy nuclei, the cross-sections are also calculated at maximum available energies around the Coulomb barrier and the effect of non-sticking moment of inertia ({I}{NS}) is also investigated at these energies. Supported by the Council of Scientific and Industrial Research (CSIR), in the Form of Research Project Grant No. 03(1341)/15/EMR-II, and to DST, New Delhi, for INSPIRE-Fellowship Grant No. DST/INSPIRE/03/2015/000199
NASA Astrophysics Data System (ADS)
Ghisleni, Rudy
A study on the effects of ion irradiation on the surface mechanical behavior of hybrid sol-gel derived thin films has been performed. Hybrid organic/inorganic modified silicate thin films were synthesized by sol-gel processing from tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto (100) Si substrates. The synthesized films were investigated by nanoindentation, photoluminescence spectroscopy, and Raman spectroscopy. Hybrid TEOS/MTES sol-gel films modified by ion irradiation with deposited electronic energies of 1.87 x 1025 eV/cm3 or higher showed higher values of reduced elastic modulus and hardness than 800°C heat treated films. Thus, ion irradiation was found to be an effective means in converting the polymer sol into ceramic type coatings. The ions used in this study were Cu2+, N2+, Si+, O+, N+, He+, and H+, with incident energies ranging from 100 keV to 2 MeV, and fluences ranging from 1 x 1014 to 1 x 1017 ions/cm2. Both the reduced elastic modulus and hardness were seen to increase monotonically with the increase in ion fluence, with an observed maximum hardness of 7.7 GPa (an unirradiated film hardness was 0.4 GPa) and a maximum reduced elastic modulus of 84.0 GPa (an unirradiated film reduced elastic modulus was 7.1 GPa) for 250 keV N2+ irradiation with a 5 x 1016 ions/cm2 fluence. The electronic stopping power was found to be principally responsible for the film hardening, while the role of nuclear stopping power was minimal. A monotonic increase in hardness with increase in electronic energy deposited to the film surface was found. A model describing the hardening of ion irradiated films was developed. This model characterizes the hardening effectiveness of the ion species considered by two parameters: the constant hardening cross-section and the hardening coefficient. Where the hardening cross-section represents the cross-sectional area hardened by the interaction of an incident ion with the target, and the hardening coefficient represents an index of the cross-sectional area gradient as a function of fluence. The increase in hardness of hybrid sol-gel films following ion irradiation was linked to structural changes. Ion irradiation results in a cross-linked silica film as well as the segregation of amorphous carbon clusters, both of which contributed to increase the mechanical properties of the films.
Graf, Neil J.
2013-01-01
Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM).1 The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold’s bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold’s bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries. PMID:23917263
New and improved infrared absorption cross sections for chlorodifluoromethane (HCFC-22)
NASA Astrophysics Data System (ADS)
Harrison, Jeremy J.
2016-06-01
The most widely used hydrochlorofluorocarbon (HCFC) commercially since the 1930s has been chloro-difluoromethane, or HCFC-22, which has the undesirable effect of depleting stratospheric ozone. As this molecule is currently being phased out under the Montreal Protocol, monitoring its concentration profiles using infrared sounders crucially requires accurate laboratory spectroscopic data. This work describes new high-resolution infrared absorption cross sections of chlorodifluoromethane over the spectral range 730-1380 cm-1, determined from spectra recorded using a high-resolution Fourier transform spectrometer (Bruker IFS 125HR) and a 26 cm pathlength cell. Spectra of chlorodifluoromethane/dry synthetic air mixtures were recorded at resolutions between 0.01 and 0.03 cm-1 (calculated as 0.9/MOPD; MOPD denotes the maximum optical path difference) over a range of temperatures and pressures (7.5-762 Torr and 191-295 K) appropriate for atmospheric conditions. This new cross-section dataset improves upon the one currently available in the HITRAN (HIgh-resolution TRANsmission) and GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques) databases; in particular it provides coverage over a wider range of pressures and temperatures, has more accurate wavenumber scales, more consistent integrated band intensities, improved signal-to-noise, is free of channel fringing, and additionally covers the ν2 and ν7 bands.
NASA Astrophysics Data System (ADS)
Al-Hawat, Sharif
2013-02-01
Infrared (IR) absorption in the spectral range of (1071.88-1084.62 cm-1) vs. pressure in chlorodifluoromethane (CFC-22, F-22, and CHClF2) was studied using a tunable continuous wave (CW) CO2 laser radiation on 9R branch lines with a maximum output power of about 2.12 W, provided with an absorber cell located outside the laser cavity. The absorption coefficients were determined vs. the gas pressure between 0.2 mbar and 170 mbar at lines from 9R branch for CFC-22. The frequency shifts of the absorption lines of CFC-22 in relative to the central frequencies of laser lines were calculated vs. the pressure on the basis of these absorption coefficients. The chosen lines were selected according to IR spectrum of the studied gas given by HITRAN cross section database. So the absorption was achieved for CFC-22 at the spectral lines of 9R branch situated from 9R (10) to 9R (30) emitted by a tunable CW CO2 laser. The absorption cross sections of CFC-22 determined in this work were compared with the relevant data given by HITRAN cross section database and a reasonable agreement was observed.
Temperatures and Stresses on Hollow Blades For Gas Turbines
NASA Technical Reports Server (NTRS)
Pollmann, Erich
1947-01-01
The present treatise reports on theoretical investigations and test-stand measurements which were carried out in the BMW Flugmotoren GMbH in developing the hollow blade for exhaust gas turbines. As an introduction the temperature variation and the stress on a turbine blade for a gas temperature of 900 degrees and circumferential velocities of 600 meters per second are discussed. The assumptions onthe heat transfer coefficients at the blade profile are supported by tests on an electrically heated blade model. The temperature distribution in the cross section of a blade Is thoroughly investigated and the temperature field determined for a special case. A method for calculation of the thermal stresses in turbine blades for a given temperature distribution is indicated. The effect of the heat radiation on the blade temperature also is dealt with. Test-stand experiments on turbine blades are evaluated, particularly with respect to temperature distribution in the cross section; maximum and minimum temperature in the cross section are ascertained. Finally, the application of the hollow blade for a stationary gas turbine is investigated. Starting from a setup for 550 C gas temperature the improvement of the thermal efficiency and the fuel consumption are considered as well as the increase of the useful power by use of high temperatures. The power required for blade cooling is taken into account.
NASA Astrophysics Data System (ADS)
Yanagawa, Hiroto; Inoue, Asuka; Sugimoto, Hiroshi; Shioi, Masahiko; Fujii, Minoru
2017-12-01
Near-field coupling between a silicon quantum dot (Si-QD) monolayer and a plasmonic substrate fabricated by nano-imprint lithography and having broad multiple resonances in the near-infrared (NIR) window of biological substances was studied by precisely controlling the QDs-substrate distance. A strong enhancement of the NIR photoluminescence (PL) of Si-QDs was observed. Detailed analyses of the PL and PL excitation spectra, the PL decay dynamics, and the reflectance spectra revealed that both the excitation cross-sections and the emission rates are enhanced by the surface plasmon resonances, thanks to the broad multiple resonances of the plasmonic substrate, and that the relative contribution of the two enhancement processes depends strongly on the excitation wavelength. Under excitation by short wavelength photons (405 nm), where enhancement of the excitation cross-section is not expected, the maximum enhancement was obtained when the QDs-substrate distance was around 30 nm. On the other hand, under long wavelength excitation (641 nm), where strong excitation cross-section enhancement is expected, the largest enhancement was obtained when the distance was minimum (around 1 nm). The achievement of efficient excitation of NIR luminescence of Si-QDs by long wavelength photons paves the way for the development of Si-QD-based fluorescence bio-sensing devices with a high bound-to-free ratio.
Vulnerability to dysfunction and muscle injury after unloading
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, L. L.; Tesch, P. A.; Hather, B. M.; Dudley, G. A.
1996-01-01
OBJECTIVE: To test whether unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle injury. DESIGN: Before-after trial. SETTING: General community. PATIENTS OR OTHER PARTICIPANTS: Two women and 5 men (73 +/- 3kg [mean +/- SE]) who were active college students but were not trained in lower body resistance exercise volunteered. INTERVENTION: Five weeks of unilateral lower limb suspension (ULLS), which has been shown to decrease strength and size of the unloaded, left, but not load-bearing, right quadriceps femoris muscle group (QF) by 20% and 14%, respectively; performance of 10 sets of ten eccentric actions with each QF immediately after the ULLS strength tests with a load equivalent to 65% of the post-ULLS eccentric 1-repetition maximum. MAIN OUTCOME MEASURE(S): Concentric and eccentric 1-repetition maximum for the left, unloaded and the right, load-bearing QF measured immediately after ULLS and 1,4,7,9, and 11 days later; cross-sectional area and spin-spin relaxation time (T2) of each QF as determined by magnetic resonance imaging and measured the last day of ULLS and 3 days later. RESULTS: The mean load used for eccentric exercise was 23 +/- 2 and 30 +/- 3kg for the left, unloaded and right, load-bearing QF, respectively. The concentric and eccentric 1-repetition maximum for the unloaded and already weakened left QF was further decreased by 18% (p = .000) and 27% (p = .000), respectively, 1 day after eccentric exercise. Strength did not return to post-ULLS levels until 7 days of recovery. The right, load-bearing QF showed a 4% decrease (p = .002) in the eccentric 1-repetition maximum 1 day after eccentric exercise. The left, unloaded QF showed an increase in T2 (p = .002) in 18% of its cross-sectional area 3 days after the eccentric exercise, thus indicating muscle injury. The right, load-bearing QF showed no elevation in T2 (p = .280). CONCLUSION: Unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle injury, even at relatively light loads.
Ribeiro, Ana P.; Sacco, Isabel C. N.; Dinato, Roberto C.; João, Silvia M. A.
2016-01-01
BACKGROUND: The risk factors for the development of plantar fasciitis (PF) have been associated with the medial longitudinal arch (MLA), rearfoot alignment and calcaneal overload. However, the relationships between the biomechanical variables have yet to be determined. OBJECTIVE: The goal of this study was to investigate the relationships between the MLA, rearfoot alignment, and dynamic plantar loads in runners with unilateral PF in acute and chronic phases. METHOD: Cross-sectional study which thirty-five runners with unilateral PF were evaluated: 20 in the acute phase (with pain) and 15 with previous chronic PF (without pain). The MLA index and rearfoot alignment were calculated using digital images. The contact area, maximum force, peak pressure, and force-time integral over three plantar areas were acquired with Pedar X insoles while running at 12 km/h, and the loading rates were calculated from the vertical forces. RESULTS: The multiple regression analyses indicated that both the force-time integral (R 2=0.15 for acute phase PF; R 2=0.17 for chronic PF) and maximum force (R 2=0.35 for chronic PF) over the forefoot were predicted by an elevated MLA index. The rearfoot valgus alignment predicted the maximum force over the rearfoot in both PF groups: acute (R 2=0.18) and chronic (R 2=0.45). The rearfoot valgus alignment also predicted higher loading rates in the PF groups: acute (R 2=0.19) and chronic (R 2=0.40). CONCLUSION: The MLA index and the rearfoot alignment were good predictors of plantar loads over the forefoot and rearfoot areas in runners with PF. However, rearfoot valgus was demonstrated to be an important clinical measure, since it was able to predict the maximum force and both loading rates over the rearfoot. PMID:26786073
NASA Astrophysics Data System (ADS)
Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Gulbekian, G. G.; Bogomolov, S. L.; Gikal, B. N.; Mezentsev, A. N.; Iliev, S.; Subbotin, V. G.; Sukhov, A. M.; Voinov, A. A.; Buklanov, G. V.; Subotic, K.; Zagrebaev, V. I.; Itkis, M. G.; Patin, J. B.; Moody, K. J.; Wild, J. F.; Stoyer, M. A.; Stoyer, N. J.; Shaughnessy, D. A.; Kenneally, J. M.; Wilk, P. A.; Lougheed, R. W.; Il'Kaev, R. I.; Vesnovskii, S. P.
2004-12-01
We have studied the dependence of the production cross sections of the isotopes 282,283 112 and 286,287 114 on the excitation energy of the compound nuclei 286112 and 290114 . The maximum cross section values of the xn -evaporation channels for the reaction 238U ( 48Ca ,xn) 286-x 112 were measured to be σ3n = 2.5 +1.8 -1.1 pb and σ4n = 0.6 +1.6 -0.5 pb ; for the reaction 242Pu ( 48Ca ,xn) 290-x 114 : σ2n ˜0.5 pb , σ3n = 3.6 +3.4 -1.7 pb , and σ4n = 4.5 +3.6 -1.9 pb . In the reaction 233U ( 48Ca ,2 4n) 277 279 112 at E*=34.9±2.2 MeV we measured an upper cross section limit of σxn ⩽0.6 pb . The observed shift of the excitation energy associated with the maximum sum evaporation residue cross section σER (E*) to values significantly higher than that associated with the calculated Coulomb barrier can be caused by the orientation of the deformed target nucleus in the entrance channel of the reaction. An increase of σER in the reactions of actinide targets with 48Ca is consistent with the expected increase of the survivability of the excited compound nucleus upon closer approach to the closed neutron shell N=184 . In the present work we detected 33 decay chains arising in the decay of the known nuclei 282112 , 283112 , 286114 , 287114 , and 288114 . In the decay of 287114 (α) → 283112 (α) → 279110 (SF) , in two cases out of 22, we observed decay chains of four and five sequential α transitions that end in spontaneous fission of 271Sg ( Tα/SF = 2.4 +4.3 -1.0 min) and 267Rf ( TSF ˜2.3 h) , longer decay chains than reported previously. We observed the new nuclide 292116 ( Tα = 18 +16 -6 ms, Eα =10.66±0.07 MeV) in the irradiation of the 248Cm target at a higher energy than in previous experiments. The observed nuclear decay properties of the nuclides with Z=104 118 are compared with theoretical nuclear mass calculations and the systematic trends of spontaneous fission properties. As a whole, they give a consistent pattern of decay of the 18 even- Z neutron-rich nuclides with Z=104 118 and N=163 177 . The experiments were performed with the heavy-ion beam delivered by the U400 cyclotron of the FLNR (JINR, Dubna) employing the Dubna gas-filled recoil separator.
3D Printing of Preoperative Simulation Models of a Splenic Artery Aneurysm: Precision and Accuracy.
Takao, Hidemasa; Amemiya, Shiori; Shibata, Eisuke; Ohtomo, Kuni
2017-05-01
Three-dimensional (3D) printing is attracting increasing attention in the medical field. This study aimed to apply 3D printing to the production of hollow splenic artery aneurysm models for use in the simulation of endovascular treatment, and to evaluate the precision and accuracy of the simulation model. From 3D computed tomography (CT) angiography data of a splenic artery aneurysm, 10 hollow models reproducing the vascular lumen were created using a fused deposition modeling-type desktop 3D printer. After filling with water, each model was scanned using T2-weighted magnetic resonance imaging for the evaluation of the lumen. All images were coregistered, binarized, and then combined to create an overlap map. The cross-sectional area of the splenic artery aneurysm and its standard deviation (SD) were calculated perpendicular to the x- and y-axes. Most voxels overlapped among the models. The cross-sectional areas were similar among the models, with SDs <0.05 cm 2 . The mean cross-sectional areas of the splenic artery aneurysm were slightly smaller than those calculated from the original mask images. The maximum mean cross-sectional areas calculated perpendicular to the x- and y-axes were 3.90 cm 2 (SD, 0.02) and 4.33 cm 2 (SD, 0.02), whereas those calculated from the original mask images were 4.14 cm 2 and 4.66 cm 2 , respectively. The mean cross-sectional areas of the afferent artery were, however, almost the same as those calculated from the original mask images. The results suggest that 3D simulation modeling of a visceral artery aneurysm using a fused deposition modeling-type desktop 3D printer and computed tomography angiography data is highly precise and accurate. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Fusion and quasifission studies for the 40Ca+186W,192Os reactions
NASA Astrophysics Data System (ADS)
Prasad, E.; Hinde, D. J.; Williams, E.; Dasgupta, M.; Carter, I. P.; Cook, K. J.; Jeung, D. Y.; Luong, D. H.; Palshetkar, C. S.; Rafferty, D. C.; Ramachandran, K.; Simenel, C.; Wakhle, A.
2017-09-01
Background: All elements above atomic number 113 have been synthesized using hot fusion reactions with calcium beams on statically deformed actinide target nuclei. Quasifission and fusion-fission are the two major mechanisms responsible for the very low production cross sections of superheavy elements. Purpose: To achieve a quantitative measurement of capture and quasifission characteristics as a function of beam energy in reactions forming heavy compound systems using calcium beams as projectiles. Methods: Fission fragment mass-angle distributions were measured for the two reactions 40Ca+186W and 40C+192Os, populating 226Pu and 232Cm compound nuclei, respectively, using the Heavy Ion Accelerator Facility and CUBE spectrometer at the Australian National University. Mass ratio distributions, angular distributions, and total fission cross sections were obtained from the experimental data. Simulations to match the features of the experimental mass-angle distributions were performed using a classical phenomenological approach. Results: Both 40Ca+186W and 40C+192Os reactions show strong mass-angle correlations at all energies measured. A maximum fusion probability of 60 -70 % is estimated for the two reactions in the energy range of the present study. Coupled-channels calculations assuming standard Woods-Saxon potential parameters overpredict the capture cross sections. Large nuclear potential diffuseness parameters ˜1.5 fm are required to fit the total capture cross sections. The presence of a weak mass-asymmetric quasifission component attributed to the higher angular momentum events can be reproduced with a shorter average sticking time but longer mass-equilibration time constant. Conclusions: The deduced above-barrier capture cross sections suggest that the dissipative processes are already occurring outside the capture barrier. The mass-angle correlations indicate that a compact shape is not achieved for deformation aligned collisions with lower capture barriers. The average sticking time of fast quasifission events is 10-20 s.
Vortex Structures in the Shock-deformed Armor Steels
NASA Astrophysics Data System (ADS)
Atroshenko, Svetlana; Meshcheryakov, Yuri; Natalia, Naumova
2009-06-01
Several kinds of armor steel were tested under uniaxial strain conditions within impact velocity range from 250 to 400 m/s. Using optical and REM microscopy, the post shocked specimens were studied to reveal the kinematical mechanisms of dynamic deformation at the mesoscale. In all the specimens, the cross-section of specimens was found to be filled with rotational cells of very complex space morphology. Each rotation cell consists of central core of 1-2 μm in diameter and family of petals surrounding the core, so the space configuration of eddy is closely remands a fan of total size 6-7 μm. During the deformation, the petals move around the core providing the vortical motion of rotation as a whole. Dependence of rotational cell density on the strain rate changes non-monotonously, maximum density corresponds to maximum macrohardness and maximum of spall-strength of steel.
Liu, Hongliang; Tan, Yang; Vázquez de Aldana, Javier R; Chen, Feng
2014-08-01
We report on the fabrication of depressed cladding waveguides in Nd:GdVO(4) laser crystal by using femtosecond laser inscription. The cross section of the structure is a circular shape with a diameter of 150 μm. Under the optical pump at 808 nm, the continuous wave (cw) as well as pulsed (Q-switched by graphene saturable absorber) waveguide lasing at 1064 nm has been realized, supporting guidance of both TE and TM polarizations. The maximum output power of 0.57 W was obtained in the cw regime, while the maximum pulse energy of the pulsed laser emissions was up to 19 nJ (corresponding to a maximum average output power of 0.33 W, at a resonant frequency of 18 MHz). The slope efficiencies achieved for the cw and pulsed Nd:GdVO(4) waveguide lasers were as high as 68% and 52%, respectively.
NASA Technical Reports Server (NTRS)
Davis, David O.
1991-01-01
Steady, incompressible, turbulent, swirl-free flow through a circular-to-rectangular transition duck was studied experimentally. The cross-sectional area remains the same at the exit as at the inlet, but varies through the transition section to a maximum value approximately 15 percent above the inlet value. The cross-sectional geometry everywhere along the duct is defined by the equation of a superellipse. Mean and turbulence data were accumulated utilizing pressure and hot-wire instrumentation at five stations along the test section. Data are presented for operating bulk Reynolds numbers of 88,000 and 390,000. Measured quantities include total and static pressure, the three components of the mean velocity vector, and the six components of the Reynolds stress tensor. In addition to the transition duct measurements, a hot-wire technique which relies on the sequential use of single rotatable normal and slant-wire probes was proposed. The technique is applicable for measurement of the total mean velocity vector and the complete Reynolds stress tensor when the primary flow is arbitrarily skewed relative to a plane which lies normal to the probe axis of rotation.
Rooney, Sarah Ilkhanipour; Baskin, Rachel; Torino, Daniel J; Vafa, Rameen P; Khandekar, Pooja S; Kuntz, Andrew F; Soslowsky, Louis J
2016-09-01
Previous studies have shown that ibuprofen is detrimental to tissue healing after acute injury; however, the effects of ibuprofen when combined with noninjurious exercise are debated. Administration of ibuprofen to rats undergoing a noninjurious treadmill exercise protocol will abolish the beneficial adaptations found with exercise but will have no effect on sedentary muscle and tendon properties. Controlled laboratory study. A total of 167 male Sprague-Dawley rats were divided into exercise or cage activity (sedentary) groups and acute (a single bout of exercise followed by 24 hours of rest) and chronic (2 or 8 weeks of repeated exercise) response times. Half of the rats were administered ibuprofen to investigate the effects of this drug over time when combined with different activity levels (exercise and sedentary). Supraspinatus tendons were used for mechanical testing and histologic assessment (organization, cell shape, cellularity), and supraspinatus muscles were used for morphologic (fiber cross-sectional area, centrally nucleated fibers) and fiber type analysis. Chronic intake of ibuprofen did not impair supraspinatus tendon organization or mechanical adaptations (stiffness, modulus, maximum load, maximum stress, dynamic modulus, or viscoelastic properties) to exercise. Tendon mechanical properties were not diminished and in some instances increased with ibuprofen. In contrast, total supraspinatus muscle fiber cross-sectional area decreased with ibuprofen at chronic response times, and some fiber type-specific changes were detected. Chronic administration of ibuprofen does not impair supraspinatus tendon mechanical properties in a rat model of exercise but does decrease supraspinatus muscle fiber cross-sectional area. This fundamental study adds to the growing literature on the effects of ibuprofen on musculoskeletal tissues and provides a solid foundation on which future work can build. The study findings suggest that ibuprofen does not detrimentally affect regulation of supraspinatus tendon adaptations to exercise but does decrease muscle growth. Individuals should be advised on the risk of decreased muscle hypertrophy when consuming ibuprofen. © 2016 The Author(s).
49 CFR 236.55 - Dead section; maximum length.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Dead section; maximum length. 236.55 Section 236... Instructions: All Systems Track Circuits § 236.55 Dead section; maximum length. Where dead section exceeds 35... over such dead section is less than 35 feet, the maximum length of the dead section shall not exceed...
49 CFR 236.55 - Dead section; maximum length.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Dead section; maximum length. 236.55 Section 236... Instructions: All Systems Track Circuits § 236.55 Dead section; maximum length. Where dead section exceeds 35... over such dead section is less than 35 feet, the maximum length of the dead section shall not exceed...
49 CFR 236.55 - Dead section; maximum length.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Dead section; maximum length. 236.55 Section 236... Instructions: All Systems Track Circuits § 236.55 Dead section; maximum length. Where dead section exceeds 35... over such dead section is less than 35 feet, the maximum length of the dead section shall not exceed...
49 CFR 236.55 - Dead section; maximum length.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Dead section; maximum length. 236.55 Section 236... Instructions: All Systems Track Circuits § 236.55 Dead section; maximum length. Where dead section exceeds 35... over such dead section is less than 35 feet, the maximum length of the dead section shall not exceed...
49 CFR 236.55 - Dead section; maximum length.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Dead section; maximum length. 236.55 Section 236... Instructions: All Systems Track Circuits § 236.55 Dead section; maximum length. Where dead section exceeds 35... over such dead section is less than 35 feet, the maximum length of the dead section shall not exceed...
Sonographic aorta/IVC cross-sectional area index for evaluation of dehydration in children.
Kwon, Hyuksool; Jung, Jae Yun; Lee, Jin Hee; Kwak, Young Ho; Kim, Do Kyun; Jung, Jin Hee; Chang, Ik Wan; Kim, Kyuseok
2016-09-01
Current studies have not found sufficient evidence to encourage the use of ultrasound for assessing dehydration in children. We introduce a new sonographic parameter, the "aorta/inferior vena cava (IVC) cross-sectional area index" (Ao/IVCA) measured just inferior to the xiphoid process, for the effective evaluation of dehydration in children. This is a prospective, observational study. We enrolled children who presented to the pediatric emergency department (PED) between May 2014 and January 2015. We measured the maximum diameter of the aorta from inner wall to inner wall, and the long and short axis diameters of IVC using a convex array transducer. Ao/IVCA was calculated and compared with aorta/IVC maximal diameter index (Ao/IVCD) and the clinical dehydration scale (CDS). A total of 34 children were enrolled. We found a statistically significant correlation between Ao/IVCA and CDS (R(2) = 0.30; P <.001). Ao/IVCD did not correlate significantly with CDS (R(2) = 0.08; P =.11). The ability of Ao/IVCA and Ao/IVCD to predict CDS ≥1 was assessed using the receiver operating characteristic analysis. The area under the receiver operating characteristic curve for Ao/IVCA was larger than that for Ao/IVCD (0.87 vs 0.75, P= .04). The cut-off value of Ao/IVCA that yielded the maximum value of Youden index was 1.81 (sensitivity: 72%, specificity: 89%). Ao/IVCA might be a promising index for the assessment of dehydration. The diagnostic performance of Ao/IVCA for dehydration might be higher than that of the method that uses the maximum diameter of IVC and the aorta. Copyright © 2016 Elsevier Inc. All rights reserved.
Oldenburg, J; Zimmermann, R; Katsarou, O; Theodossiades, G; Zanon, E; Niemann, B; Kellermann, E; Lundin, B
2015-01-01
In patients with haemophilia A, factor VIII (FVIII) prophylaxis reduces bleeding frequency and joint damage compared with on-demand therapy. To assess the effect of prophylaxis initiation age, magnetic resonance imaging (MRI) was used to evaluate bone and cartilage damage in patients with severe haemophilia A. In this cross-sectional, multinational investigation, patients aged 12–35 years were assigned to 1 of 5 groups: primary prophylaxis started at age <2 years (group 1); secondary prophylaxis started at age 2 to <6 years (group 2), 6 to <12 years (group 3), or 12−18 years (group 4); or on-demand treatment (group 5). Joint status at ankles and knees was assessed using Compatible Additive MRI scoring (maximum and mean ankle; maximum and mean of all 4 joints) and Gilbert scores in the per-protocol population (n = 118). All prophylaxis groups had better MRI joint scores than the on-demand group. MRI scores generally increased with current patient age and later start of prophylaxis. Ankles were the most affected joints. In group 1 patients currently aged 27−35 years, the median of maximum ankle scores was 0.0; corresponding values in groups 4 and 5 were 17.0 and 18.0, respectively [medians of mean index joint scores: 0.0 (group 1), 8.1 (group 2) and 13.8 (group 4)]. Gilbert scores revealed outcomes less pronounced than MRI scores. MRI scores identified pathologic joint status with high sensitivity. Prophylaxis groups had lower annualized joint bleeds and MRI scores vs. the on-demand group. Primary prophylaxis demonstrated protective effects against joint deterioration compared with secondary prophylaxis. PMID:25470205
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulakhmetov, Marat, E-mail: mkulakhm@purdue.edu; Alexeenko, Alina, E-mail: alexeenk@purdue.edu; Gallis, Michael, E-mail: magalli@sandia.gov
Quasi-classical trajectory (QCT) calculations are used to study state-specific ro-vibrational energy exchange and dissociation in the O{sub 2} + O system. Atom-diatom collisions with energy between 0.1 and 20 eV are calculated with a double many body expansion potential energy surface by Varandas and Pais [Mol. Phys. 65, 843 (1988)]. Inelastic collisions favor mono-quantum vibrational transitions at translational energies above 1.3 eV although multi-quantum transitions are also important. Post-collision vibrational favoring decreases first exponentially and then linearly as Δv increases. Vibrationally elastic collisions (Δv = 0) favor small ΔJ transitions while vibrationally inelastic collisions have equilibrium post-collision rotational distributions. Dissociationmore » exhibits both vibrational and rotational favoring. New vibrational-translational (VT), vibrational-rotational-translational (VRT) energy exchange, and dissociation models are developed based on QCT observations and maximum entropy considerations. Full set of parameters for state-to-state modeling of oxygen is presented. The VT energy exchange model describes 22 000 state-to-state vibrational cross sections using 11 parameters and reproduces vibrational relaxation rates within 30% in the 2500–20 000 K temperature range. The VRT model captures 80 × 10{sup 6} state-to-state ro-vibrational cross sections using 19 parameters and reproduces vibrational relaxation rates within 60% in the 5000–15 000 K temperature range. The developed dissociation model reproduces state-specific and equilibrium dissociation rates within 25% using just 48 parameters. The maximum entropy framework makes it feasible to upscale ab initio simulation to full nonequilibrium flow calculations.« less
NASA Technical Reports Server (NTRS)
Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.
1994-01-01
The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.
Valvar stenosis in truncus arteriosus.
Gerlis, L M; Wilson, N; Dickinson, D F; Scott, O
1984-01-01
Twenty three morphological specimens of truncus arteriosus were examined for evidence of stenosis of the semilunar valve. One third showed good evidence of stenosis as judged by careful measurement of the valve orifice, the valve ring, and the maximum diameter of the truncus. Correlation with measured pressure gradients was poor, but angiography and cross sectional echocardiography were better predictors of stenosis. Stenosis was invariably associated with cusp dysplasia and was more common in valves with two or four cusps. Images PMID:6477783
Photolysis of caged calcium in femtoliter volumes using two-photon excitation.
Brown, E B; Shear, J B; Adams, S R; Tsien, R Y; Webb, W W
1999-01-01
A new technique for the determination of the two-photon uncaging action cross section (deltau) of photolyzable calcium cages is described. This technique is potentially applicable to other caged species that can be chelated by a fluorescent indicator dye, as well as caged fluorescent compounds. The two-photon action cross sections of three calcium cages, DM-nitrophen, NP-EGTA, and azid-1, are studied in the range of excitation wavelengths between 700 and 800 nm. Azid-1 has a maximum deltau of approximately 1.4 GM at 700 nm, DM-nitrophen has a maximum deltau of approximately 0.013 GM at 730 nm, and NP-EGTA has no measurable uncaging yield. The equations necessary to predict the amount of cage photolyzed and the temporal behavior of the liberated calcium distribution under a variety of conditions are derived. These equations predict that by using 700-nm light from a Ti:sapphire laser focused with a 1.3-NA objective, essentially all of the azid-1 within the two-photon focal volume would be photolyzed with a 10-micros pulse train of approximately 7 mW average power. The initially localized distributions of free calcium will dissipate rapidly because of diffusion of free calcium and uptake by buffers. In buffer-free cytoplasm, the elevation of the calcium concentration at the center of the focal volume is expected to last for approximately 165 micros. PMID:9876162
High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10.
Ringeisen, Bradley R; Henderson, Emily; Wu, Peter K; Pietron, Jeremy; Ray, Ricky; Little, Brenda; Biffinger, Justin C; Jones-Meehan, Joanne M
2006-04-15
A miniature microbial fuel cell (mini-MFC) is described that demonstrates high output power per device cross-section (2.0 cm2) and volume (1.2 cm3). Shewanella oneidensis DSP10 in growth medium with lactate and buffered ferricyanide solutions were used as the anolyte and catholyte, respectively. Maximum power densities of 24 and 10 mW/m2 were measured using the true surface areas of reticulated vitreous carbon (RVC) and graphite felt (GF) electrodes without the addition of exogenous mediators in the anolyte. Current densities at maximum power were measured as 44 and 20 mA/m2 for RVC and GF, while short circuit current densities reached 32 mA/m2 for GF anodes and 100 mA/m2 for RVC. When the power density for GF was calculated using the cross sectional area of the device or the volume of the anode chamber, we found values (3 W/m2, 500 W/m3) similar to the maxima reported in the literature. The addition of electron mediators resulted in current and power increases of 30-100%. These power densities were surprisingly high considering a pure S. oneidensis culture was used. We found that the short diffusion lengths and high surface-area-to-chamber volume ratio utilized in the mini-MFC enhanced power density when compared to output from similar macroscopic MFCs.
Takahashi, Goro; Yamada, Takeshi; Kan, Hayato; Koizumi, Michihiro; Shinji, Seiichi; Yokoyama, Yasuyuki; Iwai, Takuma; Uchida, Eiji
2015-10-01
Skeletal mass depletion has been reported to be a prognostic factor for cancer patients. However, special and expensive devices are required to measure skeletal mass, and this is a major reason why skeletal mass is not used extensively for prognostic marker in clinical settings. We developed a new method to measure skeletal mass for use as a prognostic marker using CT images without special and expensive devices. In this study, we evaluated the usefulness of skeletal mass as measured by this new method as a prognostic marker for gastrointestinal cancer patients. Patients who died from gastrointestinal cancer between March 2010 and October 2013 were included. We measured the right-sided maximum psoas muscle cross sectional area (MPCA) by using CT images before surgery and after the patients developed a terminal condition. The maximum psoas muscle cross sectional area ratio (MPCA-R) was defined as follows: MPCA-R=MPCA before surgery/MPCA after developing a terminal condition. We evaluated the correlation between MPCA-R and survival. Fifty-nine patients were included. The median survival was 44 days, and MPCA-R was significantly correlated with survival (p=0.001). On receiver operating characteristic (ROC) analysis, the area under the curve (AUC) to predict 30-day and 90-day survival was 0.710 and 0.748, respectively. MPCA-R is a new and novel prognostic marker for gastrointestinal cancer patients in terminal condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, R.; Sudarshan, K.; Sodaye, S.
2009-06-15
Angular distributions of projectile-like fragments (PLFs) have been measured in the reaction {sup 19}F+{sup 66}Zn at E{sub lab}=61,82,92, and 109 MeV to understand their formation in the low energy domain (< or approx. 7 MeV nucleon). In this energy range, maximum angular momentum 'l{sub max}' in the reaction is lower than or close to the critical or limiting angular momentum for complete fusion 'l{sub lim}(CF).' The sum-rule model was modified to explain the cross sections of PLFs in the present study. For the first time, the modified sum-rule model, with a competition of incomplete fusion (ICF) reaction with complete fusionmore » below l{sub lim}(CF) reasonably reproduced the cross sections of PLFs in the beam energy range of the present study. It was observed that the cross sections of lighter PLFs fall more rapidly with decreasing beam energy compared to those of heavier PLFs, suggesting a change in the reaction mechanism from heavier to lighter PLFs. Transfer probabilities for peripheral collisions were calculated within the framework of a semiclassical formalism. The parameters of the nuclear potential required for the calculation of transfer probability were obtained by fitting the elastic scattering data measured in the present work. Calculated transfer probabilities were significantly lower compared to the corresponding experimental values, suggesting a significant overlap of the projectile and the target nuclei in incomplete fusion reactions. The present analysis showed that the overlap of the projectile and the target nuclei increases with increasing mass transfer at a given beam energy and for a given PLF, overlap increases with increasing beam energy.« less
Simulations of fully deformed oscillating flux tubes
NASA Astrophysics Data System (ADS)
Karampelas, K.; Van Doorsselaere, T.
2018-02-01
Context. In recent years, a number of numerical studies have been focusing on the significance of the Kelvin-Helmholtz instability in the dynamics of oscillating coronal loops. This process enhances the transfer of energy into smaller scales, and has been connected with heating of coronal loops, when dissipation mechanisms, such as resistivity, are considered. However, the turbulent layer is expected near the outer regions of the loops. Therefore, the effects of wave heating are expected to be confined to the loop's external layers, leaving their denser inner parts without a heating mechanism. Aim. In the current work we aim to study the spatial evolution of wave heating effects from a footpoint driven standing kink wave in a coronal loop. Methods: Using the MPI-AMRVAC code, we performed ideal, three dimensional magnetohydrodynamic simulations of footpoint driven transverse oscillations of a cold, straight coronal flux tube, embedded in a hotter environment. We have also constructed forward models for our simulation using the FoMo code. Results: The developed transverse wave induced Kelvin-Helmholtz (TWIKH) rolls expand throughout the tube cross-section, and cover it entirely. This turbulence significantly alters the initial density profile, leading to a fully deformed cross section. As a consequence, the resistive and viscous heating rate both increase over the entire loop cross section. The resistive heating rate takes its maximum values near the footpoints, while the viscous heating rate at the apex. Conclusions: We conclude that even a monoperiodic driver can spread wave heating over the whole loop cross section, potentially providing a heating source in the inner loop region. Despite the loop's fully deformed structure, forward modelling still shows the structure appearing as a loop. A movie attached to Fig. 1 is available at http://https://www.aanda.org
Quantum dynamics of the C(1D)+HD and C(1D)+n-D2 reactions on the ã 1A' and b 1A" surfaces.
Defazio, Paolo; Gamallo, Pablo; González, Miguel; Akpinar, Sinan; Bussery-Honvault, Béatrice; Honvault, Pascal; Petrongolo, Carlo
2010-03-14
We present the Born-Oppenheimer, quantum dynamics of the reactions C((1)D)+HD and C((1)D)+n-D(2) on the uncoupled potential energy surfaces ã (1)A' and b (1)A", considering the Coriolis interactions and the nuclear-spin statistics. Using the real wavepacket method, we obtain initial-state-resolved probabilities, cross sections, isotopic branching ratios, and rate constants. Similarly to the C+n-H(2) reaction, the probabilities present many ã (1)A' or few b (1)A" sharp resonances, and the cross sections are very large at small collision energies and decrease at higher energies. At any initial condition, the C+HD reaction gives preferentially the CD+H products. Thermal cross sections, isotopic branching ratios, and rate constant k vary slightly with temperature and agree very well with the experimental values. At 300 K, we obtain for the various products k(CH+H)=(2.45+/-0.08) x 10(-10), k(CD+H)=(1.19+/-0.04) x 10(-10), k(CH+D)=(0.71+/-0.02) x 10(-10), k(CD+D)=(1.59+/-0.05) x 10(-10) cm(3) s(-1), and k(CD+H)/k(CH+D)=1.68+/-0.01. The b (1)A" contribution to cross sections and rate constants is always large, up to a maximum value of 62% for a rotationally resolved C+D(2) rate constant. The upper b (1)A" state is thus quite important in the C((1)D) collision with H(2) and its deuterated isotopes, as the agreement between theory and experiment shows.
Davis, Niall F.; McMahon, Barry P.; Walsh, Michael; McDermott, Thomas E.D.; Thornhill, John A.; Manecksha, Rustom P.
2017-01-01
Introduction We aimed to investigate irrigation and drainage characteristics of commercially available urethral catheters and determined which catheter offers the best flow characteristics. Material and methods Twelve different commercially available urethral catheters from three companies (Bard™, Rusch™ and Dover™) were investigated to compare their irrigation and drainage properties. Irrigation port, drainage port and overall cross-sectional areas for a 24Fr 3-way catheter was measured and compared. The maximum (Qmax) and average (Qavg) irrigation and drainage flow rates for each catheter was measured for 20–40 seconds using uroflowmetry. The primary endpoint was to determine which catheter offers optimal irrigation and drainage parameters. Results Overall cross-sectional area, irrigation port cross-sectional area, and drainage port cross-sectional area differed significantly for each 24Fr 3-way catheter assessed (p <0.001). The 24Fr 3-way Rusch Simplastic™ catheter consistently demonstrated the greatest maximal flow rate (Qmax: 5 ±0.3 ml/s) and average flow rate (Qavg: 4.6 ±0.2 ml/s) for irrigation. The 24Fr 3-way Dover™ catheter provided the greatest drainage properties (Qmax: 19.7 ±2 ml/s; Q avg: 15.9 ±5 ml/s). In the setting of continuous bladder irrigation, the 24Fr 3-way Rusch Simplastic™ catheter provided the highest irrigation rates (Qmax: 6.6 ±1.8 ml/s; Q avg: 4.6 ±0.9 ml/s). Conclusions Three-way catheters demonstrate significant differences in their irrigation and drainage characteristics. The type of catheter selected should be based on the appropriate prioritization of efficient bladder irrigation versus efficient bladder drainage. PMID:29410890
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, S.Q.; Li, Z.H.; Wang, Y.B.
The {sup 95}Zr( n , γ ){sup 96}Zr reaction cross section is crucial in the modeling of s -process nucleosynthesis in asymptotic giant branch stars because it controls the operation of the branching point at the unstable {sup 95}Zr and the subsequent production of {sup 96}Zr. We have carried out the measurement of the {sup 94}Zr({sup 18}O, {sup 16}O) and {sup 90}Zr({sup 18}O, {sup 16}O) reactions and obtained the γ -decay probability ratio of {sup 96}Zr* and {sup 92}Zr* to determine the {sup 95}Zr( n , γ ){sup 96}Zr reaction cross sections with the surrogate ratio method. Our deduced Maxwellian-averagedmore » cross section of 66 ± 16 mb at 30 keV is close to the value recommended by Bao et al., but 30% and more than a factor of two larger than the values proposed by Toukan and Käppeler and Lugaro et al., respectively, and routinely used in s -process models. We tested the new rate in stellar models with masses between 2 and 6 M {sub ⊙} and metallicities of 0.014 and 0.03. The largest changes—up to 80% variations in {sup 96}Zr—are seen in models of mass 3–4 M {sub ⊙}, where the {sup 22}Ne neutron source is mildly activated. The new rate can still provide a match to data from meteoritic stardust silicon carbide grains, provided that the maximum mass of the parent stars is below 4 M {sub ⊙}, for a metallicity of 0.03.« less
High Spectral Resolution Lidar Data
Eloranta, Ed
2004-12-01
The HSRL provided calibrated vertical profiles of optical depth, backscatter cross section and depoloarization at a wavelength of 532 nm. Profiles were acquired at 2.5 second intervals with 7.5 meter resolution. Profiles extended from an altitude of 100 m to 30 km in clear air. The lidar penetrated to a maximum optical depth of ~ 4 under cloudy conditions. Our data contributed directly to the aims of the M-PACE experiment, providing calibrated optical depth and optical backscatter measurements which were not available from any other instrument.
Radar characteristics of cloud-to-ground lightning producing storms in Florida
NASA Technical Reports Server (NTRS)
Buechler, D. E.; Goodman, S. J.
1991-01-01
The interrelation between cloud-to-ground lightning, convective rainfall, and the environment in Central Florida storms is examined. The rain flux, storm area, and ground discharge rates are computed within the outlined area. Time-height cross sections of maximum dBZ values at each level for two storms are shown. The multicellular nature of these storms is readily apparent. The cloud-to-ground lightning activity occurs mainly where high reflectivity values (30-40 dBZ) extend above 7 km.
2014-01-01
airships , was taken into consideration when checking cross section dimensions. The top speed chosen to size the engines was 84 knots. The maximum...paramount to understanding the structural design. Engine choice is also critical since long duration missions, typical for airships , heavily...geometry input pages. This may serve as a starting point for a new airship . • Layout is used to define engine , fin and gondola geometry. • Geometry 1
NASA Technical Reports Server (NTRS)
Spearman, M. L.; Tice, David C.; Braswell, Dorothy O.
1992-01-01
Experimental and theoretical results are presented for a family of aerodynamic configurations for flight Mach numbers as high as Mach 8. All of these generic configurations involved 70-deg sweep delta planform wings of three different areas and three fuselage shapes with circular-to-elliptical cross sections. It is noted that fuselage ellipticity enhances lift-curve slope and maximum L/D, while decreasing static longitudinal stability (especially with smaller wing areas).
1993-07-24
orders smaller than the Rayleigh cross section. We estimated the extinction coefficients of the Pinatubo volcanic aerosol in the stratosphere using a Raman...to a common aerosol parameter (e.g., backscatter coefficients at selected CO2 wavelengths), have all led to similar estimated values of that...increase only as -r 2 . During this phase, therefore, the backscatter coefficient of a coagulating aerosol population decreases as -r- The maximum
Failure Analysis of a CH-47 Horizontal Hinge Pin Assembly, P/N 114RS226
2006-12-01
and globular) dispersed in a matrix of tempered martensite observed in all the metallographic cross sections produced from the M50 steel rings and...ring, were shown to have met the requirements of AMS 6491 (1)—the specification for VIM- VAR M50 required by each roller- bearing set drawing (see table...2). Although the phosphorus content for each part was at or near the maximum level allowed by AMS 6491, literature on M50 steel and a conversation
Deuterated scintillators and their application to neutron spectroscopy
NASA Astrophysics Data System (ADS)
Febbraro, M.; Lawrence, C. C.; Zhu, H.; Pierson, B.; Torres-Isea, R. O.; Becchetti, F. D.; Kolata, J. J.; Riggins, J.
2015-06-01
Deuterated scintillators have been used as a tool for neutron spectroscopy without Neutron Time-of-Flight (n-ToF) for more than 30 years. This article will provide a brief historical overview of the technique and current uses of deuterated scintillators in the UM-DSA and DESCANT arrays. Pulse-shape discrimination and spectrum unfolding with the maximum-likelihood expectation maximization algorithm will be discussed. Experimental unfolding and cross section results from measurements of (d,n), (3He,n) and (α,n) reactions are shown.
Single-Event Upsets Caused by High-Energy Protons
NASA Technical Reports Server (NTRS)
Price, W. E.; Nichols, D. K.; Smith, L. S.; Soli, G. A.
1986-01-01
Heavy secondary ions do not significantly alter device responses. Conclusion that external reaction products cause no significant alteration of single-event-upset response based on comparison of data obtained from both lidded and unlidded devices and for proton beams impinging at angles ranging from 0 degrees to 180 degrees with respect to chip face. Study also found single-event-upset cross section increases only modestly as proton energy increased to 590 MeV, characteristic of maximum energies expected in belts of trapped protons surrounding Earth and Jupiter.
Updating and extending the IRDF-2002 dosimetry library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capote, R.; Zolotarev, K.I.; Pronyaev, V.G.
The International Reactor Dosimetry File (IRDF)-2002 released in 2004 by the IAEA (see http://www-nds.iaea.org/irdf2002/) contains cross-section data and corresponding uncertainties for 66 dosimetry reactions. New cross-section evaluations have become available recently that re-define some of these dosimetry reactions including: (1) high-fidelity evaluation work undertaken by one of the authors (KIZ); (2) evaluations from the US ENDF/B-VII.0 and candidate evaluations from the US ENDF/B-VII.1 libraries that cover reactions within the International Evaluation of Neutron Cross-Section Standards; (3) European JEFF3.1 library; and (4) Japanese JENDL-4.0 library. Additional high-threshold reactions not included in IRDF-2002 (e.g., {sup 59C}o(n,3n) and {sup 209}Bi(n,3n)) have been alsomore » evaluated to characterize higher-energy neutron fields. Overall, 37 new evaluations of dosimetry reactions have been assessed and intercomparisons made with integral measurements in reference neutron fields to determine whether they should be adopted to update and improve IRDF-2002. Benchmark calculations performed for newly evaluated reactions using the ENDF/B-VII.0 {sup 235}U thermal fission and {sup 252}Cf spontaneous fission neutron spectra show that calculated integral cross sections exhibit improved agreement with evaluated experimental data when compared with the equivalent data from the IRDF-2002 library. Data inconsistencies or deficiencies of new evaluations have been identified for {sup 63}Cu(n,2n), {sup 60}Ni(n,p) {sup 60m+g}Co, {sup 55}Mn(n,{gamma}), and {sup 232}Th(n,f) reactions. Compared with IRDF-2002, the upper neutron energy boundary was formally increased from the actual maximum energy of typically 20 MeV up to 60 MeV by using the TENDL-2010 cross sections and covariance matrices. This extension would allow the updated IRDF library to be also used in fusion dosimetry applications. Uncertainties in the cross sections for all new evaluations are given in the form of relative covariance matrices. Newly evaluated excitation functions should be considered as suitable candidates in the preparation of an improved version of the IRDF that was planned to be released for testing in December 2011. (authors)« less
Neutron Capture Measurements on 97Mo with the DANCE Array
NASA Astrophysics Data System (ADS)
Walker, Carrie L.
Neutron capture is a process that is crucial to understanding nucleosynthesis, reactors, and nuclear weapons. Precise knowledge of neutron capture cross-sections and level densities is necessary in order to model these high-flux environments. High-confidence spin and parity assignments for neutron resonances are of critical importance to this end. For nuclei in the A=100 mass region, the p-wave neutron strength function is at a maximum, and the s-wave strength function is at a minimum, producing up to six possible Jpi combinations. Parity determination becomes important to assigning spins in this mass region, and the large number of spin groups adds complexity to the problem. In this work, spins and parities for 97Mo resonances are assigned, and best fit models for photon strength function and level density are determined. The neutron capture-cross section for 97Mo is also determined, as are resonance parameters for neutron energies ranging from 16 eV to 2 keV.
Structure, spectroscopic properties and laser performance of Nd:YNbO4 at 1066 nm
NASA Astrophysics Data System (ADS)
Ding, Shoujun; Peng, Fang; Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Sun, Dunlu; Dou, Renqin; Sun, Guihua
2016-12-01
We have demonstrated continuous wave (CW) laser operation of Nd:YNbO4 crystal at 1066 nm for the first time. A maximum output power of 1.12 W with the incident power of 5.0 W is successfully achieved corresponding to an optical-to-optical conversion efficiency of 22.4% and a slope efficiency of 24.0%. The large absorption cross section (8.7 × 10-20 cm2) and wide absorption band (6 nm) at around 808 nm indicates the good pumping efficiency by laser diodes (LD). The small emission cross section (29 × 10-20 cm2) and relative long lifetime of the 4F3/2 → 4I11/2 transition indicates good energy storage capacity of Nd:YNbO4. Moreover, the raw materials of Nd:YNbO4 are stable, thus, it can grow high-quality and large-size by Czochralski (CZ) method. Therefore the Nd:YNbO4 crystal is a potentially new laser material suitable for LD pumping.
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boddy, C. R.; Boehler, M.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuciuc, C.-M.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Dwuznik, M.; Dyndal, M.; Ebke, J.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Perez, S.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Franz, S.; Fraternali, M.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hoffmann, D.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Keyes, R. A.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; La Rosa, A.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester, C. M.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, B. A.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Mechnich, J.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Naranjo Garcia, R. F.; Narayan, R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'Grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Przysiezniak, H.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Qureshi, A.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.; Rieck, P.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sauvage, G.; Sauvan, E.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simoniello, R.; Sinervo, P.; Sinev, N. B.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wright, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi Della Porta, G.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration
2015-01-01
This Letter presents a search at the LHC for s-channel single top-quark production in proton-proton collisions at a centre-of-mass energy of 8 TeV. The analyzed data set was recorded by the ATLAS detector and corresponds to an integrated luminosity of 20.3 fb-1. Selected events contain one charged lepton, large missing transverse momentum and exactly two b-tagged jets. A multivariate event classifier based on boosted decision trees is developed to discriminate s-channel single top-quark events from the main background contributions. The signal extraction is based on a binned maximum-likelihood fit of the output classifier distribution. The analysis leads to an upper limit on the s-channel single top-quark production cross-section of 14.6 pb at the 95% confidence level. The fit gives a cross-section of σs = 5.0 ± 4.3 pb, consistent with the Standard Model expectation.
Slow Control System for the NIFFTE Collaboration TPC
NASA Astrophysics Data System (ADS)
Ringle, Erik; Niffte Collaboration Collaboration
2011-10-01
As world energy concerns continue to dominate public policy in the 21st century, the need for cleaner and more efficient nuclear power is necessary. In order to effectively design and implement plans for generation IV nuclear reactors, more accurate fission cross-section measurements are necessary. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration, in an effort to meet this need, has constructed a Time Projection Chamber (TPC) which aims to reduce the uncertainty of the fission cross-section to less than 1%. Using the Maximum Integration Data Acquisition System (MIDAS) framework, slow control measurements are integrated into a single interface to facilitate off-site monitoring. The Hart Scientific 1560 Black Stack will be used with two 2564 Thermistor Scanner Modules to monitor internal temperature of the TPC. A Prologix GPIB to Ethernet controller will be used to interface the hardware with MIDAS. This presentation will detail the design and implementation of the slow control system for the TPC. This work was supported by the U.S. Department of Energy Division of Energy Research.
NASA Astrophysics Data System (ADS)
Hills, J. G.
1992-06-01
Over 125,000 encounters between a hard binary with equal mass, components and orbital eccentricity of 0, and intruders with solar masses ranging from 0.01 to 10,000 are simulated. Each encounter was followed up to a maximum of 5 x 10 exp 6 integration steps to allow long-term 'resonances', temporary trinary systems, to break into a binary and a single star. These simulations were done over a range of impact parameters to find the cross sections for various processes occurring in these encounters. A critical impact parameter found in these simulations is the one beyond which no exchange collisions can occur. The energy exchange between the binary and a massive intruder decreases greatly in collisions with Rmin of not less than Rc. The semimajor axes and orbital eccentricity of the surviving binary also drops rapidly at Rc in encounters with massive intruders. The formation of temporary trinary systems is important for all intruder masses.
NASA Astrophysics Data System (ADS)
Krueger, Alexander; Knels, Lilla; Meissner, Sven; Wendel, Martina; Heller, Axel R.; Lambeck, Thomas; Koch, Thea; Koch, Edmund
2007-07-01
Fourier domain optical coherence tomography (FD-OCT) was used to acquire three-dimensional image stacks of isolated and perfused rabbit lungs (n = 4) at different constant pulmonary airway pressures (CPAP) and during vascular fixation. After despeckling and applying a threshold, the images were segmented into air and tissue, and registered to each other to compensate for movement between CPAP steps. The air-filled cross-sectional areas were quantified using a semi-automatic algorithm. The cross-sectional area of alveolar structures taken at all three perpendicular planes increased with increasing CPAP. Between the minimal CPAP of 3 mbar and the maximum of 25 mbar the areas increased to about 140% of their initial value. There was no systematic dependency of inflation rate on initial size of the alveolar structure. During the perfusion fixation of the lungs with glutaraldehyde morphometric changes of the alveolar geometry measured with FD-OCT were negligible.
The CAPTAIN-MINERvA Experiment
NASA Astrophysics Data System (ADS)
Yoo, Jieun; -Minerva Collaboration, Captain
2016-03-01
The CAPTAIN-MINERvA experiment aims to measure neutrino-argon interactions in the few GeV energy range, which corresponds to the first oscillation maximum for DUNE. It uses the CAPTAIN LArTPC as an active target in conjunction with MINERvA to measure the neutrino interactions and will provide the only high-statistics measurement of the neutrino-argon cross section above 2 GeV before DUNE. CAPTAIN is a liquid argon TPC which is currently being built at LANL. It will be moved to Fermilab and be used in conjunction with MINERvA. Using MINERvA as the tracking detector will allow us to measure the muon energy by dE/dx and thus more completely measure the incoming neutrino energy. And, by measuring the ratio of cross sections in argon to hydrocarbon in the scintillator, we will be able to make stringent tests of nuclear effect models. Thus, through this unique combination of detectors, CAPTAIN-MINERvA will be able to study neutrino-argon interactions and serve as an important source of input for DUNE.
Numerical and experimental research on pentagonal cross-section of the averaging Pitot tube
NASA Astrophysics Data System (ADS)
Zhang, Jili; Li, Wei; Liang, Ruobing; Zhao, Tianyi; Liu, Yacheng; Liu, Mingsheng
2017-07-01
Averaging Pitot tubes have been widely used in many fields because of their simple structure and stable performance. This paper introduces a new shape of the cross-section of an averaging Pitot tube. Firstly, the structure of the averaging Pitot tube and the distribution of pressure taps are given. Then, a mathematical model of the airflow around it is formulated. After that, a series of numerical simulations are carried out to optimize the geometry of the tube. The distribution of the streamline and pressures around the tube are given. To test its performance, a test platform was constructed in accordance with the relevant national standards and is described in this paper. Curves are provided, linking the values of flow coefficient with the values of Reynolds number. With a maximum deviation of only ±3%, the results of the flow coefficient obtained from the numerical simulations were in agreement with those obtained from experimental methods. The proposed tube has a stable flow coefficient and favorable metrological characteristics.
Boulanouar, Omar; Fromm, Michel; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon
2013-01-01
It was recently shown that the affinity of doubly charged, 1–3 diaminopropane (Dap2+) for DNA permits the growth on highly ordered pyrolitic graphite (HOPG) substrates, of plasmid DNA films, of known uniform thickness [O. Boulanouar, A. Khatyr, G. Herlem, F. Palmino, L. Sanche, and M. Fromm, J. Phys. Chem. C 115, 21291–21298 (2011)]. Post-irradiation analysis by electrophoresis of such targets confirms that electron impact at 10 eV produces a maximum in the yield of single strand breaks that can be associated with the formation of a DNA− transient anion. Using a well-adapted deterministic survival model for the variation of electron damage with fluence and film thickness, we have determined an absolute cross section for strand-break damage by 10 eV electrons and inelastic scattering attenuation length in DNA-Dap complex films. PMID:23927289
Aad, G.; Abbott, B.; Abdallah, J.; ...
2015-01-05
This Letter presents a search at the LHC for s-channel single top-quark production in proton–proton collisions at a centre-of-mass energy of 8 TeV. The analyzed data set was recorded by the ATLAS detector and corresponds to an integrated luminosity of 20.3 fb -1. The selected events contain one charged lepton, large missing transverse momentum and exactly two b-tagged jets. A multivariate event classifier based on boosted decision trees is developed to discriminate s-channel single top-quark events from the main background contributions. The signal extraction is based on a binned maximum-likelihood fit of the output classifier distribution. The analysis leads tomore » an upper limit on the s-channel single top-quark production cross-section of 14.6 pb at the 95% confidence level. The fit gives a cross-section of σ s=5.0 ± 4.3 pb, consistent with the Standard Model expectation.« less
Light extraction block with curved surface
Levermore, Peter; Krall, Emory; Silvernail, Jeffrey; Rajan, Kamala; Brown, Julia J.
2016-03-22
Light extraction blocks, and OLED lighting panels using light extraction blocks, are described, in which the light extraction blocks include various curved shapes that provide improved light extraction properties compared to parallel emissive surface, and a thinner form factor and better light extraction than a hemisphere. Lighting systems described herein may include a light source with an OLED panel. A light extraction block with a three-dimensional light emitting surface may be optically coupled to the light source. The three-dimensional light emitting surface of the block may includes a substantially curved surface, with further characteristics related to the curvature of the surface at given points. A first radius of curvature corresponding to a maximum principal curvature k.sub.1 at a point p on the substantially curved surface may be greater than a maximum height of the light extraction block. A maximum height of the light extraction block may be less than 50% of a maximum width of the light extraction block. Surfaces with cross sections made up of line segments and inflection points may also be fit to approximated curves for calculating the radius of curvature.
Strain measurement in the wavy-ply region of an externally pressurized cross-ply composite ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gascoigne, H.E.; Abdallah, M.G.
1996-07-01
Ply-level strains are determined in the cross-section of an externally pressurized cross-ply (3:1 circumferential to axial fiber ratio) graphite-epoxy ring containing an isolated circumferential wavy region. A special test fixture was used which permitted measuring orthogonal displacement components in the wavy area using moire interferometry as the pressure was increased. Strain components were determined at selected locations in the wavy area up to approximately90% of failure pressure. The study shows: (1) large interlaminar shear strains, which are non-existent in the perfect ring, are present near the wave inflection points; (2) the wavy plies generate increased interlaminar normal compressive strains inmore » both circumferential and axial plies along a radial line coinciding with maximum wave amplitude; and (3) nonlinear strain response begins at approximately 60% of failure pressure.« less
NASA Astrophysics Data System (ADS)
Zhang, Lulu; Gao, Shoubao; Song, Yuzhi; Meng, Qingtian
2018-03-01
The dependence of the cross section for the C + SH \\to H + CS, S + CH reactions on the vibrational excitation of SH(v = 0-20, j = 0) is analyzed in detail at the collision energies of 0.3 and 0.8 eV by using the quasi-classical trajectory method and the new potential energy surface (Song et al 2016 Sci. Rep. 6 37734) of the {{HCS}}({{X}}{}2{{A}}\\prime ). The efficiency of vibrational excitation to promote the reaction is investigated through the analysis of the cross section and its v dependence in terms of the reaction probability, maximum impact parameter, and the features of the potential energy surface. The differential cross sections obtained show that at higher vibrational levels, the products (CS, CH) are mainly forward scattered, and the sideward and backward scatterings are quite weak. In addition to the scalar properties, the stereodynamical attributes, such as angle distribution functions P(θ r ), P(ϕ r ) and P(θ r , ϕ r ) at different vibrational levels are explored in detail. Furthermore, through the investigation of the state-to-state dynamics for the titled reaction, it is clear that the vibrational excitation of the product for C + SH \\to H + CS reaction is quite strong, with the most probable population appearing at high vibration numbers.
NASA Astrophysics Data System (ADS)
García-Alvarez, J. A.; Fernández-Varea, J. M.; Vanin, V. R.; Santos, O. C. B.; Barros, S. F.; Malafronte, A. A.; Rodrigues, C. L.; Martins, M. N.; Koskinas, M. F.; Maidana, N. L.
2017-08-01
We have used the low-energy beam line of the São Paulo Microtron accelerator to study the maximum energy transfer point (tip) of electron-atom bremsstrahlung spectra for C, Al, Te, Ta and Au. Absolute cross sections differential in energy and angle of the emitted photon were measured for various electron kinetic energies between 20 and 100 keV, and photon emission angles of 35◦, 90◦ and 131◦. The bremsstrahlung spectra were collected with three HPGe detectors and their response functions were evaluated analytically. Rutherford backscattering spectrometry allowed us to obtain the thicknesses of the targets with good accuracy. We propose a simple model for the tip region of the bremsstrahlung spectrum emitted at a given angle, whose adjustable parameters are the mean energy of the incident beam and its spread as well as an amplitude. The model was fitted simultaneously to the pulse-height distributions recorded at the three angles, determining the doubly differential cross sections from the corresponding amplitudes. The measured values have uncertainties between 3% and 13%. The agreement of the experimental results with the theoretical partial-wave calculations of Pratt and co-workers depends on the analyzed element and angle but is generally satisfactory. In the case of Al and Au, the uncertainty attributed to the theory is probably overestimated.
Electron capture in collisions of Al2+ ions with He atoms at intermediate energies
NASA Astrophysics Data System (ADS)
Watanabe, A.; Sato, H.; Gu, J. P.; Hirsch, G.; Buenker, R. J.; Kimura, M.
2001-09-01
Electron capture resulting from collisions of Al2+ ions with He atoms from 0.15 to 1000 keV/u is investigated using a molecular-orbital representation within a semiclassical frame. Molecular electronic states and corresponding couplings are determined by the ALCHEMY program. Sixteen molecular states all connecting to single-electron-capture processes are included, and hence radial and rotational couplings among these channels are fully considered. The trajectory effect arising from the straight-line, Coulomb, and ground-state potential trajectories for electron-capture and excitation processes is carefully assessed. The electron-capture cross section by ground-state Al2+(2S) ions slowly increases before it reaches a maximum of 1.3×10-16 cm2 at 100 keV/u. Those for metastable Al2+(2P) ions sharply increase with increasing energy, and reach a peak at 1 keV/u with a value of 1.5×10-16 cm2. The earlier experimental data are found to be larger by an order of magnitude although their energy dependence is in good accord with the present result. Excitation cross sections for both the ground and metastable states are found to be much larger by a factor of 2-3 than corresponding capture cross sections above 1 keV/u although they become comparable below this energy.
Mathematical model of device for slurry concentration and desludging in near-bottom zone
NASA Astrophysics Data System (ADS)
Shishkin, P. V.; Trufanova, I. S.
2017-10-01
There are many systems for extracting minerals from the bottom of water bodies, but none of them meets the requirements, so the actual task is to create technical means that provide the best performance and environmental safety. Increase the efficiency of the hydromechanical mining method is possible due to the maximum concentration and desludging of the slurry in the near-bottom zone, which allows reducing the energy and material consumption of hydrotransport of minerals. To achieve this goal, it is proposed to use a perforated section adjacent to the power unit, with a transverse cross section that reduces in its length in the direction of flow, in the pressure pulp pipeline system.
Small Scale Mass Flow Plug Calibration
NASA Technical Reports Server (NTRS)
Sasson, Jonathan
2015-01-01
A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model in the operating region of the MFP is 0.54%. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. Effects of boundary layer growth and the reduction in cross-sectional flow area are calculated using an in- integral method. A CFD calibration is shown to be of lower accuracy with a maximum error of 1.35%, and slower by a factor of 100. Effects of total pressure distortion are taken into account in the experiment. Distortion creates a loss in flow rate and can be characterized by two different distortion descriptors.
Sagha Zadeh, Rana; Shepley, Mardelle M; Owora, Arthur Hamie; Dannenbaum, Martha C; Waggener, Laurie T; Chung, Susan Sung Eun
2018-05-01
To examine the importance of specific workplace environment characteristics for maximum health and performance, assigned by healthcare employees, and how they relate to the nature of their work. A cross-sectional mixed-method study was conducted with content analysis and robust regression models to examine the relationship between workplace environment characteristics and perceived importance in promoting health and performance. Our findings suggest that perceptions of key environment characteristics that safeguard health and performance in healthcare workplaces may vary by employee sex, setting, and nature of healthcare work involved. Theme and model descriptions of the influence of these factors on participant perceptions are provided. Employee feedback on workplace characteristics that impact health and performance could be instrumental in determining the priorities of workplace design.
The Anatomy of AP1000 Mono-Block Low Pressure Rotor Forging
NASA Astrophysics Data System (ADS)
Jin, Jia-yu; Rui, Shou-tai; Wang, Qun
AP1000 mono-block low pressure (LP) rotor forgings for nuclear power station have maximum ingot weight, maximum diameter and the highest technical requirements. It confronts many technical problems during manufacturing process such as composition segregation and control of inclusion in the large ingot, core compaction during forging, control of grain size and mechanical performance. The rotor forging were anatomized to evaluate the manufacturing level of CFHI. This article introduces the anatomical results of this forging. The contents include chemical composition, mechanical properties, inclusions and grain size and other aspects from the full-length and full cross-section of this forging. The fluctuation of mechanical properties, uniformity of microstructure and purity of chemical composition were emphasized. The results show that the overall performance of this rotor forging is particularly satisfying.
Pepin, Scott R; Griffith, Chad J; Wijdicks, Coen A; Goerke, Ute; McNulty, Margaret A; Parker, Josh B; Carlson, Cathy S; Ellermann, Jutta; LaPrade, Robert F
2009-11-01
There has recently been increased interest in the use of 7.0-T magnetic resonance imaging for evaluating articular cartilage degeneration and quantifying the progression of osteoarthritis. The purpose of this study was to evaluate articular cartilage cross-sectional area and maximum thickness in the medial compartment of intact and destabilized canine knees using 7.0-T magnetic resonance images and compare these results with those obtained from the corresponding histologic sections. Controlled laboratory study. Five canines had a surgically created unilateral grade III posterolateral knee injury that was followed for 6 months before euthanasia. The opposite, noninjured knee was used as a control. At necropsy, 3-dimensional gradient echo images of the medial tibial plateau of both knees were obtained using a 7.0-T magnetic resonance imaging scanner. Articular cartilage area and maximum thickness in this site were digitally measured on the magnetic resonance images. The proximal tibias were processed for routine histologic analysis with hematoxylin and eosin staining. Articular cartilage area and maximum thickness were measured in histologic sections corresponding to the sites of the magnetic resonance slices. The magnetic resonance imaging results revealed an increase in articular cartilage area and maximum thickness in surgical knees compared with control knees in all specimens; these changes were significant for both parameters (P <.05 for area; P <.01 for thickness). The average increase in area was 14.8% and the average increase in maximum thickness was 15.1%. The histologic results revealed an average increase in area of 27.4% (P = .05) and an average increase in maximum thickness of 33.0% (P = .06). Correlation analysis between the magnetic resonance imaging and histology data revealed that the area values were significantly correlated (P < .01), but the values for thickness obtained from magnetic resonance imaging were not significantly different from the histology sections (P > .1). These results demonstrate that 7.0-T magnetic resonance imaging provides an alternative method to histology to evaluate early osteoarthritic changes in articular cartilage in a canine model by detecting increases in articular cartilage area. The noninvasive nature of 7.0-T magnetic resonance imaging will allow for in vivo monitoring of osteoarthritis progression and intervention in animal models and humans for osteoarthritis.
Merchaoui, Irtyah; Bouzgarrou, Lamia; Mnasri, Ahlem; Mghanem, Mounir; Akrout, Mohamed; Malchaire, Jacques; Chaari, Neila
2017-01-01
This study has been performed to determine the influence of rotating shift work on physical working capacity of Tunisian nurses and to design recommendations to managers so that they implement effective preventive measures. It is a cross-sectional design using a standardized questionnaire and many physical capacity tests on a representative sample of 1181 nurses and nursing assistants from two university hospital centers of the school of Medicine of Monastir located in the Tunisian Sahel. 293 participants have been recruited by stratified random sampling according to gender and departments. Maximum Grip strength, 30s sit-to-stand test, one leg test, Fingertip-to-Floor test, Saltsa test and peak expiratory flow were used to assess physical capacity. Work ability was assessed through the workability index. Mental and physical loads were heavily perceived in shift healthcare workers (p=0.01; p=0.02). The maximum grip force was stronger in rotating shift work nurses (p=0.0001). Regarding to the seniority subgroups in each kind of work schedule, the Body Mass Index was increasing with seniority in both schedules. All the physical tests, were better in less-than-ten-year groups. Peak Flow and grip strength were significantly better in less-than-ten-year seniority in shift work group. There is a need to improve the design of the existing shift systems and to reduce as much as possible shift schedule as well as to avoid shift schedule for over-10-year-seniority nurses.
Mihaescu, Mihai; Murugappan, Shanmugam; Kalra, Maninder; Khosla, Sid; Gutmark, Ephraim
2008-07-19
Computational fluid dynamics techniques employing primarily steady Reynolds-Averaged Navier-Stokes (RANS) methodology have been recently used to characterize the transitional/turbulent flow field in human airways. The use of RANS implies that flow phenomena are averaged over time, the flow dynamics not being captured. Further, RANS uses two-equation turbulence models that are not adequate for predicting anisotropic flows, flows with high streamline curvature, or flows where separation occurs. A more accurate approach for such flow situations that occur in the human airway is Large Eddy Simulation (LES). The paper considers flow modeling in a pharyngeal airway model reconstructed from cross-sectional magnetic resonance scans of a patient with obstructive sleep apnea. The airway model is characterized by a maximum narrowing at the site of retropalatal pharynx. Two flow-modeling strategies are employed: steady RANS and the LES approach. In the RANS modeling framework both k-epsilon and k-omega turbulence models are used. The paper discusses the differences between the airflow characteristics obtained from the RANS and LES calculations. The largest discrepancies were found in the axial velocity distributions downstream of the minimum cross-sectional area. This region is characterized by flow separation and large radial velocity gradients across the developed shear layers. The largest difference in static pressure distributions on the airway walls was found between the LES and the k-epsilon data at the site of maximum narrowing in the retropalatal pharynx.
Cross-Sectional And Longitudinal Uncertainty Propagation In Drinking Water Risk Assessment
NASA Astrophysics Data System (ADS)
Tesfamichael, A. A.; Jagath, K. J.
2004-12-01
Pesticide residues in drinking water can vary significantly from day to day. However, drinking water quality monitoring performed under the Safe Drinking Water Act (SDWA) at most community water systems (CWSs) is typically limited to four data points per year over a few years. Due to limited sampling, likely maximum residues may be underestimated in risk assessment. In this work, a statistical methodology is proposed to study the cross-sectional and longitudinal uncertainties in observed samples and their propagated effect in risk estimates. The methodology will be demonstrated using data from 16 CWSs across the US that have three independent databases of atrazine residue to estimate the uncertainty of risk in infants and children. The results showed that in 85% of the CWSs, chronic risks predicted with the proposed approach may be two- to four-folds higher than that predicted with the current approach, while intermediate risks may be two- to three-folds higher in 50% of the CWSs. In 12% of the CWSs, however, the proposed methodology showed a lower intermediate risk. A closed-form solution of propagated uncertainty will be developed to calculate the number of years (seasons) of water quality data and sampling frequency needed to reduce the uncertainty in risk estimates. In general, this methodology provided good insight into the importance of addressing uncertainty of observed water quality data and the need to predict likely maximum residues in risk assessment by considering propagation of uncertainties.
Multiple-orifice liquid injection into hypersonic airstreams and applications to ram C-3 flight
NASA Technical Reports Server (NTRS)
Weaver, W. L.
1972-01-01
Experimental data are presented for the oblique injection of water and three electrophilic liquids (fluorocarbon compounds) through multiple-orifice nozzles from a flat plate and the sides of a hemisphere-cone (0.375 scale of RAM C spacecraft) into hypersonic airstreams. The nozzle patterns included single and multiple orifices, single rows of nozzles, and duplicates of the RAM C-III nozzles. The flat-plate tests were made at Mach 8. Total pressure was varied from 3.45 MN/m2 to 10.34 MN/m2, Reynolds number was varied form 9,840,000 per meter to 19,700,000 per meter, and liquid injection pressure was varied from 0.69 MN/m2 to 3.5 MN/m2. The hemisphere-cone tests were made at Mach 7.3. Total pressure was varied from 1.38 MN/m2, to 6.89 MN/m2, Reynolds number was varied from 3,540,000 per meter to 17,700,000 per meter, and liquid-injection pressure was varied from 0.34 MN/m2 to 4.14 MN/m2. Photographs of the tests and plots of liquid-penetration and spray cross-section area are presented. Maximum penetration was found to vary as the square root of the dynamic-pressure ratio and the square root of the total injection nozzle area. Spray cross-section area was linear with maximum penetration. The test results are used to compute injection parameters for the RAM C-3 flight injection experiment.
CNTF 1357 G -> A polymorphism and the muscle strength response to resistance training.
Walsh, Sean; Kelsey, Bethany K; Angelopoulos, Theodore J; Clarkson, Priscilla M; Gordon, Paul M; Moyna, Niall M; Visich, Paul S; Zoeller, Robert F; Seip, Richard L; Bilbie, Steve; Thompson, Paul D; Hoffman, Eric P; Price, Thomas B; Devaney, Joseph M; Pescatello, Linda S
2009-10-01
The present study examined associations between the ciliary neurotrophic factor (CNTF) 1357 G --> A polymorphism and the muscle strength response to a unilateral, upper arm resistance-training (RT) program among healthy, young adults. Subjects were 754 Caucasian men (40%) and women (60%) who were genotyped and performed a training program of the nondominant (trained) arm with the dominant (untrained) arm as a comparison. Peak elbow flexor strength was measured with one repetition maximum, isometric strength with maximum voluntary contraction, and bicep cross-sectional area with MRI in the trained and untrained arms before and after training. Women with the CNTF GG genotype gained more absolute isometric strength, as measured by MVC (6.5 +/- 0.3 vs. 5.2 +/- 0.5 kg), than carriers of the CNTF A1357 allele in the trained arm pre- to posttraining (P < 0.05). No significant associations were seen in men. Women with the CNTF GG genotype gained more absolute dynamic (1.0 +/- 0.1 vs. 0.6 +/- 0.1 kg) and allometric (0.022 +/- 0.0 vs. 0.015 +/- 0.0 kg/kg(-0.67)) strength, as measured by 1 RM, than carriers of the CNTF A1357 allele in the untrained arm pre- to posttraining (P < 0.05). No significant associations were seen in men. No significant associations, as measured by cross-sectional area, were seen in men or women. The CNTF 1357 G --> A polymorphism explains only a small portion of the variability in the muscle strength response to training in women.
Effect of resistance exercise training combined with relatively low vascular occlusion.
Sumide, Takahiro; Sakuraba, Keishoku; Sawaki, Keisuke; Ohmura, Hirotoshi; Tamura, Yoshifumi
2009-01-01
Previous studies have demonstrated that a low-intensity resistance exercise, combined with vascular occlusion, results in a marked increase in muscular size and strength. We investigated the optimal pressure for reduction of muscle blood flow with resistance exercise to increase the muscular strength and endurance. Twenty-one subjects were randomly divided into four groups by the different application of vascular occlusion pressure at the proximal of thigh: without any pressure (0-pressure group), with a pressure of 50mmHg (50-pressure group), with a pressure of 150mmHg (150-pressure group), and with a pressure of 250mmHg (250-pressure group). The isokinetic muscle strength at angular velocities of 60 and 180 degrees /s, total muscle work, and the cross-sectional knee extensor muscle area were assessed before and after exercise. Exercise was performed three times a week over an 8-week period at an intensity of approximately 20% of one-repetition maximum for straight leg raising and hip joint adduction and maximum force for abduction training. A significant increase in strength at 180 degrees /s was noted after exercise in all subjects who exercised under vascular occlusion. Total muscle work increased significantly in the 50- and 150-pressure groups (P<0.05, P<0.01, respectively). There was no significant increase in cross-sectional knee extensor muscle area in any groups. In conclusion, resistance exercise with relatively low vascular occlusion pressure is potentially useful to increase muscle strength and endurance without discomfort.
Sadjadi, Firooz A; Mahalanobis, Abhijit
2006-05-01
We report the development of a technique for adaptive selection of polarization ellipse tilt and ellipticity angles such that the target separation from clutter is maximized. From the radar scattering matrix [S] and its complex components, in phase and quadrature phase, the elements of the Mueller matrix are obtained. Then, by means of polarization synthesis, the radar cross section of the radar scatters are obtained at different transmitting and receiving polarization states. By designing a maximum average correlation height filter, we derive a target versus clutter distance measure as a function of four transmit and receive polarization state angles. The results of applying this method on real synthetic aperture radar imagery indicate a set of four transmit and receive angles that lead to maximum target versus clutter discrimination. These optimum angles are different for different targets. Hence, by adaptive control of the state of polarization of polarimetric radar, one can noticeably improve the discrimination of targets from clutter.
NASA Astrophysics Data System (ADS)
Gupta, Dhanoj; Choi, Heechol; Song, Mi-Young; Karwasz, Grzegorz P.; Yoon, Jung-Sik
2017-05-01
The total ionization cross section for C2Fx (x = 1 - 6) and C3Fx (x = 1 - 8) fluorocarbon species are studied with the Binary-Encounter Bethe (BEB) model using various orbital parameters calculated from restricted/unrestricted Hartree-Fock (RHF/UHF) and Density Functional Theory (DFT). All the targets were optimized for their minimal structures and energies with several ab-initio methods with the aug-cc-pVTZ basis set. Among them, the present results with RHF/UHF orbital energies showed good agreement with the experimental results for stable targets C2F6, C2F4, C3F6 and C3F8. The results with the DFT (ωB97X/ωB97X-D) showed a reasonable agreement with the recent calculation of Bull et al. [J.N. Bull, M. Bart, C. Vallance, P.W. Harland, Phys. Rev. A 88, 062710 (2013)] for C2F6, C3F6 and C3F8 targets. The ionization cross section for C2F, C2F2, C2F3, C3F, C3F2, C3F3, C3F4, C3F5 and C3F7 were computed for the first time in the present study. We have also computed the vertical ionization potentials and polarizability for all the targets and compared them with other experimental and theoretical values. A good agreement is found between the present and the previous results. The calculated polarizability in turn is used to study the correlation with maximum ionization cross section and in general a good correlation is found among them, confirming the consistency and reliability of the present data. The cross section data reported in this article are very important for plasma modeling especially related to fluorocarbon plasmas. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.
Validity of one-repetition maximum predictive equations in men with spinal cord injury.
Ribeiro Neto, F; Guanais, P; Dornelas, E; Coutinho, A C B; Costa, R R G
2017-10-01
Cross-sectional study. The study aimed (a) to test the cross-validation of current one-repetition maximum (1RM) predictive equations in men with spinal cord injury (SCI); (b) to compare the current 1RM predictive equations to a newly developed equation based on the 4- to 12-repetition maximum test (4-12RM). SARAH Rehabilitation Hospital Network, Brasilia, Brazil. Forty-five men aged 28.0 years with SCI between C6 and L2 causing complete motor impairment were enrolled in the study. Volunteers were tested, in a random order, in 1RM test or 4-12RM with 2-3 interval days. Multiple regression analysis was used to generate an equation for predicting 1RM. There were no significant differences between 1RM test and the current predictive equations. ICC values were significant and were classified as excellent for all current predictive equations. The predictive equation of Lombardi presented the best Bland-Altman results (0.5 kg and 12.8 kg for mean difference and interval range around the differences, respectively). The two created equation models for 1RM demonstrated the same and a high adjusted R 2 (0.971, P<0.01), but different SEE of measured 1RM (2.88 kg or 5.4% and 2.90 kg or 5.5%). All 1RM predictive equations are accurate to assess individuals with SCI at the bench press exercise. However, the predictive equation of Lombardi presented the best associated cross-validity results. A specific 1RM prediction equation was also elaborated for individuals with SCI. The created equation should be tested in order to verify whether it presents better accuracy than the current ones.
2014-01-01
Background Biotechnological screening processes are performed since more than 8 decades in small scale shaken bioreactors like shake flasks or microtiter plates. One of the major issues of such reactors is the sufficient oxygen supply of suspended microorganisms. Oxygen transfer into the bulk liquid can in general be increased by introducing suitable baffles at the reactor wall. However, a comprehensive and systematic characterization of baffled shaken bioreactors has never been carried out so far. Baffles often differ in number, size and shape. The exact geometry of baffles in glass lab ware like shake flasks is very difficult to reproduce from piece to piece due to the hard to control flow behavior of molten glass during manufacturing. Thus, reproducibility of the maximum oxygen transfer capacity in such baffled shake flasks is hardly given. Results As a first step to systematically elucidate the general effect of different baffle geometries on shaken bioreactor performance, the maximum oxygen transfer capacity (OTRmax) in baffled 48-well microtiter plates as shaken model reactor was characterized. This type of bioreactor made of plastic material was chosen, as the exact geometry of the baffles can be fabricated by highly reproducible laser cutting. As a result, thirty different geometries were investigated regarding their maximum oxygen transfer capacity (OTRmax) and liquid distribution during shaking. The relative perimeter of the cross-section area as new fundamental geometric key parameter is introduced. An empirical correlation for the OTRmax as function of the relative perimeter, shaking frequency and filling volume is derived. For the first time, this correlation allows a systematic description of the maximum oxygen transfer capacity in baffled microtiter plates. Conclusions Calculated and experimentally determined OTRmax values agree within ± 30% accuracy. Furthermore, undesired out-of-phase operating conditions can be identified by using the relative perimeter as key parameter. Finally, an optimum well geometry characterized by an increased perimeter of 10% compared to the unbaffled round geometry is identified. This study may also assist to comprehensively describe and optimize the baffles of shake flasks in future. PMID:25093039
Applications of non-standard maximum likelihood techniques in energy and resource economics
NASA Astrophysics Data System (ADS)
Moeltner, Klaus
Two important types of non-standard maximum likelihood techniques, Simulated Maximum Likelihood (SML) and Pseudo-Maximum Likelihood (PML), have only recently found consideration in the applied economic literature. The objective of this thesis is to demonstrate how these methods can be successfully employed in the analysis of energy and resource models. Chapter I focuses on SML. It constitutes the first application of this technique in the field of energy economics. The framework is as follows: Surveys on the cost of power outages to commercial and industrial customers usually capture multiple observations on the dependent variable for a given firm. The resulting pooled data set is censored and exhibits cross-sectional heterogeneity. We propose a model that addresses these issues by allowing regression coefficients to vary randomly across respondents and by using the Geweke-Hajivassiliou-Keane simulator and Halton sequences to estimate high-order cumulative distribution terms. This adjustment requires the use of SML in the estimation process. Our framework allows for a more comprehensive analysis of outage costs than existing models, which rely on the assumptions of parameter constancy and cross-sectional homogeneity. Our results strongly reject both of these restrictions. The central topic of the second Chapter is the use of PML, a robust estimation technique, in count data analysis of visitor demand for a system of recreation sites. PML has been popular with researchers in this context, since it guards against many types of mis-specification errors. We demonstrate, however, that estimation results will generally be biased even if derived through PML if the recreation model is based on aggregate, or zonal data. To countervail this problem, we propose a zonal model of recreation that captures some of the underlying heterogeneity of individual visitors by incorporating distributional information on per-capita income into the aggregate demand function. This adjustment eliminates the unrealistic constraint of constant income across zonal residents, and thus reduces the risk of aggregation bias in estimated macro-parameters. The corrected aggregate specification reinstates the applicability of PML. It also increases model efficiency, and allows-for the generation of welfare estimates for population subgroups.
Telomeres shorten more slowly in slow-aging wild animals than in fast-aging ones.
Dantzer, Ben; Fletcher, Quinn E
2015-11-01
Research on the physiological causes of senescence aim to identify common physiological mechanisms that explain age-related declines in fitness across taxonomic groups. Telomeres are repetitive nucleotide sequences found on the ends of eukaryotic chromosomes. Past research indicates that telomere attrition is strongly correlated with inter-specific rates of aging, though these studies cannot distinguish whether telomere attrition is a cause or consequence of the aging process. We extend previous research on this topic by incorporating recent studies to test the hypothesis that telomeres shorten more slowly with age in slow-aging animals than in fast-aging ones. We assembled all studies that have quantified cross-sectional (i.e. between-individual) telomere rates of change (TROC) over the lifespans of wild animals. This included 22 estimates reflecting absolute TROC (TROCabs, bp/yr, primarily measured using the terminal restriction fragment length method), and 10 estimates reflecting relative TROC (TROCrel, relative telomere length/yr, measured using qPCR), from five classes (Aves, Mammalia, Bivalvia, Reptilia, and Actinopterygii). In 14 bird species, we correlated between-individual (i.e. cross-sectional) TROCabs estimates with both maximum lifespan and a phylogenetically-corrected principle component axis (pcPC1) that reflected the slow-fast axis of life-history variation. Bird species characterized by faster life-histories and shorter maximum lifespans had faster TROCabs. In nine studies, both between-individual and within-individual TROC estimates were available (n=8 for TROCabs, n=1 for TROCrel). Within-individual TROC estimates were generally greater than between-individual TROC estimates, which is indicative of selective disappearance of individuals with shorter telomeres. However, the difference between within- and between-individual TROC estimates was only significant in two out of nine studies. The relationship between within-individual TROCabs and maximum lifespan did not differ from the relationship of between-individual TROCabs and maximum lifespan. Overall, our results provide additional support for the hypothesis that TROC is correlated with inter-specific rates of aging and complement the intra-specific research that also find relationships between telomere attrition and components of fitness. Copyright © 2015 Elsevier Inc. All rights reserved.
A perspective of synthetic aperture radar for remote sensing
NASA Technical Reports Server (NTRS)
Skolnik, M. I.
1978-01-01
The characteristics and capabilities of synthetic aperture radar are discussed so as to identify those features particularly unique to SAR. The SAR and Optical images were compared. The SAR is an example of radar that provides more information about a target than simply its location. It is the spatial resolution and imaging capability of SAR that has made its application of interest, especially from spaceborne platforms. However, for maximum utility to remote sensing, it was proposed that other information be extracted from SAR data, such as the cross section with frequency and polarization.
NASA Technical Reports Server (NTRS)
Chutjian, A.; Alajajian, S. H.
1987-01-01
Dissociative electron attachment to F2 has been observed in the energy range 0-140 meV, at a resolution of 6 meV (full width at half maximum). Results show conclusively a sharp, resolution-limited threshold behavior consistent with an s-wave cross section varying as sq rt of epsilon. Two accurate theoretical calculations predict only p-wave behavior varying as the sq rt of epsilon. Several nonadiabatic coupling effects leading to s-wave behavior are outlined.
2007-02-28
where they exhibited the maximum values, which were the midsurface and 0/-0 surface for two laminates with 0=150 and 0=400. a) 50000 40000 - 0 30000...the first and second invariants of the strain tensor calculated at the midsurface in the x=O cross section as a function of distance from the hole edge...Y Figure 7. Comparison of the distributions of strain tensor invariants predicted in the matrix phase at the midsurface at x=0 as a function of
Means of determining extrusion temperatures
McDonald, Robert E.; Canonico, Domenic A.
1977-01-01
In an extrusion process comprising the steps of fabricating a metal billet, heating said billet for a predetermined time and at a selected temperature to increase its plasticity and then forcing said heated billet through a small orifice to produce a desired extruded object, the improvement comprising the steps of randomly inserting a plurality of small metallic thermal tabs at different cross sectional depths in said billet as a part of said fabricating step, and examining said extruded object at each thermal tab location for determining the crystal structure at each extruded thermal tab thus revealing the maximum temperature reached during extrusion in each respective tab location section of the extruded object, whereby the thermal profile of said extruded object during extrusion may be determined.
Anatomy and biomechanics of gluteus maximus and the thoracolumbar fascia at the sacroiliac joint.
Barker, P J; Hapuarachchi, K S; Ross, J A; Sambaiew, E; Ranger, T A; Briggs, C A
2014-03-01
Biomechanical models predict that recruitment of gluteus maximus (GMax) will exert a compressive force across the sacroiliac joint (SIJ), yet this muscle requires morphologic assessment. The aims of this study were to document GMax's proximal attachments and assess their capacity to generate forces including compressive force at the SIJ. In 11 embalmed cadaver limbs, attachments of GMax crossing the SIJ were dissected and their fascicle orientation, length and attachment volume documented. The physiological cross-sectional area (PCSA) of each attachment was calculated along with its estimated maximum force at the SIJ and lumbar spine. GMax fascicles originated from the gluteus medius fascia, ilium, thoracolumbar fascia, erector spinae aponeurosis, sacrum, coccyx, dorsal sacroiliac and sacrotuberous ligaments in all specimens. Their mean fascicle orientation ranged from 32 to 45° below horizontal and mean length from 11 to 18 cm. The mean total PCSA of GMax was 26 cm(2) (range 16-36), of which 70% crossed the SIJ. The average maximum force predicted to be generated by GMax's total attachments crossing each SIJ was 891 N (range 572-1,215), of which 70% (702 N: range 450-1,009) could act perpendicular to the plane of the SIJ. The capacity of GMax to generate an extensor moment at lower lumbar segments was estimated at 4 Nm (range 2-9.5). GMax may generate compressive forces at the SIJ through its bony and fibrous attachments. These may assist effective load transfer between lower limbs and trunk. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Nasution, T. I.; Asrosa, R.; Nainggolan, I.; Balyan, M.; Indah, R.; Wahyudi, A.
2018-02-01
In this report, sensing properties of sodium tripolyphosphate (TPP) cross-linked chitosan based sensor has been successfully enhanced towards acetone. Chitosan solutions were cross-linked with sodium TPP in variation of 0.1%, 0.5%, 1% and 1.5% w/v, respectively. The sensors were fabricated in film form using an electrochemical deposition method. The sensing properties of the sensors were observed by exposing the pure chitosan and sodium TPP cross-linked chitosan sensors towards acetone concentrations of 5, 10, 50, 100 and 200 ppm. The measurement results revealed that the maximum response in output voltage value of pure chitosan sensor was 0.35 V while sodium TPP crosslinked chitosan sensors were above 0.35 V towards 5 ppm acetone concentration. When the sensors were exposed towards acetone concentration of 200 ppm, the maximum response of pure chitosan was 0.45 V while sodium TPP crosslinked chitosan sensors were above 0.45 V. Amongst the variation of sodium TPP, the maximum response of 1% sodium TPP was the highest since the maximum response was 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration, respectively. While the maximum responses of other sodium TPP concentrations were under 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration. Moreover, 1% sodium TPP cross-linked chitosan based sensor showed good reproducibility and outstanding lifetime. Therefore, 1% sodium TPP cross-linked chitosan based sensor has exhibited remarkable sensing properties as a novel acetone sensor.
NASA Astrophysics Data System (ADS)
Tiburcio-Moreno, Jose A.; Alvarado-Gil, J. J.; Diaz, Carlos; Echevarria, Lorenzo; Hernández, Florencio E.
2013-09-01
We report on the theoretical-experimental analysis of the two-photon absorption (TPA) and two-photon circular-linear dichroism (TPCLD) spectra of (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (curcumin) in Tetrahydrofuran (THF) solution. The measurement of the full TPA spectrum of this molecule reveals a maximum TPA cross-section at 740 nm, i.e. more than 10 times larger than the maximum reported in the literature at 800 nm for the application of curcumin in bioimaging. The TPCLD spectrum exposes the symmetry of the main excited-states involved in the two-photon excitation process. TD-DFT calculations support the experimental results. These outcomes are expected to expand the application of natural-occurring dyes in bioimaging.
Kotsakis, Georgios A; Maragou, Theodora; Ioannou, Andreas L; Romanos, Georgios E; Hinrichs, James E
2014-01-01
The objectives of this study were to record the prevalence and degree of absence of the maxillary midline interdental papilla and the proportion of patients displaying the maxillary midline papilla during maximum smile among a Caucasian population. Papillary recession was found in 46.4% of study participants (n = 211), while the prevalence of visible recession among maxillary midline papilla during maximum smile was 38.4%, which was statistically significantly less than that of patients diagnosed intraorally with loss of papillary height (P < .001). Correlations between age and level of lip line as well as age and visible papillary recession were identified for individuals over 65 years of age. The high prevalence of midline papillary recession in the maxilla found in this population suggests that loss of papillary height constitutes a substantial clinical challenge.
40 CFR 35.675 - Maximum federal share.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Maximum federal share. 35.675 Section... (section 1443(a) and Section 1451) § 35.675 Maximum federal share. (a) The Regional Administrator may... maximum federal share if the Tribe or Intertribal Consortium can demonstrate in writing to the...
Higgs production and decay in models of a warped extra dimension with a bulk Higgs
Archer, Paul R.; Carena, Marcela; Carmona, Adrian; ...
2015-01-13
Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS 5 space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusion and the H → γγ decay rate and show that they are finite (at one-loop order) as amore » consequence of gauge invariance. The extended scalar sector comprising the Kaluza-Klein excitations of the Standard Model scalars is constructed in detail. The largest effects are due to virtual KK fermions, whose contributions to the cross section and decay rate introduce a quadratic sensitivity to the maximum allowed value y * of the random complex entries of the 5D anarchic Yukawa matrices. We find an enhancement of the gluon-fusion cross section and a reduction of the H → γγ rate as well as of the tree-level Higgs couplings to fermions and electroweak gauge bosons. As a result, we perform a detailed study of the correlated signal strengths for different production mechanisms and decay channels as functions of y *, the mass scale of Kaluza-Klein resonances and the scaling dimension of the composite Higgs operator.« less
Critical Velocities in Open Capillary Flow
NASA Technical Reports Server (NTRS)
Dreyer, Michael; Langbein, Dieter; Rath, Hans J.
1996-01-01
This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.
Lepley, Casey R; Throckmorton, Gaylord S; Ceen, Richard F; Buschang, Peter H
2011-05-01
The purpose of this study was to explore the contributions of occlusion, maximum bite force, and chewing cycle kinematics to masticatory performance. A prospective cross-sectional study was performed on 30 subjects with Class I occlusion. Masticatory performance was measured with the test food Cuttersil (Heraeus Kulzer, South Bend, Ind) and the fractional-sieve technique. Blu-Mousse (Parkell Biomaterials, Farmingdale, NY) bite registrations were used to measure occlusal contact areas. The American Board of Orthodontics occlusal discrepancies were measured on the subjects' dental models. Maximum bite forces were recorded with a custom transducer, and 3-dimensional chewing cycle kinematics were tracked with an opto-electric computer system and Optotrak software (Northern Digital, Waterloo, Ontario, Canada). Masticatory performance was most closely correlated with occlusal contact area, indicating larger contact areas in subjects with better performance. Occlusal contact area and occlusal discrepancies were also related to bite force and chewing cycle kinematics. Maximum bite force was positively related with masticatory performance. Although masticatory performance is related, both directly and indirectly, to a number of morphologic and functional factors, it is most closely related to occlusal factors. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Spectroscopic and laser characterization of Yb,Tm:KLu(WO4)2 crystal
NASA Astrophysics Data System (ADS)
Loiko, P. A.; Serres, J. M.; Mateos, X.; Demesh, M. P.; Yasukevich, A. S.; Yumashev, K. V.; Petrov, V.; Griebner, U.; Aguiló, M.; Díaz, F.
2016-01-01
We report on a comprehensive spectroscopic and laser characterization of monoclinic Yb,Tm:KLu(WO4)2 crystals. Stimulated-emission cross-section spectra corresponding to the 3F4 → 3H6 transition of Tm3+ ions are determined. The radiative lifetime of the 3F4 state of Tm3+ ions is 0.82 ms. The maximum Yb3+ → Tm3+ energy transfer efficiency is 83.9% for 5 at.% Yb - 8 at.% Tm doping. The fractional heat loading for Yb,Tm:KLu(WO4)2 is 0.45 ± 0.05. Using a hemispherical cavity and 5 at.% Yb - 6 at.% Tm doped crystal, a maximum CW power of 227 mW is achieved at 1.983-2.011 μm with a maximum slope efficiency η = 14%. In the microchip laser set-up, the highest slope efficiency is 20% for a 5 at.% Yb- 8 at.% Tm doped crystal with a maximum output power of 201 mW at 1.99-2.007 μm. Operation of Yb,Tm:KLu(WO4)2 as a vibronic laser emitting at 2.081-2.093 μm is also demonstrated.
Current-induced domain wall motion in permalloy nanowires with a rectangular cross-section
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ai, J. H.; Miao, B. F.; Sun, L.
2011-11-01
We performed micromagnetic simulations of the current-induced domain wall motion in permalloy nanowires with rectangular cross-section. In the absence of the nonadiabatic spin-transfer term, a threshold current, J{sub c} is required to drive the domain wall moving continuously. We find that J{sub c} is proportional to the maximum cross product of the demagnetization field and magnetization orientation of the domain wall and the domain wall width. With varying both the wire thickness and width, a minimum threshold current in the order of 10{sup 6} A/cm{sup 2} is obtained when the thickness is equivalent to the wire width. With the nonadiabaticmore » spin-transfer term, the calculated domain wall velocity {nu} equals to the adiabatic spin transfer velocity u when the current is far above the Walker limit J{sub w}. Below J{sub w}, {nu}=({beta}/{alpha})u, where {beta} is the nonadiabatic parameter and {alpha} is the damping factor. For different {beta}, we find the Walker limit can be scaled as J{sub w}=({alpha}/{beta}-{alpha})J{sub c}. Our simulations agree well with the one dimensional analytical calculation, suggesting the findings are the general behaviors of the systems in this particular geometry.« less
Mandibular kinematic changes after unilateral cross-bite with lateral shift correction.
Venancio, F; Alarcon, J A; Lenguas, L; Kassem, M; Martin, C
2014-10-01
The aim of this randomised prospective study was to evaluate the effects of slow maxillary expansion with expansion plates and Hyrax expanders on the kinematics of the mandible after cross-bite correction. Thirty children (15 boys and 15 girls), aged 7·1-11·8, with unilateral cross-bite and functional shift were divided into two groups: expansion plate (n = 15) and Hyrax expander (n = 15). Thirty children with normal occlusion (14 boys and 16 girls, aged 7·3-11·6) served as control group. The maximum vertical opening, lateral mandibular shift (from maximum vertical opening to maximum intercuspation, from rest position to maximum intercuspation and from maximum vertical opening to rest position) and lateral excursions were recorded before and 4 months after treatment. After treatment, the expansion plate group showed a greater lateral shift from rest position to maximum intercuspation than did the control group. The expansion plate patients also presented greater left/contralateral excursion than did the control group. Comparisons of changes after treatment in the cross-bite groups showed significant decreases in the lateral shift from the maximum vertical opening to maximum intercuspation and from the maximum vertical opening to rest position, a significant increase in the homolateral excursion and a significant decrease in the contralateral excursion in the Hyrax expander group, whereas no significant differences were found in the expansion plate group. In conclusion, the Hyrax expander showed better results than did the expansion plate. The Hyrax expander with acrylic occlusal covering significantly improved the mandibular lateral shift and normalised the range of lateral excursion. © 2014 John Wiley & Sons Ltd.
Muscular Strength Is Associated with Higher Intraocular Pressure in Physically Active Males.
Vera, Jesús; Jiménez, Raimundo; García-Ramos, Amador; Cárdenas, David
2018-02-01
The positive association between intraocular pressure (IOP) and relative maximum force may have relevance for exercise recommendations when IOP is a concern. The relationship between exercise and IOP has been approached in several studies. However, the influence of muscle function on IOP remains underexplored. This study aimed to determine the relationship between the maximal mechanical capabilities of muscles to generate force, velocity, and power with IOP. Sixty-five physically active males participated in this cross-sectional study. Baseline IOP measures were obtained by rebound tonometry, and participants performed an incremental loading test in the ballistic bench press. Baseline IOP showed a strong positive correlation with relative maximum force (r65 = 0.85, P < .001) relative maximum power (r65 = 0.85, P < .001), and relative one-repetition maximum (r65 = 0.91, P < .001). Also, a moderate positive association was obtained between baseline IOP and maximum force (r65 = 0.74, P < .001), maximum power (r65 = 0.72, P < .001), and maximum dynamic strength (r65 = 0.80, P < .001). No significant correlations between IOP and maximal velocity were obtained (all P > .05). There is a positive association between greater upper-body power and strength with higher baseline IOP, which might have important implications in the management of ocular health and especially in individuals constantly involved in resistance training programs (e.g., military personnel, weightlifters). The possible protective effect of high fitness level on the acute IOP response to strength exercise needs to be addressed in future studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gokdogan, Gozde Kahriman, E-mail: gozdekahriman@gmail.com; Anutgan, Tamila, E-mail: tamilaanutgan@karabuk.edu.tr
2016-03-25
This contribution provides the comparison between micro- and macro-structure of hydrogenated nanocrystalline silicon (nc-Si:H) thin films grown by plasma enhanced chemical vapor deposition (PECVD) technique under different RF power densities (P{sub RF}: 100−444 mW/cm{sup 2}). Micro-structure is assessed through grazing angle X-ray diffraction (GAXRD), while macro-structure is followed by surface and cross-sectional morphology via field emission scanning electron microscopy (FE-SEM). The nanocrystallite size (∼5 nm) and FE-SEM surface conglomerate size (∼40 nm) decreases with increasing P{sub RF}, crystalline volume fraction reaches maximum at 162 mW/cm{sup 2}, FE-SEM cross-sectional structure is columnar except for the film grown at 162 mW/cm{sup 2}. The dependence of previously determinedmore » ‘oxygen content–refractive index’ correlation on obtained macro-structure is investigated. Also, the effect of P{sub RF} is discussed in the light of plasma parameters during film deposition process and nc-Si:H film growth models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pendleton, W.R. Jr.; Larsson, M.; Mannfors, B.
1983-12-01
Total collisional depopulation rates for He(n /sup 1/P) (4< or =n< or =13) in thermal collisions with He(1 /sup 1/S) have been measured using the transient-decay method. Related loss cross sections increase in proportion to n/sup 4/ in the limited range 4< or =n< or =6, reach a maximum of 2600 +- 600 A/sup 2/ at n = 10, and decrease approximately in proportion to n/sup -2.5/ for 11< or =n< or =13. The measurements were found to be inconsistent with a strong ''selection rule,'' ..delta..L = 2, for the He(n /sup 1/P)-He collisions. A model in which ..delta..L formore » the collision is largely unrestricted provides a satisfactory interpretation of the observations, in agreement with recent l-mixing studies of atomic Rydberg levels. The experimental cross sections compare favorably with values calculated using an approximate scaling formula for collisional l mixing and, for n>10, with predictions based on a simple perturbation treatment in the weak-collision approximation.« less
Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals
Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun
2016-01-01
The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er3+:4I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W. PMID:27811994
Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals.
Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun
2016-11-04
The spectral properties and laser performance of Er:SrF 2 single crystals were investigated and compared with Er:CaF 2 . Er:SrF 2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er 3+ : 4 I 11/2 level) than those of Er:CaF 2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF 2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF 2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W.
Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals
NASA Astrophysics Data System (ADS)
Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun
2016-11-01
The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er3+:4I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W.
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Kim, Myung-Hee; Schneider, Irene; Hassler, Donald M.
2006-01-01
The atmosphere of Mars significantly attenuates the heavy ion component of the primary galactic cosmic rays (GCR), however increases the fluence of secondary light ions (neutrons, and hydrogen and helium isotopes) because of particle production processes. We describe results of the quantum multiple scattering fragmentation (QMSFRG) model for the production of light nuclei through the distinct mechanisms of nuclear abrasion and ablation, coalescence, and cluster knockout. The QMSFRG model is shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections. We use the QMSFRG model and the space radiation transport code, HZETRN to make predictions of the light particle environment on the Martian surface at solar minimum and maximum. The radiation assessment detector (RAD) experiment will be launched in 2009 as part of the Mars Science Laboratory (MSL). We make predictions of the expected results for time dependent count-rates to be observed by RAD experiment. Finally, we consider sensitivity assessments of the impact of the Martian atmospheric composition on particle fluxes at the surface.
Force per cross-sectional area from molecules to muscles: a general property of biological motors
Meyer-Vernet, Nicole
2016-01-01
We propose to formally extend the notion of specific tension, i.e. force per cross-sectional area—classically used for muscles, to quantify forces in molecular motors exerting various biological functions. In doing so, we review and compare the maximum tensions exerted by about 265 biological motors operated by about 150 species of different taxonomic groups. The motors considered range from single molecules and motile appendages of microorganisms to whole muscles of large animals. We show that specific tensions exerted by molecular and non-molecular motors follow similar statistical distributions, with in particular, similar medians and (logarithmic) means. Over the 1019 mass (M) range of the cell or body from which the motors are extracted, their specific tensions vary as Mα with α not significantly different from zero. The typical specific tension found in most motors is about 200 kPa, which generalizes to individual molecular motors and microorganisms a classical property of macroscopic muscles. We propose a basic order-of-magnitude interpretation of this result. PMID:27493785
Influence of the helium-pressure on diode-pumped alkali-vapor laser
NASA Astrophysics Data System (ADS)
Gao, Fei; Chen, Fei; Xie, Ji-jiang; Zhang, Lai-ming; Li, Dian-jun; Yang, Gui-long; Guo, Jing
2013-05-01
Diode-pumped alkali-vapor laser (DPAL) is a kind of laser attracted much attention for its merits, such as high quantum efficiency, excellent beam quality, favorable thermal management, and potential scalability to high power and so on. Based on the rate-equation theory of end-pumped DPAL, the performances of DPAL using Cs-vapor collisionally broadened by helium are simulated and studied. With the increase of helium pressure, the numerical results show that: 1) the absorption line-width increases and the stimulated absorption cross-section decreases contrarily; 2) the threshold pumping power decreases to minimum and then rolls over to increase linearly; 3) the absorption efficiency rises to maximum initially due to enough large stimulated absorption cross-section in the far wings of collisionally broadened D2 transition (absorption transition), and then begins to reduce; 4) an optimal value of helium pressure exists to obtain the highest output power, leading to an optimal optical-optical efficiency. Furthermore, to generate the self-oscillation of laser, a critical value of helium pressure occurs when small-signal gain equals to the threshold gain.
The dynamic flexural response of propeller blades. M.S. Thesis
NASA Technical Reports Server (NTRS)
Djordjevic, S. Z.
1982-01-01
The determination of the torsional constants of three blade models having NACA four-digit symmetrical airfoil cross sections is presented. Values were obtained for these models analytically and experimentally. Results were also obtained for three other models having rectangular, elliptical, and parabolic cross sections. Complete modal analyses were performed for five blade models. The identification of modal parameters was done for cases when the blades were modeled as either undamped or damped multi-degree-of-freedom systems. For the experimental phase of this study, the modal testing was performed using a Dual Channel FFT analyzer and an impact hammer (which produced an impulsive excitation). The natural frequency and damping of each mode in the frequency range up to 2 kHz were measured. A small computer code was developed to calculate the dynamic response of the blade models for comparison with the experimental results. A comparison of the undamped and damped cases was made for all five blade models at the instant of maximum excitation force. The program was capable of handling models where the excitation forces were distributed arbitrarily along the length of the blade.
Conlan, James V.; Vongxay, Khamphouth; Khamlome, Boualam; Dorny, Pierre; Sripa, Banchob; Elliot, Aileen; Blacksell, Stuart D.; Fenwick, Stanley; Thompson, R. C. Andrew
2012-01-01
We conducted cross-sectional surveys for taeniasis and cysticercosis in humans, pigs, and dogs in four northern provinces of Laos. Human cysticercosis and taeniasis prevalence was 2.2% (95% confidence interval [CI] = 1.4–3.0%) and 8.4% (95% CI = 6.9–9.9%), respectively. Eating uncooked beef, being male, province of residence, age, and ethnicity were significant risk factors for taeniasis and only province of residence was a significant risk factor for cystiercosis. Thirty-five human tapeworms were recovered during the survey and 33 (94.3%) and 2 (5.7%) were identified as Taenia saginata and T. solium, respectively. Maximum-likelihood adjusted prevalence of T. solium and T. hydatigena in pigs was 4.2% (95% CI = 0.5–7.9%) and 55.9% (95% CI = 47.5–64.3%), respectively, and T. hydatigena taeniasis in dogs was 4.8% (95% CI = 0.0–11.3%). Taenia hydatigena and T. saginata were the most prevalent taeniids in the respective pig and human populations and together may suppress T. solium transmission. PMID:22855759
Donovan, David Patrick; Quante, Markus; Schlimme, Ingo; Macke, Andreas
2004-09-01
The effect of ice crystal size and shape on the relation between radar reflectivity and optical extinction is examined. Discrete-dipole approximation calculations of 95-GHz radar reflectivity and ray-tracing calculations are applied to ice crystals of various habits and sizes. Ray tracing was used primarily to calculate optical extinction and to provide approximate information on the lidar backscatter cross section. The results of the combined calculations are compared with Mie calculations applied to collections of different types of equivalent spheres. Various equivalent sphere formulations are considered, including equivalent radar-lidar spheres; equivalent maximum dimension spheres; equivalent area spheres, and equivalent volume and equivalent effective radius spheres. Marked differences are found with respect to the accuracy of different formulations, and certain types of equivalent spheres can be used for useful prediction of both the radar reflectivity at 95 GHz and the optical extinction (but not lidar backscatter cross section) over a wide range of particle sizes. The implications of these results on combined lidar-radar ice cloud remote sensing are discussed.
Baird, Mark E
2003-10-01
The size, shape, and absorption coefficient of a microalgal cell determines, to a first order approximation, the rate at which light is absorbed by the cell. The rate of absorption determines the maximum amount of energy available for photosynthesis, and can be used to calculate the attenuation of light through the water column, including the effect of packaging pigments within discrete particles. In this paper, numerical approximations are made of the mean absorption cross-section of randomly oriented cells, aA. The shapes investigated are spheroids, rectangular prisms with a square base, cylinders, cones and double cones with aspect ratios of 0.25, 0.5, 1, 2, and 4. The results of the numerical simulations are fitted to a modified sigmoid curve, and take advantage of three analytical solutions. The results are presented in a non-dimensionalised format and are independent of size. A simple approximation using a rectangular hyperbolic curve is also given, and an approach for obtaining the upper and lower bounds of aA for more complex shapes is outlined.
Tm3+-doped lead silicate glass sensitized by Er3+ for efficient 2 μm mid-infrared laser material
NASA Astrophysics Data System (ADS)
Zhang, Junjie; Wang, Ning; Guo, Yanyan; Cai, Muzhi; Tian, Ying; Huang, Feifei; Xu, Shiqing
2018-06-01
Er3+/Tm3+ co-doped lead silicate glasses with low phonon (953 cm-1) and good thermal stability were synthesized. The 2 μm mid-infrared emission resulting from the 3F4 → 3H6 transition of Tm3+ sensitized by Er3+ has been observed by 808 nm LD pumping. The optimal luminescence intensity was obtained in the sample with 1Tm2O3/2.5Er2O3 co-doped. Moreover, the energy transfer mechanism from Er3+ to Tm3+ ion was analyzed. Absorption and emission cross section have been calculated. The calculated maximum emission cross section of Tm3+ is 2.689 × 10-21 cm2 at 1863 nm. Microparameters of energy transfer between Er3+ and Tm3+ ions have also been analyzed. These results ensure that the prepared Er3+/Tm3+ co-doped lead silicate glasses have excellent spectroscopic properties in mid-infrared region and provide a beneficial guide for mid-infrared laser material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.
2013-02-05
Strontium lithium bismuth borate glasses (SLBiB) doped with various concentrations of Er{sup 3+} were prepared using conventional melt quench technique and investigated their optical properties. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction and SEM analysis. Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra at room temperature. Judd-Ofelt (J-O) theory has been applied for the f.f transitions of Er{sup 3+} ions to evaluate J-O intensity parameters, {Omega}{lambda} ({lambda} = 2, 4 and 6). Using the J-O intensity parameters, radiative properties such as transition probabilities (A{sub R}), branching ratios ({beta})more » and radiative lifetimes ({tau}) are estimated for certain transitions. From the emission spectra, peak emission-cross sections ({sigma}{sub p}) and products of stimulated emission cross-section and full width at half maximum ({sigma}{sub p} Multiplication-Sign FWHM) were calculated for the observed emission transition, {sup 4}I{sub 13/2}{yields}{sup 4}I{sub 15/2}.« less
Threshold behaviour of the π+π- invariant mass in nuclei
NASA Astrophysics Data System (ADS)
Camerini, P.; Grion, N.; Rui, R.; Vetterli, D.
1993-02-01
We present π+π- invariant-mass distributions between 300 and 380 MeV for the 2H, 4He, 16O, 208Pb(π +, π +π -) reaction at an incident π+ energy of 280 MeV. A prominent feature is the shift of their maximum downward to the 2m π threshold as A increases. This behaviour finds a qualitative explanation in the framework of a model that investigates the modification of the strength function for an interacting ( ππ) I = L = 0 system embedded in the nuclear medium. Also, the π+π- invariant-mass cross sections are compared with the predictions of an A( π+, π+π-) model that uses a microscopical approach for the elementary process of pion production, πN → ππ N. Four-fold differential cross sections as a function of the energy of outgoing π+ and p, and missing-mass distributions for the A( π+, pπ-) reaction are also presented for some of the examined nuclei. The experimental results are discussed within the framework of the two available models.
NASA Astrophysics Data System (ADS)
Lawless, Mary K.; Mathies, Richard A.
1992-06-01
Absolute resonance Raman cross sections are measured for Nile blue 690 perchlorate dissolved in ethylene glycol with excitation at 514, 531, and 568 nm. These values and the absorption spectrum are modeled using a time-dependent wave packet formalism. The excited-state equilibrium geometry changes are quantitated for 40 resonance Raman active modes, seven of which (590, 1141, 1351, 1429, 1492, 1544, and 1640 cm-1 ) carry 70% of the total resonance Raman intensity. This demonstrates that in addition to the prominent 590 and 1640 cm-1 modes, a large number of vibrational degrees of freedom are Franck-Condon coupled to the electronic transition. After exposure of the explicit vibrational progressions, the residual absorption linewidth is separated into its homogeneous [350 cm-1 half-width at half-maximum (HWHM)] and inhomogeneous (313 cm-1 HWHM) components through an analysis of the absolute Raman cross sections. The value of the electronic dephasing time derived from this study (25 fs) compares well to previously published results. These data should be valuable in multimode modeling of femtosecond experiments on Nile blue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dishaw, J.P.
1979-03-01
An experimental search was performed to look for the direct production of neutrinos or neutrino-like particles, i.e., neutral particles which interact weakly with hadrons, in proton-nucleus interactions at 400 GeV incident proton energy. Possible sources of such particles include the semi-leptonic decay of new heavy particles such as charm, and the direct production of a light neutral Higgs particle such as the axion. The production of these particles has been inferred in this experiment by energy nonconservation in the collision of a proton with an iron nucleus. The total visible energy of the interaction was measured using a sampling ionizationmore » calorimeter. After correcting for beam intensity effects and cutting the data to eliminate systematic effects in the measurement, the final resolution of the calorimeter was 3.51% and increased with decreasing incident beam energy with a square root dependence on the beam energy. Energy nonconservation in the data is manifest as a non-Gaussian distribution on the low side of the calorimeter measured energy. Model calculations yield the fraction of events expected in this non-Gaussian behavior for the various sources of neutrinos or neutrino-like particles. A maximum likelihood fit to the data with the theoretical fraction of events expected yields the 95% confidence level production cross section upper limit values. The upper limits for general production of neutrino-like particles for various parameterizations of the production cross section are presented. The following specific upper limits have been established: charm particle production < 670 ..mu..barns, supersymmetric particle production carrying an additional quantum number R < 33 ..mu..barns (mass of 1 GeV), 8 ..mu..barns (mass of 3 GeV); axion production < 10/sup -3/ times the ..pi../sup 0/ production cross section. 144 references.« less
NASA Astrophysics Data System (ADS)
Colmenar, Inmaculada; González, Sergio; Jiménez, Elena; Martín, Pilar; Salgado, Sagrario; Cabañas, Beatriz; Albaladejo, José
2015-02-01
Furanaldehydes, such as 2-furanaldehyde (also known as furfural), 3-furanaldehyde and 5-methyl-2-furanaldehyde, are aromatic aldehydes which can be present in the atmosphere as primary and secondary pollutants. The atmospheric removal initiated by sunlight for these species is not well-known in the solar actinic region (at λ > 290 nm), mainly due to the absence of data concerning the UV absorption cross sections (σλ) and photolysis frequencies (Ji(z,θ)). In this work σλ for the mentioned furanaldehydes have been determined between 290 and 380 nm at room temperature for the first time. Experiments were performed in an absorption jacketed Pyrex cell, employing a deuterium lamp as irradiation source and a CCD detector. The obtained absorption spectra exhibit absorption maxima around 320 nm with absolute absorption cross sections of 1.13, 0.75 and 1.14 × 10-19 cm2 molecule-1 for 2-furanaldehyde, 3-furanaldehyde and 5-methyl-2-furanaldehyde, respectively. The reported UV absorption cross sections were used to provide estimates of Ji(z,θ) and, therefore, estimates of the lifetime (τhν) due to this atmospheric removal process, under different solar radiation situations. Estimated τhν have been compared with the lifetimes due to the homogeneous reaction with the main diurnal tropospheric oxidants. The results obtained suggest that photolysis in the actinic region can be the main degradation pathway for these furanaldehydes when assuming a quantum yield (Φλ) of unity and the maximum solar actinic flux, while photolysis can compete with the reaction of OH radicals when assuming Φλ = 0.1. On the contrary, the removal of all three furanaldehydes by the reactions with OH radicals becomes more important than the UV photolysis under low solar actinic flux conditions independently of Φλ. If the emission source of these furanaldehydes also occurs during the nighttime NO3 radicals will dominate the elimination process of these species.
Ab initio state-specific N2 + O dissociation and exchange modeling for molecular simulations
NASA Astrophysics Data System (ADS)
Luo, Han; Kulakhmetov, Marat; Alexeenko, Alina
2017-02-01
Quasi-classical trajectory (QCT) calculations are used in this work to calculate state-specific N2(X1Σ ) +O(3P ) →2 N(4S ) +O(3P ) dissociation and N2(X1Σ ) +O(3P ) →NO(X2Π ) +N(4S ) exchange cross sections and rates based on the 13A″ and 13A' ab initio potential energy surface by Gamallo et al. [J. Chem. Phys. 119, 2545-2556 (2003)]. The calculations consider translational energies up to 23 eV and temperatures between 1000 K and 20 000 K. Vibrational favoring is observed for dissociation reaction at the whole range of collision energies and for exchange reaction around the dissociation limit. For the same collision energy, cross sections for v = 30 are 4 to 6 times larger than those for the ground state. The exchange reaction has an effective activation energy that is dependent on the initial rovibrational level, which is different from dissociation reaction. In addition, the exchange cross sections have a maximum when the total collision energy (TCE) approaches dissociation energy. The calculations are used to generate compact QCT-derived state-specific dissociation (QCT-SSD) and QCT-derived state-specific exchange (QCT-SSE) models, which describe over 1 × 106 cross sections with about 150 model parameters. The models can be used directly within direct simulation Monte Carlo and computational fluid dynamics simulations. Rate constants predicted by the new models are compared to the experimental measurements, direct QCT calculations and predictions by other models that include: TCE model, Bose-Candler QCT-based exchange model, Macheret-Fridman dissociation model, Macheret's exchange model, and Park's two-temperature model. The new models match QCT-calculated and experimental rates within 30% under nonequilibrium conditions while other models under predict by over an order of magnitude under vibrationally-cold conditions.
NASA Technical Reports Server (NTRS)
Hirasaki, P. N.
1971-01-01
Shielding a spacecraft from the severe thermal environment of an atmospheric entry requires a sophisticated thermal protection system (TPS). Thermal computer program models were developed for two such TPS designs proposed for the space shuttle orbiter. The multilayer systems, a reusable surface insulation TPS, and a re-radiative metallic skin TPS, were sized for a cross-section of trajectories in the entry corridor. This analysis indicates the relative influence of the entry parameters on the weight of each TPS concept. The results are summarized graphically. The trajectory variables considered were down-range, cross-range, orbit inclination, entry interface velocity and flight path angle, maximum heating rate level, angle of attack, and ballistic coefficient. Variations in cross-range and flight path angle over the ranges considered had virtually no effect on the required entry TPS weight. The TPS weight was significantly more sensitive to variations in angle of attack than to dispersions in the other trajectory considered.
Kinoshita, S; Suzuki, T; Yamashita, S; Muramatsu, T; Ide, M; Dohi, Y; Nishimura, K; Miyamae, T; Yamamoto, I
1992-01-01
A new radionuclide technique for the calculation of left ventricular (LV) volume by the first-pass (FP) method was developed and examined. Using a semi-geometric count-based method, the LV volume can be measured by the following equation: CV = CM/(L/d). V = (CT/CV) x d3 = (CT/CM) x L x d2. (V = LV volume, CV = voxel count, CM = the maximum LV count, CT = the total LV count, L = LV depth where the maximum count was obtained, and d = pixel size.) This theorem was applied to FP LV images obtained in the 30-degree right anterior oblique position. Frame-mode acquisition was performed and the LV end-diastolic maximum count and total count were obtained. The maximum LV depth was obtained as the maximum width of the LV on the FP end-diastolic image, using the assumption that the LV cross-section is circular. These values were substituted in the above equation and the LV end-diastolic volume (FP-EDV) was calculated. A routine equilibrium (EQ) study was done, and the end-diastolic maximum count and total count were obtained. The LV maximum depth was measured on the FP end-diastolic frame, as the maximum length of the LV image. Using these values, the EQ-EDV was calculated and the FP-EDV was compared to the EQ-EDV. The correlation coefficient for these two values was r = 0.96 (n = 23, p less than 0.001), and the standard error of the estimated volume was 10 ml.(ABSTRACT TRUNCATED AT 250 WORDS)
Chon, Sung-Bin; Kwak, Young Ho; Hwang, Seung-Sik; Oh, Won Sup; Bae, Jun-Ho
2013-12-01
Detecting severe hyperkalemia is challenging. We explored its prevalence in symptomatic or extreme bradycardia and devised a diagnostic rule. This retrospective cross-sectional study included patients with symptomatic (heart rate [HR] ≤ 50/min with dyspnea, chest pain, altered mentality, dizziness/syncope/presyncope, general weakness, oliguria, or shock) or extreme (HR ≤ 40/min) bradycardia at an emergency department for 46 months. Risk factors for severe hyperkalemia were chosen by multiple logistic regression analysis from history (sex, age, comorbidities, and medications), vital signs, and electrocardiography (ECG; maximum precordial T-wave amplitude, PR, and QRS intervals). The derived diagnostic index was validated using bootstrapping method. Among the 169 participants enrolled, 87 (51.5%) were female. The mean (SD) age was 71.2 (12.5) years. Thirty-six (21.3%) had severe hyperkalemia. The diagnostic summed "maximum precordial T ≥ 8.5 mV (2)," "atrial fibrillation/junctional bradycardia (1)," "HR ≤ 42/min (1)," "diltiazem medication (2)," and "diabetes mellitus (1)." The C-statistics were 0.86 (0.80-0.93) and were validated. For scores of 4 or higher, sensitivity was 0.50, specificity was 0.92, and positive likelihood ratio was 6.02. The "ECG-only index," which sums the 3 ECG findings, had a sensitivity of 0.50, specificity of 0.90, and likelihood ratio (+) of 5.10 for scores of 3 or higher. Severe hyperkalemia is prevalent in symptomatic or extreme bradycardia and detectable by quantitative electrocardiographic parameters and history. © 2013.
Arnholt, Christina M; MacDonald, Daniel W; Underwood, Richard J; Guyer, Eric P; Rimnac, Clare M; Kurtz, Steven M; Mont, Michael A; Klein, Gregg R; Lee, Gwo-Chin; Chen, Antonia F; Hamlin, Brian R; Cates, Harold E; Malkani, Arthur L; Kraay, Matthew J
2017-04-01
Previous studies identified imprinting of the stem morphology onto the interior head bore, leading researchers to hypothesize an influence of taper topography on mechanically assisted crevice corrosion. The purpose of this study was to analyze whether microgrooved stem tapers result in greater fretting corrosion damage than smooth stem tapers. A matched cohort of 120 retrieved head-stem pairs from metal-on-polyethylene bearings was created controlling for implantation time, flexural rigidity, apparent length of engagement, and head size. There were 2 groups of 60 heads each, mated with either smooth or microgrooved stem tapers. A high-precision roundness machine was used to measure and categorize the surface morphology. Fretting corrosion damage at the head-neck junction was characterized using the Higgs-Goldberg scoring method. Fourteen of the most damaged heads were analyzed for the maximum depth of material loss and focused ion beam cross-sectioned to view oxide and base metal. Fretting corrosion damage was not different between the 2 cohorts at the femoral head (P = .14, Mann-Whitney) or stem tapers (P = .35). There was no difference in the maximum depths of material loss between the cohorts (P = .71). Cross-sectioning revealed contact damage, signs of micro-motion, and chromium-rich oxide layers in both cohorts. Microgroove imprinting did not appear to have a different effect on the fretting corrosion behavior. The results of this matched cohort retrieval study do not support the hypothesis that taper surfaces with microgrooved stems exhibit increased in vivo fretting corrosion damage or material release. Copyright © 2016 Elsevier Inc. All rights reserved.
Orfanou, Christina; Tsiamis, Costas; Karamagioli, Evika; Pikouli, Anastasia; Terzidis, Agis; Pikoulis, Emmanuel
2018-06-05
Doctors in Greece face the possibility of encountering a person that has suffered torture, especially since the high rates of refugees' and migrants' inflows that took place over the last years. In order to assess the awareness and the knowledge of doctors and senior medical students in Greece regarding a manual on effective investigation and documentation of torture such as Istanbul Protocol (official United Nation document since 1999), a cross-sectional study was conducted using a structured anonymous questionnaire. The sample was doctors practicing in public hospitals in Greece, doctors volunteering at a non-governmental organization (NGO) and undergraduate medical students in their final year of studies in the Medical School of National and Kapodistrian University of Athens. The data were analyzed using IBM SPSS version 23, using descriptive statistics and statistical significance tests.In a total of 289 participants, the mean total score of Istanbul Protocol knowledge was 4.43 ± 1.104 (the maximum possible score was 10) and the mean total score of Istanbul Protocol awareness was 2.04 ± 1.521 (the maximum possible score was 10). The most important conclusion was that among doctors and senior medical students, there seem to be knowledge, awareness, and information deficit about Istanbul Protocol and several issues relating to torture. The overall research outcome highlights the need for the development of a relevant informative/educational program, in order to cover the corresponding existing needs of the population of doctors in Greece.
Gage, C Colby; Huxel Bliven, Kellie C; Bay, R Curtis; Sturgill, Jeremiah S; Park, Jae Hyun
2015-01-01
Mandibular repositioning and subsequent neuromuscular signaling are proposed mechanisms of action for commercial mouthguards marketed for performance enhancement. A prospective cross-sectional study of 24 healthy adult weightlifters with normal occlusal relationships was designed to determine whether 2 self-fit performance mouthguards; a custom-fabricated, bilaterally balanced, dual-laminated mouthguard; and no mouthguard (control) differed in their effects on vertical dimension, muscle activation, and user preference during a 75% maximum power clean lift. Each subject was tested for each of the mouthguard categories: Power Balance POWERUP, Under Armour ArmourBite, custom, and no mouthguard. Interocclusal distance was measured at baseline and with each mouthguard. Mean and peak activity of the anterior temporalis, masseter, sternocleidomastoid, and cervical paraspinal muscles was measured during sitting and during a 75% maximum power clean lift. A mouthguard preference questionnaire was completed. Analyses were conducted to determine whether interocclusal distance differed among mouthguard type and to examine the effect of mouthguard type on mean and peak muscle activation during the clean lift. Interocclusal distance was affected by mouthguard type (P = 0.01). Mean and peak activity of the anterior temporalis and masseter muscles and mean activity of the sternocleidomastoid muscle differed among mouthguards (P < 0.05). Mouthguard type did not influence muscle activation of the cervical paraspinal muscle group. Overall, the Power Balance mouthguard produced more muscle activity. Participants preferred custom mouthguards nearly 2:1 over self-fit performance mouthguards (P = 0.05). Participants perceived that they were stronger and were less encumbered when using a custom mouthguard during submaximum power clean lifts.
Hydropower production from bridges in urban or suburban areas
NASA Astrophysics Data System (ADS)
Tucciarelli, Tullio; Sammartano, Vincenzo; Sinagra, Marco; Morreale, Gabriele; Ferreira, Teresa
2015-04-01
A new technology for hydropower production from rivers crossing urban or suburban areas is proposed, based on the use of Cross-Flow turbines having its axis horizontal and normal to the flow direction. A large part of the river cross-section could be covered by the turbine cross-section and this would generate a small, but consistent jump between the water levels of the inlet and the outlet sections. The turbine should be anchored to a pre-existing bridge and the total length of its axis should be of the same order of the bridge length. Due to the large axis extension, it should be possible to easily attain a gross power similar to the power produced with a more traditional installation, based on weirs or barrages, if single jumps of few tens of centimeters were added over a large number of bridges. If the bridges were set in urbanized areas, the production of electricity would be located close to its consumption, according to the smart grid requirements, and the hydrological basin at the bridge section (along with the corresponding discharge) would be greater than the basin of traditional plants located in more upstream locations. The maximum water level to be attained in the upstream section of the bridge should be the minimum among the following ones: 1) the level corresponding to the maximum flood allowed by the surrounding infra-structures, 2) the level corresponding to the maximum force allowed by the bridge structures. The resulting upstream water level hydrographs should be compatible with the river suspended and bed load equilibrium and with the requirement of the aquatic living population. The system should include a mechanism able to raise the turbine completely out of the water level, if required, for maintenance or other purposes. The complete lifting of the turbine could be used to: a) reconstruct the natural river bed profile during floods, b) allow the navigation or fish movements during some periods of the year, or even some hours of the day. A possible technology which would allow the accomplishment of the proposed targets is the use of a Cross-Flow turbine, arranged according to the scheme of Fig.1, where: - the position of the rotating wall (rw) is set according to the pressure measured at its top, so that a small but constant falling discharge (Q2) is guaranteed. This falling discharge allows the transition of floating objects and hid the all machinery, with an obvious skyline improvement. - the average distance d is set in order to guarantee in the confined channel below the turbine an average velocity V similar to the original one existing in the river. PIC Fig.1 - Scheme of the river Cross-Flow turbine. Observe in Fig.2 the results of a CFX simulation, carried on with the following input data for a large rectangular section per unit width: ho (m) h1(m) h2 (m) d(m) 1.5314 1.99 0.082 0.1021 Q2(m2/s) Q3(m2/s)w (r.p.m.)V0(m/s) 0.04 0.267 27 2.61 Table 1. Input data for the CFD simulation. Simulation have been carried out using ANSYS code, with a computational domain divided using both tetrahedral and prismatic elements. The mechanical power estimated at the rotational shaft was of 4.84 KW/m and the hydraulic power of the water stream was of 7.25 KW/m. Thus the turbine efficiency was of about 49.97 %. PIC Fig.2 - Vectors velocity water field close to the Cross-Flow turbine domain. From the environmental point of view the turbine constitutes nonetheless a physical barrier that moving organisms will have to negotiate on their movements through the blades, particularly larger ones such as fish. Also, the hydraulic environment of the river will be modified, e.g. turbulence, shear stress, pressure and flow patterns, affecting as well the smaller organisms. While developing the turbine, a thorough appraisal of its environmental consequences for aquatic ecosystems has to be done, in order to develop an environmentally-friendly structure, embedding mitigation aspects. Furthermore, the structure itself will be subject to colonization on its surfaces by a biological matrix including microbial organisms but also filamentous algae and aquatic macrophytes, either anchored of clogging to the structure while drifting downstream. When developing the turbine, the side-effects of such epibiosis have to be evaluated, given the evidence already existing in rivers and canals, of harmful vegetation interfering with irrigation and transport structures.
Ginting, Daniel; Zelt, Ronald B.
2008-01-01
As part of a collaborative study of the cumulative impacts on stream and riparian ecology of water and channel management practices in the lower Platte River, Nebraska, this report describes a study by the U.S. Geological Survey in cooperation with the Lower Platte South Natural Resources District that summarizes: (1) temporal differences in distribution of streamflow depth, velocity, and microhabitats among five discrete 11-water-year periods 1934-44, 1951-61, 1966-76, 1985-95, and 1996-2006, and (2) the effects of bridge proximity on distribution of streamflow depth, velocity, and microhabitat of the Platte River when cross sections were measured at a similar discharge. The scope of the study included the four presently (2008) active streamflow-gaging stations located near bridges over the lower Platte River at North Bend, near Leshara, near Ashland, and at Louisville, Nebraska, and the most downstream streamflow-gaging station within the central Platte River segment near Duncan, Nebraska. Generally, in cases where temporal differences in streamflow depth and velocity were evident, at least one of the water-year periods from 1934 through 1995 had deeper streamflow than the recent water-year period (1996-2006). Temporal differences in distributions of streamflow depth were not strongly associated with differences in either climatic conditions or the maximum peak flow that occurred prior to the latest discharge measurement during each period. The relative cross-sectional area of most hydraulic niches did not differ among the water-year periods. Part of this apparent uniformity likely was an artifact of the broad microhabitat classification used for this study. In cases where temporal differences in relative cross-sectional area of hydraulic niches were evidenced, the differences occurred during high- and low-flow conditions, not during median flow conditions. The temporal differences in relative cross-sectional area were found more frequently for hydraulic niches defined by moderate and fast velocities than for hydraulic niches defined by slow velocities. Generally, any significant increase or decrease in the relative cross-sectional areas of hydraulic niches during the water-year periods from 1934 through 1995 had disappeared during the most recent water-year period, 1996-2006. Deep-Swift niche was the predominant hydraulic niche for all near-bridge sites on the lower Platte River for high- and median-flow conditions. The Deep-Swift niche also was the predominant niche for the near-bridge sites near Ashland and at Louisville for low-flow conditions; for the near-bridge sites at North Bend and near Leshara, streamflow cross-sectional areas during low-flow conditions were shared among the Shallow-Moderate, Intermediate-Moderate, Intermediate-Swift, and Deep-Swift hydraulic niches. For the near-bridge site near Duncan, the site farthest downstream in the central Platte River system, the Deep-Swift hydraulic niche was predominant only during high-flow conditions; during median- and low-flow conditions the relative cross-sectional area was shared among the Shallow-Slow, Shallow-Moderate, Intermediate-Moderate, and Intermediate-Swift hydraulic niches. Significant temporal differences in the relative cross-sectional area of the Deep-Swift hydraulic niche were found for sites near the two farthest downstream bridges near Ashland and at Louisville, but only for low-flow conditions. The Deep-Swift microhabitat was of special interest because it is the preferred hydraulic habitat during the adult life of the endangered pallid sturgeon (Scaphirhynchus albus). Temporal differences in relative cross-sectional areas of the Glide low-flow geomorphic microhabitat that contained the Deep-Swift hydraulic niche also indicated that relative cross-sectional areas of the Glide during the 1951-61 and 1996-2006 water-year periods were lower than during the 1966-76 period. The temporal differences indicated that any significant temporal chang
Ihara, Tsutomu; Komori, Kimihiro; Yamamoto, Kiyohito; Kobayashi, Masayoshi; Banno, Hiroshi; Kodama, Akio
2013-02-01
Abdominal aortic aneurysm diameter is usually measured by the maximum minor-axis diameter on axial computed tomography (CT). However, this "traditional" diameter may underestimate the real size, as the aorta is not always straight and the aneurysm shape is sometimes in the form of an ellipse along the cross section. Therefore, we measured maximum major-axis diameters using a three-dimensional (3D) workstation and compared them with the traditional maximum minor-axis diameters measured using thin-slice axial CT. CT data of 141 AAA patients (with fusiform aneurysms) were stored in a 3D workstation. These thin-slice CT images were reviewed on the 3D workstation to obtain curved multiplanar reconstruction images (CPR images). Using the CPR images, we measured the maximum major-axis and minor-axis diameters on CPR and the angle of the aneurysms to the body axis. The mean traditional maximum minor-axis diameter was 51.2 ± 8.2 mm, whereas the mean maximum major-axis diameter on CPR was 54.7 ± 10.1 mm. Sixty eight patients had a mean aneurysm size of <50 mm when measured by the traditional minor-axis diameter. Among these patients, five (7.4%) had a major-axis diameter >55 mm on CPR. The measurement of the traditional maximum minor-axis diameter of aneurysms is useful in the case of most patients. However, the traditional maximum minor-axis diameter may underestimate the real aneurysmal diameter, particularly in patients with an ellipse-shaped aneurysm. The maximum major-axis diameter as measured using CPR images is effective for representing the real aneurysmal size. Copyright © 2013 Elsevier Inc. All rights reserved.
Shape optimization for aerodynamic efficiency and low observability
NASA Technical Reports Server (NTRS)
Vinh, Hoang; Van Dam, C. P.; Dwyer, Harry A.
1993-01-01
Field methods based on the finite-difference approximations of the time-domain Maxwell's equations and the potential-flow equation have been developed to solve the multidisciplinary problem of airfoil shaping for aerodynamic efficiency and low radar cross section (RCS). A parametric study and an optimization study employing the two analysis methods are presented to illustrate their combined capabilities. The parametric study shows that for frontal radar illumination, the RCS of an airfoil is independent of the chordwise location of maximum thickness but depends strongly on the maximum thickness, leading-edge radius, and leadingedge shape. In addition, this study shows that the RCS of an airfoil can be reduced without significant effects on its transonic aerodynamic efficiency by reducing the leading-edge radius and/or modifying the shape of the leading edge. The optimization study involves the minimization of wave drag for a non-lifting, symmetrical airfoil with constraints on the airfoil maximum thickness and monostatic RCS. This optimization study shows that the two analysis methods can be used effectively to design aerodynamically efficient airfoils with certain desired RCS characteristics.
López-Pascual, Juan; Page, Álvaro; Serra-Añó, Pilar
2017-10-13
This cross-sectional study analyzed the influence of chronic shoulder pain (CSP) on movement variability/kinematics during humeral elevation, with the trunk and elbow motions constrained to avoid compensatory strategies. For this purpose, 37 volunteers with CSP as the injured group (IG) and 58 participants with asymptomatic shoulders as the control group (CG) participated in the study. Maximum humeral elevation (Emax), maximum angular velocity (Velmax), variability of the maximum angle (CVEmax), functional variability (Func_var), and approximate entropy (ApEn) were calculated from the kinematic data. Patients' pain was measured on the visual analogue scale (VAS). Compared with the CG, the IG presented lower Emax and Velmax and higher variability (i.e., CVEmax, Func_var, and ApEn). Moderate correlations were achieved for the VAS score and the kinematic variables Emax, Velmax and variability of curve analysis, Func_varm, and ApEn. No significant correlation was found for CVEmax. In conclusion, CSP results in a decrease of angle and velocity and an increased shoulder movement variability when the neuromuscular system cannot use compensatory strategies to avoid painful positions.
NASA Technical Reports Server (NTRS)
Lance, D. G.; Nettles, A. T.
1991-01-01
Low velocity instrumented impact testing was utilized to examine the effects of an outer lamina of ultra-high molecular weight polyethylene (Spectra) on the damage tolerance of carbon epoxy composites. Four types of 16-ply quasi-isotropic panels (0, +45, 90, -45) were tested. Some panels contained no Spectra, while others had a lamina of Spectra bonded to the top (impacted side), bottom, or both sides of the composite plates. The specimens were impacted with energies up to 8.5 J. Force time plots and maximum force versus impact energy graphs were generated for comparison purposes. Specimens were also subjected to cross-sectional analysis and compression after impact tests. The results show that while the Spectra improved the maximum load that the panels could withstand before fiber breakage, the Spectra seemingly reduced the residual strength of the composites.
Measurement of Maximum Isometric Force Generated by Permeabilized Skeletal Muscle Fibers.
Roche, Stuart M; Gumucio, Jonathan P; Brooks, Susan V; Mendias, Christopher L; Claflin, Dennis R
2015-06-16
Analysis of the contractile properties of chemically skinned, or permeabilized, skeletal muscle fibers offers a powerful means by which to assess muscle function at the level of the single muscle cell. Single muscle fiber studies are useful in both basic science and clinical studies. For basic studies, single muscle fiber contractility measurements allow investigation of fundamental mechanisms of force production, and analysis of muscle function in the context of genetic manipulations. Clinically, single muscle fiber studies provide useful insight into the impact of injury and disease on muscle function, and may be used to guide the understanding of muscular pathologies. In this video article we outline the steps required to prepare and isolate an individual skeletal muscle fiber segment, attach it to force-measuring apparatus, activate it to produce maximum isometric force, and estimate its cross-sectional area for the purpose of normalizing the force produced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Tartakovsky, Alexandre M.
This work presents a hierarchical model for solute transport in bounded layered porous media with random permeability. The model generalizes the Taylor-Aris dispersion theory to stochastic transport in random layered porous media with a known velocity covariance function. In the hierarchical model, we represent (random) concentration in terms of its cross-sectional average and a variation function. We derive a one-dimensional stochastic advection-dispersion-type equation for the average concentration and a stochastic Poisson equation for the variation function, as well as expressions for the effective velocity and dispersion coefficient. We observe that velocity fluctuations enhance dispersion in a non-monotonic fashion: the dispersionmore » initially increases with correlation length λ, reaches a maximum, and decreases to zero at infinity. Maximum enhancement can be obtained at the correlation length about 0.25 the size of the porous media perpendicular to flow.« less
Abdollahi, Siamak; Moravvej-Farshi, Mohammad Kazem
2009-05-01
We propose a new numerical model to analyze heat induced by two-photon absorption and free-carrier absorption, while high intensity optical pulses propagate along silicon-on-insulator (SOI) nanowaveguides (NWGs). Using this model, we demonstrate that such induced heat causes a shift in the amount of wavelength conversion and hence deteriorates the converter output characteristics for pulses in the picosecond regime. The wavelength shift induced by a pulse with maximum input intensity and full width at half-maximum of I(max)=1.5x10(10) W x cm(-2) and T(FWHM)=30 ps, propagating along a SOI NWG with an effective cross-sectional area of a(eff)=0.15 microm(2), is shown to be Delta lambda(s) approximately 8 pm. We also demonstrate that such a shift can be compensated by tuning the pump intensity down by approximately 6.33%.
Design Optimization of a Thermoelectric Cooling Module Using Finite Element Simulations
NASA Astrophysics Data System (ADS)
Abid, Muhammad; Somdalen, Ragnar; Rodrigo, Marina Sancho
2018-05-01
The thermoelectric industry is concerned about the size reduction, cooling performance and, ultimately, the production cost of thermoelectric modules. Optimization of the size and performance of a commercially available thermoelectric cooling module is considered using finite element simulations. Numerical simulations are performed on eight different three-dimensional geometries of a single thermocouple, and the results are further extended for a whole module as well. The maximum temperature rise at the hot and cold sides of a thermocouple is determined by altering its height and cross-sectional area. The influence of the soldering layer is analyzed numerically using temperature dependent and temperature independent thermoelectric properties of the solder material and the semiconductor pellets. Experiments are conducted to test the cooling performance of the thermoelectric module and the results are compared with the results obtained through simulations. Finally, cooling rate and maximum coefficient of performance (COPmax) are computed using convective and non-convective boundary conditions.
Kiapour, Ata M.; Fleming, Braden C.; Murray, Martha M.
2017-01-01
Background: Abnormal joint motion has been linked to joint arthrosis after anterior cruciate ligament (ACL) reconstruction. However, the relationships between the graft properties (ie, structural and anatomic) and extent of posttraumatic osteoarthritis are not well defined. Hypotheses: (1) The structural (tensile) and anatomic (area and alignment) properties of the reconstructed graft or repaired ACL correlate with the total cartilage lesion area 1 year after ACL surgery, and (2) side-to-side differences in anterior-posterior (AP) knee laxity correlate with the total cartilage lesion area 1 year postoperatively. Study Design: Controlled laboratory study. Methods: Sixteen minipigs underwent unilateral ACL transection and were randomly treated with ACL reconstruction or bridge-enhanced ACL repair. The tensile properties, cross-sectional area, and multiplanar alignment of the healing ACL or graft, AP knee laxity, and cartilage lesion areas were assessed 1 year after surgery. Results: In the reconstructed group, the normalized graft yield and maximum failure loads, cross-sectional area, sagittal and coronal elevation angles, and side-to-side differences in AP knee laxity at 60° of flexion were associated with the total cartilage lesion area 1 year after surgery (R 2 > 0.5, P < .04). In the repaired group, normalized ACL yield load, linear stiffness, cross-sectional area, and the sagittal and coronal elevation angles were associated with the total cartilage lesion area (R 2 > 0.5, P < .05). Smaller cartilage lesion areas were observed in the surgically treated knees when the structural and anatomic properties of the ligament or graft and AP laxity values were closer to those of the contralateral ACL-intact knee. Reconstructed grafts had a significantly larger normalized cross-sectional area and sagittal elevation angle (more vertical) when compared with repaired ACLs (P < .02). Conclusion: The tensile properties, cross-sectional area, and multiplanar alignment of the healing ACLs or grafts and AP knee laxity in reconstructed knees were associated with the extent of tibiofemoral cartilage damage after ACL surgery. Clinical Relevance: These data highlight the need for novel ACL injury treatments that can restore the structural and anatomic properties of the torn ACL to those of the native ACL in an effort to minimize the risk of early-onset posttraumatic osteoarthritis. PMID:28875154
Photoeffect cross sections of some rare-earth elements at 145.4 keV
NASA Astrophysics Data System (ADS)
Umesh, T. K.; Ranganathaiah, C.; Sanjeevaiah, B.
1985-08-01
Total attenuation cross sections in the elements La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, and Er were derived from the measured total cross sections of their simple oxide compounds, by employing the mixture rule at 145.4-keV photon energy. The compound cross sections have been measured by performing transmission experiments in a good geometry setup. From the derived total cross sections of elements, photoeffect cross sections have been obtained by subtracting the theoretical scattering cross sections. A good agreement is observed between the present data of photoeffect cross sections and Scofield's theoretical data.
Tension Amplification in Molecular Brushes in Solutions and on Substrates
Panyukov, Sergey; Zhulina, Ekaterina B.; Sheiko, Sergei S.; Randall, Greg C.; Brock, James; Rubinstein, Michael
2009-01-01
Molecular bottle-brushes are highly branched macromolecules with side chains densely grafted to a long polymer backbone. The brush-like architecture allows focusing of the side-chain tension to the backbone and its amplification from the picoNewton to nanoNewton range. The backbone tension depends on the overall molecular conformation and the surrounding environment. Here we study the relation between the tension and conformation of the molecular brushes in solutions, melts, and on substrates. In solutions, we find that the backbone tension in dense brushes with side chains attached to every backbone monomer is on the order of f0N3/8 in athermal solvents, f0N1/3 in θ-solvents, and f0 in poor solvents and melts, where N is the degree of polymerization of side chains, f0≃ kBT/b is the maximum tension in side chains, b is the Kuhn length, kB is Boltzmann constant, and T is absolute temperature. Depending on the side chain length and solvent quality, molecular brushes in solutions develop tension on the order of 10–100 picoNewtons, which is sufficient to break hydrogen bonds. Significant amplification of tension occurs upon adsorption of brushes onto a substrate. On a strongly attractive substrate, maximum tension in the brush backbone is ~ f0N, reaching values on the order of several nanoNewtons which exceed the strength of a typical covalent bond. At low grafting density and high spreading parameter the cross-sectional profile of adsorbed molecular brush is approximately rectangular with thicknes ~bA/S, where A is the Hamaker constant and S is the spreading parameter. At a very high spreading parameter (S > A), the brush thickness saturates at monolayer ~ b. At a low spreading parameter, the cross-sectional profile of adsorbed molecular brush has triangular tent-like shape. In the cross-over between these two opposite cases, covering a wide range of parameter space, the adsorbed molecular brush consists of two layers. Side chains in the lower layer gain surface energy due to the direct interaction with the substrate, while the second layer spreads on the top of the first layer. Scaling theory predicts that this second layer has a triangular cross-section with width R ~ N3/5 and height h ~ N2/5. Using self-consistent field theory we calculate the cap profile y (x) = h (1 − x2/R2)2, where x is the transverse distance from the backbone. The predicted cap shape is in excellent agreement with both computer simulation and experiment. PMID:19673133
Equatorial Currents in the Indian Ocean Based on Measurements in February 2017
NASA Astrophysics Data System (ADS)
Neiman, V. G.; Frey, D. I.; Ambrosimov, A. K.; Kaplunenko, D. D.; Morozov, E. G.; Shapovalov, S. M.
2018-03-01
We analyze the results of measurements of the Tareev equatorial undercurrent in the Indian Ocean in February 2017. Sections from 3° S to 3°45' N along 68° and 65° E crossed the current with measurements of the temperature, salinity, and current velocity at oceanographic stations. The maximum velocity of this eastward flow was recorded precisely at the equator. The velocity at a depth of 50 m was approximately 60 cm/s. The transport of the Tareev Current was estimated at 9.8 Sv (1 Sv = 106 m3/s).
Wide band cryogenic ultra-high vacuum microwave absorber
Campisi, I.E.
1992-05-12
An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.
Wide band cryogenic ultra-high vacuum microwave absorber
Campisi, Isidoro E.
1992-01-01
An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.
Sua, Yong Meng; Chen, Jia-Yang; Huang, Yu-Ping
2018-06-15
We report a wideband optical parametric amplification (OPA) over 14 THz covering telecom S, C, and L bands with observed maximum parametric gain of 38.3 dB. The OPA is realized through cascaded second-harmonic generation and difference-frequency generation (cSHG-DFG) in a 2 cm periodically poled LiNbO 3 (PPLN) waveguide. With tailored cross section geometry, the waveguide is optimally mode matched for efficient cascaded nonlinear wave mixing. We also identify and study the effect of competing nonlinear processes in this cSHG-DFG configuration.
A maximum (non-extensive) entropy approach to equity options bid-ask spread
NASA Astrophysics Data System (ADS)
Tapiero, Oren J.
2013-07-01
The cross-section of options bid-ask spreads with their strikes are modelled by maximising the Kaniadakis entropy. A theoretical model results with the bid-ask spread depending explicitly on the implied volatility; the probability of expiring at-the-money and an asymmetric information parameter (κ). Considering AIG as a test case for the period between January 2006 and October 2008, we find that information flows uniquely from the trading activity in the underlying asset to its derivatives. Suggesting that κ is possibly an option implied measure of the current state of trading liquidity in the underlying asset.
NASA Technical Reports Server (NTRS)
Norbury, John W.
1992-01-01
Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.
NASA Technical Reports Server (NTRS)
Norbury, J. W.; Townsend, L. W. (Principal Investigator)
1990-01-01
Single-nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.
Improving the assessment of prescribing: use of a 'substitution index'.
Kunisawa, Susumu; Otsubo, Tetsuya; Lee, Jason; Imanaka, Yuichi
2013-07-01
To analyse the current and potential utilization of generic drugs in Japan, to examine the maximum possible cost savings from generic drug use and to develop a fairer measure to assess the level of generic drug substitution. We conducted a cross-sectional retrospective analysis of nine million dispensing records during January to March 2010 in Kyoto Prefecture. Maximum potential quantity-based shares were defined as the quantity of generic drugs used plus the quantity of branded drugs that could have been replaced by generic drugs divided by the quantity of all drugs dispensed. We developed a 'substitution index', defined as the proportion of generic drugs out of the total drugs substitutable with generic drugs (based on quantity rather than cost). Generic drugs had a quantity-based share of 17.9%, a cost-based share of 8.9% and a maximum potential quantity-based share of 50.1%, which is lower than the actual generic drug shares of some other countries. The maximum possible cost savings as a result of generic drug substitution was 16.5%. We also observed wide variations in maximum potential quantity-based shares between health care sectors and health care institutions. Simple comparisons based on quantity-based shares may misrepresent the actual generic drug use. A substitution index that takes into account the maximum potential quantity-based share of generic drugs as a fairer measure may promote more realistic goals and encourage generic drug usage.
Kurihara, Toshiyuki; Yamauchi, Junichiro; Otsuka, Mitsuo; Tottori, Nobuaki; Hashimoto, Takeshi; Isaka, Tadao
2014-01-01
The aims of this study were to investigate the relationships between the maximum isometric toe flexor muscle strength (TFS) and cross-sectional area (CSA) of the plantar intrinsic and extrinsic muscles and to identify the major determinant of maximum TFS among CSA of the plantar intrinsic and extrinsic muscles. Twenty six young healthy participants (14 men, 12 women; age, 20.4 ± 1.6 years) volunteered for the study. TFS was measured by a specific designed dynamometer, and CSA of plantar intrinsic and extrinsic muscles were measured using magnetic resonance imaging (MRI). To measure TFS, seated participants optimally gripped the bar with their toes and exerted maximum force on the dynamometer. For each participant, the highest force produced among three trials was used for further analysis. To measure CSA, serial T1-weighted images were acquired. TFS was significantly correlated with CSA of the plantar intrinsic and extrinsic muscles. Stepwise multiple linear regression analyses identified that the major determinant of TFS was CSA of medial parts of plantar intrinsic muscles (flexor hallucis brevis, flexor digitorum brevis, quadratus plantae, lumbricals and abductor hallucis). There was no significant difference between men and women in TFS/CSA. CSA of the plantar intrinsic and extrinsic muscles is one of important factors for determining the maximum TFS in humans.
29 CFR 778.100 - The maximum-hours provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false The maximum-hours provisions. 778.100 Section 778.100 Labor... Requirements Introductory § 778.100 The maximum-hours provisions. Section 7(a) of the Act deals with maximum... specifically exempt from its overtime pay requirements. It prescribes the maximum weekly hours of work...
Carlton, Holly D; Elmer, John W; Li, Yan; Pacheco, Mario; Goyal, Deepak; Parkinson, Dilworth Y; MacDowell, Alastair A
2016-04-13
Synchrotron radiation micro-tomography (SRµT) is a non-destructive three-dimensional (3D) imaging technique that offers high flux for fast data acquisition times with high spatial resolution. In the electronics industry there is serious interest in performing failure analysis on 3D microelectronic packages, many which contain multiple levels of high-density interconnections. Often in tomography there is a trade-off between image resolution and the volume of a sample that can be imaged. This inverse relationship limits the usefulness of conventional computed tomography (CT) systems since a microelectronic package is often large in cross sectional area 100-3,600 mm(2), but has important features on the micron scale. The micro-tomography beamline at the Advanced Light Source (ALS), in Berkeley, CA USA, has a setup which is adaptable and can be tailored to a sample's properties, i.e., density, thickness, etc., with a maximum allowable cross-section of 36 x 36 mm. This setup also has the option of being either monochromatic in the energy range ~7-43 keV or operating with maximum flux in white light mode using a polychromatic beam. Presented here are details of the experimental steps taken to image an entire 16 x 16 mm system within a package, in order to obtain 3D images of the system with a spatial resolution of 8.7 µm all within a scan time of less than 3 min. Also shown are results from packages scanned in different orientations and a sectioned package for higher resolution imaging. In contrast a conventional CT system would take hours to record data with potentially poorer resolution. Indeed, the ratio of field-of-view to throughput time is much higher when using the synchrotron radiation tomography setup. The description below of the experimental setup can be implemented and adapted for use with many other multi-materials.
Electron-Impact Ionization Cross Section Database
National Institute of Standards and Technology Data Gateway
SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access) This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.
Penning, David A; Moon, Brad R
2017-03-15
Across ecosystems and trophic levels, predators are usually larger than their prey, and when trophic morphology converges, predators typically avoid predation on intraguild competitors unless the prey is notably smaller in size. However, a currently unexplained exception occurs in kingsnakes in the genus Lampropeltis Kingsnakes are able to capture, constrict and consume other snakes that are not only larger than themselves but that are also powerful constrictors (such as ratsnakes in the genus Pantherophis ). Their mechanisms of success as intraguild predators on other constrictors remain unknown. To begin addressing these mechanisms, we studied the scaling of muscle cross-sectional area, pulling force and constriction pressure across the ontogeny of six species of snakes ( Lampropeltis californiae , L. getula , L. holbrooki , Pantherophis alleghaniensis , P. guttatus and P. obsoletus ). Muscle cross-sectional area is an indicator of potential force production, pulling force is an indicator of escape performance, and constriction pressure is a measure of prey-handling performance. Muscle cross-sectional area scaled similarly for all snakes, and there was no significant difference in maximum pulling force among species. However, kingsnakes exerted significantly higher pressures on their prey than ratsnakes. The similar escape performance among species indicates that kingsnakes win in predatory encounters because of their superior constriction performance, not because ratsnakes have inferior escape performance. The superior constriction performance by kingsnakes results from their consistent and distinctive coil posture and perhaps from additional aspects of muscle structure and function that need to be tested in future research. © 2017. Published by The Company of Biologists Ltd.
Key Parameters Evaluation for Hip Prosthesis with Finite Element Analysis
NASA Astrophysics Data System (ADS)
Guo, Hongqiang; Li, Dichen; Lian, Qin; Li, Xiang; Jin, Zhongmin
2007-09-01
Stem length and cross section are two key parameters that influence the stability and longevity of metallic hip prosthesis in the total hip arthroplasty (THA). In order to assess their influence to the stress and fatigue behavior of hip prosthesis, a series model of hip prosthesis with round-shaped or drum-shaped cross section, and with different stem lengths were created. These models were analyzed under both static and dynamic loading conditions with finite element analysis, and dynamic loading represents normal walking was used in the dynamic analysis. The stress on the metallic stem, cement, and adjacent bone were got, micromotion on the cement-metal interface were got too. Safety factors for fatigue life of the hip prothesis were calculated based on data obtained from dynamic analysis. Static analysis shows that drum-shaped cross section can decrease the displacement of the stem, that stress on drum-shaped stem focus on the corner of the femoral neck and the distal part of hip prosthesis, whereas the stress on the round-shaped stem distributes evenly over most part of the stem, and maximum stress on stem prosthesis fluctuates with stem length bottoming out at stem length range from 80 mm to 110 mm, that drum-shaped stems with drum height 8 mm generate more stress at the distal part of stem than drum-shaped stems with drum height 10 mm and round stems do. Dynamic and fatigue analysis shows that drum-shaped stem with drum height 10 mm and stem length 90 mm has the greatest safety factor therefore long fatigue life.
Impact of sampling techniques on measured stormwater quality data for small streams
Harmel, R.D.; Slade, R.M.; Haney, R.L.
2010-01-01
Science-based sampling methodologies are needed to enhance water quality characterization for setting appropriate water quality standards, developing Total Maximum Daily Loads, and managing nonpoint source pollution. Storm event sampling, which is vital for adequate assessment of water quality in small (wadeable) streams, is typically conducted by manual grab or integrated sampling or with an automated sampler. Although it is typically assumed that samples from a single point adequately represent mean cross-sectional concentrations, especially for dissolved constituents, this assumption of well-mixed conditions has received limited evaluation. Similarly, the impact of temporal (within-storm) concentration variability is rarely considered. Therefore, this study evaluated differences in stormwater quality measured in small streams with several common sampling techniques, which in essence evaluated within-channel and within-storm concentration variability. Constituent concentrations from manual grab samples and from integrated samples were compared for 31 events, then concentrations were also compared for seven events with automated sample collection. Comparison of sampling techniques indicated varying degrees of concentration variability within channel cross sections for both dissolved and particulate constituents, which is contrary to common assumptions of substantial variability in particulate concentrations and of minimal variability in dissolved concentrations. Results also indicated the potential for substantial within-storm (temporal) concentration variability for both dissolved and particulate constituents. Thus, failing to account for potential cross-sectional and temporal concentration variability in stormwater monitoring projects can introduce additional uncertainty in measured water quality data. Copyright ?? 2010 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Berenbrock, Charles E.
2015-01-01
The effects of reduced cross-sectional data points on steady-flow profiles were also determined. Thirty-five cross sections of the original steady-flow model of the Kootenai River were used. These two methods were tested for all cross sections with each cross section resolution reduced to 10, 20 and 30 data points, that is, six tests were completed for each of the thirty-five cross sections. Generally, differences from the original water-surface elevation were smaller as the number of data points in reduced cross sections increased, but this was not always the case, especially in the braided reach. Differences were smaller for reduced cross sections developed by the genetic algorithm method than the standard algorithm method.
Numerical Modeling of Mechanical Behavior for Buried Steel Pipelines Crossing Subsidence Strata
Han, C. J.
2015-01-01
This paper addresses the mechanical behavior of buried steel pipeline crossing subsidence strata. The investigation is based on numerical simulation of the nonlinear response of the pipeline-soil system through finite element method, considering large strain and displacement, inelastic material behavior of buried pipeline and the surrounding soil, as well as contact and friction on the pipeline-soil interface. Effects of key parameters on the mechanical behavior of buried pipeline were investigated, such as strata subsidence, diameter-thickness ratio, buried depth, internal pressure, friction coefficient and soil properties. The results show that the maximum strain appears on the outer transition subsidence section of the pipeline, and its cross section is concave shaped. With the increasing of strata subsidence and diameter-thickness ratio, the out of roundness, longitudinal strain and equivalent plastic strain increase gradually. With the buried depth increasing, the deflection, out of roundness and strain of the pipeline decrease. Internal pressure and friction coefficient have little effect on the deflection of buried pipeline. Out of roundness is reduced and the strain is increased gradually with the increasing of internal pressure. The physical properties of soil have a great influence on the mechanical properties of buried pipeline. The results from the present study can be used for the development of optimization design and preventive maintenance for buried steel pipelines. PMID:26103460
Merchán-Baeza, Jose Antonio; González-Sánchez, Manuel; Cuesta-Vargas, Antonio Ignacio
2014-01-01
Postural instability is one of the major complications found in stroke survivors. Parameterising the functional reach test (FRT) could be useful in clinical practice and basic research. To analyse the reliability, sensitivity, and specificity in the FRT parameterisation using inertial sensors for recording kinematic variables in patients who have suffered a stroke. Cross-sectional study. While performing FRT, two inertial sensors were placed on the patient's back (lumbar and trunk). Five subjects over 65 who suffer from a stroke. FRT measures, lumbosacral/thoracic maximum angular displacement, maximum time of lumbosacral/thoracic angular displacement, time return initial position, and total time. Speed and acceleration of the movements were calculated indirectly. FRT measure is 12.75±2.06 cm. Intrasubject reliability values range from 0.829 (time to return initial position (lumbar sensor)) to 0.891 (lumbosacral maximum angular displacement). Intersubject reliability values range from 0.821 (time to return initial position (lumbar sensor)) to 0.883 (lumbosacral maximum angular displacement). FRT's reliability was 0.987 (0.983-0.992) and 0.983 (0.979-0.989) intersubject and intrasubject, respectively. The main conclusion could be that the inertial sensors are a tool with excellent reliability and validity in the parameterization of the FRT in people who have had a stroke.
NASA Astrophysics Data System (ADS)
Pleuger, Jan; Podladchikov, Yuri
2014-05-01
The Penninic Alps are the result of progressive underthrusting of oceanic and continental domains below the Adriatic microplate. Situated in the internal part of the Alpine orogen, they expose basement and thinned cover nappes which have been metamorphosed to variable degree, among them several units which were subjected to ultrahigh-pressure metamorphism. Due to the more or less strong nappe-internal deformation of these units, cross sections through the Penninic Alps cannot be restored kinematically by area or line balancing techniques. Instead, such restorations attempt to consistently reconcile geochronological and structural data and petrological pressure-temperature estimates. Pressure data are usually converted into depth assuming that they were lithostatic which puts the ultrahigh-pressure units to subcrustal depths. Tectonic exhumation of a unit from such a depth by whatever mechanism requires a large-scale normal fault with several tens of kilometres of displacement in the hanging wall of the unit. However, for all Penninic ultrahigh-pressure units (Dora Maira unit, Zermatt-Saas zone, Monviso unit, Adula-Cima Lunga nappe), the oldest mappable post-peak-pressure structures are related to top-to-the-foreland shearing, i.e. thrusting. There are two potential solutions to this dilemma. The first one is that either the exhumation was indeed accommodated by a large-scale normal fault which became completely overprinted during later deformational stages. The other one is that peak pressures were not lithostatic. To our knowledge, the first solution is applied to all kinematic models of the Alps so far. In order to explore the feasibility of the second solution, we performed a purely structural restoration of the NFP20-East cross section without lithostatic pressure-to-depth-conversions. This cross-section comprises the ultrahigh-pressure Adula nappe (up to ca. 30 kbar) and relies on quantitative strain data from the overlying units. The result shows that, in accordance with the structural record, the Adula nappe can be restored to maximum depths of up to ca. 60 km. For individual points of the Adula nappe in the restored cross section, corresponding to the sporadic occurences of (ultra)high-pressure rocks, lithostatic pressures are exceeded by petrological peak-pressure data by about 40% to 80%. Such amounts of tectonic overpressure are within the limits of theoretical considerations and numerical modelling results. For the other units comprised in the cross section, and for subsequent tectono-metamorphic stages of the Adula nappe, negligible amounts of overpressure (around 10%) are determined from the restoration. We conclude that (1) the NFP20-East cross section can be kinematically restored by using only structural data, (2) the dilemma mentioned above can be solved by admitting realisting amounts of tectonic overpressure, and (3) significant amounts of overpressure were established only locally and episodically.
NASA Astrophysics Data System (ADS)
Pueyo, E. L.; Izquierdo-Llavall, E.; Ayala, C.; Oliva-Urcia, B.; Rubio, F. M.; Rodríguez-Pintó, A.; Casas, A. M.; García Crespo, J.
2015-12-01
The lack of subsurface information in the Linking Zone (between the Iberian and the Catalan Coastal Ranges) where no seismic sections and few boreholes are available, together with the need to perform an evaluation of a potential CO2 reservoir, have motivated us to carry out a combined structural and geophysical study. The reservoir is located in the Bunt/Muschelkalk facies (Triassic in age) just underneath the Keuper evaporites (regional detachment). The expected density contrast between cover/basement/detachment rocks represent a suitable setting to apply gravity modeling. Therefore, we designed the location of eight serial and radial cross sections over 1.50000 available geological maps, we also include bedding data (field work) and thickness and depth information from wells and previous stratigraphic profiles. Besides, gravity data were acquired along the sections to build up 2.5D models and thus, to constrain the geometry of the basement and the thickness of the sedimentary cover. Density values used in the modelling come from a database with 1470 sites (compiled and acquired). Initially we build the balanced sections using the available geological information and applying standard geometric techniques. Regional knowledge and previous sections were also taken into account. Then, we took these sections into Oasis Montaj to fit the real and expected gravimetric signal. In this work we present the comparison of the location of certain horizons before and after that feedback. In some cases, mislocation of some horizons may reach up to 0.4 km, which represents up to 50% of the expected depth. After fitting the gravity data with balanced cross-sections we carried out a stochastic inversion that allowed reducing the uncertainty to a maximum of 0.15 km, i. e. c. 20% . Further error analysis may be focused on the double-checking with seismic section information from the industry, if and when available. Attached figure displays an example of one of the performed sections. There, extrapolation of subsurface structures under the Ebro foreland basin based on lateral information cannot be supported by the measured gravimetric signal. The mislocations of the basement top in A and B zones reach -0.4 and + 0.8 km respectively, with critical implications for any potential CO2 storage.
Experiments on Antiprotons: Antiproton-Nucleon Cross Sections
DOE R&D Accomplishments Database
Chamberlain, Owen; Keller, Donald V.; Mermond, Ronald; Segre, Emilio; Steiner, Herbert M.; Ypsilantis, Tom
1957-07-22
In this paper experiments are reported on annihilation and scattering of antiprotons in H{sub 2}O , D{sub 2}O, and O{sub 2}. From the data measured it is possible to obtain an antiproton-proton and an antiproton-deuteron cross section at 457 Mev (lab). Further analysis gives the p-p and p-n cross sections as 104 mb for the p-p reaction cross section and 113 mb for the p-n reaction cross section. The respective annihilation cross sections are 89 and 74 mb. The Glauber correction necessary in order to pass from the p-d to the p-n cross section by subtraction of the p-p cross section is unfortunately large and somewhat uncertain. The data are compared with the p-p and p-n cross sections and with other results on p-p collisions.
Study of BenW (n = 1-12) clusters: An electron collision perspective
NASA Astrophysics Data System (ADS)
Modak, Paresh; Kaur, Jaspreet; Antony, Bobby
2017-08-01
This article explores electron scattering cross sections by Beryllium-Tungsten clusters (BenW). Beryllium and tungsten are important elements for plasma facing wall components, especially for the deuterium/tritium phase of ITER and in the recently installed JET. The present study focuses on different electron impact interactions in terms of elastic cross section (Qel), inelastic cross section (Qinel), ionization cross section (Qion), and momentum transfer cross section (Qmtcs) for the first twelve clusters belonging to the BenW family. It also predicts the evolution of the cross section with the size of the cluster. These cross sections are used as an input to model processes in plasma. The ionization cross section presented here is compared with the available reported data. This is the first comprehensive report on cross section data for all the above-mentioned scattering channels, to the best of our knowledge. Such broad analysis of cross section data gives vital insight into the study of local chemistry of electron interactions with BenW (n = 1-12) clusters in plasma.
Averaging cross section data so we can fit it
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D.
2014-10-23
The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).
New cross sections for H on H2 collisional transitions
NASA Astrophysics Data System (ADS)
Zou, Qianxia
2011-12-01
The cross section for H on H2 collisions is important for astrophysics as well as our understanding of the simple chemical systems. This is the simplest atom-molecule cross section. With a new H3 potential surface by Mielke et al., we have modified the ABC code by Skouteris, Castillo and Manolopoulos to calculate new cross sections. These cross sections are compared to previous cross section calculations.
Design Methods for Load-bearing Elements from Crosslaminated Timber
NASA Astrophysics Data System (ADS)
Vilguts, A.; Serdjuks, D.; Goremikins, V.
2015-11-01
Cross-laminated timber is an environmentally friendly material, which possesses a decreased level of anisotropy in comparison with the solid and glued timber. Cross-laminated timber could be used for load-bearing walls and slabs of multi-storey timber buildings as well as decking structures of pedestrian and road bridges. Design methods of cross-laminated timber elements subjected to bending and compression with bending were considered. The presented methods were experimentally validated and verified by FEM. Two cross-laminated timber slabs were tested at the action of static load. Pine wood was chosen as a board's material. Freely supported beam with the span equal to 1.9 m, which was loaded by the uniformly distributed load, was a design scheme of the considered plates. The width of the plates was equal to 1 m. The considered cross-laminated timber plates were analysed by FEM method. The comparison of stresses acting in the edge fibres of the plate and the maximum vertical displacements shows that both considered methods can be used for engineering calculations. The difference between the results obtained experimentally and analytically is within the limits from 2 to 31%. The difference in results obtained by effective strength and stiffness and transformed sections methods was not significant.
A computer program for analyzing channel geometry
Regan, R.S.; Schaffranek, R.W.
1985-01-01
The Channel Geometry Analysis Program (CGAP) provides the capability to process, analyze, and format cross-sectional data for input to flow/transport simulation models or other computational programs. CGAP allows for a variety of cross-sectional data input formats through use of variable format specification. The program accepts data from various computer media and provides for modification of machine-stored parameter values. CGAP has been devised to provide a rapid and efficient means of computing and analyzing the physical properties of an open-channel reach defined by a sequence of cross sections. CGAP 's 16 options provide a wide range of methods by which to analyze and depict a channel reach and its individual cross-sectional properties. The primary function of the program is to compute the area, width, wetted perimeter, and hydraulic radius of cross sections at successive increments of water surface elevation (stage) from data that consist of coordinate pairs of cross-channel distances and land surface or channel bottom elevations. Longitudinal rates-of-change of cross-sectional properties are also computed, as are the mean properties of a channel reach. Output products include tabular lists of cross-sectional area, channel width, wetted perimeter, hydraulic radius, average depth, and cross-sectional symmetry computed as functions of stage; plots of cross sections; plots of cross-sectional area and (or) channel width as functions of stage; tabular lists of cross-sectional area and channel width computed as functions of stage for subdivisions of a cross section; plots of cross sections in isometric projection; and plots of cross-sectional area at a fixed stage as a function of longitudinal distance along an open-channel reach. A Command Procedure Language program and Job Control Language procedure exist to facilitate program execution on the U.S. Geological Survey Prime and Amdahl computer systems respectively. (Lantz-PTT)
Mendias, Christopher L; Kayupov, Erdan; Bradley, Joshua R; Brooks, Susan V; Claflin, Dennis R
2011-07-01
Myostatin (MSTN) is a member of the transforming growth factor-β superfamily of cytokines and is a negative regulator of skeletal muscle mass. Compared with MSTN(+/+) mice, the extensor digitorum longus muscles of MSTN(-/-) mice exhibit hypertrophy, hyperplasia, and greater maximum isometric force production (F(o)), but decreased specific maximum isometric force (sF(o); F(o) normalized by muscle cross-sectional area). The reason for the reduction in sF(o) was not known. Studies in myotubes indicate that inhibiting myostatin may increase muscle mass by decreasing the expression of the E3 ubiquitin ligase atrogin-1, which could impact the force-generating capacity and size of muscle fibers. To gain a greater understanding of the influence of myostatin on muscle contractility, we determined the impact of myostatin deficiency on the contractility of permeabilized muscle fibers and on the levels of atrogin-1 and ubiquitinated myosin heavy chain in whole muscle. We hypothesized that single fibers from MSTN(-/-) mice have a greater F(o), but no difference in sF(o), and a decrease in atrogin-1 and ubiquitin-tagged myosin heavy chain levels. The results indicated that fibers from MSTN(-/-) mice have a greater cross-sectional area, but do not have a greater F(o) and have a sF(o) that is significantly lower than fibers from MSTN(+/+) mice. The extensor digitorum longus muscles from MSTN(-/-) mice also have reduced levels of atrogin-1 and ubiquitinated myosin heavy chain. These findings suggest that myostatin inhibition in otherwise healthy muscle increases the size of muscle fibers and decreases atrogin-1 levels, but does not increase the force production of individual muscle fibers.
Nagayoshi, Mako; Higashi, Miho; Takamura, Noboru; Tamai, Mami; Koyamatsu, Jun; Yamanashi, Hirotomo; Kadota, Koichiro; Sato, Shimpei; Kawashiri, Shin-ya; Koyama, Zenya; Saito, Toshiyuki; Maeda, Takahiro
2017-01-01
Objectives Social environment is often associated with health outcomes, but epidemiological evidence for its effect on oral frailty, a potential risk factor for aspiration, is sparse. This study aimed to assess the association between social environment and tongue pressure, as an important measure of oral function. The study focused on family structure, social networks both with and beyond neighbours, and participation in leisure activities. Design A population-based cross-sectional study. Setting Annual health check-ups in a rural community in Japan. Participants A total of 1982 participants, all over 40 years old. Anyone with missing data for the main outcome (n=14) was excluded. Outcome measures Tongue pressure was measured three times, and the maximum tongue pressure was used for analysis. A multivariable adjusted regression model was used to calculate parameter estimates (B) for tongue pressure. Results Having a social network involving neighbours (B=2.43, P=0.0001) and taking part in leisure activities (B=1.58, P=0.005) were independently associated with higher tongue pressure, but there was no link with social networks beyond neighbours (B=0.23, P=0.77). Sex-specific analyses showed that for men, having a partner was associated with higher tongue pressure, independent of the number of people in the household (B=2.26, P=0.01), but there was no association among women (B=−0.24, P=0.72; P-interaction=0.059). Conclusions Having a social network involving neighbours and taking part in leisure activities were independently associated with higher tongue pressure. Marital status may be an important factor in higher tongue pressure in men. PMID:29217718
Nagayoshi, Mako; Higashi, Miho; Takamura, Noboru; Tamai, Mami; Koyamatsu, Jun; Yamanashi, Hirotomo; Kadota, Koichiro; Sato, Shimpei; Kawashiri, Shin-Ya; Koyama, Zenya; Saito, Toshiyuki; Maeda, Takahiro
2017-12-06
Social environment is often associated with health outcomes, but epidemiological evidence for its effect on oral frailty, a potential risk factor for aspiration, is sparse. This study aimed to assess the association between social environment and tongue pressure, as an important measure of oral function. The study focused on family structure, social networks both with and beyond neighbours, and participation in leisure activities. A population-based cross-sectional study. Annual health check-ups in a rural community in Japan. A total of 1982 participants, all over 40 years old. Anyone with missing data for the main outcome (n=14) was excluded. Tongue pressure was measured three times, and the maximum tongue pressure was used for analysis. A multivariable adjusted regression model was used to calculate parameter estimates (B) for tongue pressure. Having a social network involving neighbours (B=2.43, P=0.0001) and taking part in leisure activities (B=1.58, P=0.005) were independently associated with higher tongue pressure, but there was no link with social networks beyond neighbours (B=0.23, P=0.77). Sex-specific analyses showed that for men, having a partner was associated with higher tongue pressure, independent of the number of people in the household (B=2.26, P=0.01), but there was no association among women (B=-0.24, P=0.72; P-interaction=0.059). Having a social network involving neighbours and taking part in leisure activities were independently associated with higher tongue pressure. Marital status may be an important factor in higher tongue pressure in men. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Brassey, Charlotte A; Kitchener, Andrew C; Withers, Philip J; Manning, Phillip L; Sellers, William I
2013-03-01
The limb bones of an elephant are considered to experience similar peak locomotory stresses as a shrew. "Safety factors" are maintained across the entire range of body masses through a combination of robusticity of long bones, postural variation, and modification of gait. The relative contributions of these variables remain uncertain. To test the role of shape change, we undertook X-ray tomographic scans of the leg bones of 60 species of mammals and birds, and extracted geometric properties. The maximum resistible forces the bones could withstand before yield under compressive, bending, and torsional loads were calculated using standard engineering equations incorporating curvature. Positive allometric scaling of cross-sectional properties with body mass was insufficient to prevent negative allometry of bending (F(b) ) and torsional maximum force (F(t) ) (and hence decreasing safety factors) in mammalian (femur F(b) ∞M(b) (0.76) , F(t) ∞M(b) (0.80) ; tibia F(b) ∞M(b) (0.80) , F(t) ∞M(b) (0.76) ) and avian hindlimbs (tibiotarsus F(b) ∞M(b) (0.88) , F(t) ∞M(b) (0.89) ) with the exception of avian femoral F(b) and F(t) . The minimum angle from horizontal a bone must be held while maintaining a given safety factor under combined compressive and bending loads increases with M(b) , with the exception of the avian femur. Postural erectness is shown as an effective means of achieving stress similarity in mammals. The scaling behavior of the avian femur is discussed in light of unusual posture and kinematics. Copyright © 2013 Wiley Periodicals, Inc.
Examination of sustained gait speed during extended walking in individuals with chronic stroke.
Altenburger, Peter A; Dierks, Tracy A; Miller, Kristine K; Combs, Stephanie A; Van Puymbroeck, Marieke; Schmid, Arlene A
2013-12-01
To determine if individuals with chronic stroke were able to sustain their peak gait speed during the 6-minute walk test (6MWT), and to explore this sustainability across community ambulation potential subgroups. Prospective cross-sectional study. University-based research laboratory, hospitals, and stroke support groups. A sample of individuals with chronic stroke (N=48) completed a series of questionnaires and physical outcome measures, including gait mat assessment, during a single visit. Not applicable; 1-time cross-sectional data collection. During the 6MWT, we measured peak gait speed and end gait speed to assess sustainability, along with beginning gait speed, total distance walked, and rating of perceived exertion. We also assessed maximum gait speed during the 10-meter walk test (10MWT). Finally, we examined these gait outcomes across the subgroups. During the 6MWT, peak gait speed declined from .89m/s (SD=.38) to an end speed of .82m/s (SD=.36), whereas perceived exertion increased from 7.7 (SD=2.6) to 11.8 (SD=3.6). This peak gait speed was slower than the 10MWT maximum speed of 1.06m/s (SD=.51), but faster than the 6MWT beginning speed of .81m/s (SD=.34). The unlimited community ambulator subgroup was the primary contributor to sustainability differences. Predicting community ambulation potential based on the discrete gait speed from the 10MWT and endurance based on the average from the 6MWT might be incomplete if gait speed sustainability is not also assessed. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Imaeda, Miwa; Hojo, Tatsuya; Kitakoji, Hiroshi; Tanaka, Kazuto; Itoi, Megumi; Inoue, Motohiro
2018-04-19
In this study we examined the effect of electroacupuncture (EA) stimulation on the mechanical strength of the rat Achilles tendon after long-term recovery. Using 20 rats, an Achilles tendon rupture model was created in an invasive manner. The rats were assigned to one of three groups, that received EA treatment (EA group), minimal acupuncture (MA group) or remained untreated (Control group). In the EA group, EA stimulation (5 ms, 50 Hz, 20 µA, 20 min) was applied to the rupture region over a period of 90 days (five times/week). In the MA group, needles were inserted into the same positions as in the EA group but no electrical current was applied. After 90 days the tendon was measured to calculate the cross-sectional area of the rupture region. Then, the mechanical strength of the tendon was measured by tensile testing. No significant differences were observed between the three groups in cross-sectional area of the injured tendon. For maximum breaking strength, the EA group showed a significantly higher threshold compared with the Control group (P<0.05) but not the MA group (P=0.24). No significant difference was seen between the MA group and the Control group (P=0.96). Given the EA group showed a significant increase in maximum breaking strength, it is likely that EA stimulation increases the mechanical strength of a repaired tendon after long-term recovery, and EA stimulation could be useful for preventing re-rupture. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Arnholt, Christina M.; MacDonald, Daniel W.; Underwood, Richard; Guyer, Eric P.; Rimnac, Clare M.; Kurtz, Steven M.; Mont, Michael A.; Klein, Gregg; Lee, Gwo-Chin; Chen, Antonia F.; Hamlin, Brian; Cates, Harold; Malkani, Arthur; Kraay, Matthew
2017-01-01
Background Previous studies identified imprinting of the stem morphology onto the interior head bore, leading researchers to hypothesize an influence of taper topography on mechanically assisted crevice corrosion (MACC). The purpose of this study was to analyze whether micro-grooved stem tapers result in greater fretting corrosion damage than smooth stem tapers. Methods A matched cohort of 120 retrieved head-stem pairs from metal-on-polyethylene bearings was created controlling for implantation time, flexural rigidity, apparent length of engagement, and head size. There were two groups of 60 heads each, mated with either smooth or micro-grooved stem tapers. A high precision roundness machine was used to measure and categorize the surface morphology. Fretting corrosion damage at the head/neck junction was characterized using the Higgs-Goldberg scoring method. Fourteen of the most damaged heads, were analyzed for the maximum depth of material loss and focused ion beam (FIB) cross-sectioned to view oxide and base metal. Results Fretting corrosion damage was not different between the two cohorts at the femoral head (p = 0.14, Mann Whitney) or stem tapers (p = 0.35). There was no difference in the maximum depths of material loss between the cohorts (p = 0.71). Cross sectioning revealed contact damage, signs of micro-motion, and chromium rich oxide layers in both cohorts. Micro-groove imprinting did not appear to have a different effect on the fretting corrosion behavior. Conclusion The results of this matched cohort retrieval study do not support the hypothesis that taper surfaces with micro-grooved stems exhibit increased in vivo fretting corrosion damage or material release. PMID:28111124
Impact of Study Design on Reported Incidences of Acute Mountain Sickness: A Systematic Review.
Waeber, Baptiste; Kayser, Bengt; Dumont, Lionel; Lysakowski, Christopher; Tramèr, Martin R; Elia, Nadia
2015-09-01
Published incidences of acute mountain sickness (AMS) vary widely. Reasons for this variation, and predictive factors of AMS, are not well understood. We aimed to identify predictive factors that are associated with the occurrence of AMS, and to test the hypothesis that study design is an independent predictive factor of AMS incidence. We did a systematic search (Medline, bibliographies) for relevant articles in English or French, up to April 28, 2013. Studies of any design reporting on AMS incidence in humans without prophylaxis were selected. Data on incidence and potential predictive factors were extracted by two reviewers and crosschecked by four reviewers. Associations between predictive factors and AMS incidence were sought through bivariate and multivariate analyses for different study designs separately. Association between AMS incidence and study design was assessed using multiple linear regression. We extracted data from 53,603 subjects from 34 randomized controlled trials, 44 cohort studies, and 33 cross-sectional studies. In randomized trials, the median of AMS incidences without prophylaxis was 60% (range, 16%-100%); mode of ascent and population were significantly associated with AMS incidence. In cohort studies, the median of AMS incidences was 51% (0%-100%); geographical location was significantly associated with AMS incidence. In cross-sectional studies, the median of AMS incidences was 32% (0%-68%); mode of ascent and maximum altitude were significantly associated with AMS incidence. In a multivariate analysis, study design (p=0.012), mode of ascent (p=0.003), maximum altitude (p<0.001), population (p=0.002), and geographical location (p<0.001) were significantly associated with AMS incidence. Age, sex, speed of ascent, duration of exposure, or history of AMS were inconsistently reported and therefore not further analyzed. Reported incidences and identifiable predictive factors of AMS depend on study design.
Bupivacaine injection remodels extraocular muscles and corrects comitant strabismus.
Miller, Joel M; Scott, Alan B; Danh, Kenneth K; Strasser, Dirk; Sane, Mona
2013-12-01
To evaluate the clinical effectiveness and anatomic changes resulting from bupivacaine injection into extraocular muscles to treat comitant horizontal strabismus. Prospective, observational clinical series. Thirty-one comitant horizontal strabismus patients. Nineteen patients with esotropia received bupivacaine injections in the lateral rectus muscle, and 12 patients with exotropia received bupivacaine injections in the medial rectus. Sixteen of these, with large strabismus angles, also received botulinum type A toxin injections in the antagonist muscle at the same treatment session. A second treatment was given to 13 patients who had residual strabismus after the first treatment. Clinical alignment measures and muscle volume, maximum cross-sectional area, and shape derived from magnetic resonance imaging, with follow-up examinations for up to 3 years. At an average of 15.3 months after the final treatment, original misalignment was reduced by 10.5 prism diopters (Δ; 6.0°) with residual deviations of 10Δ or less in 53% of patients. A single treatment with bupivacaine alone reduced misalignment at 11.3 months by 4.7Δ (2.7°) with residual deviations of 10Δ or less in 50% of patients. Alignment corrections were remarkably stable over follow-ups for as long as 3 years. Six months after bupivacaine injection, muscle volume had increased by 6.6%, and maximum cross-sectional area had increased by 8.5%, gradually relaxing toward pretreatment values thereafter. Computer modeling with Orbit 1.8 (Eidactics, San Francisco, CA) suggested that changes in agonist and antagonist muscle lengths were responsible for the enduring changes in eye alignment. Bupivacaine injection alone or together with botulinum toxin injection in the antagonist muscle improves eye alignment in comitant horizontal strabismus by inducing changes in rectus muscle structure and length. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Joge, Umesh S; Deo, Deepali S; Choudhari, Sonali G; Malkar, Vilas R; Ughade, Harshada M
2013-01-01
From the moment scientists identified Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS), social responses of fear, denial, stigma, and discrimination have accompanied the epidemic. To assess the rate of disclosure of HIV serostatus, reactions by the HIV/AIDS patients and their spouse, and discrimination faced by the patients. The present cross-sectional study was conducted at Antiretroviral Therapy (ART) center of a rural tertiary care hospital, situated in Marathawada region of Maharashtra state from November 2008 to October 2010. Totally, 801 HIV-positive patients coming to ART center for treatment were included after ensuring confidentiality and taking informed consent. A preformed questionnaire was used to enquire about reaction after diagnosis, disclosure, and discrimination faced by the patients. The data analyzed using descriptive statistics and Chi-square test. The most common immediate reaction by the HIV patients after getting diagnosed as seropositive was fear (593, 74.03%) followed by depression (385, 48.06%) and suicidal thoughts (98, 12.25%). Out of 801 patients, 769 (96%) had spouse and of these maximum number of patients (653, 84.92%) had disclosed HIV status to their spouses. Most common immediate reaction by spouse after disclosure was crime (324, 42.13%) followed by horror (294, 38.23%) and anger (237, 36.29%). Maximum number of patients were discriminated by friends (120, 71.01%) followed by discrimination at workplace (49, 67.12%), by neighbors (32, 56.14%), and by relatives (53, 43.80%). Male positives were granted greater acceptance, care, and support by their spouses. More percentage of females discriminated by neighbors, relatives, and friends and at workplace which might be due to factors like customs, morals, and taboos.
Tensile properties of the transverse carpal ligament and carpal tunnel complex.
Ugbolue, Ukadike C; Gislason, Magnus K; Carter, Mark; Fogg, Quentin A; Riches, Philip E; Rowe, Philip J
2015-08-01
A new sophisticated method that uses video analysis techniques together with a Maillon Rapide Delta to determine the tensile properties of the transverse carpal ligament-carpal tunnel complex has been developed. Six embalmed cadaveric specimens amputated at the mid-forearm and aged (mean (SD)): 82 (6.29) years were tested. The six hands were from three males (four hands) and one female (two hands). Using trigonometry and geometry the elongation and strain of the transverse carpal ligament and carpal arch were calculated. The cross-sectional area of the transverse carpal ligament was determined. Tensile properties of the transverse carpal ligament-carpal tunnel complex and Load-Displacement data were also obtained. Descriptive statistics, one-way ANOVA together with a post-hoc analysis (Tukey) and t-tests were incorporated. A transverse carpal ligament-carpal tunnel complex novel testing method has been developed. The results suggest that there were no significant differences between the original transverse carpal ligament width and transverse carpal ligament at peak elongation (P=0.108). There were significant differences between the original carpal arch width and carpal arch width at peak elongation (P=0.002). The transverse carpal ligament failed either at the mid-substance or at their bony attachments. At maximum deformation the peak load and maximum transverse carpal ligament displacements ranged from 285.74N to 1369.66N and 7.09mm to 18.55mm respectively. The transverse carpal ligament cross-sectional area mean (SD) was 27.21 (3.41)mm(2). Using this method the results provide useful biomechanical information and data about the tensile properties of the transverse carpal ligament-carpal tunnel complex. Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 35.635 - Maximum federal share.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Maximum federal share. 35.635 Section... (sections 319(h) and 518(f)) § 35.635 Maximum federal share. (a) The Regional Administrator may provide up... be provided from non-federal sources. (b) The Regional Administrator may increase the maximum federal...
40 CFR 35.685 - Maximum federal share.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Maximum federal share. 35.685 Section... (section 1443(b)) § 35.685 Maximum federal share. (a) The Regional Administrator may provide up to 75 percent of the approved work plan costs. (b) The Regional Administrator may increase the maximum federal...
Multistrand superconductor cable
Borden, A.R.
1984-03-08
Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aad, G.; Abbott, B.; Abdallah, J.
Differential cross sections for the production of at least four jets have been measured in proton-proton collisions at √s = 8 TeV at the Large Hadron Collider using the ATLAS detector. Events are selected if the four anti-k t R = 0.4 jets with the largest transverse momentum (p T) within the rapidity range |y| < 2.8 are well separated (ΔR 4j min > 0.65), all have p T > 64 GeV, and include at least one jet with p T > 100 GeV. The dataset corresponds to an integrated luminosity of 20.3 fb -1. As a result, the crossmore » sections, corrected for detector effects, are compared to leading-order and next-to-leading-order calculations as a function of the jet momenta, invariant masses, minimum and maximum opening angles and other kinematic variables.« less
Middle UV to near-IR spectrum of electron-excited SO2
Ajello, J.M.; Aguilar, A.; Mangina, R.S.; James, G.K.; Geissler, P.; Trafton, L.
2008-01-01
We investigated the electron impact–induced fluorescence spectrum of SO2 to provide excitation cross sections for modeling Io's emission spectrum and analyzing Cassini Imaging Science Subsystem observations. The electron-excited middle-ultraviolet visible optical near-infrared (VOIR) emission spectrum of SO2 gas was generated in the laboratory and studied from 2000 to 11,000 Å at a resolution of Δλ ∼ 2.5 Å full width at half maximum (FWHM). The VOIR laboratory spectrum longward of 6000 Å consists entirely of S I, II and O I, II multiplets for electron impact energies above ∼15 eV. Between 2000 and 6000 Å, we find previously identified molecular bands from both SO and SO2. This work represents a significant improvement in spectral resolution over our earlier work done at 18 Å FWHM. From a measurement of the medium-resolution spectrum, we provide detailed 25- and 100-eV emission cross sections for spectral features from 2000 to 11,000 Å. On the basis of these data, we suggest future ground-based and satellite telescopic observations in the VOIR that are of promise for understanding Io's atmosphere.
NASA Astrophysics Data System (ADS)
Cannoni, Mirco
2015-03-01
We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature . The point , which coincides with the stationary point of the equation for the quantity , is where the maximum departure of the WIMPs abundance from the thermal value is reached. For each mass and total annihilation cross section , the temperature and the actual WIMPs abundance are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval . The matching of the two abundances at is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1-2 % in the case of -wave and -wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics.
Crystal growth, polarized spectra, and laser performance of Yb:CaGdAlO4 crystal
NASA Astrophysics Data System (ADS)
Di, J. Q.; Xu, X. D.; Xia, C. T.; Zheng, L. H.; Aka, G.; Yu, H. H.; Sai, Q. L.; Guo, X. Y.; Zhu, L.
2016-04-01
In this paper, the crystal growth, polarized spectra, and laser performance of Yb:CaGdAlO4 crystal were reported. The segregation coefficient of Yb3+ ions was calculated to be 0.47. The cell parameters were determined to be a = b = 0.3658 nm, c = 1.1985 nm. The peak absorption cross-section was calculated to be 2.65 × 10-20 cm2 at 979 nm and the peak stimulated emission cross-section was 2.23 × 10-20 cm2 at 980 nm for the π polarization. The continuous-wave (CW) laser operations of uncoated Yb:CaGdAlO4 crystals with 5 × 5 × 3 mm3 in size were demonstrated. A maximum output power of 1.6 W at 1048 nm was obtained with a slope efficiency of 28%. The results show that Yb:CaGdAlO4 crystal is a promising laser medium.
A precise determination of the top-quark pole mass
NASA Astrophysics Data System (ADS)
Wang, Sheng-Quan; Wu, Xing-Gang; Si, Zong-Guo; Brodsky, Stanley J.
2018-03-01
The Principle of Maximum Conformality (PMC) provides a systematic way to eliminate the renormalization scheme and renormalization scale uncertainties for high-energy processes. We have observed that by applying PMC scale setting, one obtains comprehensive and self-consistent pQCD predictions for the top-quark pair total cross section and the top-quark pair forward-backward asymmetry in agreement with the measurements at the Tevatron and LHC. As a step forward, in the present paper, we determine the top-quark pole mass via a detailed comparison of the top-quark pair cross section with the measurements at the Tevatron and LHC. The results for the top-quark pole mass are m_t=174.6^{+3.1}_{-3.2} GeV for the Tevatron with √{S}=1.96 TeV, m_t=173.7± 1.5 and 174.2± 1.7 GeV for the LHC with √{S} = 7 and 8 TeV, respectively. Those predictions agree with the average, 173.34± 0.76 GeV, obtained from various collaborations via direct measurements. The consistency of the pQCD predictions using the PMC with all of the collider measurements at different energies provides an important verification of QCD.
Hamzehgardeshi, Zeinab; Shahhosseini, Zohreh
2013-12-27
Continuing education is one of the modern strategies to maintain and elevate knowledge and professional skills of nurses which in turn elevate the health status of society. Since several factors affect nurses' participation in continuing education, it's essential to know promoters and obstacles in this issue and plan accordingly. In this cross-sectional study, 361 Iranian nurses who were recruited by convenience sampling method completed an anonymous, self-administered questionnaire from October 2012 to April 2013. Topics covered the participants' attitudes towards facilitators and barriers of their participation in continuing education. Mean and standard deviation of participants ' age were 37.14±7.58 years and 93.94% were female. The maximum score of facilitators and barriers to nurses' participation in continuing education were related to "Update my knowledge" and "Work commitments" respectively. The results showed among Iranian nurses, the mean score of personal and structural barriers was significantly higher than the mean score of interpersonal ones (F=2122.66, p<0.001). Results highlight policy makers and nursing managers' role on improving the accessibility to provided continuing education programs by enforcement of facilitators and reducing barriers focusing on the personal and structural barriers.
Priest, J. W.; Moss, D. M.; Arnold, B. F.; Hamlin, K.; Jones, C. C.; Lammie, P. J.
2018-01-01
Summary Toxoplasma gondii is a globally distributed parasitic protozoan that infects most warm blooded animals. We incorporated a bead coupled with recombinant SAG2A protein into our Neglected Tropical Disease (NTD) multiplex bead assay (MBA) panel and used it to determine Toxoplasma infection rates in two studies in Haiti. In a longitudinal cohort study of children 0–11 years old, the infection rate varied with age reaching a maximum of 0.131 infections/ year in children 3 years of age (95% CI = 0.065, 0.204). The median time to seroconversion was estimated to be 9.7 years (95% CI = 7.6, ∞). In a cross-sectional, community-wide survey of residents of all ages, we determined an overall seroprevalence of 28.2%. The seroprevalence age curve from the cross-sectional study also suggested that the force of infection varied with age and peaked at 0.057 infections/ year (95% CI = 0.033, 0.080) at 2.6 years of age. Integration of the Toxoplasma MBA into NTD surveys may allow for better estimates of the potential burden of congenital toxoplasmosis in underserved regions. PMID:25600668
NASA Astrophysics Data System (ADS)
Kaneda, Shogo; Hayashi, Kazuhiro; Hachimori, Wataru; Tamura, Shuji; Saito, Taiki
2017-10-01
In past earthquake disasters, numerous building structure piles were damaged by soil liquefaction occurring during the earthquake. Damage to these piles, because they are underground, is difficult to find. The authors aim to develop a monitoring method of pile damage based on superstructure dynamic response. This paper investigated the relationship between the damage of large cross section cementitious piles and the dynamic response of the super structure using a centrifuge test apparatus. A dynamic specimen used simple cross section pile models consisting of aluminum rod and mortar, a saturated soil (Toyoura sand) of a relative density of 40% and a super structure model of a natural period of 0.63sec. In the shaking table test under a 50G field (length scale of 1/50), excitation was a total of 3 motions scaled from the Rinkai wave at different amplitudes. The maximum acceleration of each of the excitations was 602gal, 336gal and 299gal. The centrifuge test demonstrated the liquefaction of saturated soil and the failure behavior of piles. In the test result, the damage of piles affected the predominant period of acceleration response spectrum on the footing of the superstructure.
Middle UV to Near-IR Spectrum of Electron-Excited SO2
NASA Technical Reports Server (NTRS)
Ajello, Joseph M.; Aguilar, Alejandro; Mangina, Rao S.; James, Geoffrey K.; Geissler, Paul; Trafton, Laurence
2008-01-01
We investigated the electron impact-induced fluorescence spectrum of SO2 to provide excitation cross sections for modeling Io's mission spectrum and analyzing Cassini Imaging Science Subsystem observations. The electron-excited middle-ultraviolet visible optical near-infrared (VOIR) emission spectrum of SO2 gas was generated in the laboratory and studied from 2000 to 11,000 A at a resolution of (Delta)(lamda) approximately 2.5 A full width at half maximum (FWHM). The VOIR laboratory spectrum longward of 6000 A consists entirely of S I, II and O I, II multiplets for electron impact energies above approximately 15 eV. Between 2000 and 6000 A, we find previously identified molecular bands from both SO and SO2. This work represents a significant improvement in spectral resolution over our earlier work done at 18 A FWHM. From a measurement of the medium-resolution spectrum, we provide detailed 25- and 100-eV emission cross sections for spectral features from 2000 to 11,000 A . On the basis of these data, we suggest future ground-based and satellite telescopic observations in the VOIR that are of promise for understanding Io's atmosphere.
The design of broadband radar absorbing surfaces
NASA Astrophysics Data System (ADS)
Suk, Go H.
1990-09-01
There has been a growing and widespread interest in radar absorbing material technology. As the name implies, radar absorbing materials or RAM's are coatings whose electric and magnetic properties have been selected to allow the absorption of microwave energy at discrete or broadband frequencies. In military applications low radar cross section (RCS) of a vehicle may be required in order to escape detection while a covert mission is being carried on. These requirements have led to the very low observable or stealth technology that reduces the probability of detection of an aircraft. The design of radar absorbing materials is limited by constraints on the allowable volume and weight of the surface coating, and it is difficult to design a broadband radar absorbing structure in limited volume. This thesis investigates the use of lossy dielectric materials of high dielectric permittivity in multilayer composites for the production of low radar cross section (RCS). The analysis is done by computing the plane wave reflection coefficient at the exterior surface of the composite coating by means of a computer program which selects layer parameters which determine low reflection coefficients for electromagnetic radiation under constraint of limited layer thickness as well as maximum frequency bandwidth.
NASA Astrophysics Data System (ADS)
Wang, Shuangyue; Yan, Hongwei; Li, Dengji; Qiao, Liang; Han, Shaobo; Yuan, Xiaodong; Liu, Wei; Xiang, Xia; Zu, Xiaotao
2018-02-01
Dual-layer and tri-layer broadband antireflective (AR) films with excellent transmittance were successfully fabricated using base-/acid-catalyzed mixed sols and propylene oxide (PO) modified silica sols. The sols and films were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), transmission electron microscope (TEM), and scanning transmission electron microscope (STEM). FTIR and TEM results suggest that the PO molecules were covalently bonded to the silica particles and the bridge structure existing in PO modified silica sol is responsible for the low density of the top layer. The density ratio between different layers was measured by cross-sectional STEM, and the results are 1.69:1 and 2.1:1.7:1 from bottom-layer to top-layer for dual-layer and tri-layer films, respectively. The dual-layer film demonstrates good stability with 99.8% at the central wavelength of 351 nm and nearly 99.5% at the central wavelength of 1053 nm in laser system, and for the tri-layer AR film, the maximum transmittance reached nearly 100% at both the central wavelengths of 527 and 1053 nm.
NASA Technical Reports Server (NTRS)
Jee, Webster S. S.; Li, Xiao Jian; Schaffler, Mitchell B.
1991-01-01
The experimental increase in mechanical usage or overloading of the left hindlimb was produced by immobilization of the contralateral hindlimb. The right hindlimb was placed in a flexed position against the body and was immobilized using an elastic bandage. Some control animals were sacrificed initially at time zero and increased mechanical usage and age-matched control animals were sacrificed after 2, 10, 18, and 26 weeks of treatment. All animals received double bone fluorochrome labeling prior to sacrifice. Cortical bone histomorphometry and cross-sectional moments of inertia were determined. Marrow cavity enlargement and total cross-sectional area expansion represented the age-related cortical bone changes. Increased mechanical usage enhanced periosteal bone modeling in the formation mode and dampened endocortical bone remodeling and bone modeling in the resorption mode (resorption drift) to create a slight positive bone balance. These observations are in general agreement with Frost's postulate for mechanical effects on bone modeling and remodeling. The maximum moment of inertia did not change significantly in either control or overloaded tibial shafts. The minimum and polar moment of inertias in overloaded bones increases over those of controls at 18 and 26 weeks of the experiment.
NASA Technical Reports Server (NTRS)
Jee, Webster S. S.; Li, Xiao Jian; Schaffler, Mitchell B.
1991-01-01
The experimental increase in mechanical usage or overloading of the left hindlimb was produced by immobilization of the contralateral hindlimb. The right hindlimb was placed in a flexed position against the body and was immobilized using an elastic bandage. Some control animals were sacrificed initially at time zero and increased mechanical usage and age-matched control animals were sacrificed after 2, 10, 18, and 26 weeks of treatment. All animals received double bone fluorochrome labeling prior to sacrifice. Cortical bone histomorphometry and cross-sectional moments of inertia were determined. Marrow cavity enlargement and total cross-sectional area expansion represented the age-related cortical bone changes. Increased mechanical usage enhanced periosteal bone modeling in the formation mode and dampened endocortical bone remodeling and bone modeling in the resorption mode (resorption drift) to create a slight positive bone balance. These observations are in general agreement with Frost's postulate for mechanical effects on bone modeling and remodeling. The maximum moment of inertia did not change significantly in either control or overloaded tibial shafts. The minimum and polar moment of inertias in overloaded bones increases over those of controls at 18 and 26 weeks of the experiment.
Temperature-dependent spectroscopy and microchip laser operation of Nd:KGd(WO4)2
NASA Astrophysics Data System (ADS)
Loiko, P.; Yoon, S. J.; Serres, J. M.; Mateos, X.; Beecher, S. J.; Birch, R. B.; Savitski, V. G.; Kemp, A. J.; Yumashev, K.; Griebner, U.; Petrov, V.; Aguiló, M.; Díaz, F.; Mackenzie, J. I.
2016-08-01
High-resolution absorption and stimulated-emission cross-section spectra are presented for monoclinic Nd:KGd(WO4)2 (Nd:KGW) laser crystals in the temperature range 77-450 K. At room-temperature, the maximum stimulated emission cross-section is σSE = 21.4 × 10-20 cm2 at 1067.3 nm, for light polarization E || Nm. The lifetime of the 4F3/2 state of Nd3+ in KGW is practically temperature independent at 115 ± 5 μs. Measurement of the energy transfer upconversion parameter for a 3 at.% Nd:KGW crystal proved that this was significantly smaller than for alternative hosts, ∼2.5 × 10-17 cm3/s. When cut along the Ng optical indicatrix axis, the Nd:KGW crystal was configured as a microchip laser, generating ∼4 W of continuous-wave output at 1067 nm with a slope efficiency of 61% under diode-pumping. Using a highly-doped (10 at.%) Nd:KGW crystal, the slope efficiency reached 71% and 74% when pumped with a laser diode and a Ti:Sapphire laser, respectively. The concept of an ultrathin (250 μm) Nd:KGW microchip laser sandwiched between two synthetic diamond heat-spreaders is demonstrated.
Maximal liquid bridges between horizontal cylinders
NASA Astrophysics Data System (ADS)
Cooray, Himantha; Huppert, Herbert E.; Neufeld, Jerome A.
2016-08-01
We investigate two-dimensional liquid bridges trapped between pairs of identical horizontal cylinders. The cylinders support forces owing to surface tension and hydrostatic pressure that balance the weight of the liquid. The shape of the liquid bridge is determined by analytically solving the nonlinear Laplace-Young equation. Parameters that maximize the trapping capacity (defined as the cross-sectional area of the liquid bridge) are then determined. The results show that these parameters can be approximated with simple relationships when the radius of the cylinders is small compared with the capillary length. For such small cylinders, liquid bridges with the largest cross-sectional area occur when the centre-to-centre distance between the cylinders is approximately twice the capillary length. The maximum trapping capacity for a pair of cylinders at a given separation is linearly related to the separation when it is small compared with the capillary length. The meniscus slope angle of the largest liquid bridge produced in this regime is also a linear function of the separation. We additionally derive approximate solutions for the profile of a liquid bridge, using the linearized Laplace-Young equation. These solutions analytically verify the above-mentioned relationships obtained for the maximization of the trapping capacity.
Heritable non-lethal damage to cultured human cells irradiated with heavy ions.
Walker, James T; Todd, Paul; Walker, Olivia A
2002-12-01
During interplanetary flights the nuclei of all of a crew member's cells could be traversed by at least one high-LET (Linear Energy Transfer) cosmic-ray particle. In mammalian cells irradiated in vitro about 1 in 10,000 of the surviving cells traversed by heavy particles is transformed to malignancy or mutated. What, if anything, happens to the remaining >99% of surviving cells? A retrospective analysis of archived data and samples from heavy-ion irradiation experiments with cultured human cells in vitro indicated that heavy ions caused a dose- and LET-dependent reduction in growth rates of progeny of irradiated cells, based on colony-size distributions. The maximum action cross section for this effect is between 100 and 300 microm2, at least as large as the cell nuclear area and up to 3 times the cross section for cell killing. Thus, heritable slow growth is the most prevalent effect of high-LET radiations on cultured animal cells, which may have implications for crew health during deep space travel. The views expressed in this article are those of the author(s) and do not necessarily reflect the views or policies of the USEPA.
NASA Technical Reports Server (NTRS)
Dugan, J. V., Jr.; Canright, R. B., Jr.
1972-01-01
The numerical capture cross section is calculated from the capture ratio, defined as the fraction of trajectories reaching a prescribed minimum separation of 3 A. The calculated capture cross sections for a rotational temperature of 77 K suggest large reaction cross sections in 80 K experiments for the large dipole-moment target, methyl cyanide.
Kasai, Takehiro; Ishiguro, Naoki; Matsui, Yasumoto; Harada, Atsushi; Takemura, Marie; Yuki, Atsumu; Kato, Yuki; Otsuka, Rei; Ando, Fujiko; Shimokata, Hiroshi
2015-06-01
Sex- and age-related differences in mid-thigh composition and muscle quality remain unclear. The present study aimed to clarify these differences using computed tomography in middle-aged and elderly Japanese. A total of 2310 participants (age 40-89 years), who were randomly selected from the local residents, underwent computed tomography examination of the right mid-thigh. Thigh circumference and cross-sectional areas of the thigh, muscle, quadriceps, non-quadriceps, fat, and bone were measured. Knee extension strength and muscle quality index (knee extension strength/quadriceps cross-sectional area) were also assessed. Sex- and age-related differences in these indices were analyzed. The thigh cross-sectional area in men and women decreased by 0.6% and 0.5%/year, respectively, because of a decrease in muscle cross-sectional area (men 75.2%, women 40.6%), fat cross-sectional area (men 24.4%, women 59.6%) and bone cross-sectional area (men 0.5%, women -0.2%). Muscle cross-sectional area in men and women decreased by 0.6% and 0.4%/year, respectively, because of a decrease in quadriceps cross-sectional area (men 65.6%, women 81.6%) and non-quadriceps cross-sectional area (men 34.4%, women 18.4%). Muscle quality in men and women decreased by 0.4% and 0.3%/year, respectively. Thigh cross-sectional area decreased with age mainly because of a decrease in muscle cross-sectional area in men and fat cross-sectional area in women. The rate of decrease in muscle cross-sectional area was 1.5-fold higher in men than in women. Muscle cross-sectional area decreased with age mainly because of a decrease in quadriceps cross-sectional area, especially in women. Decrease in muscle quality with age was similar in both sexes. © 2014 Japan Geriatrics Society.
29 CFR 778.101 - Maximum nonovertime hours.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false Maximum nonovertime hours. 778.101 Section 778.101 Labor... Requirements Introductory § 778.101 Maximum nonovertime hours. As a general standard, section 7(a) of the Act provides 40 hours as the maximum number that an employee subject to its provisions may work for an employer...
Induction effects of torus knots and unknots
NASA Astrophysics Data System (ADS)
Oberti, Chiara; Ricca, Renzo L.
2017-09-01
Geometric and topological aspects associated with induction effects of field lines in the shape of torus knots/unknots are examined and discussed in detail. Knots are assumed to lie on a mathematical torus of circular cross-section and are parametrized by standard equations. The induced field is computed by direct integration of the Biot-Savart law. Field line patterns of the induced field are obtained and several properties are examined for a large family of knots/unknots up to 51 crossings. The intensity of the induced field at the origin of the reference system (center of the torus) is found to depend linearly on the number of toroidal coils and reaches maximum values near the boundary of the mathematical torus. New analytical estimates and bounds on energy and helicity are established in terms of winding number and minimum crossing number. These results find useful applications in several contexts when the source field is either vorticity, electric current or magnetic field, from vortex dynamics to astrophysics and plasma physics, where highly braided magnetic fields and currents are present.
NASA Technical Reports Server (NTRS)
Diana, L. M.; Chaplin, R. L.; Brooks, D. L.; Adams, J. T.; Reyna, L. K.
1990-01-01
An improved technique is presented for employing the 2.3m spectrometer to measure total ionization cross sections, Q sub ion, for positrons incident on He. The new ionization cross section agree with the values reported earlier. Estimates are also presented of total elastic scattering cross section, Q sub el, obtained by subtracting from total scattering cross sections, Q sub tot, reported in the literature, the Q sub ion and Q sub Ps (total positronium formation cross sections) and total excitation cross sections, Q sub ex, published by another researcher. The Q sub ion and Q sub el measured with the 3m high resolution time-of-flight spectrometer for 54.9eV positrons are in accord with the results from the 2.3m spectrometer. The ionization cross sections are in fair agreement with theory tending for the most part to be higher, especially at 76.3 and 88.5eV. The elastic cross section agree quite well with theory to the vicinity of 50eV, but at 60eV and above the experimental elastic cross sections climb to and remain at about 0.30 pi a sub o sq while the theoretical values steadily decrease.
Progressive disability in elderly population among tribals of Telangana: a cross sectional study.
Katta, Ajitha; Krishna, Anil Kumar Indira; M, Bagavandas; Anegawa, Tomofumi; Munuswamy, Suresh
2017-06-19
The tribal population of Telangana, India, lives in remote and difficult conditions. This study was carried out to find out estimate, the prevalence and progression of disability in elderly population among tribals of Khammam District, Telangana state, India. A population based cross sectional survey was conducted in villages of Tribal Sub Plan area. Elderly people who are 60 years or older were chosen with a two stage sampling procedure: (1) probability proportion to size was used to select clusters and (2) in each selected cluster households were selected by systematic random sampling. The participants were interviewed with the 36 item Telugu version of the World Health Organization Disability Assessment Schedule (WHODAS 2.0) questionnaire. Socio- demographic information, behavioral measurements, health and social benefit indicators were also assessed. Descriptive analytical methods were used for prevalence estimation and logistic regression was used to examine the associations of progressive age over disability among elderly. A total of 506 elderly people from 1349 households in 20 villages across 31mandals of Khammam were interviewed. Majority of elderly population among tribals were illiterate (men 88.94%; women 99.33%), used tobacco (men 81.25%; women 57.72%), consumed alcohol (men 80.77%; women 47.32%) and were hypertensive (men 53.85%; women 63.42%). The prevalence of disability was higher in women. Maximum disability in the interviewed elderly population was seen in domains of performing house hold activities, and mobility. In comparison with men, women expressed more disability for majority of domains. As age progressed, the disability for self-care domain increased to a maximum of 2.6 times in men and 6.6 times in women and for mobility domain increased to a maximum of 9.7 times in men and 7.2 times in women. Although present disability modifying mobility Assistive Devices (AD) can help elderly in overcoming disability, these are primarily designed for built environments. As the needs, cultural sensitivities, and living environment of elderly population in tribals are unique, newer innovative assistive devices should be designed and developed.
Design and Characterization of the UTIAS Anechoic Wind Tunnel
NASA Astrophysics Data System (ADS)
Chow, Derrick H. F.
The anechoic open-jet wind tunnel facility at the University of Toronto Institute for Aerospace Studies was updated and characterized to meet the needs of current and future aeroacoustic experiments. The wind tunnel inlet was resurfaced and flow-conditioning screens were redesigned to improve the freestream turbulence intensity to below 0.4% in the test section. The circular nozzle was replaced with a square secondary contraction that increased the maximum test section velocity to 75 m/s and improved flow uniformity to over 99% across a usable cross-sectional area of 500 mm x 500 mm. Acoustic baffles were installed in front of the wind tunnel inlet and foam wedges were installed in the anechoic chamber. The overall background sound pressure levels in the chamber were improved by 8-18 db over the range of operational freestream velocities. The anechoic chamber cut-off frequency is 170 Hz and the reverberation time for a 60 dB sound power decay is 0.032 s.
Resistivity Distribution of Multicrystalline Silicon Ingot Grown by Directional Solidification
NASA Astrophysics Data System (ADS)
Sun, S. H.; Tan, Y.; Dong, W.; Zhang, H. X.; Zhang, J. S.
2012-06-01
The effects of impurities on the resistivity distribution and polarity of multicrystalline silicon ingot prepared by directional solidification were investigated in this article. The shape of the equivalence line of the resistivity in the vertical and cross sections was determined by the solid-liquid interface. Along the solidification height of silicon ingot, the conductive type changed from p-type in the lower part of the silicon ingot to n-type in the upper part of the silicon ingot. The resistivity in the vertical section of the silicon ingot initially increased along the height of the solidified part, and reached its maximum at the polarity transition position, then decreased rapidly along the height of solidified part and approached zero on the top of the ingot because of the accumulation of impurities. The variation of resistivity in the vertical section of the ingot has been proven to be deeply relevant to the distribution of Al, B, and P in the growth direction of solidification.
Nano-fabricated plasmonic optical transformer
Choo, Hyuck; Cabrini, Stefano; Schuck, P. James; Liang, Xiaogan; Yablonovitch, Eli
2015-06-09
The present invention provides a plasmonic optical transformer to produce a highly focuses optical beam spot, where the transformer includes a first metal layer, a dielectric layer formed on the first metal layer, and a second metal layer formed on the dielectric layer, where the first metal layer, the dielectric layer, and the second layer are patterned to a shape including a first section having a first cross section, a second section following the first section having a cross-section tapering from the first section to a smaller cross-section, and a third section following the second section having a cross-section matching the tapered smaller cross-section of the second section.
Ryder, Robert T.; Trippi, Michael H.; Swezey, Christopher S.; Crangle, Robert D.; Hope, Rebecca S.; Rowan, Elisabeth L.; Lentz, Erika E.
2012-01-01
Geologic cross section C-C' is the third in a series of cross sections constructed by the U.S. Geological Survey (USGS) to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section C-C' provides a regional view of the structural and stratigraphic framework of the Appalachian basin from north-central Ohio to the Valley and Ridge province in south-central Pennsylvania, a distance of approximately 260 miles (mi). This cross section is a companion to cross sections E-E' and D-D' that are located about 50 to 125 mi and 25 to 50 mi, respectively, to the southwest. Cross section C-C' contains much information that is useful for evaluating energy resources in the Appalachian basin. Although specific petroleum systems are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on what is shown on the cross section. Cross section C-C' also provides a general framework (stratigraphic units and general rock types) for the coal-bearing section, although the cross section lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank). In addition, cross section C-C' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste or for the sequestration of carbon dioxide.
Multistrand superconductor cable
Borden, Albert R.
1985-01-01
Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.
Strategies to reduce exposure of fumonisins from complementary foods in rural Tanzania.
Kimanya, Martin E; De Meulenaer, Bruno; Van Camp, John; Baert, Katleen; Kolsteren, Patrick
2012-10-01
Feeding infants with maize can expose them to fumonisin mycotoxins. We assessed fumonisin exposure from complementary foods in rural Tanzania and determined strategies to reduce the exposure. We conducted a cross-sectional study in four villages of Tarakea division, Northern Tanzania. We used a repeat 24-hour dietary recall to collect data of maize consumption as complementary food for 254 infants aged 6-8 months. Fumonisin concentrations in the maize were also estimated. Fumonisin exposure was assessed using @risk analysis software. With the software, several maximum fumonisin contamination and maize consumption patterns were combined in order to determine effective strategies for minimizing fumonisin exposure. Of the infants, 89% consumed maize at amounts up to 158g/person/day (mean; 43g/person/day±28). The maize was contaminated with fumonisins at levels up to 3201µgkg(-1) . Risk of fumonisin intake above the provisional maximum tolerable daily limit of 2µgkg(-1) body weight was 15% (95% confidence interval; 10-19). The risk was minimized when the maximum contamination was set at 150µgkg(-1) . The risk was also minimized when the maximum consumption was set at 20g/child/day while keeping the maximum contamination at the European Union (EU) maximum tolerated limit (MTL) of 1000µgkg(-1) . Considering the economical and technological limitations of adopting good agricultural practices in rural Tanzania, it is practically difficult to reduce contamination in maize to 150µgkg(-1) . We suggest adoption of the EU MTL of 1000µgkg(-1) for fumonisins in maize and reduction, by replacement with another cereal, of the maize component in complementary foods to a maximum intake of 20g/child/day. © 2011 Blackwell Publishing Ltd.
1952-08-01
28 NACA TN 2762 ( a ) Langley tank model 221E. a = 2°. (b) Langley tank model 221G . a = 2°. ( c ) Langley tank model 221F. a = k<: Figure 13...coefficient based on maximum cross-sectional area A A of hull (Drag/qA) CDy drag coefficien"t based on surface area W of hull (Drag/qW) C lateral-force... 221G , and 221F were drawn by the Langley Hydrodynamics Division by increasing the step of hull 221B of reference 1 from a depth which was 23
Nuclear nanoprobe development for visualization of three-dimensional nanostructures
NASA Astrophysics Data System (ADS)
Takai, M.; Abo, S.; Wakaya, F.; Kikuchi, T.; Sawaragi, H.
2007-08-01
A nanoprobe system, having a liquid metal ion source with a compact electrostatic accelerating column with a maximum accelerating voltage of 200 kV and an ultra high vacuum chamber, giving rise to the enhanced sensitivity because of the large scattering cross-section, has been designed for analysis of nanostructures. The focusing performance of the probes down to 10 nm was measured and compared with the simulation. Time-of-flight (TOF) RBS using a micro channel plate (MCP) further increases the sensitivity because of the increase in acceptance angle, which realizes the visualization of nanostructures with a beam spot diameter less than 10 nm with less probe damage.
Growth, spectroscopy and continuous-wave laser performance of Nd3+:LiLu0.65Y0.35F4 crystal
NASA Astrophysics Data System (ADS)
Demesh, M. P.; Kurilchik, S. V.; Gusakova, N. V.; Yasukevich, A. S.; Kisel, V. E.; Nizamutdinov, A. S.; Marisov, M. M.; Aglyamov, R. D.; Korableva, S. L.; Naumov, A. K.; Semashko, V. V.; Kuleshov, N. V.
2018-04-01
A mixed fluoride crystal of LiLu0.65Y0.35F4 doped with Nd3+ ions was grown by the Bridgman-Stockbarger method. Polarized absorption and luminescence spectra as well as luminescence lifetime were measured at room temperature. Emission probabilities, branching ratios and radiative lifetime were studied within the Judd-Ofelt theory and the emission cross section spectra were calculated. Efficient continuous wave laser operation was demonstrated with the crystal. A maximum output power of 7.7 W and slope efficiency of 60% were achieved at 1047 nm for the TEM00 mode.
High efficiency graphene coated copper based thermocells connected in series
NASA Astrophysics Data System (ADS)
Sindhuja, Mani; Indubala, Emayavaramban; Sudha, Venkatachalam; Harinipriya, Seshadri
2018-04-01
Conversion of low-grade waste heat into electricity had been studied employing single thermocell or flowcells so far. Graphene coated copper electrodes based thermocells connected in series displayed relatively high efficiency of thermal energy harvesting. The maximum power output of 49.2W/m2 for normalized cross sectional electrode area is obtained at 60ºC of inter electrode temperature difference. The relative carnot efficiency of 20.2% is obtained from the device. The importance of reducing the mass transfer and ion transfer resistance to improve the efficiency of the device is demonstrated. Degradation studies confirmed mild oxidation of copper foil due to corrosion caused by the electrolyte.
Plasmonic nanoparticle chain in a light field: a resonant optical sail.
Albaladejo, Silvia; Sáenz, Juan José; Marqués, Manuel I
2011-11-09
Optical trapping and driving of small objects has become a topic of increasing interest in multidisciplinary sciences. We propose to use a chain made of metallic nanoparticles as a resonant light sail, attached by one end point to a transparent object and propelling it by the use of electromagnetic radiation. Driving forces exerted on the chain are theoretically studied as a function of radiation's wavelength and chain's alignments with respect to the direction of radiation. Interestingly, there is a window in the frequency spectrum in which null-torque equilibrium configuration, with minimum geometric cross section, corresponds to a maximum in the driving force.
Low Temperature Graphene Synthesis from Poly(methyl methacrylate) Using Microwave Plasma Treatment
NASA Astrophysics Data System (ADS)
Yamada, Takatoshi; Ishihara, Masatou; Hasegawa, Masataka
2013-11-01
A graphene film having low sheet resistance (600 Ω/sq.) was synthesized at low temperatures of 280 °C. Utilizing microwave plasma treatment, graphene films were synthesized from a solid phase on a copper surface. The full width at half maximum of the 2D-band in the Raman spectrum indicated that a high quality graphene film was formed. Cross-sectional transmission electron microscopy observation revealed that the deposited graphene films consisted of single- or double-layer graphene flakes of nanometer order on the Cu surface, which agrees with the estimated number of layers from an average optical transmittance of 96%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okunishi, M.; Pruemper, G.; Shimada, K.
We have measured two-dimensional photoelectron momentum spectra of Ne, Ar, and Xe generated by 800-nm, 100-fs laser pulses and succeeded in identifying the spectral ridge region (back-rescattered ridges) which marks the location of the returning electrons that have been backscattered at their maximum kinetic energies. We demonstrate that the structural information, in particular the differential elastic scattering cross sections of the target ion by free electrons, can be accurately extracted from the intensity distributions of photoelectrons on the ridges, thus effecting a first step toward laser-induced self-imaging of the target, with unprecedented spatial and temporal resolutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramov, B. M.; Alekseev, P. N.; Borodin, Yu. A.
2015-05-15
Yields of protons at 3.5° from carbon ion fragmentation at energies of T{sub 0} = 0.3, 0.6, 0.95, and 2.0 GeV/nucleon on a Be target were measured in the FRAGM experiment at TWA-ITEP heavy-ion facility. Proton momentum spectra cover both the region of the fragmentation maximum and the cumulative region. The differential cross sections span six orders of its magnitude. The spectra are compared with the predictions of four models of ion-ion interactions: LAQGSM03.03, SHIELD-HIT, QMD, and BC.
Page, William R.; Scheirer, Daniel S.; Langenheim, V.E.; Berger, Mary A.
2006-01-01
This report presents revisions to parts of seven of the ten cross sections originally published in U.S. Geological Survey Open-File Report 2006-1040. The revisions were necessary to correct errors in some of the original cross sections, and to show new parts of several sections that were extended and (or) appended to the original section profiles. Revisions were made to cross sections C-C', D-D', E-E', F-F', G-G', I-I', and J-J', and the parts of the sections revised or extended are highlighted below the sections on plate 1 by red brackets and the word "revised," or "extended." Sections not listed above, as well as the interpretive text and figures, are generally unchanged from the original report. Cross section C-C' includes revisions in the east Mormon Mountains in the east part of the section; D-D' includes revisions in the Mormon Mesa area in the east part of the section; E-E' includes revisions in the Muddy Mountains in the east part of the section; F-F' includes revisions from the Muddy Mountains to the south Virgin Mountains in the east part of the section; and J-J' includes some revisions from the east Mormon Mountains to the Virgin Mountains. The east end of G-G' was extended about 16 km from the Black Mountains to the southern Virgin Mountains, and the northern end of I-I' was extended about 45 km from the Muddy Mountains to the Mormon Mountains, and revisions were made in the Muddy Mountains part of the original section. This report contains 10 interpretive cross sections and an integrated text describing the geology of parts of the Colorado, White River, and Death Valley regional groundwater flow systems in Nevada, Utah, and Arizona. The primary purpose of the report is to provide geologic framework data for input into a numerical groundwater model. Therefore, the stratigraphic and structural summaries are written in a hydrogeologic context. The oldest rocks (basement) are Early Proterozoic metamorphic and intrusive crystalline rocks that are considered confining units because of their low permeability. Late Proterozoic to Lower Cambrian clastic units overlie the crystalline rocks and are also considered confining units within the regional flow systems. Above the clastic units are Middle Cambrian to Lower Permian carbonate rocks that are the primary aquifers in the flow systems. The Middle Cambrian to Lower Permian carbonate rocks are overlain by a sequence of mainly clastic rocks of late Paleozoic to Mesozoic age that are mostly considered confining units, but they may be permeable where faulted. Tertiary volcanic and plutonic rocks are exposed in the northern and southern parts of the study area. In the Clover and Delamar Mountains, these rocks are highly deformed by north- and northwest-striking normal and strike-slip faults that are probably important conduits in transmitting groundwater from the basins in the northern Colorado and White River flow systems to basins in the southern part of the flow systems. The youngest rocks in the region are Tertiary to Quaternary basin-fill deposits. These rocks consist of middle to late Tertiary sediments consisting of limestone, conglomerate, sandstone, tuff, and gypsum, and younger Quaternary surficial units consisting of alluvium, colluvium, playa deposits, and eolian deposits. Basin-fill deposits are both aquifers and aquitards. The rocks in the study area were complexly deformed by episodes of Mesozoic compression and Cenozoic extensional tectonism. Some Cretaceous thrust faults and folds of the Sevier orogenic belt form duplex zones and define areas of maximum thickness for the Paleozoic carbonate rocks. Cenozoic faults are important because they are the primary structures that control groundwater flow in the regional flow systems.
Navier-Stokes analysis and experimental data comparison of compressible flow within ducts
NASA Technical Reports Server (NTRS)
Harloff, G. J.; Reichert, B. A.; Sirbaugh, J. R.; Wellborn, S. R.
1992-01-01
Many aircraft employ ducts with centerline curvature or changing cross-sectional shape to join the engine with inlet and exhaust components. S-ducts convey air to the engine compressor from the intake and often decelerate the flow to achieve an acceptable Mach number at the engine compressor by increasing the cross-sectional area downstream. Circular-to-rectangular transition ducts are used on aircraft with rectangular exhaust nozzles to connect the engine and nozzle. To achieve maximum engine performance, the ducts should minimize flow total pressure loss and total pressure distortion at the duct exit. Changes in the curvature of the duct centerline or the duct cross-sectional shape give rise to streamline curvature which causes cross stream pressure gradients. Secondary flows can be caused by deflection of the transverse vorticity component of the boundary layer. This vortex tilting results in counter-rotating vortices. Additionally, the adverse streamwise pressure gradient caused by increasing cross-sectional area can lead to flow separation. Vortex pairs have been observed in the exit planes of both duct types. These vortices are due to secondary flows induced by pressure gradients resulting from streamline curvature. Regions of low total pressure are produced when the vortices convect boundary layer fluid into the main flow. The purpose of the present study is to predict the measured flow field in a diffusing S-duct and a circular-to-rectangular transition duct with a full Navier-Stokes computer program, PARC3D, and to compare the numerical predictions with new detailed experimental measurements. The work was undertaken to extend previous studies and to provide additional CFD validation data needed to help model flows with strong secondary flow and boundary layer separation. The S-duct computation extends the study of Smith et al, and Harloff et al, which concluded that the computation might be improved by using a finer grid and more advanced turbulence models. The present study compares results for both the Baldwin-Lomas and k-epsilon turbulence models and is conducted with a refined grid. For the transition duct, two inlet conditions were considered, the first with straight flow and the second with swirling flow. The first case permits examination of the effects of the geometric transition on the flow field, while the second case includes the rotational flow effect characteristic of a gas turbine engine.
Finite Element Study on Acoustic Energy Harvesting Using Lead-Free Piezoelectric Ceramics
NASA Astrophysics Data System (ADS)
Kumar, Anuruddh; Sharma, Anshul; Kumar, Rajeev; Vaish, Rahul
2018-02-01
In this article, a numerical investigation is performed for ambient acoustic energy harvesting at a low-frequency acoustic signal. A model of a quarter-wavelength resonator with a rectangular cross section is constructed, and piezoelectric-laminated bimorph plates are placed inside the system. Finite element modeling is implemented to numerically formulate the piezoelectric energy harvester. With the application of acoustic pressure at the open end of the resonator, amplified acoustic pressure inside the tube vibrates the piezolaminated bimorphs inside the tube, thus generating electric potential on the piezoelectric layers. To generate higher voltage and power in the acoustic harvester, multiple piezolaminated plates are positioned inside the resonator. The lead-free piezoelectric material K0.475Na0.475Li0.05 (Nb0.92Ta0.05Sb0.03)O3 (KNLNTS) is laminated on the host structure as a layer of piezoelectric material for the acoustic energy harvester. With the application of an acoustic sound pressure of 1 dB at the opening of the tube, a maximum output voltage of 16.3 V is measured at the first natural frequency, while the maximum power calculated is 0.033 mW. Maximum voltage is obtained when five piezoelectric bimorphs are place inside the resonator. At the second natural frequency, the maximum voltage measured is 8.40 V, obtained when eight piezoelectric bimorphs are placed inside the resonator, and the maximum power calculated is 0.020 mW.
Partical Melting of bulk Bi-2212
NASA Technical Reports Server (NTRS)
Heeb, B.; Gauckler, L. J.
1995-01-01
Dense and textured Bi-2212 bulk samples have been produced by the partial melting process. The appropriate amount of liquid phase necessary for complete densification has been adjusted by controlling the maximum processing temperature. The maximum temperature itself has to be adapted to several parameters as powder stoichiometry, silver addition and oxygen partial pressure. Prolonged annealing at 850 and 820 C and cooling in N2 atmosphere led to nearly single phase material with T(sub c) = 92 K. Critical current densities j(sub c) of 2'200 A/sq cm at 77 K/0 T have been achieved in samples of more than 1 mm thickness. Reducing the thickness below 0.4 mm enhances j(sub c) considerably to values is greater than 4'000 A/sq cm. The addition of 2 wt% Ag decreases the solidus temperature of the Bi-2212 powder by 21 C. Therefore, the maximum heat treatment temperature of Ag containing samples can be markedly lowered leading to a reduction of the amount of secondary phases. In addition, Ag enhances slightly the texture over the entire cross section and as a result j(sub c) at 77 K/0 T.
NASA Astrophysics Data System (ADS)
Yang, Yang; Jiang, Zhi; Chen, Jixinog; Guo, Zhaoliang; Tang, Tiegang; Hu, Haibo
2018-03-01
The effects of different peak compression stresses (2-5 GPa) on the spallation behaviour of high purity copper cylinder during sweeping detonation were examined by Electron Backscatter Diffraction Microscopy, Doppler Pins System and Optical Microscopy techniques. The velocity history of inner surface and the characteristics of void distributions in spalled copper cylinder were investigated. The results indicated that the spall strength of copper in these experiments was less than that revealed in previous reports concerning plate impact loading. The geometry of cylindrical copper and the obliquity of incident shock during sweeping detonation may be the main reasons. Different loading stresses seemed to be responsible for the characteristics of the resultant damage fields, and the maximum damage degree increased with increasing shock stress. Spall planes in different cross-sections of sample loaded with the same shock stress of 3.29 GPa were found, and the distance from the initiation end has little effect on the maximum damage degree (the maximum damage range from 12 to 14%), which means that the spallation behaviour was stable along the direction parallel to the detonation propagation direction under the same shock stress.
Mapping hurricane rita inland storm tide
Berenbrock, C.; Mason, R.R.; Blanchard, S.F.
2009-01-01
Flood-inundation data are most useful for decision makers when presented in the context of maps of affected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-h intervals from midnight (00:00 hours) through noon (12:00 hours) on 24 September 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared with the extent of flood inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks. ?? 2009 Blackwell Publishing Ltd.
Mapping Hurricane Rita inland storm tide
Berenbrock, Charles; Mason, Jr., Robert R.; Blanchard, Stephen F.; Simonovic, Slobodan P.
2009-01-01
Flood-inundation data are most useful for decision makers when presented in the context of maps of effected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems (GIS) provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-hour intervals from midnight (0000 hour) through noon (1200 hour) on September 24, 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared to the extent of flood-inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks.
Mouse forepaw lumbrical muscles are resistant to age-related declines in force production.
Russell, Katelyn A; Ng, Rainer; Faulkner, John A; Claflin, Dennis R; Mendias, Christopher L
2015-05-01
A progressive loss of skeletal muscle mass and force generating capacity occurs with aging. Mice are commonly used in the study of aging-associated changes in muscle size and strength, with most models of aging demonstrating 15-35% reductions in muscle mass, cross-sectional area (CSA), maximum isometric force production (Po) and specific force (sPo), which is Po/CSA. The lumbrical muscle of the mouse forepaw is exceptionally small, with corresponding short diffusion distances that make it ideal for in vitro pharmacological studies and measurements of contractile properties. However, the aging-associated changes in lumbrical function have not previously been reported. To address this, we tested the hypothesis that compared to adult (12month old) mice, the forepaw lumbrical muscles of old (30month old) mice exhibit aging-related declines in size and force production similar to those observed in larger limb muscles. We found that the forepaw lumbricals were composed exclusively of fibers with type II myosin heavy chain isoforms, and that the muscles accumulated connective tissue with aging. There were no differences in the number of fibers per whole-muscle cross-section or in muscle fiber CSA. The whole muscle CSA in old mice was increased by 17%, but the total CSA of all muscle fibers in a whole-muscle cross-section was not different. No difference in Po was observed, and while sPo normalized to total muscle CSA was decreased in old mice by 22%, normalizing Po by the total muscle fiber CSA resulted in no difference in sPo. Combined, these results indicate that forepaw lumbrical muscles from 30month old mice are largely protected from the aging-associated declines in size and force production that are typically observed in larger limb muscles. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Khosravi Parsa, Mohsen; Hormozi, Faramarz
2014-06-01
In the present work, a passive model of a micromixer with sinusoidal side walls, a convergent-divergent cross section and a T-shape entrance was experimentally fabricated and modeled. The main aim of this modeling was to conduct a study on the Dean and separation vortices created inside the sinusoidal microchannels with a convergent-divergent cross section. To fabricate the microchannels, CO2 laser micromachining was utilized and the fluid mixing pattern is observed using a digital microscope imaging system. Also, computational fluid dynamics was applied with the finite element method to solve Navier-Stokes equations and the diffusion-convection mode in inlet Reynolds numbers of 0.2-75. Numerically obtained results were in reasonable agreement with experimental data. According to the previous studies, phase shift and wavelength of side walls are important parameters in designing sinusoidal microchannels. An increase of phase shift between side walls of microchannels leads the cross section being convergent-divergent. Results also show that at an inlet Reynolds number of <20 the molecular diffusion is the dominant mixing factor and the mixing index extent is nearly identical in all designs. For higher inlet Reynolds numbers (>20), secondary flow is the main factor of mixing. Noticeably, mixing index drastically depends on phase shift (ϕ) and wavelength of side walls (λ) such that the best mixing can be observed in ϕ = 3π/4 and at a wavelength to amplitude ratio of 3.3. Likewise, the maximum pressure drop is reported at ϕ = π. Therefore, the sinusoidal microchannel with phase shifts between π/2 and 3π/4 is the best microchannel for biological and chemical analysis, for which a mixing index value higher than 90% and a pressure drop less than 12 kPa is reported.
AMPX: a modular code system for generating coupled multigroup neutron-gamma libraries from ENDF/B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, N.M.; Lucius, J.L.; Petrie, L.M.
1976-03-01
AMPX is a modular system for producing coupled multigroup neutron-gamma cross section sets. Basic neutron and gamma cross-section data for AMPX are obtained from ENDF/B libraries. Most commonly used operations required to generate and collapse multigroup cross-section sets are provided in the system. AMPX is flexibly dimensioned; neutron group structures, and gamma group structures, and expansion orders to represent anisotropic processes are all arbitrary and limited only by available computer core and budget. The basic processes provided will (1) generate multigroup neutron cross sections; (2) generate multigroup gamma cross sections; (3) generate gamma yields for gamma-producing neutron interactions; (4) combinemore » neutron cross sections, gamma cross sections, and gamma yields into final ''coupled sets''; (5) perform one-dimensional discrete ordinates transport or diffusion theory calculations for neutrons and gammas and, on option, collapse the cross sections to a broad-group structure, using the one-dimensional results as weighting functions; (6) plot cross sections, on option, to facilitate the ''evaluation'' of a particular multigroup set of data; (7) update and maintain multigroup cross section libraries in such a manner as to make it not only easy to combine new data with previously processed data but also to do it in a single pass on the computer; and (8) output multigroup cross sections in convenient formats for other codes. (auth)« less
Sions, Jaclyn Megan; Smith, Andrew Craig; Hicks, Gregory Evan; Elliott, James Matthew
2016-08-01
To evaluate intra- and inter-examiner reliability for the assessment of relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area, i.e., total cross-sectional area minus intramuscular fat, from T1-weighted magnetic resonance images obtained in older adults with chronic low back pain. Reliability study. n = 13 (69.3 ± 8.2 years old) After lumbar magnetic resonance imaging, two examiners produced relative cross-sectional area measurements of multifidi, erector spinae, psoas, and quadratus lumborum by tracing regions of interest just inside fascial borders. Pixel-intensity summaries were used to determine muscle-to-fat infiltration indices; relative muscle cross-sectional area was calculated. Intraclass correlation coefficients were used to estimate intra- and inter-examiner reliability; standard error of measurement was calculated. Intra-examiner intraclass correlation coefficient point estimates for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area were excellent for multifidi and erector spinae across levels L2-L5 (ICC = 0.77-0.99). At L3, intra-examiner reliability was excellent for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area for both psoas and quadratus lumborum (ICC = 0.81-0.99). Inter-examiner intraclass correlation coefficients ranged from poor to excellent for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area. Assessment of relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area in older adults with chronic low back pain can be reliably determined by one examiner from T1-weighted images. Such assessments provide valuable information, as muscle-to-fat infiltration indices and relative muscle cross-sectional area indicate that a substantial amount of relative cross-sectional area may be magnetic resonance-visible intramuscular fat in older adults with chronic low back pain. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Extreme values and the level-crossing problem: An application to the Feller process
NASA Astrophysics Data System (ADS)
Masoliver, Jaume
2014-04-01
We review the question of the extreme values attained by a random process. We relate it to level crossings to one boundary (first-passage problems) as well as to two boundaries (escape problems). The extremes studied are the maximum, the minimum, the maximum absolute value, and the range or span. We specialize in diffusion processes and present detailed results for the Wiener and Feller processes.
NASA Astrophysics Data System (ADS)
Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby
2016-07-01
The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.
Parameterized Cross Sections for Pion Production in Proton-Proton Collisions
NASA Technical Reports Server (NTRS)
Blattnig, Steve R.; Swaminathan, Sudha R.; Kruger, Adam T.; Ngom, Moussa; Norbury, John W.; Tripathi, R. K.
2000-01-01
An accurate knowledge of cross sections for pion production in proton-proton collisions finds wide application in particle physics, astrophysics, cosmic ray physics, and space radiation problems, especially in situations where an incident proton is transported through some medium and knowledge of the output particle spectrum is required when given the input spectrum. In these cases, accurate parameterizations of the cross sections are desired. In this paper much of the experimental data are reviewed and compared with a wide variety of different cross section parameterizations. Therefore, parameterizations of neutral and charged pion cross sections are provided that give a very accurate description of the experimental data. Lorentz invariant differential cross sections, spectral distributions, and total cross section parameterizations are presented.
Heydari, Payam; Varmazyar, Sakineh; Nikpey, Ahmad; Variani, Ali Safari; Jafarvand, Mojtaba
2017-01-01
Introduction Maximum oxygen consumption shows the maximum oxygen rate of muscle oxygenation that is acceptable in many cases, to measure the fitness between person and the desired job. Given that medical emergencies are important, and difficult jobs in emergency situations require people with high physical ability and readiness for the job, the aim of this study was to evaluate the maximum oxygen consumption, to determine the ability of work type among students of medical emergencies in Qazvin in 2016. Methods This study was a descriptive – analytical, and in cross-sectional type conducted among 36 volunteer students of medical emergencies in Qazvin in 2016. After necessary coordination for the implementation of the study, participants completed health questionnaires and demographic characteristics and then the participants were evaluated with step tests of American College of Sport Medicine (ACSM). Data analysis was done by SPSS version 18 and U-Mann-Whitney tests, Kruskal-Wallis and Pearson correlation coefficient. Results Average of maximum oxygen consumption of the participants was estimated 3.15±0.50 liters per minute. 91.7% of medical emergencies students were selected as appropriate in terms of maximum oxygen consumption and thus had the ability to do heavy and too heavy work. Average of maximum oxygen consumption evaluated by the U-Mann-Whitney test and Kruskal-Wallis, had significant relationship with age (p<0.05) and weight groups (p<0.001). There was a significant positive correlation between maximum oxygen consumption with weight and body mass index (p<0.001). Conclusion The results of this study showed that demographic variables of weight and body mass index are the factors influencing the determination of maximum oxygen consumption, as most of the students had the ability to do heavy, and too heavy work. Therefore, people with ability to do average work are not suitable for medical emergency tasks. PMID:28461880
Heydari, Payam; Varmazyar, Sakineh; Nikpey, Ahmad; Variani, Ali Safari; Jafarvand, Mojtaba
2017-03-01
Maximum oxygen consumption shows the maximum oxygen rate of muscle oxygenation that is acceptable in many cases, to measure the fitness between person and the desired job. Given that medical emergencies are important, and difficult jobs in emergency situations require people with high physical ability and readiness for the job, the aim of this study was to evaluate the maximum oxygen consumption, to determine the ability of work type among students of medical emergencies in Qazvin in 2016. This study was a descriptive - analytical, and in cross-sectional type conducted among 36 volunteer students of medical emergencies in Qazvin in 2016. After necessary coordination for the implementation of the study, participants completed health questionnaires and demographic characteristics and then the participants were evaluated with step tests of American College of Sport Medicine (ACSM). Data analysis was done by SPSS version 18 and U-Mann-Whitney tests, Kruskal-Wallis and Pearson correlation coefficient. Average of maximum oxygen consumption of the participants was estimated 3.15±0.50 liters per minute. 91.7% of medical emergencies students were selected as appropriate in terms of maximum oxygen consumption and thus had the ability to do heavy and too heavy work. Average of maximum oxygen consumption evaluated by the U-Mann-Whitney test and Kruskal-Wallis, had significant relationship with age (p<0.05) and weight groups (p<0.001). There was a significant positive correlation between maximum oxygen consumption with weight and body mass index (p<0.001). The results of this study showed that demographic variables of weight and body mass index are the factors influencing the determination of maximum oxygen consumption, as most of the students had the ability to do heavy, and too heavy work. Therefore, people with ability to do average work are not suitable for medical emergency tasks.
Achieving Crossed Strong Barrier Coverage in Wireless Sensor Network.
Han, Ruisong; Yang, Wei; Zhang, Li
2018-02-10
Barrier coverage has been widely used to detect intrusions in wireless sensor networks (WSNs). It can fulfill the monitoring task while extending the lifetime of the network. Though barrier coverage in WSNs has been intensively studied in recent years, previous research failed to consider the problem of intrusion in transversal directions. If an intruder knows the deployment configuration of sensor nodes, then there is a high probability that it may traverse the whole target region from particular directions, without being detected. In this paper, we introduce the concept of crossed barrier coverage that can overcome this defect. We prove that the problem of finding the maximum number of crossed barriers is NP-hard and integer linear programming (ILP) is used to formulate the optimization problem. The branch-and-bound algorithm is adopted to determine the maximum number of crossed barriers. In addition, we also propose a multi-round shortest path algorithm (MSPA) to solve the optimization problem, which works heuristically to guarantee efficiency while maintaining near-optimal solutions. Several conventional algorithms for finding the maximum number of disjoint strong barriers are also modified to solve the crossed barrier problem and for the purpose of comparison. Extensive simulation studies demonstrate the effectiveness of MSPA.
Muscular Maximal Strength Indices and Bone Variables in a Group of Elderly Women.
Nasr, Riad; Al Rassy, Nathalie; Watelain, Eric; Matta, Joseph; Frenn, Fabienne; Rizkallah, Maroun; Maalouf, Ghassan; El Khoury, César; Berro, Abdel-Jalil; El Hage, Rawad
2018-03-22
The aim of the present study was to explore the relations between muscular maximal strength indices and bone parameters (bone mineral density [BMD], hip geometry indices, and trabecular bone score [TBS]) in a group of elderly women. This study included 35 healthy elderly women whose ages range between 65 and 75 yr (68.1 ± 3.1 yr). BMD (in gram per square centimeter) was determined for each individual by dual-energy X-ray absorptiometry at the whole body, lumbar spine (L1-L4), total hip (TH), and femoral neck (FN). L1-L4 TBS and hip geometry indices were also evaluated by dual-energy X-ray absorptiometry. Maximal muscle strength of bench press (1-repetition maximum [RM] bench press), maximal muscle strength of leg press (1-RM leg press), and handgrip were measured using validated methods. 1-RM bench press was positively correlated to TH BMD (r = 0.40; p < 0.05), FN BMD (r = 0.41; p < 0.05), FN section modulus (r = 0.33; p < 0.05), and FN cross-sectional moment of inertia (r = 0.35; p < 0.05). 1-RM leg press was positively correlated to TH BMD (r = 0.50; p < 0.01), FN BMD (r = 0.35; p < 0.05), FN cross-sectional area (r = 0.38; p < 0.05), and TBS (r = 0.37; p < 0.05). Handgrip was correlated only to FN cross-sectional moment of inertia (r = 0.43; p < 0.01). This study suggests that 1-RM bench press and 1-RM leg press are positive determinants of BMD in elderly women. Copyright © 2018 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Raut, U.; Fulvio, D.; Loeffler, M. J.; Baragiola, R. A.
2012-06-01
We report the synthesis of carbon dioxide on an amorphous carbon-13 substrate coated with amorphous water ice from irradiation with 100 keV protons at 20 K and 120 K. The quantitative studies show that the CO2 is dispersed in the ice; its column density increases with ion fluence to a maximum value (in 1015 molecules cm-2) of ~1 at 20 K and ~3 at 120 K. The initial yield is 0.05 (0.1) CO2 per incident H+ at 20 (120) K. The CO2 destruction process, which limits the maximum column density, occurs with an effective cross section of ~2.5 (4.1) × 10-17 cm2 at 20 (120) K. We discuss radiation-induced oxidation by reactions of radicals in water with the carbon surface and demonstrate that these reactions can be a significant source of condensed carbon dioxide in interstellar grains and in icy satellites in the outer solar system.
Circadian pattern of blood pressure in normal pregnancy and preeclampsia.
Gupta, Hem Prabha; Singh, R K; Singh, Urmila; Mehrotra, Seema; Verma, N S; Baranwal, Neelam
2011-08-01
AIMS #ENTITYSTARTX00026; To find out the circadian pattern of blood pressure in normotensive pregnant women and in women with preeclampsia. A cross-sectional prospective observational case control study. Blood pressure was sampled in thirty-five normotensive pregnant women (control) and thirty five preeclamptic women (study group) by using non-invasive automatic ambulatory blood pressure monitoring machine for 72 h. Blood pressure (BP) was not constant over 24 h period and it oscillated from time to time in control group. BP was maximum during early part of afternoon. However, in preeclampsia besides quantitative increase in BP, circadian BP oscillations were less pronounced and in around 50% subjects BP was maximum during evening and night hours. Both systolic and diastolic BP showed definite reproducible circadian pattern in both preeclamptic and normotensive pregnant women. This pattern both quantitatively and qualitatively was different in preeclamptic women. Standardized 24 h BP monitoring allows quantitative and qualitative evaluation of hypertensive status and is important for timing and dosing of antihypertensive medications.
Ariel 6 measurements of ultra-heavy cosmic ray fluxes in the region Z or = 48
NASA Technical Reports Server (NTRS)
Fowler, P. H.; Masheder, M. R. W.; Moses, R. T.; Walker, R. N. F.; Worley, A.; Gay, A. M.
1985-01-01
For this re-analysis of the Ariel VI data, the contribution of non Z square effects to the restricted energy loss and to Cerenkov radiation in the Bristol sphere has been evaluated using the Mott cross section ratios and the non-relativistic Bloch correction. Results obtained were similar in form to those derived for HEAO3 but with maximum deviations approximately 10% rather than 15% for the Mott term, corresponding to a thinner detector. Because of the large uncertainties in the parameters involved, no relativistic Bloch term was included. In addition the experiments on the HEAO detector make the application of a correction to the Cerenkov response of doubtful justification and none was applied in this analysis. An energy dependent correction was made using an effective energy calculated from the vertical cut-off for a given event. The maximum value of this correction was about 0.6% in Z for low cut-offs, declining to approximately zero by 10 GV.
The Jovian ionospheric E region
NASA Astrophysics Data System (ADS)
Kim, Y. H.; Fox, J. L.
1991-02-01
A model of the Jovian ionosphere was constructed, that includes direct photoionization of hydrocarbon molecules. A high-resolution solar spectrum was synthesized from Hinteregger's solar maximum spectrum (F79050N), and high-resolution cross sections for photoabsorption by H2 bands in the range 842 to 1116 A were constructed. Two strong solar lines and about 30 percent of the continuum flux between 912 and 1116 A penetrate below the methane homopause despite strong absorption by CH4 and H2. It is found that hydrocarbons (mainly C2H2 are ionized at a maximum rate of 55/cu cm per sec at 320 km above the ammonia cloud tops. The hydrocarbon ions produced are quickly converted to more complex hydrocarbon ions through reactions with CH4, C2H2, C2H6, and C2H4. It is found that a hydrocarbon ion layer is formed near 320 km that is about 50 km wide with a peak density in excess of 10,000/cu cm.
An investigation of MCNP6.1 beryllium oxide S(α, β) cross sections
Sartor, Raymond F.; Glazener, Natasha N.
2016-03-08
In MCNP6.1, materials are constructed by identifying the constituent isotopes (or elements in a few cases) individually. This list selects the corresponding microscopic cross sections calculated from the free-gas model to create the material macroscopic cross sections. Furthermore, the free-gas model and the corresponding material macroscopic cross sections assume that the interactions of atoms do not affect the nuclear cross sections.
DBCC Software as Database for Collisional Cross-Sections
NASA Astrophysics Data System (ADS)
Moroz, Daniel; Moroz, Paul
2014-10-01
Interactions of species, such as atoms, radicals, molecules, electrons, and photons, in plasmas used for materials processing could be very complex, and many of them could be described in terms of collisional cross-sections. Researchers involved in plasma simulations must select reasonable cross-sections for collisional processes for implementing them into their simulation codes to be able to correctly simulate plasmas. However, collisional cross-section data are difficult to obtain, and, for some collisional processes, the cross-sections are still not known. Data on collisional cross-sections can be obtained from numerous sources including numerical calculations, experiments, journal articles, conference proceedings, scientific reports, various universities' websites, national labs and centers specifically devoted to collecting data on cross-sections. The cross-sections data received from different sources could be partial, corresponding to limited energy ranges, or could even not be in agreement. The DBCC software package was designed to help researchers in collecting, comparing, and selecting cross-sections, some of which could be constructed from others or chosen as defaults. This is important as different researchers may place trust in different cross-sections or in different sources. We will discuss the details of DBCC and demonstrate how it works and why it is beneficial to researchers working on plasma simulations.
Numerical and experimental analyses of out-of-plane deformation of triaxial woven fabric
NASA Astrophysics Data System (ADS)
Zhou, Hongtao; Xiao, Xueliang; Qian, Kun; Zhang, Kun; Zhang, Diantang
2018-05-01
With three sets of yarns interwoven in plane for angle-interlock structure, triaxial woven fabric (TWF) is a unique and perfect construction material for products subjected to multi-directional loads, as compared to classic fabrics of orthogonal structure. Finite-element analysis (FEA) and experimental methods are applied to study the out-of-plane deformation (OPD) behaviors of TWF and plain woven fabric (PWF). Among this, the yarn cross section, path and woven structure are obtained using optical microscopy, the related parameters are input to finite element model (FEM) for simulating the OPD behavior. This paper presents a detailed analysis on out-of-plane deformation behavior of TWF and PWF by the finite element method and experiment. In consideration of the comparability, TWF and PWF are designed and prepared with the same yarns and areal density (g/m2). The deformation profile, maximum stress and maximum deflection of TWF and PWF are obtained by FEA and experiment. It has been found that the maximum deflection and maximum stress of TWF is smaller than that of PWF under the same uniform negative pressure, both FEA and experiment. Furthermore, the stress distribution of TWF is more evenly than that of PWF, indicating that TWF exhibited superior isotropy in comparison with PWF for one more directional set of yarns in undertaking the OPD.
Influence of temperature on muscle recruitment and muscle function in vivo.
Rome, L C
1990-08-01
Temperature has a large influence on the maximum velocity of shortening (Vmax) and maximum power output of muscle (Q10 = 1.5-3). In some animals, maximum performance and maximum sustainable performance show large temperature sensitivities, because these parameters are dependent solely on mechanical power output of the muscles. The mechanics of locomotion (sarcomere length excursions and muscle-shortening velocities, V) at a given speed, however, are precisely the same at all temperatures. Animals compensate for the diminished power output of their muscles at low temperatures by compressing their recruitment order into a narrower range of locomotor speeds, that is, recruiting more muscle fibers and faster fiber types at a given speed. By examining V/Vmax, I calculate that fish at 10 degrees C must recruit 1.53-fold greater fiber cross section than at 20 degrees C. V/Vmax also appears to be an important design constraint in muscle. It sets the lowest V and the highest V over which a muscle can be used effectively. Because the Vmax of carp slow red muscle has a Q10 of 1.6 between 10 and 20 degrees C, the slow aerobic fibers can be used over a 1.6-fold greater range of swim speeds at the warmer temperature. In some species of fish, Vmax can be increased during thermal acclimation, enabling animals to swim at higher speeds.
Lefebvre, Sébastien; Mouget, Jean-Luc; Loret, Pascale; Rosa, Philippe; Tremblin, Gérard
2007-02-01
This study reports comparison of two techniques measuring photosynthesis in the ubiquitous diatom Skeletonema costatum, i.e., the classical oximetry and the recent modulated fluorimetry. Microalgae in semi-continuous cultures were exposed to five different environmental conditions simulating a seasonal effect with co-varying temperature, photoperiod and incident light. Photosynthesis was assessed by gross rate of oxygen evolution (P(B)) and the electron transport rate (ETR) measurements. The two techniques were linearly related within seasonal treatments along the course of the P/E curves. The light saturation intensity parameters (Ek and Ek(ETR)), and the maximum electron transport rate increased significantly with the progression of the season while the maximum light utilization efficiency for ETR (alpha(ETR)) was constant. By contrast, the maximum gross oxygen photosynthetic capacity (Pmax(B)) and the maximum light utilization efficiency for P(B) (alpha(B)) increased from December to May treatment but decreased from May to July treatment. Both techniques showed clear photoacclimation in microalgae with the progression of the season, as illustrated by changes in photosynthetic parameters. The relationship between the two techniques changed when high temperature, photoperiod and incident light were combined, possibly due to an overestimation of the PAR--averaged chlorophyll-specific absorption cross-section. Despite this change, our results illustrate the strong suitability of in vivo chlorophyll fluorimetry to estimate primary production in the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
X Liu; E Garboczi; m Grigoriu
Many parameters affect the cyclone efficiency, and these parameters can have different effects in different flow regimes. Therefore the maximum-efficiency cyclone length is a function of the specific geometry and operating conditions in use. In this study, we obtained a relationship describing the minimum particle diameter or maximum cyclone efficiency by using a theoretical approach based on cyclone geometry and fluid properties. We have compared the empirical predictions with corresponding literature data and observed good agreement. The results address the importance of fluid properties. Inlet and vortex finder cross-sections, cone-apex diameter, inlet Reynolds number and surface roughness are found tomore » be the other important parameters affecting cyclone height. The surface friction coefficient, on the other hand, is difficult to employ in the calculations.We developed a theoretical approach to find the maximum-efficiency heights for cyclones with tangential inlet and we suggested a relation for this height as a function of cyclone geometry and operating parameters. In order to generalize use of the relation, two dimensionless parameters, namely for geometric and operational variables, we defined and results were presented in graphical form such that one can calculate and enter the values of these dimensionless parameters and then can find the maximum efficiency height of his own specific cyclone.« less
The Fatigue Behavior of Built-Up Welded Beams of Commercially Pure Titanium
NASA Astrophysics Data System (ADS)
Patnaik, Anil; Poondla, Narendra; Bathini, Udaykar; Srivatsan, T. S.
2011-10-01
In this article, the results of a recent study aimed at evaluating, understanding, and rationalizing the extrinsic influence of fatigue loading on the response characteristics of built-up welded beams made from commercially pure titanium (Grade 2) are presented and discussed. The beams were made from welding plates and sheets of titanium using the pulsed gas metal arc welding technique to form a structural beam having an I-shaped cross section. The welds made for the test beams of the chosen metal were fillet welds using a matching titanium filler metal wire. The maximum and minimum load values at which the built-up beams were cyclically deformed were chosen to be within the range of 22-45% of the maximum predicted flexural static load. The beams were deformed in fatigue at a stress ratio of 0.1 and constant frequency of 5 Hz. The influence of the ratio of maximum load with respect to the ultimate failure load on fatigue performance, quantified in terms of fatigue life, was examined. The percentage of maximum load to ultimate load that resulted in run-out of one million cycles was established. The overall fracture behavior of the failed beam sample was characterized by scanning electron microscopy observations to establish the conjoint influence of load severity, intrinsic microstructural effects, and intrinsic fracture surface features in governing failure by fracture.
Williams, Jackie M.; Krebs, Ingar A.; Riedesel, Elizabeth A.; Zhao, Qianqian
2015-01-01
Tracheal collapse is a progressive airway disease that can ultimately result in complete airway obstruction. Intraluminal tracheal stents are a minimally invasive and viable treatment for tracheal collapse once the disease becomes refractory to medical management. Intraluminal stent size is chosen based on the maximum measured tracheal diameter during maximum inflation. The purpose of this prospective, cross-sectional study was to compare tracheal lumen diameter measurements and subsequent selected stent size using both fluoroscopy and CT and to evaluate inter- and intraobserver variability of the measurements. Seventeen healthy Beagles were anesthetized and imaged with fluoroscopy and CT with positive pressure ventilation to 20 cm H2O. Fluoroscopic and CT maximum tracheal diameters were measured by 3 readers. Three individual measurements were made at 8 pre-determined tracheal sites for dorsoventral (height) and laterolateral (width) dimensions. Tracheal diameters and stent sizes (based on the maximum tracheal diameter + 10%) were analyzed using a linear mixed model. CT tracheal lumen diameters were larger compared to fluoroscopy at all locations. When comparing modalities, fluoroscopic and CT stent sizes were statistically different. Greater overall variation in tracheal diameter measurement (height or width) existed for fluoroscopy compared to CT, both within and among observers. The greater tracheal diameter and lower measurement variability supported the use of CT for appropriate stent selection to minimize complications in veterinary patients. PMID:26784924
Ryder, Robert T.; Swezey, Christopher S.; Crangle, Robert D.; Trippi, Michael H.
2008-01-01
Geologic cross section E-E' is the first in a series of cross sections planned by the U.S. Geological Survey (USGS) to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section E-E' provides a regional view of the structural and stratigraphic framework of the basin from the Findlay arch in northwestern Ohio to the Valley and Ridge province in eastern West Virginia, a distance of approximately 380 miles (mi) (fig. 1, on sheet 1). Cross section E-E' updates earlier geologic cross sections through the central Appalachian basin by Renfro and Feray (1970), Bennison (1978), and Bally and Snelson (1980) and a stratigraphic cross section by Colton (1970). Although other published cross sections through parts of the basin show more structural detail (for example, Shumaker, 1985; Kulander and Dean, 1986) and stratigraphic detail (for example, Ryder, 1992; de Witt and others, 1993; Hettinger, 2001), these other cross sections are of more limited extent geographically and stratigraphically. Although specific petroleum systems in the Appalachian basin are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on information shown on the cross section. Cross section E-E' lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank), but it does provide a general framework (stratigraphic units and general rock types) for the coal-bearing section. Also, cross section E-E' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste (for example, Colton, 1961; Lloyd and Reid, 1990) or for the sequestration of carbon dioxide (for example, Smith and others, 2002; Lucier and others, 2006).
Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass.
Yu, Shenglei; Yang, Zhongmin; Xu, Shanhui
2010-05-01
This paper reports on the spectroscopic properties and energy transfer analysis of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)-La(2)O(3) glasses with different Tm(2)O(3) doping concentrations (0.2, 0.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0 wt%). Mid-IR fluorescence intensities in the range of 1,300 nm-2,200 nm have been measured when excited under an 808 nm LD for all the samples with the same pump power. Energy level structure and Judd-Ofelt parameters have been calculated based on the absorption spectra of Tm(3+), cross-relaxation rates and multi-phonon relaxation rates have been estimated with different Tm(2)O(3) doping concentrations. The maximum fluorescence intensity at around 1.8 mum has been obtained in Tm(2)O(3)-3 wt% sample and the maximum value of calculated stimulated emission cross-section of Tm(3+) in this sample is about 0.48 x 10(-20) cm(2) at 1,793 nm, and there is not any crystallization peak in the DSC curve of this sample, which indicate the potential utility of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)- La(2)O(3) glass for 2.0-microm optical fiber laser.
Structural origin and laser performance of thulium-doped germanate glasses.
Xu, Rongrong; Xu, Lin; Hu, Lili; Zhang, Junjie
2011-12-15
The structural origin and laser performance of thulium-doped germanate glasses have been studied. The investigation includes two main sections. The first part discusses the Raman spectroscopic and thermal stability of the host glass structure. The low value of the largest phonon energy (850 cm(-1)) reduces the probability of nonradiative relaxation. The large emission cross section of the Tm(3+) : (3)F(4) level (8.69 × 10(-21) cm(2)), the high quantum efficiency of the (3)F(4) level (71%), and the low nonradiative relaxation rate of the (3)F(4) → (3)H(6) transition (0.09 ms(-1)) illustrate good optical properties of the germanate glass. In the second part, the room-temperature laser action from the thulium-doped germanate glass is demonstrated when pumped by a 790 nm laser diode. The maximum output power of 346 mW and slope efficiency of 25.6% are achieved.
Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper
NASA Astrophysics Data System (ADS)
Zhang, Chuanbiao; Ning, Tigang; Li, Jing; Zheng, JingJing; Gao, Xuekai; Pei, Li
2018-06-01
A compact in-fiber Mach-Zehnder interferometer (MZI) based on twin-core fiber (TCF) with a novel T-shaped taper is proposed and demonstrated. The taper was firstly fabricated by a short section of TCF, and then spliced with a section of cleaved single mode fiber (SMF). When the light transmit into the TCF, multiple modes will be excited and will propagate within the TCF. In experiment, the proposed device had a maximum interferometric extinction ratio about 17 dB. And the refractive index (RI), strain, and temperature response properties of the sensor have been investigated, which show a relatively high RI, strain sensitivity and low temperature cross sensitivity. Hence, the sensor can be a suitable candidate in the biochemical and physical sensing applications. And due to its easy and controllable fabrication, the novel drawing technology can be applied to more multicore optical fibers.
Solar physics applications of computer graphics and image processing
NASA Technical Reports Server (NTRS)
Altschuler, M. D.
1985-01-01
Computer graphics devices coupled with computers and carefully developed software provide new opportunities to achieve insight into the geometry and time evolution of scalar, vector, and tensor fields and to extract more information quickly and cheaply from the same image data. Two or more different fields which overlay in space can be calculated from the data (and the physics), then displayed from any perspective, and compared visually. The maximum regions of one field can be compared with the gradients of another. Time changing fields can also be compared. Images can be added, subtracted, transformed, noise filtered, frequency filtered, contrast enhanced, color coded, enlarged, compressed, parameterized, and histogrammed, in whole or section by section. Today it is possible to process multiple digital images to reveal spatial and temporal correlations and cross correlations. Data from different observatories taken at different times can be processed, interpolated, and transformed to a common coordinate system.
A comparison of total reaction cross section models used in particle and heavy ion transport codes
NASA Astrophysics Data System (ADS)
Sihver, Lembit; Lantz, M.; Takechi, M.; Kohama, A.; Ferrari, A.; Cerutti, F.; Sato, T.
To be able to calculate the nucleon-nucleus and nucleus-nucleus total reaction cross sections with precision is very important for studies of basic nuclear properties, e.g. nuclear structure. This is also of importance for particle and heavy ion transport calculations because, in all particle and heavy ion transport codes, the probability function that a projectile particle will collide within a certain distance x in the matter depends on the total reaction cross sections. Furthermore, the total reaction cross sections will also scale the calculated partial fragmentation cross sections. It is therefore crucial that accurate total reaction cross section models are used in the transport calculations. In this paper, different models for calculating nucleon-nucleus and nucleus-nucleus total reaction cross sections are compared and discussed.
Vertically stabilized elongated cross-section tokamak
Sheffield, George V.
1977-01-01
This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.
BACKSCAT Lidar Simulation Version 3.0: Technical Documentation and Users Guide
1992-12-03
Raman Cross Section of Some Simple Gases, J. Opt. Soc. Am., 63:73. 20 Penny, C.M., St. Peters, R.L., and Lapp, M., (1974) Absolute Rotational Raman...of the molecule, and the remaining columns list the relative normalized cross sections for the respective excitation wavelength. The absolute Raman...cross section is obtained by simply multiplying the relative normalized cross section for a molecular species of interest by the absolute cross section
40 CFR 35.715 - Maximum federal share.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Maximum federal share. 35.715 Section 35.715 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE... Monitoring (section 28) § 35.715 Maximum federal share. The Regional Administrator may provide up to 75...
29 CFR 4022.22 - Maximum guaranteeable benefit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 9 2010-07-01 2010-07-01 false Maximum guaranteeable benefit. 4022.22 Section 4022.22 Labor Regulations Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION COVERAGE AND... Maximum guaranteeable benefit. Subject to section 4022B of ERISA and part 4022B of this chapter, benefits...
40 CFR 35.649 - Maximum federal share.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Maximum federal share. 35.649 Section 35.649 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE... and Training (section 23(a)(2)) § 35.649 Maximum federal share. The Regional Administrator may provide...
Energy and Mass-Number Dependence of Hadron-Nucleus Total Reaction Cross Sections
NASA Astrophysics Data System (ADS)
Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro
2016-09-01
We thoroughly investigate how proton-nucleus total reaction cross sections depend on the target mass number A and the proton incident energy. In doing so, we systematically analyze nuclear reaction data that are sensitive to nuclear size, namely, proton-nucleus total reaction cross sections and differential elastic cross sections, using a phenomenological black-sphere approximation of nuclei that we are developing. In this framework, the radius of the black sphere is found to be a useful length scale that simultaneously accounts for the observed proton-nucleus total reaction cross section and first diffraction peak in the proton elastic differential cross section. This framework, which is shown here to be applicable to antiprotons, is expected to be applicable to any kind of projectile that is strongly attenuated in the nucleus. On the basis of a cross-section formula constructed within this framework, we find that a less familiar A1/6 dependence plays a crucial role in describing the energy dependence of proton-nucleus total reaction cross sections.
Activation cross section and isomeric cross-section ratio for the 151Eu(n,2n)150m,gEu process
NASA Astrophysics Data System (ADS)
Luo, Junhua; Li, Suyuan; Jiang, Li
2018-07-01
The cross sections of 151Eu(n,2n)150m,gEu reactions and their isomeric cross section ratios σm/σt have been measured experimentally. Cross sections are measured, relative to a reference 93Nb(n,2n)92mNb reaction cross section, by means of the activation technique at three neutron energies 13.5, 14.1, and 14.8 MeV. Monoenergetic neutron beams were formed via the 3H(d,n)4He reaction and both Eu2O3 samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The activities induced in the reaction products were measured using high-resolution gamma ray spectroscopy. Cross sections were also evaluated theoretically using the numerical nuclear model code, TALYS-1.8 with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.
Total reaction cross sections in CEM and MCNP6 at intermediate energies
Kerby, Leslie M.; Mashnik, Stepan G.
2015-05-14
Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less
Total reaction cross sections in CEM and MCNP6 at intermediate energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerby, Leslie M.; Mashnik, Stepan G.
Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less
Proton-Nucleus Elastic Cross Sections Using Two-Body In-Medium Scattering Amplitudes
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.
2001-01-01
Recently, a method was developed of extracting nucleon-nucleon (NN) cross sections in the medium directly from experiment. The in-medium NN cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. The ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium NN cross sections to calculate elastic proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet
The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observationsmore » for all the targets reported here, especially for the total cross section.« less
Temperature dependence of the HNO3 UV absorption cross sections
NASA Technical Reports Server (NTRS)
Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan
1993-01-01
The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.
Cross sections for direct and dissociative ionization of NH3 and CS2 by electron impact
NASA Technical Reports Server (NTRS)
Rao, M. V. V. S.; Srivastava, S. K.
1991-01-01
A crossed electron beam-molecular beam collision geometry is used to measure cross sections for the production of positive ions by electron impact on NH3 and CS2. Ionization cross-section data for NH3 and the values of various cross sections are presented, as well as ionization efficiency curves for CS2. Considerable differences are found between the various results on NH3. The present values are close to the data of Djuric et al. (1981). The semiempirical calculations of Hare and Meath (1987) differ considerably in the absolute values of cross sections. Discrepancies were observed in comparisons of cross sections of other fragment ions resulting from the ionization and dissociate ionization of NH3.
Nuclear Forensics and Radiochemistry: Cross Sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundberg, Robert S.
The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.
Fragmentation Cross Sections of Medium-Energy 35Cl, 40Ar, and 48TiBeams on Elemental Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeitlin, C.; Guetersloh, S.; Heilbronn, L.
Charge-changing and fragment production cross sections at 0degrees have been obtained for interactions of 290, 400, and 650MeV/nucleon 40Ar beams, 650 and 1000 MeV/nucleon 35Cl beams, and a 1000MeV/nucleon 48Ti beam. Targets of C, CH2, Al, Cu, Sn, and Pb were used.Using standard analysis methods, we obtain fragment cross sections forcharges as low as 8 for Cl and Ar beams, and as low as 10 for the Tibeam. Using data obtained with small-acceptance detectors, we reportfragment production cross sections for charges as low as 5, corrected foracceptance using a simple model of fragment angular distributions. Withthe lower-charged fragment cross sections,more » we cancompare the data topredictions from several models (including NUCFRG2, EPAX2, and PHITS) ina region largely unexplored in earlier work. As found in earlier workwith other beams, NUCFRG2 and PHITS predictions agree reasonably wellwith the data for charge-changing cross sections, but do not accuratelypredict the fragment production cross sections. The cross sections forthe lightest fragments demonstrate the inadequacy of several models inwhich the cross sections fall monotonically with the charge of thefragment. PHITS, despite not agreeing particularly well with the fragmentproduction cross sections on average, nonetheless qualitativelyreproduces somesignificant features of the data that are missing from theother models.« less
NASA Astrophysics Data System (ADS)
Ullmann, J. L.; Kawano, T.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Baramsai, B.; Mitchell, G. E.; Krtička, M.
2014-03-01
Background: Accurate knowledge of the U238(n,γ) cross section is important for developing theoretical nuclear reaction models and for applications. However, capture cross sections are difficult to calculate accurately and often must be measured. Purpose: We seek to confirm previous measurements and test cross-section calculations with an emphasis on the unresolved resonance region from 1 to 500 keV. Method: Cross sections were measured from 10 eV to 500 keV using the DANCE detector array at the LANSCE spallation neutron source. The measurements used a thin target, 48 mg/cm2 of depleted uranium. Gamma cascade spectra were also measured to provide an additional constraint on calculations. The data are compared to cross-section calculations using the code CoH3 and cascade spectra calculations made using the code dicebox. Results: This new cross-section measurement confirms the previous data. The measured gamma-ray spectra suggest the need for additional low-lying dipole strength in the radiative strength function. New Hauser-Feshbach calculations including this strength accurately predict the capture cross section without renormalization. Conclusions: The present cross-section data confirm previous measurements. Including additional low-lying dipole strength in the radiative strength function may lead to more accurate cross-section calculations in nuclei where <Γγ> has not been measured.
NASA Technical Reports Server (NTRS)
Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.
1992-01-01
Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-10-19
CEPXS is a multigroup-Legendre cross-section generating code. The cross sections produced by CEPXS enable coupled electron-photon transport calculations to be performed with multigroup radiation transport codes, e.g. MITS and SCEPTRE. CEPXS generates multigroup-Legendre cross sections for photons, electrons and positrons over the energy range from 100 MeV to 1.0 keV. The continuous slowing-down approximation is used for those electron interactions that result in small-energy losses. The extended transport correction is applied to the forward-peaked elastic scattering cross section for electrons. A standard multigroup-Legendre treatment is used for the other coupled electron-photon cross sections. CEPXS extracts electron cross-section information from themore » DATAPAC data set and photon cross-section information from Biggs-Lighthill data. The model that is used for ionization/relaxation in CEPXS is essentially the same as that employed in ITS.« less
Partial Photoneutron Cross Sections for 207,208Pb
NASA Astrophysics Data System (ADS)
Kondo, T.; Utsunomiya, H.; Goriely, S.; Iwamoto, C.; Akimune, H.; Yamagata, T.; Toyokawa, H.; Harada, H.; Kitatani, F.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.
2014-05-01
Using linearly-polarized laser-Compton scattering γ-rays, partial E1 and M1 photoneutron cross sections along with total cross sections were determined for 207,208Pb at four energies near neutron threshold by measuring anisotropies in photoneutron emission. Separately, total photoneutron cross sections were measured for 207,208Pb with a high-efficiency 4π neutron detector. The partial cross section measurement provides direct evidence for the presence of pygmy dipole resonance (PDR) in 207,208Pb in the vicinity of neutron threshold. The strength of PDR amounts to 0.32%-0.42% of the Thomas-Reiche-Kuhn sum rule. Several μN2 units of B(M1)↑ strength were observed in 207,208Pb just above neutron threshold, which correspond to M1 cross sections less than 10% of the total photoneutron cross sections.
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2010 CFR
2010-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2011 CFR
2011-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2012 CFR
2012-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2014 CFR
2014-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2013 CFR
2013-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
40 CFR 142.61 - Variances from the maximum contaminant level for fluoride.
Code of Federal Regulations, 2010 CFR
2010-07-01
... level for fluoride. 142.61 Section 142.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... from the maximum contaminant level for fluoride. (a) The Administrator, pursuant to section 1415(a)(1... means generally available for achieving compliance with the Maximum Contaminant Level for fluoride. (1...
40 CFR 142.61 - Variances from the maximum contaminant level for fluoride.
Code of Federal Regulations, 2011 CFR
2011-07-01
... level for fluoride. 142.61 Section 142.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... from the maximum contaminant level for fluoride. (a) The Administrator, pursuant to section 1415(a)(1... means generally available for achieving compliance with the Maximum Contaminant Level for fluoride. (1...
40 CFR 35.245 - Maximum federal share.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Maximum federal share. 35.245 Section 35.245 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE... (section 23(a)(2)) § 35.245 Maximum federal share. The Regional Administrator may provide up to 50 percent...
40 CFR 35.642 - Maximum federal share.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Maximum federal share. 35.642 Section 35.642 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE... (section 23(a)(1)) § 35.642 Maximum federal share. The Regional Administrator may provide up to 100 percent...
40 CFR 35.615 - Maximum federal share.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Maximum federal share. 35.615 Section 35.615 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE... (section 104(b)(3)) § 35.615 Maximum federal share. EPA may provide up to 75 percent of the approved work...
40 CFR 35.659 - Maximum federal share.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Maximum federal share. 35.659 Section 35.659 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE... (section 23(a)(1)) § 35.659 Maximum federal share. The Regional Administrator may provide up to 100 percent...
NASA Astrophysics Data System (ADS)
Kiss, Tímea; Fiala, Károly; Sipos, György
2008-06-01
In the last few years an increase in the frequency and magnitude of floods was detected on the Tisza River, endangering large areas of Hungary. The causes of these record floods were complex, including both natural and human induced factors. This paper focuses on river management works and their effect on planimetric and cross-sectional parameters, with special attention to the flood conductivity changes to the river channel. During 19th century river regulation works, half of the total length of the Tisza River was altered by cut-offs, while in the 20th century mostly revetments and groynes were constructed. Subsequently, horizontal and vertical channel parameters have changed considerably due to semi-natural bed processes. In order to reveal changes, hydrological map series (1842, 1890, 1929, 1957, 1976 and 1999) and cross-sectional surveys from the same dates were analysed. Prior to the intensive human interventions (before 1890s) the river's course was highly sinuous with some very sharp bends. Due to cut-offs both the length and sinuosity of the Tisza River decreased by 35%, while the lengths of straight sections and the river's slope doubled. As a consequence the river incised by up to 3.8 m until the 1929 survey, resulting better flood conductivity, which improved flood safety. In the 1920s river management favoured bank stabilisation in order to stop the lateral migration of the channel. Despite these measures, meander development has continued, however, in a distorted manner. This is reflected by the opposing processes of lengthening centre-line on the one hand and gradually decreasing radius of curvature on the other. These processes can be explained by the continuous development of natural point-bars on the convex bank, and the lack of lateral retreat on the concave stabilised bank. The width of the river decreased by 17-45%, while its mean and maximum depth increased by 5-48%. The area of cross-sections influenced by revetments decreased by 6-19%, resulting in a 6-15% decline in flood conductivity. The non-stabilised sections were influenced by upstream revetments. Therefore, their parameters show similar changes, but with a smaller rate. At present, the flood conductivity of the channel is worse than it was in its natural state. In all, it was found that the ongoing process of cross-sectional distortion is a significant factor in increasing flood stage and hazard, and high floods can be expected more frequently in the future partly due to this factor.
NASA Astrophysics Data System (ADS)
Kociuba, Waldemar; Janicki, Grzegorz
2014-05-01
The study on bedload transport was conducted on the gravel-bed Scott River catchment with a glacial alimentation regime, located in the NW part of the Wedel Jarlsberg Land (Spitsbergen) with subpolar climatic conditions. In the melt season of 2010, bedload transport rate was continuously monitored at 24-hour intervals by means of four River Bedload Trap devices aligned across the width of the channel. The maximum bedload transport rate varied strongly at portions of the cross section from 16 to 152 kg m- 1 d- 1 in cross-profile I (c-p I) and 4 to 125 kg m- 1 d- 1 in cross-profile II (c-p II). The maximum channel-mean bedload transport rate (qa) amounted to 54 kg m- 1 d- 1 (c-p I) and 35 kg m- 1 d- 1 (c-p II). Mean daily bedload discharge (Qb) was estimated at a level of 97 kg day- 1 (c-p I) and 35 kg m- 1 d- 1 (c-p II), and the total bedload yield was determined at approx. 4345 kg in the measurement period (2086 kg — c-p I; 2203 kg — c-p II from 13.07 to 10.08). The analysis of the relationship between channel-mean bedload transport rate and water velocity or shear stress revealed a significant value of the correlation coefficient (R2 = 0.6). Discharge and rate of bedload transport were dependent on the weather and number of days with flood discharge. Approx. 58% of the entire discharged bedload was transported during 3 violent ablation-precipitation floods. Bedload grain size distribution was right-skewed and showed moderate sorting.
Ryder, Robert T.; Crangle, Robert D.; Trippi, Michael H.; Swezey, Christopher S.; Lentz, Erika E.; Rowan, Elisabeth L.; Hope, Rebecca S.
2009-01-01
Geologic cross section D-D' is the second in a series of cross sections constructed by the U.S. Geological Survey to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section D-D' provides a regional view of the structural and stratigraphic framework of the Appalachian basin from the Findlay arch in northwestern Ohio to the Valley and Ridge province in eastern West Virginia, a distance of approximately 290 miles. The information shown on the cross section is based on geological and geophysical data from 13 deep drill holes, several of which penetrate the Paleozoic sedimentary rocks of the basin and bottom in Mesoproterozoic (Grenville-age) crystalline basement rocks. This cross section is a companion to cross section E-E' (Ryder and others, 2008) that is located about 25 to 50 mi to the southwest. Although specific petroleum systems in the Appalachian basin are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on information shown on the cross section. Cross section D-D' lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank), but it does provide a general geologic framework (stratigraphic units and general rock types) for the coal-bearing section. Also, cross section D-D' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste or for the sequestration of carbon dioxide.
Electron impact excitation of SO2 - Differential, integral, and momentum transfer cross sections
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Trajmar, S.
1982-01-01
Electron impact excitation of the electronic states of SO2 was investigated. Differential, integral, and inelastic momentum transfer cross sections were obtained by normalizing the relative measurements to the elastic cross sections. The cross sections are given for seven spectral ranges of the energy-loss spectra extending from the lowest electronic state to near the first ionization limit. Most of the regions represent the overlap of several electronic transitions. No measurements for these cross sections have been reported previously.
Proton-Nucleus Total Cross Sections in Coupled-Channel Approach
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.
2000-01-01
Recently, nucleon-nucleon (N-N) cross sections in the medium have been extracted directly from experiment. The in-medium N-N cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. In the present study the ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium N-N cross sections to calculate total proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.
NASA Technical Reports Server (NTRS)
Green, T. J.
1973-01-01
Computer programs were used to calculate the total electron excitation cross-section for atoms and the partial ionization cross-section. The approximations to the scattering amplitude used are as follows: (1) Born, Bethe, and Modified Bethe for non-exchange excitation; (2) Ochkur for exchange excitation; and (3) Coulomb-Born of non-exchange ionization. The amplitudes are related to the differential cross-sections which are integrated to give the total excitation (or partial ionization) cross-section for the collision. The atomic wave functions used are Hartree-Fock-Slater functions for bound states and the coulomb wave function for the continuum. The programs are presented and the results are examined.
Electron impact scattering study of hypohalous acids HOX (X = F, Cl, Br, I)
NASA Astrophysics Data System (ADS)
Yadav, Hitesh; Bhutadia, Harshad; Prajapati, Dinesh; Desai, Hardik; Vinodkumar, Minaxi; Vinodkumar, P. C.
2018-05-01
In this article we aim to report total cross sections (TCS) QT, total elastic cross sections (Qel), total inelastic cross sections (Qinel) i.e. (total ionizations cross sections (Qion)+total electronic excitation cross sections (Qexc)) from threshold of the target to 5000 eV energy range. We have used a well-defined theoretical methodology Spherical Complex Optical Potential (SCOP) to compute QT, Qel and Qinel and Complex Scattering Potential - ionization contribution (CSP - ic) method to report the (Qion). The cross-sectional data reported here for the Hypohalous Acids is for the first time and the present data can become a guideline for the experimentalist to study these targets.
Liu, Jing; Zhang, Hai-Bo
2014-12-01
The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z=6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Yi; Huang, Yanqiu; Liu, Jiaping; Wang, Hai; Liu, Qiuhan
2013-01-01
The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to -5 Pa.
Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Sinha, Chandana
2010-01-01
We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very loud incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it. The scattering weave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts the exchange approximation has only been considered. We calculate the laser assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.
Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy
NASA Technical Reports Server (NTRS)
Bhatia, Anand K.; Sinha, Chandana
2009-01-01
We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very low incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it The scattering wave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts, the exchange approximation has only been considered. We calculate the laser-assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.
Broadband Terahertz Computed Tomography Using a 5k-pixel Real-time THz Camera
NASA Astrophysics Data System (ADS)
Trichopoulos, Georgios C.; Sertel, Kubilay
2015-07-01
We present a novel THz computed tomography system that enables fast 3-dimensional imaging and spectroscopy in the 0.6-1.2 THz band. The system is based on a new real-time broadband THz camera that enables rapid acquisition of multiple cross-sectional images required in computed tomography. Tomographic reconstruction is achieved using digital images from the densely-packed large-format (80×64) focal plane array sensor located behind a hyper-hemispherical silicon lens. Each pixel of the sensor array consists of an 85 μm × 92 μm lithographically fabricated wideband dual-slot antenna, monolithically integrated with an ultra-fast diode tuned to operate in the 0.6-1.2 THz regime. Concurrently, optimum impedance matching was implemented for maximum pixel sensitivity, enabling 5 frames-per-second image acquisition speed. As such, the THz computed tomography system generates diffraction-limited resolution cross-section images as well as the three-dimensional models of various opaque and partially transparent objects. As an example, an over-the-counter vitamin supplement pill is imaged and its material composition is reconstructed. The new THz camera enables, for the first time, a practical application of THz computed tomography for non-destructive evaluation and biomedical imaging.
Zeng, Yang; Ye, Qinghao; Shen, Wenzhong
2014-05-09
Semiconductor nanowires (NWs) have long been used in photovoltaic applications but restricted to approaching the fundamental efficiency limits of the planar devices with less material. However, recent researches on standing NWs have started to reveal their potential of surpassing these limits when their unique optical property is utilized in novel manners. Here, we present a theoretical guideline for maximizing the conversion efficiency of a single standing NW cell based on a detailed study of its optical absorption mechanism. Under normal incidence, a standing NW behaves as a dielectric resonator antenna, and its optical cross-section shows its maximum when the lowest hybrid mode (HE11δ) is excited along with the presence of a back-reflector. The promotion of the cell efficiency beyond the planar limits is attributed to two effects: the built-in concentration caused by the enlarged optical cross-section, and the shifting of the absorption front resulted from the excited mode profile. By choosing an optimal NW radius to support the HE11δ mode within the main absorption spectrum, we demonstrate a relative conversion-efficiency enhancement of 33% above the planar cell limit on the exemplary a-Si solar cells. This work has provided a new basis for designing and analyzing standing NW based solar cells.
Evaluating the "cushion effect" among children in frontal motor vehicle crashes.
Harbaugh, Calista M; Zhang, Peng; Henderson, Brianna; Derstine, Brian A; Holcombe, Sven A; Wang, Stewart C; Kohoyda-Inglis, Carla; Ehrlich, Peter F
2018-05-01
The "Cushion Effect," the phenomenon in which obesity protects against abdominal injury in adults in motor vehicle accidents, has not been evaluated among pediatric patients. This work evaluates the association between subcutaneous fat cross-sectional area, quantified using analytic morphomic techniques and abdominal injury. This retrospective study includes 119 patients aged 1 to 18years involved in frontal impact motor vehicle accidents (2003-2015) with computed tomography scans. Subcutaneous fat cross-sectional area was measured and converted to age- and gender-adjusted percentiles from population-based normative data. Multivariable analysis determined the risk of the primary outcome, Maximum Abbreviated Injury Scale (MAIS) 2+ abdominal injury, after adjusting for age, weight, seatbelt status, and impact rating. MAIS 2+ abdominal injuries occurred in 20 (16.8%) of the patients. Subcutaneous fat area percentile was not significantly associated with MAIS 2+ abdominal injury on multivariable logistic regression (adjusted Odds Ratio, 0.86; 95% CI, 0.72-1.03; p=0.10). The "cushion effect" was not apparent among pediatric frontal motor vehicle crash victims in this study. Future work is needed to investigate other analytic morphomic measures. By understanding how body composition relates to injury patterns, there is a unique opportunity to improve vehicle safety design. Prognosis Study, Level III. Copyright © 2018. Published by Elsevier Inc.
Modeling pressure relationships of inspired air into the human lung bifurcations through simulations
NASA Astrophysics Data System (ADS)
Aghasafari, Parya; Ibrahim, Israr B. M.; Pidaparti, Ramana
2018-03-01
Applied pressure on human lung wall has great importance on setting up protective ventilatory strategies, therefore, estimating pressure relationships in terms of specific parameters would provide invaluable information specifically during mechanical ventilation (MV). A three-dimensional model from a healthy human lung MRI is analyzed by computational fluid dynamic (CFD), and results for pressure are curve fitted to estimate relationships that associate pressure to breathing time, cross section and generation numbers of intended locations. Among all possible functions, it is observed that exponential and polynomial pressure functions present most accurate results for normal breathing (NB) and MV, respectively. For validation, pressure-location curves from CFD and results from this study are compared and good correlations are found. Also, estimated pressure values are used to calculate pressure drop and airway resistance to the induced air into the lung bifurcations. It is concluded that maximum pressure drop appeared in generation number 2 and medium sized airways show higher resistance to air flow and that resistance decreased as cross sectional area increased through the model. Results from this study are in good agreement with previous studies and provide potentials for further studies on influence of air pressure on human lung tissue and reducing lung injuries during MV.
Liu, Jiaping; Wang, Hai; Liu, Qiuhan
2013-01-01
The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to −5 Pa. PMID:24000278
Zeng, Yang; Ye, Qinghao; Shen, Wenzhong
2014-01-01
Semiconductor nanowires (NWs) have long been used in photovoltaic applications but restricted to approaching the fundamental efficiency limits of the planar devices with less material. However, recent researches on standing NWs have started to reveal their potential of surpassing these limits when their unique optical property is utilized in novel manners. Here, we present a theoretical guideline for maximizing the conversion efficiency of a single standing NW cell based on a detailed study of its optical absorption mechanism. Under normal incidence, a standing NW behaves as a dielectric resonator antenna, and its optical cross-section shows its maximum when the lowest hybrid mode (HE11δ) is excited along with the presence of a back-reflector. The promotion of the cell efficiency beyond the planar limits is attributed to two effects: the built-in concentration caused by the enlarged optical cross-section, and the shifting of the absorption front resulted from the excited mode profile. By choosing an optimal NW radius to support the HE11δ mode within the main absorption spectrum, we demonstrate a relative conversion-efficiency enhancement of 33% above the planar cell limit on the exemplary a-Si solar cells. This work has provided a new basis for designing and analyzing standing NW based solar cells. PMID:24810591
A precise determination of the top-quark pole mass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Sheng-Quan; Wu, Xing-Gang; Si, Zong-Guo
The Principle of Maximum Conformality (PMC) provides a systematic way to eliminate the renormalization scheme and renormalization scale uncertainties for high-energy processes. We have observed that by applying PMC scale setting, one obtains comprehensive and self-consistent pQCD predictions for the top-quark pair total cross section and the top-quark pair forward–backward asymmetry in agreement with the measurements at the Tevatron and LHC. As a step forward, in the present work, we determine the top-quark pole mass via a detailed comparison of the top-quark pair cross section with the measurements at the Tevatron and LHC. The results for the top-quark pole mass are m t=174.6more » $$+3.1\\atop{-3.2}$$ GeV for the Tevatron with $$\\sqrt{s}$$ =1.96 TeV, m t=173.7±1.5 and 174.2±1.7 GeV for the LHC with $$\\sqrt{s}$$ =7 and 8 TeV, respectively. Those predictions agree with the average, 173.34±0.76 GeV, obtained from various collaborations via direct measurements. The consistency of the pQCD predictions using the PMC with all of the collider measurements at different energies provides an important verification of QCD.« less
Assessment of growth and spectral properties of Cr3+-doped La0.83Y0.29Sc2.88(BO3)4 crystal
NASA Astrophysics Data System (ADS)
Huang, Yisheng; Sun, Shijia; Lin, Zhoubin; Zhang, Lizhen; Wang, Guofu
2017-10-01
This paper reports the spectral characteristic of Cr3+-doped La0.83Y0.29 Sc2.88 (BO3)4 crystal. Cr3+-doped La0.83Y0.29Sc2.88 (BO3)4 crystal was grown from a flux of Li6B4O9 by the top seeded Solution growth method. Cr3+:La0.83Y0.29 Sc2.88 (BO3)4 crystal exhibits broad absorption and emission bands of Cr3+ ions. The absorption cross-section σa is 3.38 × 10-20 cm2 at 467 nm and 4.40 × 10-20 cm2 at 656 nm for E//c, respectively. The emission band with a peak at 906 nm has a full width at half maximum (FWHM) of 188 nm for E//c. The emission cross-section σe at 906 nm is 2.35 × 10-20 cm2 for E//c axis and 2.03 × 10-20 cm2 for E⊥c axis. The fluorescence lifetime of 4T2 → 4A2 transition is 37.7 μs. The investigated result indicates that it may be considered as a potential CW tunable laser crystal material.
Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes.
Wilson, Jeremy D; Cottrell, William J; Foster, Thomas H
2007-01-01
Angularly resolved light scattering and wavelength-resolved darkfield scattering spectroscopy measurements were performed on intact, control EMT6 cells and cells stained with high-extinction lysosomal- or mitochondrial-localizing dyes. In the presence of the lysosomal-localizing dye NPe6, we observe changes in the details of light scattering from stained and unstained cells, which have both wavelength- and angular-dependent features. Analysis of measurements performed at several wavelengths reveals a reduced scattering cross section near the absorption maximum of the lysosomal-localizing dye. When identical measurements are made with cells loaded with a similar mitochondrial-localizing dye, HPPH, we find no evidence that staining mitochondria had any effect on the light scattering. Changes in the scattering properties of candidate populations of organelles induced by the addition of an absorber are modeled with Mie theory, and we find that any absorber-induced scattering response is very sensitive to the inherent refractive index of the organelle population. Our measurements and modeling are consistent with EMT6-cell-mitochondria having refractive indices close to those reported in the literature for organelles, approximately 1.4. The reduction in scattering cross section induced by NPe6 constrains the refractive index of lysosomes to be significantly higher. We estimate the refractive index of lysosomes in EMT6 cells to be approximately 1.6.