Changes to Sub-daily Rainfall Patterns in a Future Climate
NASA Astrophysics Data System (ADS)
Westra, S.; Evans, J. P.; Mehrotra, R.; Sharma, A.
2012-12-01
An algorithm is developed for disaggregating daily rainfall into sub-daily rainfall 'fragments' (continuous high temporal-resolution rainfall sequences whose total depth sums to the daily rainfall amount) under a future, warmer climate. The basis of the algorithm is to re-sample sub-daily fragments from the historical record conditional on the total daily rainfall amount and a range of temperature-based atmospheric predictors. The logic is that as the atmosphere warms, future rainfall patterns will be more reflective of historical rainfall patterns which occurred on warmer days at the same location, or at locations which have an atmospheric temperature profile more representative of expected future atmospheric conditions. It was found that the daily to sub-daily scaling relationship varied significantly by season and by location, with rainfall patterns on warmer seasons or at warmer locations typically exhibiting higher rainfall intensity occurring over shorter periods within a day, compared with cooler seasons and locations. Importantly, by regressing against temperature-based atmospheric covariates, this effect was substantially reduced, suggesting that the approach also may be valid when extrapolating to a future climate. An adjusted method of fragments algorithm was then applied to nine stations around Australia, with the results showing that when holding total daily rainfall constant, the maximum intensity of short duration rainfall increased by a median of about 5% per degree for the maximum 6 minute burst, and 3.5% for the maximum one hour burst, whereas the fraction of the day with no rainfall increased by a median of 1.5%. This highlights that a large proportion of the change to the distribution of rainfall is likely to occur at sub-daily timescales, with significant implications for many hydrological systems.
Disaggregating from daily to sub-daily rainfall under a future climate
NASA Astrophysics Data System (ADS)
Westra, S.; Evans, J.; Mehrotra, R.; Sharma, A.
2012-04-01
We describe an algorithm for disaggregating daily rainfall into sub-daily rainfall 'fragments' (continuous fine-resolution rainfall sequences whose total depth sums to the daily rainfall amount) under a future, warmer climate. The basis of the algorithm is re-sample sub-daily fragments from the historical record conditional on the total daily rainfall amount and a range of atmospheric predictors representative of the future climate. The logic is that as the atmosphere warms, future rainfall patterns will be more reflective of historical rainfall patterns which occurred on warmer days at the same location, or at locations which have an atmospheric profile more reflective of expected future conditions. When looking at the scaling from daily to sub-daily rainfall over the historical record, it was found that the relationship varied significantly by season and by location, with rainfall patterns on warmer seasons or at warmer locations typically showing more intense rain falling over shorter periods compared with cooler seasons and stations. Importantly, by regressing against atmospheric covariates such as temperature this effect was almost entirely eliminated, providing a basis for suggesting the approach may be valid when extrapolating sub-daily sequences to a future climate. The method of fragments algorithm was then applied to nine stations around Australia, and showed that when holding the total daily rainfall constant, the maximum intensity of a short duration (6 minute) rainfall increased by between 4.1% and 13.4% per degree change in temperature for the maximum six minute burst, between 3.1% and 6.8% for the maximum one hour burst, and between 1.5% and 3.5% for the fraction of the day with no rainfall. This highlights that a large proportion of the change to the distribution of precipitation in the future is likely to occur at sub-daily timescales, with significant implications for many hydrological systems.
Descriptive Statistics and Cluster Analysis for Extreme Rainfall in Java Island
NASA Astrophysics Data System (ADS)
E Komalasari, K.; Pawitan, H.; Faqih, A.
2017-03-01
This study aims to describe regional pattern of extreme rainfall based on maximum daily rainfall for period 1983 to 2012 in Java Island. Descriptive statistics analysis was performed to obtain centralization, variation and distribution of maximum precipitation data. Mean and median are utilized to measure central tendency data while Inter Quartile Range (IQR) and standard deviation are utilized to measure variation of data. In addition, skewness and kurtosis used to obtain shape the distribution of rainfall data. Cluster analysis using squared euclidean distance and ward method is applied to perform regional grouping. Result of this study show that mean (average) of maximum daily rainfall in Java Region during period 1983-2012 is around 80-181mm with median between 75-160mm and standard deviation between 17 to 82. Cluster analysis produces four clusters and show that western area of Java tent to have a higher annual maxima of daily rainfall than northern area, and have more variety of annual maximum value.
Natural variability of the Keetch-Byram Drought Index in the Hawaiian Islands
Klaus Dolling; Pao-Shin Chu; Francis Fujioka
2009-01-01
The Hawaiian Islands experience damaging wildfires on a yearly basis. Soil moisture or lack thereof influences the amount and flammability of vegetation. Incorporating daily maximum temperatures and daily rainfall amounts, the KeetchâByram Drought Index (KBDI) estimates the amount of soil moisture by tracking daily maximum temperatures and rainfall. A previous study...
NASA Astrophysics Data System (ADS)
Herath, Sujeewa Malwila; Sarukkalige, Ranjan; Nguyen, Van Thanh Van
2018-01-01
Understanding the relationships between extreme daily and sub-daily rainfall events and their governing factors is important in order to analyse the properties of extreme rainfall events in a changing climate. Atmospheric temperature is one of the dominant climate variables which has a strong relationship with extreme rainfall events. In this study, a temperature-rainfall binning technique is used to evaluate the dependency of extreme rainfall on daily maximum temperature. The Clausius-Clapeyron (C-C) relation was found to describe the relationship between daily maximum temperature and a range of rainfall durations from 6 min up to 24 h for seven Australian weather stations, the stations being located in Adelaide, Brisbane, Canberra, Darwin, Melbourne, Perth and Sydney. The analysis shows that the rainfall - temperature scaling varies with location, temperature and rainfall duration. The Darwin Airport station shows a negative scaling relationship, while the other six stations show a positive relationship. To identify the trend in scaling relationship over time the same analysis is conducted using data covering 10 year periods. Results indicate that the dependency of extreme rainfall on temperature also varies with the analysis period. Further, this dependency shows an increasing trend for more extreme short duration rainfall and a decreasing trend for average long duration rainfall events at most stations. Seasonal variations of the scale changing trends were analysed by categorizing the summer and autumn seasons in one group and the winter and spring seasons in another group. Most of 99th percentile of 6 min, 1 h and 24 h rain durations at Perth, Melbourne and Sydney stations show increasing trend for both groups while Adelaide and Darwin show decreasing trend. Furthermore, majority of scaling trend of 50th percentile are decreasing for both groups.
Models for estimating daily rainfall erosivity in China
NASA Astrophysics Data System (ADS)
Xie, Yun; Yin, Shui-qing; Liu, Bao-yuan; Nearing, Mark A.; Zhao, Ying
2016-04-01
The rainfall erosivity factor (R) represents the multiplication of rainfall energy and maximum 30 min intensity by event (EI30) and year. This rainfall erosivity index is widely used for empirical soil loss prediction. Its calculation, however, requires high temporal resolution rainfall data that are not readily available in many parts of the world. The purpose of this study was to parameterize models suitable for estimating erosivity from daily rainfall data, which are more widely available. One-minute resolution rainfall data recorded in sixteen stations over the eastern water erosion impacted regions of China were analyzed. The R-factor ranged from 781.9 to 8258.5 MJ mm ha-1 h-1 y-1. A total of 5942 erosive events from one-minute resolution rainfall data of ten stations were used to parameterize three models, and 4949 erosive events from the other six stations were used for validation. A threshold of daily rainfall between days classified as erosive and non-erosive was suggested to be 9.7 mm based on these data. Two of the models (I and II) used power law functions that required only daily rainfall totals. Model I used different model coefficients in the cool season (Oct.-Apr.) and warm season (May-Sept.), and Model II was fitted with a sinusoidal curve of seasonal variation. Both Model I and Model II estimated the erosivity index for average annual, yearly, and half-month temporal scales reasonably well, with the symmetric mean absolute percentage error MAPEsym ranging from 10.8% to 32.1%. Model II predicted slightly better than Model I. However, the prediction efficiency for the daily erosivity index was limited, with the symmetric mean absolute percentage error being 68.0% (Model I) and 65.7% (Model II) and Nash-Sutcliffe model efficiency being 0.55 (Model I) and 0.57 (Model II). Model III, which used the combination of daily rainfall amount and daily maximum 60-min rainfall, improved predictions significantly, and produced a Nash-Sutcliffe model efficiency for daily erosivity index prediction of 0.93. Thus daily rainfall data was generally sufficient for estimating annual average, yearly, and half-monthly time scales, while sub-daily data was needed when estimating daily erosivity values.
Global intensification in observed short-duration rainfall extremes
NASA Astrophysics Data System (ADS)
Fowler, H. J.; Lewis, E.; Guerreiro, S.; Blenkinsop, S.; Barbero, R.; Westra, S.; Lenderink, G.; Li, X.
2017-12-01
Extreme rainfall events are expected to intensify with a warming climate and this is currently driving extensive research. While daily rainfall extremes are widely thought to have increased globally in recent decades, changes in rainfall extremes on shorter timescales, often associated with flash flooding, have not been documented at global scale due to surface observational limitations and the lack of a global sub-daily rainfall database. The access to and use of such data remains a challenge. For the first time, we have synthesized across multiple data sources providing gauge-based sub-daily rainfall observations across the globe over the last 6 decades. This forms part of the INTENSE project (part of the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges (GEWEX) Hydroclimate Project cross-cut on sub-daily rainfall). A set of global hydroclimatic indices have been produced based upon stakeholder recommendations including indices that describe maximum rainfall totals and timing, the intensity, duration and frequency of storms, frequency of storms above specific thresholds and information about the diurnal cycle. This will provide a unique global data resource on sub-daily precipitation whose derived indices will be freely available to the wider scientific community. Because of the physical connection between global warming and the moisture budget, we also sought to infer long-term changes in sub-daily rainfall extremes contingent on global mean temperature. Whereas the potential influence of global warming is uncertain at regional scales, where natural variability dominates, aggregating surface stations across parts of the world may increase the global warming-induced signal. Changes in terms of annual maximum rainfall across various resolutions ranging from 1-h to 24-h are presented and discussed.
NASA Astrophysics Data System (ADS)
Boulariah, Ouafik; Longobardi, Antonia; Meddi, Mohamed
2017-04-01
One of the major challenges scientists, practitioners and stakeholders are nowadays involved in, is to provide the worldwide population with reliable water supplies, protecting, at the same time, the freshwater ecosystems quality and quantity. Climate and land use changes undermine the balance between water demand and water availability, causing alteration of rivers flow regime. Knowledge of hydro-climate variables temporal and spatial variability is clearly helpful to plan drought and flood hazard mitigation strategies but also to adapt them to future environmental scenarios. The present study relates to the coastal semi-arid Tafna catchment, located in the North-West of Algeria, within the Mediterranean basin. The aim is the investigation of streamflow and rainfall indices temporal variability in six sub-basins of the large catchment Tafna, attempting to relate streamflow and rainfall changes. Rainfall and streamflow time series have been preliminary tested for data quality and homogeneity, through the coupled application of two-tailed t test, Pettitt test and Cumsum tests (significance level of 0.1, 0.05 and 0.01). Subsequently maximum annual daily rainfall and streamflow and average daily annual rainfall and streamflow time series have been derived and tested for temporal variability, through the application of the Mann Kendall and Sen's test. Overall maximum annual daily streamflow time series exhibit a negative trend which is however significant for only 30% of the station. Maximum annual daily rainfall also e exhibit a negative trend which is intend significant for the 80% of the stations. In the case of average daily annual streamflow and rainfall, the tendency for decrease in time is unclear and, in both cases, appear significant for 60% of stations.
Simulation of extreme rainfall and projection of future changes using the GLIMCLIM model
NASA Astrophysics Data System (ADS)
Rashid, Md. Mamunur; Beecham, Simon; Chowdhury, Rezaul Kabir
2017-10-01
In this study, the performance of the Generalized LInear Modelling of daily CLImate sequence (GLIMCLIM) statistical downscaling model was assessed to simulate extreme rainfall indices and annual maximum daily rainfall (AMDR) when downscaled daily rainfall from National Centers for Environmental Prediction (NCEP) reanalysis and Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCM) (four GCMs and two scenarios) output datasets and then their changes were estimated for the future period 2041-2060. The model was able to reproduce the monthly variations in the extreme rainfall indices reasonably well when forced by the NCEP reanalysis datasets. Frequency Adapted Quantile Mapping (FAQM) was used to remove bias in the simulated daily rainfall when forced by CMIP5 GCMs, which reduced the discrepancy between observed and simulated extreme rainfall indices. Although the observed AMDR were within the 2.5th and 97.5th percentiles of the simulated AMDR, the model consistently under-predicted the inter-annual variability of AMDR. A non-stationary model was developed using the generalized linear model for local, shape and scale to estimate the AMDR with an annual exceedance probability of 0.01. The study shows that in general, AMDR is likely to decrease in the future. The Onkaparinga catchment will also experience drier conditions due to an increase in consecutive dry days coinciding with decreases in heavy (>long term 90th percentile) rainfall days, empirical 90th quantile of rainfall and maximum 5-day consecutive total rainfall for the future period (2041-2060) compared to the base period (1961-2000).
A comparison of methods to estimate future sub-daily design rainfall
NASA Astrophysics Data System (ADS)
Li, J.; Johnson, F.; Evans, J.; Sharma, A.
2017-12-01
Warmer temperatures are expected to increase extreme short-duration rainfall due to the increased moisture-holding capacity of the atmosphere. While attention has been paid to the impacts of climate change on future design rainfalls at daily or longer time scales, the potential changes in short duration design rainfalls have been often overlooked due to the limited availability of sub-daily projections and observations. This study uses a high-resolution regional climate model (RCM) to predict the changes in sub-daily design rainfalls for the Greater Sydney region in Australia. Sixteen methods for predicting changes to sub-daily future extremes are assessed based on different options for bias correction, disaggregation and frequency analysis. A Monte Carlo cross-validation procedure is employed to evaluate the skill of each method in estimating the design rainfall for the current climate. It is found that bias correction significantly improves the accuracy of the design rainfall estimated for the current climate. For 1 h events, bias correcting the hourly annual maximum rainfall simulated by the RCM produces design rainfall closest to observations, whereas for multi-hour events, disaggregating the daily rainfall total is recommended. This suggests that the RCM fails to simulate the observed multi-duration rainfall persistence, which is a common issue for most climate models. Despite the significant differences in the estimated design rainfalls between different methods, all methods lead to an increase in design rainfalls across the majority of the study region.
Characterization and disaggregation of daily rainfall in the Upper Blue Nile Basin in Ethiopia
NASA Astrophysics Data System (ADS)
Engida, Agizew N.; Esteves, Michel
2011-03-01
SummaryIn Ethiopia, available rainfall records are mainly limited to daily time steps. Though rainfall data at shorter time steps are important for various purposes like modeling of erosion processes and flood hydrographs, they are hardly available in Ethiopia. The objectives of this study were (i) to study the temporal characteristics of daily rains at two stations in the region of the Upper Blue Nile Basin (UBNB) and (ii) to calibrate and evaluate a daily rainfall disaggregation model. The analysis was based on rainfall data of Bahir Dar and Gonder Meteorological Stations. The disaggregation model used was the Modified Bartlett-Lewis Rectangular Pulse Model (MBLRPM). The mean daily rainfall intensity varied from about 4 mm in the dry season to 17 mm in the wet season with corresponding variation in raindays of 0.4-26 days. The observed maximum daily rainfall varied from 13 mm in the dry month to 200 mm in the wet month. The average wet/dry spell length varied from 1/21 days in the dry season to 6/1 days in the rainy season. Most of the rainfall occurs in the afternoon and evening periods of the day. Daily rainfall disaggregation using the MBLRPM alone resulted in poor match between the disaggregated and observed hourly rainfalls. Stochastic redistribution of the outputs of the model using Beta probability distribution function improved the agreement between observed and calculated hourly rain intensities. In areas where convective rainfall is dominant, the outputs of MBLRPM should be redistributed using relevant probability distributions to simulate the diurnal rainfall pattern.
NASA Astrophysics Data System (ADS)
Mandal, S.; Choudhury, B. U.
2015-07-01
Sagar Island, setting on the continental shelf of Bay of Bengal, is one of the most vulnerable deltas to the occurrence of extreme rainfall-driven climatic hazards. Information on probability of occurrence of maximum daily rainfall will be useful in devising risk management for sustaining rainfed agrarian economy vis-a-vis food and livelihood security. Using six probability distribution models and long-term (1982-2010) daily rainfall data, we studied the probability of occurrence of annual, seasonal and monthly maximum daily rainfall (MDR) in the island. To select the best fit distribution models for annual, seasonal and monthly time series based on maximum rank with minimum value of test statistics, three statistical goodness of fit tests, viz. Kolmogorove-Smirnov test (K-S), Anderson Darling test ( A 2 ) and Chi-Square test ( X 2) were employed. The fourth probability distribution was identified from the highest overall score obtained from the three goodness of fit tests. Results revealed that normal probability distribution was best fitted for annual, post-monsoon and summer seasons MDR, while Lognormal, Weibull and Pearson 5 were best fitted for pre-monsoon, monsoon and winter seasons, respectively. The estimated annual MDR were 50, 69, 86, 106 and 114 mm for return periods of 2, 5, 10, 20 and 25 years, respectively. The probability of getting an annual MDR of >50, >100, >150, >200 and >250 mm were estimated as 99, 85, 40, 12 and 03 % level of exceedance, respectively. The monsoon, summer and winter seasons exhibited comparatively higher probabilities (78 to 85 %) for MDR of >100 mm and moderate probabilities (37 to 46 %) for >150 mm. For different recurrence intervals, the percent probability of MDR varied widely across intra- and inter-annual periods. In the island, rainfall anomaly can pose a climatic threat to the sustainability of agricultural production and thus needs adequate adaptation and mitigation measures.
NASA Astrophysics Data System (ADS)
Singh, Ankita; Ghosh, Kripan; Mohanty, U. C.
2018-03-01
The sub-seasonal variation of Indian summer monsoon rainfall highly impacts Kharif crop production in comparison with seasonal total rainfall. The rainfall frequency and intensity corresponding to various rainfall events are found to be highly related to crop production and therefore, the predictability of such events are considered to be diagnosed. Daily rainfall predictions are made available by one of the coupled dynamical model National Centers for Environmental Prediction Climate Forecast System (NCEPCFS). A large error in the simulation of daily rainfall sequence influences to take up a bias correction and for that reason, two approaches are used. The bias-corrected GCM is able to capture the inter-annual variability in rainfall events. Maximum prediction skill of frequency of less rainfall (LR) event is observed during the month of September and a similar result is also noticed for moderate rainfall event with maximum skill over the central parts of the country. On the other hand, the impact of rainfall weekly rainfall intensity is evaluated against the Kharif rice production. It is found that weekly rainfall intensity during July is having a significant impact on Kharif rice production, but the corresponding skill was found very low in GCM. The GCM are able to simulate the less and moderate rainfall frequency with significant skill.
An assessment of temporal effect on extreme rainfall estimates
NASA Astrophysics Data System (ADS)
Das, Samiran; Zhu, Dehua; Chi-Han, Cheng
2018-06-01
This study assesses the temporal behaviour in terms of inter-decadal variability of extreme daily rainfall of stated return period relevant for hydrologic risk analysis using a novel regional parametric approach. The assessment is carried out based on annual maximum daily rainfall series of 180 meteorological stations of Yangtze River Basin over a 50-year period (1961-2010). The outcomes of the analysis reveal that while there were effects present indicating higher quantile values when estimated from data of the 1990s, it is found not to be noteworthy to exclude the data of any decade from the extreme rainfall estimation process for hydrologic risk analysis.
Trends in autumn rain of West China from 1961 to 2014
NASA Astrophysics Data System (ADS)
Zhang, Chi; Wang, Zunya; Zhou, Botao; Li, Yonghua; Tang, Hongyu; Xiang, Bo
2018-02-01
Autumn rain of West China is a typical climate phenomenon, which is characterized by continuous rainy days and large rainfall amounts and exerts profound impacts on the economic society. Based on daily precipitation data from 524 observation stations for the period of 1961-2014, this article comprehensively examined secular changes in autumn rain of West China, including its amount, frequency, intensity, and associated extremes. The results generally show a significant reduction of rainfall amount and rainy days and a significant enhancement of mean rainfall intensity for the average of West China during autumn (September-October) since 1961. Meanwhile, decreasing trends are consistently observed in the maximum daily rainfall, the longest consecutive rainy days, the greatest consecutive rainfall amount, and the frequencies of the extreme daily rainfall, consecutive rainfall, and consecutive rainfall process. Further analysis indicates that the decreases of autumn rainfall and related extremes in West China are associated with the decreases in both water vapor content and atmospheric unstable stratification during the past decades. On the regional scale, some differences exist in the changes of autumn rainfall between the eastern and western parts of West China. Besides, it is found that the autumn rainy season tends to start later and terminate earlier particularly in eastern West China.
Investigation of summer monsoon rainfall variability in Pakistan
NASA Astrophysics Data System (ADS)
Hussain, Mian Sabir; Lee, Seungho
2016-08-01
This study analyzes the inter-annual and intra-seasonal rainfall variability in Pakistan using daily rainfall data during the summer monsoon season (June to September) recorded from 1980 to 2014. The variability in inter-annual monsoon rainfall ranges from 20 % in northeastern regions to 65 % in southwestern regions of Pakistan. The analysis reveals that the transition of the negative and positive anomalies was not uniform in the investigated dataset. In order to acquire broad observations of the intra-seasonal variability, an objective criterion, the pre-active period, active period and post-active periods of the summer monsoon rainfall have demarcated. The analysis also reveals that the rainfall in June has no significant contribution to the increase in intra-seasonal rainfall in Pakistan. The rainfall has, however, been enhanced in the summer monsoon in August. The rainfall of September demonstrates a sharp decrease, resulting in a high variability in the summer monsoon season. A detailed examination of the intra-seasonal rainfall also reveals frequent amplitude from late July to early August. The daily normal rainfall fluctuates significantly with its maximum in the Murree hills and its minimum in the northwestern Baluchistan.
NASA Astrophysics Data System (ADS)
Camera, Corrado; Bruggeman, Adriana; Hadjinicolaou, Panos; Pashiardis, Stelios; Lange, Manfred
2014-05-01
High-resolution gridded daily datasets are essential for natural resource management and the analysis of climate changes and their effects. This study aimed to create gridded datasets of daily precipitation and daily minimum and maximum temperature, for the future (2020-2050). The horizontal resolution of the developed datasets is 1 x 1 km2, covering the area under control of the Republic of Cyprus (5.760 km2). The study is divided into two parts. The first consists of the evaluation of the performance of different interpolation techniques for daily rainfall and temperature data (1980-2010) for the creation of the gridded datasets. Rainfall data recorded at 145 stations and temperature data from 34 stations were used. For precipitation, inverse distance weighting (IDW) performs best for local events, while a combination of step-wise geographically weighted regression and IDW proves to be the best method for large scale events. For minimum and maximum temperature, a combination of step-wise linear multiple regression and thin plate splines is recognized as the best method. Six Regional Climate Models (RCMs) for the A1B SRES emission scenario from the EU ENSEMBLE project database were selected as sources for future climate projections. The RCMs were evaluated for their capacity to simulate Cyprus climatology for the period 1980-2010. Data for the period 2020-2050 from the three best performing RCMs were downscaled, using the change factors approach, at the location of observational stations. Daily time series were created with a stochastic rainfall and temperature generator. The RainSim V3 software (Burton et al., 2008) was used to generate spatial-temporal coherent rainfall fields. The temperature generator was developed in R and modeled temperature as a weakly stationary process with the daily mean and standard deviation conditioned on the wet and dry state of the day (Richardson, 1981). Finally gridded datasets depicting projected future climate conditions were created with the identified best interpolation methods. The difference between the input and simulated mean daily rainfall, averaged over all the stations, was 0.03 mm (2.2%), while the error related to the number of dry days was 2 (0.6%). For mean daily minimum temperature the error was 0.005 ºC (0.04%), while for maximum temperature it was 0.01 ºC (0.04%). Overall, the weather generators were found to be reliable instruments for the downscaling of precipitation and temperature. The resulting datasets indicate a decrease of the mean annual rainfall over the study area between 5 and 70 mm (1-15%) for 2020-2050, relative to 1980-2010. Average annual minimum and maximum temperature over the Republic of Cyprus are projected to increase between 1.2 and 1.5 ºC. The dataset is currently used to compute agricultural production and water use indicators, as part of the AGWATER project (AEIFORIA/GEORGO/0311(BIE)/06), co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation. Burton, A., Kilsby, C.G., Fowler, H.J., Cowpertwait, P.S.P., and O'Connell, P.E.: RainSim: A spatial-temporal stochastic rainfall modelling system. Environ. Model. Software 23, 1356-1369, 2008 Richardson, C.W.: Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res. 17, 182-190, 1981.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.
Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over centralmore » India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over India during the monsoon season. Although, the regional climate model helps in better resolving land–atmosphere feedbacks over the Indian region, the inferences do depend on the fidelity of the model in capturing the features of Indian monsoon realistically. Lastly, it is proposed that similar studies using a suite of climate models will further enrich our understanding about the role of LULCC in the Indian monsoon climate.« less
Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.; ...
2016-05-10
Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over centralmore » India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over India during the monsoon season. Although, the regional climate model helps in better resolving land–atmosphere feedbacks over the Indian region, the inferences do depend on the fidelity of the model in capturing the features of Indian monsoon realistically. Lastly, it is proposed that similar studies using a suite of climate models will further enrich our understanding about the role of LULCC in the Indian monsoon climate.« less
Spatio-temporal trends of rainfall across Indian river basins
NASA Astrophysics Data System (ADS)
Bisht, Deepak Singh; Chatterjee, Chandranath; Raghuwanshi, Narendra Singh; Sridhar, Venkataramana
2018-04-01
Daily gridded high-resolution rainfall data of India Meteorological Department at 0.25° spatial resolution (1901-2015) was analyzed to detect the trend in seasonal, annual, and maximum cumulative rainfall for 1, 2, 3, and 5 days. The present study was carried out for 85 river basins of India during 1901-2015 and pre- and post-urbanization era, i.e., 1901-1970 and 1971-2015, respectively. Mann-Kendall ( α = 0.05) and Theil-Sen's tests were employed for detecting the trend and percentage of change over the period of time, respectively. Daily extreme rainfall events, above 95 and 99 percentile threshold, were also analyzed to detect any trend in their magnitude and number of occurrences. The upward trend was found for the majority of the sub-basins for 1-, 2-, 3-, and 5-day maximum cumulative rainfall during the post-urbanization era. The magnitude of extreme threshold events is also found to be increasing in the majority of the river basins during the post-urbanization era. A 30-year moving window analysis further revealed a widespread upward trend in a number of extreme threshold rainfall events possibly due to urbanization and climatic factors. Overall trends studied against intra-basin trend across Ganga basin reveal the mixed pattern of trends due to inherent spatial heterogeneity of rainfall, therefore, highlighting the importance of scale for such studies.
NASA Astrophysics Data System (ADS)
Rochyani, Neny
2017-11-01
Acid mine drainage is a major problem for the mining environment. The main factor that formed acid mine drainage is the volume of rainfall. Therefore, it is important to know clearly the main climate pattern of rainfall and season on the management of acid mine drainage. This study focuses on the effects of rainfall on acid mine water management. Based on daily rainfall data, monthly and seasonal patterns by using Gumbel approach is known the amount of rainfall that occurred in East Pit 3 West Banko area. The data also obtained the highest maximum daily rainfall on 165 mm/day and the lowest at 76.4 mm/day, where it is known that the rainfall conditions during the period 2007 - 2016 is from November to April so the use of lime is also slightly, While the low rainfall is from May to October and the use of lime will be more and more. Based on calculation of lime requirement for each return period, it can be seen the total of lime and financial requirement for treatment of each return period.
NASA Astrophysics Data System (ADS)
Santos, Monica; Fragoso, Marcelo
2010-05-01
Extreme precipitation events are one of the causes of natural hazards, such as floods and landslides, making its investigation so important, and this research aims to contribute to the study of the extreme rainfall patterns in a Portuguese mountainous area. The study area is centred on the Arcos de Valdevez county, located in the northwest region of Portugal, the rainiest of the country, with more than 3000 mm of annual rainfall at the Peneda-Gerês mountain system. This work focus on two main subjects related with the precipitation variability on the study area. First, a statistical analysis of several precipitation parameters is carried out, using daily data from 17 rain-gauges with a complete record for the 1960-1995 period. This approach aims to evaluate the main spatial contrasts regarding different aspects of the rainfall regime, described by ten parameters and indices of precipitation extremes (e.g. mean annual precipitation, the annual frequency of precipitation days, wet spells durations, maximum daily precipitation, maximum of precipitation in 30 days, number of days with rainfall exceeding 100 mm and estimated maximum daily rainfall for a return period of 100 years). The results show that the highest precipitation amounts (from annual to daily scales) and the higher frequency of very abundant rainfall events occur in the Serra da Peneda and Gerês mountains, opposing to the valleys of the Lima, Minho and Vez rivers, with lower precipitation amounts and less frequent heavy storms. The second purpose of this work is to find a method of mapping extreme rainfall in this mountainous region, investigating the complex influence of the relief (e.g. elevation, topography) on the precipitation patterns, as well others geographical variables (e.g. distance from coast, latitude), applying tested geo-statistical techniques (Goovaerts, 2000; Diodato, 2005). Models of linear regression were applied to evaluate the influence of different geographical variables (altitude, latitude, distance from sea and distance to the highest orographic barrier) on the rainfall behaviours described by the studied variables. The techniques of spatial interpolation evaluated include univariate and multivariate methods: cokriging, kriging, IDW (inverse distance weighted) and multiple linear regression. Validation procedures were used, assessing the estimated errors in the analysis of descriptive statistics of the models. Multiple linear regression models produced satisfactory results in relation to 70% of the rainfall parameters, suggested by lower average percentage of error. However, the results also demonstrates that there is no an unique and ideal model, depending on the rainfall parameter in consideration. Probably, the unsatisfactory results obtained in relation to some rainfall parameters was motivated by constraints as the spatial complexity of the precipitation patterns, as well as to the deficient spatial coverage of the territory by the rain-gauges network. References Diodato, N. (2005). The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Internacional Journal of Climatology, 25(3), 351-363. Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228, 113 - 129.
Quasi-continuous stochastic simulation framework for flood modelling
NASA Astrophysics Data System (ADS)
Moustakis, Yiannis; Kossieris, Panagiotis; Tsoukalas, Ioannis; Efstratiadis, Andreas
2017-04-01
Typically, flood modelling in the context of everyday engineering practices is addressed through event-based deterministic tools, e.g., the well-known SCS-CN method. A major shortcoming of such approaches is the ignorance of uncertainty, which is associated with the variability of soil moisture conditions and the variability of rainfall during the storm event.In event-based modeling, the sole expression of uncertainty is the return period of the design storm, which is assumed to represent the acceptable risk of all output quantities (flood volume, peak discharge, etc.). On the other hand, the varying antecedent soil moisture conditions across the basin are represented by means of scenarios (e.g., the three AMC types by SCS),while the temporal distribution of rainfall is represented through standard deterministic patterns (e.g., the alternative blocks method). In order to address these major inconsistencies,simultaneously preserving the simplicity and parsimony of the SCS-CN method, we have developed a quasi-continuous stochastic simulation approach, comprising the following steps: (1) generation of synthetic daily rainfall time series; (2) update of potential maximum soil moisture retention, on the basis of accumulated five-day rainfall; (3) estimation of daily runoff through the SCS-CN formula, using as inputs the daily rainfall and the updated value of soil moisture retention;(4) selection of extreme events and application of the standard SCS-CN procedure for each specific event, on the basis of synthetic rainfall.This scheme requires the use of two stochastic modelling components, namely the CastaliaR model, for the generation of synthetic daily data, and the HyetosMinute model, for the disaggregation of daily rainfall to finer temporal scales. Outcomes of this approach are a large number of synthetic flood events, allowing for expressing the design variables in statistical terms and thus properly evaluating the flood risk.
Djennad, Abdelmajid; Lo Iacono, Giovanni; Sarran, Christophe; Fleming, Lora E; Kessel, Anthony; Haines, Andy; Nichols, Gordon L
2018-04-27
To understand the impact of weather on infectious diseases, information on weather parameters at patient locations is needed, but this is not always accessible due to confidentiality or data availability. Weather parameters at nearby locations are often used as a proxy, but the accuracy of this practice is not known. Daily Campylobacter and Cryptosporidium cases across England and Wales were linked to local temperature and rainfall at the residence postcodes of the patients and at the corresponding postcodes of the laboratory where the patient's specimen was tested. The paired values of daily rainfall and temperature for the laboratory versus residence postcodes were interpolated from weather station data, and the results were analysed for agreement using linear regression. We also assessed potential dependency of the findings on the relative geographic distance between the patient's residence and the laboratory. There was significant and strong agreement between the daily values of rainfall and temperature at diagnostic laboratories with the values at the patient residence postcodes for samples containing the pathogens Campylobacter or Cryptosporidium. For rainfall, the R-squared was 0.96 for the former and 0.97 for the latter, and for maximum daily temperature, the R-squared was 0.99 for both. The overall mean distance between the patient residence and the laboratory was 11.9 km; however, the distribution of these distances exhibited a heavy tail, with some rare situations where the distance between the patient residence and the laboratory was larger than 500 km. These large distances impact the distributions of the weather variable discrepancies (i.e. the differences between weather parameters estimated at patient residence postcodes and those at laboratory postcodes), with discrepancies up to ±10 °C for the minimum and maximum temperature and 20 mm for rainfall. Nevertheless, the distributions of discrepancies (estimated separately for minimum and maximum temperature and rainfall), based on the cases where the distance between the patient residence and the laboratory was within 20 km, still exhibited tails somewhat longer than the corresponding exponential fits suggesting modest small scale variations in temperature and rainfall. The findings confirm that, for the purposes of studying the relationships between meteorological variables and infectious diseases using data based on laboratory postcodes, the weather results are sufficiently similar to justify the use of laboratory postcode as a surrogate for domestic postcode. Exclusion of the small percentage of cases where there is a large distance between the residence and the laboratory could increase the precision of estimates, but there are generally strong associations between daily weather parameters at residence and laboratory.
NASA Astrophysics Data System (ADS)
Müller, Eva; Pfister, Angela; Gerd, Büger; Maik, Heistermann; Bronstert, Axel
2015-04-01
Hydrological extreme events can be triggered by rainfall on different spatiotemporal scales: river floods are typically caused by event durations of between hours and days, while urban flash floods as well as soil erosion or contaminant transport rather result from storms events of very short duration (minutes). Still, the analysis of climate change impacts on rainfall-induced extreme events is usually carried out using daily precipitation data at best. Trend analyses of extreme rainfall at sub-daily or even sub-hourly time scales are rare. In this contribution two lines of research are combined: first, we analyse sub-hourly rainfall data for several decades in three European regions.Second, we investigate the scaling behaviour of heavy short-term precipitation with temperature, i.e. the dependence of high intensity rainfall on the atmospheric temperature at that particular time and location. The trend analysis of high-resolution rainfall data shows for the first time that the frequency of short and intensive storm events in the temperate lowland regions in Germany has increased by up to 0.5 events per year over the last decades. I.e. this trend suggests that the occurrence of these types of storms have multiplied over only a few decades. Parallel to the changes in the rainfall regime, increases in the annual and seasonal average temperature and changes in the occurrence of circulation patterns responsible for the generation of high-intensity storms have been found. The analysis of temporally highly resolved rainfall records from three European regions further indicates that extreme precipitation events are more intense with warmer temperatures during the rainfall event. These observations follow partly the Clausius-Clapeyron relation. Based on this relation one may derive a general rule of maximum rainfall intensity associated to the event temperature, roughly following the Clausius-Clapeyron (CC) relation. This rule might be used for scenarios of future maximum rainfall intensities under a warming climate.
Parameter Estimation for a Model of Space-Time Rainfall
NASA Astrophysics Data System (ADS)
Smith, James A.; Karr, Alan F.
1985-08-01
In this paper, parameter estimation procedures, based on data from a network of rainfall gages, are developed for a class of space-time rainfall models. The models, which are designed to represent the spatial distribution of daily rainfall, have three components, one that governs the temporal occurrence of storms, a second that distributes rain cells spatially for a given storm, and a third that determines the rainfall pattern within a rain cell. Maximum likelihood and method of moments procedures are developed. We illustrate that limitations on model structure are imposed by restricting data sources to rain gage networks. The estimation procedures are applied to a 240-mi2 (621 km2) catchment in the Potomac River basin.
NASA Astrophysics Data System (ADS)
Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.
2018-02-01
Climate variability has been a threat to the socio-economic development of Ethiopia. This paper examined the changes in rainfall, minimum, and maximum temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for the period of 1981 to 2014. The nonparametric Mann-Kendall, seasonal Mann-Kendall, and Sen's slope estimator were used to estimate annual trends. Ten rainfall and 12 temperature indices were used to study changes in rainfall and temperature extremes. The results showed an increasing trend of annual and summer rainfall in more than 78% of the stations and a decreasing trend of spring rainfall in most of the stations. An increase in rainfall extreme events was detected in the majority of the stations. Several rainfall extreme indices showed wetting trends in the sub-basin, whereas limited indices indicated dryness in most of the stations. Annual maximum and minimum temperature and extreme temperature indices showed warming trend in the sub-basin. Presence of extreme rainfall and a warming trend of extreme temperature indices may suggest signs of climate change in the Jemma Sub-Basin. This study, therefore, recommended the need for exploring climate induced risks and implementing appropriate climate change adaptation and mitigation strategies.
Rainfall intensification in tropical semi-arid regions: the Sahelian case
NASA Astrophysics Data System (ADS)
Panthou, G.; Lebel, T.; Vischel, T.; Quantin, G.; Sane, Y.; Ba, A.; Ndiaye, O.; Diongue-Niang, A.; Diopkane, M.
2018-06-01
An anticipated consequence of ongoing global warming is the intensification of the rainfall regimes meaning longer dry spells and heavier precipitation when it rains, with potentially high hydrological and socio-economic impacts. The semi-arid regions of the intertropical band, such as the Sahel, are facing particularly serious challenges in this respect since their population is strongly vulnerable to extreme climatic events. Detecting long term trends in the Sahelian rainfall regime is thus of great societal importance, while being scientifically challenging because datasets allowing for such detection studies are rare in this region. This study addresses this challenge by making use of a large set of daily rain gauge data covering the Sahel (defined in this study as extending from 20°W–10°E and from 11°N–18°N) since 1950, combined with an unparalleled 5 minute rainfall observations available since 1990 over the AMMA-CATCH Niger observatory. The analysis of the daily data leads to the assertion that a hydro-climatic intensification is actually taking place in the Sahel, with an increasing mean intensity of rainy days associated with a higher frequency of heavy rainfall. This leads in turn to highlight that the return to wetter annual rainfall conditions since the beginning of the 2000s—succeeding the 1970–2000 drought—is by no mean a recovery towards the much smoother regime that prevailed during the 1950s and 1960s. It also provides a vision of the contrasts existing between the West Sahel and the East Sahel, the East Sahel experiencing a stronger increase of extreme rainfall. This regional vision is complemented by a local study at sub-daily timescales carried out thanks to the 5 minute rainfall series of the AMMA-CATCH Niger observatory (12000 km2). The increasing intensity of extreme rainfall is also visible at sub-daily timescales, the annual maximum intensities have increased at an average rate of 2%–6% per decade since 1990 for timescales ranging from 5 min to 1 hour. Both visions—regional/long term/daily on the one hand, and local/27/years/sub-daily, on the other—converge to the conclusion that, rather than a rainfall recovery, the Sahel is experiencing a new era of climate extremes that roughly started at the beginning of this century.
Wu, Xiaocheng; Lang, Lingling; Ma, Wenjun; Song, Tie; Kang, Min; He, Jianfeng; Zhang, Yonghui; Lu, Liang; Lin, Hualiang; Ling, Li
2018-07-01
Dengue fever is an important infectious disease in Guangzhou, China; previous studies on the effects of weather factors on the incidence of dengue fever did not consider the linearity of the associations. This study evaluated the effects of daily mean temperature, relative humidity and rainfall on the incidence of dengue fever. A generalized additive model with splines smoothing function was performed to examine the effects of daily mean, minimum and maximum temperatures, relative humidity and rainfall on incidence of dengue fever during 2006-2014. Our analysis detected a non-linear effect of mean, minimum and maximum temperatures and relative humidity on dengue fever with the thresholds at 28°C, 23°C and 32°C for daily mean, minimum and maximum temperatures, 76% for relative humidity, respectively. Below the thresholds, there was a significant positive effect, the excess risk in dengue fever for each 1°C in the mean temperature at lag7-14days was 10.21%, (95% CI: 6.62% to 13.92%), 7.10% (95% CI: 4.99%, 9.26%) for 1°C increase in daily minimum temperature in lag 11days, and 2.27% (95% CI: 0.84%, 3.72%) for 1°C increase in daily maximum temperature in lag 10days; and each 1% increase in relative humidity of lag7-14days was associated with 1.95% (95% CI: 1.21% to 2.69%) in risk of dengue fever. Future prevention and control measures and epidemiology studies on dengue fever should consider these weather factors based on their exposure-response relationship. Copyright © 2018. Published by Elsevier B.V.
Rainfall statistics changes in Sicily
NASA Astrophysics Data System (ADS)
Arnone, E.; Pumo, D.; Viola, F.; Noto, L. V.; La Loggia, G.
2013-07-01
Changes in rainfall characteristics are one of the most relevant signs of current climate alterations. Many studies have demonstrated an increase in rainfall intensity and a reduction of frequency in several areas of the world, including Mediterranean areas. Rainfall characteristics may be crucial for vegetation patterns formation and evolution in Mediterranean ecosystems, with important implications, for example, in vegetation water stress or coexistence and competition dynamics. At the same time, characteristics of extreme rainfall events are fundamental for the estimation of flood peaks and quantiles that can be used in many hydrological applications, such as design of the most common hydraulic structures, or planning and management of flood-prone areas. In the past, Sicily has been screened for several signals of possible climate change. Annual, seasonal and monthly rainfall data in the entire Sicilian region have been analyzed, showing a global reduction of total annual rainfall. Moreover, annual maximum rainfall series for different durations have been rarely analyzed in order to detect the presence of trends. Results indicated that for short durations, historical series generally exhibit increasing trends, while for longer durations the trends are mainly negative. Starting from these premises, the aim of this study is to investigate and quantify changes in rainfall statistics in Sicily, during the second half of the last century. Time series of about 60 stations over the region have been processed and screened by using the nonparametric Mann-Kendall test. In particular, extreme events have been analyzed using annual maximum rainfall series at 1, 3, 6, 12 and 24 h duration, while daily rainfall properties have been analyzed in terms of frequency and intensity, also characterizing seasonal rainfall features. Results of extreme events analysis confirmed an increasing trend for rainfall of short durations, especially for 1 h rainfall duration. Conversely, precipitation events of long durations have exhibited a decreased trend. Increase in short-duration precipitation has been observed especially in stations located along the coastline; however, no clear and well-defined spatial pattern has been outlined by the results. Outcomes of analysis for daily rainfall properties have showed that heavy-torrential precipitation events tend to be more frequent at regional scale, while light rainfall events exhibited a negative trend at some sites. Values of total annual precipitation events confirmed a significant negative trend, mainly due to the reduction during the winter season.
A new index quantifying the precipitation extremes
NASA Astrophysics Data System (ADS)
Busuioc, Aristita; Baciu, Madalina; Stoica, Cerasela
2015-04-01
Events of extreme precipitation have a great impact on society. They are associated with flooding, erosion and landslides.Various indices have been proposed to quantify these extreme events and they are mainly related to daily precipitation amount, which are usually available for long periods in many places over the world. The climate signal related to changes in the characteristics of precipitation extremes is different over various regions and it is dependent on the season and the index used to quantify the precipitation extremes. The climate model simulations and empirical evidence suggest that warmer climates, due to increased water vapour, lead to more intense precipitation events, even when the total annual precipitation is slightly reduced. It was suggested that there is a shift in the nature of precipitation events towards more intense and less frequent rains and increases in heavy rains are expected to occur in most places, even when the mean precipitation is not increasing. This conclusion was also proved for the Romanian territory in a recent study, showing a significant increasing trend of the rain shower frequency in the warm season over the entire country, despite no significant changes in the seasonal amount and the daily extremes. The shower events counted in that paper refer to all convective rains, including torrential ones giving high rainfall amount in very short time. The problem is to find an appropriate index to quantify such events in terms of their highest intensity in order to extract the maximum climate signal. In the present paper, a new index is proposed to quantify the maximum precipitation intensity in an extreme precipitation event, which could be directly related to the torrential rain intensity. This index is tested at nine Romanian stations (representing various physical-geographical conditions) and it is based on the continuous rainfall records derived from the graphical registrations (pluviograms) available at National Meteorological Administration in Romania. These types of records contain the rainfall intensity (mm/minute) over various intervals for which it remains constant. The maximum intensity for each continuous rain over the May-August interval has been calculated for each year. The corresponding time series over the 1951-2008 period have been analysed in terms of their long term trends and shifts in the mean; the results have been compared to those resulted from other rainfall indices based on daily and hourly data, computed over the same interval such as: total rainfall amount, maximum daily amount, contribution of total hourly amounts exceeding 10mm/day, contribution of daily amounts exceeding the 90th percentile, the 90th, 99th and 99.9th percentiles of 1-hour data . The results show that the proposed index exhibit a coherent and stronger climate signal (significant increase) for all analysed stations compared to the other indices associated to precipitation extremes, which show either no significant change or weaker signal. This finding shows that the proposed index is most appropriate to quantify the climate change signal of the precipitation extremes. We consider that this index is more naturally connected to the maximum intensity of a real rainfall event. The results presented is this study were funded by the Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI) through the research project CLIMHYDEX, "Changes in climate extremes and associated impact in hydrological events in Romania", code PNII-ID-2011-2-0073 (http://climhydex.meteoromania.ro)
NASA Astrophysics Data System (ADS)
So, Byung-Jin; Kim, Jin-Young; Kwon, Hyun-Han; Lima, Carlos H. R.
2017-10-01
A conditional copula function based downscaling model in a fully Bayesian framework is developed in this study to evaluate future changes in intensity-duration frequency (IDF) curves in South Korea. The model incorporates a quantile mapping approach for bias correction while integrated Bayesian inference allows accounting for parameter uncertainties. The proposed approach is used to temporally downscale expected changes in daily rainfall, inferred from multiple CORDEX-RCMs based on Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios, into sub-daily temporal scales. Among the CORDEX-RCMs, a noticeable increase in rainfall intensity is observed in the HadGem3-RA (9%), RegCM (28%), and SNU_WRF (13%) on average, whereas no noticeable changes are observed in the GRIMs (-2%) for the period 2020-2050. More specifically, a 5-30% increase in rainfall intensity is expected in all of the CORDEX-RCMs for 50-year return values under the RCP 8.5 scenario. Uncertainty in simulated rainfall intensity gradually decreases toward the longer durations, which is largely associated with the enhanced strength of the relationship with the 24-h annual maximum rainfalls (AMRs). A primary advantage of the proposed model is that projected changes in future rainfall intensities are well preserved.
Regional frequency analysis of observed sub-daily rainfall maxima over eastern China
NASA Astrophysics Data System (ADS)
Sun, Hemin; Wang, Guojie; Li, Xiucang; Chen, Jing; Su, Buda; Jiang, Tong
2017-02-01
Based on hourly rainfall observational data from 442 stations during 1960-2014, a regional frequency analysis of the annual maxima (AM) sub-daily rainfall series (1-, 2-, 3-, 6-, 12-, and 24-h rainfall, using a moving window approach) for eastern China was conducted. Eastern China was divided into 13 homogeneous regions: Northeast (NE1, NE2), Central (C), Central North (CN1, CN2), Central East (CE1, CE2, CE3), Southeast (SE1, SE2, SE3, SE4), and Southwest (SW). The generalized extreme value performed best for the AM series in regions NE, C, CN2, CE1, CE2, SE2, and SW, and the generalized logistic distribution was appropriate in the other regions. Maximum return levels were in the SE4 region, with value ranges of 80-270 mm (1-h to 24-h rainfall) and 108-390 mm (1-h to 24-h rainfall) for 20- and 100 yr, respectively. Minimum return levels were in the CN1 and NE1 regions, with values of 37-104 mm and 53-140 mm for 20 and 100 yr, respectively. Comparing return levels using the optimal and commonly used Pearson-III distribution, the mean return-level differences in eastern China for 1-24-h rainfall varied from -3-4 mm to -23-11 mm (-10%-10%) for 20-yr events, reaching -6-26 mm (-10%-30%) and -10-133 mm (-10%-90%) for 100-yr events. In view of the large differences in estimated return levels, more attention should be given to frequency analysis of sub-daily rainfall over China, for improved water management and disaster reduction.
Identification of anomalous motion of thunderstorms using daily rainfall fields
NASA Astrophysics Data System (ADS)
del Moral, Anna; Llasat, Maria Carmen; Rigo, Tomeu
2016-04-01
Adverse weather phenomena in Catalonia (NE of the Iberian Peninsula) is commonly associated to heavy rains, large hail, strong winds, and/or tornados, all of them caused by thunderstorms. In most of the cases with adverse weather, thunderstorms vary sharply their trajectories in a concrete moment, changing completely the motion directions that have previously followed. Furthermore, it is possible that a breaking into several cells may be produced, or, in the opposite, it can be observed a joining of different thunderstorms into a bigger system. In order to identify the main features of the developing process of thunderstorms and the anomalous motions that these may follow in some cases, this contribution presents a classification of the events using daily rainfall fields, with the purpose of distinguishing quickly anomalous motion of thunderstorms. The methodology implemented allows classifying the daily rainfall fields in three categories by applying some thresholds related with the daily precipitation accumulated values and their extension: days with "no rain", days with "potentially convective" rain and days with "non-potentially convective" rain. Finally, for those "potentially convective" daily rainfall charts, it also allows a geometrical identification and classification of all the convective structures into "ellipse" and "non-ellipse", obtaining then the structures with "normal" or "anomalous" motion pattern, respectively. The work is focused on the period 2008-2015, and presents some characteristics of the rainfall behaviour in terms of the seasonal distribution of convective rainfall or the geographic variability. It shows that convective structures are mainly found during late spring and summer, even though they can be recorded in any time of the year. Consequently, the maximum number of convective structures with anomalous motion is recorded between July and November. Furthermore, the contribution shows the role of the orography of Catalonia in the development of convective structures. This work has been developed in the framework of the Spanish project HOPE.
Organization of vertical shear of wind and daily variability of monsoon rainfall
NASA Astrophysics Data System (ADS)
Gouda, K. C.; Goswami, P.
2016-10-01
Very little is known about the mechanisms that govern the day to day variability of the Indian summer monsoon (ISM) rainfall; in the current dominant view, the daily rainfall is essentially a result of chaotic dynamics. Most studies in the past have thus considered monsoon in terms of its seasonal (June-September) or monthly rainfall. We show here that the daily rainfall in June is associated with vertical shear of horizontal winds at specific scales. While vertical shear had been used in the past to investigate interannual variability of seasonal rainfall, rarely any effort has been made to examine daily rainfall. Our work shows that, at least during June, the daily rainfall variability of ISM rainfall is associated with a large scale dynamical coherence in the sense that the vertical shear averaged over large spatial extents are significantly correlated with area-averaged daily rainfall. An important finding from our work is the existence of a clearly delineated monsoon shear domain (MSD) with strong coherence between area-averaged shear and area-averaged daily rainfall in June; this association of daily rainfall is not significant with shear over only MSD. Another important feature is that the association between daily rainfall and vertical shear is present only during the month of June. Thus while ISM (June-September) is a single seasonal system, it is important to consider the dynamics and variation of June independently of the seasonal ISM rainfall. The association between large-scale organization of circulation and daily rainfall is suggested as a basis for attempting prediction of daily rainfall by ensuring accurate simulation of wind shear.
Comparative analysis of rainfall and landslide damage for landslide susceptibility zonation
NASA Astrophysics Data System (ADS)
Petrucci, O.; Pasqua, A. A.
2009-04-01
In the present work we applied a methodology tested in previous works to a regional sector of Calabria (Southern Italy), aiming to obtain a zonation of this area according to the susceptibility to develop landslides, as inferred from the combined analysis of past landslide events and cumulate rainfall which triggered them. The complete series of both historical landslides and daily rainfall have been organised in two databases. For each landslide event, damage, mainly defined in relation to the reimbursement requests sent to the Department of Public Works, has been quantified using a procedure based on a Local Damage Index. Rainfall has been described by the Maximum Return Period of cumulative rainfall recorded during the landslide events. Damage index and population density, presumed to represent the location of vulnerable elements, have been referred to Thiessen polygons associated to rain gauges working at the time of the event. The procedure allowed us to carry out a classification of the polygons composing the study area according to their susceptibility to damage during DHEs. In high susceptibility polygons, severe damage occurs during rainfall characterised by low return periods; in medium susceptibility polygons, maximum return period rainfall and induced damage show equal levels of exceptionality; in low susceptibility polygons, high return period rainfall induces a low level of damage. The results can prove useful in establishing civil defence plans, emergency management, and prioritizing hazard mitigation measures.
Synoptic environment associated with heavy rainfall events on the coastland of Northeast Brazil
NASA Astrophysics Data System (ADS)
Oliveira, P. T.; Lima, K. C.; Silva, C. M. Santos e.
2013-07-01
Northeast Brazil (NEB) has an extensive coastal area, often hit by natural disasters that bring many social and economic losses. The objective of this work was to study the synoptic environment associated with a heavy rainfall event (HRE) on the coastland of NEB. We used daily rainfall data for coastal area of NEB between the states of Rio Grande do Norte and Bahia, divided into two subregions: north and south coastland. This data was obtained from the hydrometeorological network managed by the Agência Nacional de Águas and the daily data reanalysis from the ERAInterim. For the selection of HRE the technique of quantiles was used, thus defined HRE where at least one rain gauge recorded rainfall above 95th percentile. The interannual distribution of events showed occurrence maximum in La Niña years and minimal in El Niño years. The results suggest that the HRE were formed mainly due to the action of upper-level cyclonic vortex, in hight levels, and due to the action to South Atlantic convergence zone, in low levels.
Landslide triggering thresholds for Switzerland based on a new gridded precipitation dataset
NASA Astrophysics Data System (ADS)
Leonarduzzi, Elena; Molnar, Peter; McArdell, Brian W.
2017-04-01
In Switzerland floods are responsible for most of the damage caused by rainfall-triggered natural hazards (89%), followed by landslides (6%, ca. 520 M Euros) as reported in Hilker et al. (2009) for the period 1972-2007. The prediction of landslide occurrence is particularly challenging because of their wide distribution in space and the complex interdependence of predisposing and triggering factors. The overall goal of our research is to develop an Early Warning System for landsliding in Switzerland based on hydrological modelling and rainfall forecasts. In order to achieve this, we first analyzed rainfall triggering thresholds for landslides from a new gridded daily precipitation dataset (RhiresD, MeteoSwiss) for Switzerland combined with landslide events recorded in the Swiss Damage Database (Hilker et al.,2009). The high-resolution gridded precipitation dataset allows us to collocate rainfall and landslides accurately in space, which is an advantage over many previous studies. Each of the 2272 landslides in the database in the period 1972-2012 was assigned to the corresponding 2x2 km precipitation cell. For each of these cells, precipitation events were defined as series of consecutive rainy days and the following event parameters were computed: duration (day), maximum and mean daily intensity (mm/day), total rainfall depth (mm) and maximum daily intensity divided by Mean Daily Precipitation (MDP). The events were classified as triggering or non-triggering depending on whether a landslide was recorded in the cell during the event. This classification of observations was compared to predictions based on a threshold for each of the parameters. The predictive power of each parameter and the best threshold value were quantified by ROC analysis and statistics such as AUC and the True Skill Statistic (TSS). Event parameters based on rainfall intensity were found to have similarly high predictive power (TSS=0.54-0.59, AUC=0.85-0.86), while rainfall duration had a significantly lower predictive power (TSS=0.24 and AUC=0.65). Slightly better performances were obtained when considering a typical power law intensity-duration curve as threshold (TSS=0.6). The analysis was repeated for sub-regions of the country based on erosivity and climate, using MDP and erodibility (Kuehni and Pfiffner, 2001), or a combination thereof, in the classification. When defining regional maximum intensity thresholds, the performances were further improved in all cases: for erodibility (TSS +1.3%), for MDP (TSS +3%), and for a combination of the two (TSS +5.1%). The regional maximum daily intensity thresholds varied greatly among classes, with differences of up to 43 mm/day, and they increased with decreasing erodibility and increasing MDP. This result was confirmed by considering the conditional probability of a landslide, which showed that for a given rainfall intensity the probability of a landslide in a region with wetter climate (higher MDP) is lower than that in a drier climate (lower MDP). This suggests the existence of a landscape balance between climate, erosion and soil formation. In order to demonstrate the quality and robustness of the results, we also show reference cases obtained by randomization of landslides in space and time, and resampling the data to equal sample size between triggering and non-triggering events (prevalence). Hilker, N., Badoux, A., & Hegg, C. (2009). The swiss flood and landslide damage database 1972-2007. Natural Hazards and Earth System Science, 9(3), 913-925. https://doi.org/10.1002/asl.183 Kühni, A., & Pfiffner, O. A. (2001). The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure: Topographic analysis from a 250-m DEM. Geomorphology, 41(4), 285-307. https://doi.org/10.1016/S0169-555X(01)00060-5
NASA Astrophysics Data System (ADS)
Nigussie, Tewodros Assefa; Altunkaynak, Abdusselam
2018-03-01
In this study, extreme rainfall indices of Olimpiyat Station were determined from reference period (1971-2000) and future period (2070-2099) daily rainfall data projected using the HadGEM2-ES and GFDL-ESM2M global circulation models (GCMs) and downscaled by the RegCM4.3.4 regional model under the Representative Concentration Pathway RCP4.5 and RCP8.5 scenarios. The Mann-Kendall (MK) trend statistics was used to detect trends in the indices of each group, and the nonparametric Wilcoxon signed ranks test was employed to identify the presence of differences among the values of the rainfall indices of the three groups. Moreover, the peaks-over-threshold (POT) method was used to undertake frequency analysis and estimate the maximum 24-h rainfall values of various return periods. The results of the M-K-based trend analyses showed that there are insignificant increasing trends in most of the extreme rainfall indices. However, based on the Wilcoxon signed ranks test, the values of the extreme rainfall indices determined for the future period, particularly under RCP8.5, were found to be significantly different from the corresponding values determined for the reference period. The maximum 24-h rainfall amounts of the 50-year return period of the future period under RCP4.5 of the HadGEM2-ES and GFDL-ESM2M GCMs were found to be larger (by 5.85%) than the corresponding value of the reference period by 5.85 and 21.43%, respectively. The results also showed that the maximum 24-h rainfall amount under RCP8.5 of both the HadGEM2-ES and GFDL-ESM2M GCMs was found to be greater (34.33 and 12.18%, respectively, for the 50-year return period) than the reference period values. This may increase the risk of flooding in Ayamama Watershed, and thus, studying the effects of the predicted amount of rainfall under the RCP8.5 scenario on the flooding risk of Ayamama Watershed and devising management strategies are recommended to enhance the design and implementation of adaptation measures.
Trends in rainfall and rainfall-related extremes in the east coast of peninsular Malaysia
NASA Astrophysics Data System (ADS)
Mayowa, Olaniya Olusegun; Pour, Sahar Hadi; Shahid, Shamsuddin; Mohsenipour, Morteza; Harun, Sobri Bin; Heryansyah, Arien; Ismail, Tarmizi
2015-12-01
The coastlines have been identified as the most vulnerable regions with respect to hydrological hazards as a result of climate change and variability. The east of peninsular Malaysia is not an exception for this, considering the evidence of heavy rainfall resulting in floods as an annual phenomenon and also water scarcity due to long dry spells in the region. This study examines recent trends in rainfall and rainfall- related extremes such as, maximum daily rainfall, number of rainy days, average rainfall intensity, heavy rainfall days, extreme rainfall days, and precipitation concentration index in the east coast of peninsular Malaysia. Recent 40 years (1971-2010) rainfall records from 54 stations along the east coast of peninsular Malaysia have been analyzed using the non-parametric Mann-Kendall test and the Sen's slope method. The Monte Carlo simulation technique has been used to determine the field significance of the regional trends. The results showed that there was a substantial increase in the annual rainfall as well as the rainfall during the monsoon period. Also, there was an increase in the number of heavy rainfall days during the past four decades.
Extreme daily precipitation: the case of Serbia in 2014
NASA Astrophysics Data System (ADS)
Tošić, Ivana; Unkašević, Miroslava; Putniković, Suzana
2017-05-01
The extreme daily precipitation in Serbia was examined at 16 stations during the period 1961-2014. Two synoptic situations in May and September of 2014 were analysed, when extreme precipitation was recorded in western and eastern Serbia, respectively. The synoptic situation from 14 to 16 May 2014 remained nearly stationary over the western and central Serbia for the entire period. On 15 May 2014, the daily rainfall broke previous historical records in Belgrade (109.8 mm), Valjevo (108.2 mm) and Loznica (110 mm). Precipitation exceeded 200 mm in 72 h, producing the most catastrophic floods in the recent history of Serbia. In Negotin (eastern Serbia), daily precipitation of 161.3 mm was registered on 16 September 2014, which was the maximum value recorded during the period 1961-2014. The daily maximum in 2014 was registered at 6 out of 16 stations. The total annual precipitation for 2014 was the highest for the period 1961-2014 at almost all stations in Serbia. A non-significant positive trend was found for all precipitation indices: annual daily maximum precipitation, the total precipitation in consecutive 3 and 5 days, the total annual precipitation, and number of days with at least 10 and 20 mm of precipitation. The generalised extreme value distribution was fitted to the annual daily maximum precipitation. The estimated 100-year return levels were 123.4 and 147.4 mm for the annual daily maximum precipitation in Belgrade and Negotin, respectively.
NASA Astrophysics Data System (ADS)
Gyasi-Agyei, Yeboah
2018-01-01
This paper has established a link between the spatial structure of radar rainfall, which more robustly describes the spatial structure, and gauge rainfall for improved daily rainfield simulation conditioned on the limited gauged data for regions with or without radar records. A two-dimensional anisotropic exponential function that has parameters of major and minor axes lengths, and direction, is used to describe the correlogram (spatial structure) of daily rainfall in the Gaussian domain. The link is a copula-based joint distribution of the radar-derived correlogram parameters that uses the gauge-derived correlogram parameters and maximum daily temperature as covariates of the Box-Cox power exponential margins and Gumbel copula. While the gauge-derived, radar-derived and the copula-derived correlogram parameters reproduced the mean estimates similarly using leave-one-out cross-validation of ordinary kriging, the gauge-derived parameters yielded higher standard deviation (SD) of the Gaussian quantile which reflects uncertainty in over 90% of cases. However, the distribution of the SD generated by the radar-derived and the copula-derived parameters could not be distinguished. For the validation case, the percentage of cases of higher SD by the gauge-derived parameter sets decreased to 81.2% and 86.6% for the non-calibration and the calibration periods, respectively. It has been observed that 1% reduction in the Gaussian quantile SD can cause over 39% reduction in the SD of the median rainfall estimate, actual reduction being dependent on the distribution of rainfall of the day. Hence the main advantage of using the most correct radar correlogram parameters is to reduce the uncertainty associated with conditional simulations that rely on SD through kriging.
A global dataset of sub-daily rainfall indices
NASA Astrophysics Data System (ADS)
Fowler, H. J.; Lewis, E.; Blenkinsop, S.; Guerreiro, S.; Li, X.; Barbero, R.; Chan, S.; Lenderink, G.; Westra, S.
2017-12-01
It is still uncertain how hydrological extremes will change with global warming as we do not fully understand the processes that cause extreme precipitation under current climate variability. The INTENSE project is using a novel and fully-integrated data-modelling approach to provide a step-change in our understanding of the nature and drivers of global precipitation extremes and change on societally relevant timescales, leading to improved high-resolution climate model representation of extreme rainfall processes. The INTENSE project is in conjunction with the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges Project (GEWEX) Science questions. A new global sub-daily precipitation dataset has been constructed (data collection is ongoing). Metadata for each station has been calculated, detailing record lengths, missing data, station locations. A set of global hydroclimatic indices have been produced based upon stakeholder recommendations including indices that describe maximum rainfall totals and timing, the intensity, duration and frequency of storms, frequency of storms above specific thresholds and information about the diurnal cycle. This will provide a unique global data resource on sub-daily precipitation whose derived indices will be freely available to the wider scientific community.
Significant influences of global mean temperature and ENSO on extreme rainfall over Southeast Asia
NASA Astrophysics Data System (ADS)
Villafuerte, Marcelino, II; Matsumoto, Jun
2014-05-01
Along with the increasing concerns on the consequences of global warming, and the accumulating records of disaster related to heavy rainfall events in Southeast Asia, this study investigates whether a direct link can be detected between the rising global mean temperature, as well as the El Niño-Southern Oscillation (ENSO), and extreme rainfall over the region. The maximum likelihood modeling that allows incorporating covariates on the location parameter of the generalized extreme value (GEV) distribution is employed. The GEV model is fitted to annual and seasonal rainfall extremes, which were taken from a high-resolution gauge-based gridded daily precipitation data covering a span of 57 years (1951-2007). Nonstationarities in extreme rainfall are detected over the central parts of Indochina Peninsula, eastern coasts of central Vietnam, northwest of the Sumatra Island, inland portions of Borneo Island, and on the northeastern and southwestern coasts of the Philippines. These nonstationarities in extreme rainfall are directly linked to near-surface global mean temperature and ENSO. In particular, the study reveals that a kelvin increase in global mean temperature anomaly can lead to an increase of 30% to even greater than 45% in annual maximum 1-day rainfall, which were observed pronouncedly over central Vietnam, southern coast of Myanmar, northwestern sections of Thailand, northwestern tip of Sumatra, central portions of Malaysia, and the Visayas island in central Philippines. Furthermore, a pronounced ENSO influence manifested on the seasonal maximum 1-day rainfall; a northward progression of 10%-15% drier condition over Southeast Asia as the El Niño develops from summer to winter is revealed. It is important therefore, to consider the results obtained here for water resources management as well as for adaptation planning to minimize the potential adverse impact of global warming, particularly on extreme rainfall and its associated flood risk over the region. Acknowledgment: This study is supported by the Tokyo Metropolitan Government through its AHRF program.
Nandargi, S.; Mulye, S. S.
2012-01-01
There are limitations in using monthly rainfall totals in studies of rainfall climatology as well as in hydrological and agricultural investigations. Variations in rainfall may be considered to result from frequency changes in the daily rainfall of the respective regime. In the present study, daily rainfall data of the stations inside the Koyna catchment has been analysed for the period of 1961–2005 to understand the relationship between the rain and rainy days, mean daily intensity (MDI) and seasonal rainfall over the catchment on monthly as well as seasonal scale. Considering the topographical location of the catchment, analysis of seasonal rainfall data of 8 stations suggests that a linear relationship fits better than the logarithmic relationship in the case of seasonal rainfall versus mean daily intensity. So far as seasonal rainfall versus number of rainy days is considered, the logarithmic relationship is found to be better. PMID:22654646
The impact of summer rainfall on the temperature gradient along the United States-Mexico border
NASA Technical Reports Server (NTRS)
Balling, Robert C., Jr.
1989-01-01
The international border running through the Sonoran Desert in southern Arizona and northern Sonora is marked by a sharp discontinuity in albedo and grass cover. The observed differences in surface properties are a result of long-term, severe overgrazing of the Mexican lands. Recently, investigators have shown the Mexican side of the border to have higher surface and air temperatures when compared to adjacent areas in the United State. The differences in temperatures appear to be more associated with differential evapotranspiration rates than with albedo changes along the border. In this study, the impact of summer rainfall on the observed seasonal and daily gradient in maximum temperature is examined. On a seasonal time scale, the temperature gradient increases with higher moisture levels, probably due to a vegetative response on the United States' side of the border; at the daily level, the gradient in maximum temperature decreases after a rain event as evaporation rates equalize between the countries. The results suggest that temperature differences between vegetated and overgrazed landscapes in arid areas are highly dependent upon the amount of moisture available for evapotranspiration.
Yildirim, Mine; Schoeni, Anna; Singh, Amika S; Altenburg, Teatske M; Brug, Johannes; De Bourdeaudhuij, Ilse; Kovacs, Eva; Bringolf-Isler, Bettina; Manios, Yannis; Chinapaw M, J M
2014-02-01
The aim of the study was to examine the association of daily variations in rainfall and temperature with sedentary time (ST) and physical activity (PA) in European children. Children were included from 5 countries (Belgium, Greece, Hungary, the Netherlands, Switzerland) as part of the ENERGY-project. We used cross-sectional data from 722 children aged 10-12 years (47% boys). ST and PA were measured by accelerometers for 6 consecutive days, including weekend days. Weather data were collected from online national weather reports. Multilevel regression models were used for data analyses. Maximum temperature was positively associated with light PA (β = 3.1 min/day; 95% CI = 2.4-3.8), moderate-to-vigorous PA (β = 0.6 min/day; 95% CI = 0.4-0.8), and average PA [β = 4.1 counts per minute (cpm); 95% CI = 1.6-6.5, quadratic relationship]. Rainfall was inversely and quadratically associated with light PA (β = -1.3 min/day; 95% CI = -1.9 to -0.6), moderate-to-vigorous PA (β = -0.6 min/day; 95% CI = -0.8 to -0.3), and average PA (β = -1.6 cpm; 95% CI = -2.2 to -0.9). Maximum temperature was not significantly associated with ST (β = -0.2 min/day; 95% CI = -1.0 to 0.6), while rainfall was positively associated with ST (β = 0.9 min/day; 95% CI = 0.6-1.3). The current study shows that temperature and rainfall are significantly associated with PA and ST in 10- to 12-year-old European children.
Markov modulated Poisson process models incorporating covariates for rainfall intensity.
Thayakaran, R; Ramesh, N I
2013-01-01
Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.
Rainfall frequency analysis for ungauged sites using satellite precipitation products
NASA Astrophysics Data System (ADS)
Gado, Tamer A.; Hsu, Kuolin; Sorooshian, Soroosh
2017-11-01
The occurrence of extreme rainfall events and their impacts on hydrologic systems and society are critical considerations in the design and management of a large number of water resources projects. As precipitation records are often limited or unavailable at many sites, it is essential to develop better methods for regional estimation of extreme rainfall at these partially-gauged or ungauged sites. In this study, an innovative method for regional rainfall frequency analysis for ungauged sites is presented. The new method (hereafter, this is called the RRFA-S) is based on corrected annual maximum series obtained from a satellite precipitation product (e.g., PERSIANN-CDR). The probability matching method (PMM) is used here for bias correction to match the CDF of satellite-based precipitation data with the gauged data. The RRFA-S method was assessed through a comparative study with the traditional index flood method using the available annual maximum series of daily rainfall in two different regions in USA (11 sites in Colorado and 18 sites in California). The leave-one-out cross-validation technique was used to represent the ungauged site condition. Results of this numerical application have found that the quantile estimates obtained from the new approach are more accurate and more robust than those given by the traditional index flood method.
Historical simulations and climate change projections over India by NCAR CCSM4: CMIP5 vs. NEX-GDDP
NASA Astrophysics Data System (ADS)
Sahany, Sandeep; Mishra, Saroj Kanta; Salunke, Popat
2018-03-01
A new bias-corrected statistically downscaled product, namely, the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP), has recently been developed by NASA to help the scientific community in climate change impact studies at local to regional scale. In this work, the product is validated over India and its added value as compared to its CMIP5 counterpart for the NCAR CCSM4 model is analyzed, followed by climate change projections under the RCP8.5 global warming scenario using the two datasets for the variables daily maximum 2-m air temperature (Tmax), daily minimum 2-m air temperature (Tmin), and rainfall. It is found that, overall, the CCSM4-NEX-GDDP significantly reduces many of the biases in CCSM4-CMIP5 for the historical simulations; however, some biases such as the significant overestimation in the frequency of occurrence in the lower tail of the Tmax and Tmin still remain. In regard to rainfall, an important value addition in CCSM4-NEX-GDDP is the alleviation of the significant underestimation of rainfall extremes found in CCSM4-CMIP5. The projected Tmax from CCSM4-NEX-GDDP are in general higher than that projected by CCSM4-CMIP5, suggesting that the risks of heat waves and very hot days could be higher than that projected by the latter. CCSM4-NEX-GDDP projects the frequency of occurrence of the upper extreme values of historical Tmax to increase by a factor of 100 towards the end of century (as opposed to a factor of 10 increase projected by CCSM4-CMIP5). In regard to rainfall, both CCSM4-CMIP5 and CCSM4-NEX-GDDP project an increase in annual rainfall over India under the RCP8.5 global warming scenario progressively from the near term through the far term. However, CCSM4-NEX-GDDP consistently projects a higher magnitude of increase and over a larger area as compared to that projected by CCSM4-CMIP5. Projected daily rainfall distributions from CCSM4-CMIP5 and CCSM4-NEX-GDDP suggest the occurrence of events that have no historical precedents. Worth noting is that the extreme daily rainfall values projected by CCSM4-NEX-GDDP are two to three times larger than that projected by CCSM4-CMIP5.
Atlas of interoccurrence intervals for selected thresholds of daily precipitation in Texas
Asquith, William H.; Roussel, Meghan C.
2003-01-01
A Poisson process model is used to define the distribution of interoccurrence intervals of daily precipitation in Texas. A precipitation interoccurrence interval is the time period between two successive rainfall events. Rainfall events are defined as daily precipitation equaling or exceeding a specified depth threshold. Ten precipitation thresholds are considered: 0.05, 0.10, 0.25, 0.50, 0.75, 1.0, 1.5, 2.0, 2.5, and 3.0 inches. Site-specific mean interoccurrence interval and ancillary statistics are presented for each threshold and for each of 1,306 National Weather Service daily precipitation gages. Maps depicting the spatial variation across Texas of the mean interoccurrence interval for each threshold are presented. The percent change from the statewide standard deviation of the interoccurrence intervals to the root-mean-square error ranges from a magnitude minimum of (negative) -24 to a magnitude maximum of -60 percent for the 0.05- and 2.0-inch thresholds, respectively. Because of the substantial negative percent change, the maps are considered more reliable estimators of the mean interoccurrence interval for most locations in Texas than the statewide mean values.
Monthly monsoon rainfall forecasting using artificial neural networks
NASA Astrophysics Data System (ADS)
Ganti, Ravikumar
2014-10-01
Indian agriculture sector heavily depends on monsoon rainfall for successful harvesting. In the past, prediction of rainfall was mainly performed using regression models, which provide reasonable accuracy in the modelling and forecasting of complex physical systems. Recently, Artificial Neural Networks (ANNs) have been proposed as efficient tools for modelling and forecasting. A feed-forward multi-layer perceptron type of ANN architecture trained using the popular back-propagation algorithm was employed in this study. Other techniques investigated for modeling monthly monsoon rainfall include linear and non-linear regression models for comparison purposes. The data employed in this study include monthly rainfall and monthly average of the daily maximum temperature in the North Central region in India. Specifically, four regression models and two ANN model's were developed. The performance of various models was evaluated using a wide variety of standard statistical parameters and scatter plots. The results obtained in this study for forecasting monsoon rainfalls using ANNs have been encouraging. India's economy and agricultural activities can be effectively managed with the help of the availability of the accurate monsoon rainfall forecasts.
Robust increase in extreme summer rainfall intensity during the past four decades observed in China
NASA Astrophysics Data System (ADS)
Xiao, Chan; Wu, Peili; Zhang, Lixia; Song, Lianchun
2016-12-01
Global warming increases the moisture holding capacity of the atmosphere and consequently the potential risks of extreme rainfall. Here we show that maximum hourly summer rainfall intensity has increased by about 11.2% on average, using continuous hourly gauge records for 1971-2013 from 721 weather stations in China. The corresponding event accumulated precipitation has on average increased by more than 10% aided by a small positive trend in events duration. Linear regression of the 95th percentile daily precipitation intensity with daily mean surface air temperature shows a negative scaling of -9.6%/K, in contrast to a positive scaling of 10.6%/K for hourly data. This is made up of a positive scaling below the summer mean temperature and a negative scaling above. Using seasonal means instead of daily means, we find a consistent scaling rate for the region of 6.7-7%/K for both daily and hourly precipitation extremes, about 10% higher than the regional Clausius-Clapeyron scaling of 6.1%/K based on a mean temperature of 24.6 °C. With up to 18% further increase in extreme precipitation under continuing global warming towards the IPCC’s 1.5 °C target, risks of flash floods will exacerbate on top of the current incapability of urban drainage systems in a rapidly urbanizing China.
Regional analysis of annual maximum rainfall using TL-moments method
NASA Astrophysics Data System (ADS)
Shabri, Ani Bin; Daud, Zalina Mohd; Ariff, Noratiqah Mohd
2011-06-01
Information related to distributions of rainfall amounts are of great importance for designs of water-related structures. One of the concerns of hydrologists and engineers is the probability distribution for modeling of regional data. In this study, a novel approach to regional frequency analysis using L-moments is revisited. Subsequently, an alternative regional frequency analysis using the TL-moments method is employed. The results from both methods were then compared. The analysis was based on daily annual maximum rainfall data from 40 stations in Selangor Malaysia. TL-moments for the generalized extreme value (GEV) and generalized logistic (GLO) distributions were derived and used to develop the regional frequency analysis procedure. TL-moment ratio diagram and Z-test were employed in determining the best-fit distribution. Comparison between the two approaches showed that the L-moments and TL-moments produced equivalent results. GLO and GEV distributions were identified as the most suitable distributions for representing the statistical properties of extreme rainfall in Selangor. Monte Carlo simulation was used for performance evaluation, and it showed that the method of TL-moments was more efficient for lower quantile estimation compared with the L-moments.
Future projection of design storms using a GCM-informed weather generator
NASA Astrophysics Data System (ADS)
KIm, T. W.; Wi, S.; Valdés-Pineda, R.; Valdés, J. B.
2017-12-01
The rainfall Intensity-Duration-Frequency (IDF) curves are one of the most common tools used to provide planners with a description of the frequency of extreme rainfall events of various intensities and durations. Therefore deriving appropriate IDF estimates is important to avoid malfunctions of water structures that cause huge damage. Evaluating IDF estimates in the context of climate change has become more important because projections from climate models suggest that the frequency of intense rainfall events will increase in the future due to the increase in greenhouse gas emissions. In this study, the Bartlett-Lewis (BL) stochastic rainfall model is employed to generate annual maximum series of various sub-daily durations for test basins of the Model Parameter Estimation Experiment (MOPEX) project, and to derive the IDF curves in the context of climate changes projected by the North American Regional Climate Change (NARCCAP) models. From our results, it has been found that the observed annual rainfall maximum series is reasonably represented by the synthetic annual maximum series generated by the BL model. The observed data is perturbed by change factors to incorporate the NARCCAP climate change scenarios into the IDF estimates. The future IDF curves show a significant difference from the historical IDF curves calculated for the period 1968-2000. Overall, the projected IDF curves show an increasing trend over time. The impacts of changes in extreme rainfall on the hydrologic response of the MOPEX basins are also explored. Acknowledgement: This research was supported by a grant [MPSS-NH-2015-79] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.
Caster, Joshua J.; Sankey, Joel B.
2016-04-11
In this study, we examine rainfall datasets of varying temporal length, resolution, and spatial distribution to characterize rainfall depth, intensity, and seasonality for monitoring stations along the Colorado River within Marble and Grand Canyons. We identify maximum separation distances between stations at which rainfall measurements might be most useful for inferring rainfall characteristics at other locations. We demonstrate a method for applying relations between daily rainfall depth and intensity, from short-term high-resolution data to lower-resolution longer-term data, to synthesize a long-term record of daily rainfall intensity from 1950–2012. We consider the implications of our spatio-temporal characterization of rainfall for understanding local landscape change in sedimentary deposits and archaeological sites, and for better characterizing past and present rainfall and its potential role in overland flow erosion within the canyons. We find that rainfall measured at stations within the river corridor is spatially correlated at separation distances of tens of kilometers, and is not correlated at the large elevation differences that separate stations along the Colorado River from stations above the canyon rim. These results provide guidance for reasonable separation distances at which rainfall measurements at stations within the Grand Canyon region might be used to infer rainfall at other nearby locations along the river. Like other rugged landscapes, spatial variability between rainfall measured at monitoring stations appears to be influenced by canyon and rim physiography and elevation, with preliminary results suggesting the highest elevation landform in the region, the Kaibab Plateau, may function as an important orographic influence. Stations at specific locations within the canyons and along the river, such as in southern (lower) Marble Canyon and eastern (upper) Grand Canyon, appear to have strong potential to receive high-intensity rainfall that can generate runoff which may erode alluvium. The characterization of past and present rainfall variability in this study will be useful for future studies that evaluate more spatially continuous datasets in order to better understand the rainfall dynamics within this, and potentially other, deep canyons.
A gridded hourly rainfall dataset for the UK applied to a national physically-based modelling system
NASA Astrophysics Data System (ADS)
Lewis, Elizabeth; Blenkinsop, Stephen; Quinn, Niall; Freer, Jim; Coxon, Gemma; Woods, Ross; Bates, Paul; Fowler, Hayley
2016-04-01
An hourly gridded rainfall product has great potential for use in many hydrological applications that require high temporal resolution meteorological data. One important example of this is flood risk management, with flooding in the UK highly dependent on sub-daily rainfall intensities amongst other factors. Knowledge of sub-daily rainfall intensities is therefore critical to designing hydraulic structures or flood defences to appropriate levels of service. Sub-daily rainfall rates are also essential inputs for flood forecasting, allowing for estimates of peak flows and stage for flood warning and response. In addition, an hourly gridded rainfall dataset has significant potential for practical applications such as better representation of extremes and pluvial flash flooding, validation of high resolution climate models and improving the representation of sub-daily rainfall in weather generators. A new 1km gridded hourly rainfall dataset for the UK has been created by disaggregating the daily Gridded Estimates of Areal Rainfall (CEH-GEAR) dataset using comprehensively quality-controlled hourly rain gauge data from over 1300 observation stations across the country. Quality control measures include identification of frequent tips, daily accumulations and dry spells, comparison of daily totals against the CEH-GEAR daily dataset, and nearest neighbour checks. The quality control procedure was validated against historic extreme rainfall events and the UKCP09 5km daily rainfall dataset. General use of the dataset has been demonstrated by testing the sensitivity of a physically-based hydrological modelling system for Great Britain to the distribution and rates of rainfall and potential evapotranspiration. Of the sensitivity tests undertaken, the largest improvements in model performance were seen when an hourly gridded rainfall dataset was combined with potential evapotranspiration disaggregated to hourly intervals, with 61% of catchments showing an increase in NSE between observed and simulated streamflows as a result of more realistic sub-daily meteorological forcing.
A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa
NASA Astrophysics Data System (ADS)
Maidment, Ross I.; Grimes, David; Black, Emily; Tarnavsky, Elena; Young, Matthew; Greatrex, Helen; Allan, Richard P.; Stein, Thorwald; Nkonde, Edson; Senkunda, Samuel; Alcántara, Edgar Misael Uribe
2017-05-01
Rainfall information is essential for many applications in developing countries, and yet, continually updated information at fine temporal and spatial scales is lacking. In Africa, rainfall monitoring is particularly important given the close relationship between climate and livelihoods. To address this information gap, this paper describes two versions (v2.0 and v3.0) of the TAMSAT daily rainfall dataset based on high-resolution thermal-infrared observations, available from 1983 to the present. The datasets are based on the disaggregation of 10-day (v2.0) and 5-day (v3.0) total TAMSAT rainfall estimates to a daily time-step using daily cold cloud duration. This approach provides temporally consistent historic and near-real time daily rainfall information for all of Africa. The estimates have been evaluated using ground-based observations from five countries with contrasting rainfall climates (Mozambique, Niger, Nigeria, Uganda, and Zambia) and compared to other satellite-based rainfall estimates. The results indicate that both versions of the TAMSAT daily estimates reliably detects rainy days, but have less skill in capturing rainfall amount—results that are comparable to the other datasets.
NASA Astrophysics Data System (ADS)
Kabore Bontogho, P. E.
2014-12-01
Knowledge of climate variability is relevant and challenging for farmers, decision makers and population in general. Ninety percent of Burkina Faso active population is engaged in agriculture and livestock, which accounts for 39% of gross domestic product. Located between the coordinates 1o15'-1o55' West and 12o17'- 12o50'North, Massili basin includes Ouagadougou the capital and has four dams, of which the most important dam, Loumbila is used for the capital water supply and irrigation. A change of climate may affect the water resources most likely limit the access to safe water. In order to characterize Massili basin climate variability, daily temperature and precipitation over 1960 to 2012 was analyzed using long-term records from the Ouagadougou synoptic station. By applying R-climdex and instat tools, indices were calculated by a consistent approach recommended by the World Meteorological Organization Expert Team on Climate Change Detection and Indices. The precipitation parameters computed were: the maximum 5-day precipitationamount; the number of days with precipitation amount ≥50 mm ; the maximum precipitation amount in consecutive wet days with RR≥ 1mm; the consecutives dry days;the extremely wet days ; the extreme precipitation in one day, the total precipitation in wet days; the temperature indices computed were : the maximum of the maximum daily temperature, the minimum of daily maximum temperature,the minimum of daily minimum temperature,the cold spell duration indices and the warm spell duration indicator. Results show a slight increase of the maximum 5-day precipitation, maximum precipitation amount in consecutive wet days with RR≥1mm, the onset delayed and the cessation is earlier meaning that the rainfall period is shortening. The total precipitationwas decreased in the basin but there is a slight increase in the occurrence of extremely wet days. CSDI is decreasing while warm spell duration indices are increasing. In parallel of the data analysis, a survey of 200 peasant spread within 20 villages was done to assess their perception on climate change. Farmers perception corroborate with the above results as their majority describes climate change as decrease of rainfall (79%) and increase of temperature (99%). In addition, all farmers agreed that more floods are occurring.
A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa
Maidment, Ross I.; Grimes, David; Black, Emily; Tarnavsky, Elena; Young, Matthew; Greatrex, Helen; Allan, Richard P.; Stein, Thorwald; Nkonde, Edson; Senkunda, Samuel; Alcántara, Edgar Misael Uribe
2017-01-01
Rainfall information is essential for many applications in developing countries, and yet, continually updated information at fine temporal and spatial scales is lacking. In Africa, rainfall monitoring is particularly important given the close relationship between climate and livelihoods. To address this information gap, this paper describes two versions (v2.0 and v3.0) of the TAMSAT daily rainfall dataset based on high-resolution thermal-infrared observations, available from 1983 to the present. The datasets are based on the disaggregation of 10-day (v2.0) and 5-day (v3.0) total TAMSAT rainfall estimates to a daily time-step using daily cold cloud duration. This approach provides temporally consistent historic and near-real time daily rainfall information for all of Africa. The estimates have been evaluated using ground-based observations from five countries with contrasting rainfall climates (Mozambique, Niger, Nigeria, Uganda, and Zambia) and compared to other satellite-based rainfall estimates. The results indicate that both versions of the TAMSAT daily estimates reliably detects rainy days, but have less skill in capturing rainfall amount—results that are comparable to the other datasets. PMID:28534868
Analysis of spatial autocorrelation patterns of heavy and super-heavy rainfall in Iran
NASA Astrophysics Data System (ADS)
Rousta, Iman; Doostkamian, Mehdi; Haghighi, Esmaeil; Ghafarian Malamiri, Hamid Reza; Yarahmadi, Parvane
2017-09-01
Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord G i statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.
USDA-ARS?s Scientific Manuscript database
Both measured data and GCM/RCM projections show an general increasing trend in extreme rainfall events as temperature rises in US. Proper simulation of extreme events is particularly important for assessing climate change impacts on soil erosion and hydrology. The objective of this paper is to fin...
NASA Astrophysics Data System (ADS)
Mirbaha, Babak; Saffarzadeh, Mahmoud; AmirHossein Beheshty, Seyed; Aniran, MirMoosa; Yazdani, Mirbahador; Shirini, Bahram
2017-10-01
Analysis of vehicle speed with different weather condition and traffic characteristics is very effective in traffic planning. Since the weather condition and traffic characteristics vary every day, the prediction of average speed can be useful in traffic management plans. In this study, traffic and weather data for a two-lane highway located in Northwest of Iran were selected for analysis. After merging traffic and weather data, the linear regression model was calibrated for speed prediction using STATA12.1 Statistical and Data Analysis software. Variables like vehicle flow, percentage of heavy vehicles, vehicle flow in opposing lane, percentage of heavy vehicles in opposing lane, rainfall (mm), snowfall and maximum daily wind speed more than 13m/s were found to be significant variables in the model. Results showed that variables of vehicle flow and heavy vehicle percent acquired the positive coefficient that shows, by increasing these variables the average vehicle speed in every weather condition will also increase. Vehicle flow in opposing lane, percentage of heavy vehicle in opposing lane, rainfall amount (mm), snowfall and maximum daily wind speed more than 13m/s acquired the negative coefficient that shows by increasing these variables, the average vehicle speed will decrease.
Use of Regional Climate Model Output for Hydrologic Simulations
NASA Astrophysics Data System (ADS)
Hay, L. E.; Clark, M. P.; Wilby, R. L.; Gutowski, W. J.; Leavesley, G. H.; Pan, Z.; Arritt, R. W.; Takle, E. S.
2001-12-01
Daily precipitation and maximum and minimum temperature time series from a Regional Climate Model (RegCM2) were used as input to a distributed hydrologic model for a rainfall-dominated basin (Alapaha River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River at Durango, Colorado; East Fork of the Carson River near Gardnerville, Nevada; and Cle Elum River near Roslyn, Washington). For comparison purposes, spatially averaged daily data sets of precipitation and maximum and minimum temperature were developed from measured data. These datasets included precipitation and temperature data for all stations that are located within the area of the RegCM2 model output used for each basin, but excluded station data used to calibrate the hydrologic model. Both the RegCM2 output and station data capture the gross aspects of the seasonal cycles of precipitation and temperature. However, in all four basins, the RegCM2- and station-based simulations of runoff show little skill on a daily basis (Nash-Sutcliffe (NS) values ranging from 0.05-0.37 for RegCM2 and -0.08-0.65 for station). When the precipitation and temperature biases are corrected in the RegCM2 output and station data sets (Bias-RegCM2 and Bias-station, respectively) the accuracy of the daily runoff simulations improve dramatically for the snowmelt-dominated basins. In the rainfall-dominated basin, runoff simulations based on the Bias-RegCM2 output show no skill (NS value of 0.09) whereas Bias-All simulated runoff improves (NS value improved from -0.08 to 0.72). These results indicate that the resolution of the RegCM2 output is appropriate for basin-scale modeling, but RegCM2 model output does not contain the day-to-day variability needed for basin-scale modeling in rainfall-dominated basins. Future work is warranted to identify the causes for systematic biases in RegCM2 simulations, develop methods to remove the biases, and improve RegCM2 simulations of daily variability in local climate.
NASA Astrophysics Data System (ADS)
Tolika, Konstantia; Maheras, Panagiotis; Anagnostopoulou, Christina
2018-05-01
The highest rainfall totals (912.2 mm) and the largest number of raindays (133 days), since 1958, were recorded in Thessaloniki during the year of 2014. Extreme precipitation heights were also observed on a seasonal, monthly and daily basis. The examined year presented the highest daily rainfall intensity, the maximum daily precipitation and the largest number of heavy precipitation days (greater than 10 mm), and it also exceeded the previous amounts of precipitation of very wet (95th percentile) and extremely wet (99th percentile) days. According to the automatic circulation type classification scheme that was used, it was found that during this exceptionally wet year, the frequency of occurrence of cyclonic types at the near surface geopotential level increases, while the same types decreased at a higher atmospheric level (500 hPa). The prevailing type was type C which is located at the centre of the study area (Greece), but several other cyclonic types changed during this year not only their frequency but also their percentage of rainfall as well as their daily precipitation intensity. It should be highlighted that these findings differentiated on the seasonal-scale analysis. Moreover, out of the three teleconnection patterns that were examined (Scandinavian Pattern, Eastern Mediterranean Teleconnection Pattern and North Sea-Caspian Pattern), the Scandinavian one (SCAND) was detected during the most of the months of 2014 meaning that it was highly associated with intense precipitation over Greece.
Pluviometric characterization of the Coca river basin by using a stochastic rainfall model
NASA Astrophysics Data System (ADS)
González-Zeas, Dunia; Chávez-Jiménez, Adriadna; Coello-Rubio, Xavier; Correa, Ángel; Martínez-Codina, Ángela
2014-05-01
An adequate design of the hydraulic infrastructures, as well as, the prediction and simulation of a river basin require historical records with a greater temporal and spatial resolution. However, the lack of an extensive network of precipitation data, the short time scale data and the incomplete information provided by the available rainfall stations limit the analysis and design of complex hydraulic engineering systems. As a consequence, it is necessary to develop new quantitative tools in order to face this obstacle imposed by ungauged or poorly gauged basins. In this context, the use of a spatial-temporal rainfall model allows to simulate the historical behavior of the precipitation and at the same time, to obtain long-term synthetic series that preserve the extremal behavior. This paper provides a characterization of the precipitation in the Coca river basin located in Ecuador by using RainSim V3, a robust and well tested stochastic rainfall model based on a spatial-temporal Neyman-Scott rectangular pulses process. A preliminary consistency analysis of the historical rainfall data available has been done in order to identify climatic regions with similar precipitation behavior patterns. Mean and maximum yearly and monthly fields of precipitation of high resolution spaced grids have been obtained through the use of interpolation techniques. According to the climatological similarity, long time series of daily temporal resolution of precipitation have been generated in order to evaluate the model skill in capturing the structure of daily observed precipitation. The results show a good performance of the model in reproducing very well the gross statistics, including the extreme values of rainfall at daily scale. The spatial pattern represented by the observed and simulated precipitation fields highlights the existence of two important regions characterized by different pluviometric comportment, with lower precipitation in the upper part of the basin and higher precipitation in the lower part of the basin.
Some Precipitation Studies over Andhra Pradesh and the Bay of Bengal using TRMM and SSMI data
NASA Astrophysics Data System (ADS)
Rao, S. Ramalingeswara; Krishna, K. Muni; Kumar, Bhanu
2007-07-01
One of the most difficult issues in modeling the global atmosphere and climate by General Circulation Models is the simulation and initialization of precipitation processes and at the same time rainfall is most important meteorological parameter that effects India's economy. An attempt is made in the present study to evaluate diurnal variation of rain rates over the Bay of Bengal (BoB) for the months June through December during 1999-2002. TMI rainfall product of Wentz and Spencer and SSMI data sets were used in this study. Mean hourly rain rates were calculated over the BoB (10°-15° N and 85°-95°E) and discussed; this study highlights that maximum rain rates are observed in the afternoons during summer monsoon seasons. Secondly mean monthly annual cycle of rainfall is prepared using 3B42RT merged rain product and compared with mean monthly India Meteorological Department (IMD) data for the study period over Andhra Pradesh (A.P). Time series of daily variations of 3B42RT precipitation and observed real time rainfall data over A.P. for the study period is validated and the relationship between them is statistically significant at 1% level. Similarly mean monthly data prepared from the daily analysis and compared with the IMD mean monthly rainfall maps. The comparison suggests that even with only available real time data from 3B42RT and rain gauge, it is possible to construct usable large-scale rainfall maps on regular latitude-longitude grids. This analysis, which uses a high resolution and more local rain gauge data, is able to produce realistic details of Indian summer monsoon rainfall over the study period.
Coherent variability between seasonal temperatures and rainfalls in the Iberian Peninsula, 1951-2016
NASA Astrophysics Data System (ADS)
Rodrigo, F. S.
2018-02-01
In this work trends of seasonal mean of daily minimum (TN), maximum (TX), mean (TM) temperatures, daily range of temperature (DTR), and total seasonal rainfall (R) in 35 Iberian stations since mid-twentieth century are studied. The interest is focused on the relationships between temperature variables and rainfall, taking into account the correlation coefficients between R and the temperature variables. The negative link between rainfall and temperatures is detected in the four seasons of the year, except in western stations in winter for TN and TM, and in autumn for TN (for this variable a certain annual cycle is detected, with predominance of positive correlation in winter, negative in spring and summer, and the autumn as transition season). The role of cloud cover is confirmed in those stations with total cloud cover data. Using an average peninsular series, the relationship between nighttime temperature and rainfall related to long wave radiation is confirmed for the four seasons of the year, although in spring and summer has minor importance than in the cold half year. The relationships between R, TN, and TX are in general terms stable after a moving correlation analysis, although the negative correlation between TX and R seems be weakened in spring and autumn and reinforced in summer. The role of convective precipitation in autumn is discussed. The analysis of combined extreme indices in four representative stations shows an increase of warm and dry days, and a decrease of cold and wet days.
NASA Astrophysics Data System (ADS)
Khwarahm, Nabaz; Dash, Jadunandan; Atkinson, Peter M.; Newnham, R. M.; Skjøth, C. A.; Adams-Groom, B.; Caulton, Eric; Head, K.
2014-05-01
Constructing accurate predictive models for grass and birch pollen in the air, the two most important aeroallergens, for areas with variable climate conditions such as the United Kingdom, require better understanding of the relationships between pollen count in the air and meteorological variables. Variations in daily birch and grass pollen counts and their relationship with daily meteorological variables were investigated for nine pollen monitoring sites for the period 2000-2010 in the United Kingdom. An active pollen count sampling method was employed at each of the monitoring stations to sample pollen from the atmosphere. The mechanism of this method is based on the volumetric spore traps of Hirst design (Hirst in Ann Appl Biol 39(2):257-265,
Sensitivity of Rainfall Extremes Under Warming Climate in Urban India
NASA Astrophysics Data System (ADS)
Ali, H.; Mishra, V.
2017-12-01
Extreme rainfall events in urban India halted transportation, damaged infrastructure, and affected human lives. Rainfall extremes are projected to increase under the future climate. We evaluated the relationship (scaling) between rainfall extremes at different temporal resolutions (daily, 3-hourly, and 30 minutes), daily dewpoint temperature (DPT) and daily air temperature at 850 hPa (T850) for 23 urban areas in India. Daily rainfall extremes obtained from Global Surface Summary of Day Data (GSOD) showed positive regression slopes for most of the cities with median of 14%/K for the period of 1979-2013 for DPT and T850, which is higher than Clausius-Clapeyron (C-C) rate ( 7%). Moreover, sub-daily rainfall extremes are more sensitive to both DPT and T850. For instance, 3-hourly rainfall extremes obtained from Tropical Rainfall Measurement Mission (TRMM 3B42 V7) showed regression slopes more than 16%/K aginst DPT and T850 for the period of 1998-2015. Half-hourly rainfall extremes from the Integrated Multi-satellitE Retrievals (IMERGE) of Global precipitation mission (GPM) also showed higher sensitivity against changes in DPT and T850. The super scaling of rainfall extremes against changes in DPT and T850 can be attributed to convective nature of precipitation in India. Our results show that urban India may witness non-stationary rainfall extremes, which, in turn will affect stromwater designs and frequency and magniture of urban flooding.
NASA Astrophysics Data System (ADS)
Salinas, J. L.; Nester, T.; Komma, J.; Bloeschl, G.
2017-12-01
Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of observed rainfall characteristics, such as regional intensity-duration-frequency curves, and spatial and temporal correlations is necessary to adequately model the magnitude and frequency of the flood peaks, by reproducing antecedent soil moisture conditions before extreme rainfall events, and joint probability of flood waves at confluences. In this work, a modification of the model presented by Bardossy and Platte (1992), where precipitation is first modeled on a station basis as a multivariate autoregressive model (mAr) in a Normal space. The spatial and temporal correlation structures are imposed in the Normal space, allowing for a different temporal autocorrelation parameter for each station, and simultaneously ensuring the positive-definiteness of the correlation matrix of the mAr errors. The Normal rainfall is then transformed to a Gamma-distributed space, with parameters varying monthly according to a sinusoidal function, in order to adapt to the observed rainfall seasonality. One of the main differences with the original model is the simulation time-step, reduced from 24h to 6h. Due to a larger availability of daily rainfall data, as opposite to sub-daily (e.g. hourly), the parameters of the Gamma distributions are calibrated to reproduce simultaneously a series of daily rainfall characteristics (mean daily rainfall, standard deviations of daily rainfall, and 24h intensity-duration-frequency [IDF] curves), as well as other aggregated rainfall measures (mean annual rainfall, and monthly rainfall). The calibration of the spatial and temporal correlation parameters is performed in a way that the catchment-averaged IDF curves aggregated at different temporal scales fit the measured ones. The rainfall model is used to generate 10.000 years of synthetic precipitation, fed into a rainfall-runoff model to derive the flood frequency in the Tirolean Alps in Austria. Given the number of generated events, the simulation framework is able to generate a large variety of rainfall patterns, as well as reproduce the variograms of relevant extreme rainfall events in the region of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chao ..; Singh, Vijay P.; Mishra, Ashok K.
2013-02-06
This paper presents an improved brivariate mixed distribution, which is capable of modeling the dependence of daily rainfall from two distinct sources (e.g., rainfall from two stations, two consecutive days, or two instruments such as satellite and rain gauge). The distribution couples an existing framework for building a bivariate mixed distribution, the theory of copulae and a hybrid marginal distribution. Contributions of the improved distribution are twofold. One is the appropriate selection of the bivariate dependence structure from a wider admissible choice (10 candidate copula families). The other is the introduction of a marginal distribution capable of better representing lowmore » to moderate values as well as extremes of daily rainfall. Among several applications of the improved distribution, particularly presented here is its utility for single-site daily rainfall simulation. Rather than simulating rainfall occurrences and amounts separately, the developed generator unifies the two processes by generalizing daily rainfall as a Markov process with autocorrelation described by the improved bivariate mixed distribution. The generator is first tested on a sample station in Texas. Results reveal that the simulated and observed sequences are in good agreement with respect to essential characteristics. Then, extensive simulation experiments are carried out to compare the developed generator with three other alternative models: the conventional two-state Markov chain generator, the transition probability matrix model and the semi-parametric Markov chain model with kernel density estimation for rainfall amounts. Analyses establish that overall the developed generator is capable of reproducing characteristics of historical extreme rainfall events and is apt at extrapolating rare values beyond the upper range of available observed data. Moreover, it automatically captures the persistence of rainfall amounts on consecutive wet days in a relatively natural and easy way. Another interesting observation is that the recognized ‘overdispersion’ problem in daily rainfall simulation ascribes more to the loss of rainfall extremes than the under-representation of first-order persistence. The developed generator appears to be a sound option for daily rainfall simulation, especially in particular hydrologic planning situations when rare rainfall events are of great importance.« less
NASA Astrophysics Data System (ADS)
Suhaila, Jamaludin; Jemain, Abdul Aziz; Hamdan, Muhammad Fauzee; Wan Zin, Wan Zawiah
2011-12-01
SummaryNormally, rainfall data is collected on a daily, monthly or annual basis in the form of discrete observations. The aim of this study is to convert these rainfall values into a smooth curve or function which could be used to represent the continuous rainfall process at each region via a technique known as functional data analysis. Since rainfall data shows a periodic pattern in each region, the Fourier basis is introduced to capture these variations. Eleven basis functions with five harmonics are used to describe the unimodal rainfall pattern for stations in the East while five basis functions which represent two harmonics are needed to describe the rainfall pattern in the West. Based on the fitted smooth curve, the wet and dry periods as well as the maximum and minimum rainfall values could be determined. Different rainfall patterns are observed among the studied regions based on the smooth curve. Using the functional analysis of variance, the test results indicated that there exist significant differences in the functional means between each region. The largest differences in the functional means are found between the East and Northwest regions and these differences may probably be due to the effect of topography and, geographical location and are mostly influenced by the monsoons. Therefore, the same inputs or approaches might not be useful in modeling the hydrological process for different regions.
NASA Astrophysics Data System (ADS)
Smitha, P. S.; Narasimhan, B.; Sudheer, K. P.; Annamalai, H.
2018-01-01
Regional climate models (RCMs) are used to downscale the coarse resolution General Circulation Model (GCM) outputs to a finer resolution for hydrological impact studies. However, RCM outputs often deviate from the observed climatological data, and therefore need bias correction before they are used for hydrological simulations. While there are a number of methods for bias correction, most of them use monthly statistics to derive correction factors, which may cause errors in the rainfall magnitude when applied on a daily scale. This study proposes a sliding window based daily correction factor derivations that help build reliable daily rainfall data from climate models. The procedure is applied to five existing bias correction methods, and is tested on six watersheds in different climatic zones of India for assessing the effectiveness of the corrected rainfall and the consequent hydrological simulations. The bias correction was performed on rainfall data downscaled using Conformal Cubic Atmospheric Model (CCAM) to 0.5° × 0.5° from two different CMIP5 models (CNRM-CM5.0, GFDL-CM3.0). The India Meteorological Department (IMD) gridded (0.25° × 0.25°) observed rainfall data was considered to test the effectiveness of the proposed bias correction method. The quantile-quantile (Q-Q) plots and Nash Sutcliffe efficiency (NSE) were employed for evaluation of different methods of bias correction. The analysis suggested that the proposed method effectively corrects the daily bias in rainfall as compared to using monthly factors. The methods such as local intensity scaling, modified power transformation and distribution mapping, which adjusted the wet day frequencies, performed superior compared to the other methods, which did not consider adjustment of wet day frequencies. The distribution mapping method with daily correction factors was able to replicate the daily rainfall pattern of observed data with NSE value above 0.81 over most parts of India. Hydrological simulations forced using the bias corrected rainfall (distribution mapping and modified power transformation methods that used the proposed daily correction factors) was similar to those simulated by the IMD rainfall. The results demonstrate that the methods and the time scales used for bias correction of RCM rainfall data have a larger impact on the accuracy of the daily rainfall and consequently the simulated streamflow. The analysis suggests that the distribution mapping with daily correction factors can be preferred for adjusting RCM rainfall data irrespective of seasons or climate zones for realistic simulation of streamflow.
Topographic relationships for design rainfalls over Australia
NASA Astrophysics Data System (ADS)
Johnson, F.; Hutchinson, M. F.; The, C.; Beesley, C.; Green, J.
2016-02-01
Design rainfall statistics are the primary inputs used to assess flood risk across river catchments. These statistics normally take the form of Intensity-Duration-Frequency (IDF) curves that are derived from extreme value probability distributions fitted to observed daily, and sub-daily, rainfall data. The design rainfall relationships are often required for catchments where there are limited rainfall records, particularly catchments in remote areas with high topographic relief and hence some form of interpolation is required to provide estimates in these areas. This paper assesses the topographic dependence of rainfall extremes by using elevation-dependent thin plate smoothing splines to interpolate the mean annual maximum rainfall, for periods from one to seven days, across Australia. The analyses confirm the important impact of topography in explaining the spatial patterns of these extreme rainfall statistics. Continent-wide residual and cross validation statistics are used to demonstrate the 100-fold impact of elevation in relation to horizontal coordinates in explaining the spatial patterns, consistent with previous rainfall scaling studies and observational evidence. The impact of the complexity of the fitted spline surfaces, as defined by the number of knots, and the impact of applying variance stabilising transformations to the data, were also assessed. It was found that a relatively large number of 3570 knots, suitably chosen from 8619 gauge locations, was required to minimise the summary error statistics. Square root and log data transformations were found to deliver marginally superior continent-wide cross validation statistics, in comparison to applying no data transformation, but detailed assessments of residuals in complex high rainfall regions with high topographic relief showed that no data transformation gave superior performance in these regions. These results are consistent with the understanding that in areas with modest topographic relief, as for most of the Australian continent, extreme rainfall is closely aligned with elevation, but in areas with high topographic relief the impacts of topography on rainfall extremes are more complex. The interpolated extreme rainfall statistics, using no data transformation, have been used by the Australian Bureau of Meteorology to produce new IDF data for the Australian continent. The comprehensive methods presented for the evaluation of gridded design rainfall statistics will be useful for similar studies, in particular the importance of balancing the need for a continentally-optimum solution that maintains sufficient definition at the local scale.
NASA Astrophysics Data System (ADS)
Jiang, Xianling; Ren, Fumin; Li, Yunjie; Qiu, Wenyu; Ma, Zhuguo; Cai, Qinbo
2018-05-01
The characteristics of tropical cyclone (TC) extreme rainfall events over Hainan Island from 1969 to 2014 are analyzed from the viewpoint of the TC maximum daily rainfall (TMDR) using daily station precipitation data from the Meteorological Information Center of the China Meteorological Administration, TC best-track data from the Shanghai Typhoon Institute, and NCEP/NCAR reanalysis data. The frequencies of the TMDR reaching 50, 100 and 250 mm show a decreasing trend [-0.7 (10 yr)-1], a weak decreasing trend [-0.2 (10 yr)-1] and a weak increasing trend [0.1 (10 yr)-1], respectively. For seasonal variations, the TMDR of all intensity grades mainly occurs from July to October, with the frequencies of TMDR - 50 mm and - 100 mm peaking in September and the frequency of TMDR - 250 mm [TC extreme rainstorm (TCER) events] peaking in August and September. The western region (Changjiang) of the Island is always the rainfall center, independent of the intensity or frequencies of different intensity grades. The causes of TCERs are also explored and the results show that topography plays a key role in the characteristics of the rainfall events. TCERs are easily induced on the windward slopes of Wuzhi Mountain, with the coordination of TC tracks and TC wind structure. A slower speed of movement, a stronger TC intensity and a farther westward track are all conducive to extreme rainfall events. A weaker northwestern Pacific subtropical high is likely to make the 500-hPa steering flow weaker and results in slower TC movement, whereas a stronger South China Sea summer monsoon can carry a higher moisture flux. These two environmental factors are both favorable for TCERs.
Simulation of precipitation by weather pattern and frontal analysis
NASA Astrophysics Data System (ADS)
Wilby, Robert
1995-12-01
Daily rainfall from two sites in central and southern England was stratified according to the presence or absence of weather fronts and then cross-tabulated with the prevailing Lamb Weather Type (LWT). A semi-Markov chain model was developed for simulating daily sequences of LWTs from matrices of transition probabilities between weather types for the British Isles 1970-1990. Daily and annual rainfall distributions were then simulated from the prevailing LWTs using historic conditional probabilities for precipitation occurrence and frontal frequencies. When compared with a conventional rainfall generator the frontal model produced improved estimates of the overall size distribution of daily rainfall amounts and in particular the incidence of low-frequency high-magnitude totals. Further research is required to establish the contribution of individual frontal sub-classes to daily rainfall totals and of long-term fluctuations in frontal frequencies to conditional probabilities.
Effect of Climate Factors on the Childhood Pneumonia in Papua New Guinea: A Time-Series Analysis.
Kim, Jinseob; Kim, Jong-Hun; Cheong, Hae-Kwan; Kim, Ho; Honda, Yasushi; Ha, Mina; Hashizume, Masahiro; Kolam, Joel; Inape, Kasis
2016-02-15
This study aimed to assess the association between climate factors and the incidence of childhood pneumonia in Papua New Guinea quantitatively and to evaluate the variability of the effect size according to their geographic properties. The pneumonia incidence in children under five-year and meteorological factors were obtained from six areas, including monthly rainfall and the monthly average daily maximum temperatures during the period from 1997 to 2006 from national health surveillance data. A generalized linear model was applied to measure the effect size of local and regional climate factor. The pooled risk of pneumonia in children per every 10 mm increase of rainfall was 0.24% (95% confidence interval: -0.01%-0.50%), and risk per every 1 °C increase of the monthly mean of the maximum daily temperatures was 4.88% (95% CI: 1.57-8.30). Southern oscillation index and dipole mode index showed an overall negative effect on childhood pneumonia incidence, -0.57% and -4.30%, respectively, and the risk of pneumonia was higher in the dry season than in the rainy season (pooled effect: 12.08%). There was a variability in the relationship between climate factors and pneumonia which is assumed to reflect distribution of the determinants of and vulnerability to pneumonia in the community.
Analysis of extreme rainfall events using attributes control charts in temporal rainfall processes
NASA Astrophysics Data System (ADS)
Villeta, María; Valencia, Jose Luis; Saá-Requejo, Antonio; María Tarquis, Ana
2015-04-01
The impacts of most intense rainfall events on agriculture and insurance industry can be very severe. This research focuses in the analysis of extreme rainfall events throughout the use of attributes control charts, which constitutes a usual tool in Statistical Process Control (SPC) but unusual in climate studios. Here, series of daily precipitations for the years 1931-2009 within a Spanish region are analyzed, based on a new type of attributes control chart that takes into account the autocorrelation between the extreme rainfall events. The aim is to conclude if there exist or not evidence of a change in the extreme rainfall model of the considered series. After adjusting seasonally the precipitation series and considering the data of the first 30 years, a frequency-based criterion allowed fixing specification limits in order to discriminate between extreme observed rainfall days and normal observed rainfall days. The autocorrelation amongst maximum precipitation is taken into account by a New Binomial Markov Extended Process obtained for each rainfall series. These modelling of the extreme rainfall processes provide a way to generate the attributes control charts for the annual fraction of rainfall extreme days. The extreme rainfall processes along the rest of the years under study can then be monitored by such attributes control charts. The results of the application of this methodology show evidence of change in the model of extreme rainfall events in some of the analyzed precipitation series. This suggests that the attributes control charts proposed for the analysis of the most intense precipitation events will be of practical interest to agriculture and insurance sectors in next future.
Daily Rainfall Simulation Using Climate Variables and Nonhomogeneous Hidden Markov Model
NASA Astrophysics Data System (ADS)
Jung, J.; Kim, H. S.; Joo, H. J.; Han, D.
2017-12-01
Markov chain is an easy method to handle when we compare it with other ones for the rainfall simulation. However, it also has limitations in reflecting seasonal variability of rainfall or change on rainfall patterns caused by climate change. This study applied a Nonhomogeneous Hidden Markov Model(NHMM) to consider these problems. The NHMM compared with a Hidden Markov Model(HMM) for the evaluation of a goodness of the model. First, we chose Gum river basin in Korea to apply the models and collected daily rainfall data from the stations. Also, the climate variables of geopotential height, temperature, zonal wind, and meridional wind date were collected from NCEP/NCAR reanalysis data to consider external factors affecting the rainfall event. We conducted a correlation analysis between rainfall and climate variables then developed a linear regression equation using the climate variables which have high correlation with rainfall. The monthly rainfall was obtained by the regression equation and it became input data of NHMM. Finally, the daily rainfall by NHMM was simulated and we evaluated the goodness of fit and prediction capability of NHMM by comparing with those of HMM. As a result of simulation by HMM, the correlation coefficient and root mean square error of daily/monthly rainfall were 0.2076 and 10.8243/131.1304mm each. In case of NHMM, the correlation coefficient and root mean square error of daily/monthly rainfall were 0.6652 and 10.5112/100.9865mm each. We could verify that the error of daily and monthly rainfall simulated by NHMM was improved by 2.89% and 22.99% compared with HMM. Therefore, it is expected that the results of the study could provide more accurate data for hydrologic analysis. Acknowledgements This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(2017R1A2B3005695)
Spatial variation of deterministic chaos in mean daily temperature and rainfall over Nigeria
NASA Astrophysics Data System (ADS)
Fuwape, I. A.; Ogunjo, S. T.; Oluyamo, S. S.; Rabiu, A. B.
2017-10-01
Daily rainfall and temperature data from 47 locations across Nigeria for the 36-year period 1979-2014 were treated to time series analysis technique to investigate some nonlinear trends in rainfall and temperature data. Some quantifiers such as Lyapunov exponents, correlation dimension, and entropy were obtained for the various locations. Positive Lyapunov exponents were obtained for the time series of mean daily rainfall for all locations in the southern part of Nigeria while negative Lyapunov exponents were obtained for all locations in the Northern part of Nigeria. The mean daily temperature had positive Lyapunov exponent values (0.35-1.6) for all the locations. Attempts were made in reconstructing the phase space of time series of rainfall and temperature.
NASA Astrophysics Data System (ADS)
Sabarish, R. Mani; Narasimhan, R.; Chandhru, A. R.; Suribabu, C. R.; Sudharsan, J.; Nithiyanantham, S.
2017-05-01
In the design of irrigation and other hydraulic structures, evaluating the magnitude of extreme rainfall for a specific probability of occurrence is of much importance. The capacity of such structures is usually designed to cater to the probability of occurrence of extreme rainfall during its lifetime. In this study, an extreme value analysis of rainfall for Tiruchirapalli City in Tamil Nadu was carried out using 100 years of rainfall data. Statistical methods were used in the analysis. The best-fit probability distribution was evaluated for 1, 2, 3, 4 and 5 days of continuous maximum rainfall. The goodness of fit was evaluated using Chi-square test. The results of the goodness-of-fit tests indicate that log-Pearson type III method is the overall best-fit probability distribution for 1-day maximum rainfall and consecutive 2-, 3-, 4-, 5- and 6-day maximum rainfall series of Tiruchirapalli. To be reliable, the forecasted maximum rainfalls for the selected return periods are evaluated in comparison with the results of the plotting position.
Logit-normal mixed model for Indian Monsoon rainfall extremes
NASA Astrophysics Data System (ADS)
Dietz, L. R.; Chatterjee, S.
2014-03-01
Describing the nature and variability of Indian monsoon rainfall extremes is a topic of much debate in the current literature. We suggest the use of a generalized linear mixed model (GLMM), specifically, the logit-normal mixed model, to describe the underlying structure of this complex climatic event. Several GLMM algorithms are described and simulations are performed to vet these algorithms before applying them to the Indian precipitation data procured from the National Climatic Data Center. The logit-normal model was applied with fixed covariates of latitude, longitude, elevation, daily minimum and maximum temperatures with a random intercept by weather station. In general, the estimation methods concurred in their suggestion of a relationship between the El Niño Southern Oscillation (ENSO) and extreme rainfall variability estimates. This work provides a valuable starting point for extending GLMM to incorporate the intricate dependencies in extreme climate events.
NASA Technical Reports Server (NTRS)
Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.; Einaudi, Franco (Technical Monitor)
2000-01-01
The tropical cyclone rainfall climatology study that was performed for the North Pacific was extended to the North Atlantic. Similar to the North Pacific tropical cyclone study, mean monthly rainfall within 444 km of the center of the North Atlantic tropical cyclones (i.e., that reached storm stage and greater) was estimated from passive microwave satellite observations during, an eleven year period. These satellite-observed rainfall estimates were used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the North Atlantic total rainfall during, June-November when tropical cyclones were most abundant. The main results from this study indicate: 1) that tropical cyclones contribute, respectively, 4%, 3%, and 4% to the western, eastern, and entire North Atlantic; 2) similar to that observed in the North Pacific, the maximum in North Atlantic tropical cyclone rainfall is approximately 5 - 10 deg poleward (depending on longitude) of the maximum non-tropical cyclone rainfall; 3) tropical cyclones contribute regionally a maximum of 30% of the total rainfall 'northeast of Puerto Rico, within a region near 15 deg N 55 deg W, and off the west coast of Africa; 4) there is no lag between the months with maximum tropical cyclone rainfall and non-tropical cyclone rainfall in the western North Atlantic, while in the eastern North Atlantic, maximum tropical cyclone rainfall precedes maximum non-tropical cyclone rainfall; 5) like the North Pacific, North Atlantic tropical cyclones Of hurricane intensity generate the greatest amount of rainfall in the higher latitudes; and 6) warm ENSO events inhibit tropical cyclone rainfall.
Some Advances in Downscaling Probabilistic Climate Forecasts for Agricultural Decision Support
NASA Astrophysics Data System (ADS)
Han, E.; Ines, A.
2015-12-01
Seasonal climate forecasts, commonly provided in tercile-probabilities format (below-, near- and above-normal), need to be translated into more meaningful information for decision support of practitioners in agriculture. In this paper, we will present two new novel approaches to temporally downscale probabilistic seasonal climate forecasts: one non-parametric and another parametric method. First, the non-parametric downscaling approach called FResampler1 uses the concept of 'conditional block sampling' of weather data to create daily weather realizations of a tercile-based seasonal climate forecasts. FResampler1 randomly draws time series of daily weather parameters (e.g., rainfall, maximum and minimum temperature and solar radiation) from historical records, for the season of interest from years that belong to a certain rainfall tercile category (e.g., being below-, near- and above-normal). In this way, FResampler1 preserves the covariance between rainfall and other weather parameters as if conditionally sampling maximum and minimum temperature and solar radiation if that day is wet or dry. The second approach called predictWTD is a parametric method based on a conditional stochastic weather generator. The tercile-based seasonal climate forecast is converted into a theoretical forecast cumulative probability curve. Then the deviates for each percentile is converted into rainfall amount or frequency or intensity to downscale the 'full' distribution of probabilistic seasonal climate forecasts. Those seasonal deviates are then disaggregated on a monthly basis and used to constrain the downscaling of forecast realizations at different percentile values of the theoretical forecast curve. As well as the theoretical basis of the approaches we will discuss sensitivity analysis (length of data and size of samples) of them. In addition their potential applications for managing climate-related risks in agriculture will be shown through a couple of case studies based on actual seasonal climate forecasts for: rice cropping in the Philippines and maize cropping in India and Kenya.
NASA Astrophysics Data System (ADS)
Abrahart, R. J.; Beriro, D. J.
2012-04-01
The information content in a rainfall-runoff record is sufficient to support models of only very limited complexity (Jakeman and Hornberger, 1993). This begs the question of what limits should observed data place on the allowable complexity of rainfall-runoff models? Eureqa1 (Schmidt and Lipson, 2009) - pronounced "eureka" - is a software tool for finding equations and detecting mathematical relationships in a dataset. The challenge, for both software and modeller, is to identify, by means of symbolic regression, the simplest mathematical formulas which describe the underlying mechanisms that produced the data. It actually delivers, however, a series of preferred modelling solutions comprising one champion for each specific level of complexity i.e. related to solution enlargement involving the progressive incorporation of additional permitted factors (internal operators/ external drivers). The potential benefit of increased complexity can as a result be assessed in a rational manner. Eureqa is free to download and use; and, in the current study, has been employed to construct a set of rainfall-runoff transfer function models for the Annapolis River at Wilmot, in north-western Nova Scotia, Canada. The climatic conditions in this catchment present an interesting set of modelling challenges; daily variations and seasonal changes in temperature, snowfall and retention result in great difficulty for runoff prediction by means of a data-driven approach. Data from 10 years of daily observations are used in the present study (01/01/2000-31/12/2009): comprising [i] discharge, [ii] total rainfall (excluding snowfall), [iii] total snowfall, [iv] thickness of snow cover, and [v] maximum and [vi] minimum temperature. Precipitation occurs throughout the whole year being slightly lower during summer. Snowfall is common from November until April and rare hurricane weather may occur in autumn. The average maximum temperature is below 0 0C in January and February, but significant variation may result, producing milder weather and snowmelt throughout the winter. The average minimum temperature is below 0 0C during half of the year, such that freezing and melting occur frequently. The principal rainfall-runoff drivers are found to be lagged discharge and lagged precipitation, as expected. The complexity-accuracy trade-off, is nevertheless found to exhibit threshold behaviour, in which snow cover is eventually included at higher levels of complexity to account for multifaceted cold season processes.
NASA Astrophysics Data System (ADS)
Lui, Yuk Sing; Tam, Chi-Yung; Lau, Ngar-Cheung
2018-04-01
This study examines the impacts of climate change on precipitation extremes in the Asian monsoon region during boreal summer, based on simulations from the 20-km Meteorological Research Institute atmospheric general circulation model. The model can capture the summertime monsoon rainfall, with characteristics similar to those from Tropical Rainfall Measuring Mission and Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation. By comparing the 2075-2099 with the present-day climate simulations, there is a robust increase of the mean rainfall in many locations due to a warmer climate. Over southeastern China, the Baiu rainband, Bay of Bengal and central India, extreme precipitation rates are also enhanced in the future, which can be inferred from increases of the 95th percentile of daily precipitation, the maximum accumulated precipitation in 5 consecutive days, the simple daily precipitation intensity index, and the scale parameter of the fitted gamma distribution. In these regions, with the exception of the Baiu rainband, most of these metrics give a fractional change of extreme rainfall per degree increase of the lower-tropospheric temperature of 5 to 8.5% K-1, roughly consistent with the Clausius-Clapeyron relation. However, over the Baiu area extreme precipitation change scales as 3.5% K-1 only. We have also stratified the rainfall data into those associated with tropical cyclones (TC) and those with other weather systems. The AGCM gives an increase of the accumulated TC rainfall over southeastern China, and a decrease in southern Japan in the future climate. The latter can be attributed to suppressed TC occurrence in southern Japan, whereas increased accumulated rainfall over southeastern China is due to more intense TC rain rate under global warming. Overall, non-TC weather systems are the main contributor to enhanced precipitation extremes in various locations. In the future, TC activities over southeastern China tend to further exacerbate the precipitation extremes, whereas those in the Baiu region lead to weaker changes of these extremes.
Validation of satellite-based rainfall in Kalahari
NASA Astrophysics Data System (ADS)
Lekula, Moiteela; Lubczynski, Maciek W.; Shemang, Elisha M.; Verhoef, Wouter
2018-06-01
Water resources management in arid and semi-arid areas is hampered by insufficient rainfall data, typically obtained from sparsely distributed rain gauges. Satellite-based rainfall estimates (SREs) are alternative sources of such data in these areas. In this study, daily rainfall estimates from FEWS-RFE∼11 km, TRMM-3B42∼27 km, CMOPRH∼27 km and CMORPH∼8 km were evaluated against nine, daily rain gauge records in Central Kalahari Basin (CKB), over a five-year period, 01/01/2001-31/12/2005. The aims were to evaluate the daily rainfall detection capabilities of the four SRE algorithms, analyze the spatio-temporal variability of rainfall in the CKB and perform bias-correction of the four SREs. Evaluation methods included scatter plot analysis, descriptive statistics, categorical statistics and bias decomposition. The spatio-temporal variability of rainfall, was assessed using the SREs' mean annual rainfall, standard deviation, coefficient of variation and spatial correlation functions. Bias correction of the four SREs was conducted using a Time-Varying Space-Fixed bias-correction scheme. The results underlined the importance of validating daily SREs, as they had different rainfall detection capabilities in the CKB. The FEWS-RFE∼11 km performed best, providing better results of descriptive and categorical statistics than the other three SREs, although bias decomposition showed that all SREs underestimated rainfall. The analysis showed that the most reliable SREs performance analysis indicator were the frequency of "miss" rainfall events and the "miss-bias", as they directly indicated SREs' sensitivity and bias of rainfall detection, respectively. The Time Varying and Space Fixed (TVSF) bias-correction scheme, improved some error measures but resulted in the reduction of the spatial correlation distance, thus increased, already high, spatial rainfall variability of all the four SREs. This study highlighted SREs as valuable source of daily rainfall data providing good spatio-temporal data coverage especially suitable for areas with limited rain gauges, such as the CKB, but also emphasized SREs' drawbacks, creating avenue for follow up research.
Searching regional rainfall homogeneity using atmospheric fields
NASA Astrophysics Data System (ADS)
Gabriele, Salvatore; Chiaravalloti, Francesco
2013-03-01
The correct identification of homogeneous areas in regional rainfall frequency analysis is fundamental to ensure the best selection of the probability distribution and the regional model which produce low bias and low root mean square error of quantiles estimation. In an attempt at rainfall spatial homogeneity, the paper explores a new approach that is based on meteo-climatic information. The results are verified ex-post using standard homogeneity tests applied to the annual maximum daily rainfall series. The first step of the proposed procedure selects two different types of homogeneous large regions: convective macro-regions, which contain high values of the Convective Available Potential Energy index, normally associated with convective rainfall events, and stratiform macro-regions, which are characterized by low values of the Q vector Divergence index, associated with dynamic instability and stratiform precipitation. These macro-regions are identified using Hot Spot Analysis to emphasize clusters of extreme values of the indexes. In the second step, inside each identified macro-region, homogeneous sub-regions are found using kriging interpolation on the mean direction of the Vertically Integrated Moisture Flux. To check the proposed procedure, two detailed examples of homogeneous sub-regions are examined.
NASA Astrophysics Data System (ADS)
Leonarduzzi, Elena; Molnar, Peter; McArdell, Brian W.
2017-08-01
A high-resolution gridded daily precipitation data set was combined with a landslide inventory containing over 2000 events in the period 1972-2012 to analyze rainfall thresholds which lead to landsliding in Switzerland. We colocated triggering rainfall to landslides, developed distributions of triggering and nontriggering rainfall event properties, and determined rainfall thresholds and intensity-duration ID curves and validated their performance. The best predictive performance was obtained by the intensity-duration ID threshold curve, followed by peak daily intensity Imax and mean event intensity Imean. Event duration by itself had very low predictive power. A single country-wide threshold of Imax = 28 mm/d was extended into space by regionalization based on surface erodibility and local climate (mean daily precipitation). It was found that wetter local climate and lower erodibility led to significantly higher rainfall thresholds required to trigger landslides. However, we showed that the improvement in model performance due to regionalization was marginal and much lower than what can be achieved by having a high-quality landslide database. Reference cases in which the landslide locations and timing were randomized and the landslide sample size was reduced showed the sensitivity of the Imax rainfall threshold model. Jack-knife and cross-validation experiments demonstrated that the model was robust. The results reported here highlight the potential of using rainfall ID threshold curves and rainfall threshold values for predicting the occurrence of landslides on a country or regional scale with possible applications in landslide warning systems, even with daily data.
The collaborative historical African rainfall model: description and evaluation
Funk, Christopher C.; Michaelsen, Joel C.; Verdin, James P.; Artan, Guleid A.; Husak, Gregory; Senay, Gabriel B.; Gadain, Hussein; Magadazire, Tamuka
2003-01-01
In Africa the variability of rainfall in space and time is high, and the general availability of historical gauge data is low. This makes many food security and hydrologic preparedness activities difficult. In order to help overcome this limitation, we have created the Collaborative Historical African Rainfall Model (CHARM). CHARM combines three sources of information: climatologically aided interpolated (CAI) rainfall grids (monthly/0.5° ), National Centers for Environmental Prediction reanalysis precipitation fields (daily/1.875° ) and orographic enhancement estimates (daily/0.1° ). The first set of weights scales the daily reanalysis precipitation fields to match the gridded CAI monthly rainfall time series. This produces data with a daily/0.5° resolution. A diagnostic model of orographic precipitation, VDELB—based on the dot-product of the surface wind V and terrain gradient (DEL) and atmospheric buoyancy B—is then used to estimate the precipitation enhancement produced by complex terrain. Although the data are produced on 0.1° grids to facilitate integration with satellite-based rainfall estimates, the ‘true’ resolution of the data will be less than this value, and varies with station density, topography, and precipitation dynamics. The CHARM is best suited, therefore, to applications that integrate rainfall or rainfall-driven model results over large regions. The CHARM time series is compared with three independent datasets: dekadal satellite-based rainfall estimates across the continent, dekadal interpolated gauge data in Mali, and daily interpolated gauge data in western Kenya. These comparisons suggest reasonable accuracies (standard errors of about half a standard deviation) when data are aggregated to regional scales, even at daily time steps. Thus constrained, numerical weather prediction precipitation fields do a reasonable job of representing large-scale diurnal variations.
NASA Astrophysics Data System (ADS)
Lucero, Omar A.; Rozas, Daniel
Climate variability in annual rainfall occurs because the aggregation of daily rainfall changes. A topic open to debate is whether that change takes place because rainfall becomes more intense, or because it rains more often, or a combination of both. The answer to this question is of interest for water resources planning, hydrometeorological design, and agricultural management. Change in the number of rainy days can cause major disruptions in hydrological and ecological systems, with important economic and social effects. Furthermore, the characteristics of daily rainfall aggregation in ongoing climate variability provide a reference to evaluate the capability of GCM to simulate changes in the hydrologic cycle. In this research, we analyze changes in the aggregation of daily rainfall producing a climate positive trend in annual rainfall in central Argentina, in the southern middle-latitudes. This state-of-the-art agricultural region has a semiarid climate with dry and wet seasons. Weather effects in the region influence world-market prices of several crops. Results indicate that the strong positive trend in seasonal and annual rainfall amount is produced by an increase in number of rainy days. This increase takes place in the 3-month periods January-March (summer) and April-June (autumn). These are also the 3-month periods showing a positive trend in the mean of annual rainfall. The mean of the distribution of annual number of rainy day (ANRD) increased in 50% in a 36-year span (starting at 44 days/year). No statistically significant indications on time changes in the probability distribution of daily rainfall amount were found. Non-periodic fluctuations in the time series of annual rainfall were analyzed using an integral wavelet transform. Fluctuations with a time scale of about 10 and 20 years construct the trend in annual rainfall amount. These types of non-periodic fluctuations have been observed in other regions of the world. This suggests that results of this research could have further geographical validity.
Technical note: Space-time analysis of rainfall extremes in Italy: clues from a reconciled dataset
NASA Astrophysics Data System (ADS)
Libertino, Andrea; Ganora, Daniele; Claps, Pierluigi
2018-05-01
Like other Mediterranean areas, Italy is prone to the development of events with significant rainfall intensity, lasting for several hours. The main triggering mechanisms of these events are quite well known, but the aim of developing rainstorm hazard maps compatible with their actual probability of occurrence is still far from being reached. A systematic frequency analysis of these occasional highly intense events would require a complete countrywide dataset of sub-daily rainfall records, but this kind of information was still lacking for the Italian territory. In this work several sources of data are gathered, for assembling the first comprehensive and updated dataset of extreme rainfall of short duration in Italy. The resulting dataset, referred to as the Italian Rainfall Extreme Dataset (I-RED), includes the annual maximum rainfalls recorded in 1 to 24 consecutive hours from more than 4500 stations across the country, spanning the period between 1916 and 2014. A detailed description of the spatial and temporal coverage of the I-RED is presented, together with an exploratory statistical analysis aimed at providing preliminary information on the climatology of extreme rainfall at the national scale. Due to some legal restrictions, the database can be provided only under certain conditions. Taking into account the potentialities emerging from the analysis, a description of the ongoing and planned future work activities on the database is provided.
Occurrence analysis of daily rainfalls through non-homogeneous Poissonian processes
NASA Astrophysics Data System (ADS)
Sirangelo, B.; Ferrari, E.; de Luca, D. L.
2011-06-01
A stochastic model based on a non-homogeneous Poisson process, characterised by a time-dependent intensity of rainfall occurrence, is employed to explain seasonal effects of daily rainfalls exceeding prefixed threshold values. The data modelling has been performed with a partition of observed daily rainfall data into a calibration period for parameter estimation and a validation period for checking on occurrence process changes. The model has been applied to a set of rain gauges located in different geographical areas of Southern Italy. The results show a good fit for time-varying intensity of rainfall occurrence process by 2-harmonic Fourier law and no statistically significant evidence of changes in the validation period for different threshold values.
The estimation of probable maximum precipitation: the case of Catalonia.
Casas, M Carmen; Rodríguez, Raül; Nieto, Raquel; Redaño, Angel
2008-12-01
A brief overview of the different techniques used to estimate the probable maximum precipitation (PMP) is presented. As a particular case, the 1-day PMP over Catalonia has been calculated and mapped with a high spatial resolution. For this purpose, the annual maximum daily rainfall series from 145 pluviometric stations of the Instituto Nacional de Meteorología (Spanish Weather Service) in Catalonia have been analyzed. In order to obtain values of PMP, an enveloping frequency factor curve based on the actual rainfall data of stations in the region has been developed. This enveloping curve has been used to estimate 1-day PMP values of all the 145 stations. Applying the Cressman method, the spatial analysis of these values has been achieved. Monthly precipitation climatological data, obtained from the application of Geographic Information Systems techniques, have been used as the initial field for the analysis. The 1-day PMP at 1 km(2) spatial resolution over Catalonia has been objectively determined, varying from 200 to 550 mm. Structures with wavelength longer than approximately 35 km can be identified and, despite their general concordance, the obtained 1-day PMP spatial distribution shows remarkable differences compared to the annual mean precipitation arrangement over Catalonia.
Effect of Climate Factors on the Childhood Pneumonia in Papua New Guinea: A Time-Series Analysis
Kim, Jinseob; Kim, Jong-Hun; Cheong, Hae-Kwan; Kim, Ho; Honda, Yasushi; Ha, Mina; Hashizume, Masahiro; Kolam, Joel; Inape, Kasis
2016-01-01
This study aimed to assess the association between climate factors and the incidence of childhood pneumonia in Papua New Guinea quantitatively and to evaluate the variability of the effect size according to their geographic properties. The pneumonia incidence in children under five-year and meteorological factors were obtained from six areas, including monthly rainfall and the monthly average daily maximum temperatures during the period from 1997 to 2006 from national health surveillance data. A generalized linear model was applied to measure the effect size of local and regional climate factor. The pooled risk of pneumonia in children per every 10 mm increase of rainfall was 0.24% (95% confidence interval: −0.01%–0.50%), and risk per every 1 °C increase of the monthly mean of the maximum daily temperatures was 4.88% (95% CI: 1.57–8.30). Southern oscillation index and dipole mode index showed an overall negative effect on childhood pneumonia incidence, −0.57% and −4.30%, respectively, and the risk of pneumonia was higher in the dry season than in the rainy season (pooled effect: 12.08%). There was a variability in the relationship between climate factors and pneumonia which is assumed to reflect distribution of the determinants of and vulnerability to pneumonia in the community. PMID:26891307
Climatological determinants of woody cover in Africa.
Good, Stephen P; Caylor, Kelly K
2011-03-22
Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent. We find that-as opposed to a relationship with only mean annual rainfall-the upper limit of fractional woody vegetation cover is strongly influenced by both the quantity and intensity of rainfall events. Using a set of statistics derived from the seasonal distribution of rainfall, we show that areas with similar seasonal rainfall totals have higher fractional woody cover if the local rainfall climatology consists of frequent, less intense precipitation events. Based on these observations, we develop a generalized response surface between rainfall climatology and maximum woody vegetation cover across the African continent. The normalized local gradient of this response surface is used as an estimator of ecosystem vegetation sensitivity to climatological variation. A comparison between predicted climate sensitivity patterns and observed shifts in both rainfall and vegetation during 2009 reveals both the importance of rainfall climatology in governing how ecosystems respond to interannual fluctuations in climate and the utility of our framework as a means to forecast continental-scale patterns of vegetation shifts in response to future climate change.
Soil erosion under multiple time-varying rainfall events
NASA Astrophysics Data System (ADS)
Heng, B. C. Peter; Barry, D. Andrew; Jomaa, Seifeddine; Sander, Graham C.
2010-05-01
Soil erosion is a function of many factors and process interactions. An erosion event produces changes in surface soil properties such as texture and hydraulic conductivity. These changes in turn alter the erosion response to subsequent events. Laboratory-scale soil erosion studies have typically focused on single independent rainfall events with constant rainfall intensities. This study investigates the effect of multiple time-varying rainfall events on soil erosion using the EPFL erosion flume. The rainfall simulator comprises ten Veejet nozzles mounted on oscillating bars 3 m above a 6 m × 2 m flume. Spray from the nozzles is applied onto the soil surface in sweeps; rainfall intensity is thus controlled by varying the sweeping frequency. Freshly-prepared soil with a uniform slope was subjected to five rainfall events at daily intervals. In each 3-h event, rainfall intensity was ramped up linearly to a maximum of 60 mm/h and then stepped down to zero. Runoff samples were collected and analysed for particle size distribution (PSD) as well as total sediment concentration. We investigate whether there is a hysteretic relationship between sediment concentration and discharge within each event and how this relationship changes from event to event. Trends in the PSD of the eroded sediment are discussed and correlated with changes in sediment concentration. Close-up imagery of the soil surface following each event highlight changes in surface soil structure with time. This study enhances our understanding of erosion processes in the field, with corresponding implications for soil erosion modelling.
Background & Aims: Projections based on climate models suggest that the frequency of extreme rainfall events will continue to rise over the next several decades. We aim to investigate the temporal relationship between daily variability of rainfall and acute gastrointestinal illne...
Power-law scaling in daily rainfall patterns and consequences in urban stream discharges
NASA Astrophysics Data System (ADS)
Park, Jeryang; Krueger, Elisabeth H.; Kim, Dongkyun; Rao, Suresh C.
2016-04-01
Poissonian rainfall has been frequently used for modelling stream discharge in a catchment at the daily scale. Generally, it is assumed that the daily rainfall depth is described by memoryless exponential distribution which is transformed to stream discharge, resulting in an analytical pdf for discharge [Gamma distribution]. While it is true that catchment hydrological filtering processes (censored by constant rate ET losses, and first-order recession) increases "memory", reflected in 1/f noise in discharge time series. Here, we show that for urban watersheds in South Korea: (1) the observation of daily rainfall depths follow power-law pdfs, and spectral slopes range between 0.2 ~ 0.4; and (2) the stream discharge pdfs have power-law tails. These observation results suggest that multiple hydro-climatic factors (e.g., non-stationarity of rainfall patterns) and hydrologic filtering (increasing impervious area; more complex urban drainage networks) influence the catchment hydrologic responses. We test the role of such factors using a parsimonious model, using different types of daily rainfall patterns (e.g., power-law distributed rainfall depth with Poisson distribution in its frequency) and urban settings to reproduce patterns similar to those observed in empirical records. Our results indicate that fractality in temporally up-scaled rainfall, and the consequences of large extreme events are preserved as high discharge events in urbanizing catchments. Implications of these results to modeling urban hydrologic responses and impacts on receiving waters are discussed.
Gamma-radiation monitoring in post-tectonic biotitic granites at Celorico da Beira
NASA Astrophysics Data System (ADS)
Domingos, Filipa; Barbosa, Susana; Pereira, Alcides; Neves, Luís
2017-04-01
Despite its obvious relevance, the effect of meteorological variables such as temperature, pressure, wind, rainfall and particularly humidity on the temporal variability of natural radiation is complex and still not fully understood. Moreover, the nature of their influence with increasing depth is also poorly understood. Thereby, two boreholes were set 3 m apart in the region of Celorico da Beira within post-tectonic biotitic granites of the Beiras Batolith. Continuous measurements were obtained with identical gamma-ray scintillometers deployed at depths of 1 and 6 m during a 6 month period in the years of 2014 and 2015. Temperature, relative humidity, pressure, rainfall, wind speed and direction were measured at the site, as well as temperature and relative humidity inside the boreholes, with the aim of assessing the influence of meteorological parameters on the temporal variability of gamma radiation at two distinct depths. Both time series display a complex temporal structure including multiyear, seasonal and daily variability. At 1 m depth, a daily periodicity on the gamma ray counts time series was noticed with daily maxima occurring most frequently from 8 to 12 p.m. and daily minima between 8 and 12 a.m.. At 6 m depth, maximum and minimum daily means occurred with approximately a 10 h lag from the above. Gamma radiation data exhibited fairly strong correlations with temperature and relative humidity, however, varying with depth. Gamma radiation counts increased with increasing temperature and decreasing relative humidity at 1 m depth, while at a 6 m depth the opposite was recorded, with counts increasing with relative humidity and decreasing with temperature. Wind speed was shown to be inversely related with counts at 6 m depth, while positively correlated at 1 m depth. Pressure and rainfall had minor effects on both short-term and long-term gamma radiation counts.
Daily rainfall forecasting for one year in a single run using Singular Spectrum Analysis
NASA Astrophysics Data System (ADS)
Unnikrishnan, Poornima; Jothiprakash, V.
2018-06-01
Effective modelling and prediction of smaller time step rainfall is reported to be very difficult owing to its highly erratic nature. Accurate forecast of daily rainfall for longer duration (multi time step) may be exceptionally helpful in the efficient planning and management of water resources systems. Identification of inherent patterns in a rainfall time series is also important for an effective water resources planning and management system. In the present study, Singular Spectrum Analysis (SSA) is utilized to forecast the daily rainfall time series pertaining to Koyna watershed in Maharashtra, India, for 365 days after extracting various components of the rainfall time series such as trend, periodic component, noise and cyclic component. In order to forecast the time series for longer time step (365 days-one window length), the signal and noise components of the time series are forecasted separately and then added together. The results of the study show that the method of SSA could extract the various components of the time series effectively and could also forecast the daily rainfall time series for longer duration such as one year in a single run with reasonable accuracy.
NASA Astrophysics Data System (ADS)
Chadwick, Robin; Grimes, David
2010-05-01
Rainfall monitoring over Africa is crucial for a variety of humanitarian and agricultural purposes, and satellites have been used for some time to provide real-time rainfall estimates over the region. Several recent applications of satellite rainfall estimates, such as flash-flood warning systems and crop-yield models, require accurate rainfall totals at daily timescales or below. Multi-spectral Meteosat Second Generation (MSG) data provide information on cloud properties such as optical depth and cloud particle size and phase. These parameters are all relevant to the probability of rainfall occurring from a cloud and the likely intensity of that rainfall, so the use of MSG data should lead to improved satellite rainfall estimates. An artificial neural network (ANN) using multi-spectral inputs from MSG has been trained to provide daily rainfall estimates over Ethiopia, using daily rain-gauge data for calibration. Although ANN methods have previously been applied to the problem of producing rainfall estimates from multi-spectral satellite data, in general precipitation radar data have been used for calibration. The advantage of using rain-gauge data is that gauges are far more widespread over Africa than radar networks, so this method can be easily transferred and if necessary re-calibrated in different climatological regions of the continent. The ANN estimates have been validated against independent Ethiopian gauge data at a variety of time and space scales. The ANN shows an improvement in accuracy at daily timescale when compared to rainfall estimates from the TAMSAT algorithm, which uses only single channel MSG data.
SDCLIREF - A sub-daily gridded reference dataset
NASA Astrophysics Data System (ADS)
Wood, Raul R.; Willkofer, Florian; Schmid, Franz-Josef; Trentini, Fabian; Komischke, Holger; Ludwig, Ralf
2017-04-01
Climate change is expected to impact the intensity and frequency of hydrometeorological extreme events. In order to adequately capture and analyze extreme rainfall events, in particular when assessing flood and flash flood situations, data is required at high spatial and sub-daily resolution which is often not available in sufficient density and over extended time periods. The ClimEx project (Climate Change and Hydrological Extreme Events) addresses the alteration of hydrological extreme events under climate change conditions. In order to differentiate between a clear climate change signal and the limits of natural variability, unique Single-Model Regional Climate Model Ensembles (CRCM5 driven by CanESM2, RCP8.5) were created for a European and North-American domain, each comprising 50 members of 150 years (1951-2100). In combination with the CORDEX-Database, this newly created ClimEx-Ensemble is a one-of-a-kind model dataset to analyze changes of sub-daily extreme events. For the purpose of bias-correcting the regional climate model ensembles as well as for the baseline calibration and validation of hydrological catchment models, a new sub-daily (3h) high-resolution (500m) gridded reference dataset (SDCLIREF) was created for a domain covering the Upper Danube and Main watersheds ( 100.000km2). As the sub-daily observations lack a continuous time series for the reference period 1980-2010, the need for a suitable method to bridge the gap of the discontinuous time series arouse. The Method of Fragments (Sharma and Srikanthan (2006); Westra et al. (2012)) was applied to transform daily observations to sub-daily rainfall events to extend the time series and densify the station network. Prior to applying the Method of Fragments and creating the gridded dataset using rigorous interpolation routines, data collection of observations, operated by several institutions in three countries (Germany, Austria, Switzerland), and the subsequent quality control of the observations was carried out. Among others, the quality control checked for steps, extensive dry seasons, temporal consistency and maximum hourly values. The resulting SDCLIREF dataset provides a robust precipitation reference for hydrometeorological applications in unprecedented high spatio-temporal resolution. References: Sharma, A.; Srikanthan, S. (2006): Continuous Rainfall Simulation: A Nonparametric Alternative. In: 30th Hydrology and Water Resources Symposium 4-7 December 2006, Launceston, Tasmania. Westra, S.; Mehrotra, R.; Sharma, A.; Srikanthan, R. (2012): Continuous rainfall simulation. 1. A regionalized subdaily disaggregation approach. In: Water Resour. Res. 48 (1). DOI: 10.1029/2011WR010489.
Occurrence analysis of daily rainfalls by using non-homogeneous Poissonian processes
NASA Astrophysics Data System (ADS)
Sirangelo, B.; Ferrari, E.; de Luca, D. L.
2009-09-01
In recent years several temporally homogeneous stochastic models have been applied to describe the rainfall process. In particular stochastic analysis of daily rainfall time series may contribute to explain the statistic features of the temporal variability related to the phenomenon. Due to the evident periodicity of the physical process, these models have to be used only to short temporal intervals in which occurrences and intensities of rainfalls can be considered reliably homogeneous. To this aim, occurrences of daily rainfalls can be considered as a stationary stochastic process in monthly periods. In this context point process models are widely used for at-site analysis of daily rainfall occurrence; they are continuous time series models, and are able to explain intermittent feature of rainfalls and simulate interstorm periods. With a different approach, periodic features of daily rainfalls can be interpreted by using a temporally non-homogeneous stochastic model characterized by parameters expressed as continuous functions in the time. In this case, great attention has to be paid to the parsimony of the models, as regards the number of parameters and the bias introduced into the generation of synthetic series, and to the influence of threshold values in extracting peak storm database from recorded daily rainfall heights. In this work, a stochastic model based on a non-homogeneous Poisson process, characterized by a time-dependent intensity of rainfall occurrence, is employed to explain seasonal effects of daily rainfalls exceeding prefixed threshold values. In particular, variation of rainfall occurrence intensity ? (t) is modelled by using Fourier series analysis, in which the non-homogeneous process is transformed into a homogeneous and unit one through a proper transformation of time domain, and the choice of the minimum number of harmonics is evaluated applying available statistical tests. The procedure is applied to a dataset of rain gauges located in different geographical zones of Mediterranean area. Time series have been selected on the basis of the availability of at least 50 years in the time period 1921-1985, chosen as calibration period, and of all the years of observation in the subsequent validation period 1986-2005, whose daily rainfall occurrence process variability is under hypothesis. Firstly, for each time series and for each fixed threshold value, parameters estimation of the non-homogeneous Poisson model is carried out, referred to calibration period. As second step, in order to test the hypothesis that daily rainfall occurrence process preserves the same behaviour in more recent time periods, the intensity distribution evaluated for calibration period is also adopted for the validation period. Starting from this and using a Monte Carlo approach, 1000 synthetic generations of daily rainfall occurrences, of length equal to validation period, have been carried out, and for each simulation sample ?(t) has been evaluated. This procedure is adopted because of the complexity of determining analytical statistical confidence limits referred to the sample intensity ?(t). Finally, sample intensity, theoretical function of the calibration period and 95% statistical band, evaluated by Monte Carlo approach, are matching, together with considering, for each threshold value, the mean square error (MSE) between the theoretical ?(t) and the sample one of recorded data, and his correspondent 95% one tail statistical band, estimated from the MSE values between the sample ?(t) of each synthetic series and the theoretical one. The results obtained may be very useful in the context of the identification and calibration of stochastic rainfall models based on historical precipitation data. Further applications of the non-homogeneous Poisson model will concern the joint analyses of the storm occurrence process with the rainfall height marks, interpreted by using a temporally homogeneous model in proper sub-year intervals.
Mechanisms for Diurnal Variability of Global Tropical Rainfall Observed from TRMM
NASA Technical Reports Server (NTRS)
Yang, Song; Smith, Eric A.
2004-01-01
The behavior and various controls of diurnal variability in tropical-subtropical rainfall are investigated using Tropical Rainfall Measuring Mission (TRMM) precipitation measurements retrieved from: (1) TRMM Microwave Imager (TMI), (2) Precipitation Radar (PR), and (3) TMI/PR Combined, standard level 2 algorithms for the 1998 annual cycle. Results show that the diurnal variability characteristics of precipitation are consistent for all three algorithms, providing assurance that TRMM retrievals are providing consistent estimates of rainfall variability. As anticipated, most ocean areas exhibit more rainfall at night, while over most land areas rainfall peaks during daytime ,however, various important exceptions are found. The dominant feature of the oceanic diurnal cycle is a rainfall maximum in late-evening/early-morning (LE-EM) hours, while over land the dominant maximum occurs in the mid- to late-afternoon (MLA). In conjunction with these maxima are pronounced seasonal variations of the diurnal amplitudes. Amplitude analysis shows that the diurnal pattern and its seasonal evolution are closely related to the rainfall accumulation pattern and its seasonal evolution. In addition, the horizontal distribution of diurnal variability indicates that for oceanic rainfall there is a secondary MLA maximum, co-existing with the LE-EM maximum, at latitudes dominated by large scale convergence and deep convection. Analogously, there is a preponderance for an LE-EM maximum over land, co-existing with the stronger MLA maximum, although it is not evident that this secondary continental feature is closely associated with the large scale circulation. The ocean results clearly indicate that rainfall diurnal variability associated with large scale convection is an integral part of the atmospheric general circulation.
NASA Astrophysics Data System (ADS)
Kaitna, R.; Braun, M.
2016-12-01
Steep mountain channels episodically can experience very different geomorphic processes, ranging from flash floods, intensive bedload transport, debris floods, and debris flows. Rainfall-related trigger conditions and geomorphic disposition for each of these processes to occur, as well as conditions leading to one process and not to the other, are not well understood. In this contribution, we analyze triggering rainfalls for all documented events in the Eastern (Austrian) Alps on a daily and sub-daily basis. The analysis with daily rainfall data covers more than 6640 events between 1901 and 2014 and the analysis based on sub-daily (10 min interval) rainfall data includes around 950 events between 1992 and 2014. Of the four investigated event types, we find that debris flows are typically associated with the least cumulative rainfall, while intensive bedload transport as well as torrential floods occur when there is a substantial amount of cumulative rainfall. Debris floods are occurring on average with cumulative rainfall in a range between the aforementioned processes. Comparison of historical data shows, that about 90% of events are triggered with a combination of extreme rainfall and temperature. Bayesian analysis reveals that a high degree of geomorphic events is associated with very short rainfall durations that cannot be resolved with daily rainfall data. A comparison of both datasets shows that subdaily data gives more accurate results. Additionally, we find a high degree of regional differences, e.g. between regions north and south of the Alpine chain or high or low Alpine regions. There is indication that especially debris flows need less total rainfall amount when occurring in regions with a high relief energy than in less steep environments. The limitation of our analysis is mainly due to the distance between the locations of event triggering and rainfall measurement and the definition of rainfall events for the Bayesian analysis. In a next step, we will connect our results with the analyses of the hydrological as well as geomorphological disposition in selected study regions and with projections of changing climate conditions.
Receiver Operating Characteristic Curve Analysis of Beach Water Quality Indicator Variables
Morrison, Ann Michelle; Coughlin, Kelly; Shine, James P.; Coull, Brent A.; Rex, Andrea C.
2003-01-01
Receiver operating characteristic (ROC) curve analysis is a simple and effective means to compare the accuracies of indicator variables of bacterial beach water quality. The indicator variables examined in this study were previous day's Enterococcus density and antecedent rainfall at 24, 48, and 96 h. Daily Enterococcus densities and 15-min rainfall values were collected during a 5-year (1996 to 2000) study of four Boston Harbor beaches. The indicator variables were assessed for their ability to correctly classify water as suitable or unsuitable for swimming at a maximum threshold Enterococcus density of 104 CFU/100 ml. Sensitivity and specificity values were determined for each unique previous day's Enterococcus density and antecedent rainfall volume and used to construct ROC curves. The area under the ROC curve was used to compare the accuracies of the indicator variables. Twenty-four-hour antecedent rainfall classified elevated Enterococcus densities more accurately than previous day's Enterococcus density (P = 0.079). An empirically derived threshold for 48-h antecedent rainfall, corresponding to a sensitivity of 0.75, was determined from the 1996 to 2000 data and evaluated to ascertain if the threshold would produce a 0.75 sensitivity with independent water quality data collected in 2001 from the same beaches. PMID:14602593
Trends in rainfall and temperature extremes in Morocco
NASA Astrophysics Data System (ADS)
Khomsi, K.; Mahe, G.; Tramblay, Y.; Sinan, M.; Snoussi, M.
2015-02-01
In Morocco, socioeconomic fields are vulnerable to weather extreme events. This work aims to analyze the frequency and the trends of temperature and rainfall extreme events in two contrasted Moroccan regions (the Tensift in the semi-arid South, and the Bouregreg in the sub-humid North), during the second half of the 20th century. This study considers long time series of daily extreme temperatures and rainfall, recorded in the stations of Marrakech and Safi for the Tensift region, and Kasba-Tadla and Rabat-Sale for the Bouregreg region, data from four other stations (Tanger, Fes, Agadir and Ouarzazate) from outside the regions were added. Extremes are defined by using as thresholds the 1st, 5th, 90th, 95th, and 99th percentiles. Results show upward trends in maximum and minimum temperatures of both regions and no generalized trends in rainfall amounts. Changes in cold events are larger than those for warm events, and the number of very cold events decrease significantly in the whole studied area. The southern region is the most affected with the changes of the temperature regime. Most of the trends found in rainfall heavy events are positive with weak magnitudes even though no statistically significant generalized trends could be identified during both seasons.
Constraining continuous rainfall simulations for derived design flood estimation
NASA Astrophysics Data System (ADS)
Woldemeskel, F. M.; Sharma, A.; Mehrotra, R.; Westra, S.
2016-11-01
Stochastic rainfall generation is important for a range of hydrologic and water resources applications. Stochastic rainfall can be generated using a number of models; however, preserving relevant attributes of the observed rainfall-including rainfall occurrence, variability and the magnitude of extremes-continues to be difficult. This paper develops an approach to constrain stochastically generated rainfall with an aim of preserving the intensity-durationfrequency (IFD) relationships of the observed data. Two main steps are involved. First, the generated annual maximum rainfall is corrected recursively by matching the generated intensity-frequency relationships to the target (observed) relationships. Second, the remaining (non-annual maximum) rainfall is rescaled such that the mass balance of the generated rain before and after scaling is maintained. The recursive correction is performed at selected storm durations to minimise the dependence between annual maximum values of higher and lower durations for the same year. This ensures that the resulting sequences remain true to the observed rainfall as well as represent the design extremes that may have been developed separately and are needed for compliance reasons. The method is tested on simulated 6 min rainfall series across five Australian stations with different climatic characteristics. The results suggest that the annual maximum and the IFD relationships are well reproduced after constraining the simulated rainfall. While our presentation focusses on the representation of design rainfall attributes (IFDs), the proposed approach can also be easily extended to constrain other attributes of the generated rainfall, providing an effective platform for post-processing of stochastic rainfall generators.
Nonstationarity of daily rainfall annual maxima in Puglia (Southern Italy)
NASA Astrophysics Data System (ADS)
Totaro, Vincenzo; Gioia, Andrea; Iacobellis, Vito
2017-04-01
Extreme flood events occurring in the last decades, due to climatic conditions in rapid evolution and/or changes in land cover, has lead the scientific community to develop and improve probabilistic techniques in order to take into account these effects, as also requested by the EU Floods Directive 2007/60. In the recent literature are becoming more popular studies that investigate the nonstationarity of the variables usually treated in hydrology through the analysis of their trend behavior. In this context it is also useful to assess the impact that the climate and /or land cover modifications have on the performances of the probabilistic stationary models used to predict hydrological variables such as rainfall and flood peaks. Among several proposed approaches, we use the redefined concept of return period and risk by considering the variability over time of the position parameter of the GEV distribution, with the subsequent discussion about the implications of analytical and technical characters. The analysis was carried out on the time series of annual maximum of daily precipitation available for a broad number of rainfall gauged stations in Puglia (Southern Italy). The investigation, conducted at the regional scale, leads to the identification of areas with different significativity of the statistical tests usually performed in order to assess nonstationarity. The evaluated change of return period leads to considerations useful to redesign methods for regional analysis of flood frequency.
NASA Astrophysics Data System (ADS)
Tanaka, N.; Levia, D. F., Jr.; Igarashi, Y.; Nanko, K.; Yoshifuji, N.; Tanaka, K.; Chatchai, T.; Suzuki, M.; Kumagai, T.
2014-12-01
Teak (Tectona grandis Linn. f.) plantations cover vast areas throughout Southeast Asia and are of great economic importance. This study has sought to increase our understanding of throughfall inputs under teak by analyzing the abiotic and biotic factors governing throughfall amounts and throughfall ratios in relation to three canopy phenophases (leafless, leafing, and leafed). There is no rain during the brief leaf senescence phenophase. Daily data was available for both throughfall volumes and depths as well as leaf area index. Detailed meteorological data were available in situ every ten minutes. Leveraging this high-resolution field data, we employed boosted regression trees (BRT) analysis to identify the primary controls on throughfall amount and ratio during each of the three canopy phenophases. Whereas throughfall amounts were always dominated by the magnitude of rainfall (as expected), throughfall ratios were governed by a suite of predictor variables during each phenophase. The BRT analysis demonstrated that throughfall ratio in the leafless phase was most influenced (in descending order of importance) by air temperature, rainfall amount, maximum wind speed, and rainfall intensity. Throughfall ratio in the leafed phenophase was dominated by rainfall amount which exerted 54.0% of the relative influence. The leafing phenophase was an intermediate case where rainfall amount, air temperature, and vapor pressure deficit were most important. Our results highlight the fact that throughfall ratios are differentially influenced by a suite of meteorological variables during leafless, leafing, and leafed phenophases. Abiotic variables (rainfall amount, air temperature, vapor pressure deficit, and maximum wind speed) trumped leaf area index and stand density in their effect on throughfall ratio. The leafing phenophase, while transitional in nature and short in duration, has a detectable and unique impact on water inputs to teak plantations. Further work is clearly needed to better gauge the importance of the leaf emergence period to the stemflow hydrology and forest biogeochemistry of teak plantations.
NASA Astrophysics Data System (ADS)
Pérez-Sánchez, Julio; Senent-Aparicio, Javier
2017-08-01
Dry spells are an essential concept of drought climatology that clearly defines the semiarid Mediterranean environment and whose consequences are a defining feature for an ecosystem, so vulnerable with regard to water. The present study was conducted to characterize rainfall drought in the Segura River basin located in eastern Spain, marked by the self seasonal nature of these latitudes. A daily precipitation set has been utilized for 29 weather stations during a period of 20 years (1993-2013). Furthermore, four sets of dry spell length (complete series, monthly maximum, seasonal maximum, and annual maximum) are used and simulated for all the weather stations with the following probability distribution functions: Burr, Dagum, error, generalized extreme value, generalized logistic, generalized Pareto, Gumbel Max, inverse Gaussian, Johnson SB, Log-Logistic, Log-Pearson 3, Triangular, Weibull, and Wakeby. Only the series of annual maximum spell offer a good adjustment for all the weather stations, thereby gaining the role of Wakeby as the best result, with a p value means of 0.9424 for the Kolmogorov-Smirnov test (0.2 significance level). Probability of dry spell duration for return periods of 2, 5, 10, and 25 years maps reveal the northeast-southeast gradient, increasing periods with annual rainfall of less than 0.1 mm in the eastern third of the basin, in the proximity of the Mediterranean slope.
The impact of environmental factors on marine turtle stranding rates
Flint, Mark; Limpus, Colin J.; Mills, Paul C.
2017-01-01
Globally, tropical and subtropical regions have experienced an increased frequency and intensity in extreme weather events, ranging from severe drought to protracted rain depressions and cyclones, these coincided with an increased number of marine turtles subsequently reported stranded. This study investigated the relationship between environmental variables and marine turtle stranding. The environmental variables examined in this study, in descending order of importance, were freshwater discharge, monthly mean maximum and minimum air temperatures, monthly average daily diurnal air temperature difference and rainfall for the latitudinal hotspots (-27°, -25°, -23°, -19°) along the Queensland coast as well as for major embayments within these blocks. This study found that marine turtle strandings can be linked to these environmental variables at different lag times (3–12 months), and that cumulative (months added together for maximum lag) and non-cumulative (single month only) effects cause different responses. Different latitudes also showed different responses of marine turtle strandings, both in response direction and timing.Cumulative effects of freshwater discharge in all latitudes resulted in increased strandings 10–12 months later. For latitudes -27°, -25° and -23° non-cumulative effects for discharge resulted in increased strandings 7–12 months later. Latitude -19° had different results for the non-cumulative bay with strandings reported earlier (3–6 months). Monthly mean maximum and minimum air temperatures, monthly average daily diurnal air temperature difference and rainfall had varying results for each examined latitude. This study will allow first responders and resource managers to be better equipped to deal with increased marine turtle stranding rates following extreme weather events. PMID:28771635
Quality-control of an hourly rainfall dataset and climatology of extremes for the UK.
Blenkinsop, Stephen; Lewis, Elizabeth; Chan, Steven C; Fowler, Hayley J
2017-02-01
Sub-daily rainfall extremes may be associated with flash flooding, particularly in urban areas but, compared with extremes on daily timescales, have been relatively little studied in many regions. This paper describes a new, hourly rainfall dataset for the UK based on ∼1600 rain gauges from three different data sources. This includes tipping bucket rain gauge data from the UK Environment Agency (EA), which has been collected for operational purposes, principally flood forecasting. Significant problems in the use of such data for the analysis of extreme events include the recording of accumulated totals, high frequency bucket tips, rain gauge recording errors and the non-operation of gauges. Given the prospect of an intensification of short-duration rainfall in a warming climate, the identification of such errors is essential if sub-daily datasets are to be used to better understand extreme events. We therefore first describe a series of procedures developed to quality control this new dataset. We then analyse ∼380 gauges with near-complete hourly records for 1992-2011 and map the seasonal climatology of intense rainfall based on UK hourly extremes using annual maxima, n-largest events and fixed threshold approaches. We find that the highest frequencies and intensities of hourly extreme rainfall occur during summer when the usual orographically defined pattern of extreme rainfall is replaced by a weaker, north-south pattern. A strong diurnal cycle in hourly extremes, peaking in late afternoon to early evening, is also identified in summer and, for some areas, in spring. This likely reflects the different mechanisms that generate sub-daily rainfall, with convection dominating during summer. The resulting quality-controlled hourly rainfall dataset will provide considerable value in several contexts, including the development of standard, globally applicable quality-control procedures for sub-daily data, the validation of the new generation of very high-resolution climate models and improved understanding of the drivers of extreme rainfall.
Quality‐control of an hourly rainfall dataset and climatology of extremes for the UK
Lewis, Elizabeth; Chan, Steven C.; Fowler, Hayley J.
2016-01-01
ABSTRACT Sub‐daily rainfall extremes may be associated with flash flooding, particularly in urban areas but, compared with extremes on daily timescales, have been relatively little studied in many regions. This paper describes a new, hourly rainfall dataset for the UK based on ∼1600 rain gauges from three different data sources. This includes tipping bucket rain gauge data from the UK Environment Agency (EA), which has been collected for operational purposes, principally flood forecasting. Significant problems in the use of such data for the analysis of extreme events include the recording of accumulated totals, high frequency bucket tips, rain gauge recording errors and the non‐operation of gauges. Given the prospect of an intensification of short‐duration rainfall in a warming climate, the identification of such errors is essential if sub‐daily datasets are to be used to better understand extreme events. We therefore first describe a series of procedures developed to quality control this new dataset. We then analyse ∼380 gauges with near‐complete hourly records for 1992–2011 and map the seasonal climatology of intense rainfall based on UK hourly extremes using annual maxima, n‐largest events and fixed threshold approaches. We find that the highest frequencies and intensities of hourly extreme rainfall occur during summer when the usual orographically defined pattern of extreme rainfall is replaced by a weaker, north–south pattern. A strong diurnal cycle in hourly extremes, peaking in late afternoon to early evening, is also identified in summer and, for some areas, in spring. This likely reflects the different mechanisms that generate sub‐daily rainfall, with convection dominating during summer. The resulting quality‐controlled hourly rainfall dataset will provide considerable value in several contexts, including the development of standard, globally applicable quality‐control procedures for sub‐daily data, the validation of the new generation of very high‐resolution climate models and improved understanding of the drivers of extreme rainfall. PMID:28239235
NASA Astrophysics Data System (ADS)
Li, X.; Sang, Y. F.
2017-12-01
Mountain torrents, urban floods and other disasters caused by extreme precipitation bring great losses to the ecological environment, social and economic development, people's lives and property security. So there is of great significance to floods prevention and control by the study of its spatial distribution. Based on the annual maximum rainfall data of 60min, 6h and 24h, the paper generate long sequences following Pearson-III distribution, and then use the information entropy index to study the spatial distribution and difference of different duration. The results show that the information entropy value of annual maximum rainfall in the south region is greater than that in the north region, indicating more obvious stochastic characteristics of annual maximum rainfall in the latter. However, the spatial distribution of stochastic characteristics is different in different duration. For example, stochastic characteristics of 60min annual maximum rainfall in the Eastern Tibet is smaller than surrounding, but 6h and 24h annual maximum rainfall is larger than surrounding area. In the Haihe River Basin and the Huaihe River Basin, the stochastic characteristics of the 60min annual maximum rainfall was not significantly different from that in the surrounding area, and stochastic characteristics of 6h and 24h was smaller than that in the surrounding area. We conclude that the spatial distribution of information entropy values of annual maximum rainfall in different duration can reflect the spatial distribution of its stochastic characteristics, thus the results can be an importantly scientific basis for the flood prevention and control, agriculture, economic-social developments and urban flood control and waterlogging.
Dry spell, onset and cessation of the wet season rainfall in the Upper Baro-Akobo Basin, Ethiopia
NASA Astrophysics Data System (ADS)
Kebede, Asfaw; Diekkrüger, Bernd; Edossa, Desalegn C.
2017-08-01
In this study, maximum dry spell length and number of dry spell periods of rainy seasons in the upper Baro-Akobo River basin which is a part of the Nile basin, Western Ethiopia, were investigated to analyse the drought trend. Daily rainfall records of the period 1972-2000 from eight rain gauge stations were used in the analysis, and Mann-Kendall test was used to test trends for significance. Furthermore, the beginning and end of the trend development in the dry spell were also tested using the sequential version of Mann-Kendall test. Results have shown that there is neither clear monotonic trend found in dry spell for the basin nor significant fluctuation in the onset, cession and duration of rainfall in the Baro-Akobo river basin. This sufficiently explains why rain-fed agriculture has suffered little in the western part of Ethiopia. The predictable nature of dry spell pattern may have allowed farmers to adjust to rainfall variability in the basin. Unlike many parts of Ethiopia, the Baro-Akobo basin climate variability is not a limiting factor for rain-fed agriculture productivity which may contribute significantly to national food security.
NASA Astrophysics Data System (ADS)
Sehad, Mounir; Lazri, Mourad; Ameur, Soltane
2017-03-01
In this work, a new rainfall estimation technique based on the high spatial and temporal resolution of the Spinning Enhanced Visible and Infra Red Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) is presented. This work proposes efficient scheme rainfall estimation based on two multiclass support vector machine (SVM) algorithms: SVM_D for daytime and SVM_N for night time rainfall estimations. Both SVM models are trained using relevant rainfall parameters based on optical, microphysical and textural cloud proprieties. The cloud parameters are derived from the Spectral channels of the SEVIRI MSG radiometer. The 3-hourly and daily accumulated rainfall are derived from the 15 min-rainfall estimation given by the SVM classifiers for each MSG observation image pixel. The SVMs were trained with ground meteorological radar precipitation scenes recorded from November 2006 to March 2007 over the north of Algeria located in the Mediterranean region. Further, the SVM_D and SVM_N models were used to estimate 3-hourly and daily rainfall using data set gathered from November 2010 to March 2011 over north Algeria. The results were validated against collocated rainfall observed by rain gauge network. Indeed, the statistical scores given by correlation coefficient, bias, root mean square error and mean absolute error, showed good accuracy of rainfall estimates by the present technique. Moreover, rainfall estimates of our technique were compared with two high accuracy rainfall estimates methods based on MSG SEVIRI imagery namely: random forests (RF) based approach and an artificial neural network (ANN) based technique. The findings of the present technique indicate higher correlation coefficient (3-hourly: 0.78; daily: 0.94), and lower mean absolute error and root mean square error values. The results show that the new technique assign 3-hourly and daily rainfall with good and better accuracy than ANN technique and (RF) model.
NASA Astrophysics Data System (ADS)
Brigandì, Giuseppina; Tito Aronica, Giuseppe; Bonaccorso, Brunella; Gueli, Roberto; Basile, Giuseppe
2017-09-01
The main focus of the paper is to present a flood and landslide early warning system, named HEWS (Hydrohazards Early Warning System), specifically developed for the Civil Protection Department of Sicily, based on the combined use of rainfall thresholds, soil moisture modelling and quantitative precipitation forecast (QPF). The warning system is referred to 9 different Alert Zones
in which Sicily has been divided into and based on a threshold system of three different increasing critical levels: ordinary, moderate and high. In this system, for early flood warning, a Soil Moisture Accounting (SMA) model provides daily soil moisture conditions, which allow to select a specific set of three rainfall thresholds, one for each critical level considered, to be used for issue the alert bulletin. Wetness indexes, representative of the soil moisture conditions of a catchment, are calculated using a simple, spatially-lumped rainfall-streamflow model, based on the SCS-CN method, and on the unit hydrograph approach, that require daily observed and/or predicted rainfall, and temperature data as input. For the calibration of this model daily continuous time series of rainfall, streamflow and air temperature data are used. An event based lumped rainfall-runoff model has been, instead, used for the derivation of the rainfall thresholds for each catchment in Sicily characterised by an area larger than 50 km2. In particular, a Kinematic Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall was developed for this purpose. For rainfall-induced shallow landslide warning, empirical rainfall thresholds provided by Gariano et al. (2015) have been included in the system. They were derived on an empirical basis starting from a catalogue of 265 shallow landslides in Sicily in the period 2002-2012. Finally, Delft-FEWS operational forecasting platform has been applied to link input data, SMA model and rainfall threshold models to produce warning on a daily basis for the entire region.
De Paola, Francesco; Giugni, Maurizio; Topa, Maria Elena; Bucchignani, Edoardo
2014-01-01
Changes in the hydrologic cycle due to increase in greenhouse gases cause variations in intensity, duration, and frequency of precipitation events. Quantifying the potential effects of climate change and adapting to them is one way to reduce urban vulnerability. Since rainfall characteristics are often used to design water structures, reviewing and updating rainfall characteristics (i.e., Intensity-Duration-Frequency (IDF) curves) for future climate scenarios is necessary (Reg Environ Change 13(1 Supplement):25-33, 2013). The present study regards the evaluation of the IDF curves for three case studies: Addis Ababa (Ethiopia), Dar Es Salaam (Tanzania) and Douala (Cameroon). Starting from daily rainfall observed data, to define the IDF curves and the extreme values in a smaller time window (10', 30', 1 h, 3 h, 6 h, 12 h), disaggregation techniques of the collected data have been used, in order to generate a synthetic sequence of rainfall, with statistical properties similar to the recorded data. Then, the rainfall pattern of the three test cities was analyzed and IDF curves were evaluated. In order to estimate the contingent influence of climate change on the IDF curves, the described procedure was applied to the climate (rainfall) simulations over the time period 2010-2050, provided by CMCC (Centro Euro-Mediterraneo sui Cambiamenti Climatici). The evaluation of the IDF curves allowed to frame the rainfall evolution of the three case studies, considering initially only historical data, then taking into account the climate projections, in order to verify the changes in rainfall patterns. The same set of data and projections was also used for evaluating the Probable Maximum Precipitation (PMP).
NASA Astrophysics Data System (ADS)
Matingo, Thomas; Gumindoga, Webster; Makurira, Hodson
2018-05-01
Flash floods are experienced almost annually in the ungauged Mbire District of the Middle Zambezi Basin. Studies related to hydrological modelling (rainfall-runoff) and flood forecasting require major inputs such as precipitation which, due to shortage of observed data, are increasingly using indirect methods for estimating precipitation. This study therefore evaluated performance of CMORPH and TRMM satellite rainfall estimates (SREs) for 30 min, 1 h, 3 h and daily intensities through hydrologic and flash flood modelling in the Lower Middle Zambezi Basin for the period 2013-2016. On a daily timestep, uncorrected CMORPH and TRMM show Probability of Detection (POD) of 61 and 59 %, respectively, when compared to rain gauge observations. The best performance using Correlation Coefficient (CC) was 70 and 60 % on daily timesteps for CMORPH and TRMM, respectively. The best RMSE for CMORPH was 0.81 % for 30 min timestep and for TRMM was 2, 11 % on 3 h timestep. For the year 2014 to 2015, the HEC-HMS (Hydrological Engineering Centre-Hydrological Modelling System) daily model calibration Nash Sutcliffe efficiency (NSE) for Musengezi sub catchment was 59 % whilst for Angwa it was 55 %. Angwa sub-catchment daily NSE results for the period 2015-2016 was 61 %. HEC-RAS flash flood modeling at 100, 50 and 25 year return periods for Angwa sub catchment, inundated 811 and 867 ha for TRMM rainfall simulated discharge at 3 h and daily timesteps, respectively. For CMORPH generated rainfall, the inundation was 818, 876, 890 and 891 ha at daily, 3 h, 1 h and 30 min timesteps. The 30 min time step for CMORPH effectively captures flash floods with the measure of agreement between simulated flood extent and ground control points of 69 %. For TRMM, the 3 h timestep effectively captures flash floods with coefficient of 67 %. The study therefore concludes that satellite products are most effective in capturing localized hydrological processes such as flash floods for sub-daily rainfall, because of improved spatial and temporal resolution.
A physically based analytical model of flood frequency curves
NASA Astrophysics Data System (ADS)
Basso, S.; Schirmer, M.; Botter, G.
2016-09-01
Predicting magnitude and frequency of floods is a key issue in hydrology, with implications in many fields ranging from river science and geomorphology to the insurance industry. In this paper, a novel physically based approach is proposed to estimate the recurrence intervals of seasonal flow maxima. The method links the extremal distribution of streamflows to the stochastic dynamics of daily discharge, providing an analytical expression of the seasonal flood frequency curve. The parameters involved in the formulation embody climate and landscape attributes of the contributing catchment and can be estimated from daily rainfall and streamflow data. Only one parameter, which is linked to the antecedent wetness condition in the watershed, needs to be calibrated on the observed maxima. The performance of the method is discussed through a set of applications in four rivers featuring heterogeneous daily flow regimes. The model provides reliable estimates of seasonal maximum flows in different climatic settings and is able to capture diverse shapes of flood frequency curves emerging in erratic and persistent flow regimes. The proposed method exploits experimental information on the full range of discharges experienced by rivers. As a consequence, model performances do not deteriorate when the magnitude of events with return times longer than the available sample size is estimated. The approach provides a framework for the prediction of floods based on short data series of rainfall and daily streamflows that may be especially valuable in data scarce regions of the world.
Yoo, Chulsang; Lee, Jinwook; Ro, Yonghun
2016-01-01
This paper evaluates the effect of climate change on daily rainfall, especially on the mean number of wet days and the mean rainfall intensity. Assuming that the mechanism of daily rainfall occurrences follows the first-order Markov chain model, the possible changes in the transition probabilities are estimated by considering the climate change scenarios. Also, the change of the stationary probabilities of wet and dry day occurrences and finally the change in the number of wet days are derived for the comparison of current (1x CO 2) and 2x CO 2conditions. As a result of this study, the increase or decreasemore » in the mean number of wet days was found to be not enough to explain all of the change in monthly rainfall amounts, so rainfall intensity should also be modified. The application to the Seoul weather station in Korea shows that about 30% of the total change in monthly rainfall amount can be explained by the change in the number of wet days and the remaining 70% by the change in the rainfall intensity. That is, as an effect of climate change, the increase in the rainfall intensity could be more significant than the increase in the wet days and, thus, the risk of flood will be much highly increased.« less
A coupled weather generator - rainfall-runoff approach on hourly time steps for flood risk analysis
NASA Astrophysics Data System (ADS)
Winter, Benjamin; Schneeberger, Klaus; Dung Nguyen, Viet; Vorogushyn, Sergiy; Huttenlau, Matthias; Merz, Bruno; Stötter, Johann
2017-04-01
The evaluation of potential monetary damage of flooding is an essential part of flood risk management. One possibility to estimate the monetary risk is to analyze long time series of observed flood events and their corresponding damages. In reality, however, only few flood events are documented. This limitation can be overcome by the generation of a set of synthetic, physically and spatial plausible flood events and subsequently the estimation of the resulting monetary damages. In the present work, a set of synthetic flood events is generated by a continuous rainfall-runoff simulation in combination with a coupled weather generator and temporal disaggregation procedure for the study area of Vorarlberg (Austria). Most flood risk studies focus on daily time steps, however, the mesoscale alpine study area is characterized by short concentration times, leading to large differences between daily mean and daily maximum discharge. Accordingly, an hourly time step is needed for the simulations. The hourly metrological input for the rainfall-runoff model is generated in a two-step approach. A synthetic daily dataset is generated by a multivariate and multisite weather generator and subsequently disaggregated to hourly time steps with a k-Nearest-Neighbor model. Following the event generation procedure, the negative consequences of flooding are analyzed. The corresponding flood damage for each synthetic event is estimated by combining the synthetic discharge at representative points of the river network with a loss probability relation for each community in the study area. The loss probability relation is based on exposure and susceptibility analyses on a single object basis (residential buildings) for certain return periods. For these impact analyses official inundation maps of the study area are used. Finally, by analyzing the total event time series of damages, the expected annual damage or losses associated with a certain probability of occurrence can be estimated for the entire study area.
Zhang, Zhi-Shan; Zhao, Yang; Li, Xin-Rong; Huang, Lei; Tan, Hui-Juan
2016-05-17
In water-limited regions, rainfall interception is influenced by rainfall properties and crown characteristics. Rainfall properties, aside from gross rainfall amount and duration (GR and RD), maximum rainfall intensity and rainless gap (RG), within rain events may heavily affect throughfall and interception by plants. From 2004 to 2014 (except for 2007), individual shrubs of Caragana korshinskii and Artemisia ordosica were selected to measure throughfall during 210 rain events. Various rainfall properties were auto-measured and crown characteristics, i.e., height, branch and leaf area index, crown area and volume of two shrubs were also measured. The relative interceptions of C. korshinskii and A. ordosica were 29.1% and 17.1%, respectively. Rainfall properties have more contributions than crown characteristics to throughfall and interception of shrubs. Throughfall and interception of shrubs can be explained by GR, RI60 (maximum rainfall intensities during 60 min), RD and RG in deceasing importance. However, relative throughfall and interception of two shrubs have different responses to rainfall properties and crown characteristics, those of C. korshinskii were closely related to rainfall properties, while those of A. ordosica were more dependent on crown characteristics. We highlight long-term monitoring is very necessary to determine the relationships between throughfall and interception with crown characteristics.
Drayna, Patrick; McLellan, Sandra L.; Simpson, Pippa; Li, Shun-Hwa; Gorelick, Marc H.
2010-01-01
Background Microbial water contamination after periods of heavy rainfall is well described, but its link to acute gastrointestinal illness (AGI) in children is not well known. Objectives We hypothesize an association between rainfall and pediatric emergency department (ED) visits for AGI that may represent an unrecognized, endemic burden of pediatric disease in a major U.S. metropolitan area served by municipal drinking water systems. Methods We conducted a retrospective time series analysis of visits to the Children’s Hospital of Wisconsin ED in Wauwatosa, Wisconsin. Daily visit totals of discharge International Classification of Diseases, 9th Revision codes of gastroenteritis or diarrhea were collected along with daily rainfall totals during the study period from 2002 to 2007. We used an autoregressive moving average model, adjusting for confounding variables such as sewage release events and season, to look for an association between daily visits and rainfall after a lag of 1–7 days. Results A total of 17,357 AGI visits were identified (mean daily total, 7.9; range, 0–56). Any rainfall 4 days prior was significantly associated with an 11% increase in AGI visits. Expected seasonal effects were also seen, with increased AGI visits in winter months. Conclusions We observed a significant association between rainfall and pediatric ED visits for AGI, suggesting a waterborne component of disease transmission in this population. The observed increase in ED visits for AGI occurred in the absence of any disease outbreaks reported to public health officials in our region, suggesting that rainfall-associated illness may be underestimated. Further study is warranted to better address this association. PMID:20515725
NASA Astrophysics Data System (ADS)
Mazurkiewicz, Karolina; Skotnicki, Marcin
2018-02-01
The paper presents the results of analysis of the influence of the maximum intensity (peak) location in the synthetic hyetograph and rainfall duration on the maximum outflow from urban catchment. For the calculation Chicago hyetographs with a duration from 15 minutes to 180 minutes and peak location between 20% and 50% of the total rainfall duration were design. Runoff simulation was performed using the SWMM5 program for three models of urban catchment with area from 0.9 km2 to 6.7 km2. It was found that the increase in the rainfall peak location causes the increase in the maximum outflow up to 17%. For a given catchment the greatest maximum outflow is generated by the rainfall, which time to peak corresponds to the flow time through the catchment. Presented results may be useful for choosing the rainfall parameters for storm sewer systems modeling.
Airborne pollen and spores of León (Spain)
NASA Astrophysics Data System (ADS)
Fernández-González, Delia; Suarez-Cervera, María; Díaz-González, Tomás; Valencia-Barrera, Rosa María
1993-06-01
A qualitative and quantitative analysis of airborne pollen and spores was carried out over 2 years (from September 1987 to August 1989) in the city of León. Slides were prepared daily using a volumetric pollen trap, which was placed on the Faculty of Veterinary Science building (University of León) 12m above ground-level. Fifty-one pollen types were observed; the most important of these were: Cupressaceae during the winter, Pinus and Quercus in spring, and Poaceae, Leguminosae and Chenopodiaceae in the summer. The results also showed the existence of a rich mould spore assemblage in the atmosphere. The group of Amerospores ( Penicillium, Aspergillus and Cladosporium) as well as Dictyospores ( Alternaria) were the most abundant; Puccinia was common in the air in August. Fluctuations in the total pollen and spores m3 of air were compared with meteorological parameters (temperature, relative humidity and rainfall). From the daily sampling of the atmosphere of León, considering the maximum and minimum temperature and duration of rainfall, the start of the pollen grain season was observed generally to coincide with a rise in temperature in the absence of rain.
A Metastatistical Approach to Satellite Estimates of Extreme Rainfall Events
NASA Astrophysics Data System (ADS)
Zorzetto, E.; Marani, M.
2017-12-01
The estimation of the average recurrence interval of intense rainfall events is a central issue for both hydrologic modeling and engineering design. These estimates require the inference of the properties of the right tail of the statistical distribution of precipitation, a task often performed using the Generalized Extreme Value (GEV) distribution, estimated either from a samples of annual maxima (AM) or with a peaks over threshold (POT) approach. However, these approaches require long and homogeneous rainfall records, which often are not available, especially in the case of remote-sensed rainfall datasets. We use here, and tailor it to remotely-sensed rainfall estimates, an alternative approach, based on the metastatistical extreme value distribution (MEVD), which produces estimates of rainfall extreme values based on the probability distribution function (pdf) of all measured `ordinary' rainfall event. This methodology also accounts for the interannual variations observed in the pdf of daily rainfall by integrating over the sample space of its random parameters. We illustrate the application of this framework to the TRMM Multi-satellite Precipitation Analysis rainfall dataset, where MEVD optimally exploits the relatively short datasets of satellite-sensed rainfall, while taking full advantage of its high spatial resolution and quasi-global coverage. Accuracy of TRMM precipitation estimates and scale issues are here investigated for a case study located in the Little Washita watershed, Oklahoma, using a dense network of rain gauges for independent ground validation. The methodology contributes to our understanding of the risk of extreme rainfall events, as it allows i) an optimal use of the TRMM datasets in estimating the tail of the probability distribution of daily rainfall, and ii) a global mapping of daily rainfall extremes and distributional tail properties, bridging the existing gaps in rain gauges networks.
NASA Astrophysics Data System (ADS)
Wen-feng, Tang; You-biao, Hu
2018-05-01
This paper studies the characteristics of atmospheric pollutant (SO2, NO2, PM2.5 and PM10) and the effects of rainfall on the removal of atmospheric pollutants. The results show atmospheric pollutants concentration vary in different seasons and functional area: atmospheric pollutants concentration in summer and autumn is lower than that in winter and spring; the concentration of SO2 and NO2 in coal-chemical industry areas and light industrial areas is higher, the concentration difference of PM2.5 and PM10 in different functional areas is very small, the removal efficiency of rainfall on atmospheric pollutant is gradually improved with the increasing of daily rainfall, rainfall intensity and rainfall duration, the ability of rainfall to remove pollutants tends to be stable after daily rainfall and rainfall intensity exceeds 30mm and 20mm/h respectively, the effect of rainfall on the removal of PM2.5 was slightly worse than the effect of rainfall on other atmospheric pollutants, the rainfall duration should be 60min, 60min and 80min respectively when the effect of rainfall on NO2, PM10 and SO2 tends to be stable.
Observed formation of easterly waves over northeast Africa
NASA Astrophysics Data System (ADS)
Jury, Mark R.
2018-06-01
This study explores the thermodynamic and kinematic features of easterly waves over northeast Africa in July-September season 2005-2015. A daily African easterly wave (AEW) index is formulated from transient satellite rainfall and reanalysis vorticity, and the ten most intense cases are studied by composite analysis. Surface moisture is advected from central Africa towards the Red Sea during AEW formation. The anomalous 600 hPa wind circulation is comprized of a cyclonic-south anticyclonic-north rotor pair and accentuated easterly jet along 17N. Composite convection is initiated over Ethiopia and subsequently intensifies following interaction with a zonal circulation located downstream. Composite AEW temperature anomalies reveal a cool lower-warm upper layer heating profile. 2-8 day variance of satellite OLR reaches a maximum over the southern Arabian Peninsula, suggesting an upstream role for surface heating and the Somali Jet. The large scale environment is analyzed by regression of the AEW index onto daily fields of rainfall, surface air pressure and temperature in July-September season ( N = 1004). The rainfall regression reflects a westward propagating AEW wave-train of higher values on 13N and lower values on 7N with a longitude spacing of 25°. The air pressure and temperature regression features a N-S dipole indicating an anomalous northward ITCZ. A low pressure signal west of the Maritime Continent coupled with a warm zone across the South Indian Ocean coincides with AEW formation over the eastern Sahel.
Moody, J.A.; Martin, D.A.
2001-01-01
Wildfire alters the hydrologic response of watersheds, including the peak discharges resulting from subsequent rainfall. Improving predictions of the magnitude of flooding that follows wildfire is needed because of the increase in human population at risk in the wildland-urban interface. Because this wildland-urban interface is typically in mountainous terrain, we investigated rainfall-runoff relations by measuring the maximum 30 min rainfall intensity and the unit-area peak discharge (peak discharge divided by the area burned) in three mountainous watersheds (17-26.8 km2) after a wildfire. We found rainfall-runoff relations that relate the unit-area peak discharges to the maximum 30 min rainfall intensities by a power law. These rainfall-runoff relations appear to have a threshold value for the maximum 30 min rainfall intensity (around 10 mm h-1) such that, above this threshold, the magnitude of the flood peaks increases more rapidly with increases in intensity. This rainfall intensity could be used to set threshold limits in rain gauges that are part of an early-warning flood system after wildfire. The maximum unit-area peak discharges from these three burned watersheds ranged from 3.2 to 50 m3 s-1 km-2. These values could provide initial estimates of the upper limits of runoff that can be used to predict floods after wildfires in mountainous terrain. Published in 2001 by John Wiley and Sons, Ltd.
On the asymmetric distribution of shear-relative typhoon rainfall
NASA Astrophysics Data System (ADS)
Gao, Si; Zhai, Shunan; Li, Tim; Chen, Zhifan
2018-02-01
The Tropical Rainfall Measuring Mission (TRMM) 3B42 precipitation, the National Centers for Environmental Prediction (NCEP) Final analysis and the Regional Specialized Meteorological Center (RSMC) Tokyo best-track data during 2000-2015 are used to compare spatial rainfall distribution associated with Northwest Pacific tropical cyclones (TCs) with different vertical wind shear directions and investigate possible mechanisms. Results show that the maximum TC rainfall are all located in the downshear left quadrant regardless of shear direction, and TCs with easterly shear have greater magnitudes of rainfall than those with westerly shear, consistent with previous studies. Rainfall amount of a TC is related to its relative position and proximity from the western Pacific subtropical high (WPSH) and the intensity of water vapor transport, and low-level jet is favorable for water vapor transport. The maximum of vertically integrated moisture flux convergence (MFC) are located on the downshear side regardless of shear direction, and the contribution of wind convergence to the total MFC is far larger than that of moisture advection. The cyclonic displacement of the maximum rainfall relative to the maximum MFC is possibly due to advection of hydrometeors by low- and middle-level cyclonic circulation of TCs. The relationship between TC rainfall and the WPSH through water vapor transport and vertical wind shear implies that TC rainfall may be highly predictable given the high predictability of the WPSH.
Continuous rainfall simulation for regional flood risk assessment - application in the Austrian Alps
NASA Astrophysics Data System (ADS)
Salinas, Jose Luis; Nester, Thomas; Komma, Jürgen; Blöschl, Günter
2017-04-01
Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of the observed rainfall characteristics, such as regional intensity-duration-frequency curves, is necessary to adequately model the magnitude and frequency of the flood peaks. Furthermore, the replication of the observed rainfall spatial and temporal correlations allows to model important other hydrological features like antecedent soil moisture conditions before extreme rainfall events. In this work, we present an application in the Tirol region (Austrian alps) of a modification of the model presented by Bardossy and Platte (1992), where precipitation is modeled on a station basis as a mutivariate autoregressive model (mAr) in a Normal space, and then transformed to a Gamma-distributed space. For the sake of simplicity, the parameters of the Gamma distributions are assumed to vary monthly according to a sinusoidal function, and are calibrated trying to simultaneously reproduce i) mean annual rainfall, ii) mean daily rainfall amounts, iii) standard deviations of daily rainfall amounts, and iv) 24-hours intensity duration frequency curve. The calibration of the spatial and temporal correlation parameters is performed in a way that the intensity-duration-frequency curves aggregated at different spatial and temporal scales reproduce the measured ones. Bardossy, A., and E. J. Plate (1992), Space-time model for daily rainfall using atmospheric circulation patterns, Water Resour. Res., 28(5), 1247-1259, doi:10.1029/91WR02589.
NASA Astrophysics Data System (ADS)
Pan, Huali; Hu, Mingjian; Ou, Guoqiang
2017-04-01
According to the geological investigation in Fujian province, the total number of geological disasters was 9513, in which the number of landslide, collapse, unstable slope and surface collapse was 5816, 1888, 1591, 103 and 115 respectively. The main geological disaster was the landslide with 61.1% of total geological disasters. Among all these geological disasters, only 6.0% was relative stable, 17.0% was basic stable, nearly 76.0% was unstable. The slope disaster was the main geological disaster, if the unstable slope was the potential landslide or collapse; the slope collapse was 98.0% of all geological disasters. The rainfall, in particular the heavy rain, was direct dynamic factor for geological disasters, but the occurrence probability of geological disasters was different because of the sensitivity of the geological environment though of the same intensity rainfall. To obtain the characteristics of soil erosion under the rainfall condition, the rainfall characteristics and its related disasters of slag disposal pit of a certain Gold-Copper Deposit in Fujian province was analyzed by the meteorological and rainfall data. According to the distribution of monitoring stations of hydrological and rainfall in Longyan city of Fujian province and the location of gold-copper deposit, the Shanghang monitoring station of hydrological and rainfall was chosen, which is the nearest one to the gold-copper deposit. Then main parameters of the prediction model, the antecedent precipitation, the rainfall on the day and the rainfall threshold, were calculated by using the rainfall data from 2002 to 2010. And the relationship between geological disasters and the rainfall characteristics were analyzed. The results indicated that there was high risk for the debris flow with landslide collapse when either the daily rainfall was more than 100.0 mm, or the total rainfall was more than 136.0mm in the gold-copper deposit and the Shanghang region. At the same time, although there was few risk for the debris flow when the daily rainfall was between 50.0-100.0mm, once the soil was saturated or nearly saturated because of the continuous antecedent precipitation, debris flow disaster would occur even the daily rainfall was only 50.0mm. In addition, it was prone to trigger debris flow disaster when the daily heavy rainfall was more than 100.0mm or the torrential rainfall in 3 days was between 250.0 -300.0mm.
NASA Astrophysics Data System (ADS)
Mercogliano, P.; Rianna, G.
2017-12-01
Eminent works highlighted how available observations display ongoing increases in extreme rainfall events while climate models assess them for future. Although the constraints in rainfall networks observations and uncertainties in climate modelling currently affect in significant way investigations, the huge impacts potentially induced by climate changes (CC) suggest adopting effective adaptation measures in order to take proper precautions. In this regard, design storms are used by engineers to size hydraulic infrastructures potentially affected by direct (e.g. pluvial/urban flooding) and indirect (e.g. river flooding) effects of extreme rainfall events. Usually they are expressed as IDF curves, mathematical relationships between rainfall Intensity, Duration, and the return period (frequency, F). They are estimated interpreting through Extreme Theories Statistical Theories (ETST) past rainfall records under the assumption of steady conditions resulting then unsuitable under climate change. In this work, a methodology to estimate future variations in IDF curves is presented and carried out for the city of Naples (Southern Italy). In this regard, the Equidistance Quantile Matching Approach proposed by Sivrastav et al. (2014) is adopted. According it, daily-subdaily maximum precipitation observations [a] and the analogous daily data provided by climate projections on current [b] and future time spans [c] are interpreted in IDF terms through Generalized Extreme Value (GEV) approach. After, quantile based mapping approach is used to establish a statistical relationship between cumulative distribution functions resulting by GEV of [a] and [b] (spatial downscaling) and [b] and [c] functions (temporal downscaling). Coupling so-obtained relations permits generating IDF curves under CC assumption. To account for uncertainties in future projections, all climate simulations available for the area in Euro-Cordex multimodel ensemble at 0.11° (about 12 km) are considered under three different concentration scenarios (RCP2.6, RCP4.5 and RCP8.5). The results appear largely influenced by models, RCPs and time horizon of interest; nevertheless, clear indications of increases are detectable although with different magnitude on the different precipitation durations.
Development of Sub-Daily Intensity Duration Frequency (IDF) Curves for Major Urban Areas in India
NASA Astrophysics Data System (ADS)
Ali, H.; Mishra, V.
2014-12-01
Extreme precipitation events disrupt urban transportation and cause enormous damage to infrastructure. Urban areas are fast responding catchments due to significant impervious surface. Stormwater designs based on daily rainfall data provide inadequate information. We, therefore, develop intensity-duration-frequency curves using sub-daily (1 hour to 12 hour) rainfall data for 57 major urban areas in India. While rain gage stations data from urban areas are most suitable, but stations are unevenly distributed and their data have gaps and inconsistencies. Therefore, we used hourly rainfall data from the Modern Era Retrospective-analysis for Research and Applications (MERRA), which provides a long term data (1979 onwards). Since reanalysis products have uncertainty associated with them we need to enhance their accuracy before their application. We compared daily rain gage station data obtained from Global Surface Summary of Day Data (GSOD) available for 65 stations for the period of 2000-2010 with gridded daily rainfall data provided by Indian Meteorological Department (IMD). 3-hourly data from NOAA/Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) were aggregated to daily for comparison with GSOD station data . TMPA is found to be best correlated with GSOD data. We used TMPA data to correct MERRA's hourly precipitation, which were applied to develop IDF curves. We compared results with IDF curves from empirical methods and found substantial disparities in the existing stormwater designs in India.
Li, Rui-ling; Zhang, Yong-chun; Liu, Zhuang; Zeng, Yuan; Li, Wei-xin; Zhang, Hong-ling
2010-05-01
To investigate the effect of rainfall on agricultural nonpoint source pollution, watershed scale experiments were conducted to study the characteristics of nutrients in surface runoff under different rainfall intensities from farmlands in gentle slope hilly areas around Taihu Lake. Rainfall intensity significantly affected N and P concentrations in runoff. Rainfall intensity was positively related to TP, PO4(3-) -P and NH4+ -N event mean concentrations(EMC). However, this study have found the EMC of TN and NO3- -N to be positively related to rainfall intensity under light rain and negatively related to rainfall intensity under heavy rain. TN and TP site mean amounts (SMA) in runoff were positively related to rainfall intensity and were 1.91, 311.83, 127.65, 731.69 g/hm2 and 0.04, 7.77, 2.99, 32.02 g/hm2 with rainfall applied under light rain, moderate rain, heavy rain and rainstorm respectively. N in runoff was mainly NO3- -N and NH4+ -N and was primarily in dissolved form from Meilin soils. Dissolved P (DP) was the dominant form of TP under light rain, but particulate P (PP) mass loss increased with the increase of rainfall intensity and to be the dominant form when the rainfall intensity reaches rainstorm. Single relationships were used to describe the dependence of TN and TP mass losses in runoff on rainfall, maximum rainfall intensity, average rainfall intensity and rainfall duration respectively. The results showed a significant positive correlation between TN mass loss and rainfall, maximum rainfall intensity respectively (p < 0.01) and also TP mass loss and rainfall, maximum rainfall intensity respectively (p < 0.01).
Impacts of Climatic Variability on Vibrio parahaemolyticus Outbreaks in Taiwan
Hsiao, Hsin-I; Jan, Man-Ser; Chi, Hui-Ju
2016-01-01
This study aimed to investigate and quantify the relationship between climate variation and incidence of Vibrio parahaemolyticus in Taiwan. Specifically, seasonal autoregressive integrated moving average (ARIMA) models (including autoregression, seasonality, and a lag-time effect) were employed to predict the role of climatic factors (including temperature, rainfall, relative humidity, ocean temperature and ocean salinity) on the incidence of V. parahaemolyticus in Taiwan between 2000 and 2011. The results indicated that average temperature (+), ocean temperature (+), ocean salinity of 6 months ago (+), maximum daily rainfall (current (−) and one month ago (−)), and average relative humidity (current and 9 months ago (−)) had significant impacts on the incidence of V. parahaemolyticus. Our findings offer a novel view of the quantitative relationship between climate change and food poisoning by V. parahaemolyticus in Taiwan. An early warning system based on climate change information for the disease control management is required in future. PMID:26848675
Impacts of Climatic Variability on Vibrio parahaemolyticus Outbreaks in Taiwan.
Hsiao, Hsin-I; Jan, Man-Ser; Chi, Hui-Ju
2016-02-03
This study aimed to investigate and quantify the relationship between climate variation and incidence of Vibrio parahaemolyticus in Taiwan. Specifically, seasonal autoregressive integrated moving average (ARIMA) models (including autoregression, seasonality, and a lag-time effect) were employed to predict the role of climatic factors (including temperature, rainfall, relative humidity, ocean temperature and ocean salinity) on the incidence of V. parahaemolyticus in Taiwan between 2000 and 2011. The results indicated that average temperature (+), ocean temperature (+), ocean salinity of 6 months ago (+), maximum daily rainfall (current (-) and one month ago (-)), and average relative humidity (current and 9 months ago (-)) had significant impacts on the incidence of V. parahaemolyticus. Our findings offer a novel view of the quantitative relationship between climate change and food poisoning by V. parahaemolyticus in Taiwan. An early warning system based on climate change information for the disease control management is required in future.
A relook at NEH-4 curve number data and antecedent moisture condition criteria
NASA Astrophysics Data System (ADS)
Mishra, Surendra Kumar; Singh, Vijay P.
2006-08-01
This paper investigates the variation of the popular curve number (CN) values given in the National Engineering Hand Book-Section 4 (NEH-4) of the Soil Conservation Service (SCS) with antecedent moisture condition (AMC) and soil type. Using the volumetric concept, involving soil, water, and air, a significant condensation of the NEH-4 tables is achieved. This leads to a procedure for determination of CN for gauged as well as ungauged watersheds. The rainfall-runoff events derived from daily data of four Indian watersheds exhibited a power relation between the potential maximum retention or CN and the 5-day antecedent rainfall amount. Including this power relation, the SCS-CN method was modified. This modification also eliminates the problem of sudden jumps from one AMC level to the other. The runoff values predicted using the modified method and the existing method utilizing the NEH-4 AMC criteria yielded similar results.
NASA Astrophysics Data System (ADS)
Kossieris, Panagiotis; Makropoulos, Christos; Onof, Christian; Koutsoyiannis, Demetris
2018-01-01
Many hydrological applications, such as flood studies, require the use of long rainfall data at fine time scales varying from daily down to 1 min time step. However, in the real world there is limited availability of data at sub-hourly scales. To cope with this issue, stochastic disaggregation techniques are typically employed to produce possible, statistically consistent, rainfall events that aggregate up to the field data collected at coarser scales. A methodology for the stochastic disaggregation of rainfall at fine time scales was recently introduced, combining the Bartlett-Lewis process to generate rainfall events along with adjusting procedures to modify the lower-level variables (i.e., hourly) so as to be consistent with the higher-level one (i.e., daily). In the present paper, we extend the aforementioned scheme, initially designed and tested for the disaggregation of daily rainfall into hourly depths, for any sub-hourly time scale. In addition, we take advantage of the recent developments in Poisson-cluster processes incorporating in the methodology a Bartlett-Lewis model variant that introduces dependence between cell intensity and duration in order to capture the variability of rainfall at sub-hourly time scales. The disaggregation scheme is implemented in an R package, named HyetosMinute, to support disaggregation from daily down to 1-min time scale. The applicability of the methodology was assessed on a 5-min rainfall records collected in Bochum, Germany, comparing the performance of the above mentioned model variant against the original Bartlett-Lewis process (non-random with 5 parameters). The analysis shows that the disaggregation process reproduces adequately the most important statistical characteristics of rainfall at wide range of time scales, while the introduction of the model with dependent intensity-duration results in a better performance in terms of skewness, rainfall extremes and dry proportions.
Rainfall erosivity factor estimation in Republic of Moldova
NASA Astrophysics Data System (ADS)
Castraveš, Tudor; Kuhn, Nikolaus
2017-04-01
Rainfall erosivity represents a measure of the erosive force of rainfall. Typically, it is expressed as variable such as the R factor in the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1965, 1978) or its derivates. The rainfall erosivity index for a rainfall event (EI30) is calculated from the total kinetic energy and maximum 30 minutes intensity of individual events. However, these data are often unavailable for wide regions and countries. Usually, there are three issues regarding precipitation data: low temporal resolution, low spatial density and limited access to the data. This is especially true for some of postsoviet countries from Eastern Europe, such as Republic of Moldova, where soil erosion is a real and persistent problem (Summer, 2003) and where soils represents the main natural resource of the country. Consequently, researching and managing soil erosion is particularly important. The purpose of this study is to develop a model based on commonly available rainfall data, such as event, daily or monthly amounts, to calculate rainfall erosivity for the territory of Republic of Moldova. Rainfall data collected during 1994-2015 period at 15 meteorological stations in the Republic of Moldova, with 10 minutes temporal resolution, were used to develop and calibrate a model to generate an erosivity map of Moldova. References 1. Summer, W., (2003). Soil erosion in the Republic of Moldova — the importance of institutional arrangements. Erosion Prediction in Ungauged Basins: Integrating Methods and Techniques (Proceedings of symposium HS01 held during IUGG2003 at Sapporo. July 2003). IAHS Publ. no. 279. 2. Wischmeier, W.H., and Smith, D.D. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. Agr. Handbook No. 282, U.S. Dept. Agr., Washington, DC 3. Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses. Agr. handbook No. 537, U.S. Dept. of Agr., Science and Education Administration.
The Angola Low: relationship with southern African rainfall and ENSO
NASA Astrophysics Data System (ADS)
Crétat, Julien; Pohl, Benjamin; Dieppois, Bastien; Berthou, Ségolène; Pergaud, Julien
2018-05-01
The main states of the Angola Low (AL) are identified using clustering analysis applied to daily anomalous patterns of 700-hPa wind vorticity over Angola and adjacent countries from November to March for the 1980/81-2014/15 period. At the daily timescale, we examine the extent to which the main states of the AL modulate daily rainfall over southern Africa. At the interannual timescale, we assess both the relationship between the occurrence of these AL states and El Niño southern oscillation (ENSO) and the role of the AL in explaining ENSO's failure in driving southern African rainfall at times. Three reanalyses are considered to account for uncertainties induced by the scarcity of data available for assimilation over southern Africa. Three preferential states of the Angola Low are identified: AL state close to its seasonal climatology with slight zonal displacements, anomalously weak AL state and anomalously strong AL state with meridional displacements. These different states all significantly modulate daily southern African rainfall. Near-climatological AL state promotes wet rainfall anomalies over eastern subtropical southern Africa and dry rainfall anomalies over its western part. A slight westward shift in the near-climatological position of the AL leads to reversed zonal gradient in rainfall. The remaining regimes significantly modulate the meridional gradient in southern African rainfall. Anomalously weak and anomalously northward AL states promote wet rainfall anomalies over tropical southern Africa and dry rainfall anomalies over subtropical southern Africa. The reverse prevails for anomalously southward AL. At the interannual timescale, ENSO significantly modulates the seasonal occurrence of most AL states in the three reanalyses. Anomalously weak and southward AL states are more strongly correlated with regional rainfall than ENSO in all reanalyses, suggesting that accounting for AL variability may improve seasonal forecasts. Case study analysis of the major 1982/83 and 1997/98 El Niño events suggests that the weak rainfall anomalies and strong seasonal AL in 1997/98 may result from counteracting effects between ENSO and Indian Ocean coupled modes of variability.
Zhang, Zhi-Shan; Zhao, Yang; Li, Xin-Rong; Huang, Lei; Tan, Hui-Juan
2016-01-01
In water-limited regions, rainfall interception is influenced by rainfall properties and crown characteristics. Rainfall properties, aside from gross rainfall amount and duration (GR and RD), maximum rainfall intensity and rainless gap (RG), within rain events may heavily affect throughfall and interception by plants. From 2004 to 2014 (except for 2007), individual shrubs of Caragana korshinskii and Artemisia ordosica were selected to measure throughfall during 210 rain events. Various rainfall properties were auto-measured and crown characteristics, i.e., height, branch and leaf area index, crown area and volume of two shrubs were also measured. The relative interceptions of C. korshinskii and A. ordosica were 29.1% and 17.1%, respectively. Rainfall properties have more contributions than crown characteristics to throughfall and interception of shrubs. Throughfall and interception of shrubs can be explained by GR, RI60 (maximum rainfall intensities during 60 min), RD and RG in deceasing importance. However, relative throughfall and interception of two shrubs have different responses to rainfall properties and crown characteristics, those of C. korshinskii were closely related to rainfall properties, while those of A. ordosica were more dependent on crown characteristics. We highlight long-term monitoring is very necessary to determine the relationships between throughfall and interception with crown characteristics. PMID:27184918
NASA Astrophysics Data System (ADS)
Liguori, Sara; O'Loughlin, Fiachra; Souvignet, Maxime; Coxon, Gemma; Freer, Jim; Woods, Ross
2014-05-01
This research presents a newly developed observed sub-daily gridded precipitation product for England and Wales. Importantly our analysis specifically allows a quantification of rainfall errors from grid to the catchment scale, useful for hydrological model simulation and the evaluation of prediction uncertainties. Our methodology involves the disaggregation of the current one kilometre daily gridded precipitation records available for the United Kingdom[1]. The hourly product is created using information from: 1) 2000 tipping-bucket rain gauges; and 2) the United Kingdom Met-Office weather radar network. These two independent datasets provide rainfall estimates at temporal resolutions much smaller than the current daily gridded rainfall product; thus allowing the disaggregation of the daily rainfall records to an hourly timestep. Our analysis is conducted for the period 2004 to 2008, limited by the current availability of the datasets. We analyse the uncertainty components affecting the accuracy of this product. Specifically we explore how these uncertainties vary spatially, temporally and with climatic regimes. Preliminary results indicate scope for improvement of hydrological model performance by the utilisation of this new hourly gridded rainfall product. Such product will improve our ability to diagnose and identify structural errors in hydrological modelling by including the quantification of input errors. References [1] Keller V, Young AR, Morris D, Davies H (2006) Continuous Estimation of River Flows. Technical Report: Estimation of Precipitation Inputs. in Agency E (ed.). Environmental Agency.
NASA Astrophysics Data System (ADS)
Wang, Pin; Zhao, Han; You, Fangxin; Zhou, Hailong; Goggins, William B.
2017-08-01
Hand, foot, and mouth disease (HFMD) is an enterovirus-induced infectious disease, mainly affecting children under 5 years old. Outbreaks of HFMD in recent years indicate the disease interacts with both the weather and season. This study aimed to investigate the seasonal association between HFMD and weather variation in Chongqing, China. Generalized additive models and distributed lag non-linear models based on a maximum lag of 14 days, with negative binomial distribution assumed to account for overdispersion, were constructed to model the association between reporting HFMD cases from 2009 to 2014 and daily mean temperature, relative humidity, total rainfall and sun duration, adjusting for trend, season, and day of the week. The year-round temperature and relative humidity, rainfall in summer, and sun duration in winter were all significantly associated with HFMD. An inverted-U relationship was found between mean temperature and HFMD above 19 °C in summer, with a maximum morbidity at 27 °C, while the risk increased linearly with the temperature in winter. A hockey-stick association was found for relative humidity in summer with increasing risks over 60%. Heavy rainfall, relative to no rain, was found to be associated with reduced HFMD risk in summer and 2 h of sunshine could decrease the risk by 21% in winter. The present study showed meteorological variables were differentially associated with HFMD incidence in two seasons. Short-term weather variation surveillance and forecasting could be employed as an early indicator for potential HFMD outbreaks.
NASA Astrophysics Data System (ADS)
Leonarduzzi, E.; Molnar, P.; McArdell, B. W.
2017-12-01
In Switzerland floods are responsible for most of the damage caused by rainfall-triggered natural hazards (89%), followed by landslides (6%, almost 600 M USD) as reported in Hilker et al. (2009) for the period 1972-2007. A high-resolution gridded daily precipitation dataset is combined with a landslide inventory containing over 2000 events in the period 1972-2012 to analyze rainfall thresholds that lead to landsliding in Switzerland. First triggering rainfall and landslides are co-located obtaining the distributions of triggering and non-triggering rainfall event properties at the scale of the precipitation data (2*2 km2) and considering 1 day as the interarrival time to separate events. Then rainfall thresholds are obtained by maximizing true positives (accurate predictions) while minimizing false negatives (false alarms), using the True Skill Statistic. The best predictive performance is obtained by the intensity-duration ID threshold curve, followed by peak daily intensity (Imax) and mean event intensity (Imean). Event duration by itself has very low predictive power. In addition to country-wide thresholds, local ones are also defined by regionalization based on surface erodibility and local long-term climate (mean daily precipitation). Different Imax thresholds are determined for each of the regions separately. It is found that wetter local climate and lower erodibility lead to significantly higher rainfall thresholds required to trigger landslides. However, the improvement in model performance due to regionalization is marginal and much lower than what can be achieved by having a high quality landslide database. In order to validate the performance of the Imax rainfall threshold model, reference cases will be presented in which the landslide locations and timing are randomized and the landslide sample size is reduced. Jack-knife and cross-validation experiments demonstrate that the model is robust. The results highlight the potential of using rainfall I-D threshold curves and Imax threshold values for predicting the occurrence of landslides on a country or regional scale even with daily precipitation data, with possible applications in landslide warning systems.
NASA Astrophysics Data System (ADS)
Fragoso, M.; Trigo, R. M.; Lopes, S.; Lopes, A.; Magro, C.
2010-09-01
On February 20, 2010, the Madeira island (Portugal) was hit by torrential rains that triggered catastrophic flash floods, accounting for 43 deaths and 8 missing people. The regional authorities estimated that the total losses exceeded 1 billion of euros resulting from the destructive damages, which were very harmful in Funchal, the capital of the region, where 22 persons died. This paper aims to analyse and discuss two main issues related with the exceptionality of this event. The first part deals with the atmospheric context associated with the rainfall episode, which occurred embedded in a very rainy winter season on this subtropical Atlantic region. Large scale atmospheric controls will be analysed, taking into consideration the low phase conditions of the North Atlantic Oscillation (NAO) that remained overwhelmingly negative between late November 2009 and early April 2010. The role of positive sea surface temperatures anomalies in the subtropical Atlantic region during the prevous weeks will be also investigated. Furthermore, the discussion will be focused on the meteorological precursors of the 20 February rainstorm, using synoptic weather charts and sub-daily reanalysis data and analysing appropriate variables, such as, SLP, geopotential height, instability indices, precipitable water, and others atmospheric parameters. The second section of this work is devoted to the evaluation of the exceptionality of the rainfall records related with this event. In Funchal (Observatory station), the precipitation amount registered during February 2010 was 458 mm, exceeding by seven times (!) the average monthly precipitation, constituting the new absolute record, since 1865, when this meteorological station began its activity. The daily rainfall on 20 February in the same location was 132 mm, which is the highest daily amount since 1920. Return periods of this daily amount will be estimated for the two stations with the longest period available of daily precipitation, Funchal Observatory and mountain peek Areeiro. Daily, sub-daily, hourly and sub-hourly rainfall data will be also analysed using the available information from the modern automated raingauge network of the island. Among the several notable rainfall amounts, it should be highlighted the daily amounts between 300 and 350 mm reached in different locations on the southern flanks of the mountains above the 500 m height and six hours rainfall exceeding 200 mm at the upper parts of the slopes in the Funchal area.
Trend analysis for daily rainfall series of Barcelona
NASA Astrophysics Data System (ADS)
Ortego, M. I.; Gibergans-Báguena, J.; Tolosana-Delgado, R.; Egozcue, J. J.; Llasat, M. C.
2009-09-01
Frequency analysis of hydrological series is a key point to acquire an in-depth understanding of the behaviour of hydrologic events. The occurrence of extreme hydrologic events in an area may imply great social and economical impacts. A good understanding of hazardous events improves the planning of human activities. A useful model for hazard assessment of extreme hydrologic events in an area is the point-over-threshold (POT) model. Time-occurrence of events is assumed to be Poisson distributed, and the magnitude X of each event is modeled as an arbitrary random variable, whose excesses over the threshold x0, Y = X - x0, given X > x0, have a Generalized Pareto Distribution (GPD), ( ? )- 1? FY (y|β,?) = 1 - 1+ βy , 0 ? y < ysup , where ysup = +? if ? 0, and ysup = -β? ? if ? < 0. The limiting distribution for ? = 0 is an exponential one. Independence between this magnitude and occurrence in time is assumed, as well as independence from event to event. In order to take account for uncertainty of the estimation of the GPD parameters, a Bayesian approach is chosen. This approach allows to include necessary conditions on the parameters of the distribution for our particular phenomena, as well as propagate adequately the uncertainty of estimations to the hazard parameters, such as return periods. A common concern is to know whether magnitudes of hazardous events have changed in the last decades. Long data series are very appreciated in order to properly study these issues. The series of daily rainfall in Barcelona (1854-2006) has been selected. This is one of the longer european daily rainfall series available. Daily rainfall is better described using a relative scale and therefore it is suitably treated in a log-scale. Accordingly, log-precipitation is identified with X. Excesses over a threshold are modeled by a GPD with a limited maximum value. An additional assumption is that the distribution of the excesses Y has limited upper tail and, therefore, ? < 0, ysup = -β?. Such a long data series provides valuable information about the phenomena on hand, and therefore a very first step is to have a look to its reliability. The first part of the work focuses on the possible existence of abrupt changes in the parameters of the GPD. These abrupt changes may be due to changes in the location of the observatories and/or technological advances introduced in the measuring instruments. The second part of the work examines the possible existence of trends. The parameters of the model are considered as a function of time. A new parameterisation of the GPD distribution is suggested, in order to parsimoniously deal with this climate variation, ? = ln(-? ?;β) and ? = ln(-? ? β) The classical scale and shape parameters of the GPD (β,?) are reformulated as a location parameter ? "linked to the upper limit of the distribution", and a shape parameter ?. In this reparameterisation, the parsimonious choice is to consider shape as a linear function of time, ?(t) = ?0 + t? while keeping location fixed, ?(t) = ?0. Then, the climate change is assessed by checking the hypothesis ? 0. Results show no significant abrupt changes in excesses distribution of the Barcelona daily rainfall series but suggest a significant change for the parameters, and therefore the existence of a trend in daily rainfall for this period.
Effects of episodic rainfall on a subterranean estuary
NASA Astrophysics Data System (ADS)
Yu, Xiayang; Xin, Pei; Lu, Chunhui; Robinson, Clare; Li, Ling; Barry, D. A.
2017-07-01
Numerical simulations were conducted to examine the effect of episodic rainfall on nearshore groundwater dynamics in a tidally influenced unconfined coastal aquifer, with a focus on both long-term (yearly) and short-term (daily) behavior of submarine groundwater discharge (SGD) and seawater intrusion (SWI). The results showed nonlinear interactions among the processes driven by rainfall, tides, and density gradients. Rainfall-induced infiltration increased the yearly averaged fresh groundwater discharge to the ocean but reduced the extents of the saltwater wedge and upper saline plume as well as the total rate of seawater circulation through both zones. Overall, the net effect of the interactions led to an increase of the SGD. The nearshore groundwater responded to individual rainfall events in a delayed and cumulative fashion, as evident in the variations of daily averaged SGD and salt stored in the saltwater wedge (quantifying the extent of SWI). A generalized linear model (GLM) along with a Gamma distribution function was developed to describe the delayed and prolonged effect of rainfall events on short-term groundwater behavior. This model validated with results of daily averaged SGD and SWI from the simulations of groundwater and solute transport using independent rainfall data sets, performed well in predicting the behavior of the nearshore groundwater system under the combined influence of episodic rainfall, tides, and density gradients. The findings and developed GLM form a basis for evaluating and predicting SGD, SWI, and associated mass fluxes from unconfined coastal aquifers under natural conditions, including episodic rainfall.
Cascade rainfall disaggregation application in U.S. Central Plains
USDA-ARS?s Scientific Manuscript database
Hourly rainfall are increasingly used in complex, process-based simulations of the environment. Long records of daily rainfall are common, but long continuous records of hourly rainfall are rare and must be developed. A Multiplicative Random Cascade (MRC) model is proposed to disaggregate observed d...
Hydrologic data from urban watersheds in the Tampa Bay area, Florida
Lopez, Miguel A.; Michaelis, D.M.
1979-01-01
Hydrologic data are being collected in 10 urbanized watersheds located in the Tampa Bay area, Florida. The gaged watersheds have impervious areas that range from 19 percent for a residential watershed in north Tampa to nearly 100 percent for a downtown Tampa watershed. Land-use types, including roads, residential, commercial, industrial, institutional, recreational , and open space, have been determined for each watershed. Rainfall and storm runoff data collected since 1971 for one site and since 1975 for six other sites through September 1976, have been processed. These data are recorded at 5-minute intervals and are stored in the U. S. Geological Survey WATSTORE unit values file. Daily rainfall at 12 sites and daily pan evaporation at one site have been stored in the WATSTORE daily values file. Chemical and biological analyses of storm runoff for six sites, base flow for seven sites, and analyses of bottom material for seven sites are also stored in the WATSTORE water-quality files. Rainfall and storm runoff for selected storms, daily rainfall, and daily pan-evaporation data are summarized in this report. Water-quality analyses of all water-quality samples also are listed. (Woodard-USGS).
The spatial return level of aggregated hourly extreme rainfall in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Shaffie, Mardhiyyah; Eli, Annazirin; Wan Zin, Wan Zawiah; Jemain, Abdul Aziz
2015-07-01
This paper is intended to ascertain the spatial pattern of extreme rainfall distribution in Peninsular Malaysia at several short time intervals, i.e., on hourly basis. Motivation of this research is due to historical records of extreme rainfall in Peninsular Malaysia, whereby many hydrological disasters at this region occur within a short time period. The hourly periods considered are 1, 2, 3, 6, 12, and 24 h. Many previous hydrological studies dealt with daily rainfall data; thus, this study enables comparison to be made on the estimated performances between daily and hourly rainfall data analyses so as to identify the impact of extreme rainfall at a shorter time scale. Return levels based on the time aggregate considered are also computed. Parameter estimation using L-moment method for four probability distributions, namely, the generalized extreme value (GEV), generalized logistic (GLO), generalized Pareto (GPA), and Pearson type III (PE3) distributions were conducted. Aided with the L-moment diagram test and mean square error (MSE) test, GLO was found to be the most appropriate distribution to represent the extreme rainfall data. At most time intervals (10, 50, and 100 years), the spatial patterns revealed that the rainfall distribution across the peninsula differ for 1- and 24-h extreme rainfalls. The outcomes of this study would provide additional information regarding patterns of extreme rainfall in Malaysia which may not be detected when considering only a higher time scale such as daily; thus, appropriate measures for shorter time scales of extreme rainfall can be planned. The implementation of such measures would be beneficial to the authorities to reduce the impact of any disastrous natural event.
Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Klik, Andreas; Rousseva, Svetla; Tadić, Melita Perčec; Michaelides, Silas; Hrabalíková, Michaela; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Beguería, Santiago; Alewell, Christine
2015-04-01
Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century. Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months, average temperature), elevation and latitude/longitude. The mean R-factor for the EU plus Switzerland is 722 MJ mm ha(-1) h(-1) yr(-1), with the highest values (>1000 MJ mm ha(-1) h(-1) yr(-1)) in the Mediterranean and alpine regions and the lowest (<500 MJ mm ha(-1) h(-1) yr(-1)) in the Nordic countries. The erosivity density (erosivity normalised to annual precipitation amounts) was also the highest in Mediterranean regions which implies high risk for erosive events and floods. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
A Study on Regional Frequency Analysis using Artificial Neural Network - the Sumjin River Basin
NASA Astrophysics Data System (ADS)
Jeong, C.; Ahn, J.; Ahn, H.; Heo, J. H.
2017-12-01
Regional frequency analysis means to make up for shortcomings in the at-site frequency analysis which is about a lack of sample size through the regional concept. Regional rainfall quantile depends on the identification of hydrologically homogeneous regions, hence the regional classification based on hydrological homogeneous assumption is very important. For regional clustering about rainfall, multidimensional variables and factors related geographical features and meteorological figure are considered such as mean annual precipitation, number of days with precipitation in a year and average maximum daily precipitation in a month. Self-Organizing Feature Map method which is one of the artificial neural network algorithm in the unsupervised learning techniques solves N-dimensional and nonlinear problems and be shown results simply as a data visualization technique. In this study, for the Sumjin river basin in South Korea, cluster analysis was performed based on SOM method using high-dimensional geographical features and meteorological factor as input data. then, for the results, in order to evaluate the homogeneity of regions, the L-moment based discordancy and heterogeneity measures were used. Rainfall quantiles were estimated as the index flood method which is one of regional rainfall frequency analysis. Clustering analysis using SOM method and the consequential variation in rainfall quantile were analyzed. This research was supported by a grant(2017-MPSS31-001) from Supporting Technology Development Program for Disaster Management funded by Ministry of Public Safety and Security(MPSS) of the Korean government.
National Centers for Environmental Prediction
: Monsoon progress image (Link) IITM : 2017 Monsoon (Link) SW Monsoon, 2016 IMD : Daily rainfall report (30th September, 2016) (Link) IMD : End of season Monsoon Report (2016) (Link) SW Monsoon, 2015 IMD : Daily rainfall report (30th September, 2015) (Link) IMD : End of season Monsoon Report (2015) (Link
Rainfall Observed Over Bangladesh 2000-2008: A Comparison of Spatial Interpolation Methods
NASA Astrophysics Data System (ADS)
Pervez, M.; Henebry, G. M.
2010-12-01
In preparation for a hydrometeorological study of freshwater resources in the greater Ganges-Brahmaputra region, we compared the results of four methods of spatial interpolation applied to point measurements of daily rainfall over Bangladesh during a seven year period (2000-2008). Two univariate (inverse distance weighted and spline-regularized and tension) and two multivariate geostatistical (ordinary kriging and kriging with external drift) methods were used to interpolate daily observations from a network of 221 rain gauges across Bangladesh spanning an area of 143,000 sq km. Elevation and topographic index were used as the covariates in the geostatistical methods. The validity of the interpolated maps was analyzed through cross-validation. The quality of the methods was assessed through the Pearson and Spearman correlations and root mean square error measurements of accuracy in cross-validation. Preliminary results indicated that the univariate methods performed better than the geostatistical methods at daily scales, likely due to the relatively dense sampled point measurements and a weak correlation between the rainfall and covariates at daily scales in this region. Inverse distance weighted produced the better results than the spline. For the days with extreme or high rainfall—spatially and quantitatively—the correlation between observed and interpolated estimates appeared to be high (r2 ~ 0.6 RMSE ~ 10mm), although for low rainfall days the correlations were poor (r2 ~ 0.1 RMSE ~ 3mm). The performance quality of these methods was influenced by the density of the sample point measurements, the quantity of the observed rainfall along with spatial extent, and an appropriate search radius defining the neighboring points. Results indicated that interpolated rainfall estimates at daily scales may introduce uncertainties in the successive hydrometeorological analysis. Interpolations at 5-day, 10-day, 15-day, and monthly time scales are currently under investigation.
NASA Astrophysics Data System (ADS)
Mascaro, Giuseppe
2018-04-01
This study uses daily rainfall records of a dense network of 240 gauges in central Arizona to gain insights on (i) the variability of the seasonal distributions of rainfall extremes; (ii) how the seasonal distributions affect the shape of the annual distribution; and (iii) the presence of spatial patterns and orographic control for these distributions. For this aim, recent methodological advancements in peak-over-threshold analysis and application of the Generalized Pareto Distribution (GPD) were used to assess the suitability of the GPD hypothesis and improve the estimation of its parameters, while limiting the effect of short sample sizes. The distribution of daily rainfall extremes was found to be heavy-tailed (i.e., GPD shape parameter ξ > 0) during the summer season, dominated by convective monsoonal thunderstorms. The exponential distribution (a special case of GPD with ξ = 0) was instead showed to be appropriate for modeling wintertime daily rainfall extremes, mainly caused by cold fronts transported by westerly flow. The annual distribution exhibited a mixed behavior, with lighter upper tails than those found in summer. A hybrid model mixing the two seasonal distributions was demonstrated capable of reproducing the annual distribution. Organized spatial patterns, mainly controlled by elevation, were observed for the GPD scale parameter, while ξ did not show any clear control of location or orography. The quantiles returned by the GPD were found to be very similar to those provided by the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, which used the Generalized Extreme Value (GEV) distribution. Results of this work are useful to improve statistical modeling of daily rainfall extremes at high spatial resolution and provide diagnostic tools for assessing the ability of climate models to simulate extreme events.
NASA Astrophysics Data System (ADS)
Sooraj, K. P.; Terray, Pascal; Xavier, Prince
2016-06-01
Numerous global warming studies show the anticipated increase in mean precipitation with the rising levels of carbon dioxide concentration. However, apart from the changes in mean precipitation, the finer details of daily precipitation distribution, such as its intensity and frequency (so called daily rainfall extremes), need to be accounted for while determining the impacts of climate changes in future precipitation regimes. Here we examine the climate model projections from a large set of Coupled Model Inter-comparison Project 5 models, to assess these future aspects of rainfall distribution over Asian summer monsoon (ASM) region. Our assessment unravels a north-south rainfall dipole pattern, with increased rainfall over Indian subcontinent extending into the western Pacific region (north ASM region, NASM) and decreased rainfall over equatorial oceanic convergence zone over eastern Indian Ocean region (south ASM region, SASM). This robust future pattern is well conspicuous at both seasonal and sub-seasonal time scales. Subsequent analysis, using daily rainfall events defined using percentile thresholds, demonstrates that mean rainfall changes over NASM region are mainly associated with more intense and more frequent extreme rainfall events (i.e. above 95th percentile). The inference is that there are significant future changes in rainfall probability distributions and not only a uniform shift in the mean rainfall over the NASM region. Rainfall suppression over SASM seems to be associated with changes involving multiple rainfall events and shows a larger model spread, thus making its interpretation more complex compared to NASM. Moisture budget diagnostics generally show that the low-level moisture convergence, due to stronger increase of water vapour in the atmosphere, acts positively to future rainfall changes, especially for heaviest rainfall events. However, it seems that the dynamic component of moisture convergence, associated with vertical motion, shows a strong spatial and rainfall category dependency, sometimes offsetting the effect of the water vapour increase. Additionally, we found that the moisture convergence is mainly dominated by the climatological vertical motion acting on the humidity changes and the interplay between all these processes proves to play a pivotal role for regulating the intensities of various rainfall events in the two domains.
Kaufmann, Vander; Pinheiro, Adilson; Castro, Nilza Maria dos Reis
2014-05-01
Intense rainfall adversely affects agricultural areas, causing transport of pollutants. Physically-based hydrological models to simulate flows of water and chemical substances can be used to help decision-makers adopt measures which reduce such problems. The purpose of this paper is to evaluate the performance of SWAP and ANIMO models for simulating transport of water, nitrate and phosphorus nutrients, during intense rainfall events generated by a simulator, and during natural rainfall, on a volumetric drainage lysimeter. The models were calibrated and verified using daily time series and simulated rainfall measured at 10-minute intervals. For daily time-intervals, the Nash-Sutcliffe coefficient was 0.865 for the calibration period and 0.805 for verification. Under simulated rainfall, these coefficients were greater than 0.56. The pattern of both nitrate and phosphate concentrations in daily drainage flow under simulated rainfall was acceptably reproduced by the ANIMO model. In the simulated rainfall, loads of nitrate transported in surface runoff varied between 0.08 and 8.46 kg ha(-1), and in drainage form the lysimeter, between 2.44 and 112.57 kg ha(-1). In the case of phosphate, the loads transported in surface runoff varied between 0.002 and 0.504 kg ha(-1), and in drainage, between 0.005 and 1.107 kg ha(-1). The use of the two models SWAP and ANIMO shows the magnitudes of nitrogen and phosphorus fluxes transported by natural and simulated intense rainfall in an agricultural area with different soil management procedures, as required by decision makers. Copyright © 2014 Elsevier B.V. All rights reserved.
Evaluation and intercomparison of GPM-IMERG and TRMM 3B42 daily precipitation products over Greece
NASA Astrophysics Data System (ADS)
Kazamias, A. P.; Sapountzis, M.; Lagouvardos, K.
2017-09-01
Accurate precipitation data at high temporal and spatial resolutions are needed for numerous applications in hydrology, water resources management and flood risk management. Satellite-based precipitation estimations/products offer a potential alternative source of rainfall data for regions with sparse rain gauge network. The recently launched Global Precipitation Measurement (GPM) mission is the successor of Tropical Rainfall Measuring Mission (TRMM) providing global precipitation estimates at spatial resolution of 0.1 degree x 0.1 degree and half-hourly temporal resolution. This study aims at evaluating the accuracy of the Integrated Multi-satellite Retrievals for GPM (IMERG) near-real-time daily product (GPM-3IMERGDL) against rain gauge observations from a network of stations distributed across Greece for the year 2016. Moreover, the GPM-IMERG product is also compared with its predecessor, the Version-7 near-real-time (3B42RT) daily product of TRMM Multisatellite Precipitation Analysis (TMPA). Several statistical metrics are used to quantitatively evaluate the performance of the satellite-based precipitation estimates against rain gauge observations. In addition, categorical statistical indices are used to assess rain detection capabilities of the two satellite products. The GPM-IMERG daily product shows reasonable agreement (CC=0.60) against rain gauge observations, with the exception of coastal areas in which low correlations are achieved. The GPM-IMERG daily precipitation product tends to overestimate rainfall, especially in complex terrain areas with high annual precipitation. In particular, rainfall estimates in western Greece have a strong positive bias. On the other hand, the TRMM 3B42 product shows low correlation (CC=0.45) against rain gauge observations and slightly underestimates rainfall. This study is a first attempt to evaluate and compare the newly introduced GPM-IMERG and the TRMM 3B42 rainfall products at daily timescale over Greece.
NASA Astrophysics Data System (ADS)
Le Bivic, Rejanne; Allemand, Pascal; Delacourt, Christophe; Quiquerez, Amélie
2014-05-01
Basse-Terre is a volcanic island which belongs to the archipelago of Guadeloupe located in the Lesser Antilles Arc (Caribbean Sea). As a mountainous region in the tropical belt, Basse-Terre is affected by intense sediment transport due to extreme meteorological events. During the last fifty years, eight major tropical storms and hurricanes with intense rainfalls induced landslides and scars in the weathered layers. The purpose of this study is to compare two major meteorological events within a period of 26 years (HELENA in 10/1963 and HUGO in 09/1989) in order to qualify the parameters responsible of the spatial distribution of landslides and scars. The storm HELENA affected Basse-Terre between the 23rd and the 25th of October, 1963. The maximal daily rainfall reached 300 mm in Baillif which is located on the leeward coast at the altitude of 650 m while the maximum wind velocity reached 50 km/h. A similar exceptional event happened when the hurricane HUGO slammed the island in September 17, 1989. The maximum daily rainfall recorded in Sainte-Rose (on the northern coast) was 250 mm while it reached 208 mm in Petit-Bourg and the maximum wind speed was 60 km/h. Aerial images were acquired by the IGN (French Geographical Institute) before and a few weeks after the extreme events: less than three months after the event HELENA and less than a month after the event HUGO. Those images have been orthorectified at a metric resolution and combined in a GIS with a 10 m resolution DEM. Scars and landslides were digitalized and their surface area and mean slope were measured for both HELENA and HUGO. This work confirms several results proposed by a previous study related to the HELENA event: (1) the landslides occurred mainly in the center of the island and (2) the slope is the main parameter for the initiation of landslides, since all of them occurred with a slope superior to 30°. Furthermore, the resiliency of the surface affected by the landslides induced by HELENA was studied from 1963 to 1989 through historical aerial images acquired by the IGN in 1963, 1969, 1984 and 1989. Landslide areas were covered with new vegetation within 6 years after a hurricane, due to the opportune weather conditions of heavy rainfalls and high temperature. The comparison between the landslides mapped after two similar events also shows that the zones affected by landslides are set apart. One can conclude that there are no weak zones which are likely to collapse during every meteorological event. These results are particularly relevant for landslide risk management.
NASA Astrophysics Data System (ADS)
Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino
2015-04-01
To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a regional level. This is done for an intermediate-sized catchment in Italy, i.e. the Flumendosa catchment, using climate model rainfall and atmospheric data from the ENSEMBLES project (http://ensembleseu.metoffice.com). In doing so, we split the historical rainfall record of mean areal precipitation (MAP) in 15-year calibration and 45-year validation periods, and compare the historical rainfall statistics to those obtained from: a) Q-Q corrected climate model rainfall products, and b) synthetic rainfall series generated by the suggested downscaling scheme. To our knowledge, this is the first time that climate model rainfall and statistically downscaled precipitation are compared to catchment-averaged MAP at a daily resolution. The obtained results are promising, since the proposed downscaling scheme is more accurate and robust in reproducing a number of historical rainfall statistics, independent of the climate model used and the length of the calibration period. This is particularly the case for the yearly rainfall maxima, where direct statistical correction of climate model rainfall outputs shows increased sensitivity to the length of the calibration period and the climate model used. The robustness of the suggested downscaling scheme in modeling rainfall extremes at a daily resolution, is a notable feature that can effectively be used to assess hydrologic risk at a regional level under changing climatic conditions. Acknowledgments The research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State. CRS4 highly acknowledges the contribution of the Sardinian regional authorities.
Changing character of rainfall in eastern China, 1951-2007.
Day, Jesse A; Fung, Inez; Liu, Weihan
2018-02-27
The topography and continental configuration of East Asia favor the year-round existence of storm tracks that extend thousands of kilometers from China into the northwestern Pacific Ocean, producing zonally elongated patterns of rainfall that we call "frontal rain events." In spring and early summer (known as "Meiyu Season"), frontal rainfall intensifies and shifts northward during a series of stages collectively known as the East Asian summer monsoon. Using a technique called the Frontal Rain Event Detection Algorithm, we create a daily catalog of all frontal rain events in east China during 1951-2007, quantify their attributes, and classify all rainfall on each day as either frontal, resulting from large-scale convergence, or nonfrontal, produced by local buoyancy, topography, or typhoons. Our climatology shows that the East Asian summer monsoon consists of a series of coupled changes in frontal rain event frequency, latitude, and daily accumulation. Furthermore, decadal changes in the amount and distribution of rainfall in east China are overwhelmingly due to changes in frontal rainfall. We attribute the "South Flood-North Drought" pattern observed beginning in the 1980s to changes in the frequency of frontal rain events, while the years 1994-2007 witnessed an uptick in event daily accumulation relative to the rest of the study years. This particular signature may reflect the relative impacts of global warming, aerosol loading, and natural variability on regional rainfall, potentially via shifting the East Asian jet stream.
Connecting spatial and temporal scales of tropical precipitation in observations and the MetUM-GA6
NASA Astrophysics Data System (ADS)
Martin, Gill M.; Klingaman, Nicholas P.; Moise, Aurel F.
2017-01-01
This study analyses tropical rainfall variability (on a range of temporal and spatial scales) in a set of parallel Met Office Unified Model (MetUM) simulations at a range of horizontal resolutions, which are compared with two satellite-derived rainfall datasets. We focus on the shorter scales, i.e. from the native grid and time step of the model through sub-daily to seasonal, since previous studies have paid relatively little attention to sub-daily rainfall variability and how this feeds through to longer scales. We find that the behaviour of the deep convection parametrization in this model on the native grid and time step is largely independent of the grid-box size and time step length over which it operates. There is also little difference in the rainfall variability on larger/longer spatial/temporal scales. Tropical convection in the model on the native grid/time step is spatially and temporally intermittent, producing very large rainfall amounts interspersed with grid boxes/time steps of little or no rain. In contrast, switching off the deep convection parametrization, albeit at an unrealistic resolution for resolving tropical convection, results in very persistent (for limited periods), but very sporadic, rainfall. In both cases, spatial and temporal averaging smoothes out this intermittency. On the ˜ 100 km scale, for oceanic regions, the spectra of 3-hourly and daily mean rainfall in the configurations with parametrized convection agree fairly well with those from satellite-derived rainfall estimates, while at ˜ 10-day timescales the averages are overestimated, indicating a lack of intra-seasonal variability. Over tropical land the results are more varied, but the model often underestimates the daily mean rainfall (partly as a result of a poor diurnal cycle) but still lacks variability on intra-seasonal timescales. Ultimately, such work will shed light on how uncertainties in modelling small-/short-scale processes relate to uncertainty in climate change projections of rainfall distribution and variability, with a view to reducing such uncertainty through improved modelling of small-/short-scale processes.
Characteristics of extreme rainfall events in northwestern Peru during the 1982-1983 El Nino period
NASA Technical Reports Server (NTRS)
Goldberg, R. A.; Tisnado, G. M.; Scofield, R. A.
1987-01-01
Histograms and contour maps describing the daily rainfall characteristics of a northwestern Peru area most severely affected by the 1982-1983 El Nino event were prepared from daily rainfall data obtained from 66 stations in this area during the El Nino event, and during the same 8-month intervals for the two years preceding and following the event. These data were analyzed, in conjunction with the anlysis of visible and IR satellite images, for cloud characteristics and structure. The results present a comparison of the rainfall characteristics as a function of elevation, geographic location, and the time of year for the El Nino and non-El Nino periods.
Rainfall in and near Lake County, Illinois, December 1989-September 1993
Duncker, James J.; Vail, Tracy J.; Robinson, Steven M.
1994-01-01
Rainfall quantity data for 23 rainfall-gaging stations located in and near Lake County, Ill., are presented. The rainfall data were collected from December 1989 through September 1993 as part of an on-going rainfall-runoff investigation. Station descriptions identify the location of and equipment installed at each rainfall-gaging station. Total daily rainfall is tabulated for each rainfall-gaging station for each water year. Periods of missing record and snow-affected precipitation totals are identified. The data are presented graphically using annual hyetographs and mass plots.
NASA Astrophysics Data System (ADS)
Puente, Carlos E.; Maskey, Mahesh L.; Sivakumar, Bellie
2017-04-01
A deterministic geometric approach, the fractal-multifractal (FM) method, is adapted in order to encode highly intermittent daily rainfall records observed over a year. Using such a notion, this research investigates the complexity of rainfall in various stations within the State of California. Specifically, records gathered at (from South to North) Cherry Valley, Merced, Sacramento and Shasta Dam, containing 59, 116, 115 and 72 years, all ending at water year 2015, were encoded and analyzed in detail. The analysis reveals that: (a) the FM approach yields faithful encodings of all records, by years, with mean square and maximum errors in accumulated rain that are less than a mere 2% and 10%, respectively; (b) the evolution of the corresponding "best" FM parameters, allowing visualization of the inter-annual rainfall dynamics from a reduced vantage point, exhibit implicit variability that precludes discriminating between sites and extrapolating to the future; (c) the evolution of the FM parameters, restricted to specific regions within space, allows finding sensible future simulations; and (d) the rain signals at all sites may be termed "equally complex," as usage of k-means clustering and conventional phase space analysis of FM parameters yields comparable results for all sites.
NASA Astrophysics Data System (ADS)
Kandel, D. D.; Western, A. W.; Grayson, R. B.
2004-12-01
Mismatches in scale between the fundamental processes, the model and supporting data are a major limitation in hydrologic modelling. Surface runoff generation via infiltration excess and the process of soil erosion are fundamentally short time-scale phenomena and their average behaviour is mostly determined by the short time-scale peak intensities of rainfall. Ideally, these processes should be simulated using time-steps of the order of minutes to appropriately resolve the effect of rainfall intensity variations. However, sub-daily data support is often inadequate and the processes are usually simulated by calibrating daily (or even coarser) time-step models. Generally process descriptions are not modified but rather effective parameter values are used to account for the effect of temporal lumping, assuming that the effect of the scale mismatch can be counterbalanced by tuning the parameter values at the model time-step of interest. Often this results in parameter values that are difficult to interpret physically. A similar approach is often taken spatially. This is problematic as these processes generally operate or interact non-linearly. This indicates a need for better techniques to simulate sub-daily processes using daily time-step models while still using widely available daily information. A new method applicable to many rainfall-runoff-erosion models is presented. The method is based on temporal scaling using statistical distributions of rainfall intensity to represent sub-daily intensity variations in a daily time-step model. This allows the effect of short time-scale nonlinear processes to be captured while modelling at a daily time-step, which is often attractive due to the wide availability of daily forcing data. The approach relies on characterising the rainfall intensity variation within a day using a cumulative distribution function (cdf). This cdf is then modified by various linear and nonlinear processes typically represented in hydrological and erosion models. The statistical description of sub-daily variability is thus propagated through the model, allowing the effects of variability to be captured in the simulations. This results in cdfs of various fluxes, the integration of which over a day gives respective daily totals. Using 42-plot-years of surface runoff and soil erosion data from field studies in different environments from Australia and Nepal, simulation results from this cdf approach are compared with the sub-hourly (2-minute for Nepal and 6-minute for Australia) and daily models having similar process descriptions. Significant improvements in the simulation of surface runoff and erosion are achieved, compared with a daily model that uses average daily rainfall intensities. The cdf model compares well with a sub-hourly time-step model. This suggests that the approach captures the important effects of sub-daily variability while utilizing commonly available daily information. It is also found that the model parameters are more robustly defined using the cdf approach compared with the effective values obtained at the daily scale. This suggests that the cdf approach may offer improved model transferability spatially (to other areas) and temporally (to other periods).
NASA Astrophysics Data System (ADS)
Breinl, Korbinian; Di Baldassarre, Giuliano; Girons Lopez, Marc
2017-04-01
We assess uncertainties of multi-site rainfall generation across spatial scales and different climatic conditions. Many research subjects in earth sciences such as floods, droughts or water balance simulations require the generation of long rainfall time series. In large study areas the simulation at multiple sites becomes indispensable to account for the spatial rainfall variability, but becomes more complex compared to a single site due to the intermittent nature of rainfall. Weather generators can be used for extrapolating rainfall time series, and various models have been presented in the literature. Even though the large majority of multi-site rainfall generators is based on similar methods, such as resampling techniques or Markovian processes, they often become too complex. We think that this complexity has been a limit for the application of such tools. Furthermore, the majority of multi-site rainfall generators found in the literature are either not publicly available or intended for being applied at small geographical scales, often only in temperate climates. Here we present a revised, and now publicly available, version of a multi-site rainfall generation code first applied in 2014 in Austria and France, which we call TripleM (Multisite Markov Model). We test this fast and robust code with daily rainfall observations from the United States, in a subtropical, tropical and temperate climate, using rain gauge networks with a maximum site distance above 1,000km, thereby generating one million years of synthetic time series. The modelling of these one million years takes one night on a recent desktop computer. In this research, we first start the simulations with a small station network of three sites and progressively increase the number of sites and the spatial extent, and analyze the changing uncertainties for multiple statistical metrics such as dry and wet spells, rainfall autocorrelation, lagged cross correlations and the inter-annual rainfall variability. Our study contributes to the scientific community of earth sciences and the ongoing debate on extreme precipitation in a changing climate by making a stable, and very easily applicable, multi-site rainfall generation code available to the research community and providing a better understanding of the performance of multi-site rainfall generation depending on spatial scales and climatic conditions.
Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions
USDA-ARS?s Scientific Manuscript database
Rainfall erosivity is the power of rainfall to cause soil erosion by water. The rainfall erosivity index for a rainfall event, EI30, is calculated from the total kinetic energy and maximum 30 minute intensity of individual events. However, these data are often unavailable in many areas of the worl...
NASA Astrophysics Data System (ADS)
Zhang, Sijia; Wang, Donghai; Qin, Zhengkun; Zheng, Yaoyao; Guo, Jianping
2018-04-01
Using high-quality hourly observations from national-level ground-based stations, the satellite-based rainfall products from both the Global Precipitation Measurement (GPM) Integrated MultisatellitE Retrievals for GPM (IMERG) and its predecessor, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), are statistically evaluated over the Tibetan Plateau (TP), with an emphasis on the diurnal variation. The results indicate that: (1) the half-hourly IMERG rainfall product can explicitly describe the diurnal variation over the TP, but with discrepancies in the timing of the greatest precipitation intensity and an overestimation of the maximum rainfall intensity over the whole TP. In addition, the performance of IMERG on the hourly timescale, in terms of the correlation coefficient and relative bias, is different for regions with sea level height below or above 3500 m; (2) the IMERG products, having higher correlation and lower root-mean-square error, perform better than the TMPA products on the daily and monthly timescales; and (3) the detection ability of IMERG is superior to that of TMPA, as corroborated by a higher Hanssen and Kuipers score, a higher probability of detection, a lower false alarm ratio, and a lower bias. Compared to TMPA, the IMERG products ameliorate the overestimation across the TP. In conclusion, GPM IMERG is superior to TRMM TMPA over the TP on multiple timescales.
Characterizing the Spatial Contiguity of Extreme Precipitation over the US in the Recent Past
NASA Astrophysics Data System (ADS)
Touma, D. E.; Swain, D. L.; Diffenbaugh, N. S.
2016-12-01
The spatial characteristics of extreme precipitation over an area can define the hydrologic response in a basin, subsequently affecting the flood risk in the region. Here, we examine the spatial extent of extreme precipitation in the US by defining its "footprint": a contiguous area of rainfall exceeding a certain threshold (e.g., 90th percentile) on a given day. We first characterize the climatology of extreme rainfall footprint sizes across the US from 1980-2015 using Daymet, a high-resolution observational gridded rainfall dataset. We find that there are distinct regional and seasonal differences in average footprint sizes of extreme daily rainfall. In the winter, the Midwest shows footprints exceeding 500,000 sq. km while the Front Range exhibits footprints of 10,000 sq. km. Alternatively, the summer average footprint size is generally smaller and more uniform across the US, ranging from 10,000 sq. km in the Southwest to 100,000 sq. km in Montana and North Dakota. Moreover, we find that there are some significant increasing trends of average footprint size between 1980-2015, specifically in the Southwest in the winter and the Northeast in the spring. While gridded daily rainfall datasets allow for a practical framework in calculating footprint size, this calculation heavily depends on the interpolation methods that have been used in creating the dataset. Therefore, we assess footprint size using the GHCN-Daily station network and use geostatistical methods to define footprints of extreme rainfall directly from station data. Compared to the findings from Daymet, preliminary results using this method show fewer small daily footprint sizes over the US while large footprints are of similar number and magnitude to Daymet. Overall, defining the spatial characteristics of extreme rainfall as well as observed and expected changes in these characteristics allows us to better understand the hydrologic response to extreme rainfall and how to better characterize flood risks.
NASA Astrophysics Data System (ADS)
Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun
2017-11-01
This study assesses the spatial pattern of changes in rainfall extremes of Sarawak in recent years (1980-2014). The Mann-Kendall (MK) test along with modified Mann-Kendall (m-MK) test, which can discriminate multi-scale variability of unidirectional trend, was used to analyze the changes at 31 stations. Taking account of the scaling effect through eliminating the effect of autocorrelation, m-MK was employed to discriminate multi-scale variability of the unidirectional trends of the annual rainfall in Sarawak. It can confirm the significance of the MK test. The annual rainfall trend from MK test showed significant changes at 95% confidence level at five stations. The seasonal trends from MK test indicate an increasing rate of rainfall during the Northeast monsoon and a decreasing trend during the Southwest monsoon in some region of Sarawak. However, the m-MK test detected an increasing trend in annual rainfall only at one station and no significant trend in seasonal rainfall at any stations. The significant increasing trends of the 1-h maximum rainfall from the MK test are detected mainly at the stations located in the urban area giving concern to the occurrence of the flash flood. On the other hand, the m-MK test detected no significant trend in 1- and 3-h maximum rainfalls at any location. On the contrary, it detected significant trends in 6- and 72-h maximum rainfalls at a station located in the Lower Rajang basin area which is an extensive low-lying agricultural area and prone to stagnant flood. These results indicate that the trends in rainfall and rainfall extremes reported in Malaysia and surrounding region should be verified with m-MK test as most of the trends may result from scaling effect.
NASA Astrophysics Data System (ADS)
Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.
2000-10-01
Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations for an 11-yr period. These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and interannual distribution of the North Pacific Ocean total rainfall during June-November when tropical cyclones are most important.To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from passive microwave satellite observations within 444-km radius of the center of those North Pacific tropical cyclones that reached storm stage and greater. These rain-rate observations are converted to monthly rainfall amounts and then compared with those for nontropical cyclone systems.The main results of this study indicate that 1) tropical cyclones contribute 7% of the rainfall to the entire domain of the North Pacific during the tropical cyclone season and 12%, 3%, and 4% when the study area is limited to, respectively, the western, central, and eastern third of the ocean; 2) the maximum tropical cyclone rainfall is poleward (5°-10° latitude depending on longitude) of the maximum nontropical cyclone rainfall; 3) tropical cyclones contribute a maximum of 30% northeast of the Philippine Islands and 40% off the lower Baja California coast; 4) in the western North Pacific, the tropical cyclone rainfall lags the total rainfall by approximately two months and shows seasonal latitudinal variation following the Intertropical Convergence Zone; and 5) in general, tropical cyclone rainfall is enhanced during the El Niño years by warm SSTs in the eastern North Pacific and by the monsoon trough in the western and central North Pacific.
Modelling Inland Flood Events for Hazard Maps in Taiwan
NASA Astrophysics Data System (ADS)
Ghosh, S.; Nzerem, K.; Sassi, M.; Hilberts, A.; Assteerawatt, A.; Tillmanns, S.; Mathur, P.; Mitas, C.; Rafique, F.
2015-12-01
Taiwan experiences significant inland flooding, driven by torrential rainfall from plum rain storms and typhoons during summer and fall. From last 13 to 16 years data, 3,000 buildings were damaged by such floods annually with a loss US$0.41 billion (Water Resources Agency). This long, narrow island nation with mostly hilly/mountainous topography is located at tropical-subtropical zone with annual average typhoon-hit-frequency of 3-4 (Central Weather Bureau) and annual average precipitation of 2502mm (WRA) - 2.5 times of the world's average. Spatial and temporal distributions of countrywide precipitation are uneven, with very high local extreme rainfall intensities. Annual average precipitation is 3000-5000mm in the mountainous regions, 78% of it falls in May-October, and the 1-hour to 3-day maximum rainfall are about 85 to 93% of the world records (WRA). Rivers in Taiwan are short with small upstream areas and high runoff coefficients of watersheds. These rivers have the steepest slopes, the shortest response time with rapid flows, and the largest peak flows as well as specific flood peak discharge (WRA) in the world. RMS has recently developed a countrywide inland flood model for Taiwan, producing hazard return period maps at 1arcsec grid resolution. These can be the basis for evaluating and managing flood risk, its economic impacts, and insured flood losses. The model is initiated with sub-daily historical meteorological forcings and calibrated to daily discharge observations at about 50 river gauges over the period 2003-2013. Simulations of hydrologic processes, via rainfall-runoff and routing models, are subsequently performed based on a 10000 year set of stochastic forcing. The rainfall-runoff model is physically based continuous, semi-distributed model for catchment hydrology. The 1-D wave propagation hydraulic model considers catchment runoff in routing and describes large-scale transport processes along the river. It also accounts for reservoir storage. Major historical flood events have been successfully simulated along with spatial patterns of flows. Comparison of stochastic discharge statistics w.r.t. observed ones from Hydrological Year Books of Taiwan over all recorded years are also in good agreement.
Attribution of Extreme Rainfall Events in the South of France Using EURO-CORDEX Simulations
NASA Astrophysics Data System (ADS)
Luu, L. N.; Vautard, R.; Yiou, P.
2017-12-01
The Mediterranean region regularly undergoes episodes of intense precipitation in the fall season that exceed 300mm a day. This study focuses on the role of climate change on the dynamics of the events that occur in the South of France. We used an ensemble of 10 EURO-CORDEX model simulations with two horizontal resolutions (EUR-11: 0.11° and EUR-44: 0.44°) for the attribution of extreme rainfall in the fall in the Cevennes mountain range (South of France). The biases of the simulations were corrected with simple scaling adjustment and a quantile correction (CDFt). This produces five datasets including EUR-44 and EUR-11 with and without scaling adjustment and CDFt-EUR-11, on which we test the impact of resolution and bias correction on the extremes. Those datasets, after pooling all of models together, are fitted by a stationary Generalized Extreme Value distribution for several periods to estimate a climate change signal in the tail of distribution of extreme rainfall in the Cévenne region. Those changes are then interpreted by a scaling model that links extreme rainfall with mean and maximum daily temperature. The results show that higher-resolution simulations with bias adjustment provide a robust and confident increase of intensity and likelihood of occurrence of autumn extreme rainfall in the area in current climate in comparison with historical climate. The probability (exceedance probability) of 1-in-1000-year event in historical climate may increase by a factor of 1.8 under current climate with a confident interval of 0.4 to 5.3 following the CDFt bias-adjusted EUR-11. The change of magnitude appears to follow the Clausius-Clapeyron relation that indicates a 7% increase in rainfall per 1oC increase in temperature.
Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature
NASA Astrophysics Data System (ADS)
Hassan, Zulkarnain; Shamsudin, Supiah; Harun, Sobri
2014-04-01
Climate change is believed to have significant impacts on the water basin and region, such as in a runoff and hydrological system. However, impact studies on the water basin and region are difficult, since general circulation models (GCMs), which are widely used to simulate future climate scenarios, do not provide reliable hours of daily series rainfall and temperature for hydrological modeling. There is a technique named as "downscaling techniques", which can derive reliable hour of daily series rainfall and temperature due to climate scenarios from the GCMs output. In this study, statistical downscaling models are used to generate the possible future values of local meteorological variables such as rainfall and temperature in the selected stations in Peninsular of Malaysia. The models are: (1) statistical downscaling model (SDSM) that utilized the regression models and stochastic weather generators and (2) Long Ashton research station weather generator (LARS-WG) that only utilized the stochastic weather generators. The LARS-WG and SDSM models obviously are feasible methods to be used as tools in quantifying effects of climate change condition in a local scale. SDSM yields a better performance compared to LARS-WG, except SDSM is slightly underestimated for the wet and dry spell lengths. Although both models do not provide identical results, the time series generated by both methods indicate a general increasing trend in the mean daily temperature values. Meanwhile, the trend of the daily rainfall is not similar to each other, with SDSM giving a relatively higher change of annual rainfall compared to LARS-WG.
Estimation of typhoon rainfall in GaoPing River: A Multivariate Maximum Entropy Method
NASA Astrophysics Data System (ADS)
Pei-Jui, Wu; Hwa-Lung, Yu
2016-04-01
The heavy rainfall from typhoons is the main factor of the natural disaster in Taiwan, which causes the significant loss of human lives and properties. Statistically average 3.5 typhoons invade Taiwan every year, and the serious typhoon, Morakot in 2009, impacted Taiwan in recorded history. Because the duration, path and intensity of typhoon, also affect the temporal and spatial rainfall type in specific region , finding the characteristics of the typhoon rainfall type is advantageous when we try to estimate the quantity of rainfall. This study developed a rainfall prediction model and can be divided three parts. First, using the EEOF(extended empirical orthogonal function) to classify the typhoon events, and decompose the standard rainfall type of all stations of each typhoon event into the EOF and PC(principal component). So we can classify the typhoon events which vary similarly in temporally and spatially as the similar typhoon types. Next, according to the classification above, we construct the PDF(probability density function) in different space and time by means of using the multivariate maximum entropy from the first to forth moment statistically. Therefore, we can get the probability of each stations of each time. Final we use the BME(Bayesian Maximum Entropy method) to construct the typhoon rainfall prediction model , and to estimate the rainfall for the case of GaoPing river which located in south of Taiwan.This study could be useful for typhoon rainfall predictions in future and suitable to government for the typhoon disaster prevention .
Inter-Comparison of CHARM Data and WSR-88D Storm Integrated Rainfall
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Meyer, Paul J.; Guillory, Anthony R.; Stellman, Keith; Limaye, Ashutosh; Arnold, James E. (Technical Monitor)
2002-01-01
A localized precipitation network has been established over a 4000 sq km region of northern Alabama in support of local weather and climate research at the Global Hydrology and Climate Center (GHCC) in Huntsville. This Cooperative Huntsville-Area Rainfall Measurement (CHARM) network is comprised of over 80 volunteers who manually take daily rainfall measurements from 85 sites. The network also incorporates 20 automated gauges that report data at 1-5 minute intervals on a 24 h a day basis. The average spacing of the gauges in the network is about 6 kin, however coverage in some regions benefit from gauges every 1-2 km. The 24 h rainfall totals from the CHARM network have been used to validate Stage III rainfall estimates of daily and storm totals derived from the WSR-88D radars that cover northern Alabama. The Stage III rainfall product is produced by the Lower Mississippi River Forecast Center (LMRFC) in support of their daily forecast operations. The intercomparisons between the local rain gauge and the radar estimates have been useful to understand the accuracy and utility of the Stage III data. Recently, the Stage III and CHARM rainfall measurements have been combined to produce an hourly rainfall dataset at each CHARM observation site. The procedure matches each CHARM site with a time sequence of Stage III radar estimates of precipitation. Hourly stage III rainfall estimates were used to partition the rain gauge values to the time interval over which they occurred. The new hourly rain gauge dataset is validated at selected points where 1-5 minute rainfall measurements have been made. This procedure greatly enhances the utility of the CHARM data for local weather and hydrologic modeling studies. The conference paper will present highlights of the Stage III intercomparison and some examples of the combined radar / rain gauge product demonstrating its accuracy and utility in deriving an hourly rainfall product from the 24 h CHARM totals.
NASA Astrophysics Data System (ADS)
Ngo-Thanh, Huong; Ngo-Duc, Thanh; Nguyen-Hong, Hanh; Baker, Peter; Phan-Van, Tan
2018-05-01
The daily rainfall data at 13 stations over the Central Highlands (CH) Vietnam were collected for the period 1981-2014. Two different sets of criteria using daily observed rainfall and 850 hPa daily reanalysis wind data were applied to determine the onset (retreat) dates of the summer rainy season (RS) and summer monsoon (SM) season, respectively. Over the study period, the mean RS and SM onset dates were April 20 and May 13 with standard deviations of 17.4 and 17.8 days, respectively. The mean RS and SM retreat dates were November 1 and September 30 with standard deviations of 17.9 and 10.2 days, respectively . The year-to-year variations of the onset dates and the rainfall amount within the RS and SM season were closely linked with the preceding winter and spring sea surface temperature in the central-eastern and western Pacific. It was also found that the onset dates were significantly correlated with the RS and SM rainfall amount.
Breeding, Seth D.
1948-01-01
Floods occurred in Texas during, June, July, and November 1940 that exceeded known stages on many small streams and at a few places on the larger streams. Stages at several stream-gaging stations exceeded the maximum known at those places since the collection of daily records began. A storm, haying its axis generally on a north-south line from Cameron to Victoria and extending across the Brazos, Colorado, Lavaca, and Guadalupe River Basins, caused heavy rainfall over a large part of south-central Texas. The maximum recorded rain of 22.7 inches for the 2-day period June 29-30 occurred at Engle. Of this amount, 17.5 inches fell in the 12-hour period between 8 p.m. June 29, and 8 a.m. June 30. Light rains fell at a number of places on June 28, and additional light rains fell at many places within the area from July 1 to 4. During the period June 28 to July 4 more than 20 inches of rain fell over an area of 300 square miles, more than 15 inches over 1,920 square miles, and more than 10 inches over 5,100 square miles. The average annual rainfall for the area experiencing the heaviest rainfall during this storm is about 35 inches. Farming is largely confined to the fertile flood plains in much of the area subjected to the record-breaking floods in June and July. Therefore these floods, coming at the height of the growing season, caused severe losses to crops. Much damage was done also to highways and railways. The city of Hallettsville suffered the greatest damage of any urban area. The Lavaca River at that place reached a stage 8 feet higher than ever known before, drowned several people, destroyed many homes, and submerged almost the entire business district. The maximum discharge there was 93,100 second-feet from a drainage area of 101 square miles. Dry Creek near Smithville produced a maximum discharge of 1,879 second-feet from an area of 1.48 square miles and a runoff of 11.3 inches in a 2-day period from a rainfall of 19.5 inches. The area in the Colorado River Basin between Smithville and La Grange, amounting to 550 square miles, had an average rainfall of 19.3 inches, of which 11.5 inches appeared as runoff. The maximum discharge at La Grange was 182,000 second-feet, with much the greater part coming from below Smithville. This is probably a record-breaking flood for the area between Smithville and La Grange, but stages as much as 16 feet higher have occurred at La Grange. Heavy rainfall over the east half of Texas November 21-26 caused large floods in all streams in Texas east of the Guadalupe River. The maximum recorded rainfall for the 2-day period November 24-25 was 20.46 inches at Hempstead, of which 16.00 inches fell in 24 hours or less. The storm occurred during the period November 20-26, with the greater part of the rain falling November 23-25. During the period November 20-26, rainfall in Texas amounted to more than 15 inches over an area of 3,380 square miles, and 'to more than 10 inches over an area of 17,570 square miles. The average annual rainfall for the area in Texas experiencing more than 10 inches of rain during this storm ranges from 501 inches on the east border of the State to 35 inches near the west edge of the area. The study of this storm for the purposes of this report is limited to the San Jacinto River Basin, which had an average rainfall of 13.6 inches. This basin has an area of 2,791 square miles above the gaging station near Huffman and is typical in topographic and hydrologic features of much of eastern Texas. The stage reached at the gage near Huffman was about 1 foot higher than known before, the maximum discharge was 253,000 second-feet, and the runoff from the storm amounted to 8.8 inches. The November flood came after crops had been harvested, and its damage was mainly the destruction of highways and railways and the drowning of livestock. The storage reservoirs on the Colorado River located well upstream from the storm areas herein studied had very little effect on
Regionalization of monthly rainfall erosivity patternsin Switzerland
NASA Astrophysics Data System (ADS)
Schmidt, Simon; Alewell, Christine; Panagos, Panos; Meusburger, Katrin
2016-10-01
One major controlling factor of water erosion is rainfall erosivity, which is quantified as the product of total storm energy and a maximum 30 min intensity (I30). Rainfall erosivity is often expressed as R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). As rainfall erosivity is closely correlated with rainfall amount and intensity, the rainfall erosivity of Switzerland can be expected to have a regional characteristic and seasonal dynamic throughout the year. This intra-annual variability was mapped by a monthly modeling approach to assess simultaneously spatial and monthly patterns of rainfall erosivity. So far only national seasonal means and regional annual means exist for Switzerland. We used a network of 87 precipitation gauging stations with a 10 min temporal resolution to calculate long-term monthly mean R-factors. Stepwise generalized linear regression (GLM) and leave-one-out cross-validation (LOOCV) were used to select spatial covariates which explain the spatial and temporal patterns of the R-factor for each month across Switzerland. The monthly R-factor is mapped by summarizing the predicted R-factor of the regression equation and the corresponding residues of the regression, which are interpolated by ordinary kriging (regression-kriging). As spatial covariates, a variety of precipitation indicator data has been included such as snow depths, a combination product of hourly precipitation measurements and radar observations (CombiPrecip), daily Alpine precipitation (EURO4M-APGD), and monthly precipitation sums (RhiresM). Topographic parameters (elevation, slope) were also significant explanatory variables for single months. The comparison of the 12 monthly rainfall erosivity maps showed a distinct seasonality with the highest rainfall erosivity in summer (June, July, and August) influenced by intense rainfall events. Winter months have the lowest rainfall erosivity. A proportion of 62 % of the total annual rainfall erosivity is identified within four months only (June-September). The highest erosion risk can be expected in July, where not only rainfall erosivity but also erosivity density is high. In addition to the intra-annual temporal regime, a spatial variability of this seasonality was detectable between different regions of Switzerland. The assessment of the dynamic behavior of the R-factor is valuable for the identification of susceptible seasons and regions.
NASA Astrophysics Data System (ADS)
Martinotti, Maria Elena; Pisano, Luca; Trabace, Maria; Marchesini, Ivan; Peruccacci, Silvia; Rossi, Mauro; Amoruso, Giuseppe; Loiacono, Pierluigi; Vennari, Carmela; Vessia, Giovanna; Parise, Mario; Brunetti, Maria Teresa
2015-04-01
In the first week of September 2014, the Gargano Promontory (Apulia, SE Italy) was hit by an extreme rainfall event that caused several landslides, floods and sinkholes. As a consequence of the floods, two people lost their lives and severe socio-economic damages were reported. The highest peaks of rainfall were recorded between September 3rd and 6th at the Cagnano Varano and San Marco in Lamis rain gauges with a maximum daily rainfall (over 230 mm) that is about 30% the mean annual rainfall. The Gargano Promontory is characterized by complex orographic conditions, with the highest elevation of about 1000 m a.s.l. The geological setting consists of different types of carbonate deposits affected by intensive development of karst processes. The morphological and climatic settings of the area, associated with frequent extreme rainfall events can cause various types of geohazards (e.g., landslides, floods, sinkholes). A further element enhancing the natural predisposition of the area to the occurrence of landslides, floods and sinkholes is an intense human activity, characterized by an inappropriate land use and management. In order to obtain consistent and reliable data on the effects produced by the storm, a systematic collection of information through field observations, a critical analysis of newspaper articles and web-news, and a co-operation with the Regional Civil Protection and local geologists started immediately after the event. The information collected has been organized in a database including the location, the occurrence time and the type of geohazard documented with photographs. The September 2014 extreme rainfall event in the Gargano Promontory was also analyzed to validate the forecasts issued by the Italian national early-warning system for rainfall-induced landslides (SANF), developed by the Research Institute for Geo-Hydrological Protection (IRPI) for the Italian national Department for Civil Protection (DPC). SANF compares rainfall measurements and forecasts with empirical rainfall thresholds for the prediction of landslide occurrence. SANF forecasts were compared to the documented landslides and discussed.
Long-term flow forecasts based on climate and hydrologic modeling: Uruguay River basin
NASA Astrophysics Data System (ADS)
Tucci, Carlos Eduardo Morelli; Clarke, Robin Thomas; Collischonn, Walter; da Silva Dias, Pedro Leite; de Oliveira, Gilvan Sampaio
2003-07-01
This paper describes a procedure for predicting seasonal flow in the Rio Uruguay drainage basin (area 75,000 km2, lying in Brazilian territory), using sequences of future daily rainfall given by the global climate model (GCM) of the Brazilian agency for climate prediction (Centro de Previsão de Tempo e Clima, or CPTEC). Sequences of future daily rainfall given by this model were used as input to a rainfall-runoff model appropriate for large drainage basins. Forecasts of flow in the Rio Uruguay were made for the period 1995-2001 of the full record, which began in 1940. Analysis showed that GCM forecasts underestimated rainfall over almost all the basin, particularly in winter, although interannual variability in regional rainfall was reproduced relatively well. A statistical procedure was used to correct for the underestimation of rainfall. When the corrected rainfall sequences were transformed to flow by the hydrologic model, forecasts of flow in the Rio Uruguay basin were better than forecasts based on historic mean or median flows by 37% for monthly flows and by 54% for 3-monthly flows.
How would peak rainfall intensity affect runoff predictions using conceptual water balance models?
NASA Astrophysics Data System (ADS)
Yu, B.
2015-06-01
Most hydrological models use continuous daily precipitation and potential evapotranspiration for streamflow estimation. With the projected increase in mean surface temperature, hydrological processes are set to intensify irrespective of the underlying changes to the mean precipitation. The effect of an increase in rainfall intensity on the long-term water balance is, however, not adequately accounted for in the commonly used hydrological models. This study follows from a previous comparative analysis of a non-stationary daily series of stream flow of a forested watershed (River Rimbaud) in the French Alps (area = 1.478 km2) (1966-2006). Non-stationarity in the recorded stream flow occurred as a result of a severe wild fire in 1990. Two daily models (AWBM and SimHyd) were initially calibrated for each of three distinct phases in relation to the well documented land disturbance. At the daily and monthly time scales, both models performed satisfactorily with the Nash-Sutcliffe coefficient of efficiency (NSE) varying from 0.77 to 0.92. When aggregated to the annual time scale, both models underestimated the flow by about 22% with a reduced NSE at about 0.71. Exploratory data analysis was undertaken to relate daily peak hourly rainfall intensity to the discrepancy between the observed and modelled daily runoff amount. Preliminary results show that the effect of peak hourly rainfall intensity on runoff prediction is insignificant, and model performance is unlikely to improve when peak daily precipitation is included. Trend analysis indicated that the large decrease of precipitation when daily precipitation amount exceeded 10-20 mm may have contributed greatly to the decrease in stream flow of this forested watershed.
Intra-seasonal rainfall characteristics and their importance to the seasonal prediction problem
NASA Astrophysics Data System (ADS)
Tennant, Warren J.; Hewitson, Bruce C.
2002-07-01
Daily station rainfall data in South Africa from 1936 to 1999 are combined into homogeneous rainfall regions using Ward's clustering method. Various rainfall characteristics are calculated for the summer season, defined as December to February. These include seasonal rainfall total, region-average number of station rain days exceeding 1 and 20 mm, region-average of periods between rain days at stations >1 and >20 mm, region-average of wet spell length (sequential days of station rainfall >1 and >20 mm), correlation of daily station rainfall within a region and correlation of seasonal station rainfall anomalies within a region.Rank-ordered rainfall characteristic data generally form an s-shaped curve, and significance testing of discontinuities in these curves suggests that normal rainfall conditions in South Africa consist of a combined middle three quintiles separated from the outer quintiles, rather than the traditional middle tercile.The relationships between the various rainfall characteristics show that seasons with a high total rainfall generally have a higher number of heavy rain days (>20 mm) and not necessarily an increase in light rain days. The length of the period between rain days has a low correlation to season totals, demonstrating that seasons with a high total rainfall may still contain prolonged dry periods. These additional rainfall characteristics are important to end-users, and the analysis undertaken here offers a valuable starting point for seeking physical relationships between rainfall characteristics and the general circulation. Preliminary studies show that the vertical mean wind is related to rainfall characteristics in South Africa. Given that general circulation models capture this part of the circulation adequately, seasonal forecasts of rainfall characteristics become plausible.
Changing character of rainfall in eastern China, 1951–2007
NASA Astrophysics Data System (ADS)
Day, Jesse A.; Fung, Inez; Liu, Weihan
2018-03-01
The topography and continental configuration of East Asia favor the year-round existence of storm tracks that extend thousands of kilometers from China into the northwestern Pacific Ocean, producing zonally elongated patterns of rainfall that we call “frontal rain events.” In spring and early summer (known as “Meiyu Season”), frontal rainfall intensifies and shifts northward during a series of stages collectively known as the East Asian summer monsoon. Using a technique called the Frontal Rain Event Detection Algorithm, we create a daily catalog of all frontal rain events in east China during 1951–2007, quantify their attributes, and classify all rainfall on each day as either frontal, resulting from large-scale convergence, or nonfrontal, produced by local buoyancy, topography, or typhoons. Our climatology shows that the East Asian summer monsoon consists of a series of coupled changes in frontal rain event frequency, latitude, and daily accumulation. Furthermore, decadal changes in the amount and distribution of rainfall in east China are overwhelmingly due to changes in frontal rainfall. We attribute the “South Flood–North Drought” pattern observed beginning in the 1980s to changes in the frequency of frontal rain events, while the years 1994–2007 witnessed an uptick in event daily accumulation relative to the rest of the study years. This particular signature may reflect the relative impacts of global warming, aerosol loading, and natural variability on regional rainfall, potentially via shifting the East Asian jet stream.
Hydrologic conditions in Florida during Water Year 2008
Verdi, Richard J.; Holt, Sandra L.; Irvin, Ronald B.; Fulcher, David L.
2010-01-01
Record-high and record-low hydrologic conditions occurred during water year 2008 (October 1, 2007-September 30, 2008). Record-low levels were caused by a continuation of the 2007 water year drought conditions into the 2008 water year and persisting until summer rainfall. The gage at the Santa Fe River near Fort White site recorded record-low monthly mean discharges in October and November 2007. The previous records for this site were set in 1956 and 2002, respectively. Record-high conditions in northeast and northwest Florida were caused by the rainfall and runoff associated with Tropical Storm Fay. For example, St. Mary's River near Macclenny recorded a new record-high monthly mean discharge in August 2008. The previous record for this site was set in 1945. Lake Okeechobee in south Florida reached new minimum monthly mean lake levels since monitoring began in 1912 from October to March during the 2008 water year. Some wells throughout northwest and south Florida registered period-of-record lowest daily maximum water levels.
Analysis and simulation of mesoscale convective systems accompanying heavy rainfall: The goyang case
NASA Astrophysics Data System (ADS)
Choi, Hyun-Young; Ha, Ji-Hyun; Lee, Dong-Kyou; Kuo, Ying-Hwa
2011-05-01
We investigated a torrential rainfall case with a daily rainfall amount of 379 mm and a maximum hourly rain rate of 77.5 mm that took place on 12 July 2006 at Goyang in the middlewestern part of the Korean Peninsula. The heavy rainfall was responsible for flash flooding and was highly localized. High-resolution Doppler radar data from 5 radar sites located over central Korea were analyzed. Numerical simulations using the Weather Research and Forecasting (WRF) model were also performed to complement the high-resolution observations and to further investigate the thermodynamic structure and development of the convective system. The grid nudging method using the Global Final (FNL) Analyses data was applied to the coarse model domain (30 km) in order to provide a more realistic and desirable initial and boundary conditions for the nested model domains (10 km, 3.3 km). The mesoscale convective system (MCS) which caused flash flooding was initiated by the strong low level jet (LLJ) at the frontal region of high equivalent potential temperature (θe) near the west coast over the Yellow Sea. The ascending of the warm and moist air was induced dynamically by the LLJ. The convective cells were triggered by small thermal perturbations and abruptly developed by the warm θe inflow. Within the MCS, several convective cells responsible for the rainfall peak at Goyang simultaneously developed with neighboring cells and interacted with each other. Moist absolutely unstable layers (MAULs) were seen at the lower troposphere with the very moist environment adding the instability for the development of the MCS.
NASA Astrophysics Data System (ADS)
Bassam, S.; Ren, J.
2015-12-01
Runoff generated during heavy rainfall imposes quick, but often intense, changes in the flow of streams, which increase the chance of flash floods in the vicinity of the streams. Understanding the temporal response of streams to heavy rainfall requires a hydrological model that considers meteorological, hydrological, and geological components of the streams and their watersheds. SWAT is a physically-based, semi-distributed model that is capable of simulating water flow within watersheds with both long-term, i.e. annually and monthly, and short-term (daily and sub-daily) time scales. However, the capability of SWAT in sub-daily water flow modeling within large watersheds has not been studied much, compare to long-term and daily time scales. In this study we are investigating the water flow in a large, semi-arid watershed, Nueces River Basin (NRB) with the drainage area of 16950 mi2 located in South Texas, with daily and sub-daily time scales. The objectives of this study are: (1) simulating the response of streams to heavy, and often quick, rainfall, (2) evaluating SWAT performance in sub-daily modeling of water flow within a large watershed, and (3) examining means for model performance improvement during model calibration and verification based on results of sensitivity and uncertainty analysis. The results of this study can provide important information for water resources planning during flood seasons.
TRMM rainfall estimative coupled with Bell (1969) methodology for extreme rainfall characterization
NASA Astrophysics Data System (ADS)
Schiavo Bernardi, E.; Allasia, D.; Basso, R.; Freitas Ferreira, P.; Tassi, R.
2015-06-01
The lack of rainfall data in Brazil, and, in particular, in Rio Grande do Sul State (RS), hinders the understanding of the spatial and temporal distribution of rainfall, especially in the case of the more complex extreme events. In this context, rainfall's estimation from remote sensors is seen as alternative to the scarcity of rainfall gauges. However, as they are indirect measures, such estimates needs validation. This paper aims to verify the applicability of the Tropical Rainfall Measuring Mission (TRMM) satellite information for extreme rainfall determination in RS. The analysis was accomplished at different temporal scales that ranged from 5 min to daily rainfall while spatial distribution of rainfall was investigated by means of regionalization. An initial test verified TRMM rainfall estimative against measured rainfall at gauges for 1998-2013 period considering different durations and return periods (RP). Results indicated that, for the RP of 2, 5, 10 and 15 years, TRMM overestimated on average 24.7% daily rainfall. As TRMM minimum time-steps is 3 h, in order to verify shorter duration rainfall, the TRMM data were adapted to fit Bell's (1969) generalized IDF formula (based on the existence of similarity between the mechanisms of extreme rainfall events as they are associated to convective cells). Bell`s equation error against measured precipitation was around 5-10%, which varied based on location, RP and duration while the coupled BELL+TRMM error was around 10-35%. However, errors were regionally distributed, allowing a correction to be implemented that reduced by half these values. These findings in turn permitted the use of TRMM+Bell estimates to improve the understanding of spatiotemporal distribution of extreme hydrological rainfall events.
Simulation of extreme reservoir level distribution with the SCHADEX method (EXTRAFLO project)
NASA Astrophysics Data System (ADS)
Paquet, Emmanuel; Penot, David; Garavaglia, Federico
2013-04-01
The standard practice for the design of dam spillways structures and gates is to consider the maximum reservoir level reached for a given hydrologic scenario. This scenario has several components: peak discharge, flood volumes on different durations, discharge gradients etc. Within a probabilistic analysis framework, several scenarios can be associated with different return times, although a reference return level (e.g. 1000 years) is often prescribed by the local regulation rules or usual practice. Using continuous simulation method for extreme flood estimation is a convenient solution to provide a great variety of hydrological scenarios to feed a hydraulic model of dam operation: flood hydrographs are explicitly simulated by a rainfall-runoff model fed by a stochastic rainfall generator. The maximum reservoir level reached will be conditioned by the scale and the dynamics of the generated hydrograph, by the filling of the reservoir prior to the flood, and by the dam gates and spillway operation during the event. The simulation of a great number of floods will allow building a probabilistic distribution of maximum reservoir levels. A design value can be chosen at a definite return level. An alternative approach is proposed here, based on the SCHADEX method for extreme flood estimation, proposed by Paquet et al. (2006, 2013). SCHADEX is a so-called "semi-continuous" stochastic simulation method in that flood events are simulated on an event basis and are superimposed on a continuous simulation of the catchment saturation hazard using rainfall-runoff modelling. The SCHADEX process works at the study time-step (e.g. daily), and the peak flow distribution is deduced from the simulated daily flow distribution by a peak-to-volume ratio. A reference hydrograph relevant for extreme floods is proposed. In the standard version of the method, both the peak-to-volume and the reference hydrograph are constant. An enhancement of this method is presented, with variable peak-to-volume ratios and hydrographs applied to each simulated event. This allows accounting for different flood dynamics, depending on the season, the generating precipitation event, the soil saturation state, etc. In both cases, a hydraulic simulation of dam operation is performed, in order to compute the distribution of maximum reservoir levels. Results are detailed for an extreme return level, showing that a 1000 years return level reservoir level can be reached during flood events whose components (peaks, volumes) are not necessarily associated with such return level. The presentation will be illustrated by the example of a fictive dam on the Tech River at Reynes (South of France, 477 km²). This study has been carried out within the EXTRAFLO project, Task 8 (https://extraflo.cemagref.fr/). References: Paquet, E., Gailhard, J. and Garçon, R. (2006), Evolution of the GRADEX method: improvement by atmospheric circulation classification and hydrological modeling, La Houille Blanche, 5, 80-90. doi:10.1051/lhb:2006091. Paquet, E., Garavaglia, F., Garçon, R. and Gailhard, J. (2012), The SCHADEX method: a semi-continuous rainfall-runoff simulation for extreme food estimation, Journal of Hydrology, under revision
Combining Radar and Daily Precipitation Data to Estimate Meaningful Sub-daily Precipitation Extremes
NASA Astrophysics Data System (ADS)
Pegram, G. G. S.; Bardossy, A.
2016-12-01
Short duration extreme rainfalls are important for design. The purpose of this presentation is not to improve the day by day estimation of precipitation, but to obtain reasonable statistics for the subdaily extremes at gauge locations. We are interested specifically in daily and sub-daily extreme values of precipitation at gauge locations. We do not employ the common procedure of using time series of control station to determine the missing data values in a target. We are interested in individual rare events, not sequences. The idea is to use radar to disaggregate daily totals to sub-daily amounts. In South Arica, an S-band radar operated relatively continuously at Bethlehem from 1998 to 2003, whose scan at 1.5 km above ground [CAPPI] overlapped a dense (10 km spacing) set of 45 pluviometers recording in the same 6-year period. Using this valuable set of data, we are only interested in rare extremes, therefore small to medium values of rainfall depth were neglected, leaving 12 days of ranked daily maxima in each set per year, whose sum typically comprised about 50% of each annual rainfall total. The method presented here uses radar for disaggregating daily gauge totals in subdaily intervals down to 15 minutes in order to extract the maxima of sub-hourly through to daily rainfall at each of 37 selected radar pixels [1 km square in plan] which contained one of the 45 pluviometers not masked out by the radar foot-print. The pluviometer data were aggregated to daily totals, to act as if they were daily read gauges; their only other task was to help in the cross-validation exercise. The extrema were obtained as quantiles by ordering the 12 daily maxima of each interval per year. The unusual and novel goal was not to obtain the reproduction of the precipitation matching in space and time, but to obtain frequency distributions of the gauge and radar extremes, by matching their ranks, which we found to be stable and meaningful in cross-validation tests. We provide and compare a range of different methodologies to enable reasonable estimation of subdaily extremes using radar and daily precipitation observations.
NASA Astrophysics Data System (ADS)
Gibergans-Báguena, J.; Llasat, M. C.
2007-12-01
The objective of this paper is to present the improvement of quantitative forecasting of daily rainfall in Catalonia (NE Spain) from an analogues technique, taking into account synoptic and local data. This method is based on an analogues sorting technique: meteorological situations similar to the current one, in terms of 700 and 1000 hPa geopotential fields at 00 UTC, complemented with the inclusion of some thermodynamic parameters extracted from an historical data file. Thermodynamic analysis acts as a highly discriminating feature for situations in which the synoptic situation fails to explain either atmospheric phenomena or rainfall distribution. This is the case in heavy rainfall situations, where the existence of instability and high water vapor content is essential. With the objective of including these vertical thermodynamic features, information provided by the Palma de Mallorca radiosounding (Spain) has been used. Previously, a selection of the most discriminating thermodynamic parameters for the daily rainfall was made, and then the analogues technique applied to them. Finally, three analog forecasting methods were applied for the quantitative daily rainfall forecasting in Catalonia. The first one is based on analogies from geopotential fields to synoptic scale; the second one is exclusively based on the search of similarity from local thermodynamic information and the third method combines the other two methods. The results show that this last method provides a substantial improvement of quantitative rainfall estimation.
Contribution of tropical cyclones to global rainfall
NASA Astrophysics Data System (ADS)
Khouakhi, Abdou; Villarini, Gabriele; Vecchi, Gabriel; Smith, James
2016-04-01
Rainfall associated with tropical cyclones (TCs) can have both devastating and beneficial impacts in different parts of the world. In this work, daily precipitation and historical six-hour best track TC datasets are used to quantify the contribution of TCs to global rainfall. We select 18607 rain gauge stations with at least 25 complete (at least 330 measurements per year) years between 1970 and 2014. We consider rainfall associated with TCs if the center of circulation of the storm passed within a given distance from the rain gauge and within a given time window. Spatial and temporal sensitivity analyses are performed with varying time windows (same day, ±1 day) and buffer radii (400 km and 500 km) around each rain gauge. Results highlight regional differences in TC-induced rainfall. The highest TC-induced precipitation totals (400 to 600+ mm/year) are prevalent along eastern Asia, western and northeastern Australia, and in the western Pacific islands. Stations along the southeast of the U.S. coast and surrounding the Gulf of Mexico receive up to 200 mm/year of TC rainfall. The highest annual fractional contributions of TCs to total rainfall (from 35 to 50%) are recorded in stations located in northwestern Australia, southeastern China, the northern Philippines and the southern Mexico peninsula. Seasonally, the highest proportions (40 to 50%) are recorded along eastern Australia and Mauritius in winter, and in eastern Asia and Mexico in summer and autumn. Analyses of the relative contribution of TCs to extreme rainfall using annual maximum (AM) and peaks-over-threshold (POT) approaches indicate notable differences among regions. The highest TC-AM rainfall proportions (45 to 60%) are found in stations located in Japan, eastern China, the Philippines, eastern and western Australia. Substantial contributions (25 to 40% of extreme rainfall) are also recorded in stations located along the U.S. East Coast, the Gulf of Mexico, and the Mexico peninsula. We find similar patterns using the POT approach to identify extremes. The fractional contributions decrease as we move inland from the coast. Moreover, the relationship between TC-induced extreme rainfall and the El Niño-Southern Oscillation is also examined using logistic and Poisson regression. Results indicate that TC-induced extreme rainfall tends to occur more frequently in Australia and along the U.S. East Coast during La Niña, and along eastern Asia and northwestern Pacific islands during El Niño.
Yu, Xing-xiu; Li, Zhen-wei; Liu, Qian-jin; Jing, Guang-hua
2012-08-01
Relationships between phosphorus pollutant concentrations and precipitation-runoff were analyzed by monitoring pollutant losses at outlets of the Menglianggu watershed in 2010. A typical small watershed was selected to examine the runoff and quality parameters such as total phosphorus (TP), particle phosphorus (PP), dissolve phosphorus (DP) and dissolve inorganic phosphorus (DIP) in rainfall-runoff of 10 rainfall events. Precipitation was above 2 mm for all the 10 rainfall events. The results showed that the peak of phosphorus concentrations occurred before the peak of water flows, whereas change processes of the phosphorus fluxes were consistent with that of the water flows and the phosphorus flux also have a strong linear relationship with the water flows. The minimums of the phosphorus concentrations in every 10 natural rainfall events have small differences with each other, but the maximum and EMCs of the phosphorus concentrations have significant differences with each rainfall event. This was mainly influenced by the precipitation, maximum rainfall intensity and mean rainfall intensity (EMCs) and was less influenced by rainfall duration. DP and TP were mainly composed of DIP and PP, respectively. There were no significant correlations between DIP/DP dynamic changes and rainfall characteristics, whereas significant correlations between PP/TP dynamic changes and maximum rainfall intensity were detected. The production of DIP, DP, AND TP were mainly influenced by the direct runoff (DR) and base flow (BF). The EMCs of DIP, DP, TP and the variations of DIP/DP were all found to have significant polynomial relationships with DR/TR., but the dynamic changes of PP/ TP and the EMCS of PP were less influenced by the DR/TR.
Evaluation of different rainfall products over India for the summer monsoon
NASA Astrophysics Data System (ADS)
Prakash, Satya; Mitra, Ashis; Turner, Andrew; Collins, Mathew; AchutoRao, Krishna
2015-04-01
Summer rainfall over India forms an integral part of the Asian monsoon, which plays a key role in the global water cycle and climate system through coupled atmospheric and oceanic processes. Accurate prediction of Indian summer monsoon rainfall and its variability at various spatiotemporal scales are crucial for agriculture, water resources and hydroelectric-power sectors. Reliable rainfall observations are very important for verification of numerical model outputs and model development. However, high spatiotemporal variability of rainfall makes it difficult to measure adequately with ground-based instruments over a large region of various surface types from deserts to oceans. A number of multi-satellite rainfall products are available to users at different spatial and temporal scales. Each rainfall product has some advantages as well as limitations, hence it is essential to find a suitable region-specific data set among these rainfall products for a particular user application, such as water resources, agricultural modelling etc. In this study, we examine seasonal-mean and daily rainfall datasets for monsoon model validation. First, six multi-satellite and gauge-only rainfall products were evaluated over India at seasonal scale for 27 (JJAS 1979-2005) summer monsoon seasons against gridded 0.5-degree IMD gauge-based rainfall. Various skill metrics are computed to assess the potential of these data sets in representation of large-scale monsoon rainfall at all-India and sub-regional scales. Among the gauge-only data sets, APHRODITE and GPCC appear to outperform the others whereas GPCP is better than CMAP in the merged multi-satellite category. However, there are significant differences among these data sets indicating uncertainty in the observed rainfall over this region, with important implications for the evaluation of model simulations. At the daily scale, TRMM TMPA-3B42 is one of the best available products and is widely used for various hydro-meteorological applications. The existing version 6 (V6) products of TRMM underwent major changes and version 7 (V7) products were released in late 2012, and we compare these to the IMD daily gridded data over the 1998-2010 period. We show a clear improvement in V7 over V6 in the South Asian monsoon region using various skill metrics. Over typical monsoon rainfall zones, biases are improved by 5-10% in V7 over higher-rainfall regions. These results will help users to select appropriate rainfall product for their application. With the recent launch of the GPM Core Observatory, the release of a more advanced high-resolution multi-satellite rainfall product is expected soon.
Ingole, Vijendra; Juvekar, Sanjay; Muralidharan, Veena; Sambhudas, Somnath; Rocklöv, Joacim
2012-01-01
Background Research in mainly developed countries has shown that some changes in weather are associated with increased mortality. However, due to the lack of accessible data, few studies have examined such effects of weather on mortality, particularly in rural regions in developing countries. Objective In this study, we aimed to investigate the relationship between temperature and rainfall with daily mortality in rural India. Design Daily mortality data were obtained from the Health and Demographic Surveillance System (HDSS) in Vadu, India. Daily mean temperature and rainfall data were obtained from a regional meteorological center, India Meteorological Department (IMD), Pune. A Poisson regression model was established over the study period (January 2003–May 2010) to assess the short-term relationship between weather variables and total mortality, adjusting for time trends and stratifying by both age and sex. Result Mortality was found to be significantly associated with daily ambient temperatures and rainfall, after controlling for seasonality and long-term time trends. Children aged 5 years or below appear particularly susceptible to the effects of warm and cold temperatures and heavy rainfall. The population aged 20–59 years appeared to face increased mortality on hot days. Most age groups were found to have increased mortality rates 7–13 days after rainfall events. This association was particularly evident in women. Conclusion We found the level of mortality in Vadu HDSS in rural India to be highly affected by both high and low temperatures and rainfall events, with time lags of up to 2 weeks. These results suggest that weather-related mortality may be a public health problem in rural India today. Furthermore, as changes in local climate occur, adaptation measures should be considered to mitigate the potentially negative impacts on public health in these rural communities. PMID:23195513
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2009-04-01
It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset.
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2007-12-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable extreme events, due to a number of factors including extensive poverty, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of a state-of-the-art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of SST anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the UK Meteorological Office Hadley Centre's climate model's domain size are firstly presented. Then simulations of current climate from the model, operating in both regional and global mode, are compared to the MIRA dataset at daily timescales. Thirdly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. Finally, the results from the idealised SST experiments are briefly presented, suggesting associations between rainfall extremes and both local and remote SST anomalies.
Spatial variability of mountain stream dynamics along the Ethiopian Rift Valley escarpment
NASA Astrophysics Data System (ADS)
Asfaha, Tesfaalem-Ghebreyohannes; Frankl, Amaury; Zenebe, Amanuel; Haile, Mitiku; Nyssen, Jan
2014-05-01
Changes in hydrogeomorphic characteristics of mountain streams are generally deemed to be controlled mainly by land use/cover changes and rainfall variability. This study investigates the spatial variability of peak discharge in relation to land cover, rainfall and topographic variables in eleven catchments of the Ethiopian Rift Valley escarpment (average slope gradient = 48% (± 13%). Rapid deforestation of the escarpment in the second half of the 20th century resulted in the occurrence of strong flash floods, transporting large amounts of discharge and sediment to the lower graben bottom. Due to integrated reforestation interventions as of the 1980s, many of these catchments do show improvement in vegetation cover at various degrees. Daily rainfall was measured using seven non-recording rain gauges, while peak stage discharges were measured after floods using crest stage gauges installed at eleven stream reaches. Peak discharges were calculated using the Manning's equation. Daily area-weighted rainfall was computed for each catchment using the Thiessen Polygon method. To estimate the vegetation cover of each catchment, the Normalized Difference Vegetation Index was calculated from Landsat TM imagery (mean = 0.14 ± 0.05). In the rainy season of 2012, there was a positive correlation between daily rainfall and peak discharge in each of the monitored catchments. In a multiple linear regression analysis (R² = 0.83; P<0.01), average daily peak discharge in all rivers was positively related with rainfall depth and catchment size and negatively with vegetation cover (as represented by average NDVI values). Average slope gradient of the catchments and Gravelius's compactness index did not show a statistically significant relation with peak discharge. This study shows that though the average vegetation cover of the catchments is still relatively low, differences in vegetation cover, together with rainfall variability plays a determining role in the amount of peak discharges in flashy mountain streams.
NASA Astrophysics Data System (ADS)
Parolari, A.; Goulden, M.
2017-12-01
A major challenge to interpreting asymmetric changes in ecosystem productivity is the attribution of these changes to external climate forcing or to internal ecophysiological processes that respond to these drivers (e.g., photosynthesis response to drying soil). For example, positive asymmetry in productivity can result from either positive skewness in the distribution of annual rainfall amount or from negative curvature in the productivity response to annual rainfall. To analyze the relative influences of climate and ecosystem dynamics on both positive and negative asymmetry in multi-year ANPP experiments, we use a multi-scale coupled ecosystem water-carbon model to interpret field experimental results that span gradients of rainfall skewness and ANPP response curvature. The model integrates rainfall variability, soil moisture dynamics, and net carbon assimilation from the daily to inter-annual scales. From the underlying physical basis of the model, we compute the joint probability distribution of the minimum and maximum ANPP for an annual ANPP experiment of N years. The distribution is used to estimate the likelihood that either positive or negative asymmetry will be observed in an experiment, given the annual rainfall distribution and the ANPP response curve. We estimate the total asymmetry as the mode of this joint distribution and the relative contribution attributable to rainfall skewness as the mode for a linear ANPP response curve. Applied to data from several long-term ANPP experiments, we find that there is a wide range of observed ANPP asymmetry (positive and negative) and a spectrum of contributions from internal and external factors. We identify the soil water holding capacity relative to the mean rain event depth as a critical ecosystem characteristic that controls the non-linearity of the ANPP response and positive curvature at high rainfall. Further, the seasonal distribution of rainfall is shown to control the presence or absence of negative curvature at low rainfall. Therefore, a combination of rooting depth, soil texture, and climate seasonality contribute to ANPP response curvature and its contribution to overall observed asymmetry.
Farmer, William H.; Knight, Rodney R.; Eash, David A.; Kasey J. Hutchinson,; Linhart, S. Mike; Christiansen, Daniel E.; Archfield, Stacey A.; Over, Thomas M.; Kiang, Julie E.
2015-08-24
Daily records of streamflow are essential to understanding hydrologic systems and managing the interactions between human and natural systems. Many watersheds and locations lack streamgages to provide accurate and reliable records of daily streamflow. In such ungaged watersheds, statistical tools and rainfall-runoff models are used to estimate daily streamflow. Previous work compared 19 different techniques for predicting daily streamflow records in the southeastern United States. Here, five of the better-performing methods are compared in a different hydroclimatic region of the United States, in Iowa. The methods fall into three classes: (1) drainage-area ratio methods, (2) nonlinear spatial interpolations using flow duration curves, and (3) mechanistic rainfall-runoff models. The first two classes are each applied with nearest-neighbor and map-correlated index streamgages. Using a threefold validation and robust rank-based evaluation, the methods are assessed for overall goodness of fit of the hydrograph of daily streamflow, the ability to reproduce a daily, no-fail storage-yield curve, and the ability to reproduce key streamflow statistics. As in the Southeast study, a nonlinear spatial interpolation of daily streamflow using flow duration curves is found to be a method with the best predictive accuracy. Comparisons with previous work in Iowa show that the accuracy of mechanistic models with at-site calibration is substantially degraded in the ungaged framework.
Landslides in West Coast Metropolitan Areas: The Role of Extreme Weather Events
NASA Technical Reports Server (NTRS)
Biasutti, Michela; Seager, Richard; Kirschbaum, Dalia B.
2016-01-01
Rainfall-induced landslides represent a pervasive issue in areas where extreme rainfall intersects complex terrain. A farsighted management of landslide risk requires assessing how landslide hazard will change in coming decades and thus requires, inter alia, that we understand what rainfall events are most likely to trigger landslides and how global warming will affect the frequency of such weather events. We take advantage of 9 years of landslide occurrence data compiled by collating Google news reports and of a high-resolution satellite-based daily rainfall data to investigate what weather triggers landslide along the West Coast US. We show that, while this landslide compilation cannot provide consistent and widespread monitoring everywhere, it captures enough of the events in the major urban areas that it can be used to identify the relevant relationships between landslides and rainfall events in Puget Sound, the Bay Area, and greater Los Angeles. In all these regions, days that recorded landslides have rainfall distributions that are skewed away from dry and low-rainfall accumulations and towards heavy intensities. However, large daily accumulation is the main driver of enhanced hazard of landslides only in Puget Sound. There, landslide are often clustered in space and time and major events are primarily driven by synoptic scale variability, namely "atmospheric rivers" of high humidity air hitting anywhere along the West Coast, and the interaction of frontal system with the coastal orography. The relationship between landslide occurrences and daily rainfall is less robust in California, where antecedent precipitation (in the case of the Bay area) and the peak intensity of localized downpours at sub-daily time scales (in the case of Los Angeles) are key factors not captured by the same-day accumulations. Accordingly, we suggest that the assessment of future changes in landslide hazard for the entire the West Coast requires consideration of future changes in the occurrence and intensity of atmospheric rivers, in their duration and clustering, and in the occurrence of short-duration (sub-daily) extreme rainfall as well. Major regional landslide events, in which multiple occurrences are recorded in the catalog for the same day, are too rare to allow a statistical characterization of their triggering events, but a case study analysis indicates that a variety of synoptic-scale events can be involved, including not only atmospheric rivers but also broader cold- and warm-front precipitation. That a news-based catalog of landslides is accurate enough to allow the identification of different landslide/ rainfall relationships in the major urban areas along the US West Coast suggests that this technology can potentially be used for other English-language cities and could become an even more powerful tool if expanded to other languages and non-traditional news sources, such as social media.
NASA Astrophysics Data System (ADS)
Longobardi, Antonia; Diodato, Nazzareno; Mobilia, Mirka
2017-04-01
Extremes precipitation events are frequently associated to natural disasters falling within the broad spectrum of multiple damaging hydrological events (MDHEs), defined as the simultaneously triggering of different types of phenomena, such as landslides and floods. The power of the rainfall (duration, magnitude, intensity), named storm erosivity, is an important environmental indicator of multiple damaging hydrological phenomena. At the global scale, research interest is actually devoted to the investigation of non-stationary features of extreme events, and consequently of MDHEs, which appear to be increasing in frequency and severity. The Mediterranean basin appears among the most vulnerable regions with an expected increase in occurring damages of about 100% by the end of the century. A high concentration of high magnitude and short duration rainfall events are, in fact, responsible for the largest rainfall erosivity and erosivity density values within Europe. The aim of the reported work is to investigate the relationship between the temporal evolution of severe geomorphological events and combined precipitation indices as a tool to improve understanding the hydro-geological hazard at the catchment scale. The case study is the Solofrana river basin, Southern Italy, which has been seriously and consistently in time affected by natural disasters. Data for about 45 MDH events, spanning on a decadal scale 1951-2014, have been collected and analyzed for this purpose. A preliminary monthly scale analysis of event occurrences highlights a pronounced seasonal characterization of the phenomenon, as about 60% of the total number of reported events take place during the period from September to November. Following, a statistical analysis clearly indicates a significant increase in the frequency of occurrences of MDHEs during the last decades. Such an increase appears to be related to non-stationary features of an average catchment scale rainfall-runoff erosivity index, which combines maximum monthly, maximum daily, and a proxy of maximum hourly precipitation data. The main findings of the reported study relate to the fact that climate evolving tendencies do not appear significant in most of the cases and that MDHEs occurred within the studied catchment also for rainfall events of very moderate intensity and/or severity. The illustrated results seems to indicate that climate variability has not assumed the main role in the large number of damaging event, and that the relative increase hazardous hydro-geological events in the last decade, is instead most likely caused by incorrect urban planning policies.
Identification of anomalous motion of thunderstorms using daily rainfall fields
NASA Astrophysics Data System (ADS)
Moral, Anna del; Llasat, María del Carmen; Rigo, Tomeu
2017-03-01
Most of the adverse weather phenomena in Catalonia (northeast Iberian Peninsula) are caused by convective events, which can produce heavy rains, large hailstones, strong winds, lightning and/or tornadoes. These thunderstorms usually have marked paths. However, their trajectories can vary sharply at any given time, completely changing direction from the path they have previously followed. Furthermore, some thunderstorms split or merge with each other, creating new formations with different behaviour. In order to identify the potentially anomalous movements that some thunderstorms make, this paper presents a two-step methodology using a database with 8 years of daily rainfall fields data for the Catalonia region (2008-2015). First, it classifies daily rainfall fields between days with "no rain", "non-potentially convective rain" and "potentially convective rain", based on daily accumulated precipitation and extension thresholds. Second, it categorises convective structures within rainfall fields and briefly identifies their main features, distinguishing whether there were any anomalous thunderstorm movements in each case. This methodology has been applied to the 2008-2015 period, and the main climatic features of convective and non-convective days were obtained. The methodology can be exported to other regions that do not have the necessary radar-based algorithms to detect convective cells, but where there is a good rain gauge network in place.
NASA Astrophysics Data System (ADS)
Williams, C. J. R.; Kniveton, D. R.; Layberry, R.
2009-04-01
It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. The paper will conclude by discussing the user needs of satellite rainfall retrievals from a climate change modelling prospective.
NASA Astrophysics Data System (ADS)
Grimaldi, S.; Petroselli, A.; Romano, N.
2012-04-01
The Soil Conservation Service - Curve Number (SCS-CN) method is a popular rainfall-runoff model that is widely used to estimate direct runoff from small and ungauged basins. The SCS-CN is a simple and valuable approach to estimate the total stream-flow volume generated by a storm rainfall, but it was developed to be used with daily rainfall data. To overcome this drawback, we propose to include the Green-Ampt (GA) infiltration model into a mixed procedure, which is referred to as CN4GA (Curve Number for Green-Ampt), aiming to distribute in time the information provided by the SCS-CN method so as to provide estimation of sub-daily incremental rainfall excess. For a given storm, the computed SCS-CN total net rainfall amount is used to calibrate the soil hydraulic conductivity parameter of the Green-Ampt model. The proposed procedure was evaluated by analyzing 100 rainfall-runoff events observed in four small catchments of varying size. CN4GA appears an encouraging tool for predicting the net rainfall peak and duration values and has shown, at least for the test cases considered in this study, a better agreement with observed hydrographs than that of the classic SCS-CN method.
Rainfall Threshold Assessment Corresponding to the Maximum Allowable Turbidity for Source Water.
Fan, Shu-Kai S; Kuan, Wen-Hui; Fan, Chihhao; Chen, Chiu-Yang
2016-12-01
This study aims to assess the upstream rainfall thresholds corresponding to the maximum allowable turbidity of source water, using monitoring data and artificial neural network computation. The Taipei Water Source Domain was selected as the study area, and the upstream rainfall records were collected for statistical analysis. Using analysis of variance (ANOVA), the cumulative rainfall records of one-day Ping-lin, two-day Ping-lin, two-day Tong-hou, one-day Guie-shan, and one-day Tai-ping (rainfall in the previous 24 or 48 hours at the named weather stations) were found to be the five most significant parameters for downstream turbidity development. An artificial neural network model was constructed to predict the downstream turbidity in the area investigated. The observed and model-calculated turbidity data were applied to assess the rainfall thresholds in the studied area. By setting preselected turbidity criteria, the upstream rainfall thresholds for these statistically determined rain gauge stations were calculated.
Kim, L H; Jeong, S M; Ko, S O
2007-01-01
Recently the Ministry of Environment in Korea has developed the total maximum daily load program in accordance with the target pollutant and its concentration goal on four major large rivers. Since the program is largely related to regional development, nonpoint source control is both important and topical. Of the various nonpoint sources, highways are stormwater intensive land uses since they are impervious and have high pollutant mass emissions from vehicular activity. The event mean concentration (EMC) is useful in estimating the loadings to receiving water bodies. However, the EMC does not provide information on the time varying changes in pollutant concentration or mass emissions, which are often important for best management practice development, or understanding shock loads. Therefore, in this study a new concept, the dynamic EMC determination method, will be introduced to clearly verify the relationship between EMC and the first flush effect. Three monitoring sites in Daejeon metropolitan city areas were equipped with an automatic rainfall gauge and a flow meter for accumulating the data such as rainfall and runoff flow. The dynamic EMC method was applied to more than 17 events, and the improved first flush criteria were determined on the ranges of storm duration and accumulated rainfall.
Climate change impact assessment on food security in Indonesia
NASA Astrophysics Data System (ADS)
Ettema, Janneke; Aldrian, Edvin; de Bie, Kees; Jetten, Victor; Mannaerts, Chris
2013-04-01
As Indonesia is the world's fourth most populous country, food security is a persistent challenge. The potential impact of future climate change on the agricultural sector needs to be addressed in order to allow early implementation of mitigation strategies. The complex island topography and local sea-land-air interactions cannot adequately be represented in large scale General Climate Models (GCMs) nor visualized by TRMM. Downscaling is needed. Using meteorological observations and a simple statistical downscaling tool, local future projections are derived from state-of-the-art, large-scale GCM scenarios, provided by the CMIP5 project. To support the agriculture sector, providing information on especially rainfall and temperature variability is essential. Agricultural production forecast is influenced by several rain and temperature factors, such as rainy and dry season onset, offset and length, but also by daily and monthly minimum and maximum temperatures and its rainfall amount. A simple and advanced crop model will be used to address the sensitivity of different crops to temperature and rainfall variability, present-day and future. As case study area, Java Island is chosen as it is fourth largest island in Indonesia but contains more than half of the nation's population and dominates it politically and economically. The objective is to identify regions at agricultural risk due to changing patterns in precipitation and temperature.
Assessment of a climate model to reproduce rainfall variability and extremes over Southern Africa
NASA Astrophysics Data System (ADS)
Williams, C. J. R.; Kniveton, D. R.; Layberry, R.
2010-01-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is under-estimated (over-estimated) over wet (dry) regions of southern Africa.
Variations and trends of Fagaceae pollen in Northern Sardinia, Italy
NASA Astrophysics Data System (ADS)
Canu, Annalisa; Pellizzaro, Grazia; Arca, Bachisio; Vargiu, Arnoldo
2016-04-01
The aim of this study is to analyze variations in the start and the end dates of pollen season, date of maximum concentration peak, pollen season duration, pollen concentration value and Seasonal Pollen Index of airborne Fagaceae pollen series recorded in Sassari, Northern Italy, and to evaluate their relation to meteorological data. Daily pollen concentration data were measured from 1986 to 2008 in a urban area of northern Sardinia (Italy) using a Burkard seven-day recording volumetric spore trap. The date of the peak occurrence was defined as the day when the cumulated daily pollen values reached the 50 % of the total annual pollen concentration. Meteorological data were recorded during the same period by an automatic weather station. Cumulative Degree days were calculated, for each year, from different starting dates using the daily averaging method. The correlation between meteorological variables and the different characteristics of pollen seasons was analyzed using Spearman's correlation tests. In the city of Sassari the Fagaceae airborne pollen content was mainly due to Quercus. The main pollen season took place from April to June. The longest pollen season appeared in the year 2002. The cumulative counts varied over the years, with a mean value of 5,336 pollen grains, a lowest total of 550 in 1986 and a highest total of 8,678 in 2001. Daily pollen concentrations presented positive correlation with temperature, and negative with relative humidity (p<0,0001) and with rainfall. In addition, Cumulative Degree days were significantly correlated with the dates of maximum concentration peak (p<0,0001).
NASA Astrophysics Data System (ADS)
Brett, M.; Mattey, D.; Stephens, M.
2015-12-01
Oxygen isotopes in speleothem provide opportunities to construct precisely dated records of palaeoclimate variability, underpinned by an understanding of both the regional climate and local controls on isotopes in rainfall and groundwater. For tropical islands, a potential means to reconstruct past rainfall variability is to exploit the generally high correlation between rainfall amount and δ18O: the 'amount effect'. The GNIP program provides δ18O data at monthly resolution for several tropical Pacific islands but there are few data for precipitation isotopes at daily resolution, for investigating the amount effect over different timescales in a tropical maritime setting. Timescales are important since meteoric water feeding a speleothem has undergone storage and mixing in the aquifer system and understanding how the isotope amount effect is preserved in aquifer recharge has fundamental implications on the interpretation of speleothem δ18O in terms of palaeo-precipitation. The islands of Fiji host speleothem caves. Seasonal precipitation is related to the movement of the South Pacific Convergence Zone, and interannual variations in rainfall are coupled to ENSO behaviour. Individual rainfall events are stratiform or convective, with proximal moisture sources. We have daily resolution isotope data for rainfall collected at the University of the South Pacific in Suva, covering every rain event in 2012 and 2013. δ18O varies between -18‰ and +3‰ with the annual weighted averages at -7.6‰ and -6.8‰ respectively, while total recorded rainfall amount is similar in both years. We shall present analysis of our data compared with GNIP, meteorological data and back trajectory analyses to demonstrate the nature of the relationship between rainfall amount and isotopic signatures over this short timescale. Comparison with GNIP data for 2012-13 will shed light on the origin of the amount effect at monthly and seasonal timescales in convective, maritime, tropical climates.
Use of regional climate model output for hydrologic simulations
Hay, L.E.; Clark, M.P.; Wilby, R.L.; Gutowski, W.J.; Leavesley, G.H.; Pan, Z.; Arritt, R.W.; Takle, E.S.
2002-01-01
Daily precipitation and maximum and minimum temperature time series from a regional climate model (RegCM2) configured using the continental United States as a domain and run on a 52-km (approximately) spatial resolution were used as input to a distributed hydrologic model for one rainfall-dominated basin (Alapaha River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River at Durango. Colorado; east fork of the Carson River near Gardnerville, Nevada: and Cle Elum River near Roslyn, Washington). For comparison purposes, spatially averaged daily datasets of precipitation and maximum and minimum temperature were developed from measured data for each basin. These datasets included precipitation and temperature data for all stations (hereafter, All-Sta) located within the area of the RegCM2 output used for each basin, but excluded station data used to calibrate the hydrologic model. Both the RegCM2 output and All-Sta data capture the gross aspects of the seasonal cycles of precipitation and temperature. However, in all four basins, the RegCM2- and All-Sta-based simulations of runoff show little skill on a daily basis [Nash-Sutcliffe (NS) values range from 0.05 to 0.37 for RegCM2 and -0.08 to 0.65 for All-Sta]. When the precipitation and temperature biases are corrected in the RegCM2 output and All-Sta data (Bias-RegCM2 and Bias-All, respectively) the accuracy of the daily runoff simulations improve dramatically for the snowmelt-dominated basins (NS values range from 0.41 to 0.66 for RegCM2 and 0.60 to 0.76 for All-Sta). In the rainfall-dominated basin, runoff simulations based on the Bias-RegCM2 output show no skill (NS value of 0.09) whereas Bias-All simulated runoff improves (NS value improved from - 0.08 to 0.72). These results indicate that measured data at the coarse resolution of the RegCM2 output can be made appropriate for basin-scale modeling through bias correction (essentially a magnitude correction). However, RegCM2 output, even when bias corrected, does not contain the day-to-day variability present in the All-Sta dataset that is necessary for basin-scale modeling. Future work is warranted to identify the causes for systematic biases in RegCM2 simulations, develop methods to remove the biases, and improve RegCM2 simulations of daily variability in local climate.
NASA Astrophysics Data System (ADS)
Alahmadi, F.; Rahman, N. A.; Abdulrazzak, M.
2014-09-01
Rainfall frequency analysis is an essential tool for the design of water related infrastructure. It can be used to predict future flood magnitudes for a given magnitude and frequency of extreme rainfall events. This study analyses the application of rainfall partial duration series (PDS) in the vast growing urban Madinah city located in the western part of Saudi Arabia. Different statistical distributions were applied (i.e. Normal, Log Normal, Extreme Value type I, Generalized Extreme Value, Pearson Type III, Log Pearson Type III) and their distribution parameters were estimated using L-moments methods. Also, different selection criteria models are applied, e.g. Akaike Information Criterion (AIC), Corrected Akaike Information Criterion (AICc), Bayesian Information Criterion (BIC) and Anderson-Darling Criterion (ADC). The analysis indicated the advantage of Generalized Extreme Value as the best fit statistical distribution for Madinah partial duration daily rainfall series. The outcome of such an evaluation can contribute toward better design criteria for flood management, especially flood protection measures.
NASA Astrophysics Data System (ADS)
Pai, D. S.; Sridhar, Latha; Badwaik, M. R.; Rajeevan, M.
2015-08-01
In this study, analysis of the long term climatology, variability and trends in the daily rainfall events of ≥5 mm [or daily rainfall (DR) events] during the southwest monsoon season (June-September) over four regions of India; south central India (SCI), north central India (NCI), northeast India (NEI) and west coast (WC) have been presented. For this purpose, a new high spatial resolution (0.25° × 0.25°) daily gridded rainfall data set covering 110 years (1901-2010) over the Indian main land has been used. The association of monsoon low pressure systems (LPSs) with the DR events of various intensities has also been examined. Major portion of the rainfall over these regions during the season was received in the form of medium rainfall (≥5-100 mm) or moderate rainfall (MR) events. The mean seasonal cycle of the daily frequency of heavy rainfall (HR) (≥100-150 mm) or HR events and very heavy rainfall (VHR) (≥150 mm) or VHR events over each of the four regions showed peak at different parts of the season. The peak in the mean daily HR and VHR events occurred during middle of July to middle of August over SCI, during late part of June to early part of July over NCI, during middle of June to early July over NEI, and during late June to middle July over WC. Significant long term trends in the frequency and intensity of the DR events were observed in all the four geographical regions. Whereas the intensity of the DR events over all the four regions showed significant positive trends during the second half and the total period, the signs and magnitude of the long term trends in the frequency of the various categories of DR events during the total period and its two halves differed from the region to the region. The trend analysis revealed increased disaster potential for instant flooding over SCI and NCI during the recent years due to significant increasing trends in the frequency (areal coverage) and intensity of the HR and VHR events during the recent half of the data period. However, there is increased disaster potential over NEI and WC due to the increasing trends in the intensity of the rainfall events. There is strong association between the LPS days and the DR events in both the spatial and temporal scales. In all the four regions, the contributions to the total MR events by the LPS days were nearly equal. On the other hand, there was relatively large regional difference in the number of combined HR and VHR events associated with LPS days particularly that associated with monsoon depression (LPS stronger than monsoon depression) days. The possible reasons for the same have also been discussed. The increasing trend in the monsoon low (low pressure) days post 1970s is the primary reason for the observed significant increasing trends in the HR and VHR events over SCI and NCI and decreasing trend in HR events over NEI during the recent half (1956-2010). This is in spite of the decreasing trend in the MD days.
Multi-year encoding of daily rainfall and streamflow via the fractal-multifractal method
NASA Astrophysics Data System (ADS)
Puente, C. E.; Maskey, M.; Sivakumar, B.
2017-12-01
A deterministic geometric approach, the fractal-multifractal (FM) method, which has been proven to be faithful in encoding daily geophysical sets over a year, is used to describe records over multiple years at a time. Looking for FM parameter trends over longer periods, the present study shows FM descriptions of daily rainfall and streamflow gathered over five consecutive years optimizing deviations on accumulated sets. The results for 100 and 60 sets of five years for rainfall streamflow, respectively, near Sacramento, California illustrate that: (a) encoding of both types of data sets may be accomplished with relatively small errors; and (b) predicting the geometry of both variables appears to be possible, even five years ahead, training neural networks on the respective FM parameters. It is emphasized that the FM approach not only captures the accumulated sets over successive pentades but also preserves other statistical attributes including the overall "texture" of the records.
Soil erosion assessment of a Himalayan river basin using TRMM data
NASA Astrophysics Data System (ADS)
Pandey, A.; Mishra, S. K.; Gautam, A. K.; Kumar, D.
2015-04-01
In this study, an attempt has been made to assess the soil erosion of a Himalayan river basin, the Karnali basin, Nepal, using rainfall erosivity (R-factor) derived from satellite-based rainfall estimates (TRMM-3B42 V7). Average annual sediment yield was estimated using the well-known Universal Soil Loss Equation (USLE). The eight-year annual average rainfall erosivity factor (R) for the Karnali River basin was found to be 2620.84 MJ mm ha-1 h-1 year-1. Using intensity-erosivity relationships and eight years of the TRMM daily rainfall dataset (1998-2005), average annual soil erosion was also estimated for Karnali River basin. The minimum and maximum values of the rainfall erosivity factor were 1108.7 and 4868.49 MJ mm ha-1 h-1 year-1, respectively, during the assessment period. The average annual soil loss of the Karnali River basin was found to be 38.17 t ha-1 year-1. Finally, the basin area was categorized according to the following scale of erosion severity classes: Slight (0 to 5 t ha-1 year-1), Moderate (5 to 10 t ha-1 year-1), High (10 to 20 t ha-1 year-1), Very High (20 to 40 t ha-1 year-1), Severe (40 to 80 t ha-1 year-1) and Very Severe (>80 t ha-1 year-1). About 30.86% of the river basin area was found to be in the slight erosion class. The areas covered by the moderate, high, very high, severe and very severe erosion potential zones were 13.09%, 6.36%, 11.09%, 22.02% and 16.64% respectively. The study revealed that approximately 69% of the Karnali River basin needs immediate attention from a soil conservation point of view.
NASA Astrophysics Data System (ADS)
Koshimizu, K.; Uchida, T.
2015-12-01
Initial large-scale sediment yield caused by heavy rainfall or major storms have made a strong impression on us. Previous studies focusing on landslide management investigated the initial sediment movement and its mechanism. However, integrated management of catchment-scale sediment movements requires estimating the sediment yield, which is produced by the subsequent expanded landslides due to rainfall, in addition to the initial landslide movement. This study presents a quantitative analysis of expanded landslides by surveying the Shukushubetsu River basin, at the foot of the Hidaka mountain range in central Hokkaido, Japan. This area recorded heavy rainfall in 2003, reaching a maximum daily precipitation of 388 mm. We extracted the expanded landslides from 2003 to 2008 using aerial photographs taken over the river area. In particular, we calculated the probability of expansion for each landslide, the ratio of the landslide area in 2008 as compared with that in 2003, and the amount of the expanded landslide area corresponding to the initial landslide area. As a result, it is estimated 24% about probability of expansion for each landslide. In addition, each expanded landslide area is smaller than the initial landslide area. Furthermore, the amount of each expanded landslide area in 2008 is approximately 7% of their landslide area in 2003. Therefore, the sediment yield from subsequent expanded landslides is equal to or slightly greater than the sediment yield in a typical base flow. Thus, we concluded that the amount of sediment yield from subsequent expanded landslides is lower than that of initial large-scale sediment yield caused by a heavy rainfall in terms of effect on management of catchment-scale sediment movement.
USDA-ARS?s Scientific Manuscript database
Using multiple historical satellite surface soil moisture products, the Kalman Filtering-based Soil Moisture Analysis Rainfall Tool (SMART) is applied to improve the accuracy of a multi-decadal global daily rainfall product that has been bias-corrected to match the monthly totals of available rain g...
Maximum covariance analysis to identify intraseasonal oscillations over tropical Brazil
NASA Astrophysics Data System (ADS)
Barreto, Naurinete J. C.; Mesquita, Michel d. S.; Mendes, David; Spyrides, Maria H. C.; Pedra, George U.; Lucio, Paulo S.
2017-09-01
A reliable prognosis of extreme precipitation events in the tropics is arguably challenging to obtain due to the interaction of meteorological systems at various time scales. A pivotal component of the global climate variability is the so-called intraseasonal oscillations, phenomena that occur between 20 and 100 days. The Madden-Julian Oscillation (MJO), which is directly related to the modulation of convective precipitation in the equatorial belt, is considered the primary oscillation in the tropical region. The aim of this study is to diagnose the connection between the MJO signal and the regional intraseasonal rainfall variability over tropical Brazil. This is achieved through the development of an index called Multivariate Intraseasonal Index for Tropical Brazil (MITB). This index is based on Maximum Covariance Analysis (MCA) applied to the filtered daily anomalies of rainfall data over tropical Brazil against a group of covariates consisting of: outgoing longwave radiation and the zonal component u of the wind at 850 and 200 hPa. The first two MCA modes, which were used to create the { MITB}_1 and { MITB}_2 indices, represent 65 and 16 % of the explained variance, respectively. The combined multivariate index was able to satisfactorily represent the pattern of intraseasonal variability over tropical Brazil, showing that there are periods of activation and inhibition of precipitation connected with the pattern of MJO propagation. The MITB index could potentially be used as a diagnostic tool for intraseasonal forecasting.
The Tale of Flooding over the Central United States: Not Bigger but More Frequent
NASA Astrophysics Data System (ADS)
Mallakpour, I.; Villarini, G.
2014-12-01
Flooding over the central United States is responsible for large societal and economic impacts, quantifiable in tens of fatalities and billions of dollars in damage. Because of these large repercussions, it is of paramount importance to examine whether the magnitude and/or frequency of flood events have been changing over the most recent decades. Here we address this research question using annual and seasonal maximum daily streamflow records from 774 U.S. Geological Survey (USGS) stations over the central United States (the study area includes North Dakota, South Dakota, Nebraska, Kansas, Missouri, Iowa, Minnesota, Wisconsin, Illinois, West Virginia, Kentucky, Ohio, Indiana, and Michigan). The focus is on "long" records (i.e., at least 50 years of data) ending no earlier than 2011. Analyses are performed using block-maximum and peak-over-threshold approaches. We find limited evidence suggesting increasing or decreasing trends in the magnitude of flood peaks over this area. On the other hand, there is much stronger evidence of increasing frequency of flood events. Therefore, our results support the notion that it is not so much that the largest flood peaks are getting larger, but rather that we have been experiencing a larger number of flood events every year. By examining the rainfall records, we are able to link these increasing trends to similar patterns in heavy rainfall over the region.
NASA Astrophysics Data System (ADS)
Pineda, N.; Rigo, T.; Bech, J.; Argemí, O.
2009-09-01
Thunderstorms can be characterized by both rainfall and lightning. The relationship between convective precipitation and lightning activity may be used as an indicator of the rainfall regime. Besides, a better knowledge of local thunderstorm phenomenology can be very useful to assess weather surveillance tasks. Two types of approach can be distinguished in the bibliography when analyzing the rainfall and lightning activity. On one hand, rain yields (ratio of rain mass to cloud-to-ground flash over a common area) calculated for long temporal and spatial domains and using rain-gauge records to estimate the amounts of precipitation. On the other hand, a case-by-case approach has been used in many studies to analyze the relationship between convective precipitation and lightning in individual storms, using weather radar data to estimate rainfall volumes. Considering a local thunderstorm case study approach, the relation between rainfall and lightning is usually quantified as the Rainfall-Lightning ratio (RLR). This ratio estimates the convective rainfall volume per lightning flash. Intense storms tend to produce lower RLR values than moderate storms, but the range of RLR found in diverse studies is quite wide. This relationship depends on thunderstorm type, local climatology, convective regime, type of lightning flashes considered, oceanic and continental storms, etc. The objective of this paper is to analyze the relationship between convective precipitation and lightning in a case-by-case approach, by means of daily radar-derived quantitative precipitation estimates (QPE) and total lightning data, obtained from observations of the Servei Meteorològic de Catalunya remote sensing systems, which covers an area of approximately 50000 km2 in the NE of the Iberian Peninsula. The analyzed dataset is composed by 45 thunderstorm days from April to October 2008. A good daily correlation has been found between the radar QPE and the CG flash counts (best linear fit with a R^2=0.74). The daily RLR found has a mean value of 86 10^3m3 rainfall volume per CG flash. The daily range of variation is quite wide, as it goes from 19 to 222 10^3m3 per CG flash. This variation has a seasonal component, related to changes in the convective regime. Summer days (July to middle September) had a mean RLR of 57 10^3m3 rainfall volume per CG flash, while from middle September to the end of October the rainfall volume per CG flash doubles (mean of 125 10^3m3 per CG flash).
NASA Astrophysics Data System (ADS)
Quinn, Niall; Freer, Jim; Coxon, Gemma; O'Loughlin, Fiachra; Woods, Ross; Liguori, Sara
2015-04-01
In Great Britain and many other regions of the world, flooding resulting from short duration, high intensity rainfall events can lead to significant economic losses and fatalities. At present, such extreme events are often poorly evaluated using hydrological models due, in part, to their rarity and relatively short duration and a lack of appropriate data. Such storm characteristics are not well represented by daily rainfall records currently available using volumetric gauges and/or derived gridded products. This research aims to address this important data gap by developing a sub-daily gridded precipitation product for Great Britain. Our focus is to better understand these storm events and some of the challenges and uncertainties in quantifying such data across catchment scales. Our goal is to both improve such rainfall characterisation and derive an input to drive hydrological model simulations. Our methodology involves the collation, error checking, and spatial interpolation of approximately 2000 rain gauges located across Great Britain, provided by the Scottish Environment Protection Agency (SEPA) and the Environment Agency (EA). Error checking was conducted over the entirety of the TBR data available, utilising a two stage approach. First, rain gauge data at each site were examined independently, with data exceeding reasonable thresholds marked as suspect. Second, potentially erroneous data were marked using a neighbourhood analysis approach whereby measurements at a given gauge were deemed suspect if they did not fall within defined bounds of measurements at neighbouring gauges. A total of eight error checks were conducted. To provide the user with the greatest flexibility possible, the error markers associated with each check have been recorded at every site. This approach aims to enable the user to choose which checks they deem most suitable for a particular application. The quality assured TBR dataset was then spatially interpolated to produce a national scale gridded rainfall product. Finally, radar rainfall data provided by the UK Met Office was assimilated, where available, to provide an optimal hourly estimate of rainfall, given the error variance associated with both datasets. This research introduces a sub-daily rainfall product that will be of particular value to hydrological modellers requiring rainfall inputs at higher temporal resolutions than those currently available nationally. Further research will aim to quantify the uncertainties in the rainfall product in order to improve our ability to diagnose and identify structural errors in hydrological modelling of extreme events. Here we present our initial findings.
NASA Astrophysics Data System (ADS)
Kohán, Balázs; Tyler, Jonathan; Jones, Matthew; Kern, Zoltán
2017-04-01
Water stable isotopes are important natural tracers in the hydrological cycle on global, regional and local scales. Daily precipitation water samples were collected from 70 sites over the British Isles on the 23rd, 24th, and 25th January, 2012 [1]. Samples were collected as part of a pilot study for the British Isotopes in Rainfall Project, a community engagement initiative, in collaboration with volunteer weather observers and the UK Met Office. Spatial correlation structure of daily precipitation stable oxygen isotope composition (δ18OP) has been explored by variogram analysis [2]. Since the variograms from the raw data suggested a pronounced trend, owing to the spatial trend discussed in the original study [1], a second order polynomial trend was removed from the raw δ18OP data and variograms were calculated on the residuals. Directional experimental semivariograms were calculated (steps: 10°, tolerance: 30°) and aggregated into variogram surface plots to explore the spatial dependence structure of daily δ18OP. Each daily data set produced distinct variogram plots. -A well expressed anisotropic structure can be seen for Jan 23. The lowest and highest variance was observed in the SW-NE and NNE-SSW direction, respectively. Meteorological observations showed that the majority of the atmospheric flow was SW on this day, so the direction of low variance seems to reflect this flow direction, while the maximum variance might reflect the moisture variance near the elongation of the frontal system. -A less characteristic but still expressed anisotropic structure was found for Jan 24 when a warm front passed the British Isles perpendicular to the east coast, leading to a characteristic east-west δ18OP gradient suggestive of progressive rainout. The low variance central zone has a 100 km radius which might correspond well to the width of the warm front zone. Although, the axis of minimum variance was similarly SW-NE, the zone of maximum variance was broader and practically perpendicular to it. In this case, however, directions of the axes appear misaligned with the flow direction. -We could not observe similar characteristic patterns in the last variogram calculated from the Jan 25 data set. These preliminary results suggest that variogram analysis is a promising approach to link δ18OP patterns to atmospheric processes. NKFIH: SNN118205/ARRS: N1-0054 References 1.Tyler, J. J., Jones, M., Arrowsmith, C., Allott, T., & Leng, M. J. (2016). Spatial patterns in the oxygen isotope composition of daily rainfall in the British Isles. Climate Dynamics 47:1971-1987 2.Webster, R. Oliver M.A. (2007) Geostatistics for Environmental Scientists. John Wiley & Sons, Chichester
NASA Astrophysics Data System (ADS)
Baltacı, H.; Kındap, T.; Ünal, A.; Karaca, M.
2017-02-01
In this study, regional patterns of precipitation in Marmara are described for the first time by means of Ward's hierarchical cluster analysis. Daily values of winter precipitation data based on 19 meteorological stations were used for the period from 1960 to 2012. Five clusters of coherent zones were determined, namely Black Sea-Marmara, Black Sea, Marmara, Thrace, and Aegean sub-regions. To investigate the prevailing atmospheric circulation types (CTs) that cause precipitation occurrence and intensity in these five different rainfall sub-basins, objective Lamb weather type (LWT) methodology was applied to National Centers of Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis of daily mean sea level pressure (MSLP) data. Precipitation occurrence suggested that wet CTs (i.e. N, NE, NW, and C) offer a high chance of precipitation in all sub-regions. For the eastern (western) part of the region, the high probability of rainfall occurrence is shown under the influence of E (SE, S, SW) atmospheric CTs. In terms of precipitation intensity, N and C CTs had the highest positive gradients in all the sub-basins of the Marmara. In addition, although Marmara and Black Sea sub-regions have the highest daily rainfall potential during NE types, high daily rainfall totals are recorded in all sub-regions except the Black Sea during NW types.
NASA Astrophysics Data System (ADS)
Mishra, Anoop; Rafiq, Mohammd
2017-12-01
This is the first attempt to merge highly accurate precipitation estimates from Global Precipitation Measurement (GPM) with gap free satellite observations from Meteosat to develop a regional rainfall monitoring algorithm to estimate heavy rainfall over India and nearby oceanic regions. Rainfall signature is derived from Meteosat observations and is co-located against rainfall from GPM to establish a relationship between rainfall and signature for various rainy seasons. This relationship can be used to monitor rainfall over India and nearby oceanic regions. Performance of this technique was tested by applying it to monitor heavy precipitation over India. It is reported that our algorithm is able to detect heavy rainfall. It is also reported that present algorithm overestimates rainfall areal spread as compared to rain gauge based rainfall product. This deficiency may arise from various factors including uncertainty caused by use of different sensors from different platforms (difference in viewing geometry from MFG and GPM), poor relationship between warm rain (light rain) and IR brightness temperature, and weak characterization of orographic rain from IR signature. We validated hourly rainfall estimated from the present approach with independent observations from GPM. We also validated daily rainfall from this approach with rain gauge based product from India Meteorological Department (IMD). Present technique shows a Correlation Coefficient (CC) of 0.76, a bias of -2.72 mm, a Root Mean Square Error (RMSE) of 10.82 mm, Probability of Detection (POD) of 0.74, False Alarm Ratio (FAR) of 0.34 and a Skill score of 0.36 with daily rainfall from rain gauge based product of IMD at 0.25° resolution. However, FAR reduces to 0.24 for heavy rainfall events. Validation results with rain gauge observations reveal that present technique outperforms available satellite based rainfall estimates for monitoring heavy rainfall over Indian region.
Fontaine, Richard A.; Hill, Barry R.
2002-01-01
A combination of several meteorologic and topographic factors produced extreme rainfall over the eastern part of the island of Hawaii on November 1-2, 2000. Storm rainfall was concentrated in two distinct areas, the Waiakea and Kapapala areas, where maximum rainfall totals of 32.47 and 38.97 inches were recorded. Resultant flooding caused damages in excess of 70 million dollars, among the highest totals associated with flooding in the State's history. Storm rainfall had recurrence intervals that ranged from 10 years or less for maximum 1-hour totals to 100 years or more for maximum 24-hour totals As part of this study, peak flow and/or erosion data were collected at 41 sites. Analyses of these data indicated that peak discharges of record occurred at 6 of 12 sites where historic data were available. Peak flows with estimated recurrence intervals from 50 to over 100 years were recorded at 4 of 11 sites. Peak flows were poorly correlated with total storm rainfall. Critical rainfall durations associated with peak flows ranged from 1 to 12 hours and were about 3 hours at most sites. Rainfall-runoff computations and field observations indicated that infiltration-excess overland flow alone was not sufficient to have caused the observed flood peaks and therefore saturation-excess overland flow and subsurface flow probably contributed to peak flows at most sites Most hillslope erosion associated with the storm took place along or near the Kaoiki Pali in the Kapapala area. Hillslope erosion was predominately caused by overland flow.
Daily rainfall statistics of TRMM and CMORPH: A case for trans-boundary Gandak River basin
NASA Astrophysics Data System (ADS)
Kumar, Brijesh; Patra, Kanhu Charan; Lakshmi, Venkat
2016-07-01
Satellite precipitation products offer an opportunity to evaluate extreme events (flood and drought) for areas where rainfall data are not available or rain gauge stations are sparse. In this study, daily precipitation amount and frequency of TRMM 3B42V.7 and CMORPH products have been validated against daily rain gauge precipitation for the monsoon months (June-September or JJAS) from 2005-2010 in the trans-boundary Gandak River basin. The analysis shows that the both TRMM and CMORPH can detect rain and no-rain events, but they fail to capture the intensity of rainfall. The detection of precipitation amount is strongly dependent on the topography. In the plains areas, TRMM product is capable of capturing high-intensity rain events but in the hilly regions, it underestimates the amount of high-intensity rain events. On the other hand, CMORPH entirely fails to capture the high-intensity rain events but does well with low-intensity rain events in both hilly regions as well as the plain region. The continuous variable verification method shows better agreement of TRMM rainfall products with rain gauge data. TRMM fares better in the prediction of probability of occurrence of high-intensity rainfall events, but it underestimates intensity at high altitudes. This implies that TRMM precipitation estimates can be used for flood-related studies only after bias adjustment for the topography.
Effect of monthly areal rainfall uncertainty on streamflow simulation
NASA Astrophysics Data System (ADS)
Ndiritu, J. G.; Mkhize, N.
2017-08-01
Areal rainfall is mostly obtained from point rainfall measurements that are sparsely located and several studies have shown that this results in large areal rainfall uncertainties at the daily time step. However, water resources assessment is often carried out a monthly time step and streamflow simulation is usually an essential component of this assessment. This study set out to quantify monthly areal rainfall uncertainties and assess their effect on streamflow simulation. This was achieved by; i) quantifying areal rainfall uncertainties and using these to generate stochastic monthly areal rainfalls, and ii) finding out how the quality of monthly streamflow simulation and streamflow variability change if stochastic areal rainfalls are used instead of historic areal rainfalls. Tests on monthly rainfall uncertainty were carried out using data from two South African catchments while streamflow simulation was confined to one of them. A non-parametric model that had been applied at a daily time step was used for stochastic areal rainfall generation and the Pitman catchment model calibrated using the SCE-UA optimizer was used for streamflow simulation. 100 randomly-initialised calibration-validation runs using 100 stochastic areal rainfalls were compared with 100 runs obtained using the single historic areal rainfall series. By using 4 rain gauges alternately to obtain areal rainfall, the resulting differences in areal rainfall averaged to 20% of the mean monthly areal rainfall and rainfall uncertainty was therefore highly significant. Pitman model simulations obtained coefficient of efficiencies averaging 0.66 and 0.64 in calibration and validation using historic rainfalls while the respective values using stochastic areal rainfalls were 0.59 and 0.57. Average bias was less than 5% in all cases. The streamflow ranges using historic rainfalls averaged to 29% of the mean naturalised flow in calibration and validation and the respective average ranges using stochastic monthly rainfalls were 86 and 90% of the mean naturalised streamflow. In calibration, 33% of the naturalised flow located within the streamflow ranges with historic rainfall simulations and using stochastic rainfalls increased this to 66%. In validation the respective percentages of naturalised flows located within the simulated streamflow ranges were 32 and 72% respectively. The analysis reveals that monthly areal rainfall uncertainty is significant and incorporating it into streamflow simulation would add validity to the results.
Analysis of water-level fluctuations of the US Highway 90 retention pond, Madison, Florida
Bridges, W.C.
1985-01-01
A closed basin stormwater retention pond, located 1 mile west of Madison, Florida, has a maximum storage capacity of 134.1 acre-feet at the overtopping altitude of 100.2 feet. The maximum observed altitude (July 1982 to March 1984) was 99.52 feet (126.7 acre-feet) on March 28, 1984. This report provides a technique for simulating net monthly change-in-altitude in response to rainfall and evaporation. A regression equation was developed which relates net monthly change in altitude (dependent variable) to rainfall and evaporation (independent variables). Rainfall frequency curves were developed using a log-Pearson Type III distribution of the annual, January through April, June through August, and July monthly rainfall totals for the years 1908-72, 1974, 1976-82. The altitude of the retention pond increased almost 7 feet during the 4-month period January through April 1983. The rainfall total was 35.1 inches, and the recurrence interval exceeded the 100-year January-April rainfall. (USGS)
Why continuous simulation? The role of antecedent moisture in design flood estimation
NASA Astrophysics Data System (ADS)
Pathiraja, S.; Westra, S.; Sharma, A.
2012-06-01
Continuous simulation for design flood estimation is increasingly becoming a viable alternative to traditional event-based methods. The advantage of continuous simulation approaches is that the catchment moisture state prior to the flood-producing rainfall event is implicitly incorporated within the modeling framework, provided the model has been calibrated and validated to produce reasonable simulations. This contrasts with event-based models in which both information about the expected sequence of rainfall and evaporation preceding the flood-producing rainfall event, as well as catchment storage and infiltration properties, are commonly pooled together into a single set of "loss" parameters which require adjustment through the process of calibration. To identify the importance of accounting for antecedent moisture in flood modeling, this paper uses a continuous rainfall-runoff model calibrated to 45 catchments in the Murray-Darling Basin in Australia. Flood peaks derived using the historical daily rainfall record are compared with those derived using resampled daily rainfall, for which the sequencing of wet and dry days preceding the heavy rainfall event is removed. The analysis shows that there is a consistent underestimation of the design flood events when antecedent moisture is not properly simulated, which can be as much as 30% when only 1 or 2 days of antecedent rainfall are considered, compared to 5% when this is extended to 60 days of prior rainfall. These results show that, in general, it is necessary to consider both short-term memory in rainfall associated with synoptic scale dependence, as well as longer-term memory at seasonal or longer time scale variability in order to obtain accurate design flood estimates.
NASA Astrophysics Data System (ADS)
Schepen, Andrew; Zhao, Tongtiegang; Wang, Quan J.; Robertson, David E.
2018-03-01
Rainfall forecasts are an integral part of hydrological forecasting systems at sub-seasonal to seasonal timescales. In seasonal forecasting, global climate models (GCMs) are now the go-to source for rainfall forecasts. For hydrological applications however, GCM forecasts are often biased and unreliable in uncertainty spread, and calibration is therefore required before use. There are sophisticated statistical techniques for calibrating monthly and seasonal aggregations of the forecasts. However, calibration of seasonal forecasts at the daily time step typically uses very simple statistical methods or climate analogue methods. These methods generally lack the sophistication to achieve unbiased, reliable and coherent forecasts of daily amounts and seasonal accumulated totals. In this study, we propose and evaluate a Rainfall Post-Processing method for Seasonal forecasts (RPP-S), which is based on the Bayesian joint probability modelling approach for calibrating daily forecasts and the Schaake Shuffle for connecting the daily ensemble members of different lead times. We apply the method to post-process ACCESS-S forecasts for 12 perennial and ephemeral catchments across Australia and for 12 initialisation dates. RPP-S significantly reduces bias in raw forecasts and improves both skill and reliability. RPP-S forecasts are also more skilful and reliable than forecasts derived from ACCESS-S forecasts that have been post-processed using quantile mapping, especially for monthly and seasonal accumulations. Several opportunities to improve the robustness and skill of RPP-S are identified. The new RPP-S post-processed forecasts will be used in ensemble sub-seasonal to seasonal streamflow applications.
Rainfall and runoff variability in Ethiopia
NASA Astrophysics Data System (ADS)
Billi, Paolo; Fazzini, Massimiliano; Tadesse Alemu, Yonas; Ciampalini, Rossano
2014-05-01
Rainfall and river flow variability have been deeply investigated and and the impact of climate change on both is rather well known in Europe (EEA, 2012) or in other industrialized countries. Reports of international organizations (IPCC, 2012) and the scientific literature provide results and outlooks that were found contrasting and spatially incoherent (Manton et al., 2001; Peterson et al., 2002; Griffiths et al., 2003; Herath and Ratnayake, 2004) or weakened by limitation of data quality and quantity. According to IPCC (2012), in East Africa precipitation there are contrasting regional and seasonal variations and trends, though Easterling et al. (2000) and Seleshi and Camberlin (2006) report decreasing trends in heavy precipitation over parts of Ethiopia during the period 1965-2002. Literature on the impact of climate change on river flow is scarce in Africa and IPCC Technical Paper VI (IPCC, 2008) concluded that no evidence, based on instrumental records, has been found for a climate-driven globally widespread change in the magnitude/frequency of floods during the last decades (Rosenzweig et al., 2007), though increases in runoff and increased risk of flood events in East Africa are expected. Some papers have faced issues regarding rainfall and river flow variability in Ethiopia (e.g. Seleshi and Demaree, 1995; Osman and Sauerborn, 2002; Seleshi and Zanke, 2004; Meze-Hausken, 2004; Korecha and Barnston, 2006; Cheung et al., 2008) but their investigations are commonly geographically limited or used a small number of rain and flow gauges with the most recent data bound to the beginning of the last decade. In this study an attempt to depict rainfall and river flow variability, considering the longer as possible time series for the largest as possible number of meteo-stations and flow gauge evenly distributed across Ethiopia, is presented. 25 meteo-stations and 21 flow gauges with as much as possible continuous data records were selected. The length of the time series ranges between 35 to 50 and 9 to 49 years for rainfall and river flow, respectively. In order to improve the poor linear correlation model to describe rainfall gradient with altitude a simple topographic parameter is introduced capable to better depict the spatial variability of annual rainfall and its coefficient of variation. The small rains (Belg) were found to be much more unpredictable than the long, monsoon-type rains (Kiremt) and hence much more out of phase with the variation of annual precipitation amount that is significantly influenced by the Kiremt rains. In order to investigate the long term trends, rainfall anomalies were calculated as Z score for annual, Belg and Kiremt precipitation for all the stations and average values are calculated and plotted against time. The three Z trend lines obtained show no marked deviation from the mean as only an almost negligible decreasing trend is observed. Rainfall intensity in 24 hours is analyzed and the trend line of the maximum intensity averaged over the maximum value of each year recorded at each meteo-station is constructed. These data indicate a general decrease in daily rainfall intensity across Ethiopia with clear exceptions in a few selected areas. The same procedure, based on the Z scores, used to analyze rainfall variability is applied also to the river flow data and a similar result is obtained. If compared with rainfall, annual runoff shows a much wider range of variation among the study rivers. This issue is discussed and possible explanations are presented.
Surface energy exchanges over contrasting vegetation types on a subtropical sand island
NASA Astrophysics Data System (ADS)
Gray, Michael; McGowan, Hamish; Lowry, Andrew; Guyot, Adrien
2017-04-01
The surface energy balance of subtropical coastal vegetation communities has thus far received little attention. Here we present a multi-year observational data set using the eddy covariance method to quantify for the first time the surface energy balance over three contrasting vegetation types on a subtropical sand island in eastern Australia: a periodically inundated sedge swamp, an exotic pine plantation and a coastal heath. Maximum daily sensible heat flux varied between sites but was typically > 280 Wm-2 in the coastal heath and pine plantation but no more than 250 Wm-2 in the swamp when dry and < 110 Wm-2 when inundated. Maximum daily latent heat flux was up to 300 Wm-2 in the coastal heath and pine, but in the swamp it was up to 250 Wm-2 when dry and 209 Wm-2 when inundated. On seasonal timescales, the coastal heath and swamp were both found to be dominated by latent heat flux, with Bowen ratio (β) < 1, whereas the pine plantation typically exhibited β > 1. The partitioning of energy, as represented by β, is similar to a variety of Australian ecosystems, and a range of coastal vegetation types in other latitudes, but differs from other tropical or subtropical locations which have strongly seasonal rainfall patterns and therefore a switch from β > 1 before rainfall to β < 1 afterwards. The energy fluxes over the three vegetation types responded to seasonal changes in background meteorology with the most important influences being net radiation, absolute humidity, and rainfall. The main factor differentiating the sites was soil water content, with the remnant coastal heath and swamp having ready access to water but the exotic pine plantation having much drier soils. Should the current balance between remnant vegetation and the pine plantation undergo changes there would be a corresponding shift in the surface energy balance of the island as a whole, and altered plant water use may lead to reduced water table depth, important because the groundwater of the local islands is used as part of a regional water grid. A better understanding of the response of coastal vegetation to atmospheric forcing will enable more informed decision making on land use changes, as coastal regions the world over face development pressure.
Rainfall extremes from TRMM data and the Metastatistical Extreme Value Distribution
NASA Astrophysics Data System (ADS)
Zorzetto, Enrico; Marani, Marco
2017-04-01
A reliable quantification of the probability of weather extremes occurrence is essential for designing resilient water infrastructures and hazard mitigation measures. However, it is increasingly clear that the presence of inter-annual climatic fluctuations determines a substantial long-term variability in the frequency of occurrence of extreme events. This circumstance questions the foundation of the traditional extreme value theory, hinged on stationary Poisson processes or on asymptotic assumptions to derive the Generalized Extreme Value (GEV) distribution. We illustrate here, with application to daily rainfall, a new approach to extreme value analysis, the Metastatistical Extreme Value Distribution (MEVD). The MEVD relaxes the above assumptions and is based on the whole distribution of daily rainfall events, thus allowing optimal use of all available observations. Using a global dataset of rain gauge observations, we show that the MEVD significantly outperforms the Generalized Extreme Value distribution, particularly for long average recurrence intervals and when small samples are available. The latter property suggests MEVD to be particularly suited for applications to satellite rainfall estimates, which only cover two decades, thus making extreme value estimation extremely challenging. Here we apply MEVD to the TRMM TMPA 3B42 product, an 18-year dataset of remotely-sensed daily rainfall providing a quasi-global coverage. Our analyses yield a global scale mapping of daily rainfall extremes and of their distributional tail properties, bridging the existing large gaps in ground-based networks. Finally, we illustrate how our global-scale analysis can provide insight into how properties of local rainfall regimes affect tail estimation uncertainty when using the GEV or MEVD approach. We find a dependence of the estimation uncertainty, for both the GEV- and MEV-based approaches, on the average annual number and on the inter-annual variability of rainy days. In particular, estimation uncertainty decreases 1) as the mean annual number of wet days increases, and 2) as the variability in the number of rainy days, expressed by its coefficient of variation, decreases. We tentatively explain this behavior in terms of the assumptions underlying the two approaches.
NASA Astrophysics Data System (ADS)
Blakeley, S. L.; Husak, G. J.; Harrison, L.; Funk, C. C.; Osgood, D. E.; Peterson, P.
2017-12-01
Index insurance is increasingly used as a safety net and productivity tool in order to improve the resilience of small-holder farmers in developing countries. In West Africa, there are already index insurance projects in many countries, and various non-governmental organizations are eager to expand implementation of this risk management tool. Often, index insurance payouts rely on rainfall to determine drought years, but designation of years based on precipitation variations is particularly complex in places like West Africa where precipitation is subject to much natural variability across timescales [Giannini 2003, among others]. Furthermore, farmers must also rely on other weather factors for good crop yields, such as the availability of moisture for their plants to absorb and maximum daily temperatures staying within an acceptable range for the crops. In this presentation, the payouts of an index based on rainfall (as measured by the Climate Hazards Group Infrared Precipitation with Stations {CHIRPS} dataset) is compared to the payouts of an index using reference evapotranspiration data (using the ASCE's Penmen-Monteith formula and MERRA-2 drivers). The West African rainfall index exhibits a fair amount of long-term variability, reflective of the Atlantic Multidecadal Oscillation, but the reference evapotranspiration index shows different variability, through changes in radiative forcing and temperatures. Therefore, the use of rainfall for an index is appropriate for capturing rainfall deficits, but reference evapotranspiration may also be an appropriate addition to an index or as a stand-alone index for capturing crop stress. In summary, the results point to farmer input as an invaluable source of knowledge in determining the most appropriate dataset as an index for crop insurance. Alessandra Giannini, R Saravanan, and P Chang. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302(5647):1027-1030, 2003.
NASA Technical Reports Server (NTRS)
Iguchi, Takamichi; Tao, Wei-Kuo; Wu, Di; Peters-Lidard, Christa; Santanello, Joseph A.; Kemp, Eric; Tian, Yudong; Case, Jonathan; Wang, Weile; Ferraro, Robert;
2017-01-01
This study investigates the sensitivity of daily rainfall rates in regional seasonal simulations over the contiguous United States (CONUS) to different cumulus parameterization schemes. Daily rainfall fields were simulated at 24-km resolution using the NASA-Unified Weather Research and Forecasting (NU-WRF) Model for June-August 2000. Four cumulus parameterization schemes and two options for shallow cumulus components in a specific scheme were tested. The spread in the domain-mean rainfall rates across the parameterization schemes was generally consistent between the entire CONUS and most subregions. The selection of the shallow cumulus component in a specific scheme had more impact than that of the four cumulus parameterization schemes. Regional variability in the performance of each scheme was assessed by calculating optimally weighted ensembles that minimize full root-mean-square errors against reference datasets. The spatial pattern of the seasonally averaged rainfall was insensitive to the selection of cumulus parameterization over mountainous regions because of the topographical pattern constraint, so that the simulation errors were mostly attributed to the overall bias there. In contrast, the spatial patterns over the Great Plains regions as well as the temporal variation over most parts of the CONUS were relatively sensitive to cumulus parameterization selection. Overall, adopting a single simulation result was preferable to generating a better ensemble for the seasonally averaged daily rainfall simulation, as long as their overall biases had the same positive or negative sign. However, an ensemble of multiple simulation results was more effective in reducing errors in the case of also considering temporal variation.
Development of a gridded meteorological dataset over Java island, Indonesia 1985-2014.
Yanto; Livneh, Ben; Rajagopalan, Balaji
2017-05-23
We describe a gridded daily meteorology dataset consisting of precipitation, minimum and maximum temperature over Java Island, Indonesia at 0.125°×0.125° (~14 km) resolution spanning 30 years from 1985-2014. Importantly, this data set represents a marked improvement from existing gridded data sets over Java with higher spatial resolution, derived exclusively from ground-based observations unlike existing satellite or reanalysis-based products. Gap-infilling and gridding were performed via the Inverse Distance Weighting (IDW) interpolation method (radius, r, of 25 km and power of influence, α, of 3 as optimal parameters) restricted to only those stations including at least 3,650 days (~10 years) of valid data. We employed MSWEP and CHIRPS rainfall products in the cross-validation. It shows that the gridded rainfall presented here produces the most reasonable performance. Visual inspection reveals an increasing performance of gridded precipitation from grid, watershed to island scale. The data set, stored in a network common data form (NetCDF), is intended to support watershed-scale and island-scale studies of short-term and long-term climate, hydrology and ecology.
Crossing trend analysis methodology and application for Turkish rainfall records
NASA Astrophysics Data System (ADS)
Şen, Zekâi
2018-01-01
Trend analyses are the necessary tools for depicting possible general increase or decrease in a given time series. There are many versions of trend identification methodologies such as the Mann-Kendall trend test, Spearman's tau, Sen's slope, regression line, and Şen's innovative trend analysis. The literature has many papers about the use, cons and pros, and comparisons of these methodologies. In this paper, a completely new approach is proposed based on the crossing properties of a time series. It is suggested that the suitable trend from the centroid of the given time series should have the maximum number of crossings (total number of up-crossings or down-crossings). This approach is applicable whether the time series has dependent or independent structure and also without any dependence on the type of the probability distribution function. The validity of this method is presented through extensive Monte Carlo simulation technique and its comparison with other existing trend identification methodologies. The application of the methodology is presented for a set of annual daily extreme rainfall time series from different parts of Turkey and they have physically independent structure.
NASA Astrophysics Data System (ADS)
Casas-Castillo, M. Carmen; Rodríguez-Solà, Raúl; Navarro, Xavier; Russo, Beniamino; Lastra, Antonio; González, Paula; Redaño, Angel
2018-01-01
The fractal behavior of extreme rainfall intensities registered between 1940 and 2012 by the Retiro Observatory of Madrid (Spain) has been examined, and a simple scaling regime ranging from 25 min to 3 days of duration has been identified. Thus, an intensity-duration-frequency (IDF) master equation of the location has been constructed in terms of the simple scaling formulation. The scaling behavior of probable maximum precipitation (PMP) for durations between 5 min and 24 h has also been verified. For the statistical estimation of the PMP, an envelope curve of the frequency factor ( k m ) based on a total of 10,194 station-years of annual maximum rainfall from 258 stations in Spain has been developed. This curve could be useful to estimate suitable values of PMP at any point of the Iberian Peninsula from basic statistical parameters (mean and standard deviation) of its rainfall series. [Figure not available: see fulltext.
Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale.
Gariano, S L; Rianna, G; Petrucci, O; Guzzetti, F
2017-10-15
According to the fifth report of the Intergovernmental Panel on Climate Change, an increase in the frequency and the intensity of extreme rainfall is expected in the Mediterranean area. Among different impacts, this increase might result in a variation in the frequency and the spatial distribution of rainfall-induced landslides, and in an increase in the size of the population exposed to landslide risk. We propose a method for the regional-scale evaluation of future variations in the occurrence of rainfall-induced landslides, in response to changes in rainfall regimes. We exploit information on the occurrence of 603 rainfall-induced landslides in Calabria, southern Italy, in the period 1981-2010, and daily rainfall data recorded in the same period in the region. Furthermore, we use high-resolution climate projections based on RCP4.5 and RCP8.5 scenarios. In particular, we consider the mean variations between a 30-year future period (2036-2065) and the reference period 1981-2010 in three variables assumed as proxy for landslide activity: annual rainfall, seasonal cumulated rainfall, and annual maxima of daily rainfall. Based on reliable correlations between landslide occurrence and weather variables estimated in the reference period, we assess future variations in rainfall-induced landslide occurrence for all the municipalities of Calabria. A +45.7% and +21.2% average regional variation in rainfall-induced landslide occurrence is expected in the region for the period 2036-2065, under the RCP4.5 and RCP8.5 scenario, respectively. We also investigate the future variations in the impact of rainfall-induced landslides on the population of Calabria. We find a +80.2% and +54.5% increase in the impact on the population for the period 2036-2065, under the RCP4.5 and RCP8.5 scenario, respectively. The proposed method is quantitative and reproducible, thus it can be applied in similar regions, where adequate landslide and rainfall information is available. Copyright © 2017 Elsevier B.V. All rights reserved.
Rainfall is a risk factor for sporadic cases of Legionella pneumophila pneumonia.
Garcia-Vidal, Carolina; Labori, Maria; Viasus, Diego; Simonetti, Antonella; Garcia-Somoza, Dolors; Dorca, Jordi; Gudiol, Francesc; Carratalà, Jordi
2013-01-01
It is not known whether rainfall increases the risk of sporadic cases of Legionella pneumonia. We sought to test this hypothesis in a prospective observational cohort study of non-immunosuppressed adults hospitalized for community-acquired pneumonia (1995-2011). Cases with Legionella pneumonia were compared with those with non-Legionella pneumonia. Using daily rainfall data obtained from the regional meteorological service we examined patterns of rainfall over the days prior to admission in each study group. Of 4168 patients, 231 (5.5%) had Legionella pneumonia. The diagnosis was based on one or more of the following: sputum (41 cases), antigenuria (206) and serology (98). Daily rainfall average was 0.556 liters/m(2) in the Legionella pneumonia group vs. 0.328 liters/m(2) for non-Legionella pneumonia cases (p = 0.04). A ROC curve was plotted to compare the incidence of Legionella pneumonia and the weighted median rainfall. The cut-off point was 0.42 (AUC 0.54). Patients who were admitted to hospital with a prior weighted median rainfall higher than 0.42 were more likely to have Legionella pneumonia (OR 1.35; 95% CI 1.02-1.78; p = .03). Spearman Rho correlations revealed a relationship between Legionella pneumonia and rainfall average during each two-week reporting period (0.14; p = 0.003). No relationship was found between rainfall average and non-Legionella pneumonia cases (-0.06; p = 0.24). As a conclusion, rainfall is a significant risk factor for sporadic Legionella pneumonia. Physicians should carefully consider Legionella pneumonia when selecting diagnostic tests and antimicrobial therapy for patients presenting with CAP after periods of rainfall.
NASA Astrophysics Data System (ADS)
Tanguy, M.; Prudhomme, C.; Harrigan, S.; Smith, K. A.; Parry, S.
2017-12-01
Forecasting hydrological extremes is challenging, especially at lead times over 1 month for catchments with limited hydrological memory and variable climates. One simple way to derive monthly or seasonal hydrological forecasts is to use historical climate data to drive hydrological models using the Ensemble Streamflow Prediction (ESP) method. This gives a range of possible future streamflow given known initial hydrologic conditions alone. The degree of skill of ESP depends highly on the forecast initialisation month and catchment type. Using dynamic rainfall forecasts as driving data instead of historical data could potentially improve streamflow predictions. A lot of effort is being invested within the meteorological community to improve these forecasts. However, while recent progress shows promise (e.g. NAO in winter), the skill of these forecasts at monthly to seasonal timescales is generally still limited, and the extent to which they might lead to improved hydrological forecasts is an area of active research. Additionally, these meteorological forecasts are currently being produced at 1 month or seasonal time-steps in the UK, whereas hydrological models require forcings at daily or sub-daily time-steps. Keeping in mind these limitations of available rainfall forecasts, the objectives of this study are to find out (i) how accurate monthly dynamical rainfall forecasts need to be to outperform ESP, and (ii) how the method used to disaggregate monthly rainfall forecasts into daily rainfall time series affects results. For the first objective, synthetic rainfall time series were created by increasingly degrading observed data (proxy for a `perfect forecast') from 0 % to +/-50 % error. For the second objective, three different methods were used to disaggregate monthly rainfall data into daily time series. These were used to force a simple lumped hydrological model (GR4J) to generate streamflow predictions at a one-month lead time for over 300 catchments representative of the range of UK's hydro-climatic conditions. These forecasts were then benchmarked against the traditional ESP method. It is hoped that the results of this work will help the meteorological community to identify where to focus their efforts in order to increase the usefulness of their forecasts within hydrological forecasting systems.
Regional rainfall thresholds for landslide occurrence using a centenary database
NASA Astrophysics Data System (ADS)
Vaz, Teresa; Luís Zêzere, José; Pereira, Susana; Cruz Oliveira, Sérgio; Quaresma, Ivânia
2017-04-01
Rainfall is one of the most important triggering factors for landslides occurrence worldwide. The relation between rainfall and landslide occurrence is complex and some approaches have been focus on the rainfall thresholds identification, i.e., rainfall critical values that when exceeded can initiate landslide activity. In line with these approaches, this work proposes and validates rainfall thresholds for the Lisbon region (Portugal), using a centenary landslide database associated with a centenary daily rainfall database. The main objectives of the work are the following: i) to compute antecedent rainfall thresholds using linear and potential regression; ii) to define lower limit and upper limit rainfall thresholds; iii) to estimate the probability of critical rainfall conditions associated with landslide events; and iv) to assess the thresholds performance using receiver operating characteristic (ROC) metrics. In this study we consider the DISASTER database, which lists landslides that caused fatalities, injuries, missing people, evacuated and homeless people occurred in Portugal from 1865 to 2010. The DISASTER database was carried out exploring several Portuguese daily and weekly newspapers. Using the same newspaper sources, the DISASTER database was recently updated to include also the landslides that did not caused any human damage, which were also considered for this study. The daily rainfall data were collected at the Lisboa-Geofísico meteorological station. This station was selected considering the quality and completeness of the rainfall data, with records that started in 1864. The methodology adopted included the computation, for each landslide event, of the cumulative antecedent rainfall for different durations (1 to 90 consecutive days). In a second step, for each combination of rainfall quantity-duration, the return period was estimated using the Gumbel probability distribution. The pair (quantity-duration) with the highest return period was considered as the critical rainfall combination responsible for triggering the landslide event. Only events whose critical rainfall combinations have a return period above 3 years were included. This criterion reduces the likelihood of been included events whose triggering factor was other than rainfall. The rainfall quantity-duration threshold for the Lisbon region was firstly defined using the linear and potential regression. Considering that this threshold allow the existence of false negatives (i.e. events below the threshold) it was also identified the lower limit and upper limit rainfall thresholds. These limits were defined empirically by establishing the quantity-durations combinations bellow which no landslides were recorded (lower limit) and the quantity-durations combinations above which only landslides were recorded without any false positive occurrence (upper limit). The zone between the lower limit and upper limit rainfall thresholds was analysed using a probabilistic approach, defining the uncertainties of each rainfall critical conditions in the triggering of landslides. Finally, the performances of the thresholds obtained in this study were assessed using ROC metrics. This work was supported by the project FORLAND - Hydrogeomorphologic risk in Portugal: driving forces and application for land use planning [grant number PTDC/ATPGEO/1660/2014] funded by the Portuguese Foundation for Science and Technology (FCT), Portugal. Sérgio Cruz Oliveira is a post-doc fellow of the FCT [grant number SFRH/BPD/85827/2012].
NASA Astrophysics Data System (ADS)
Vrieling, Anton; Hoedjes, Joost C. B.; van der Velde, Marijn
2015-04-01
Efforts to map and monitor soil erosion need to account for the erratic nature of the soil erosion process. Soil erosion by water occurs on sloped terrain when erosive rainfall and consequent surface runoff impact soils that are not well-protected by vegetation or other soil protective measures. Both rainfall erosivity and vegetation cover are highly variable through space and time. Due to data paucity and the relative ease of spatially overlaying geographical data layers into existing models like USLE (Universal Soil Loss Equation), many studies and mapping efforts merely use average annual values for erosivity and vegetation cover as input. We first show that rainfall erosivity can be estimated from satellite precipitation data. We obtained average annual erosivity estimates from 15 yr of 3-hourly TRMM Multi-satellite Precipitation Analysis (TMPA) data (1998-2012) using intensity-erosivity relationships. Our estimates showed a positive correlation (r = 0.84) with long-term annual erosivity values of 37 stations obtained from literature. Using these TMPA erosivity retrievals, we demonstrate the large interannual variability, with maximum annual erosivity often exceeding two to three times the mean value, especially in semi-arid areas. We then calculate erosivity at a 10-daily time-step and combine this with vegetation cover development for selected locations in Africa using NDVI - normalized difference vegetation index - time series from SPOT VEGETATION. Although we do not integrate the data at this point, the joint analysis of both variables stresses the need for joint accounting for erosivity and vegetation cover for large-scale erosion assessment and monitoring.
NASA Astrophysics Data System (ADS)
Kamal Chowdhury, AFM; Lockart, Natalie; Willgoose, Garry; Kuczera, George; Kiem, Anthony; Parana Manage, Nadeeka
2016-04-01
Stochastic simulation of rainfall is often required in the simulation of streamflow and reservoir levels for water security assessment. As reservoir water levels generally vary on monthly to multi-year timescales, it is important that these rainfall series accurately simulate the multi-year variability. However, the underestimation of multi-year variability is a well-known issue in daily rainfall simulation. Focusing on this issue, we developed a hierarchical Markov Chain (MC) model in a traditional two-part MC-Gamma Distribution modelling structure, but with a new parameterization technique. We used two parameters of first-order MC process (transition probabilities of wet-to-wet and dry-to-dry days) to simulate the wet and dry days, and two parameters of Gamma distribution (mean and standard deviation of wet day rainfall) to simulate wet day rainfall depths. We found that use of deterministic Gamma parameter values results in underestimation of multi-year variability of rainfall depths. Therefore, we calculated the Gamma parameters for each month of each year from the observed data. Then, for each month, we fitted a multi-variate normal distribution to the calculated Gamma parameter values. In the model, we stochastically sampled these two Gamma parameters from the multi-variate normal distribution for each month of each year and used them to generate rainfall depth in wet days using the Gamma distribution. In another study, Mehrotra and Sharma (2007) proposed a semi-parametric Markov model. They also used a first-order MC process for rainfall occurrence simulation. But, the MC parameters were modified by using an additional factor to incorporate the multi-year variability. Generally, the additional factor is analytically derived from the rainfall over a pre-specified past periods (e.g. last 30, 180, or 360 days). They used a non-parametric kernel density process to simulate the wet day rainfall depths. In this study, we have compared the performance of our hierarchical MC model with the semi-parametric model in preserving rainfall variability in daily, monthly, and multi-year scales. To calibrate the parameters of both models and assess their ability to preserve observed statistics, we have used ground based data from 15 raingauge stations around Australia, which consist a wide range of climate zones including coastal, monsoonal, and arid climate characteristics. In preliminary results, both models show comparative performances in preserving the multi-year variability of rainfall depth and occurrence. However, the semi-parametric model shows a tendency of overestimating the mean rainfall depth, while our model shows a tendency of overestimating the number of wet days. We will discuss further the relative merits of the both models for hydrology simulation in the presentation.
NASA Astrophysics Data System (ADS)
Ampil, L. J. Y.; Yao, J. G.; Lagrosas, N.; Lorenzo, G. R. H.; Simpas, J.
2017-12-01
The Global Precipitation Measurement (GPM) mission is a group of satellites that provides global observations of precipitation. Satellite-based observations act as an alternative if ground-based measurements are inadequate or unavailable. Data provided by satellites however must be validated for this data to be reliable and used effectively. In this study, the Integrated Multisatellite Retrievals for GPM (IMERG) Final Run v3 half-hourly product is validated by comparing against interpolated ground measurements derived from sixteen ground stations in Metro Manila. The area considered in this study is the region 14.4° - 14.8° latitude and 120.9° - 121.2° longitude, subdivided into twelve 0.1° x 0.1° grid squares. Satellite data from June 1 - August 31, 2014 with the data aggregated to 1-day temporal resolution are used in this study. The satellite data is directly compared to measurements from individual ground stations to determine the effect of the interpolation by contrast against the comparison of satellite data and interpolated measurements. The comparisons are calculated by taking a fractional root-mean-square error (F-RMSE) between two datasets. The results show that interpolation improves errors compared to using raw station data except during days with very small amounts of rainfall. F-RMSE reaches extreme values of up to 654 without a rainfall threshold. A rainfall threshold is inferred to remove extreme error values and make the distribution of F-RMSE more consistent. Results show that the rainfall threshold varies slightly per month. The threshold for June is inferred to be 0.5 mm, reducing the maximum F-RMSE to 9.78, while the threshold for July and August is inferred to be 0.1 mm, reducing the maximum F-RMSE to 4.8 and 10.7, respectively. The maximum F-RMSE is reduced further as the threshold is increased. Maximum F-RMSE is reduced to 3.06 when a rainfall threshold of 10 mm is applied over the entire duration of JJA. These results indicate that IMERG performs well for moderate to high intensity rainfall and that the interpolation remains effective only when rainfall exceeds a certain threshold value. Over Metro Manila, an F-RMSE threshold of 0.5 mm indicated better correspondence between ground measured and satellite measured rainfall.
Regionalized rainfall-runoff model to estimate low flow indices
NASA Astrophysics Data System (ADS)
Garcia, Florine; Folton, Nathalie; Oudin, Ludovic
2016-04-01
Estimating low flow indices is of paramount importance to manage water resources and risk assessments. These indices are derived from river discharges which are measured at gauged stations. However, the lack of observations at ungauged sites bring the necessity of developing methods to estimate these low flow indices from observed discharges in neighboring catchments and from catchment characteristics. Different estimation methods exist. Regression or geostatistical methods performed on the low flow indices are the most common types of methods. Another less common method consists in regionalizing rainfall-runoff model parameters, from catchment characteristics or by spatial proximity, to estimate low flow indices from simulated hydrographs. Irstea developed GR2M-LoiEau, a conceptual monthly rainfall-runoff model, combined with a regionalized model of snow storage and melt. GR2M-LoiEau relies on only two parameters, which are regionalized and mapped throughout France. This model allows to cartography monthly reference low flow indices. The inputs data come from SAFRAN, the distributed mesoscale atmospheric analysis system, which provides daily solid and liquid precipitation and temperature data from everywhere in the French territory. To exploit fully these data and to estimate daily low flow indices, a new version of GR-LoiEau has been developed at a daily time step. The aim of this work is to develop and regionalize a GR-LoiEau model that can provide any daily, monthly or annual estimations of low flow indices, yet keeping only a few parameters, which is a major advantage to regionalize them. This work includes two parts. On the one hand, a daily conceptual rainfall-runoff model is developed with only three parameters in order to simulate daily and monthly low flow indices, mean annual runoff and seasonality. On the other hand, different regionalization methods, based on spatial proximity and similarity, are tested to estimate the model parameters and to simulate low flow indices in ungauged sites. The analysis is carried out on 691 French catchments that are representative of various hydro-meteorological behaviors. The results are validated with a cross-validation procedure and are compared with the ones obtained with GR4J, a conceptual rainfall-runoff model, which already provides daily estimations, but involves four parameters that cannot easily be regionalized.
Susceptibility and triggering scenarios at a regional scale for shallow landslides
NASA Astrophysics Data System (ADS)
Gullà, G.; Antronico, L.; Iaquinta, P.; Terranova, O.
2008-07-01
The work aims at identifying susceptible areas and pluviometric triggering scenarios at a regional scale in Calabria (Italy), with reference to shallow landsliding events. The proposed methodology follows a statistical approach and uses a database linked to a GIS that has been created to support the various steps of spatial data management and manipulation. The shallow landslide predisposing factors taken into account are derived from (i) the 40-m digital terrain model of the region, an ˜ 15,075 km 2 extension; (ii) outcropping lithology; (iii) soils; and (iv) land use. More precisely, a map of the slopes has been drawn from the digital terrain model. Two kinds of covers [prevalently coarse-grained (CG cover) or fine-grained (FG cover)] were identified, referring to the geotechnical characteristics of geomaterial covers and to the lithology map; soilscapes were drawn from soil maps; and finally, the land use map was employed without any prior processing. Subsequently, the inventory maps of some shallow landsliding events, totaling more than 30,000 instabilities of the past and detected by field surveys and photo aerial restitution, were employed to calibrate the relative importance of these predisposing factors. The use of single factors (first level analysis) therefore provides three different susceptibility maps. Second level analysis, however, enables better location of areas susceptible to shallow landsliding events by crossing the single susceptibility maps. On the basis of the susceptibility map obtained by the second level analysis, five different classes of susceptibility to shallow landsliding events have been outlined over the regional territory: 8.9% of the regional territory shows very high susceptibility, 14.3% high susceptibility, 15% moderate susceptibility, 3.6% low susceptibility, and finally, about 58% very low susceptibility. Finally, the maps of two significant shallow landsliding events of the past and their related rainfalls have been utilized to identify the relevant pluviometric triggering scenarios. By using 205 daily rainfall series, different triggering pluviometric scenarios have been identified with reference to CG and FG covers: a value of 365 mm of the total rainfall of the event and/or 170 mm/d of the rainfall maximum intensity and a value of 325 mm of the total rainfall of the event and/or 158 mm/d of the rainfall maximum intensity are able to trigger shallow landsliding events for CG and FG covers, respectively. The results obtained from this study can help administrative authorities to plan future development activities and mitigation measures in shallow landslide-prone areas. In addition, the proposed methodology can be useful in managing emergency situations at a regional scale for shallow landsliding events triggered by intense rainfalls; through this approach, the susceptibility and the pluviometric triggering scenario maps will be improved by means of finer calibration of the involved factors.
NASA Astrophysics Data System (ADS)
Delitala, Alessandro M. S.; Deidda, Roberto; Mascaro, Giuseppe; Piga, Enrico; Querzoli, Giorgio
2010-05-01
During most of the 20th century, precipitation has been continuously measured by means of the so-called "pluviographs", i.e. rain gauges including a mechanical apparatus for continuously recording the depth of water from precipitation on specific strip charts, usually on a weekly basis. The signal recorded on such strips was visually examined by trained personnel on a regular basis, in order to extract the daily precipitation totals and the maximum precipitation intensities over short periods (from a few minutes to hours). The rest of the high-resolution information contained in the signal was usually not extracted, except for specific cases. A systematic recovering of the entire information at high temporal resolution contained in these precipitation signals would provide a fundamental database to improve the characterization of historical rainfall climatology during the previous century. The Department of Land Engineering of the University of Cagliari has recently developed and tested an automatic software, based on image analysis techniques, which is able to acquire the scanned images of the pluviograph strip charts, to automatically digitise the signal and to produce a digital database of continuous precipitation records at the highest possible temporal resolution, i.e. 5 to 10 minutes. Along with that, a significant amount of daily precipitation totals from the late 19th and the 20th century, either elaborated from pluviograph strip charts or simply derived from bucket rain gauges, still exists in paper form, but it has never been digitalized. Within a project partly-funded by the Operational Programme of the European Union "Italia-Francia Marittimo", the Regional Environmental Protection Agency of Sardinia and the University of Cagliari will recover both the high-resolution rainfall signals and the older time series of daily totals recorded by a large number of pluviographs belonging to the historical monitoring networks of the island of Sardinia. Such data will then be used to construct the high-resolution climatology of precipitation over Sardinia, both assuming stationary climate and slowly varying climate. Specific attention will be devoted to a set of critical hydrological basins, often affected by intense precipitation and flash floods. All information will then be made available to researchers, regional officers, technicians (e.g. hydraulic engineers) and the greater public interested into such information. The present poster describes the general scope of the E.U. project and the specific activities in the field of climatology of Sardinia rainfall that will be conducted as well as the expected results. A section will be dedicated to show how the pluviograph strips are automatically digitized.
NASA Astrophysics Data System (ADS)
Costa, Veber; Fernandes, Wilson
2017-11-01
Extreme flood estimation has been a key research topic in hydrological sciences. Reliable estimates of such events are necessary as structures for flood conveyance are continuously evolving in size and complexity and, as a result, their failure-associated hazards become more and more pronounced. Due to this fact, several estimation techniques intended to improve flood frequency analysis and reducing uncertainty in extreme quantile estimation have been addressed in the literature in the last decades. In this paper, we develop a Bayesian framework for the indirect estimation of extreme flood quantiles from rainfall-runoff models. In the proposed approach, an ensemble of long daily rainfall series is simulated with a stochastic generator, which models extreme rainfall amounts with an upper-bounded distribution function, namely, the 4-parameter lognormal model. The rationale behind the generation model is that physical limits for rainfall amounts, and consequently for floods, exist and, by imposing an appropriate upper bound for the probabilistic model, more plausible estimates can be obtained for those rainfall quantiles with very low exceedance probabilities. Daily rainfall time series are converted into streamflows by routing each realization of the synthetic ensemble through a conceptual hydrologic model, the Rio Grande rainfall-runoff model. Calibration of parameters is performed through a nonlinear regression model, by means of the specification of a statistical model for the residuals that is able to accommodate autocorrelation, heteroscedasticity and nonnormality. By combining the outlined steps in a Bayesian structure of analysis, one is able to properly summarize the resulting uncertainty and estimating more accurate credible intervals for a set of flood quantiles of interest. The method for extreme flood indirect estimation was applied to the American river catchment, at the Folsom dam, in the state of California, USA. Results show that most floods, including exceptionally large non-systematic events, were reasonably estimated with the proposed approach. In addition, by accounting for uncertainties in each modeling step, one is able to obtain a better understanding of the influential factors in large flood formation dynamics.
Drought analysis in the Tons River Basin, India during 1969-2008
NASA Astrophysics Data System (ADS)
Meshram, Sarita Gajbhiye; Gautam, Randhir; Kahya, Ercan
2018-05-01
The primary focus of this study is the analysis of droughts in the Tons River Basin during the period 1969-2008. Precipitation data observed at four gauging stations are used to identify drought over the study area. The event of drought is derived from the standardized precipitation index (SPI) on a 3-month scale. Our results indicated that severe drought occurred in the Allahabad, Rewa, and Satna stations in the years 1973 and 1979. The droughts in this region had occurred mainly due to erratic behavior in monsoons, especially due to long breaks between monsoons. During the drought years, the deficiency of the annual rainfall in the analysis of annual rainfall departure had varied from -26% in 1976 to -60% in 1973 at Allahabad station in the basin. The maximum deficiency of annual and seasonal rainfall recorded in the basin is 60%. The maximum seasonal rainfall departure observed in the basin is in the order of -60% at Allahabad station in 1973, while maximum annual rainfall departure had been recorded as -60% during 1979 at the Satna station. Extreme dry events ( z score <-2) were detected during July, August, and September. Moreover, severe dry events were observed in August, September, and October. The drought conditions in the Tons River Basin are dominantly driven by total rainfall throughout the period between June and November.
Ouyang, Wei; Chen, Siyang; Cai, Guanqing; Hao, Fanghua
2014-01-01
Understanding the fates of soil hydrological processes and nitrogen (N) is essential for optimizing the water and N in a dryland crop system with the goal of obtaining a maximum yield. Few investigations have addressed the dynamics of dryland N and its association with the soil hydrological process in a freeze-thawing agricultural area. With the daily monitoring of soil water content and acquisition rates at 15, 30, 60 and 90 cm depths, the soil hydrological process with the influence of rainfall was identified. The temporal-vertical soil water storage analysis indicated the local albic soil texture provided a stable soil water condition for maize growth with the rainfall as the only water source. Soil storage water averages at 0–20, 20–40 and 40–60 cm were observed to be 490.2, 593.8, and 358 m3 ha−1, respectively, during the growing season. The evapo-transpiration (ET), rainfall, and water loss analysis demonstrated that these factors increased in same temporal pattern and provided necessary water conditions for maize growth in a short period. The dry weight and N concentration of maize organs (root, leaf, stem, tassel, and grain) demonstrated the N accumulation increased to a peak in the maturity period and that grain had the most N. The maximum N accumulative rate reached about 500 mg m−2d−1 in leaves and grain. Over the entire growing season, the soil nitrate N decreased by amounts ranging from 48.9 kg N ha−1 to 65.3 kg N ha−1 over the 90 cm profile and the loss of ammonia-N ranged from 9.79 to 12.69 kg N ha−1. With soil water loss and N balance calculation, the N usage efficiency (NUE) over the 0–90 cm soil profile was 43%. The soil hydrological process due to special soil texture and the temporal features of rainfall determined the maize growth in the freeze-thawing agricultural area. PMID:25000400
Ouyang, Wei; Chen, Siyang; Cai, Guanqing; Hao, Fanghua
2014-01-01
Understanding the fates of soil hydrological processes and nitrogen (N) is essential for optimizing the water and N in a dryland crop system with the goal of obtaining a maximum yield. Few investigations have addressed the dynamics of dryland N and its association with the soil hydrological process in a freeze-thawing agricultural area. With the daily monitoring of soil water content and acquisition rates at 15, 30, 60 and 90 cm depths, the soil hydrological process with the influence of rainfall was identified. The temporal-vertical soil water storage analysis indicated the local albic soil texture provided a stable soil water condition for maize growth with the rainfall as the only water source. Soil storage water averages at 0-20, 20-40 and 40-60 cm were observed to be 490.2, 593.8, and 358 m3 ha-1, respectively, during the growing season. The evapo-transpiration (ET), rainfall, and water loss analysis demonstrated that these factors increased in same temporal pattern and provided necessary water conditions for maize growth in a short period. The dry weight and N concentration of maize organs (root, leaf, stem, tassel, and grain) demonstrated the N accumulation increased to a peak in the maturity period and that grain had the most N. The maximum N accumulative rate reached about 500 mg m-2d-1 in leaves and grain. Over the entire growing season, the soil nitrate N decreased by amounts ranging from 48.9 kg N ha-1 to 65.3 kg N ha-1 over the 90 cm profile and the loss of ammonia-N ranged from 9.79 to 12.69 kg N ha-1. With soil water loss and N balance calculation, the N usage efficiency (NUE) over the 0-90 cm soil profile was 43%. The soil hydrological process due to special soil texture and the temporal features of rainfall determined the maize growth in the freeze-thawing agricultural area.
On the stationarity of Floods in west African rivers
NASA Astrophysics Data System (ADS)
NKA, B. N.; Oudin, L.; Karambiri, H.; Ribstein, P.; Paturel, J. E.
2014-12-01
West Africa undergoes a big change since the years 1970-1990, characterized by very low precipitation amounts, leading to low stream flows in river basins, except in the Sahelian region where the impact of human activities where pointed out to justify the substantial increase of floods in some catchments. More recently, studies showed an increase in the frequency of intense rainfall events, and according to observations made over the region, increase of flood events is also noticeable during the rainy season. Therefore, the assumption of stationarity on flood events is questionable and the reliability of flood evolution and climatic patterns is justified. In this work, we analyzed the trends of floods events for several catchments in the Sahelian and Sudanian regions of Burkina Faso. We used thirteen tributaries of large river basins (Niger, Nakambe, Mouhoun, Comoé) for which daily rainfall and flow data were collected from national hydrological and meteorological services of the country. We used Mann-Kendall and Pettitt tests to detect trends and break points in the annual time series of 8 rainfall indices and the annual maximum discharge records. We compare the trends of precipitation indices and flood size records to analyze the possible causality link between floods size and rainfall pattern. We also analyze the stationary of the frequency of flood exceeding the ten year return period level. The samples were extracted by a Peak over threshold method and the quantification of change in flood frequency was assessed by using a test developed by Lang M. (1995). The results exhibit two principal behaviors. Generally speaking, no trend is detected on catchments annual maximum discharge, but positive break points are pointed out in a group of three right bank tributaries of the Niger river that are located in the sahelian region between 300mm to 650mm. These same catchments show as well an increase of the yearly number of flood greater than the ten year flood since 1980. However, there is no consistency between rain fall pattern and flood size pattern in the entire region.
NASA Astrophysics Data System (ADS)
Huang, Ling; Luo, Yali; Zhang, Da-Lin
2018-04-01
A spectral analysis of daily rainfall data has been performed to investigate extreme rainfall events in south China during the presummer rainy seasons between 1998 and 2015 (excluding 1999, 2006, 2011, and 2014). The results reveal a dominant frequency mode at the synoptic scale with pronounced positive rainfall anomalies. By analyzing the synoptic-scale bandpass-filtered anomalous circulations, 24 extreme rainfall episodes (defined as those with a daily rainfall amount in the top 5%) are categorized into "cyclone" (15) and "trough" (8) types, with the remaining events as an "anticyclone" type, according to the primary anomalous weather system contributing to each extreme rainfall episode. The 15 cyclone-type episodes are further separated into (11) lower- and (4) upper-tropospheric migratory anomalies. An analysis of their anomalous fields shows that both types could be traced back to the generation of cyclonic anomalies downstream of the Tibetan Plateau, except for two episodes of lower-tropospheric migratory anomalies originating over the South China Sea. However, a lower-tropospheric cyclonic anomaly appears during all phases in the former type, but only in the wettest phase in the latter type, with its peak disturbance occurring immediately beneath an upper-level warm anomaly. The production of extreme rainfall in the trough-type episodes is closely related to a deep trough anomaly extending from an intense cyclonic anomaly over north China, which in turn could be traced back to a midlatitude Rossby wave train passing by the Tibetan Plateau. The results have important implications for understanding the origin, structure, and evolution of synoptic disturbances associated with the presummer extreme rainfall in south China.
NASA Astrophysics Data System (ADS)
Rauniyar, S. P.; Protat, A.; Kanamori, H.
2017-05-01
This study investigates the regional and seasonal rainfall rate retrieval uncertainties within nine state-of-the-art satellite-based rainfall products over the Maritime Continent (MC) region. The results show consistently larger differences in mean daily rainfall among products over land, especially over mountains and along coasts, compared to over ocean, by about 20% for low to medium rain rates and 5% for heavy rain rates. However, rainfall differences among the products do not exhibit any seasonal dependency over both surface types (land and ocean) of the MC region. The differences between products largely depends on the rain rate itself, with a factor 2 difference for light rain and 30% for intermediate and high rain rates over ocean. The rain-rate products dominated by microwave measurements showed less spread among themselves over ocean compared to the products dominated by infrared measurements. Conversely, over land, the rain gauge-adjusted post-real-time products dominated by microwave measurements produced the largest spreads, due to the usage of different gauge analyses for the bias corrections. Intercomparisons of rainfall characteristics of these products revealed large discrepancies in detecting the frequency and intensity of rainfall. These satellite products are finally evaluated at subdaily, daily, monthly, intraseasonal, and seasonal temporal scales against high-quality gridded rainfall observations in the Sarawak (Malaysia) region for the 4 year period 2000-2003. No single satellite-based rainfall product clearly outperforms the other products at all temporal scales. General guidelines are provided for selecting a product that could be best suited for a particular application and/or temporal resolution.
NASA Astrophysics Data System (ADS)
Zin, Wan Zawiah Wan; Shinyie, Wendy Ling; Jemain, Abdul Aziz
2015-02-01
In this study, two series of data for extreme rainfall events are generated based on Annual Maximum and Partial Duration Methods, derived from 102 rain-gauge stations in Peninsular from 1982-2012. To determine the optimal threshold for each station, several requirements must be satisfied and Adapted Hill estimator is employed for this purpose. A semi-parametric bootstrap is then used to estimate the mean square error (MSE) of the estimator at each threshold and the optimal threshold is selected based on the smallest MSE. The mean annual frequency is also checked to ensure that it lies in the range of one to five and the resulting data is also de-clustered to ensure independence. The two data series are then fitted to Generalized Extreme Value and Generalized Pareto distributions for annual maximum and partial duration series, respectively. The parameter estimation methods used are the Maximum Likelihood and the L-moment methods. Two goodness of fit tests are then used to evaluate the best-fitted distribution. The results showed that the Partial Duration series with Generalized Pareto distribution and Maximum Likelihood parameter estimation provides the best representation for extreme rainfall events in Peninsular Malaysia for majority of the stations studied. Based on these findings, several return values are also derived and spatial mapping are constructed to identify the distribution characteristic of extreme rainfall in Peninsular Malaysia.
Alonso-Carné, J; García-Martín, A; Estrada-Peña, A
2015-01-01
Ticks are sensitive to changes in relative humidity and saturation deficit at the microclimate scale. Trends and changes in rainfall are commonly used as descriptors of field observations of tick populations, to capture the climate niche of ticks or to predict the climate suitability for ticks under future climate scenarios. We evaluated daily and monthly relationships between rainfall, relative humidity and saturation deficit over different ecosystems in Europe using daily climate values from 177 stations over a period of 10 years. We demonstrate that rainfall is poorly correlated with both relative humidity and saturation deficit in any of the ecological domains studied. We conclude that the amount of rainfall recorded in 1 day does not correlate with the values of humidity or saturation deficit recorded 24 h later: rainfall is not an adequate surrogate for evaluating the physiological processes of ticks at regional scales. We compared the Normalized Difference Vegetation Index (NDVI), a descriptor of photosynthetic activity, at a spatial resolution of 0.05°, with monthly averages of relative humidity and saturation deficit and also determined a lack of significant correlation. With the limitations of spatial scale and habitat coverage of this study, we suggest that the rainfall or NDVI cannot replace relative humidity or saturation deficit as descriptors of tick processes.
Schönbrodt-Stitt, Sarah; Bosch, Anna; Behrens, Thorsten; Hartmann, Heike; Shi, Xuezheng; Scholten, Thomas
2013-10-01
In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km(2)) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R a) amounts for approximately 5,222 MJ mm ha(-1) h(-1) a(-1). With increasing altitudes, R a rises up to maximum 7,547 MJ mm ha(-1) h(-1) a(-1) at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R a=1,986 MJ mm ha(-1) h(-1) a(-1). The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R a as input for a spatially high-resolution and area-specific assessment of soil erosion risk.
Summer Leeside Rainfall Maxima over the Island of Hawaii
NASA Astrophysics Data System (ADS)
Huang, Y. F.; Chen, Y. L.
2016-12-01
The Kona area on the leeside in the island of Hawaii has distinctive summer rainfall maxima. The primary physical processes for the summer rainfall maxima in Kona are analyzed by comparing it with the winter rainfall. The annual and diurnal cycles there are investigated by employing the Fifth-generation Pennsylvania State University-NCAR Mesoscale Model coupled with the advanced land surface model from June 2004 and February 2010. During the summer, the nocturnal rainfall maximum adjacent to the Kona coast is larger than in winter because of the stronger, moister westerly reversed flow and offshore flow in summer. Comparisons between winter trade-wind days and winter mean show that the leeside Kona rainfall offshore in winter mainly occurs under trade-wind conditions. Moreover, the model results also attest to the impact of moisture content on the Kona leeside rainfall offshore. Comparisons between winter and summer trade-wind days indicate that upslope flows on the Kona slopes are stronger and the moisture content from the westerly reversed flow is higher in summer than in winter. The rainfall maximum on the lower Kona slopes is more pronounced in summer than in winter as a result of enhanced orographic lifting due to stronger upslope flow in the afternoon hours and the moister westerly reversed flow offshore, which merges with the upslope flow inland.
Ten-Year Climatology of Summertime Diurnal Rainfall Rate Over the Conterminous U.S.
NASA Technical Reports Server (NTRS)
Matsui, Toshihisa; Mocko, David; Lee, Myong-In; Tao, Wei-Kuo; Suarez, Max J.; Pielke, Roger A., Sr.
2010-01-01
Diurnal cycles of summertime rainfall rates are examined over the conterminous United States, using radar-gauge assimilated hourly rainfall data. As in earlier studies, rainfall diurnal composites show a well-defined region of rainfall propagation over the Great Plains and an afternoon maximum area over the south and eastern portion of the United States. Zonal phase speeds of rainfall in three different small domains are estimated, and rainfall propagation speeds are compared with background zonal wind speeds. Unique rainfall propagation speeds in three different regions can be explained by the evolution of latent-heat theory linked to the convective available potential energy, than by gust-front induced or gravity wave propagation mechanisms.
Optimal traits of plant hydraulic capacitance as an adaptation to hydroclimatic variability
NASA Astrophysics Data System (ADS)
Hartzell, S. R.; Bartlett, M. S., Jr.; Porporato, A. M.
2016-12-01
Hydraulic capacitance allows plants to uptake and store water when it is abundant. This stored water is utilized during periods of water stress, decreasing tissue damage and increasing carbon assimilation. By providing a more consistent and readily accessible water supply, it buffers water stress variability across daily and seasonal timescales. The rate of plant water storage and withdrawal varies widely between plant species and is principally governed by several plant hydraulic parameters, principally the hydraulic capacitance, the total water storage capacity, and the conductance between xylem and water storage tissue. The timescale of the plant response to changes in environmental conditions may be related to the timescale of relevant environmental variability. For example, the Baobab tree (Adansonia), which grows in an environment with very strong seasonal rainfall variability, has a relatively long timescale of hydraulic response, while an evergreen tree such as Pinus taeda, which mainly contends with daily and inter-rainfall moisture variability, has a much shorter timescale of hydraulic response. Here a model of hydraulic capacitance is coupled to a resistance model of soil-plant-atmosphere continuum. We force this model with stochastic rainfall and examine plant responses to moisture variability at various timescales. Optimal plant hydraulic properties are examined as a function of mean soil moisture (daily variability), mean period between rainfall events (inter-rainfall variability), and seasonal rainfall variability, and the relative importance of each type of variability in shaping plant water use strategies is assessed. Results are compared to typical hydraulic parameters of plants growing under specific environmental conditions. Values of hydraulic traits which optimize carbon assimilation and water use efficiency are found; these values are dependent on mean environmental conditions as well as the timescale of environmental variability.
NASA Astrophysics Data System (ADS)
Martin, Gill; Levine, Richard; Klingaman, Nicholas; Bush, Stephanie; Turner, Andrew; Woolnough, Steven
2015-04-01
Despite considerable efforts worldwide to improve model simulations of the Asian summer monsoon, significant biases still remain in climatological seasonal mean rainfall distribution, timing of the onset, and northward and eastward extent of the monsoon domain (Sperber et al., 2013). Many modelling studies have shown sensitivity to convection and boundary layer parameterization, cloud microphysics and land surface properties, as well as model resolution. Here we examine the problems in representing short-timescale rainfall variability (related to convection parameterization), problems in representing synoptic-scale systems such as monsoon depressions (related to model resolution), and the relationship of each of these with longer-term systematic biases. Analysis of the spatial distribution of rainfall intensity on a range of timescales ranging from ~30 minutes to daily, in the MetUM and in observations (where available), highlights how rainfall biases in the South Asian monsoon region on different timescales in different regions can be achieved in models through a combination of the incorrect frequency and/or intensity of rainfall. Over the Indian land area, the typical dry bias is related to sub-daily rainfall events being too infrequent, despite being too intense when they occur. In contrast, the wet bias regions over the equatorial Indian Ocean are mainly related to too frequent occurrence of lower-than-observed 3-hourly rainfall accumulations which result in too frequent occurrence of higher-than-observed daily rainfall accumulations. This analysis sheds light on the model deficiencies behind the climatological seasonal mean rainfall biases that many models exhibit in this region. Changing physical parameterizations alters this behaviour, with associated adjustments in the climatological rainfall distribution, although the latter is not always improved (Bush et al., 2014). This suggests a more complex interaction between the diabatic heating and the large-scale circulation than is indicated by the intensity and frequency of rainfall alone. Monsoon depressions and low pressure systems are important contributors to monsoon rainfall over central and northern India, areas where MetUM climate simulations typically show deficient monsoon rainfall. Analysis of MetUM climate simulations at resolutions ranging from N96 (~135km) to N512 (~25km) suggests that at lower resolution the numbers and intensities of monsoon depressions and low pressure systems and their associated rainfall are very low compared with re-analyses/observations. We show that there are substantial increases with horizontal resolution, but resolution is not the only factor. Idealised simulations, either using nudged atmospheric winds or initialised coupled hindcasts, which improve (strengthen) the mean state monsoon and cyclonic circulation over the Indian peninsula, also result in a substantial increase in monsoon depressions and associated rainfall. This suggests that a more realistic representation of monsoon depressions is possible even at lower resolution if the larger-scale systematic error pattern in the monsoon is improved.
Hydrothermal extremes at the South-West Pribaikalie during the current climate changes
NASA Astrophysics Data System (ADS)
Voropay, Nadezhda
2017-04-01
Climatic extremes of air temperature and precipitation were analyzed for the Tunka Intermountain Depression (South-West Pribaikalie, Buryatia, Russian Federation). Intermountain depressions occupy a quarter of the territory of the Baikal region. The specific climatic conditions in the depressions are formed due to the geographic location and the influence of latitudinal zonation and altitudinal gradients. Air temperature and precipitation data records from at weather stations for the period 1940-2015 were analyzed. Long-term average annual temperature is negative and varies from -0.8 °C to -2.4 °C. Air temperature absolute minimum is -48 °C, absolute maximum is +36 °C. The long-term average annual precipitation is 370-480 mm, but in some years annual precipitation reach 760 mm. The summer months have about 70% of the total annual precipitation, in July and August the sum may reach 340 mm. Maximum daily sum of rainfalls is 80 mm. The contribution of the global and regional circulation characteristics into the variability of regional climatic characteristics was estimated.
Chien, Lung-Chang; Lin, Ro-Ting; Liao, Yunqi; Sy, Francisco S; Pérez, Adriana
2018-04-17
Zika virus (ZIKV) infection is a pandemic and a public health emergency. It is transmitted by mosquitoes, primarily the Aedes genus. In light of no treatment currently, it is crucial to develop effective vector control programs to prevent the spread of ZIKV infection earlier when observing possible risk factors, such as weather conditions enhancing mosquito breeding and surviving. This study collected daily meteorological measurements and weekly ZIKV infectious cases among 32 departments of Colombia from January 2015-December 2016. This study applied the distributed lag nonlinear model to estimate the association between the number of ZIKA virus infection and meteorological measurements, controlling for spatial and temporal variations. We examined at most three meteorological factors with 20 lags in weeks in the model. Average humidity, total rainfall, and maximum temperature were more predictable of ZIKV infection outbreaks than other meteorological factors. Our models can detect significantly lagged effects of average humidity, total rainfall, and maximum temperature on outbreaks up to 15, 14, and 20 weeks, respectively. The spatial analysis identified 12 departments with a significant threat of ZIKV, and eight of those high-risk departments were located between the Equator and 6°N. The outbreak prediction also performed well in identified high-risk departments. Our results demonstrate that meteorological factors could be used for predicting ZIKV epidemics. Building an early warning surveillance system is important for preventing ZIKV infection, particularly in endemic areas.
Rainfall as a trigger for stratification and winter phytoplankton growth in temperate shelf seas
NASA Astrophysics Data System (ADS)
Jardine, Jenny; Palmer, Matthew; Mahaffey, Claire; Holt, Jason; Mellor, Adam; Wakelin, Sarah
2017-04-01
We present new data from ocean gliders to investigate physical controls on stratification and phytoplankton dynamics, collected in the Celtic Sea between November 2014 and August 2015 as part of the UK Shelf Sea Biogeochemistry programme. This presentation focuses on the winter period (Jan-March) when the diurnal heating cycle results in regular but weak near surface stratification followed by night-time convection. Despite low light conditions, this daily cycle often promotes a daytime increase in observed chlorophyll fluorescence, indicative of phytoplankton growth. This daily cycle is occasionally interrupted when buoyancy inputs are sufficient to outcompete night-time convection and result in short-term periods of sustained winter stratification, typically lasting 2-3 days. Sustained stratification often coincides with periods of heavy rainfall, suggesting freshwater input from precipitation may play a role on these events by producing a subtle yet significant freshening of the surface layer of the order of 0.005 PSU. Comparing rainfall estimates with observed salinity changes confirms rainfall to often be the initiator of these winter stratification periods. As winter winds subside and solar heating increases towards spring, the water column becomes more susceptible to periods of halo-stratification, such that heavy rainfall during the winter-spring transition is likely to promote sustained stratification. The timing and extent of a heavy rainfall event in March 2015 does suggest it may be the critical trigger for shelf-wide stratification that eventually instigates the spring bloom. We propose that the timing of these downpours relative to the daily heating cycle can be a triggering mechanism for both short term and seasonal stratification in shelf seas, and so play a critical role in winter and early spring phytoplankton growth and the shelf sea carbon cycle. We further test the importance of this process using historical data, and results from the NEMO-AMM7 model to test how rainfall events have affected previous winter and spring conditions.
NASA Astrophysics Data System (ADS)
Bárdossy, András; Pegram, Geoffrey
2017-01-01
The use of radar measurements for the space time estimation of precipitation has for many decades been a central topic in hydro-meteorology. In this paper we are interested specifically in daily and sub-daily extreme values of precipitation at gauged or ungauged locations which are important for design. The purpose of the paper is to develop a methodology to combine daily precipitation observations and radar measurements to estimate sub-daily extremes at point locations. Radar data corrected using precipitation-reflectivity relationships lead to biased estimations of extremes. Different possibilities of correcting systematic errors using the daily observations are investigated. Observed gauged daily amounts are interpolated to unsampled points and subsequently disaggregated using the sub-daily values obtained by the radar. Different corrections based on the spatial variability and the subdaily entropy of scaled rainfall distributions are used to provide unbiased corrections of short duration extremes. Additionally a statistical procedure not based on a matching day by day correction is tested. In this last procedure as we are only interested in rare extremes, low to medium values of rainfall depth were neglected leaving a small number of L days of ranked daily maxima in each set per year, whose sum typically comprises about 50% of each annual rainfall total. The sum of these L day maxima is first iterpolated using a Kriging procedure. Subsequently this sum is disaggregated to daily values using a nearest neighbour procedure. The daily sums are then disaggregated by using the relative values of the biggest L radar based days. Of course, the timings of radar and gauge maxima can be different, so the method presented here uses radar for disaggregating daily gauge totals down to 15 min intervals in order to extract the maxima of sub-hourly through to daily rainfall. The methodologies were tested in South Africa, where an S-band radar operated relatively continuously at Bethlehem from 1998 to 2003, whose scan at 1.5 km above ground [CAPPI] overlapped a dense (10 km spacing) set of 45 pluviometers recording in the same 6-year period. This valuable set of data was obtained from each of 37 selected radar pixels [1 km square in plan] which contained a pluviometer not masked out by the radar foot-print. The pluviometer data were also aggregated to daily totals, for the same purpose. The extremes obtained using disaggregation methods were compared to the observed extremes in a cross validation procedure. The unusual and novel goal was not to obtain the reproduction of the precipitation matching in space and time, but to obtain frequency distributions of the point extremes, which we found to be stable.
Universal inverse power-law distribution for temperature and rainfall in the UK region
NASA Astrophysics Data System (ADS)
Selvam, A. M.
2014-06-01
Meteorological parameters, such as temperature, rainfall, pressure, etc., exhibit selfsimilar space-time fractal fluctuations generic to dynamical systems in nature such as fluid flows, spread of forest fires, earthquakes, etc. The power spectra of fractal fluctuations display inverse power-law form signifying long-range correlations. A general systems theory model predicts universal inverse power-law form incorporating the golden mean for the fractal fluctuations. The model predicted distribution was compared with observed distribution of fractal fluctuations of all size scales (small, large and extreme values) in the historic month-wise temperature (maximum and minimum) and total rainfall for the four stations Oxford, Armagh, Durham and Stornoway in the UK region, for data periods ranging from 92 years to 160 years. For each parameter, the two cumulative probability distributions, namely cmax and cmin starting from respectively maximum and minimum data value were used. The results of the study show that (i) temperature distributions (maximum and minimum) follow model predicted distribution except for Stornowy, minimum temperature cmin. (ii) Rainfall distribution for cmin follow model predicted distribution for all the four stations. (iii) Rainfall distribution for cmax follows model predicted distribution for the two stations Armagh and Stornoway. The present study suggests that fractal fluctuations result from the superimposition of eddy continuum fluctuations.
Regional maximum rainfall analysis using L-moments at the Titicaca Lake drainage, Peru
NASA Astrophysics Data System (ADS)
Fernández-Palomino, Carlos Antonio; Lavado-Casimiro, Waldo Sven
2017-08-01
The present study investigates the application of the index flood L-moments-based regional frequency analysis procedure (RFA-LM) to the annual maximum 24-h rainfall (AM) of 33 rainfall gauge stations (RGs) to estimate rainfall quantiles at the Titicaca Lake drainage (TL). The study region was chosen because it is characterised by common floods that affect agricultural production and infrastructure. First, detailed quality analyses and verification of the RFA-LM assumptions were conducted. For this purpose, different tests for outlier verification, homogeneity, stationarity, and serial independence were employed. Then, the application of RFA-LM procedure allowed us to consider the TL as a single, hydrologically homogeneous region, in terms of its maximum rainfall frequency. That is, this region can be modelled by a generalised normal (GNO) distribution, chosen according to the Z test for goodness-of-fit, L-moments (LM) ratio diagram, and an additional evaluation of the precision of the regional growth curve. Due to the low density of RG in the TL, it was important to produce maps of the AM design quantiles estimated using RFA-LM. Therefore, the ordinary Kriging interpolation (OK) technique was used. These maps will be a useful tool for determining the different AM quantiles at any point of interest for hydrologists in the region.
NASA Astrophysics Data System (ADS)
Luitel, Beda; Villarini, Gabriele; Vecchi, Gabriel A.
2018-01-01
The goal of this study is the evaluation of the skill of five state-of-the-art numerical weather prediction (NWP) systems [European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC)] in forecasting rainfall from North Atlantic tropical cyclones (TCs). Analyses focus on 15 North Atlantic TCs that made landfall along the U.S. coast over the 2007-2012 period. As reference data we use gridded rainfall provided by the Climate Prediction Center (CPC). We consider forecast lead-times up to five days. To benchmark the skill of these models, we consider rainfall estimates from one radar-based (Stage IV) and four satellite-based [Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA, both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); the CPC MORPHing Technique (CMORPH)] rainfall products. Daily and storm total rainfall fields from each of these remote sensing products are compared to the reference data to obtain information about the range of errors we can expect from "observational data." The skill of the NWP models is quantified: (1) by visual examination of the distribution of the errors in storm total rainfall for the different lead-times, and numerical examination of the first three moments of the error distribution; (2) relative to climatology at the daily scale. Considering these skill metrics, we conclude that the NWP models can provide skillful forecasts of TC rainfall with lead-times up to 48 h, without a consistently best or worst NWP model.
Kooperman, Gabriel J.; Pritchard, Michael S.; Burt, Melissa A.; ...
2016-02-01
This study evaluates several important statistics of daily rainfall based on frequency and amount distributions as simulated by a global climate model whose precipitation does not depend on convective parameterization—Super-Parameterized Community Atmosphere Model (SPCAM). Three superparameterized and conventional versions of CAM, coupled within the Community Earth System Model (CESM1 and CCSM4), are compared against two modern rainfall products (GPCP 1DD and TRMM 3B42) to discriminate robust effects of superparameterization that emerge across multiple versions. The geographic pattern of annual-mean rainfall is mostly insensitive to superparameterization, with only slight improvements in the double-ITCZ bias. However, unfolding intensity distributions reveal several improvementsmore » in the character of rainfall simulated by SPCAM. The rainfall rate that delivers the most accumulated rain (i.e., amount mode) is systematically too weak in all versions of CAM relative to TRMM 3B42 and does not improve with horizontal resolution. It is improved by superparameterization though, with higher modes in regions of tropical wave, Madden-Julian Oscillation, and monsoon activity. Superparameterization produces better representations of extreme rates compared to TRMM 3B42, without sensitivity to horizontal resolution seen in CAM. SPCAM produces more dry days over land and fewer over the ocean. Updates to CAM’s low cloud parameterizations have narrowed the frequency peak of light rain, converging toward SPCAM. Poleward of 50°, where more rainfall is produced by resolved-scale processes in CAM, few differences discriminate the rainfall properties of the two models. Lastly, these results are discussed in light of their implication for future rainfall changes in response to climate forcing.« less
Analysis of rainfall distribution in Kelantan river basin, Malaysia
NASA Astrophysics Data System (ADS)
Che Ros, Faizah; Tosaka, Hiroyuki
2018-03-01
Using rainfall gauge on its own as input carries great uncertainties regarding runoff estimation, especially when the area is large and the rainfall is measured and recorded at irregular spaced gauging stations. Hence spatial interpolation is the key to obtain continuous and orderly rainfall distribution at unknown points to be the input to the rainfall runoff processes for distributed and semi-distributed numerical modelling. It is crucial to study and predict the behaviour of rainfall and river runoff to reduce flood damages of the affected area along the Kelantan river. Thus, a good knowledge on rainfall distribution is essential in early flood prediction studies. Forty six rainfall stations and their daily time-series were used to interpolate gridded rainfall surfaces using inverse-distance weighting (IDW), inverse-distance and elevation weighting (IDEW) methods and average rainfall distribution. Sensitivity analysis for distance and elevation parameters were conducted to see the variation produced. The accuracy of these interpolated datasets was examined using cross-validation assessment.
Extreme flood event analysis in Indonesia based on rainfall intensity and recharge capacity
NASA Astrophysics Data System (ADS)
Narulita, Ida; Ningrum, Widya
2018-02-01
Indonesia is very vulnerable to flood disaster because it has high rainfall events throughout the year. Flood is categorized as the most important hazard disaster because it is causing social, economic and human losses. The purpose of this study is to analyze extreme flood event based on satellite rainfall dataset to understand the rainfall characteristic (rainfall intensity, rainfall pattern, etc.) that happened before flood disaster in the area for monsoonal, equatorial and local rainfall types. Recharge capacity will be analyzed using land cover and soil distribution. The data used in this study are CHIRPS rainfall satellite data on 0.05 ° spatial resolution and daily temporal resolution, and GSMap satellite rainfall dataset operated by JAXA on 1-hour temporal resolution and 0.1 ° spatial resolution, land use and soil distribution map for recharge capacity analysis. The rainfall characteristic before flooding, and recharge capacity analysis are expected to become the important information for flood mitigation in Indonesia.
Mukabutera, Assumpta; Thomson, Dana; Murray, Megan; Basinga, Paulin; Nyirazinyoye, Laetitia; Atwood, Sidney; Savage, Kevin P; Ngirimana, Aimable; Hedt-Gauthier, Bethany L
2016-08-05
Diarrhea among children under 5 years of age has long been a major public health concern. Previous studies have suggested an association between rainfall and diarrhea. Here, we examined the association between Rwandan rainfall patterns and childhood diarrhea and the impact of household sanitation variables on this relationship. We derived a series of rain-related variables in Rwanda based on daily rainfall measurements and hydrological models built from daily precipitation measurements collected between 2009 and 2011. Using these data and the 2010 Rwanda Demographic and Health Survey database, we measured the association between total monthly rainfall, monthly rainfall intensity, runoff water and anomalous rainfall and the occurrence of diarrhea in children under 5 years of age. Among the 8601 children under 5 years of age included in the survey, 13.2 % reported having diarrhea within the 2 weeks prior to the survey. We found that higher levels of runoff were protective against diarrhea compared to low levels among children who lived in households with unimproved toilet facilities (OR = 0.54, 95 % CI: [0.34, 0.87] for moderate runoff and OR = 0.50, 95 % CI: [0.29, 0.86] for high runoff) but had no impact among children in household with improved toilets. Our finding that children in households with unimproved toilets were less likely to report diarrhea during periods of high runoff highlights the vulnerabilities of those living without adequate sanitation to the negative health impacts of environmental events.
Validation of satellite daily rainfall estimates in complex terrain of Bali Island, Indonesia
NASA Astrophysics Data System (ADS)
Rahmawati, Novi; Lubczynski, Maciek W.
2017-11-01
Satellite rainfall products have different performances in different geographic regions under different physical and climatological conditions. In this study, the objective was to select the most reliable and accurate satellite rainfall products for specific, environmental conditions of Bali Island. The performances of four spatio-temporal satellite rainfall products, i.e., CMORPH25, CMORPH8, TRMM, and PERSIANN, were evaluated at the island, zonation (applying elevation and climatology as constraints), and pixel scales, using (i) descriptive statistics and (ii) categorical statistics, including bias decomposition. The results showed that all the satellite products had low accuracy because of spatial scale effect, daily resolution and the island complexity. That accuracy was relatively lower in (i) dry seasons and dry climatic zones than in wet seasons and wet climatic zones; (ii) pixels jointly covered by sea and mountainous land than in pixels covered by land or by sea only; and (iii) topographically diverse than uniform terrains. CMORPH25, CMORPH8, and TRMM underestimated and PERSIANN overestimated rainfall when comparing them to gauged rain. The CMORPH25 had relatively the best performance and the PERSIANN had the worst performance in the Bali Island. The CMORPH25 had the lowest statistical errors, the lowest miss, and the highest hit rainfall events; it also had the lowest miss rainfall bias and was relatively the most accurate in detecting, frequent in Bali, ≤ 20 mm day-1 rain events. Lastly, the CMORPH25 coarse grid better represented rainfall events from coastal to inlands areas than other satellite products, including finer grid CMORPH8.
Interpolating Non-Parametric Distributions of Hourly Rainfall Intensities Using Random Mixing
NASA Astrophysics Data System (ADS)
Mosthaf, Tobias; Bárdossy, András; Hörning, Sebastian
2015-04-01
The correct spatial interpolation of hourly rainfall intensity distributions is of great importance for stochastical rainfall models. Poorly interpolated distributions may lead to over- or underestimation of rainfall and consequently to wrong estimates of following applications, like hydrological or hydraulic models. By analyzing the spatial relation of empirical rainfall distribution functions, a persistent order of the quantile values over a wide range of non-exceedance probabilities is observed. As the order remains similar, the interpolation weights of quantile values for one certain non-exceedance probability can be applied to the other probabilities. This assumption enables the use of kernel smoothed distribution functions for interpolation purposes. Comparing the order of hourly quantile values over different gauges with the order of their daily quantile values for equal probabilities, results in high correlations. The hourly quantile values also show high correlations with elevation. The incorporation of these two covariates into the interpolation is therefore tested. As only positive interpolation weights for the quantile values assure a monotonically increasing distribution function, the use of geostatistical methods like kriging is problematic. Employing kriging with external drift to incorporate secondary information is not applicable. Nonetheless, it would be fruitful to make use of covariates. To overcome this shortcoming, a new random mixing approach of spatial random fields is applied. Within the mixing process hourly quantile values are considered as equality constraints and correlations with elevation values are included as relationship constraints. To profit from the dependence of daily quantile values, distribution functions of daily gauges are used to set up lower equal and greater equal constraints at their locations. In this way the denser daily gauge network can be included in the interpolation of the hourly distribution functions. The applicability of this new interpolation procedure will be shown for around 250 hourly rainfall gauges in the German federal state of Baden-Württemberg. The performance of the random mixing technique within the interpolation is compared to applicable kriging methods. Additionally, the interpolation of kernel smoothed distribution functions is compared with the interpolation of fitted parametric distributions.
Effect of rain gauge density over the accuracy of rainfall: a case study over Bangalore, India.
Mishra, Anoop Kumar
2013-12-01
Rainfall is an extremely variable parameter in both space and time. Rain gauge density is very crucial in order to quantify the rainfall amount over a region. The level of rainfall accuracy is highly dependent on density and distribution of rain gauge stations over a region. Indian Space Research Organisation (ISRO) have installed a number of Automatic Weather Station (AWS) rain gauges over Indian region to study rainfall. In this paper, the effect of rain gauge density over daily accumulated rainfall is analyzed using ISRO AWS gauge observations. A region of 50 km × 50 km box over southern part of Indian region (Bangalore) with good density of rain gauges is identified for this purpose. Rain gauge numbers are varied from 1-8 in 50 km box to study the variation in the daily accumulated rainfall. Rainfall rates from the neighbouring stations are also compared in this study. Change in the rainfall as a function of gauge spacing is studied. Use of gauge calibrated satellite observations to fill the gauge station value is also studied. It is found that correlation coefficients (CC) decrease from 82% to 21% as gauge spacing increases from 5 km to 40 km while root mean square error (RMSE) increases from 8.29 mm to 51.27 mm with increase in gauge spacing from 5 km to 40 km. Considering 8 rain gauges as a standard representative of rainfall over the region, absolute error increases from 15% to 64% as gauge numbers are decreased from 7 to 1. Small errors are reported while considering 4 to 7 rain gauges to represent 50 km area. However, reduction to 3 or less rain gauges resulted in significant error. It is also observed that use of gauge calibrated satellite observations significantly improved the rainfall estimation over the region with very few rain gauge observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylvester, Linda M.; Omitaomu, Olufemi A.; Parish, Esther S.
2016-09-01
Modeled daily precipitation values are used to determine changes in percentile rainfall event depths, for planning and mitigation of stormwater runoff, over past (1980-2005) and future (2025-2050) periods for Knoxville, Tennessee and the surrounding area.
Unidirectional trends in annual and seasonal climate and extremes in Egypt
NASA Astrophysics Data System (ADS)
Nashwan, Mohamed Salem; Shahid, Shamsuddin; Abd Rahim, Norhan
2018-05-01
The presence of short- and long-term autocorrelations can lead to considerable change in significance of trend in hydro-climatic time series. Therefore, past findings of climatic trend studies that did not consider autocorrelations became a questionable issue. The spatial patterns in the trends of annual and seasonal temperature, rainfall, and related extremes in Egypt have been assessed in this paper using modified Mann-Kendal (MMK) trend test which can detect unidirectional trends in time series in the presence of short- and long-term autocorrelations. The trends obtained using the MMK test was compared with that obtained using standard Mann-Kendall (MK) test to show how natural variability in climate affects the trends. The daily rainfall and temperature data of Princeton Global Meteorological Forcing for the period 1948-2010 having a spatial resolution of 0.25° × 0.25° was used for this purpose. The results showed a large difference between the trends obtained using MMK and MK tests. The MMK test showed increasing trends in temperature and a number of temperature extremes in Egypt, but almost no change in rainfall and rainfall extremes. The minimum temperature was found to increase (0.08-0.29 °C/decade) much faster compared to maximum temperature (0.07-0.24 °C/decade) and therefore, a decrease in diurnal temperature range (- 0.01 to - 0.16 °C/decade) in most part of Egypt. The number of winter hot days and nights are increasing, while the number of cold days is decreasing in most part of the country. The study provides a more realistic scenario of the changes in climate and weather extremes of Egypt.
NASA Astrophysics Data System (ADS)
Shepherd, J. Marshall; Pierce, Harold; Negri, Andrew J.
2002-07-01
Data from the Tropical Rainfall Measuring Mission (TRMM) satellite's precipitation radar (PR) were employed to identify warm-season rainfall (1998-2000) patterns around Atlanta, Georgia; Montgomery, Alabama; Nashville, Tennessee; and San Antonio, Waco, and Dallas, Texas. Results reveal an average increase of about 28% in monthly rainfall rates within 30-60 km downwind of the metropolis, with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage changes are relative to an upwind control area. It was also found that maximum rainfall rates in the downwind impact area exceeded the mean value in the upwind control area by 48%-116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. Results are consistent with the Metropolitan Meteorological Experiment (METROMEX) studies of St. Louis, Missouri, almost two decades ago and with more recent studies near Atlanta. The study establishes the possibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. Such research has implications for weather forecasting, urban planning, water resource management, and understanding human impact on the environment and climate.
Application of ANN and fuzzy logic algorithms for streamflow modelling of Savitri catchment
NASA Astrophysics Data System (ADS)
Kothari, Mahesh; Gharde, K. D.
2015-07-01
The streamflow prediction is an essentially important aspect of any watershed modelling. The black box models (soft computing techniques) have proven to be an efficient alternative to physical (traditional) methods for simulating streamflow and sediment yield of the catchments. The present study focusses on development of models using ANN and fuzzy logic (FL) algorithm for predicting the streamflow for catchment of Savitri River Basin. The input vector to these models were daily rainfall, mean daily evaporation, mean daily temperature and lag streamflow used. In the present study, 20 years (1992-2011) rainfall and other hydrological data were considered, of which 13 years (1992-2004) was for training and rest 7 years (2005-2011) for validation of the models. The mode performance was evaluated by R, RMSE, EV, CE, and MAD statistical parameters. It was found that, ANN model performance improved with increasing input vectors. The results with fuzzy logic models predict the streamflow with single input as rainfall better in comparison to multiple input vectors. While comparing both ANN and FL algorithms for prediction of streamflow, ANN model performance is quite superior.
NASA Astrophysics Data System (ADS)
Jhajharia, Deepak; Yadav, Brijesh K.; Maske, Sunil; Chattopadhyay, Surajit; Kar, Anil K.
2012-01-01
Trends in rainfall, rainy days and 24 h maximum rainfall are investigated using the Mann-Kendall non-parametric test at twenty-four sites of subtropical Assam located in the northeastern region of India. The trends are statistically confirmed by both the parametric and non-parametric methods and the magnitudes of significant trends are obtained through the linear regression test. In Assam, the average monsoon rainfall (rainy days) during the monsoon months of June to September is about 1606 mm (70), which accounts for about 70% (64%) of the annual rainfall (rainy days). On monthly time scales, sixteen and seventeen sites (twenty-one sites each) witnessed decreasing trends in the total rainfall (rainy days), out of which one and three trends (seven trends each) were found to be statistically significant in June and July, respectively. On the other hand, seventeen sites witnessed increasing trends in rainfall in the month of September, but none were statistically significant. In December (February), eighteen (twenty-two) sites witnessed decreasing (increasing) trends in total rainfall, out of which five (three) trends were statistically significant. For the rainy days during the months of November to January, twenty-two or more sites witnessed decreasing trends in Assam, but for nine (November), twelve (January) and eighteen (December) sites, these trends were statistically significant. These observed changes in rainfall, although most time series are not convincing as they show predominantly no significance, along with the well-reported climatic warming in monsoon and post-monsoon seasons may have implications for human health and water resources management over bio-diversity rich Northeast India.
NASA Astrophysics Data System (ADS)
Cui, Lifang; Wang, Lunche; Qu, Sai; Singh, Ramesh P.; Lai, Zhongping; Yao, Rui
2018-05-01
Recently, extreme climate variation has been studied in different parts of the world, and the present study aims to study the impacts of climate extremes on vegetation. In this study, we analyzed the spatiotemporal variations of temperature and precipitation extremes during 1960-2015 in the Yangtze River Basin (YRB) using the Mann-Kendall (MK) test with Sen's slope estimator and kriging interpolation method based on daily precipitation (P), maximum temperature (T max), and minimum temperature (T min). We also analyzed the vegetation dynamics in the YRB during 1982-2015 using Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) datasets and investigated the relationship between temperature and precipitation extremes and NDVI using Pearson correlation coefficients. The results showed a pronounced increase in the annual mean maximum temperature (T nav) and mean minimum temperature (T xav) at the rate of 0.23 °C/10 years and 0.15 °C/10 years, respectively, during 1960-2015. In addition, the occurrence of warm days and warm nights shows increasing trends at the rate of 1.36 days/10 years and 1.70 days/10 years, respectively, while cold days and cold nights decreased at the rate of 1.09 days/10 years and 2.69 days/10 years, respectively, during 1960-2015. The precipitation extremes, such as very wet days (R95, the 95th percentile of daily precipitation events), very wet day precipitation (R95p, the number of days with rainfall above R95), rainstorm (R50, the number of days with rainfall above 50 mm), and maximum 1-day precipitation (RX1day), all show pronounced increasing trends during 1960-2015. In general, annual mean NDVI over the whole YRB increased at the rate of 0.01/10 years during 1982-2015, with an increasing transition around 1994. Spatially, annual mean NDVI increased in the northern, eastern, and parts of southwestern YRB, while it decreased in the YRD and parts of southern YRB during 1982-2015. The correlation coefficients showed that annual mean NDVI was closely correlated with temperature extremes during 1982-2015 and 1995-2015, but no significant correlation with precipitation extremes was observed. However, the decrease in NDVI was correlated with increasing R95p and R95 during 1982-1994.
Computation of rainfall erosivity from daily precipitation amounts.
Beguería, Santiago; Serrano-Notivoli, Roberto; Tomas-Burguera, Miquel
2018-10-01
Rainfall erosivity is an important parameter in many erosion models, and the EI30 defined by the Universal Soil Loss Equation is one of the best known erosivity indices. One issue with this and other erosivity indices is that they require continuous breakpoint, or high frequency time interval, precipitation data. These data are rare, in comparison to more common medium-frequency data, such as daily precipitation data commonly recorded by many national and regional weather services. Devising methods for computing estimates of rainfall erosivity from daily precipitation data that are comparable to those obtained by using high-frequency data is, therefore, highly desired. Here we present a method for producing such estimates, based on optimal regression tools such as the Gamma Generalised Linear Model and universal kriging. Unlike other methods, this approach produces unbiased and very close to observed EI30, especially when these are aggregated at the annual level. We illustrate the method with a case study comprising more than 1500 high-frequency precipitation records across Spain. Although the original records have a short span (the mean length is around 10 years), computation of spatially-distributed upscaling parameters offers the possibility to compute high-resolution climatologies of the EI30 index based on currently available, long-span, daily precipitation databases. Copyright © 2018 Elsevier B.V. All rights reserved.
A flash flood early warning system based on rainfall thresholds and daily soil moisture indexes
NASA Astrophysics Data System (ADS)
Brigandì, Giuseppina; Tito Aronica, Giuseppe
2015-04-01
Main focus of the paper is to present a flash flood early warning system, developed for Civil Protection Agency for the Sicily Region, for alerting extreme hydrometeorological events by using a methodology based on the combined use of rainfall thresholds and soil moisture indexes. As matter of fact, flash flood warning is a key element to improve the Civil Protection achievements to mitigate damages and safeguard the security of people. It is a rather complicated task, particularly in those catchments with flashy response where even brief anticipations are important and welcomed. In this context, some kind of hydrological precursors can be considered to improve the effectiveness of the emergency actions (i.e. early flood warning). Now, it is well known how soil moisture is an important factor in flood formation, because the runoff generation is strongly influenced by the antecedent soil moisture conditions of the catchment. The basic idea of the work here presented is to use soil moisture indexes derived in a continuous form to define a first alert phase in a flash flood forecasting chain and then define a unique rainfall threshold for a given day for the subsequent alarm phases activation, derived as a function of the soil moisture conditions at the beginning of the day. Daily soil moisture indexes, representative of the moisture condition of the catchment, were derived by using a parsimonious and simply to use approach based on the IHACRES model application in a modified form developed by the authors. It is a simple, spatially-lumped rainfall-streamflow model, based on the SCS-CN method and on the unit hydrograph approach that requires only rainfall, streamflow and air temperature data. It consists of two modules. In the first a non linear loss model, based on the SCS-CN method, was used to transform total rainfall into effective rainfall. In the second, a linear convolution of effective rainfall was performed using a total unit hydrograph with a configuration of one parallel channel and reservoir, thereby corresponding to 'quick' and 'slow' components of runoff. In the non linear model a wetness/soil moisture index, varying from 0 to 1, was derived to define daily soil moisture catchment conditions and then conveniently linked to a corresponding CN value to use as input to derive the corresponding rainfall threshold for a given day. Finally, rainfall thresholds for flash flooding were derived using an Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall. Application of the proposed methodology was carried out with reference to a river basin in Sicily, Italy.
NASA Astrophysics Data System (ADS)
Pegram, Geoff; Bardossy, Andras; Sinclair, Scott
2017-04-01
The use of radar measurements for the space time estimation of precipitation has for many decades been a central topic in hydro-meteorology. In this presentation we are interested specifically in daily and sub-daily extreme values of precipitation at gauged or ungauged locations which are important for design. The purpose of the presentation is to develop a methodology to combine daily precipitation observations and radar measurements to estimate sub-daily extremes at point locations. Radar data corrected using precipitation-reflectivity relationships lead to biased estimations of extremes. Different possibilities of correcting systematic errors using the daily observations are investigated. Observed gauged daily amounts are interpolated to un-sampled points and subsequently disaggregated using the sub-daily values obtained by the radar. Different corrections based on the spatial variability and the sub-daily entropy of scaled rainfall distributions are used to provide unbiased corrections of short duration extremes. In addition, a statistical procedure not based on a matching day by day correction is tested. In this last procedure, as we are only interested in rare extremes, low to medium values of rainfall depth were neglected leaving 12 days of ranked daily maxima in each set per year, whose sum typically comprises about 50% of each annual rainfall total. The sum of these 12 day maxima is first interpolated using a Kriging procedure. Subsequently this sum is disaggregated to daily values using a nearest neighbour procedure. The daily sums are then disaggregated by using the relative values of the biggest 12 radar based days in each year. Of course, the timings of radar and gauge maxima can be different, so the new method presented here uses radar for disaggregating daily gauge totals down to 15 min intervals in order to extract the maxima of sub-hourly through to daily rainfall. The methodologies were tested in South Africa, where an S-band radar operated relatively continuously at Bethlehem from 1998 to 2003, whose scan at 1.5 km above ground [CAPPI] overlapped a dense [10 km spacing] set of 45 pluviometers recording in the same 6-year period. This valuable set of data was obtained from each of 37 selected radar pixels [1 km square in plan] which contained a pluviometer, not masked out by the radar foot-print. The pluviometer data were also aggregated to daily totals, for the same purpose. The extremes obtained using disaggregation methods were compared to the observed extremes in a cross validation procedure. The unusual and novel goal was not to obtain the reproduction of the precipitation matching in space and time, but to obtain frequency distributions of the point extremes, which we found to be stable. Published as: Bárdossy, A., and G. G. S. Pegram (2017) Journal of Hydrology, Volume 544, pp 397-406
Non-parametric characterization of long-term rainfall time series
NASA Astrophysics Data System (ADS)
Tiwari, Harinarayan; Pandey, Brij Kishor
2018-03-01
The statistical study of rainfall time series is one of the approaches for efficient hydrological system design. Identifying, and characterizing long-term rainfall time series could aid in improving hydrological systems forecasting. In the present study, eventual statistics was applied for the long-term (1851-2006) rainfall time series under seven meteorological regions of India. Linear trend analysis was carried out using Mann-Kendall test for the observed rainfall series. The observed trend using the above-mentioned approach has been ascertained using the innovative trend analysis method. Innovative trend analysis has been found to be a strong tool to detect the general trend of rainfall time series. Sequential Mann-Kendall test has also been carried out to examine nonlinear trends of the series. The partial sum of cumulative deviation test is also found to be suitable to detect the nonlinear trend. Innovative trend analysis, sequential Mann-Kendall test and partial cumulative deviation test have potential to detect the general as well as nonlinear trend for the rainfall time series. Annual rainfall analysis suggests that the maximum changes in mean rainfall is 11.53% for West Peninsular India, whereas the maximum fall in mean rainfall is 7.8% for the North Mountainous Indian region. The innovative trend analysis method is also capable of finding the number of change point available in the time series. Additionally, we have performed von Neumann ratio test and cumulative deviation test to estimate the departure from homogeneity. Singular spectrum analysis has been applied in this study to evaluate the order of departure from homogeneity in the rainfall time series. Monsoon season (JS) of North Mountainous India and West Peninsular India zones has higher departure from homogeneity and singular spectrum analysis shows the results to be in coherence with the same.
Simulation of rainfall-runoff for major flash flood events in Karachi
NASA Astrophysics Data System (ADS)
Zafar, Sumaira
2016-07-01
Metropolitan city Karachi has strategic importance for Pakistan. With the each passing decade the city is facing urban sprawl and rapid population growth. These rapid changes directly affecting the natural resources of city including its drainage pattern. Karachi has three major cities Malir River with the catchment area of 2252 sqkm and Lyari River has catchment area about 470.4 sqkm. These are non-perennial rivers and active only during storms. Change of natural surfaces into hard pavement causing an increase in rainfall-runoff response. Curve Number is increased which is now causing flash floods in the urban locality of Karachi. There is only one gauge installed on the upstream of the river but there no record for the discharge. Only one gauge located at the upstream is not sufficient for discharge measurements. To simulate the maximum discharge of Malir River rainfall (1985 to 2014) data were collected from Pakistan meteorological department. Major rainfall events use to simulate the rainfall runoff. Maximum rainfall-runoff response was recorded in during 1994, 2007 and 2013. This runoff causes damages and inundation in floodplain areas of Karachi. These flash flooding events not only damage the property but also cause losses of lives
NASA Astrophysics Data System (ADS)
Berezowski, T.; Szcześniak, M.; Kardel, I.; Michałowski, R.; Okruszko, T.; Mezghani, A.; Piniewski, M.
2015-12-01
The CHASE-PL Forcing Data-Gridded Daily Precipitation and Temperature Dataset-5 km (CPLFD-GDPT5) consists of 1951-2013 daily minimum and maximum air temperatures and precipitation totals interpolated onto a 5 km grid based on daily meteorological observations from Institute of Meteorology and Water Management (IMGW-PIB; Polish stations), Deutscher Wetterdienst (DWD, German and Czech stations), ECAD and NOAA-NCDC (Slovak, Ukrainian and Belarus stations). The main purpose for constructing this product was the need for long-term aerial precipitation and temperature data for earth-system modelling, especially hydrological modelling. The spatial coverage is the union of Vistula and Odra basin and Polish territory. The number of available meteorological stations for precipitation and temperature varies in time from about 100 for temperature and 300 for precipitation in 1950 up to about 180 for temperature and 700 for precipitation in 1990. The precipitation dataset was corrected for snowfall and rainfall under-catch with the Richter method. The interpolation methods were: kriging with elevation as external drift for temperatures and indicator kriging combined with universal kriging for precipitation. The kriging cross-validation revealed low root mean squared errors expressed as a fraction of standard deviation (SD): 0.54 and 0.47 for minimum and maximum temperature, respectively and 0.79 for precipitation. The correlation scores were 0.84 for minimum temperatures, 0.88 for maximum temperatures and 0.65 for precipitation. The CPLFD-GDPT5 product is consistent with 1971-2000 climatic data published by IMGW-PIB. We also confirm good skill of the product for hydrological modelling by performing an application using the Soil and Water Assessment Tool (SWAT) in the Vistula and Odra basins. Link to the dataset: http://data.3tu.nl/repository/uuid:e939aec0-bdd1-440f-bd1e-c49ff10d0a07
Development of a gridded meteorological dataset over Java island, Indonesia 1985–2014
Yanto; Livneh, Ben; Rajagopalan, Balaji
2017-01-01
We describe a gridded daily meteorology dataset consisting of precipitation, minimum and maximum temperature over Java Island, Indonesia at 0.125°×0.125° (~14 km) resolution spanning 30 years from 1985–2014. Importantly, this data set represents a marked improvement from existing gridded data sets over Java with higher spatial resolution, derived exclusively from ground-based observations unlike existing satellite or reanalysis-based products. Gap-infilling and gridding were performed via the Inverse Distance Weighting (IDW) interpolation method (radius, r, of 25 km and power of influence, α, of 3 as optimal parameters) restricted to only those stations including at least 3,650 days (~10 years) of valid data. We employed MSWEP and CHIRPS rainfall products in the cross-validation. It shows that the gridded rainfall presented here produces the most reasonable performance. Visual inspection reveals an increasing performance of gridded precipitation from grid, watershed to island scale. The data set, stored in a network common data form (NetCDF), is intended to support watershed-scale and island-scale studies of short-term and long-term climate, hydrology and ecology. PMID:28534871
Spatiotemporal trends in extreme rainfall and temperature indices over Upper Tapi Basin, India
NASA Astrophysics Data System (ADS)
Sharma, Priyank J.; Loliyana, V. D.; S. R., Resmi; Timbadiya, P. V.; Patel, P. L.
2017-12-01
The flood risk across the globe is intensified due to global warming and subsequent increase in extreme temperature and precipitation. The long-term trends in extreme rainfall (1944-2013) and temperature (1969-2012) indices have been investigated at annual, seasonal, and monthly time scales using nonparametric Mann-Kendall (MK), modified Mann-Kendall (MMK), and Sen's slope estimator tests. The extreme rainfall and temperature indices, recommended by the Expert Team on Climate Change Detection Monitoring Indices (ETCCDMI), have been analyzed at finer spatial scales for trend detection. The results of trend analyses indicate decreasing trend in annual total rainfall, significant decreasing trend in rainy days, and increasing trend in rainfall intensity over the basin. The seasonal rainfall has been found to decrease for all the seasons except postmonsoon, which could affect the rain-fed agriculture in the basin. The 1- and 5-day annual maximum rainfalls exhibit mixed trends, wherein part of the basin experiences increasing trend, while other parts experience a decreasing trend. The increase in dry spells and concurrent decrease in wet spells are also observed over the basin. The extreme temperature indices revealed increasing trends in hottest and coldest days, while decreasing trends in coldest night are found over most parts of the basin. Further, the diurnal temperature range is also found to increase due to warming tendency in maximum temperature (T max) at a faster rate compared to the minimum temperature (T min). The increase in frequency and magnitude of extreme rainfall in the basin has been attributed to the increasing trend in maximum and minimum temperatures, reducing forest cover, rapid pace of urbanization, increase in human population, and thereby increase in the aerosol content in the atmosphere. The findings of the present study would significantly help in sustainable water resource planning, better decision-making for policy framework, and setting up infrastructure against flood disasters in Upper Tapi Basin, India.
NASA Astrophysics Data System (ADS)
Deng, Mingfeng; Chen, Ningsheng; Ding, Haitao
2018-02-01
The Parlung Zangbo Basin in the southeastern Tibet Plateau is affected by the summer monsoon from the Indian Ocean, which produces large rainfall gradients in the basin. Rainfall data during 2012-2015 from five new meteorological stations are used to analyse the rainfall characteristics. The daily rainfall, rainfall duration, mean rainfall intensity, and peak rainfall intensity are consistent, but sometimes contrasting. For example, these values decrease with increasing altitude, and the gradient is large downstream and small upstream, respectively. Moreover, the rainfall intensity peaks between 01:00 and 06:00 and increases during the afternoon. Based on the analysis of 14 debris flow cases in the basin, differences in the rainfall threshold differ depending on the location as sediment varieties. The sediment in the middle portions of the basin is wet and well structured; thus, long-duration, high-intensity rainfall is required to generate debris flows. Ravels in the upstream area are arid and not well structured, and short-duration rainfall is required to trigger debris flows. Between the above two locations, either long-duration, low-intensity rainfall or short-duration, high-intensity rainfall could provoke debris flows. Clearly, differences in rainfall characteristics and rainfall thresholds that are associated with the location must be considered in debris flow monitoring and warnings.
NASA Astrophysics Data System (ADS)
Penot, David; Paquet, Emmanuel; Lang, Michel
2014-05-01
SCHADEX is a probabilistic method for extreme flood estimation, developed and applied since 2006 at Electricité de France (EDF) for dam spillway design [Paquet et al., 2013]. SCHADEX is based on a semi-continuous rainfall-runoff simulation process. The method has been built around two models: a Multi-Exponential Weather Pattern (MEWP) distribution for rainfall probability estimation [Garavaglia et al., 2010] and the MORDOR hydrological model. To use SCHADEX in ungauged context, rainfall distribution and hydrological model must be regionalized. The regionalization of the MEWP rainfall distribution can be managed with SPAZM, a daily rainfall interpolator [Gottardi et al., 2012] which provides reasonable estimates of point and areal rainfall up to hight quantiles. The main issue remains to regionalize MORDOR which is heavily parametrized. A much more simple model has been considered: the SCS model. It is a well known model for event simulation [USDA SCS, 1985; Beven, 2003] and it relies on only one parameter. Then, the idea is to use the SCS model instead of MORDOR within a simplified stochastic simulation scheme to produce a distribution of flood volume from an exhaustive crossing between rainy events and catchment saturation hazards. The presentation details this process and its capacity to generate a runoff distribution based on catchment areal rainfall distribution. The simulation method depends on a unique parameter Smax, the maximum initial loss of the catchment. Then an initial loss S (between zero and Smax) can be drawn to account for the variability of catchment state (between dry and saturated). The distribution of initial loss (or conversely, of catchment saturation, as modeled by MORDOR) seems closely linked to the catchment's regime, therefore easily to regionalize. The simulation takes into account a snow contribution for snow driven catchments, and an antecedent runoff. The presentation shows the results of this stochastic procedure applied on 80 French catchments and its capacity to represent the asymptotic behaviour of the runoff distribution. References: K. J. Beven. Rainfall-Runoff modelling The Primer, British Library, 2003. F. Garavaglia, J. Gailhard, E. Paquet, M. Lang, R. Garçon, and P. Bernardara. Introducing a rainfall compound distribution model based on weather patterns sub-sampling. Hydrology and Earth System Sciences, 14(6):951-964, 2010. F. Gottardi, C. Obled, J. Gailhard, and E. Paquet. Statistical reanalysis of precipitation fields based on ground network data and weather patterns : Application over french mountains. Journal of Hydrology, 432-433:154-167, 2012. ISSN 0022-1694. E. Paquet, F. Garavaglia, R Garçon, and J. Gailhard. The schadex method : a semi-continuous rainfall-runoff simulation for extreme flood estimation. Journal of Hydrology, 2013. USDA SCS, National Engineering Handbook, Supplement A, Section 4, Chapter 10. Whashington DC, 1985.
Mixed memory, (non) Hurst effect, and maximum entropy of rainfall in the tropical Andes
NASA Astrophysics Data System (ADS)
Poveda, Germán
2011-02-01
Diverse linear and nonlinear statistical parameters of rainfall under aggregation in time and the kind of temporal memory are investigated. Data sets from the Andes of Colombia at different resolutions (15 min and 1-h), and record lengths (21 months and 8-40 years) are used. A mixture of two timescales is found in the autocorrelation and autoinformation functions, with short-term memory holding for time lags less than 15-30 min, and long-term memory onwards. Consistently, rainfall variance exhibits different temporal scaling regimes separated at 15-30 min and 24 h. Tests for the Hurst effect evidence the frailty of the R/ S approach in discerning the kind of memory in high resolution rainfall, whereas rigorous statistical tests for short-memory processes do reject the existence of the Hurst effect. Rainfall information entropy grows as a power law of aggregation time, S( T) ˜ Tβ with < β> = 0.51, up to a timescale, TMaxEnt (70-202 h), at which entropy saturates, with β = 0 onwards. Maximum entropy is reached through a dynamic Generalized Pareto distribution, consistently with the maximum information-entropy principle for heavy-tailed random variables, and with its asymptotically infinitely divisible property. The dynamics towards the limit distribution is quantified. Tsallis q-entropies also exhibit power laws with T, such that Sq( T) ˜ Tβ( q) , with β( q) ⩽ 0 for q ⩽ 0, and β( q) ≃ 0.5 for q ⩾ 1. No clear patterns are found in the geographic distribution within and among the statistical parameters studied, confirming the strong variability of tropical Andean rainfall.
NASA Astrophysics Data System (ADS)
Osterkamp, W. R.; Friedman, J. M.
2000-10-01
Research beginning 40 years ago suggested that semi-arid lands of the USA have higher unit discharges for a given recurrence interval than occur in other areas. Convincing documentation and arguments for this suspicion, however, were not presented. Thus, records of measured rainfall intensities for specified durations and recurrence intervals, and theoretical depths of probable maximum precipitation for specified recurrence intervals and areal scales are considered here for comparing extreme rainfalls of semi-arid areas with those of other climatic areas. Runoff from semi-arid lands, as peaks of rare floods, is compared with that of other areas using various published records. Relative to humid areas, semi-arid parts of the conterminous USA have lower 100-year, 6-h rainfall intensities and smaller depths of 100-year probable maximum precipitation for 26-km2 areas. Nonetheless, maximum flood peaks, flash-flood potentials, and runoff potentials are generally larger in semi-arid areas than in more humid parts of the nation. Causes of this disparity between rainfall and runoff appear to be results of soil and vegetation that in humid areas absorb and intercept rainfall and attenuate runoff, but in semi-arid areas limit infiltration and enhance runoff from bare, crusted surfaces. These differences in soil and vegetation conditions are indicated by the relatively high curve numbers and drainage densities that are typical of semi-arid areas. Owing to soil and vegetation conditions, rare floods in semi-arid areas are more likely to cause landform change than are floods of similar magnitude elsewhere.
Osterkamp, W.R.; Friedman, J.M.
2000-01-01
Research beginning 40 years ago suggested that semi-arid lands of the USA have higher unit discharges for a given recurrence interval than occur in other areas. Convincing documentation and arguments for this suspicion, however, were not presented. Thus, records of measured rainfall intensities for specified durations and recurrence intervals, and theoretical depths of probable maximum precipitation for specified recurrence intervals and areal scales are considered here for comparing extreme rainfalls of semi-arid areas with those of other climatic areas. Runoff from semi-arid lands, as peaks of rare floods, is compared with that of other areas using various published records. Relative to humid areas, semi-arid parts of the conterminous USA have lower 100-year, 6-h rainfall intensities and smaller depths of 100-year probable maximum precipitation for 26-km2 areas. Nonetheless, maximum flood peaks, flash-flood potentials, and runoff potentials are generally larger in semi-arid areas than in more humid parts of the nation. Causes of this disparity between rainfall and runoff appear to be results of soil and vegetation that in humid areas absorb and intercept rainfall and attenuate runoff, but in semi-arid areas limit infiltration and enhance runoff from bare, crusted surfaces. These differences in soil and vegetation conditions are indicated by the relatively high curve numbers and drainage densities that are typical of semi-arid areas. Owing to soil and vegetation conditions, rare floods in semi-arid areas are more likely to cause landform change than are floods of similar magnitude elsewhere.
Changes in the Behavior of Heavy Rainfall in the Southern Brazil
NASA Astrophysics Data System (ADS)
Basso, Raviel; Allasia, Daniel; Tassi, Rutineia
2017-04-01
Heavy rainfalls are associated with several economic and environmental damages mainly in urbanized areas. Their analisys depends on the availability of a dense rainfall station's network that is absent or inaccessible in Brazil, especially for sub-daily information. This study compares the Intensity-Duration-Frequency (IDF) data presented by Pfafstetter (1957) and later reanalyzed by Torrico (1974), against the most recent IDF information in Southern Brazil (comprising the States of Rio Grande do Sul, Santa Catarina and Paraná). This IDFs's collection was obtained from many sources ranging from national and local symposia, municipalities publications manuals to books, resulting in a database of more than a hundred of IDFs equations. The rainfall heights with several durations (1h, 4h, 12h, and 24h) obtained from older (until 1955's) and newer (after 1970's) IDFs were interpolated by ordinary kriging using GIS tools. The interpolated rainfall from these different periods was compared side-by-side allowing the determination of the percentual change between them. With the exception of Florianópolis region (NE of the Santa Catarina State), the newer IDFs showed higher precipitations than observed in pre-1955's data. This indicates an increase of heavy rainfall in practically the whole area, with some exceptions in the South and Northern coastal regions, in agreement with some climate change forecast models. It was also observed a more pronounced increase of sub-daily rainfall. For example, in some places, the newer data show that almost 70% of the amount of 24 hours rainfall occurs in just one hour of rainfall, against less than 40% observed in the data from the first half of the 20th century. This result alerts not only for the necessity of storwater drainage design's review but, especially, for the establishment of standardized heavy rainfall information procedures taking into account the observed time series trend.
Adequacy of satellite derived rainfall data for stream flow modeling
Artan, G.; Gadain, Hussein; Smith, Jodie; Asante, Kwasi; Bandaragoda, C.J.; Verdin, J.P.
2007-01-01
Floods are the most common and widespread climate-related hazard on Earth. Flood forecasting can reduce the death toll associated with floods. Satellites offer effective and economical means for calculating areal rainfall estimates in sparsely gauged regions. However, satellite-based rainfall estimates have had limited use in flood forecasting and hydrologic stream flow modeling because the rainfall estimates were considered to be unreliable. In this study we present the calibration and validation results from a spatially distributed hydrologic model driven by daily satellite-based estimates of rainfall for sub-basins of the Nile and Mekong Rivers. The results demonstrate the usefulness of remotely sensed precipitation data for hydrologic modeling when the hydrologic model is calibrated with such data. However, the remotely sensed rainfall estimates cannot be used confidently with hydrologic models that are calibrated with rain gauge measured rainfall, unless the model is recalibrated. ?? Springer Science+Business Media, Inc. 2007.
Assessing Australian Rainfall Projections in Two Model Resolutions
NASA Astrophysics Data System (ADS)
Taschetto, A.; Haarsma, R. D.; Sen Gupta, A.
2016-02-01
Australian climate is projected to change with increases in greenhouse gases. The IPCC reports an increase in extreme daily rainfall across the country. At the same time, mean rainfall over southeast Australia is projected to reduce during austral winter, but to increase during austral summer, mainly associated with changes in the surrounding oceans. Climate models agree better on the future reduction of average rainfall over the southern regions of Australia compared to the increase in extreme rainfall events. One of the reasons for this disagreement may be related to climate model limitations in simulating the observed mechanisms associated with the mid-latitude weather systems, in particular due to coarse model resolutions. In this study we investigate how changes in sea surface temperature (SST) affect Australian mean and extreme rainfall under global warming, using a suite of numerical experiments at two model resolutions: about 126km (T159) and 25km (T799). The numerical experiments are performed with the earth system model EC-EARTH. Two 6-member ensembles are produced for the present day conditions and a future scenario. The present day ensemble is forced with the observed daily SST from the NOAA National Climatic Data Center from 2002 to 2006. The future scenario simulation is integrated from 2094 to 2098 using the present day SST field added onto the future SST change created from a 17-member ensemble based on the RCP4.5 scenario. Preliminary results show an increase in extreme rainfall events over Tasmania associated with enhanced convection driven by the Tasman Sea warming. We will further discuss how the projected changes in SST will impact the southern mid-latitude weather systems that ultimately affect Australian rainfall.
A Bayesian beta distribution model for estimating rainfall IDF curves in a changing climate
NASA Astrophysics Data System (ADS)
Lima, Carlos H. R.; Kwon, Hyun-Han; Kim, Jin-Young
2016-09-01
The estimation of intensity-duration-frequency (IDF) curves for rainfall data comprises a classical task in hydrology studies to support a variety of water resources projects, including urban drainage and the design of flood control structures. In a changing climate, however, traditional approaches based on historical records of rainfall and on the stationary assumption can be inadequate and lead to poor estimates of rainfall intensity quantiles. Climate change scenarios built on General Circulation Models offer a way to access and estimate future changes in spatial and temporal rainfall patterns at the daily scale at the utmost, which is not as fine temporal resolution as required (e.g. hours) to directly estimate IDF curves. In this paper we propose a novel methodology based on a four-parameter beta distribution to estimate IDF curves conditioned on the observed (or simulated) daily rainfall, which becomes the time-varying upper bound of the updated nonstationary beta distribution. The inference is conducted in a Bayesian framework that provides a better way to take into account the uncertainty in the model parameters when building the IDF curves. The proposed model is tested using rainfall data from four stations located in South Korea and projected climate change Representative Concentration Pathways (RCPs) scenarios 6 and 8.5 from the Met Office Hadley Centre HadGEM3-RA model. The results show that the developed model fits the historical data as good as the traditional Generalized Extreme Value (GEV) distribution but is able to produce future IDF curves that significantly differ from the historically based IDF curves. The proposed model predicts for the stations and RCPs scenarios analysed in this work an increase in the intensity of extreme rainfalls of short duration with long return periods.
Temporal evolution of the spatial covariability of rainfall in South America
NASA Astrophysics Data System (ADS)
Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique M. J.; Kurths, Jürgen; Rammig, Anja
2017-10-01
The climate of South America exhibits pronounced differences between rainy and dry seasons, associated with specific synoptic features such as the establishment of the South Atlantic convergence zone. Here, we analyze the spatiotemporal correlation structure and in particular teleconnections of daily rainfall associated with these features by means of evolving complex networks. A modification of Pearson's correlation coefficient is introduced to handle the intricate statistical properties of daily rainfall. On this basis, spatial correlation networks are constructed, and new appropriate network measures are introduced in order to analyze the temporal evolution of the networks' characteristics. We particularly focus on the identification of coherent areas of similar rainfall patterns and previously unknown teleconnection structures between remote areas. We show that the monsoon onset is characterized by an abrupt transition from erratic to organized regional connectivity that prevails during the monsoon season, while only the onset times themselves exhibit anomalous large-scale organization of teleconnections. Furthermore, we reveal that the two mega-droughts in the Amazon basin were already announced in the previous year by an anomalous behavior of the connectivity structure.
NASA Astrophysics Data System (ADS)
Matyasovszky, István; Makra, László; Csépe, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Fülöp, Andrea; Tusnády, Gábor
2015-09-01
The paper examines the sensitivity of daily airborne Ambrosia (ragweed) pollen levels of a current pollen season not only on daily values of meteorological variables during this season but also on the past meteorological conditions. The results obtained from a 19-year data set including daily ragweed pollen counts and ten daily meteorological variables are evaluated with special focus on the interactions between the phyto-physiological processes and the meteorological elements. Instead of a Pearson correlation measuring the strength of the linear relationship between two random variables, a generalised correlation that measures every kind of relationship between random vectors was used. These latter correlations between arrays of daily values of the ten meteorological elements and the array of daily ragweed pollen concentrations during the current pollen season were calculated. For the current pollen season, the six most important variables are two temperature variables (mean and minimum temperatures), two humidity variables (dew point depression and rainfall) and two variables characterising the mixing of the air (wind speed and the height of the planetary boundary layer). The six most important meteorological variables before the current pollen season contain four temperature variables (mean, maximum, minimum temperatures and soil temperature) and two variables that characterise large-scale weather patterns (sea level pressure and the height of the planetary boundary layer). Key periods of the past meteorological variables before the current pollen season have been identified. The importance of this kind of analysis is that a knowledge of the past meteorological conditions may contribute to a better prediction of the upcoming pollen season.
Matyasovszky, István; Makra, László; Csépe, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Fülöp, Andrea; Tusnády, Gábor
2015-09-01
The paper examines the sensitivity of daily airborne Ambrosia (ragweed) pollen levels of a current pollen season not only on daily values of meteorological variables during this season but also on the past meteorological conditions. The results obtained from a 19-year data set including daily ragweed pollen counts and ten daily meteorological variables are evaluated with special focus on the interactions between the phyto-physiological processes and the meteorological elements. Instead of a Pearson correlation measuring the strength of the linear relationship between two random variables, a generalised correlation that measures every kind of relationship between random vectors was used. These latter correlations between arrays of daily values of the ten meteorological elements and the array of daily ragweed pollen concentrations during the current pollen season were calculated. For the current pollen season, the six most important variables are two temperature variables (mean and minimum temperatures), two humidity variables (dew point depression and rainfall) and two variables characterising the mixing of the air (wind speed and the height of the planetary boundary layer). The six most important meteorological variables before the current pollen season contain four temperature variables (mean, maximum, minimum temperatures and soil temperature) and two variables that characterise large-scale weather patterns (sea level pressure and the height of the planetary boundary layer). Key periods of the past meteorological variables before the current pollen season have been identified. The importance of this kind of analysis is that a knowledge of the past meteorological conditions may contribute to a better prediction of the upcoming pollen season.
Diagnostics of Rainfall Anomalies in the Nordeste During the Global Weather Experiment
NASA Technical Reports Server (NTRS)
Sikdar, D. M.
1984-01-01
The relationship of the daily variability of large-scale pressure, cloudiness and upper level wind patterns over the Brazil-Atlantic sector during March/April 1979 to rainfall anomalies in northern Nordeste was investigated. The experiment divides the rainy season (March/April) of 1979 into wet and dry days, then composites bright cloudiness, sea level pressure, and upper level wind fields with respect to persistent rainfall episodes. Wet and dry anomalies are analyzed along with seasonal mean conditions.
NASA Astrophysics Data System (ADS)
Li, Qiong; Geng, Fangzhi
2018-03-01
Based on the characteristics of complex terrain and different seasons’ weather in Qinghai Tibet Plateau, through statistic the daily rainfall that from 2002 to 2012, nearly 11 years, by Bomi meteorological station, Bomi area rainfall forecast model is established, and which can provide the basis forecasting for dangerous weather warning system on the balloon borne radar in the next step, to protect the balloon borne radar equipment’s safety work and combat effectiveness.
A dimensionless approach for the runoff peak assessment: effects of the rainfall event structure
NASA Astrophysics Data System (ADS)
Gnecco, Ilaria; Palla, Anna; La Barbera, Paolo
2018-02-01
The present paper proposes a dimensionless analytical framework to investigate the impact of the rainfall event structure on the hydrograph peak. To this end a methodology to describe the rainfall event structure is proposed based on the similarity with the depth-duration-frequency (DDF) curves. The rainfall input consists of a constant hyetograph where all the possible outcomes in the sample space of the rainfall structures can be condensed. Soil abstractions are modelled using the Soil Conservation Service method and the instantaneous unit hydrograph theory is undertaken to determine the dimensionless form of the hydrograph; the two-parameter gamma distribution is selected to test the proposed methodology. The dimensionless approach is introduced in order to implement the analytical framework to any study case (i.e. natural catchment) for which the model assumptions are valid (i.e. linear causative and time-invariant system). A set of analytical expressions are derived in the case of a constant-intensity hyetograph to assess the maximum runoff peak with respect to a given rainfall event structure irrespective of the specific catchment (such as the return period associated with the reference rainfall event). Looking at the results, the curve of the maximum values of the runoff peak reveals a local minimum point corresponding to the design hyetograph derived according to the statistical DDF curve. A specific catchment application is discussed in order to point out the dimensionless procedure implications and to provide some numerical examples of the rainfall structures with respect to observed rainfall events; finally their effects on the hydrograph peak are examined.
Characterizing land surface phenology and responses to rainfall in the Sahara desert
NASA Astrophysics Data System (ADS)
Yan, Dong; Zhang, Xiaoyang; Yu, Yunyue; Guo, Wei; Hanan, Niall P.
2016-08-01
Land surface phenology (LSP) in the Sahara desert is poorly understood due to the difficulty in detecting subtle variations in vegetation greenness. This study examined the spatial and temporal patterns of LSP and its responses to rainfall seasonality in the Sahara desert. We first generated daily two-band enhanced vegetation index (EVI2) from half-hourly observations acquired by the Spinning Enhanced Visible and Infrared Imager on board the Meteosat Second Generation series of geostationary satellites from 2006 to 2012. The EVI2 time series was used to retrieve LSP based on the Hybrid Piecewise Logistic Model. We further investigated the associations of spatial and temporal patterns in LSP with those in rainfall seasonality derived from the daily rainfall time series of the Tropical Rainfall Measurement Mission. Results show that the spatial shifts in the start of the vegetation growing season generally follow the rainy season onset that is controlled by the summer rainfall regime in the southern Sahara desert. In contrast, the end of the growing season significantly lags the end of the rainy season without any significant dependence. Vegetation growing season can unfold during the dry seasons after onset is triggered during rainy seasons. Vegetation growing season can be as long as 300 days or more in some areas and years. However, the EVI2 amplitude and accumulation across the Sahara region was very low indicating sparse vegetation as expected in desert regions. EVI2 amplitude and accumulated EVI2 strongly depended on rainfall received during the growing season and the preceding dormancy period.
NASA Astrophysics Data System (ADS)
da Silva, Fabricio Polifke; Rotunno Filho, Otto Corrêa; Sampaio, Rafael João; Dragaud, Ian Cunha D'amato Viana; de Araújo, Afonso Augusto Magalhães; Justi da Silva, Maria Gertrudes Alvarez; Pires, Gisele Dornelles
2017-12-01
Local prediction of thunderstorms is one of the most challenging tasks in weather forecasting due to their high spatiotemporal variability. An improved understanding of such meteorological phenomena, therefore, requires high-frequency measurements along the vertical profile of the atmosphere of interest. In this context, the evaluation of thermodynamic and dynamic parameters obtained from radiosondes to identify atmospheric conditions favorable to thunderstorm and heavy-rainfall development emerges as a valuable tool for investigations of thunderstorms. In this context, four radiosondes were launched to collect a data set for the area of interest at the sub-daily scale (12 UTC, 16 UTC, 18 UTC, and 00 UTC). The collection period encompassed two dates—November 29 and December 12, 2016—chosen specifically due to the existence of heavy-rainfall warnings in the forecast for the Metropolitan Area of Rio de Janeiro, Brazil ("MARJ") for those days. However, heavy rainfall was registered only for December 12 and not for November 29 (which led us to explore this contrast with the announced rainfall forecasts). Sub-daily radiosonde data showed a clear decrease in atmospheric instability in the early afternoon on November 29. On the other hand, an opposite scenario occurred on December 12, which saw an expressive increase in thermodynamic instability during the day. The meteorological modeling approach used also revealed that the vertical coupling of low-level moisture flux convergence centers and upper-level mass flux divergence centers worked as a dynamic trigger for the thunderstorm and heavy-rainfall developments that took place on December 12, 2016.
NASA Astrophysics Data System (ADS)
B., Serena; Lee | Gavin, F.; Birch | Charles, J.; Lemckert
2011-05-01
Runoff from the urban environment is a major contributor of non-point source contamination for many estuaries, yet the ultimate fate of this stormwater within the estuary is frequently unknown in detail. The relationship between catchment rainfall and estuarine response within the Sydney Estuary (Australia) was investigated in the present study. A verified hydrodynamic model (Environmental Fluid Dynamics Computer Code) was utilised in concert with measured salinity data and rainfall measurements to determine the relationship between rainfall and discharge to the estuary, with particular attention being paid to a significant high-precipitation event. A simplified rational method for calculating runoff based upon daily rainfall, subcatchment area and runoff coefficients was found to replicate discharge into the estuary associated with the monitored event. Determining fresh-water supply based upon estuary conditions is a novel technique which may assist those researching systems where field-measured runoff data are not available and where minor field-measured information on catchment characteristics are obtainable. The study concluded that since the monitored fresh-water plume broke down within the estuary, contaminants associated with stormwater runoff due to high-precipitation events (daily rainfall > 50 mm) were retained within the system for a longer period than was previously recognised.
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall; Pierce, Harold; Starr, David OC. (Technical Monitor)
2001-01-01
This study represents one of the first published attempts to identify rainfall modification by urban areas using satellite-based rainfall measurements. Data from the first space-based rain-radar, the Tropical Rainfall Measuring Mission's (TRMM) Precipitation Radar, are employed. Analysis of the data enables identification of rainfall patterns around Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas during the warm season. Results reveal an average increase of -28% in monthly rainfall rates within 30-60 kilometers downwind of the metropolis with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage chances are relative to an upwind CONTROL area. It was also found that maximum rainfall rates in the downwind impact area can exceed the mean value in the upwind CONTROL area by 48%-116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. These results are consistent with METROMEX studies of St. Louis almost two decades ago and more recent studies near Atlanta. Future work will investi(yate hypothesized factors causing rainfall modification by urban areas. Additional work is also needed to provide more robust validation of space-based rain estimates near major urban areas. Such research has implications for urban planning, water resource management, and understanding human impact on the environment.
Trends of rainfall regime in Peninsular Malaysia during northeast and southwest monsoons
NASA Astrophysics Data System (ADS)
Chooi Tan, Kok
2018-04-01
The trends of rainfall regime in Peninsular Malaysia is mainly affected by the seasonal monsoon. The aim of this study is to investigate the impact of northeast and southwest monsoons on the monthly rainfall patterns over Badenoch Estate, Kedah. In addition, the synoptic maps of wind vector also being developed to identify the wind pattern over Peninsular Malaysia from 2007 – 2016. On the other hand, the archived daily rainfall data is acquired from Malaysian Meteorological Department. The temporal and trends of the monthly and annual rainfall over the study area have been analysed from 2007 to 2016. Overall, the average annual precipitation over the study area from 2007 to 2016 recorded by rain gauge is 2562.35 mm per year.
Short Term Rain Prediction For Sustainability of Tanks in the Tropic Influenced by Shadow Rains
NASA Astrophysics Data System (ADS)
Suresh, S.
2007-07-01
Rainfall and flow prediction, adapting the Venkataraman single time series approach and Wiener multiple time series approach were conducted for Aralikottai tank system, and Kothamangalam tank system, Tamilnadu, India. The results indicated that the raw prediction of daily values is closer to actual values than trend identified predictions. The sister seasonal time series were more amenable for prediction than whole parent time series. Venkataraman single time approach was more suited for rainfall prediction. Wiener approach proved better for daily prediction of flow based on rainfall. The major conclusion is that the sister seasonal time series of rain and flow have their own identities even though they form part of the whole parent time series. Further studies with other tropical small watersheds are necessary to establish this unique characteristic of independent but not exclusive behavior of seasonal stationary stochastic processes as compared to parent non stationary stochastic processes.
Precipitation Climatology over Mediterranean Basin from Ten Years of TRMM Measurements
NASA Technical Reports Server (NTRS)
Mehta, Amita V.; Yang, Song
2008-01-01
Climatological features of mesoscale rain activities over the Mediterranean region between 5 W-40 E and 28 N-48 N are examined using the Tropical Rainfall Measuring Mission (TRMM) 3B42 and 2A25 rain products. The 3B42 rainrates at 3-hourly, 0.25 deg x 0.25 deg spatial resolution for the last 10 years (January 1998 to July 2007) are used to form and analyze the 5-day mean and monthly mean climatology of rainfall. Results show considerable regional and seasonal differences of rainfall over the Mediterranean Region. The maximum rainfall (3-5 mm/day) occurs over the mountain regions of Europe, while the minimum rainfall is observed over North Africa (approximately 0.5 mm/day). The main rainy season over the Mediterranean Sea extends from October to March, with maximum rainfall occurring during November-December. Over the Mediterranean Sea, an average rainrate of approximately 1-2 mm/day is observed, but during the rainy season there is 20% larger rainfall over the western Mediterranean Sea than that over the eastern Mediterranean Sea. During the rainy season, mesoscale rain systems generally propagate from west to east and from north to south over the Mediterranean region, likely to be associated with Mediterranean cyclonic disturbances resulting from interactions among large-scale circulation, orography, and land-sea temperature contrast.
Rainfall Modification by Urban Areas: New Perspectives from TRMM
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall; Pierce, Harold F.; Negri, Andrew
2002-01-01
Data from the Tropical Rainfall Measuring Mission's (TRMM) Precipitation Radar (PR) were employed to identify warm season rainfall (1998-2000) patterns around Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas. Results reveal an average increase of -28% in monthly rainfall rates within 30-60 kilometers downwind of the metropolis with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage changes are relative to an upwind control area. It was also found that maximum rainfall rates in the downwind impact area exceeded the mean value in the upwind control area by 48% - 116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. Results are consistent with METROMEX studies of St. Louis almost two decades ago and with more recent studies near Atlanta. Future work is extending the investigation to Phoenix, Arizona, an arid U.S. city, and several international cities like Mexico City, Johannesburg, and Brasilia. The study establishes the possibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. Such research has implications for weather forecasting, urban planning, water resource management, and understanding human impact on the environment and climate.
NASA Astrophysics Data System (ADS)
Capra, Lucia; Coviello, Velio; Borselli, Lorenzo; Márquez-Ramírez, Víctor-Hugo; Arámbula-Mendoza, Raul
2018-03-01
The Volcán de Colima, one of the most active volcanoes in Mexico, is commonly affected by tropical rains related to hurricanes that form over the Pacific Ocean. In 2011, 2013 and 2015 hurricanes Jova, Manuel and Patricia, respectively, triggered tropical storms that deposited up to 400 mm of rain in 36 h, with maximum intensities of 50 mm h -1. The effects were devastating, with the formation of multiple lahars along La Lumbre and Montegrande ravines, which are the most active channels in sediment delivery on the south-southwest flank of the volcano. Deep erosion along the river channels and several marginal landslides were observed, and the arrival of block-rich flow fronts resulted in damages to bridges and paved roads in the distal reaches of the ravines. The temporal sequence of these flow events is reconstructed and analyzed using monitoring data (including video images, seismic records and rainfall data) with respect to the rainfall characteristics and the hydrologic response of the watersheds based on rainfall-runoff numerical simulation. For the studied events, lahars occurred 5-6 h after the onset of rainfall, lasted several hours and were characterized by several pulses with block-rich fronts and a maximum flow discharge of 900 m3 s -1. Rainfall-runoff simulations were performer using the SCS-curve number and the Green-Ampt infiltration models, providing a similar result in the detection of simulated maximum watershed peaks discharge. Results show different behavior for the arrival times of the first lahar pulses that correlate with the simulated catchment's peak discharge for La Lumbre ravine and with the peaks in rainfall intensity for Montegrande ravine. This different behavior is related to the area and shape of the two watersheds. Nevertheless, in all analyzed cases, the largest lahar pulse always corresponds with the last one and correlates with the simulated maximum peak discharge of these catchments. Data presented here show that flow pulses within a lahar are not randomly distributed in time, and they can be correlated with rainfall peak intensity and/or watershed discharge, depending on the watershed area and shape. This outcome has important implications for hazard assessment during extreme hydro-meteorological events, as it could help in providing real-time alerts. A theoretical rainfall distribution curve was designed for Volcán de Colima based on the rainfall and time distribution of hurricanes Manuel and Patricia. This can be used to run simulations using weather forecasts prior to the actual event, in order to estimate the arrival time of main lahar pulses, usually characterized by block-rich fronts, which are responsible for most of the damage to infrastructure and loss of goods and lives.
NASA Astrophysics Data System (ADS)
Strauch, Ayron M.; MacKenzie, Richard A.; Giardina, Christian P.; Bruland, Gregory L.
2018-04-01
The capacity to forecast climate and land-use driven changes to runoff, soil erosion and sediment transport in the tropics is hindered by a lack of long-term data sets and model study systems. To address these issues we utilized three watersheds characterized by similar shape, geology, soils, vegetation cover, and land use arranged across a 900 mm gradient in mean annual rainfall (MAR). Using this space-for-time design, we quantified suspended sediment (SS) and particulate organic carbon (POC) export over 18 months to examine how large-scale climate trends (MAR) affect sediment supply and delivery patterns (hysteresis) in tropical watersheds. Average daily SS yield ranged from 0.128 to 0.618 t km- 2 while average daily POC ranged from 0.002 to 0.018 t km- 2. For the largest storm events, we found that sediment delivery exhibited similar clockwise hysteresis patterns among the watersheds, with no significant differences in the similarity function between watershed pairs, indicating that: (1) in-stream and near-stream sediment sources drive sediment flux; and (2) the shape and timing of hysteresis is not affected by MAR. With declining MAR, the ratio of runoff to baseflow and inter-storm length between pulse events both increased. Despite increases in daily rainfall and the number of days with large rainfall events increasing with MAR, there was a decline in daily SS yield possibly due to the exhaustion of sediment supply by frequent runoff events in high MAR watersheds. By contrast, mean daily POC yield increased with increasing MAR, possibly as a result of increased soil organic matter decomposition, greater biomass, or increased carbon availability in higher MAR watersheds. We compared results to modeled values using the Load Estimator (LOADEST) FORTRAN model, confirming the negative relationship between MAR and sediment yield. However, because of its dependency on mean daily flow, LOADEST tended to under predict sediment yield, a result of its poor ability to capture the high variability in tropical streamflow. Taken together, results indicate that declines in MAR can have contrasting effects on hydrological processes in tropical watersheds, with consequences for instream ecology, downstream water users, and nearshore habitat.
Hydrologic system state at debris flow initiation in the Pitztal catchment, Austria
NASA Astrophysics Data System (ADS)
Mostbauer, Karin; Hrachowitz, Markus; Prenner, David; Kaitna, Roland
2017-04-01
Debris flows represent a severe hazard in mountain regions. Though significant effort has been made to forecast such events, the trigger conditions as well as the hydrologic disposition of a watershed at the time of debris flow occurrence are not well understood. To improve our knowledge on the connection between debris flow initiation and the hydrologic system, this study applies a semi-distributed conceptual rainfall-runoff model, linking different system state variables such as soil moisture, snowmelt, or runoff with documented debris flow events in the Pitztal watershed, western Austria. The hydrologic modelling was performed on a daily basis between 1953 and 2012. High-intensity rainfall could be identified as the dominant trigger (31 out of 43 debris flows), while triggering exclusively by low-intensity, long-lasting rainfall was only observed in one single case. The remaining events were related to snowmelt; whether all of these events where triggered by rain-on-snow, or whether some of these events were actually triggered by snowmelt only, remains unclear since the occurrence of un- resp. underrecorded rainfall was detected frequently. The usage of a conceptual hydrological model for investigating debris flow initiation constitutes a novel approach in debris flow research and was assessed as very valuable. For future studies, it is recommended to evaluate also sub-daily information. As antecedent snowmelt was found to be much more important to debris flow initiation than antecedent rainfall, it might prove beneficial to include snowmelt in the commonly used rainfall intensity-duration thresholds.
NASA Astrophysics Data System (ADS)
Goldberg, V.; Bernhofer, Ch.
2003-04-01
Between 12. and 14. August 2002 the region of eastern Erzgebirge (Saxony/Eastern Germany) was affected by the heaviest rainfall event recorded since beginning of the measuring period in 1883. The synoptic reason of this event was the advective precipitation due to the strong and very slowly shifting Vb-low "Ilse" combined with a noticeable topographic intensification by north-westerly winds. All stations in the catchment area of the river Weisseritz recorded new all-time records. E.g., at the meteorological station Zinnwald-Georgenfeld situated at the crest of eastern Erzgebirge a daily sum of 312 mm was measured for the 13. August. This value is close to the maximum physically possible rainfall. The intensive rainfall in the catchments of Rote Weisseritz and Wilde Weisseritz led to unexperienced heavy flash floods with large material transport and flow damages. The buffer effect of the existing dam systems was comparatively small because the reserved retaining capacity for flood protection was only about 20 percent of the total capacity. The reservoirs filled quickly due to the very high maximum inflow. So a long-time overflow of the dam system occurred with a maximum of about 300 cubic meters per second at the combined river Weisseritz through the cities of Freital and Dresden (This situation led, e.g., to the flooding of Central Railway Station in Dresden). This water flow is comparable with a medium flow rate of the river Elbe in Dresden, and it is about 300 times higher than the normal drain of the river Weisseritz in Freital! The material damages in the Weisseritz region account for several hundred millions EURO, and several causalties occurred. The damages of the University buildings in Tharandt (including one building of the Department of Meteorology) account for 15 millions EURO alone. The disaster management during the flood was not optimal. For many people, e.g. in Tharandt, there was neither an officially warning nor an organised rescue of movable goods. However, after the flood there was a fast help by the Federal Armed Forces, students and helpers from surrounding villages and municipalities. This flood, as well as the later flood of the Elbe, will be investigated by local and international competence teams to optimize future flood protection.
USDA-ARS?s Scientific Manuscript database
Predicting impacts of the magnitude and seasonal timing of rainfall pulses in water-limited grassland ecosystems concerns ecologists, climate scientists, hydrologists, and a variety of stakeholders. This report describes a simple, effective procedure to emulate the seasonal response of grassland bio...
NASA Astrophysics Data System (ADS)
van Noordwijk, Meine; Tanika, Lisa; Lusiana, Betha
2017-05-01
Watersheds buffer the temporal pattern of river flow relative to the temporal pattern of rainfall. This ecosystem service
is inherent to geology and climate, but buffering also responds to human use and misuse of the landscape. Buffering can be part of management feedback loops if salient, credible and legitimate indicators are used. The flow persistence parameter Fp in a parsimonious recursive model of river flow (Part 1, van Noordwijk et al., 2017) couples the transmission of extreme rainfall events (1 - Fp), to the annual base-flow fraction of a watershed (Fp). Here we compare Fp estimates from four meso-scale watersheds in Indonesia (Cidanau, Way Besai and Bialo) and Thailand (Mae Chaem), with varying climate, geology and land cover history, at a decadal timescale. The likely response in each of these four to variation in rainfall properties (including the maximum hourly rainfall intensity) and land cover (comparing scenarios with either more or less forest and tree cover than the current situation) was explored through a basic daily water-balance model, GenRiver. This model was calibrated for each site on existing data, before being used for alternative land cover and rainfall parameter settings. In both data and model runs, the wet-season (3-monthly) Fp values were consistently lower than dry-season values for all four sites. Across the four catchments Fp values decreased with increasing annual rainfall, but specific aspects of watersheds, such as the riparian swamp (peat soils) in Cidanau reduced effects of land use change in the upper watershed. Increasing the mean rainfall intensity (at constant monthly totals for rainfall) around the values considered typical for each landscape was predicted to cause a decrease in Fp values by between 0.047 (Bialo) and 0.261 (Mae Chaem). Sensitivity of Fp to changes in land use change plus changes in rainfall intensity depends on other characteristics of the watersheds, and generalisations made on the basis of one or two case studies may not hold, even within the same climatic zone. A wet-season Fp value above 0.7 was achievable in forest-agroforestry mosaic case studies. Inter-annual variability in Fp is large relative to effects of land cover change. Multiple (5-10) years of paired-plot data would generally be needed to reject no-change null hypotheses on the effects of land use change (degradation and restoration). Fp trends over time serve as a holistic scale-dependent performance indicator of degrading/recovering watershed health and can be tested for acceptability and acceptance in a wider social-ecological context.
NASA Astrophysics Data System (ADS)
Matti, B.; Dahlke, H. E.; Dieppois, B.; Lawler, D.; Lyon, S. W.
2016-12-01
Fluvial flood events have a large impact on humans, both socially and economically. Concurrent with climate change flood seasonality in cold environments is expected to shift from a snowmelt-dominated to a rainfall-dominated flow regime. This would have profound impacts on water management strategies, i.e. flood risk mitigation, drinking water supply and hydro power. In addition, cold climate hydrological systems exhibit complex interactions with catchment properties and large-scale climate fluctuations making the manifestation of changes difficult to detect and predict. Understanding a possible change in flood seasonality is essential to mitigate risk and to keep management strategies viable under a changing climate. This study explored changes in flood seasonality across near-natural catchments in cold environments of the North Atlantic region (40 - 70° N) using circular statistics and trend tests. Results indicate strong seasonality in flooding for snowmelt-dominated catchments with a single peak occurring in spring (March through May), whereas flood peaks are more equally distributed throughout the year for catchments located close to the Atlantic coast and in the south of the study area. Flood seasonality has changed over the past century seen as decreasing trends in summer maximum daily flows and increasing winter and spring maximum daily flows. Mean daily flows corroborate those findings with approximately 50% of the catchments showing significant changes. Comparing Scandinavia to North America the same trends could be detected with a stronger signal at the west coast of Scandinavia due to the Westerlies. Contrasting trends were detected for spring flows, for which North American catchments showed decreasing trends whereas increasing trends were observed across Scandinavia. Such changes in flood seasonality have clear implications for management strategies such as the estimation of design floods for flood prevention measures.
The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert.
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F; Li, Lin; Seely, Mary K
2016-01-01
Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months' continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert.
The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Li, Lin; Seely, Mary K.
2016-01-01
Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months’ continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert. PMID:27764203
NASA Astrophysics Data System (ADS)
O, Sungmin; Foelsche, U.; Kirchengast, G.; Fuchsberger, J.
2018-01-01
Eight years of daily rainfall data from WegenerNet were analyzed by comparison with data from Austrian national weather stations. WegenerNet includes 153 ground level weather stations in an area of about 15 km × 20 km in the Feldbach region in southeast Austria. Rainfall has been measured by tipping bucket gauges at 150 stations of the network since the beginning of 2007. Since rain gauge measurements are considered close to true rainfall, there are increasing needs for WegenerNet data for the validation of rainfall data products such as remote sensing based estimates or model outputs. Serving these needs, this paper aims at providing a clearer interpretation on WegenerNet rainfall data for users in hydro-meteorological communities. Five clusters - a cluster consists of one national weather station and its four closest WegenerNet stations - allowed us close comparison of datasets between the stations. Linear regression analysis and error estimation with statistical indices were conducted to quantitatively evaluate the WegenerNet daily rainfall data. It was found that rainfall data between the stations show good linear relationships with an average correlation coefficient (r) of 0.97 , while WegenerNet sensors tend to underestimate rainfall according to the regression slope (0.87). For the five clusters investigated, the bias and relative bias were - 0.97 mm d-1 and - 11.5 % on average (except data from new sensors). The average of bias and relative bias, however, could be reduced by about 80 % through a simple linear regression-slope correction, with the assumption that the underestimation in WegenerNet data was caused by systematic errors. The results from the study have been employed to improve WegenerNet data for user applications so that a new version of the data (v5) is now available at the WegenerNet data portal (www.wegenernet.org).
NASA Astrophysics Data System (ADS)
Abecia, J. A.; Arrébola, F.; Macías, A.; Laviña, A.; González-Casquet, O.; Benítez, F.; Palacios, C.
2016-10-01
A total number of 1092 artificial inseminations (AIs) performed from March to May were documented over four consecutive years on 10 Payoya goat farms (36° N) and 19,392 AIs on 102 Rasa Aragonesa sheep farms (41° N) over 10 years. Mean, maximum, and minimum ambient temperatures, mean relative humidity, mean solar radiation, and total rainfall on each insemination day were recorded. Overall, fertility rates were 58 % in goats and 45 % in sheep. The fertility rates of the highest and lowest deciles of each of the meteorological variables indicated that temperature and rainfall had a significant effect on fertility in goats. Specifically, inseminations that were performed when mean (68 %), maximum (68 %), and minimum (66 %) temperatures were in the highest decile, and rainfall was in the lowest decile (59 %), had a significantly ( P < 0.0001) higher proportion of does that became pregnant than did the ewes in the lowest decile (56, 54, 58, and 49 %, respectively). In sheep, the fertility rates of the highest decile of mean (62 %), maximum (62 %), and minimum (52 %) temperature, RH (52 %), THI (53 %), and rainfall (45 %) were significantly higher ( P < 0.0001) than were the fertility rates among ewes in the lowest decile (46, 45, 45, 45, 46, and 43 %, respectively). In conclusion, weather was related to fertility in small ruminants after AI in spring. It remains to be determined whether scheduling the dates of insemination based on forecasted temperatures can improve the success of AI in goats and sheep.
NASA Astrophysics Data System (ADS)
Sidek, L. M.; Mohd Nor, M. D.; Rakhecha, P. R.; Basri, H.; Jayothisa, W.; Muda, R. S.; Ahmad, M. N.; Razad, A. Z. Abdul
2013-06-01
The Cameron Highland Batang Padang (CHBP) catchment situated on the main mountain range of Peninsular Malaysia is of large economical importance where currently a series of three dams (Sultan Abu Bakar, Jor and Mahang) exist in the development of water resources and hydropower. The prediction of the design storm rainfall values for different return periods including PMP values can be useful to review the adequacy of the current spillway capacities of these dams. In this paper estimates of the design storm rainfalls for various return periods and also the PMP values for rainfall stations in the CHBP catchment have been computed for the three different durations of 1, 3 & 5 days. The maximum values for 1 day, 3 days and 5 days PMP values are found to be 730.08mm, 966.17mm and 969.0mm respectively at Station number 4513033 Gunung Brinchang. The PMP values obtained were compared with previous study results undertaken by NAHRIM. However, the highest ratio of 1 day, 3 day and 5 day PMP to highest observed rainfall are found to be 2.30, 1.94 and 1.82 respectively. This shows that the ratio tend to decrease as the duration increase. Finally, the temporal pattern for 1 day, 3day and 5 days have been developed based on observed extreme rainfall at station 4513033 Gunung Brinchang for the generation of Probable Maximum Flood (PMF) in dam break analysis.
Lopez, M.A.; Giovannelli, R.F.
1984-01-01
Rainfall, runoff, and water quality data were collected at nine urban watersheds in the Tampa Bay area from 1975 to 1980. Watershed drainage area ranged from 0.34 to 0.45 sq mi. Land use was mixed. Development ranged from a mostly residential watershed with a 19% impervious surface, to a commercial-residential watershed with a 61% impervious surface. Average biochemical oxygen demand concentrations of base flow at two sites and of stormwater runoff at five sites exceeded treated sewage effluent standards. Average coliform concentrations of stormwater runoff at all sites were several orders of magnitude greater than standards for Florida Class III receiving water (for recreation or propagation and management of fish and wildlife). Average concentrations of lead and zinc in stormwater runoff were consistently higher than Class III standards. Stormwater-runoff loads and base-flow concentrations of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus, and lead were related to runoff volume, land use, urban development, and antecedent daily rainfall by multiple linear regression. Stormwater-runoff volume was related to pervious area, hydraulically connected impervious surfaces, storm rainfall, and soil-infiltration index. Base-flow daily discharge was related to drainage area and antecedent daily rainfall. The flow regression equations of this report were used to compute 1979 water-year loads of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus , and total lead for the nine Tampa Bay area urban watersheds. (Lantz-PTT)
A coupled synoptic-hydrological model for climate change impact assessment
NASA Astrophysics Data System (ADS)
Wilby, Robert; Greenfield, Brian; Glenny, Cathy
1994-01-01
A coupled atmospheric-hydrological model is presented. Sequences of daily rainfall occurrence for the 20 year period 1971-1990 at sites in the British Isles are related to the Lamb's Weather Types (LWT) by using conditional probabilities. Time series of circulation patterns and hence rainfall were then generated using a Markov representation of matrices of transition probabilities between weather types. The resultant precipitation data were used as input to a semidistributed catchment model to simulate daily flows. The combined model successfully reproduced aspects of the daily weather, precipitation and flow regimes. A range of synoptic scenarios were further investigated with particular reference to low flows in the River Coln, UK. The modelling approach represents a means of translating general circulation model (GCM) climate change predictions at the macro-scale into hydrological concerns at the catchment scale.
NASA Astrophysics Data System (ADS)
Kaźmierczak, Bartosz; Wartalska, Katarzyna; Wdowikowski, Marcin; Kotowski, Andrzej
2017-11-01
Modern scientific research in the area of heavy rainfall analysis regarding to the sewerage design indicates the need to develop and use probabilistic rain models. One of the issues that remains to be resolved is the length of the shortest amount of rain to be analyzed. It is commonly believed that the best time is 5 minutes, while the least rain duration measured by the national services is often 10 or even 15 minutes. Main aim of this paper is to present the difference between probabilistic rainfall models results given from rainfall time series including and excluding 5 minutes rainfall duration. Analysis were made for long-time period from 1961-2010 on polish meteorological station Legnica. To develop best fitted to measurement rainfall data probabilistic model 4 probabilistic distributions were used. Results clearly indicates that models including 5 minutes rainfall duration remains more appropriate to use.
Trend Analysis of Annual and Seasonal Rainfall in Kansas
NASA Astrophysics Data System (ADS)
Rahmani, V.; Hutchinson, S. L.; Hutchinson, J.; Anandhi, A.
2012-12-01
Precipitation has direct impacts on agricultural production, water resources management, and recreational activities, all of which have significant economic impacts. Thus developing a solid understanding of rainfall patterns and trends is important, and is particularly vital for regions with high climate variability like Kansas. In this study, the annual and seasonal rainfall trends were analyzed using daily precipitation data for four consecutive periods (1891-1920, 1921-1950, 1951-1980, and 1981-2010) and an overall data range of 1890 through 2011 from 23 stations in Kansas. The overall analysis showed that on average Kansas receives 714 mm of rain annually with a strong gradient from west (425 mm, Tribune) to east (1069 mm, Columbus). Due to this gradient, western and central Kansas require more irrigation water than eastern Kansas during the summer growing season to reach the plant water requirements and optimize yield. In addition, a gradual increase in total annual rainfall was found for 21 of 23 stations with a greater increase for recent years (1956 through 2011) and eastern part. The average trend slope for the state is 0.7 mm/yr with a minimum value of -0.8 mm/yr for Saint Francis in Northwest and a maximum value of 2 mm/yr for Independence in Southeast. Seasonal analysis showed that all stations received the most rain during the summer season (June, July, Aug) followed by Spring, Fall and Winter respectively. Investigating the number of dry days (days with rain less than or equal to 2.5 mm) showed that 17 of 23 had a decreasing trend from west to east and across time with the greatest decrease of -0.07 days/yr for Winfield in South and the greatest increase of 0.05 days/yr for Elkhart in Southwest. When assessing the number of dry days between rainfall events, it was found that the majority of the stations had a decreasing trend for most of the months from west to east and across time. These results indicate that Kansas is experiencing fewer dry days and more rainy days with an increasing trend of total rainfall, so the irrigation amount should be updated for each region, and crop and plant types can be modified. The increasing rainfall will also affect hydraulic structures like dams, culverts and channels that may result in more property loss and threat to human life. New rainfall patterns should be considered when designing stormwater management system to avoid poor (over or under sized) design.
Extreme rainfall-induced landslide changes based on landslide susceptibility in China, 1998-2015
NASA Astrophysics Data System (ADS)
Li, Weiyue; Liu, Chun; Hong, Yang
2017-04-01
Nowadays, landslide has been one of the most frequent and seriously widespread natural hazards all over the world. Rainfall, especially heavy rainfall is a trigger to cause the landslide occurrence, by increasing soil pore water pressures. In China, rainfall-induced landslides have risen up over to 90% of the total number. Rainfall events sometimes generate a trend of extremelization named rainfall extremes that induce the slope failure suddenly and severely. This study shows a method to simulate the rainfall-induced landslide spatio-temporal distribution on the basis of the landslide susceptibility index. First, the study on landslide susceptibility in China is introduced. We set the values of the index to the range between 0 and 1. Second, we collected TRMM 3B42 precipitation products spanning the years 1998-2015 and extracted the daily rainfall events greater than 50mm/day as extreme rainfall. Most of the rainfall duration time that may trigger a landslide has resulted between 3 hours and 45 hours. The combination of these two aspects can be exploited to simulate extreme rainfall-induced landslide distribution and illustrate the changes in 17 years. This study shows a useful tool to be part of rainfall-induced landslide simulation methodology for landslide early warning.
NASA Astrophysics Data System (ADS)
Hussain, Yawar; Satgé, Frédéric; Hussain, Muhammad Babar; Martinez-Carvajal, Hernan; Bonnet, Marie-Paule; Cárdenas-Soto, Martin; Roig, Henrique Llacer; Akhter, Gulraiz
2018-02-01
The present study aims at the assessment of six satellite rainfall estimates (SREs) in Pakistan. For each assessed products, both real-time (RT) and post adjusted (Adj) versions are considered to highlight their potential benefits in the rainfall estimation at annual, monthly, and daily temporal scales. Three geomorphological climatic zones, i.e., plain, mountainous, and glacial are taken under considerations for the determination of relative potentials of these SREs over Pakistan at global and regional scales. All SREs, in general, have well captured the annual north-south rainfall decreasing patterns and rainfall amounts over the typical arid regions of the country. Regarding the zonal approach, the performance of all SREs has remained good over mountainous region comparative to arid regions. This poor performance in accurate rainfall estimation of all the six SREs over arid regions has made their use questionable in these regions. Over glacier region, all SREs have highly overestimated the rainfall. One possible cause of this overestimation may be due to the low surface temperature and radiation absorption over snow and ice cover, resulting in their misidentification with rainy clouds as daily false alarm ratio has increased from mountainous to glacial regions. Among RT products, CMORPH-RT is the most biased product. The Bias was almost removed on CMORPH-Adj thanks to the gauge adjustment. On a general way, all Adj versions outperformed their respective RT versions at all considered temporal scales and have confirmed the positive effects of gauge adjustment. CMORPH-Adj and TMPA-Adj have shown the best agreement with in situ data in terms of Bias, RMSE, and CC over the entire study area.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Bourassa, M. A.; Ali, M. M.
2017-12-01
This observational study focuses on characterizing the surface winds in the Arabian Sea (AS), the Bay of Bengal (BoB), and the southern Indian Ocean (SIO) with special reference to the strong and weak Indian summer monsoon rainfall (ISMR) using the latest daily gridded rainfall dataset provided by the Indian Meteorological Department (IMD) and the Cross-Calibrated Multi-Platform (CCMP) gridded wind product version 2.0 produced by Remote Sensing System (RSS) over the overlapped period 1991-2014. The potential links between surface winds and Indian regional rainfall are also examined. Results indicate that the surface wind speeds in AS and BoB during June-August are almost similar during strong ISMRs and weak ISMRs, whereas significant discrepancies are observed during September. By contrast, the surface wind speeds in SIO during June-August are found to be significantly different between strong and weak ISMRs, where they are similar during September. The significant differences in monthly mean surface wind convergence between strong and weak ISMRs are not coherent in space in the three regions. However, the probability density function (PDF) distributions of daily mean area-averaged values are distinctive between strong and weak ISMRs in the three regions. The correlation analysis indicates the area-averaged surface wind speeds in AS and the area-averaged wind convergence in BoB are highly correlated with regional rainfall for both strong and weak ISMRs. The wind convergence in BoB during strong ISMRs is relatively better correlated with regional rainfall than during weak ISMRs. The surface winds in SIO do not greatly affect Indian rainfall in short timescales, however, they will ultimately affect the strength of monsoon circulation by modulating Indian Ocean Dipole (IOD) mode via atmosphere-ocean interactions.
NASA Astrophysics Data System (ADS)
Schilirò, L.; Esposito, C.; Scarascia Mugnozza, G.
2015-09-01
Rainfall-induced shallow landslides are a widespread phenomenon that frequently causes substantial damage to property, as well as numerous casualties. In recent~years a wide range of physically based models have been developed to analyze the triggering process of these events. Specifically, in this paper we propose an approach for the evaluation of different shallow landslide-triggering scenarios by means of the TRIGRS (transient rainfall infiltration and grid-based slope stability) numerical model. For the validation of the model, a back analysis of the landslide event that occurred in the study area (located SW of Messina, northeastern Sicily, Italy) on 1 October 2009 was performed, by using different methods and techniques for the definition of the input parameters. After evaluating the reliability of the model through comparison with the 2009 landslide inventory, different triggering scenarios were defined using rainfall values derived from the rainfall probability curves, reconstructed on the basis of daily and hourly historical rainfall data. The results emphasize how these phenomena are likely to occur in the area, given that even short-duration (1-3 h) rainfall events with a relatively low return period (e.g., 10-20~years) can trigger numerous slope failures. Furthermore, for the same rainfall amount, the daily simulations underestimate the instability conditions. The high susceptibility of this area to shallow landslides is testified by the high number of landslide/flood events that have occurred in the past and are summarized in this paper by means of archival research. Considering the main features of the proposed approach, the authors suggest that this methodology could be applied to different areas, even for the development of landslide early warning systems.
NASA Astrophysics Data System (ADS)
Gao, Qingjiu; Sun, Yuting; You, Qinglong
2016-12-01
The meridional location change of Meiyu rain belt and its relationship with the rainfall intensity and circulation background changes for the period 1958-2009 are examined using daily rainfall datasets from 756 stations in China, the 6-h ERA-Interim reanalyses, CRU monthly temperature and daily outgoing long-wave radiation (OLR) data from the US National Oceanic and Atmospheric Administration (NOAA). The results indicate that the Meiyu rain belt experienced a northward shift in the late 1990s in response to global warming. Moreover, the intensity of interannual and day-to-day variability of rainfall within Meiyu period has been increasing in the warming climate. The amplification of the variability within Meiyu period over the northern Yangtze-Huai River Valley (YHRV) is much larger than that of the southern YHRV. The large difference in the trends of variance within the Meiyu period between these two regions induces a spatial varying for different rainfall categories in terms of intensity. More significant positive trends in heavy and extreme heavy rainfall occur over northern YHRV compared with southern YHRV, which is a crucial indicator of changes in the rain band, despite the observation of an increase in heavy and very heavy rain events and a decrease in weak events throughout the entire YHRV. A composite of the atmospheric circulation indicates that intense northward horizontal transport and the convergence of water vapor fluxes are the immediate causes of the rain band shift. Besides, through forcing a northward extended convection over the tropics, the Pacific-Japan (P-J) pattern induces a northward expansion of western Pacific Subtropical High, leading to intensified convergence and enhanced rainfall over Northern YHRV.
NASA Astrophysics Data System (ADS)
Gebreyohannes, Tesfaalem; Frankl, Amaury; Haile, Mitiku; Abraha, Amanuel; Monsieurs, Elise; Nyssen, Jan
2015-04-01
The hydrological characteristics of steep mountain streams are often considered to be mainly influenced by rainfall distribution and topography. In this study, with the objective of analyzing the runoff response of mountain catchments, a total of 340 peak stage discharges were recorded in three rainy seasons (2012-2014) in 11 sloping (27-65%) mountain catchments (0.4 - 25 km²) of the marginal western Rift Valley escarpment of Northern Ethiopia. Daily rainfall data were collected using 7 rain gauges installed at different altitudes (1623 - 2851 m a.s.l) in and nearby the catchments, and used to calculate weighted average daily rain depths over the catchments. Event peak discharges were calculated from daily measurements by 11 crest stage gauges using the Manning's equation. Percentages of land use and cover classes were detected from high resolution (0.6 m) Google Earth imagery (February 1, 2014). Morphometric characteristics of the catchments were computed from ASTER digital elevation model and topographic maps. Correlation analysis between daily rainfall and peak discharge showed direct relationship (R² = 0.5-0.94, P<0.01) in all the catchments. The average specific peak discharge was negatively related to percentage of forest and grass cover (R² = 0.64, P<0.01), time of concentration (R² = 0.31, P<0.01), drainage texture (R² = 0.42, P<0.01), and catchment perimeter (R² = 0.36, P<0.01). The specific peak discharge was positively correlated with average slope gradient of the catchments (R² = 0.34, P<0.01) and with an index representing the spatial distribution of forest and grass cover (R² = 0.43, P<0.01). A stepwise multiple regression analyses showed that 84% (P<0.01) of the variability of the runoff response in the catchments can be predicted by the percentage of forest and grass cover and the relief ratio of the catchments. All in all, this study demonstrates that the magnitude of flash floods in mountain catchments is not only influenced by the morphometric characteristics of the catchments and by rainfall, but more importantly even by vegetation cover (forest and grasses).
NASA Astrophysics Data System (ADS)
Fouchier, Catherine; Maire, Alexis; Arnaud, Patrick; Cantet, Philippe; Odry, Jean
2016-04-01
The starting point of our study was the availability of maps of rainfall quantiles available for the entire French mainland territory at the spatial resolution of 1 km². These maps display the rainfall amounts estimated for different rainfall durations (from 15 minutes to 72 hours) and different return periods (from 2 years up to 1 000 years). They are provided by a regionalized stochastic hourly point rainfall generator, the SHYREG method which was previously developed by Irstea (Arnaud et al., 2007; Cantet and Arnaud, 2014). Being calibrated independently on numerous raingauges data (with an average density across the country of 1 raingauge per 200 km²), this method suffers from a limitation common to point-process rainfall generators: it can only reproduce point rainfall patterns and has no capacity to generate rainfall fields. It can't hence provide areal rainfall quantiles, the estimation of the latter being however needed for the construction of design rainfall or for the diagnostic of observed events. One means of bridging this gap between our local rainfall quantiles and areal rainfall quantiles is given by the concept of probabilistic areal reduction factors of rainfall (ARF) as defined by Omolayo (1993). This concept enables to estimate areal rainfall of a particular frequency within a certain amount of time from point rainfalls of the same frequency and duration. Assessing such ARF for the whole French territory is of particular interest since it should allow us to compute areal rainfall quantiles, and eventually watershed rainfall quantiles, by using the already available grids of statistical point rainfall of the SHYREG method. Our purpose was then to assess these ARF thanks to long time-series of spatial rainfall data. We have used two sets of rainfall fields: i) hourly rainfall fields from a 10-year reference database of Quantitative Precipitation Estimation (QPE) over France (Tabary et al., 2012), ii) daily rainfall fields resulting from a 53-year high-resolution atmospheric reanalysis over France with the SAFRAN-gauge-based analysis system (Vidal et al., 2010). We have then built samples of maximal rainfalls for each cell location (the "point" rainfalls) and for different areas centered on each cell location (the areal rainfalls) of these gridded data. To compute rainfall quantiles, we have fitted a Gumbel law, with the L-moment method, on each of these samples. Our daily and hourly ARF have then shown four main trends: i) a sensitivity to the return period, with ARF values decreasing when the return period increases; ii) a sensitivity to the rainfall duration, with ARF values decreasing when the rainfall duration decreases; iii) a sensitivity to the season, with ARF values smaller for the summer period than for the winter period; iv) a sensitivity to the geographical location, with low ARF values in the French Mediterranean area and ARF values close to 1 for the climatic zones of Northern and Western France (oceanic to semi-continental climate). The results of this data-intensive study led for the first time on the whole French territory are in agreement with studies led abroad (e.g. Allen and DeGaetano 2005, Overeem et al. 2010) and confirm and widen the results of previous studies that were carried out in France on smaller areas and with fewer rainfall durations (e.g. Ramos et al., 2006, Neppel et al., 2003). References Allen R. J. and DeGaetano A. T. (2005). Areal reduction factors for two eastern United States regions with high rain-gauge density. Journal of Hydrologic Engineering 10(4): 327-335. Arnaud P., Fine J.-A. and Lavabre J. (2007). An hourly rainfall generation model applicable to all types of climate. Atmospheric Research 85(2): 230-242. Cantet, P. and Arnaud, P. (2014). Extreme rainfall analysis by a stochastic model: impact of the copula choice on the sub-daily rainfall generation, Stochastic Environmental Research and Risk Assessment, Springer Berlin Heidelberg, 28(6), 1479-1492. Neppel L., Bouvier C. and Lavabre J. (2003). Areal reduction factor probabilities for rainfall in Languedoc Roussillon. IAHS-AISH Publication (278): 276-283. Omolayo, A. S. (1993). On the transposition of areal reduction factors for rainfall frequency estimation. Journal of Hydrology 145 (1-2): 191-205. Overeem A., Buishand T. A., Holleman I. and Uijlenhoet R. (2010). Extreme value modeling of areal rainfall from weather radar. Water Resources Research 46(9): 10 p. Ramos M.-H., Leblois E., Creutin J.-D. (2006). From point to areal rainfall: Linking the different approaches for the frequency characterisation of rainfalls in urban areas. Water Science and Technology. 54(6-7): 33-40. Tabary P., Dupuy P., L'Henaff G., Gueguen C., Moulin L., Laurantin O., Merlier C., Soubeyroux J. M. (2012). A 10-year (1997-2006) reanalysis of Quantitative Precipitation Estimation over France: methodology and first results. IAHS-AISH Publication (351) : 255-260. Vidal J.-P., Martin E., Franchistéguy L., Baillon M. and Soubeyroux J.-M. (2010). A 50-year high-resolution atmospheric reanalysis over France with the Safran system. International Journal of Climatology 30(11): 1627-1644.
NASA Astrophysics Data System (ADS)
Skansi, María de los Milagros; Brunet, Manola; Sigró, Javier; Aguilar, Enric; Arevalo Groening, Juan Andrés; Bentancur, Oscar J.; Castellón Geier, Yaruska Rosa; Correa Amaya, Ruth Leonor; Jácome, Homero; Malheiros Ramos, Andrea; Oria Rojas, Clara; Pasten, Alejandro Max; Sallons Mitro, Sukarni; Villaroel Jiménez, Claudia; Martínez, Rodney; Alexander, Lisa V.; Jones, P. D.
2013-01-01
Here we show and discuss the results of an assessment of changes in both area-averaged and station-based climate extreme indices over South America (SA) for the 1950-2010 and 1969-2009 periods using high-quality daily maximum and minimum temperature and precipitation series. A weeklong regional workshop in Guayaquil (Ecuador) provided the opportunity to extend the current picture of changes in climate extreme indices over SA. Our results provide evidence of warming and wetting across the whole SA since the mid-20th century onwards. Nighttime (minimum) temperature indices show the largest rates of warming (e.g. for tropical nights, cold and warm nights), while daytime (maximum) temperature indices also point to warming (e.g. for cold days, summer days, the annual lowest daytime temperature), but at lower rates than for minimums. Both tails of night-time temperatures have warmed by a similar magnitude, with cold days (the annual lowest nighttime and daytime temperatures) seeing reductions (increases). Trends are strong and moderate (moderate to weak) for regional-averaged (local) indices, most of them pointing to a less cold SA during the day and warmer night-time temperatures. Regionally-averaged precipitation indices show clear wetting and a signature of intensified heavy rain events over the eastern part of the continent. The annual amounts of rainfall are rising strongly over south-east SA (26.41 mm/decade) and Amazonia (16.09 mm/decade), but north-east Brazil and the western part of SA have experienced non-significant decreases. Very wet and extremely days, the annual maximum 5-day and 1-day precipitation show the largest upward trends, indicating an intensified rainfall signal for SA, particularly over Amazonia and south-east SA. Local trends for precipitation extreme indices are in general less coherent spatially, but with more general spatially coherent upward trends in extremely wet days over all SA.
Using satellite-based rainfall estimates for streamflow modelling: Bagmati Basin
Shrestha, M.S.; Artan, Guleid A.; Bajracharya, S.R.; Sharma, R. R.
2008-01-01
In this study, we have described a hydrologic modelling system that uses satellite-based rainfall estimates and weather forecast data for the Bagmati River Basin of Nepal. The hydrologic model described is the US Geological Survey (USGS) Geospatial Stream Flow Model (GeoSFM). The GeoSFM is a spatially semidistributed, physically based hydrologic model. We have used the GeoSFM to estimate the streamflow of the Bagmati Basin at Pandhera Dovan hydrometric station. To determine the hydrologic connectivity, we have used the USGS Hydro1k DEM dataset. The model was forced by daily estimates of rainfall and evapotranspiration derived from weather model data. The rainfall estimates used for the modelling are those produced by the National Oceanic and Atmospheric Administration Climate Prediction Centre and observed at ground rain gauge stations. The model parameters were estimated from globally available soil and land cover datasets – the Digital Soil Map of the World by FAO and the USGS Global Land Cover dataset. The model predicted the daily streamflow at Pandhera Dovan gauging station. The comparison of the simulated and observed flows at Pandhera Dovan showed that the GeoSFM model performed well in simulating the flows of the Bagmati Basin.
NASA Astrophysics Data System (ADS)
Pohle, Ina; Niebisch, Michael; Zha, Tingting; Schümberg, Sabine; Müller, Hannes; Maurer, Thomas; Hinz, Christoph
2017-04-01
Rainfall variability within a storm is of major importance for fast hydrological processes, e.g. surface runoff, erosion and solute dissipation from surface soils. To investigate and simulate the impacts of within-storm variabilities on these processes, long time series of rainfall with high resolution are required. Yet, observed precipitation records of hourly or higher resolution are in most cases available only for a small number of stations and only for a few years. To obtain long time series of alternating rainfall events and interstorm periods while conserving the statistics of observed rainfall events, the Poisson model can be used. Multiplicative microcanonical random cascades have been widely applied to disaggregate rainfall time series from coarse to fine temporal resolution. We present a new coupling approach of the Poisson rectangular pulse model and the multiplicative microcanonical random cascade model that preserves the characteristics of rainfall events as well as inter-storm periods. In the first step, a Poisson rectangular pulse model is applied to generate discrete rainfall events (duration and mean intensity) and inter-storm periods (duration). The rainfall events are subsequently disaggregated to high-resolution time series (user-specified, e.g. 10 min resolution) by a multiplicative microcanonical random cascade model. One of the challenges of coupling these models is to parameterize the cascade model for the event durations generated by the Poisson model. In fact, the cascade model is best suited to downscale rainfall data with constant time step such as daily precipitation data. Without starting from a fixed time step duration (e.g. daily), the disaggregation of events requires some modifications of the multiplicative microcanonical random cascade model proposed by Olsson (1998): Firstly, the parameterization of the cascade model for events of different durations requires continuous functions for the probabilities of the multiplicative weights, which we implemented through sigmoid functions. Secondly, the branching of the first and last box is constrained to preserve the rainfall event durations generated by the Poisson rectangular pulse model. The event-based continuous time step rainfall generator has been developed and tested using 10 min and hourly rainfall data of four stations in North-Eastern Germany. The model performs well in comparison to observed rainfall in terms of event durations and mean event intensities as well as wet spell and dry spell durations. It is currently being tested using data from other stations across Germany and in different climate zones. Furthermore, the rainfall event generator is being applied in modelling approaches aimed at understanding the impact of rainfall variability on hydrological processes. Reference Olsson, J.: Evaluation of a scaling cascade model for temporal rainfall disaggregation, Hydrology and Earth System Sciences, 2, 19.30
Does extreme precipitation intensity depend on the emissions scenario?
NASA Astrophysics Data System (ADS)
Pendergrass, Angeline; Lehner, Flavio; Sanderson, Benjamin; Xu, Yangyang
2016-04-01
The rate of increase of global-mean precipitation per degree surface temperature increase differs for greenhouse gas and aerosol forcings, and therefore depends on the change in composition of the emissions scenario used to drive climate model simulations for the remainder of the century. We investigate whether or not this is also the case for extreme precipitation simulated by a multi-model ensemble driven by four realistic emissions scenarios. In most models, the rate of increase of maximum annual daily rainfall per degree global warming in the multi-model ensemble is statistically indistinguishable across the four scenarios, whether this extreme precipitation is calculated globally, over all land, or over extra-tropical land. These results indicate that, in most models, extreme precipitation depends on the total amount of warming and does not depend on emissions scenario, in contrast to mean precipitation.
Sun, L Z; Auerswald, K; Wenzel, R; Schnyder, H
2014-01-01
Cattle obtain water primarily from the moisture in their feed and from drinking water. On pasture, the moisture content of the diet is influenced by plant tissue water (internal water) and surface moisture (external water), which may include dew, guttation, and intercepted rain, that influence the drinking water requirement. This study investigated the relationship between daily drinking water intake (DWI, L/d) of steers on pasture (19 steers with mean initial BW of approximately 400 kg) and soil and weather factors that are known to affect plant water status (dry matter content) and surface moisture formation and persistence. Daily records of weather conditions and DWI were obtained during 2 grazing seasons with contrasting spring, summer, and autumn rainfall patterns. Plant available water in the soil (PAW, mm) was modeled from actual and potential evapotranspiration and the water-holding capacity of the soil. The DWI averaged over the herd varied among days from 0 to 29 L/d (grazing season mean 9.8 L/d). The DWI on both dry (<0.2 mm rainfall on the corresponding and previous days) and wet (>2 mm) days increased with increasing temperature (mean, maximum, and minimum), sunshine hours, and global radiation and decreasing relative humidity, and the slopes and coefficients of determination were generally greater for wet days. Wind reduced DWI on wet days but had no effect on dry days. The DWI was reduced by up to 4.4 L/d on wet days compared to dry days, but DWI did not correlate with rainfall amount. Increasing PAW decreased DWI by up to >10 L/d on both dry and wet days. These results are all consistent with environmental effects on the water status (dry matter content) of pasture vegetation and canopy surface moisture, the associated effects on grazing-related water intake, and the corresponding balancing changes of DWI. Using the observed relationships with environmental factors, we derived a new model predicting DWI for any soil moisture condition, for both wet and dry days, which included mean ambient temperature and relative humidity and explained virtually all variation of DWI that was not caused by the random scatter among individual animals.
NASA Astrophysics Data System (ADS)
Forsythe, N.; Fowler, H. J.; Blenkinsop, S.; Burton, A.; Kilsby, C. G.; Archer, D. R.; Harpham, C.; Hashmi, M. Z.
2014-09-01
Assessing local climate change impacts requires downscaling from Global Climate Model simulations. Here, a stochastic rainfall model (RainSim) combined with a rainfall conditioned weather generator (CRU WG) have been successfully applied in a semi-arid mountain climate, for part of the Upper Indus Basin (UIB), for point stations at a daily time-step to explore climate change impacts. Validation of the simulated time-series against observations (1961-1990) demonstrated the models' skill in reproducing climatological means of core variables with monthly RMSE of <2.0 mm for precipitation and ⩽0.4 °C for mean temperature and daily temperature range. This level of performance is impressive given complexity of climate processes operating in this mountainous context at the boundary between monsoonal and mid-latitude (westerly) weather systems. Of equal importance the model captures well the observed interannual variability as quantified by the first and last decile of 30-year climatic periods. Differences between a control (1961-1990) and future (2071-2100) regional climate model (RCM) time-slice experiment were then used to provide change factors which could be applied within the rainfall and weather models to produce perturbed ‘future' weather time-series. These project year-round increases in precipitation (maximum seasonal mean change:+27%, annual mean change: +18%) with increased intensity in the wettest months (February, March, April) and year-round increases in mean temperature (annual mean +4.8 °C). Climatic constraints on the productivity of natural resource-dependent systems were also assessed using relevant indices from the European Climate Assessment (ECA) and indicate potential future risk to water resources and local agriculture. However, the uniformity of projected temperature increases is in stark contrast to recent seasonally asymmetrical trends in observations, so an alternative scenario of extrapolated trends was also explored. We conclude that interannual variability in climate will continue to have the dominant impact on water resources management whichever trajectory is followed. This demonstrates the need for sophisticated downscaling methods which can evaluate changes in variability and sequencing of events to explore climate change impacts in this region.
Hydrological disposition of flash flood and debris flows events in an Alpine watershed in Austria
NASA Astrophysics Data System (ADS)
Prenner, David; Kaitna, Roland; Mostbauer, Karin; Hrachowitz, Markus
2017-04-01
Debris flows and flash floods including intensive bedload transport represent severe hazards in the Alpine environment of Austria. For neither of these processes, explicit rainfall thresholds - even for specific regions - are available. This may be due to insufficient data on the temporal and spatial variation of precipitation, but probably also due to variations of the geomorphic and hydrological disposition of a watershed to produce such processes in the course of a rainfall event. In this contribution we investigate the importance of the hydrological system state for triggering debris flows and flash floods in the Ill/Suggadin watershed (500 km2), Austria, by analyzing the effects of dynamics in system state variables such as soil moisture, snow pack, or ground water level. The analysis is based on a semi-distributed conceptual rainfall-runoff model, spatially discretizing the watershed according to the available precipitation observations, elevation, topographic considerations and land cover. Input data are available from six weather stations on a daily basis ranging back to 1947. A Thiessen polygon decomposition results in six individual precipitation zones with a maximum area of about 130 km2. Elevation specific behavior of the quantities temperature and precipitation is covered through an elevation-resolved computation every 200 m. Spatial heterogeneity is considered by distinct hydrological response units for bare rock, forest, grassland, and riparian zone. To reduce numerical smearing on the hydrological results, the Implicit Euler scheme was used to discretize the balance equations. For model calibration we utilized runoff hydrographs, snow cover data as well as prior parameter and process constraints. The obtained hydrological output variables are linked to documented observed flash flood and debris flow events by means of a multivariate logistic regression. We present a summary about the daily hydrological disposition of experiencing a flash flood or debris flow event in each precipitation zone of the Ill/Suggadin region over almost 65 years. Furthermore, we will provide an interpretation of the occurred hydrological trigger patterns and show a frequency ranking. The outcomes of this study shall lead to an improved forecasting and differentiation of trigger conditions leading to debris flows and flash floods.
Characteristics of Heavy Summer Rainfall in Southwestern Taiwan in Relation to Orographic Effects
NASA Technical Reports Server (NTRS)
Chen, Ching-Sen; Chen, Wan-Chin; Tao, Wei-Kuo
2004-01-01
On the windward side of southwestern Taiwan, about a quarter to a half of all rainfall during mid-July through August from 1994 to 2000 came from convective systems embedded in the southwesterly monsoon flow. k this study, the causes of two heavy rainfall events (daily rainfall exceeding 100 mm day over at least three rainfall stations) observed over the slopes and/or lowlands of southwestern Taiwan were examined. Data from European Center for Medium-Range Weather Forecasts /Tropical Ocean- Global Atmosphere (EC/TOGA) analyses, the rainfall stations of the Automatic Rainfall and Meteorological Telemetry System (ARMTS) and the conventional surface stations over Taiwan, and the simulation results from a regional-scale numerical model were used to accomplish the objectives. In one event (393 mm day on 9 August 1999), heavy rainfall was observed over the windward slopes of southern Taiwan in a potentially unstable environment with very humid air around 850 hPa. The extreme accumulation was simulated and attributed to orographic lifting effects. No preexisting convection drifted in from the Taiwan Strait into western Taiwan.
El Niño-Southern Oscillation Impacts on Winter Vegetable Production in Florida*.
NASA Astrophysics Data System (ADS)
Hansen, James W.; Jones, James W.; Kiker, Clyde F.; Hodges, Alan W.
1999-01-01
Florida's mild winters allow the state to play a vital role in supplying fresh vegetables for U.S. consumers. Producers also benefit from premium prices when low temperatures prevent production in most of the country. This study characterizes the influence of the El Niño-Southern Oscillation (ENSO) on the Florida vegetable industry using statistical analysis of the response of historical crop (yield, prices, production, and value) and weather variables (freeze hazard, temperatures, rainfall, and solar radiation) to ENSO phase and its interaction with location and time of year. Annual mean yields showed little evidence of response to ENSO phase and its interaction with location. ENSO phase and season interacted to influence quarterly yields, prices, production, and value. Yields (tomato, bell pepper, sweet corn, and snap bean) were lower and prices (bell pepper and snap bean) were higher in El Niño than in neutral or La Niña winters. Production and value of tomatoes were higher in La Niña winters. The yield response can be explained by increased rainfall, reduced daily maximum temperatures, and reduced solar radiation in El Niño winters. Yield and production of winter vegetables appeared to be less responsive to ENSO phase after 1980; for tomato and bell pepper, this may be due to improvements in production technology that mitigate problems associated with excess rainfall. Winter yield and price responses to El Niño events have important implications for both producers and consumers of winter vegetables, and suggest opportunities for further research.
NASA Astrophysics Data System (ADS)
Battisti, R.; Sentelhas, P. C.; Boote, K. J.
2017-12-01
Crop growth models have many uncertainties that affect the yield response to climate change. Based on that, the aim of this study was to evaluate the sensitivity of crop models to systematic changes in climate for simulating soybean attainable yield in Southern Brazil. Four crop models were used to simulate yields: AQUACROP, MONICA, DSSAT, and APSIM, as well as their ensemble. The simulations were performed considering changes of air temperature (0, + 1.5, + 3.0, + 4.5, and + 6.0 °C), [CO2] (380, 480, 580, 680, and 780 ppm), rainfall (- 30, - 15, 0, + 15, and + 30%), and solar radiation (- 15, 0, + 15), applied to daily values. The baseline climate was from 1961 to 2014, totalizing 53 crop seasons. The crop models simulated a reduction of attainable yield with temperature increase, reaching 2000 kg ha-1 for the ensemble at + 6 °C, mainly due to shorter crop cycle. For rainfall, the yield had a higher rate of reduction when it was diminished than when rainfall was increased. The crop models increased yield variability when solar radiation was changed from - 15 to + 15%, whereas [CO2] rise resulted in yield gains, following an asymptotic response, with a mean increase of 31% from 380 to 680 ppm. The models used require further attention to improvements in optimal and maximum cardinal temperature for development rate; runoff, water infiltration, deep drainage, and dynamic of root growth; photosynthesis parameters related to soil water availability; and energy balance of soil-plant system to define leaf temperature under elevated CO2.
NASA Astrophysics Data System (ADS)
Battisti, R.; Sentelhas, P. C.; Boote, K. J.
2018-05-01
Crop growth models have many uncertainties that affect the yield response to climate change. Based on that, the aim of this study was to evaluate the sensitivity of crop models to systematic changes in climate for simulating soybean attainable yield in Southern Brazil. Four crop models were used to simulate yields: AQUACROP, MONICA, DSSAT, and APSIM, as well as their ensemble. The simulations were performed considering changes of air temperature (0, + 1.5, + 3.0, + 4.5, and + 6.0 °C), [CO2] (380, 480, 580, 680, and 780 ppm), rainfall (- 30, - 15, 0, + 15, and + 30%), and solar radiation (- 15, 0, + 15), applied to daily values. The baseline climate was from 1961 to 2014, totalizing 53 crop seasons. The crop models simulated a reduction of attainable yield with temperature increase, reaching 2000 kg ha-1 for the ensemble at + 6 °C, mainly due to shorter crop cycle. For rainfall, the yield had a higher rate of reduction when it was diminished than when rainfall was increased. The crop models increased yield variability when solar radiation was changed from - 15 to + 15%, whereas [CO2] rise resulted in yield gains, following an asymptotic response, with a mean increase of 31% from 380 to 680 ppm. The models used require further attention to improvements in optimal and maximum cardinal temperature for development rate; runoff, water infiltration, deep drainage, and dynamic of root growth; photosynthesis parameters related to soil water availability; and energy balance of soil-plant system to define leaf temperature under elevated CO2.
Simulating the effect of climate extremes on groundwater flow through a lakebed
Virdi, Makhan L.; Lee, Terrie M.; Swancar, Amy; Niswonger, Richard G.
2012-01-01
Groundwater exchanges with lakes resulting from cyclical wet and dry climate extremes maintain lake levels in the environment in ways that are not well understood, in part because they remain difficult to simulate. To better understand the atypical groundwater interactions with lakes caused by climatic extremes, an original conceptual approach is introduced using MODFLOW-2005 and a kinematic-wave approximation to variably saturated flow that allows lake size and position in the basin to change while accurately representing the daily lake volume and three-dimensional variably saturated groundwater flow responses in the basin. Daily groundwater interactions are simulated for a calibrated lake basin in Florida over a decade that included historic wet and dry departures from the average rainfall. The divergent climate extremes subjected nearly 70% of the maximum lakebed area and 75% of the maximum shoreline perimeter to both groundwater inflow and lake leakage. About half of the lakebed area subject to flow reversals also went dry. A flow-through pattern present for 73% of the decade caused net leakage from the lake 80% of the time. Runoff from the saturated lake margin offset the groundwater deficit only about half of that time. A centripetal flow pattern present for 6% of the decade was important for maintaining the lake stage and generated 30% of all net groundwater inflow. Pumping effects superimposed on dry climate extremes induced the least frequent but most cautionary flow pattern with leakage from over 90% of the actual lakebed area.
488-1D Ash Basin closure cap help modeling- Microdrain® liner option
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, J. A.
At the request of Area Completion Engineering and in support of the 488-1D Ash Basin closure, the Savannah River National Laboratory (SRNL) performed hydrologic simulations of the revised 488-1D Ash Basin closure cap design using the Hydrologic Evaluation of Landfill Performance (HELP) model. The revised design substitutes a MicroDrain Liner®—60-mil low-density polyethylene geomembrane structurally integrated with 130-mil drainage layer—for the previously planned drainage/barrier system—300-mil geosynthetic drainage layer (GDL), 300-mil geosynthetic clay liner (GCL), and 6-inch common fill soil layer. For a 25-year, 24-hour storm event, HELP model v3.07 was employed to (1) predict the peak maximum daily hydraulic head formore » the geomembrane layer, and (2) ensure that South Carolina Department of Health and Environmental Control (SCDHEC) requirements for the barrier layer (i.e., ≤ 12 inches hydraulic head on top of a barrier having a saturated hydraulic conductivity ≤ 1.0E-05 cm/s) will not be exceeded. A 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches rainfall (Weber 1998). HELP model v3.07 results based upon the new planned cap design suggest that the peak maximum daily hydraulic head on the geomembrane barrier layer will be 0.15 inches for a minimum slope equal to 3%, which is two orders of magnitude below the SCDHEC upper limit of 12 inches.« less
488-1D Ash basin closure cap help modeling-Microdrain® liner option
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, J.
At the request of Area Completion Engineering and in support of the 488-1D Ash Basin closure, the Savannah River National Laboratory (SRNL) performed hydrologic simulations of the revised 488-1D Ash Basin closure cap design using the Hydrologic Evaluation of Landfill Performance (HELP) model. The revised design substitutes a MicroDrain Liner®—50-mil linear low-density polyethylene geomembrane structurally integrated with 130-mil drainage layer—for the previously planned drainage/barrier system—300-mil geosynthetic drainage layer (GDL), 300-mil geosynthetic clay liner (GCL), and 6-inch common fill soil layer. For a 25-year, 24-hour storm event, HELP model v3.07 was employed to (1) predict the peak maximum daily hydraulic headmore » for the geomembrane layer, and (2) ensure that South Carolina Department of Health and Environmental Control (SCDHEC) requirements for the barrier layer (i.e., ≤ 12 inches hydraulic head on top of a barrier having a saturated hydraulic conductivity ≤ 1.0E-05 cm/s) will not be exceeded. A 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches rainfall (Weber 1998). HELP model v3.07 results based upon the new planned cap design suggest that the peak maximum daily hydraulic head on the geomembrane barrier layer will be 0.179 inches for a minimum slope equal to 3%, which is approximately two orders of magnitude below the SCDHEC upper limit of 12 inches.« less
NASA Astrophysics Data System (ADS)
Remaitre, Alexandre; Wallner, Stefan; Promper, Catrin; Glade, Thomas; Malet, Jean-Philippe
2013-04-01
Rainfall is worldwide a recognized trigger of landslides. Numerous studies were conducted in order to define the relationships between the precipitations and the triggering or the reactivation of landslides. Hydrological triggering of landslides can be divided in three general types: (1) development of local perched water tables in the subsoil leading to shallow slope instabilities and possible gravitational flows, (2) long-lasting rise in permanent water tables leading to more deep-seated slope instabilities, and (3) intense runoff causing channel-bed erosion and debris flows. Types (1) and (3) are usually observed during high rainfall intensities (hourly and daily rainfall) associated to heavy storms; type (2) is usually observed through increasing water content in the subsoil due to antecedent rainfalls (weekly or monthly rainfall) and/or massive snowmelt. Many investigations have been carried out to determine the amount of precipitation needed to trigger slopes failures. For rainfall-induced landslides a threshold may be define the rainfall, soil moisture or hydrological conditions that, when reached or exceeded, are likely to trigger landslides. Usually rainfall thresholds can be defined on physical process-based or conceptual models or empirical, historical and statistical bases. Nevertheless, both the large variety of landslides and to the extreme variety of climatic conditions leading to the triggering or the reactivation of a landslide lead to a regional definition of relationships between landslide occurrence and associated climatic conditions. The purpose of this case study is to analyze the relationships between the triggering of three types of landslides, debris flows, shallow landslides and deep-seated mudslides, and different patterns of rainfall in two study sites with different physiographic and climatic characteristics: the Barcelonnette basin in the South French Alps and the Waidhofen an der Ybbs area in Lower Austria. For this purpose, we exploit for the two test sites a landslide catalogue and rainfall data series to define a typology of rainfall induced-landslides for the relevant landslide types. Results from an analysis of the rainfall conditions associated to these events at different time scale (yearly, monthly, daily and hourly) show a clear distinction between these landslides. Slow-moving landslides are often associated to persistent rainstorms with low intensities during long periods causing the saturation of the soils while fast-moving landslides are usually triggered by short rainfall events with high intensities that occur in summer.
Statistical Analysis of 30 Years Rainfall Data: A Case Study
NASA Astrophysics Data System (ADS)
Arvind, G.; Ashok Kumar, P.; Girish Karthi, S.; Suribabu, C. R.
2017-07-01
Rainfall is a prime input for various engineering design such as hydraulic structures, bridges and culverts, canals, storm water sewer and road drainage system. The detailed statistical analysis of each region is essential to estimate the relevant input value for design and analysis of engineering structures and also for crop planning. A rain gauge station located closely in Trichy district is selected for statistical analysis where agriculture is the prime occupation. The daily rainfall data for a period of 30 years is used to understand normal rainfall, deficit rainfall, Excess rainfall and Seasonal rainfall of the selected circle headquarters. Further various plotting position formulae available is used to evaluate return period of monthly, seasonally and annual rainfall. This analysis will provide useful information for water resources planner, farmers and urban engineers to assess the availability of water and create the storage accordingly. The mean, standard deviation and coefficient of variation of monthly and annual rainfall was calculated to check the rainfall variability. From the calculated results, the rainfall pattern is found to be erratic. The best fit probability distribution was identified based on the minimum deviation between actual and estimated values. The scientific results and the analysis paved the way to determine the proper onset and withdrawal of monsoon results which were used for land preparation and sowing.
Regional rainfall thresholds for landslide occurrence using a centenary database
NASA Astrophysics Data System (ADS)
Vaz, Teresa; Luís Zêzere, José; Pereira, Susana; Cruz Oliveira, Sérgio; Garcia, Ricardo A. C.; Quaresma, Ivânia
2018-04-01
This work proposes a comprehensive method to assess rainfall thresholds for landslide initiation using a centenary landslide database associated with a single centenary daily rainfall data set. The method is applied to the Lisbon region and includes the rainfall return period analysis that was used to identify the critical rainfall combination (cumulated rainfall duration) related to each landslide event. The spatial representativeness of the reference rain gauge is evaluated and the rainfall thresholds are assessed and calibrated using the receiver operating characteristic (ROC) metrics. Results show that landslide events located up to 10 km from the rain gauge can be used to calculate the rainfall thresholds in the study area; however, these thresholds may be used with acceptable confidence up to 50 km from the rain gauge. The rainfall thresholds obtained using linear and potential regression perform well in ROC metrics. However, the intermediate thresholds based on the probability of landslide events established in the zone between the lower-limit threshold and the upper-limit threshold are much more informative as they indicate the probability of landslide event occurrence given rainfall exceeding the threshold. This information can be easily included in landslide early warning systems, especially when combined with the probability of rainfall above each threshold.
Abrupt state change of river water quality (turbidity): Effect of extreme rainfalls and typhoons.
Lee, Chih-Sheng; Lee, Yi-Chao; Chiang, Hui-Min
2016-07-01
River turbidity is of dynamic nature, and its stable state is significantly changed during the period of heavy rainfall events. The frequent occurrence of typhoons in Taiwan has caused serious problems in drinking water treatment due to extremely high turbidity. The aim of the present study is to evaluate impact of typhoons on river turbidity. The statistical methods used included analyses of paired annual mean and standard deviation, frequency distribution, and moving standard deviation, skewness, and autocorrelation; all clearly indicating significant state changes of river turbidity. Typhoon Morakot of 2009 (recorded high rainfall over 2000mm in three days, responsible for significant disaster in southern Taiwan) is assumed as a major initiated event leading to critical state change. In addition, increasing rate of turbidity in rainfall events is highly and positively correlated with rainfall intensity both for pre- and post-Morakot periods. Daily turbidity is also well correlated with daily flow rate for all the eleven events evaluated. That implies potential prediction of river turbidity by river flow rate during rainfall and typhoon events. Based on analysis of stable state changes, more effective regulations for better basin management including soil-water conservation in watershed are necessary. Furthermore, municipal and industrial water treatment plants need to prepare and ensure the adequate operation of water treatment with high raw water turbidity (e.g., >2000NTU). Finally, methodology used in the present of this study can be applied to other environmental problems with abrupt state changes. Copyright © 2016 Elsevier B.V. All rights reserved.
Gaussian process models for reference ET estimation from alternative meteorological data sources
USDA-ARS?s Scientific Manuscript database
Accurate estimates of daily crop evapotranspiration (ET) are needed for efficient irrigation management, especially in arid and semi-arid regions where crop water demand exceeds rainfall. Daily grass or alfalfa reference ET values and crop coefficients are widely used to estimate crop water demand. ...
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2009-04-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, high resolution satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA) are used as a basis for undertaking model experiments using a state-of-the-art regional climate model. The MIRA dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the regional climate model's domain size are briefly presented, before a comparison of simulated daily rainfall from the model with the satellite-derived dataset. Secondly, simulations of current climate and rainfall extremes from the model are compared to the MIRA dataset at daily timescales. Finally, the results from the idealised SST experiments are presented, suggesting highly nonlinear associations between rainfall extremes remote SST anomalies.
Tornevi, Andreas; Bergstedt, Olof; Forsberg, Bertil
2014-01-01
Background The river Göta Älv is a source of freshwater for 0.7 million swedes. The river is subject to contamination from sewer systems discharge and runoff from agricultural lands. Climate models projects an increase in precipitation and heavy rainfall in this region. This study aimed to determine how daily rainfall causes variation in indicators of pathogen loads, to increase knowledge of variations in river water quality and discuss implications for risk management. Methods Data covering 7 years of daily monitoring of river water turbidity and concentrations of E. coli, Clostridium and coliforms were obtained, and their short-term variations in relation with precipitation were analyzed with time series regression and non-linear distributed lag models. We studied how precipitation effects varied with season and compared different weather stations for predictive ability. Results Generally, the lowest raw water quality occurs 2 days after rainfall, with poor raw water quality continuing for several more days. A rainfall event of >15 mm/24-h (local 95 percentile) was associated with a three-fold higher concentration of E. coli and 30% higher turbidity levels (lag 2). Rainfall was associated with exponential increases in concentrations of indicator bacteria while the effect on turbidity attenuated with very heavy rainfall. Clear associations were also observed between consecutive days of wet weather and decreased water quality. The precipitation effect on increased levels of indicator bacteria was significant in all seasons. Conclusions Rainfall elevates microbial risks year-round in this river and freshwater source and acts as the main driver of varying water quality. Heavy rainfall appears to be a better predictor of fecal pollution than water turbidity. An increase of wet weather and extreme events with climate change will lower river water quality even more, indicating greater challenges for drinking water producers, and suggesting better control of sources of pollution. PMID:24874010
SM2RAIN-CCI: a new global long-term rainfall data set derived from ESA CCI soil moisture
NASA Astrophysics Data System (ADS)
Ciabatta, Luca; Massari, Christian; Brocca, Luca; Gruber, Alexander; Reimer, Christoph; Hahn, Sebastian; Paulik, Christoph; Dorigo, Wouter; Kidd, Richard; Wagner, Wolfgang
2018-02-01
Accurate and long-term rainfall estimates are the main inputs for several applications, from crop modeling to climate analysis. In this study, we present a new rainfall data set (SM2RAIN-CCI) obtained from the inversion of the satellite soil moisture (SM) observations derived from the ESA Climate Change Initiative (CCI) via SM2RAIN (Brocca et al., 2014). Daily rainfall estimates are generated for an 18-year long period (1998-2015), with a spatial sampling of 0.25° on a global scale, and are based on the integration of the ACTIVE and the PASSIVE ESA CCI SM data sets.The quality of the SM2RAIN-CCI rainfall data set is evaluated by comparing it with two state-of-the-art rainfall satellite products, i.e. the Tropical Measurement Mission Multi-satellite Precipitation Analysis 3B42 real-time product (TMPA 3B42RT) and the Climate Prediction Center Morphing Technique (CMORPH), and one modeled data set (ERA-Interim). A quality check is carried out on a global scale at 1° of spatial sampling and 5 days of temporal sampling by comparing these products with the gauge-based Global Precipitation Climatology Centre Full Data Daily (GPCC-FDD) product. SM2RAIN-CCI shows relatively good results in terms of correlation coefficient (median value > 0.56), root mean square difference (RMSD, median value < 10.34 mm over 5 days) and bias (median value < -14.44 %) during the evaluation period. The validation has been carried out at original resolution (0.25°) over Europe, Australia and five other areas worldwide to test the capabilities of the data set to correctly identify rainfall events under different climate and precipitation regimes.The SM2RAIN-CCI rainfall data set is freely available at https://doi.org/10.5281/zenodo.846259.
Abecia, J A; Arrébola, F; Macías, A; Laviña, A; González-Casquet, O; Benítez, F; Palacios, C
2016-10-01
A total number of 1092 artificial inseminations (AIs) performed from March to May were documented over four consecutive years on 10 Payoya goat farms (36° N) and 19,392 AIs on 102 Rasa Aragonesa sheep farms (41° N) over 10 years. Mean, maximum, and minimum ambient temperatures, mean relative humidity, mean solar radiation, and total rainfall on each insemination day were recorded. Overall, fertility rates were 58 % in goats and 45 % in sheep. The fertility rates of the highest and lowest deciles of each of the meteorological variables indicated that temperature and rainfall had a significant effect on fertility in goats. Specifically, inseminations that were performed when mean (68 %), maximum (68 %), and minimum (66 %) temperatures were in the highest decile, and rainfall was in the lowest decile (59 %), had a significantly (P < 0.0001) higher proportion of does that became pregnant than did the ewes in the lowest decile (56, 54, 58, and 49 %, respectively). In sheep, the fertility rates of the highest decile of mean (62 %), maximum (62 %), and minimum (52 %) temperature, RH (52 %), THI (53 %), and rainfall (45 %) were significantly higher (P < 0.0001) than were the fertility rates among ewes in the lowest decile (46, 45, 45, 45, 46, and 43 %, respectively). In conclusion, weather was related to fertility in small ruminants after AI in spring. It remains to be determined whether scheduling the dates of insemination based on forecasted temperatures can improve the success of AI in goats and sheep.
Synthetic rainfall vibrations evoke toad emergence.
Márquez, Rafael; Beltrán, Juan F; Llusia, Diego; Penna, Mario; Narins, Peter M
2016-12-19
Toads occupy underground refugia during periods of daily or seasonal inactivity, emerging only during rainfall [1]. We test the hypothesis that rainfall-induced vibrations in soil are the cues that trigger the emergence of toads from underground. Using playback experiments in the absence of natural rainfall in native habitats, we observed that two Iberian toad species (Pelobates cultripes and Bufo calamita) emerged significantly earlier than controls when exposed to low-frequency soil vibrations that closely mimic those of rainfall. Our results suggest that detection of abiotic seismic events are biologically relevant and widespread in arid-zone anurans. These findings provide insights into the evolutionary role played by the two low-frequency-tuned inner-ear organs in anuran amphibians - the amphibian papilla and sacculus, both detectors of weak environmental vibrational cues. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nystuen, Jeffrey A.; Amitai, Eyal
2003-04-01
The underwater sound generated by raindrop splashes on a water surface is loud and unique allowing detection, classification and quantification of rainfall. One of the advantages of the acoustic measurement is that the listening area, an effective catchment area, is proportional to the depth of the hydrophone and can be orders of magnitude greater than other in situ rain gauges. This feature allows high temporal resolution of the rainfall measurement. A series of rain events with extremely high rainfall rates, over 100 mm/hr, is examined acoustically. Rapid onset and cessation of rainfall intensity are detected within the convective cells of these storms with maximum 5-s resolution values exceeding 1000 mm/hr. The probability distribution functions (pdf) for rainfall rate occurrence and water volume using the longer temporal resolutions typical of other instruments do not include these extreme values. The variance of sound intensity within different acoustic frequency bands can be used as an aid to classify rainfall type. Objective acoustic classification algorithms are proposed. Within each rainfall classification the relationship between sound intensity and rainfall rate is nearly linear. The reflectivity factor, Z, also has a linear relationship with rainfall rate, R, for each rainfall classification.
NASA Astrophysics Data System (ADS)
Petroselli, A.; Grimaldi, S.; Romano, N.
2012-12-01
The Soil Conservation Service - Curve Number (SCS-CN) method is a popular rainfall-runoff model widely used to estimate losses and direct runoff from a given rainfall event, but its use is not appropriate at sub-daily time resolution. To overcome this drawback, a mixed procedure, referred to as CN4GA (Curve Number for Green-Ampt), was recently developed including the Green-Ampt (GA) infiltration model and aiming to distribute in time the information provided by the SCS-CN method. The main concept of the proposed mixed procedure is to use the initial abstraction and the total volume given by the SCS-CN to calibrate the Green-Ampt soil hydraulic conductivity parameter. The procedure is here applied on a real case study and a sensitivity analysis concerning the remaining parameters is presented; results show that CN4GA approach is an ideal candidate for the rainfall excess analysis at sub-daily time resolution, in particular for ungauged basin lacking of discharge observations.
Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall.
Dave, Prashant; Bhushan, Mani; Venkataraman, Chandra
2017-12-11
Aerosol abundance over South Asia during the summer monsoon season, includes dust and sea-salt, as well as, anthropogenic pollution particles. Using observations during 2000-2009, here we uncover repeated short-term rainfall suppression caused by coincident aerosols, acting through atmospheric stabilization, reduction in convection and increased moisture divergence, leading to the aggravation of monsoon break conditions. In high aerosol-low rainfall regions extending across India, both in deficient and normal monsoon years, enhancements in aerosols levels, estimated as aerosol optical depth and absorbing aerosol index, acted to suppress daily rainfall anomaly, several times in a season, with lags of a few days. A higher frequency of prolonged rainfall breaks, longer than seven days, occurred in these regions. Previous studies point to monsoon rainfall weakening linked to an asymmetric inter-hemispheric energy balance change attributed to aerosols, and short-term rainfall enhancement from radiative effects of aerosols. In contrast, this study uncovers intraseasonal short-term rainfall suppression, from coincident aerosol forcing over the monsoon region, leading to aggravation of monsoon break spells. Prolonged and intense breaks in the monsoon in India are associated with rainfall deficits, which have been linked to reduced food grain production in the latter half of the twentieth century.
NASA Astrophysics Data System (ADS)
Verma, Ram Ratan; Srivastava, Tapendra Kumar; Singh, Pushpa
2018-01-01
Assessment of variability in climate extremes is crucial for managing their aftermath on crops. Sugarcane (Saccharum officinarum L.), a major C4 crop, dominates the Upper Gangetic Plain (UGP) in India and is vulnerable to both direct and indirect effects of changes in temperature and rainfall. The present study was taken up to assess the weekly, monthly, seasonal, and annual trends of rainfall and temperature variability during the period 1956-2015 (60 years) for envisaging the probabilities of different levels of rainfall suitable for sugarcane in UGP in the present climate scenario. The analysis revealed that 87% of total annual rainfall was received during southwest monsoon months (June-September) while post-monsoon (October to February) and pre-monsoon months (March-May) accounted for only 9.4 and 3.6%, respectively. There was a decline in both monthly and annual normal rainfall during the period 1986-2015 as compared to 1956-1985, and an annual rainfall deficiency of 205.3 mm was recorded. Maximum monthly normal rainfall deficiencies of 52.8, 84.2, and 54.0 mm were recorded during the months of July, August, and September, respectively, while a minimum rainfall deficiency of 2.2 mm was observed in November. There was a decline by 196.3 mm in seasonal normal rainfall during June-September (kharif). The initial probability of a week going dry was higher (> 70%) from the 1st to the 25th week; however, standard meteorological weeks (SMW) 26 to 37 had more than 50% probability of going wet. The normal annual maximum temperature (Tmax) decreased by 0.4 °C while normal annual minimum temperatures (Tmin) increased by 0.21 °C. Analysis showed that there was an increase in frequency of drought from 1986 onwards in the zone and a monsoon rainfall deficit by about 21.25% during June-September which coincided with tillering and grand growth stage of sugarcane. The imposed drought during the growth and elongation phase is emerging as a major constraint in realizing high cane productivity in the zone. Strategies for mitigating the negative impacts of rainfall and temperature variability on sugarcane productivity through improvement in existing adaptation strategies are proposed.
NASA Astrophysics Data System (ADS)
Sheffer, N. A.; Dafny, E.; Gvirtzman, H.; Frumkin, A.; Navon, S.; Morin, E.
2008-05-01
The western part of the Israeli Mountain Aquifer (WMA) supplies 360-400 MCM/y of fresh water to the Israeli water budget, which is approximately 20% of the total consumption. The annually recharge to the WMA is considered to be 25-35% of annual rainfall. The high variability in recharge to the WMA is due to spatial and temporal differences in the rain contributing to the aquifer. Different winters producing the same amount of rain may contribute differently to the aquifer due to the locations of the storms, intensity, duration, dry spells between successive rain events, etc. Moreover, besides the climatic-meteorological factors, the recharge is dependent also on geographical factors, such as lithology, pedology, land-use, slope gradient, slope direction etc. The need for a robust reliable Hydrometeorological Daily basis REcharge Assessment Model (Hydrometeorological DREAM) brought us to develop a model with a relatively high spatial and temporal resolution. The concept is based on a relatively simple water budget that states that rainfall over land is added to the soil, and removed later on by means of evapotranspiration, recharge and runoff. The method in use to date at the Hydrological Service for estimating recharge to the WMA is based on an annual regression curve that can be implemented only after the total annual rainfall is known. The DREAM is a near real time estimator of recharge to the WMA using daily rainfall and pan evaporation data. Comparison of the DREAM results with the annual regression curve show a high agreement on an annual basis. The improvements introduced by the DREAM are: 1) Near real time daily values of infiltration, as opposed to calculated annual values established after the rain season is over. 2) High spatial resolution. The DREAM produces daily recharge values in more than 3000 mesh points throughout the 2200 km2 of recharge area. By linking the DREAM output as input to a hydrogeological model (such as FEFLOW, MODFLOW etc.) a completion of the water cycle can by achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Narendra; Solanki, Raman; Ojha, N.
We present the measurements of cloud-base height variations over Aryabhatta Research Institute of Observational Science, Nainital (79.45 degrees E, 29.37 degrees N, 1958 m amsl) obtained from Vaisala Ceilometer, during the nearly year-long Ganges Valley Aerosol Experiment (GVAX). The cloud-base measurements are analysed in conjunction with collocated measurements of rainfall, to study the possible contributions from different cloud types to the observed monsoonal rainfall during June to September 2011. The summer monsoon of 2011 was a normal monsoon year with total accumulated rainfall of 1035.8 mm during June-September with a maximum during July (367.0 mm) and minimum during September (222.3more » mm). The annual mean monsoon rainfall over Nainital is 1440 +/- 430 mm. The total rainfall measured during other months (October 2011-March 2012) was only 9% of that observed during the summer monsoon. The first cloud-base height varied from about 31 m above ground level (AGL) to a maximum of 7.6 km AGL during the summer monsoon period of 2011. It is found that about 70% of the total rain is observed only when the first cloud-base height varies between surface and 2 km AGL, indicating that most of the rainfall at high altitude stations such as Nainital is associated with stratiform low-level clouds. However, about 25% of the total rainfall is being contributed by clouds between 2 and 6 km. The occurrences of high-altitude cumulus clouds are observed to be only 2-4%. This study is an attempt to fill a major gap of measurements over the topographically complex and observationally sparse northern Indian region providing the evaluation data for atmospheric models and therefore, have implications towards the better predictions of monsoon rainfall and the weather components over this region.« less
Study on Hydrological Functions of Litter Layers in North China
Li, Xiang; Niu, Jianzhi; Xie, Baoyuan
2013-01-01
Canopy interception, throughfall, stemflow, and runoff have received considerable attention during the study of water balance and hydrological processes in forested ecosystems. Past research has either neglected or underestimated the role of hydrological functions of litter layers, although some studies have considered the impact of various characteristics of rainfall and litter on litter interception. Based on both simulated rainfall and litter conditions in North China, the effect of litter mass, rainfall intensity and litter type on the maximum water storage capacity of litter (S) and litter interception storage capacity (C) were investigated under five simulated rainfall intensities and four litter masses for two litter types. The results indicated: 1) the S values increased linearly with litter mass, and the S values of broadleaf litter were on average 2.65 times larger than the S values of needle leaf litter; 2) rainfall intensity rather than litter mass determined the maximum interception storage capacity (Cmax); Cmax increased linearly with increasing rainfall intensity; by contrast, the minimum interception storage capacity (Cmin) showed a linear relationship with litter mass, but a poor correlation with rainfall intensity; 3) litter type impacted Cmax and Cmin; the values of Cmax and Cmin for broadleaf litter were larger than those of needle leaf litter, which indicated that broadleaf litter could intercepte and store more water than needle leaf litter; 4) a gap existed between Cmax and Cmin, indicating that litter played a significant role by allowing rainwater to infiltrate or to produce runoff rather than intercepting it and allowing it to evaporate after the rainfall event; 5) Cmin was always less than S at the same litter mass, which should be considered in future interception predictions. Vegetation and precipitation characteristics played important roles in hydrological characteristics. PMID:23936188
NASA Astrophysics Data System (ADS)
Clarke, Robin T.; Bulhoes Mendes, Carlos Andre; Costa Buarque, Diogo
2010-07-01
Two issues of particular importance for the Amazon watershed are: whether annual maxima obtained from reanalysis and raingauge records agree well enough for the former to be useful in extending records of the latter; and whether reported trends in Amazon annual rainfall are reflected in the behavior of annual extremes in precipitation estimated from reanalyses and raingauge records. To explore these issues, three sets of daily precipitation data (1979-2001) from the Brazilian Amazon were analyzed (NCEP/NCAR and ERA-40 reanalyses, and records from the raingauge network of the Brazilian water resources agency - ANA), using the following variables: (1) mean annual maximum precipitation totals, accumulated over one, two, three and five days; (2) linear trends in these variables; (3) mean length of longest within-year "dry" spell; (4) linear trends in these variables. Comparisons between variables obtained from all three data sources showed that reanalyses underestimated time-trends and mean annual maximum precipitation (over durations of one to five days), and the correlations between reanalysis and spatially-interpolated raingauge estimates were small for these two variables. Both reanalyses over-estimated mean lengths of dry period relative to the mean length recorded by the raingauge network. Correlations between the trends calculated from all three data sources were small. Time-trends averaged over the reanalysis grid-squares, and spatially-interpolated time trends from raingauge data, were all clustered around zero. In conclusion, although the NCEP/NCAR and ERA-40 gridded data-sets may be valuable for studies of inter-annual variability in precipitation totals, they were found to be inappropriate for analysis of precipitation extremes.
NASA Astrophysics Data System (ADS)
Waylen, Peter R.; Harrison, Michael
2005-10-01
The occurrence of tropical cyclones in the Caribbean and North Atlantic basins has been previously noted to have a significant effect both upon individual hydro-climatological events as well as on the quantity of annual precipitation experienced along the Pacific flank of Central America. A methodology for examining the so-called indirect effects of tropical cyclones (i.e. those effects resulting from a tropical cyclone at a considerable distance from the area of interest) on a daily rainfall record is established, which uses a variant of contingency table analysis. The method is tested using a single station on the Pacific slope of Costa Rica. Employing daily precipitation records from Liberia, north-western Costa Rica (1964-1995), and historic storm tracks of tropical cyclones in the North Atlantic, it is determined that precipitation falling in coincidence with the passage of tropical depressions, tropical storms, and hurricanes accounts for approximately 15% of average annual precipitation. The greatest effects are associated with storms passing within 1300 km of the precipitation station, and are most apparent in the increased frequency of daily rainfall totals in the range of 40-60 mm, rather than in the largest daily totals. The complexity and nonstationarity of factors affecting precipitation in this region are reflected in the decline in the number of tropical cyclones and their significance to annual precipitation totals after 1980, simultaneous to an increase in annual precipitation totals. The methodology employed in this study is shown to be a useful tool in illuminating the indirect effects of tropical cyclones in the region, with the potential for application in other areas.
NASA Astrophysics Data System (ADS)
Berezowski, Tomasz; Szcześniak, Mateusz; Kardel, Ignacy; Michałowski, Robert; Okruszko, Tomasz; Mezghani, Abdelkader; Piniewski, Mikołaj
2016-03-01
The CHASE-PL (Climate change impact assessment for selected sectors in Poland) Forcing Data-Gridded Daily Precipitation & Temperature Dataset-5 km (CPLFD-GDPT5) consists of 1951-2013 daily minimum and maximum air temperatures and precipitation totals interpolated onto a 5 km grid based on daily meteorological observations from the Institute of Meteorology and Water Management (IMGW-PIB; Polish stations), Deutscher Wetterdienst (DWD, German and Czech stations), and European Climate Assessment and Dataset (ECAD) and National Oceanic and Atmosphere Administration-National Climatic Data Center (NOAA-NCDC) (Slovak, Ukrainian, and Belarusian stations). The main purpose for constructing this product was the need for long-term aerial precipitation and temperature data for earth-system modelling, especially hydrological modelling. The spatial coverage is the union of the Vistula and Oder basins and Polish territory. The number of available meteorological stations for precipitation and temperature varies in time from about 100 for temperature and 300 for precipitation in the 1950s up to about 180 for temperature and 700 for precipitation in the 1990s. The precipitation data set was corrected for snowfall and rainfall under-catch with the Richter method. The interpolation methods were kriging with elevation as external drift for temperatures and indicator kriging combined with universal kriging for precipitation. The kriging cross validation revealed low root-mean-squared errors expressed as a fraction of standard deviation (SD): 0.54 and 0.47 for minimum and maximum temperature, respectively, and 0.79 for precipitation. The correlation scores were 0.84 for minimum temperatures, 0.88 for maximum temperatures, and 0.65 for precipitation. The CPLFD-GDPT5 product is consistent with 1971-2000 climatic data published by IMGW-PIB. We also confirm good skill of the product for hydrological modelling by performing an application using the Soil and Water Assessment Tool (SWAT) in the Vistula and Oder basins. Link to the data set: doi:10.4121/uuid:e939aec0-bdd1-440f-bd1e-c49ff10d0a07.
Green roofs'retention performances in different climates
NASA Astrophysics Data System (ADS)
Viola, Francesco; Hellies, Matteo; Deidda, Roberto
2017-04-01
The ongoing process of global urbanization contributes to increasing stormwater runoff from impervious surfaces, threatening also water quality. Green roofs have been proved to be an innovative stormwater management tool to partially restore natural state, enhancing interception, infiltration and evapotranspiration fluxes. The amount of water that is retained within green roofs depends mainly on both soil properties and climate. The evaluation of the retained water is not trivial since it depends on the stochastic soil moisture dynamics. The aim of this work is to explore performances of green roofs, in terms of water retention, as a function of their depth considering different climate regimes. The role of climate in driving water retention has been mainly represented by rainfall and potential evapotranspiration dynamics, which are simulated by a simple conceptual weather generator at daily time scale. The model is able to describe seasonal (in-phase and counter-phase) and stationary behaviors of climatic forcings. Model parameters have been estimated on more than 20,000 historical time series retrieved worldwide. Exemplifying cases are discussed for five different climate scenarios, changing the amplitude and/or the phase of daily mean rainfall and evapotranspiration forcings. The first scenario represents stationary climates, in two other cases the daily mean rainfall or the potential evapotranspiration evolve sinusoidally. In the latter two cases, we simulated the in-phase or in counter-phase conditions. Stochastic forcings have been then used as an input to a simple conceptual hydrological model which simulate soil moisture dynamics, evapotranspiration fluxes, runoff and leakage from soil pack at daily time scale. For several combinations of annual rainfall and potential evapotranspiration, the analysis allowed assessing green roofs' retaining capabilities, at annual time scale. Provided abacus allows a first approximation of possible hydrological benefits deriving from the implementation of intensive or extensive green roofs in different world areas, i.e. less input to sewer systems.
NASA Astrophysics Data System (ADS)
Byakatonda, Jimmy; Parida, B. P.; Kenabatho, Piet K.; Moalafhi, D. B.
2018-03-01
Arid and semi-arid environments have been identified with locations prone to impacts of climate variability and change. Investigating long-term trends is one way of tracing climate change impacts. This study investigates variability through annual and seasonal meteorological time series. Possible inhomogeneities and years of intervention are analysed using four absolute homogeneity tests. Trends in the climatic variables were determined using Mann-Kendall and Sen's Slope estimator statistics. Association of El Niño Southern Oscillation (ENSO) with local climate is also investigated through multivariate analysis. Results from the study show that rainfall time series are fully homogeneous with 78.6 and 50% of the stations for maximum and minimum temperature, respectively, showing homogeneity. Trends also indicate a general decrease of 5.8, 7.4 and 18.1% in annual, summer and winter rainfall, respectively. Warming trends are observed in annual and winter temperature at 0.3 and 1.5% for maximum temperature and 1.7 and 6.5% for minimum temperature, respectively. Rainfall reported a positive correlation with Southern Oscillation Index (SOI) and at the same time negative association with Sea Surface Temperatures (SSTs). Strong relationships between SSTs and maximum temperature are observed during the El Niño and La Niña years. These study findings could facilitate planning and management of agricultural and water resources in Botswana.
River sedimentation and channel bed characteristics in northern Ethiopia
NASA Astrophysics Data System (ADS)
Demissie, Biadgilgn; Billi, Paolo; Frankl, Amaury; Haile, Mitiku; Lanckriet, Sil; Nyssen, Jan
2016-04-01
Excessive sedimentation and flood hazard are common in ephemeral streams which are characterized by flashy floods. The purposes of this study was to investigate the temporal variability of bio-climatic factors in controlling sediment supply to downstream channel reaches and the effect of bridges on local hydro-geomorphic conditions in causing the excess sedimentation and flood hazard in ephemeral rivers of the Raya graben (northern Ethiopia). Normalized Difference Vegetation Index (NDVI) was analyzed for the study area using Landsat imageries of 1972, 1986, 2000, 2005, 2010, and 2012). Middle term, 1993-2011, daily rainfall data of three meteorological stations, namely, Alamata, Korem and Maychew, were considered to analyse the temporal trends and to calculate the return time intervals of rainfall intensity in 24 hours for 2, 5, 10 and 20 years using the log-normal and the Gumbel extreme events method. Streambed gradient and bed material grain size were measured in 22 river reaches (at bridges and upstream). In the study catchments, the maximum NDVI values were recorded in the time interval from 2000 to 2010, i.e. the decade during which the study bridges experienced the most severe excess sedimentation problems. The time series analysis for a few rainfall parameters do not show any evidence of rainfall pattern accountable for an increase in sediment delivery from the headwaters nor for the generation of higher floods with larger bedload transport capacities. Stream bed gradient and bed material grain size data were measured in order to investigate the effect of the marked decrease in width from the wide upstream channels to the narrow recently constructed bridges. The study found the narrowing of the channels due to the bridges as the main cause of the thick sedimentation that has been clogging the study bridges and increasing the frequency of overbank flows during the last 15 years. Key terms: sedimentation, ephemeral streams, sediment size, bridge clogging
NASA Astrophysics Data System (ADS)
Koshinchanov, Georgy; Dimitrov, Dobri
2008-11-01
The characteristics of rainfall intensity are important for many purposes, including design of sewage and drainage systems, tuning flood warning procedures, etc. Those estimates are usually statistical estimates of the intensity of precipitation realized for certain period of time (e.g. 5, 10 min., etc) with different return period (e.g. 20, 100 years, etc). The traditional approach in evaluating the mentioned precipitation intensities is to process the pluviometer's records and fit probability distribution to samples of intensities valid for certain locations ore regions. Those estimates further become part of the state regulations to be used for various economic activities. Two problems occur using the mentioned approach: 1. Due to various factors the climate conditions are changed and the precipitation intensity estimates need regular update; 2. As far as the extremes of the probability distribution are of particular importance for the practice, the methodology of the distribution fitting needs specific attention to those parts of the distribution. The aim of this paper is to make review of the existing methodologies for processing the intensive rainfalls and to refresh some of the statistical estimates for the studied areas. The methodologies used in Bulgaria for analyzing the intensive rainfalls and produce relevant statistical estimates: The method of the maximum intensity, used in the National Institute of Meteorology and Hydrology to process and decode the pluviometer's records, followed by distribution fitting for each precipitation duration period; As the above, but with separate modeling of probability distribution for the middle and high probability quantiles. Method is similar to the first one, but with a threshold of 0,36 mm/min of intensity; Another method proposed by the Russian hydrologist G. A. Aleksiev for regionalization of estimates over some territory, improved and adapted by S. Gerasimov for Bulgaria; Next method is considering only the intensive rainfalls (if any) during the day with the maximal annual daily precipitation total for a given year; Conclusions are drown on the relevance and adequacy of the applied methods.
A dependence modelling study of extreme rainfall in Madeira Island
NASA Astrophysics Data System (ADS)
Gouveia-Reis, Délia; Guerreiro Lopes, Luiz; Mendonça, Sandra
2016-08-01
The dependence between variables plays a central role in multivariate extremes. In this paper, spatial dependence of Madeira Island's rainfall data is addressed within an extreme value copula approach through an analysis of maximum annual data. The impact of altitude, slope orientation, distance between rain gauge stations and distance from the stations to the sea are investigated for two different periods of time. The results obtained highlight the influence of the island's complex topography on the spatial distribution of extreme rainfall in Madeira Island.
2010-07-01
September and Typhoon Jangmi two weeks later. These storms were both distinguished by especially large maximum rainfall accumulations, par- ticularly...TCS08 and produced as much rainfall as Sinlaku and Jangmi combined. 2. MODEL SETUP Numerical simulations for these events were per- formed using a...end result was record rainfall at many locations. The highest ob- served total was 1611 mm (63.43 in), but many locations received in excess of 1000 mm
A procedure for assessing future trends of subdaily precipitation values on point scale
NASA Astrophysics Data System (ADS)
Rianna, Guido; Villani, Veronica; Mercogliano, Paola; Vezzoli, Renata
2015-04-01
In many areas of Italy, urban flooding or floods in small mountain basins, induced by heavy precipitations on subdaily scale, represent remarkable hazards able to cause huge damages and casualties often increased by very high population density. A proper assessment about how frequency and magnitude of such events could change under the effect of Climate Changes (CC) is crucial for the development of future territorial planning (such as early warning systems). The current constraints of climate modeling, also using high resolution RCM, prevent an adequate representation of subdaily precipitation patterns (mainly concerning extreme values) while available observed datasets are often unsuitable for the application of the bias-correction (BC) techniques requiring long time series. In this work, a new procedure is proposed: at point scale, precipitation outputs on 24 and 48 hours are provided by high resolution (about 8km) climate simulation performed through the RCM COSMO_CLM driven by GCM CMCC_CM and bias-corrected by quantile mapping approach. These ones are adopted for a monthly stochastic disaggregation approach combining Random Parameter Bartlett-Lewis (RPBL) gamma model with appropriate rainfall disaggregation technique. The last one implements empirical correction procedures, called adjusting procedures, to modify the model rainfall output, so that it is consistent with the observed rainfall values on daily time scale. In order to take into account the great difficulties related to minimization of objective function required by retrieving the 7 RPBL parameters, for each dataset the computations are repeated twenty times. Moreover, adopting statistical properties on 24 and 48 hours to retrieve RPBL parameters allows, according Bo et al. (1994), to infer statistical properties until hourly scale maintaining the information content about the possible changes in precipitation patterns due to CC. The entire simulation chain is tested on Baiso weather station, in Northern Italy; the station is representative of a basin of Secchia river, tributary of the Po River; for this station, are available hourly data on 2003-2012 time span while, since 1981, are available daily data and maximum yearly values until hourly scale. In order to evaluate the uncertainties related to stand-alone approach for retrieving hourly data, it is first tested adopting, as input, observed data on 1981-2010 period; after, for the same time interval, RPBL parameters are estimated using BC RCM precipitation data. However, as control, the available hourly data cover only a part of this span. The results show how the approach, in term of mean and maximum values, return satisfying results until 6 hours while for higher resolutions the errors became significant. Finally, in order to assess the possible effects of CC on subdaily precipitation patterns, the same simulation chain is adopted to provide hourly precipitation datasets also for thirty years 2071-2100 under concentration scenarios RCPs 4.5 and RCP 8.5; the comparison between these ones and control period, permits to understand how, in wet season, the expected warming could produce a reduction in mean duration of precipitation events but with higher rainfall intensity; however, during the summer, the strong reduction in precipitation values could deeply affect also hourly values.
NASA Astrophysics Data System (ADS)
Garcia Galiano, S. G.; Giraldo Osorio, J. D.; Nguyen, P.; Hsu, K. L.; Braithwaite, D.; Olmos, P.; Sorooshian, S.
2015-12-01
Studying Spain's long-term variability and changing trends in rainfall, due to its unique position in the Mediterranean basin (i.e., the latitudinal gradient from North to South and its orographic variation), can provide a valuable insight into how hydroclimatology of the region has changed. A recently released high resolution satellite-based global daily precipitation climate dataset PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network - Climate Data Record), provided the opportunity to conduct such study. It covers the period 01/01/1983 - to date, at 0.25° resolution. In areas without a dense network of rain-gauges, the PERSIANN-CDR dataset could be useful for identifying the reliability of regional climate models (RCMs), in order to build robust RCMs ensemble for reducing the uncertainties in the climate and hydrological projections. However, before using this data set for RCM evaluation, an assessment of performance of PERSIANN-CDR dataset against in-situ observations is necessary. The high-resolution gridded daily rain-gauge dataset, named Spain02, was employed in this study. The variable Dry Spell Lengths (DSL) considering 1 mm and 10 mm as thresholds of daily rainfall, and the time period 1988-2007 was defined for the study. A procedure for improving the consistency and homogeneity between the two datasets was applied. The assessment is based on distributional similarity and the well-known statistical tests (Smirnov-Kolmogorov of two samples and Chi-Square) are used as fitting criteria. The results demonstrate good fit of PERSIANN-CDR over whole Spain, for threshold 10 mm/day. However, for threshold 1 mm/day PERSIANN-CDR compares well with Spain02 dataset for areas with high values of rainfall (North of Spain); while in semiarid areas (South East of Spain) there is strong overestimation of short DSLs. Overall, PERSIANN-CDR demonstrate its robustness in the simulation of DSLs for the highest thresholds.
Zhou, Yingying; Deng, Renjian
2017-01-01
We aimed to study the characteristics and the mechanism of the cumulative release of antimony at an antimony smelting slag stacking area in southern China. A series of dynamic and static leaching experiments to simulate the effects of rainfall were carried out. The results showed that the release of antimony from smelting slag increased with a decrease in the solid-liquid ratio, and the maximum accumulated release was found to be 42.13 mg Sb/kg waste and 34.26 mg Sb/kg waste with a solid/liquid ratio of 1 : 20; the maximum amount of antimony was released within 149–420 μm size fraction with 7.09 mg/L of the cumulative leaching. Also, the antimony release was the greatest and most rapid at pH 7.0 with the minimum release found at pH 4.0. With an increase in rainfall duration, the antimony release increased. The influence of variation in rainfall intensity on the release of antimony from smelting slag was small. PMID:28804669
tropical cyclone risk analysis: a decisive role of its track
NASA Astrophysics Data System (ADS)
Chelsea Nam, C.; Park, Doo-Sun R.; Ho, Chang-Hoi
2016-04-01
The tracks of 85 tropical cyclones (TCs) that made landfall to South Korea for the period 1979-2010 are classified into four clusters by using a fuzzy c-means clustering method. The four clusters are characterized by 1) east-short, 2) east-long, 3) west-long, and 4) west-short based on the moving routes around Korean peninsula. We conducted risk comparison analysis for these four clusters regarding their hazards, exposure, and damages. Here, hazard parameters are calculated from two different sources independently, one from the best-track data (BT) and the other from the 60 weather stations over the country (WS). The results show distinct characteristics of the four clusters in terms of the hazard parameters and economic losses (EL), suggesting that there is a clear track-dependency in the overall TC risk. It is appeared that whether there occurred an "effective collision" overweighs the intensity of the TC per se. The EL ranking did not agree with the BT parameters (maximum wind speed, central pressure, or storm radius), but matches to WS parameter (especially, daily accumulated rainfall and TC-influenced period). The west-approaching TCs (i.e. west-long and west-short clusters) generally recorded larger EL than the east-approaching TCs (i.e. east-short and east-long clusters), although the east-long clusters are the strongest in BT point of view. This can be explained through the spatial distribution of the WS parameters and the regional EL maps corresponding to it. West-approaching TCs accompanied heavy rainfall on the southern regions with the helps of the topographic effect on their tracks, and of the extended stay on the Korean Peninsula in their extratropical transition, that were not allowed to the east-approaching TCs. On the other hand, some regions had EL that are not directly proportional to the hazards, and this is partly attributed to spatial disparity in wealth and vulnerability. Correlation analysis also revealed the importance of rainfall; daily accumulated rainfall is the most-correlated with EL among all BT and WS hazard parameters for all clusters except the east-short. The least-correlated hazard parameter is the storm radius which showed significant correlations with EL for only the short clusters. In conclusion, this study suggests that TC track is essential in determining the way it brings damage on South Korea. Thus, it is suggested that the damage warning and adaptation policy need to be different for different TC tracks although South Korea is relatively small compared to average TC size.
NASA Astrophysics Data System (ADS)
Serinaldi, Francesco; Kilsby, Chris G.
2013-06-01
The information contained in hyetographs and hydrographs is often synthesized by using key properties such as the peak or maximum value Xp, volume V, duration D, and average intensity I. These variables play a fundamental role in hydrologic engineering as they are used, for instance, to define design hyetographs and hydrographs as well as to model and simulate the rainfall and streamflow processes. Given their inherent variability and the empirical evidence of the presence of a significant degree of association, such quantities have been studied as correlated random variables suitable to be modeled by multivariate joint distribution functions. The advent of copulas in geosciences simplified the inference procedures allowing for splitting the analysis of the marginal distributions and the study of the so-called dependence structure or copula. However, the attention paid to the modeling task has overlooked a more thorough study of the true nature and origin of the relationships that link Xp,V,D, and I. In this study, we apply a set of ad hoc bootstrap algorithms to investigate these aspects by analyzing the hyetographs and hydrographs extracted from 282 daily rainfall series from central eastern Europe, three 5 min rainfall series from central Italy, 80 daily streamflow series from the continental United States, and two sets of 200 simulated universal multifractal time series. Our results show that all the pairwise dependence structures between Xp,V,D, and I exhibit some key properties that can be reproduced by simple bootstrap algorithms that rely on a standard univariate resampling without resort to multivariate techniques. Therefore, the strong similarities between the observed dependence structures and the agreement between the observed and bootstrap samples suggest the existence of a numerical generating mechanism based on the superposition of the effects of sampling data at finite time steps and the process of summing realizations of independent random variables over random durations. We also show that the pairwise dependence structures are weakly dependent on the internal patterns of the hyetographs and hydrographs, meaning that the temporal evolution of the rainfall and runoff events marginally influences the mutual relationships of Xp,V,D, and I. Finally, our findings point out that subtle and often overlooked deterministic relationships between the properties of the event hyetographs and hydrographs exist. Confusing these relationships with genuine stochastic relationships can lead to an incorrect application of multivariate distributions and copulas and to misleading results.
NASA Astrophysics Data System (ADS)
Casas-Castillo, M. Carmen; Llabrés-Brustenga, Alba; Rius, Anna; Rodríguez-Solà, Raúl; Navarro, Xavier
2018-02-01
As well as in other natural processes, it has been frequently observed that the phenomenon arising from the rainfall generation process presents fractal self-similarity of statistical type, and thus, rainfall series generally show scaling properties. Based on this fact, there is a methodology, simple scaling, which is used quite broadly to find or reproduce the intensity-duration-frequency curves of a place. In the present work, the relationship of the simple scaling parameter with the characteristic rainfall pattern of the area of study has been investigated. The calculation of this scaling parameter has been performed from 147 daily rainfall selected series covering the temporal period between 1883 and 2016 over the Catalonian territory (Spain) and its nearby surroundings, and a discussion about the relationship between the scaling parameter spatial distribution and rainfall pattern, as well as about trends of this scaling parameter over the past decades possibly due to climate change, has been presented.
Rain Check Application: Mobile tool to monitor rainfall in remote parts of Haiti
NASA Astrophysics Data System (ADS)
Huang, X.; Baird, J.; Chiu, M. T.; Morelli, R.; de Lanerolle, T. R.; Gourley, J. R.
2011-12-01
Rainfall observations performed uniformly and continuously over a period of time are valuable inputs in developing climate models and predicting events such as floods and droughts. Rain-Check is a mobile application developed in Google App Inventor Platform, for android based smart phones, to allow field researchers to monitor various rain gauges distributed though out remote regions of Haiti and send daily readings via SMS messages for further analysis and long term trending. Rainfall rate and quantity interact with many other factors to influence erosion, vegetative cover, groundwater recharge, stream water chemistry and runoff into streams impacting agriculture and livestock. Rainfall observation from various sites is especially significant in Haiti with over 80% of the country is mountainous terrain. Data sets from global models and limited number of ground stations do not capture the fine-scale rainfall patterns necessary to describe local climate. Placement and reading of rain gauges are critical to accurate measurement of rainfall.
Sandoval, S; Torres, A; Pawlowsky-Reusing, E; Riechel, M; Caradot, N
2013-01-01
The present study aims to explore the relationship between rainfall variables and water quality/quantity characteristics of combined sewer overflows (CSOs), by the use of multivariate statistical methods and online measurements at a principal CSO outlet in Berlin (Germany). Canonical correlation results showed that the maximum and average rainfall intensities are the most influential variables to describe CSO water quantity and pollutant loads whereas the duration of the rainfall event and the rain depth seem to be the most influential variables to describe CSO pollutant concentrations. The analysis of partial least squares (PLS) regression models confirms the findings of the canonical correlation and highlights three main influences of rainfall on CSO characteristics: (i) CSO water quantity characteristics are mainly influenced by the maximal rainfall intensities, (ii) CSO pollutant concentrations were found to be mostly associated with duration of the rainfall and (iii) pollutant loads seemed to be principally influenced by dry weather duration before the rainfall event. The prediction quality of PLS models is rather low (R² < 0.6) but results can be useful to explore qualitatively the influence of rainfall on CSO characteristics.
Monsoon Rainfall and Landslides in Nepal
NASA Astrophysics Data System (ADS)
Dahal, R. K.; Hasegawa, S.; Bhandary, N. P.; Yatabe, R.
2009-12-01
A large number of human settlements on the Nepal Himalayas are situated either on old landslide mass or on landslide-prone areas. As a result, a great number of people are affected by large- and small-scale landslides all over the Himalayas especially during monsoon periods. In Nepal, only in the half monsoon period (June 10 to August 15), 70, 50 and 68 people were killed from landslides in 2007, 2008 and 2009, respectively. In this context, this paper highlights monsoon rainfall and their implications in the Nepal Himalaya. In Nepal, monsoon is major source of rainfall in summer and approximately 80% of the annual total rainfall occurs from June to September. The measured values of mean annual precipitation in Nepal range from a low of approximately 250 mm at area north of the Himalaya to many areas exceeding 6,000 mm. The mean annual rainfall varying between 1500 mm and 2500 mm predominate over most of the country. In Nepal, the daily distribution of precipitation during rainy season is also uneven. Sometime 10% of the total annual precipitation can occur in a single day. Similarly, 50% total annual rainfall also can occur within 10 days of monsoon. This type of uneven distribution plays an important role in triggering many landslides in Nepal. When spatial distribution of landslides was evaluated from record of more than 650 landslides, it is found that more landslides events were concentrated at central Nepal in the area of high mean annual rainfall. When monsoon rainfall and landslide relationship was taken into consideration, it was noticed that a considerable number of landslides were triggered in the Himalaya by continuous rainfall of 3 to 90 days. It has been noticed that continuous rainfall of few days (5 days or 7 days or 10 days) are usually responsible for landsliding in the Nepal Himalaya. Monsoon rains usually fall with interruptions of 2-3 days and are generally characterized by low intensity and long duration. Thus, there is a strong role of antecedent rainfall in triggering landslides. It is noticed that a moderate correlation exists between the antecedent rainfalls of 3 to 10 days and the daily rainfall at failure in the Nepal Himalaya. The rainfall thresholds are utilized to develop early warning systems. Taking reference of the intensity-duration threshold and normalized rainfall intensity threshold, two proto-type models of early warning systems (RIEWS and N-RIEWS) are proposed. Early warning models show less time for evacuation in the case of short duration and high intensity rainfall, whereas for long duration rainfall, warning time is enough and when warning information disseminate to the people, people will aware to possible landslide risk. In the meantime, they will be mentally ready to tackle with possible disaster of coming hours or days and will avoid the consequences. On the basis of coarse hydro-meteorological data of developing country like Nepal, this simple and rather easy model of early warning will certainly help to reduce fatalities from landslides.
Chen, Sheng; Liu, Huijuan; You, Yalei; Mullens, Esther; Hu, Junjun; Yuan, Ye; Huang, Mengyu; He, Li; Luo, Yongming; Zeng, Xingji; Tang, Guoqiang; Hong, Yang
2014-01-01
Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing. PMID:24691358
Chen, Sheng; Liu, Huijuan; You, Yalei; Mullens, Esther; Hu, Junjun; Yuan, Ye; Huang, Mengyu; He, Li; Luo, Yongming; Zeng, Xingji; Tang, Guoqiang; Hong, Yang
2014-01-01
Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing.
Rainfall Patterns Analysis over Ampangan Muda, Kedah from 2007 - 2016
NASA Astrophysics Data System (ADS)
Chooi Tan, Kok
2018-04-01
The scientific knowledge about climate change and climate variability over Malaysia pertaining to the extreme water-related disaster such as drought and flood. A deficit or increment in precipitation occurred over the past century becomes a useful tool to understand the climate change in Malaysia. The purpose of this work is to examine the rainfall patterns over Ampangan Muda, Kedah. Daily rainfall data is acquired from Malaysian Meteorological Department to analyse the temporal and trends of the monthly and annual rainfall over the study area from 2007 to 2016. The obtained results show that the temporal and patterns of the rainfall over Ampangan Muda, Kedah is largely affected by the regional phenomena such as monsoon, El Niño Southern Oscillation (ENSO), and the Madden-Julian Oscillation. In addition, backward trajectories analysis is also used to identify the patterns for long-range of synoptic circulation over the region.
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall; OCStarr, David (Technical Monitor)
2002-01-01
A recent paper by Shepherd and Pierce (in press at Journal of Applied Meteorology) used rainfall data from the Precipitation Radar on NASA's Tropical Rainfall Measuring Mission's (TRMM) satellite to identify warm season rainfall anomalies downwind of major urban areas. Data (PR) were employed to identify warm season rainfall (1998-2000) patterns around Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas. Results reveal an average increase of approx. 28% in monthly rainfall rates within 30-60 kilometers downwind of the metropolis with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage changes are relative to an upwind control area. It was also found that maximum rainfall rates in the downwind impact area exceeded the mean value in the upwind control area by 48%-116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. Results are consistent with METROMEX studies of St. Louis almost two decades ago and with more recent studies near Atlanta. A convective-mesoscale model with extensive land-surface processes is currently being employed to (a) determine if an urban heat island (UHI) thermal perturbation can induce a dynamic response to affect rainfall processes and (b) quantify the impact of the following three factors on the evolution of rainfall: (1) urban surface roughness, (2) magnitude of the UHI temperature anomaly, and (3) physical size of the UHI temperature anomaly. The sensitivity experiments are achieved by inserting a slab of land with urban properties (e.g. roughness length, albedo, thermal character) within a rural surface environment and varying the appropriate lower boundary condition parameters. The study will discuss the feasibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. The talk also introduces very preliminary results from the modeling component of the study. Such research has implications for weather forecasting, urban planning, water resource management, and understanding human impact on the environment and climate.
NASA Astrophysics Data System (ADS)
Heo, J. H.; Ahn, H.; Kjeldsen, T. R.
2017-12-01
South Korea is prone to large, and often disastrous, rainfall events caused by a mixture of monsoon and typhoon rainfall phenomena. However, traditionally, regional frequency analysis models did not consider this mixture of phenomena when fitting probability distributions, potentially underestimating the risk posed by the more extreme typhoon events. Using long-term observed records of extreme rainfall from 56 sites combined with detailed information on the timing and spatial impact of past typhoons from the Korea Meteorological Administration (KMA), this study developed and tested a new mixture model for frequency analysis of two different phenomena; events occurring regularly every year (monsoon) and events only occurring in some years (typhoon). The available annual maximum 24 hour rainfall data were divided into two sub-samples corresponding to years where the annual maximum is from either (1) a typhoon event, or (2) a non-typhoon event. Then, three-parameter GEV distribution was fitted to each sub-sample along with a weighting parameter characterizing the proportion of historical events associated with typhoon events. Spatial patterns of model parameters were analyzed and showed that typhoon events are less commonly associated with annual maximum rainfall in the North-West part of the country (Seoul area), and more prevalent in the southern and eastern parts of the country, leading to the formation of two distinct typhoon regions: (1) North-West; and (2) Southern and Eastern. Using a leave-one-out procedure, a new regional frequency model was tested and compared to a more traditional index flood method. The results showed that the impact of typhoon on design events might previously have been underestimated in the Seoul area. This suggests that the use of the mixture model should be preferred where the typhoon phenomena is less frequent, and thus can have a significant effect on the rainfall-frequency curve. This research was supported by a grant(2017-MPSS31-001) from Supporting Technology Development Program for Disaster Management funded by Ministry of Public Safety and Security(MPSS) of the Korean government.
Predicting of soil erosion with regarding to rainfall erosivity and soil erodibility
NASA Astrophysics Data System (ADS)
Suif, Zuliziana; Razak, Mohd Amirun Anis Ab; Ahmad, Nordila
2018-02-01
The soil along the hill and slope are wearing away due to erosion and it can take place due to occurrence of weak and heavy rainfall. The aim of this study is to predict the soil erosion degree in Universiti Pertahanan Nasional Malaysia (UPNM) area focused on two major factor which is soil erodibility and rainfall erosivity. Soil erodibility is the possibilities of soil to detach and carried away during rainfall and runoff. The "ROM" scale was used in this study to determine the degree of soil erodibility, namely low, moderate, high, and very high. As for rainfall erosivity, the erosive power caused by rainfall that cause soil loss. A daily rainfall data collected from January to April was analyzed by using ROSE index classification to identify the potential risk of soil erosion. The result shows that the soil erodibilty are moderate at MTD`s hill, high at behind of block Lestari and Landslide MTD hill, and critical at behind the mess cadet. While, the highest rainfall erosivity was recorded in March and April. Overall, this study would benefit the organization greatly in saving cost in landslide protection as relevant authorities can take early measures repairing the most affected area of soil erosion.
NASA Astrophysics Data System (ADS)
Ongoma, Victor; Chen, Haishan; Omony, George William
2018-01-01
This study investigates the variability of extreme rainfall events over East Africa (EA), using indices from the World Meteorological Organization (WMO) Expert Team on Climate Change Detection and Indices (ETCCDI). The analysis was based on observed daily rainfall from 23 weather stations, with length varying within 1961 and 2010. The indices considered are: wet days ( R ≥1 mm), annual total precipitation in wet days (PRCPTOT), simple daily intensity index (SDII), heavy precipitation days ( R ≥ 10 mm), very heavy precipitation days ( R ≥ 20 mm), and severe precipitation ( R ≥ 50 mm). The non-parametric Mann-Kendall statistical analysis was carried out to identify trends in the data. Temporal precipitation distribution was different from station to station. Almost all indices considered are decreasing with time. The analysis shows that the PRCPTOT, very heavy precipitation, and severe precipitation are generally declining insignificantly at 5 % significant level. The PRCPTOT is evidently decreasing over Arid and Semi-Arid Land (ASAL) as compared to other parts of EA. The number of days that recorded heavy rainfall is generally decreasing but starts to rise in the last decade although the changes are insignificant. Both PRCPTOT and heavy precipitation show a recovery in trend starting in the 1990s. The SDII shows a reduction in most areas, especially the in ASAL. The changes give a possible indication of the ongoing climate variability and change which modify the rainfall regime of EA. The results form a basis for further research, utilizing longer datasets over the entire region to reduce the generalizations made herein. Continuous monitoring of extreme events in EA is critical, given that rainfall is projected to increase in the twenty-first century.
A fully probabilistic approach to extreme rainfall modeling
NASA Astrophysics Data System (ADS)
Coles, Stuart; Pericchi, Luis Raúl; Sisson, Scott
2003-03-01
It is an embarrassingly frequent experience that statistical practice fails to foresee historical disasters. It is all too easy to blame global trends or some sort of external intervention, but in this article we argue that statistical methods that do not take comprehensive account of the uncertainties involved in both model and predictions, are bound to produce an over-optimistic appraisal of future extremes that is often contradicted by observed hydrological events. Based on the annual and daily rainfall data on the central coast of Venezuela, different modeling strategies and inference approaches show that the 1999 rainfall which caused the worst environmentally related tragedy in Venezuelan history was extreme, but not implausible given the historical evidence. We follow in turn a classical likelihood and Bayesian approach, arguing that the latter is the most natural approach for taking into account all uncertainties. In each case we emphasize the importance of making inference on predicted levels of the process rather than model parameters. Our most detailed model comprises of seasons with unknown starting points and durations for the extremes of daily rainfall whose behavior is described using a standard threshold model. Based on a Bayesian analysis of this model, so that both prediction uncertainty and process heterogeneity are properly modeled, we find that the 1999 event has a sizeable probability which implies that such an occurrence within a reasonably short time horizon could have been anticipated. Finally, since accumulation of extreme rainfall over several days is an additional difficulty—and indeed, the catastrophe of 1999 was exaggerated by heavy rainfall on successive days—we examine the effect of timescale on our broad conclusions, finding results to be broadly similar across different choices.
Satellite observations of rainfall effect on sea surface salinity in the waters adjacent to Taiwan
NASA Astrophysics Data System (ADS)
Ho, Chung-Ru; Hsu, Po-Chun; Lin, Chen-Chih; Huang, Shih-Jen
2017-10-01
Changes of oceanic salinity are highly related to the variations of evaporation and precipitation. To understand the influence of rainfall on the sea surface salinity (SSS) in the waters adjacent to Taiwan, satellite remote sensing data from the year of 2012 to 2014 are employed in this study. The daily rain rate data obtained from Special Sensor Microwave Imager (SSM/I), Tropical Rainfall Measuring Mission's Microwave Imager (TRMM/TMI), Advanced Microwave Scanning Radiometer (AMSR), and WindSat Polarimetric Radiometer. The SSS data was derived from the measurements of radiometer instruments onboard the Aquarius satellite. The results show the average values of SSS in east of Taiwan, east of Luzon and South China Sea are 33.83 psu, 34.05 psu, and 32.84 psu, respectively, in the condition of daily rain rate higher than 1 mm/hr. In contrast to the rainfall condition, the average values of SSS are 34.07 psu, 34.26 psu, and 33.09 psu in the three areas, respectively at no rain condition (rain rate less than 1 mm/hr). During the cases of heavy rainfall caused by spiral rain bands of typhoon, the SSS is diluted with an average value of -0.78 psu when the average rain rate is higher than 4 mm/hr. However, the SSS was increased after temporarily decreased during the typhoon cases. A possible reason to explain this phenomenon is that the heavy rainfall caused by the spiral rain bands of typhoon may dilute the sea surface water, but the strong winds can uplift the higher salinity of subsurface water to the sea surface.
NASA Astrophysics Data System (ADS)
Busuioc, Aristita; Baciu, Madalina; Breza, Traian; Dumitrescu, Alexandru; Stoica, Cerasela; Baghina, Nina
2016-04-01
Many observational, theoretical and based on climate model simulation studies suggested that warmer climates lead to more intense precipitation events, even when the total annual precipitation is slightly reduced. In this way, it was suggested that extreme precipitation events may increase at Clausius-Clapeyron (CC) rate under global warming and constraint of constant relative humidity. However, recent studies show that the relationship between extreme rainfall intensity and atmospheric temperature is much more complex than would be suggested by the CC relationship and is mainly dependent on precipitation temporal resolution, region, storm type and whether the analysis is conducted on storm events rather than fixed data. The present study presents the dependence between the very hight temporal scale extreme rainfall intensity and daily temperatures, with respect to the verification of the CC relation. To solve this objective, the analysis is conducted on rainfall event rather than fixed interval using the rainfall data based on graphic records including intensities (mm/min.) calculated over each interval with permanent intensity per minute. The annual interval with available a such data (April to October) is considered at 5 stations over the interval 1950-2007. For Bucuresti-Filaret station the analysis is extended over the longer interval (1898-2007). For each rainfall event, the maximum intensity (mm/min.) is retained and these time series are considered for the further analysis (abbreviated in the following as IMAX). The IMAX data were divided based on the daily mean temperature into bins 2oC - wide. The bins with less than 100 values were excluded. The 90th, 99th and 99.9th percentiles were computed from the binned data using the empirical distribution and their variability has been compared to the CC scaling (e.g. exponential relation given by a 7% increase per temperature degree rise). The results show a dependence close to double the CC relation for temperatures less than ~ 220C and negative scaling rates for higher temperatures. This behaviour is similar for all the 5 analysed stations over the common interval 1950-2007. This scaling is more exactly for the 90th percentile, while for the higher percentiles the rainfall intensity in response to warming exceeds sometimes the CC rate. For Bucuresti-Filaret station, the results are similar over a longer interval (1898-2007) showing that these findings are robust. Similar techniques has been previously applied to the hourly rainfall intensities recorded at 9 stations (including the 5 ones) and the results are slightly different: the 90th percentile shows dependence close to the CC relation for all temperatures; the 99th and 99.9th percentiles exhibit rates close to double the CC rate for temperatures between ~ 100C and ~ 220C and negative scaling rates for higher temperatures. In conclusion, these results show that the dependence between the extreme precipitation intensity and atmospheric temperature in Romania is mainly dependent on the temporal precipitation resolution and the degree of the extreme precipitation event (moderate or stronger); these findings are mainly in agreenment with the conclusions presented by previous international studies (mentioned above), with some regional specific features, showing the importance of the regional studies. The results presented is this study were funded by the Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI) through the research project CLIMHYDEX, "Changes in climate extremes and associated impact in hydrological events in Romania", code PNII-ID-2011-2-0073 (http://climhydex.meteoromania.ro).
Estimating annual suspended-sediment loads in the northern and central Appalachian Coal region
Koltun, G.F.
1985-01-01
Multiple-regression equations were developed for estimating the annual suspended-sediment load, for a given year, from small to medium-sized basins in the northern and central parts of the Appalachian coal region. The regression analysis was performed with data for land use, basin characteristics, streamflow, rainfall, and suspended-sediment load for 15 sites in the region. Two variables, the maximum mean-daily discharge occurring within the year and the annual peak discharge, explained much of the variation in the annual suspended-sediment load. Separate equations were developed employing each of these discharge variables. Standard errors for both equations are relatively large, which suggests that future predictions will probably have a low level of precision. This level of precision, however, may be acceptable for certain purposes. It is therefore left to the user to asses whether the level of precision provided by these equations is acceptable for the intended application.
Mountain evaporation profiles on the island of Hawai'i
NASA Astrophysics Data System (ADS)
Bean, Christine; Juvik, James O.; Nullet, Dennis
1994-04-01
Evaporation was measured along three altitudinal transects on Mauna Loa, on the island of Hawai'i. Stations lie between 70 and 3400 m a.s.l. and included environments ranging from tropical rainforest with 6 m year -1 annual rainfall to barren, subalpine lava fields in a dry environment above a persistent, subsidence temperature inversion. Average daily evaporation decreased with elevation between sea-level and about 1200 m, and then increased with elevation above that level. Evaporation minima ranged from 1.9 to 2.2 mm day -1. The maximum evaporation rate, 6.1 mm day -1, was at the highest site, Mauna Loa Observatory at 3400 m. Analysis of pan-evaporation data collected at 3400 m showed that standard formulae based on other meteorological variables provided good approximations of measured evaporation. Transect data were also compared with similar measurements from mountains on other Hawaiian islands.
Bersinger, T; Bareille, G; Pigot, T; Bru, N; Le Hécho, I
2018-06-01
A good knowledge of the dynamic of pollutant concentration and flux in a combined sewer network is necessary when considering solutions to limit the pollutants discharged by combined sewer overflow (CSO) into receiving water during wet weather. Identification of the parameters that influence pollutant concentration and flux is important. Nevertheless, few studies have obtained satisfactory results for the identification of these parameters using statistical tools. Thus, this work uses a large database of rain events (116 over one year) obtained via continuous measurement of rainfall, discharge flow and chemical oxygen demand (COD) estimated using online turbidity for the identification of these parameters. We carried out a statistical study of the parameters influencing the maximum COD concentration, the discharge flow and the discharge COD flux. In this study a new test was used that has never been used in this field: the conditional regression tree test. We have demonstrated that the antecedent dry weather period, the rain event average intensity and the flow before the event are the three main factors influencing the maximum COD concentration during a rainfall event. Regarding the discharge flow, it is mainly influenced by the overall rainfall height but not by the maximum rainfall intensity. Finally, COD discharge flux is influenced by the discharge volume and the maximum COD concentration. Regression trees seem much more appropriate than common tests like PCA and PLS for this type of study as they take into account the thresholds and cumulative effects of various parameters as a function of the target variable. These results could help to improve sewer and CSO management in order to decrease the discharge of pollutants into receiving waters. Copyright © 2017 Elsevier B.V. All rights reserved.
Congo Basin rainfall climatology: can we believe the climate models?
Washington, Richard; James, Rachel; Pearce, Helen; Pokam, Wilfried M; Moufouma-Okia, Wilfran
2013-01-01
The Congo Basin is one of three key convective regions on the planet which, during the transition seasons, dominates global tropical rainfall. There is little agreement as to the distribution and quantity of rainfall across the basin with datasets differing by an order of magnitude in some seasons. The location of maximum rainfall is in the far eastern sector of the basin in some datasets but the far western edge of the basin in others during March to May. There is no consistent pattern to this rainfall distribution in satellite or model datasets. Resolving these differences is difficult without ground-based data. Moisture flux nevertheless emerges as a useful variable with which to study these differences. Climate models with weak (strong) or even divergent moisture flux over the basin are dry (wet). The paper suggests an approach, via a targeted field campaign, for generating useful climate information with which to confront rainfall products and climate models.
NASA Technical Reports Server (NTRS)
Berg, Wesley; Chase, Robert
1992-01-01
Global estimates of monthly, seasonal, and annual oceanic rainfall are computed for a period of one year using data from the Special Sensor Microwave/Imager (SSM/I). Instantaneous rainfall estimates are derived from brightness temperature values obtained from the satellite data using the Hughes D-matrix algorithm. The instantaneous rainfall estimates are stored in 1 deg square bins over the global oceans for each month. A mixed probability distribution combining a lognormal distribution describing the positive rainfall values and a spike at zero describing the observations indicating no rainfall is used to compute mean values. The resulting data for the period of interest are fitted to a lognormal distribution by using a maximum-likelihood. Mean values are computed for the mixed distribution and qualitative comparisons with published historical results as well as quantitative comparisons with corresponding in situ raingage data are performed.
Prediction of kharif rice yield at Kharagpur using disaggregated extended range rainfall forecasts
NASA Astrophysics Data System (ADS)
Dhekale, B. S.; Nageswararao, M. M.; Nair, Archana; Mohanty, U. C.; Swain, D. K.; Singh, K. K.; Arunbabu, T.
2017-08-01
The Extended Range Forecasts System (ERFS) has been generating monthly and seasonal forecasts on real-time basis throughout the year over India since 2009. India is one of the major rice producer and consumer in South Asia; more than 50% of the Indian population depends on rice as staple food. Rice is mainly grown in kharif season, which contributed 84% of the total annual rice production of the country. Rice cultivation in India is rainfed, which depends largely on rains, so reliability of the rainfall forecast plays a crucial role for planning the kharif rice crop. In the present study, an attempt has been made to test the reliability of seasonal and sub-seasonal ERFS summer monsoon rainfall forecasts for kharif rice yield predictions at Kharagpur, West Bengal by using CERES-Rice (DSSATv4.5) model. These ERFS forecasts are produced as monthly and seasonal mean values and are converted into daily sequences with stochastic weather generators for use with crop growth models. The daily sequences are generated from ERFS seasonal (June-September) and sub-seasonal (July-September, August-September, and September) summer monsoon (June to September) rainfall forecasts which are considered as input in CERES-rice crop simulation model for the crop yield prediction for hindcast (1985-2008) and real-time mode (2009-2015). The yield simulated using India Meteorological Department (IMD) observed daily rainfall data is considered as baseline yield for evaluating the performance of predicted yields using the ERFS forecasts. The findings revealed that the stochastic disaggregation can be used to disaggregate the monthly/seasonal ERFS forecasts into daily sequences. The year to year variability in rice yield at Kharagpur is efficiently predicted by using the ERFS forecast products in hindcast as well as real time, and significant enhancement in the prediction skill is noticed with advancement in the season due to incorporation of observed weather data which reduces uncertainty of yield prediction. The findings also recommend that the normal and above normal yields are predicted well in advance using the ERFS forecasts. The outcomes of this study are useful to farmers for taking appropriate decisions well in advance for climate risk management in rice production during different stages of the crop growing season at Kharagpur.
Changing climate and endangered high mountain ecosystems in Colombia.
Ruiz, Daniel; Moreno, Hernán Alonso; Gutiérrez, María Elena; Zapata, Paula Andrea
2008-07-15
High mountain ecosystems are among the most sensitive environments to changes in climatic conditions occurring on global, regional and local scales. The article describes the changing conditions observed over recent years in the high mountain basin of the Claro River, on the west flank of the Colombian Andean Central mountain range. Local ground truth data gathered at 4150 m, regional data available at nearby weather stations, and satellite info were used to analyze changes in the mean and the variance, and significant trends in climatic time series. Records included minimum, mean and maximum temperatures, relative humidity, rainfall, sunshine, and cloud characteristics. In high levels, minimum and maximum temperatures during the coldest days increased at a rate of about 0.6 degrees C/decade, whereas maximum temperatures during the warmest days increased at a rate of about 1.3 degrees C/decade. Rates of increase in maximum, mean and minimum diurnal temperature range reached 0.6, 0.7, and 0.5 degrees C/decade. Maximum, mean and minimum relative humidity records showed reductions of about 1.8, 3.9 and 6.6%/decade. The total number of sunny days per month increased in almost 2.1 days. The headwaters exhibited no changes in rainfall totals, but evidenced an increased occurrence of unusually heavy rainfall events. Reductions in the amount of all cloud types over the area reached 1.9%/decade. In low levels changes in mean monthly temperatures and monthly rainfall totals exceeded + 0.2 degrees C and - 4% per decade, respectively. These striking changes might have contributed to the retreat of glacier icecaps and to the disappearance of high altitude water bodies, as well as to the occurrence and rapid spread of natural and man-induced forest fires. Significant reductions in water supply, important disruptions of the integrity of high mountain ecosystems, and dramatic losses of biodiversity are now a steady menu of the severe climatic conditions experienced by these fragile tropical environments.
Lamontagne, Jonathan R.; Stedinger, Jery R.; Berenbrock, Charles; Veilleux, Andrea G.; Ferris, Justin C.; Knifong, Donna L.
2012-01-01
Flood-frequency information is important in the Central Valley region of California because of the high risk of catastrophic flooding. Most traditional flood-frequency studies focus on peak flows, but for the assessment of the adequacy of reservoirs, levees, other flood control structures, sustained flood flow (flood duration) frequency data are needed. This study focuses on rainfall or rain-on-snow floods, rather than the annual maximum, because rain events produce the largest floods in the region. A key to estimating flood-duration frequency is determining the regional skew for such data. Of the 50 sites used in this study to determine regional skew, 28 sites were considered to have little to no significant regulated flows, and for the 22 sites considered significantly regulated, unregulated daily flow data were synthesized by using reservoir storage changes and diversion records. The unregulated, annual maximum rainfall flood flows for selected durations (1-day, 3-day, 7-day, 15-day, and 30-day) for all 50 sites were furnished by the U.S. Army Corps of Engineers. Station skew was determined by using the expected moments algorithm program for fitting the Pearson Type 3 flood-frequency distribution to the logarithms of annual flood-duration data. Bayesian generalized least squares regression procedures used in earlier studies were modified to address problems caused by large cross correlations among concurrent rainfall floods in California and to address the extensive censoring of low outliers at some sites, by using the new expected moments algorithm for fitting the LP3 distribution to rainfall flood-duration data. To properly account for these problems and to develop suitable regional-skew regression models and regression diagnostics, a combination of ordinary least squares, weighted least squares, and Bayesian generalized least squares regressions were adopted. This new methodology determined that a nonlinear model relating regional skew to mean basin elevation was the best model for each flood duration. The regional-skew values ranged from -0.74 for a flood duration of 1-day and a mean basin elevation less than 2,500 feet to values near 0 for a flood duration of 7-days and a mean basin elevation greater than 4,500 feet. This relation between skew and elevation reflects the interaction of snow and rain, which increases with increased elevation. The regional skews are more accurate, and the mean squared errors are less than in the Interagency Advisory Committee on Water Data's National skew map of Bulletin 17B.
NASA Astrophysics Data System (ADS)
Bhattarai, K. P.; O'Connor, K. M.
2003-04-01
Inefficient natural land drainage and the consequent frequent flooding of rivers are a problem of particular significance to the Irish economy. Such problems can be attributed less to the amount of annual rainfall, than to the topological configuration of Ireland. Its high maritime rim and relatively flat interior results in poor river gradients, intercepted by many lakes. As a remedial measure to tackle these problems, Arterial Drainage Schemes (ADSs) were started in Ireland from as early as the beginning of the nineteenth century. The major activities carried out under ADSs have been the deepening and widening of channels to increase their discharge-carrying capacity, which naturally affected the hydrological behaviour of the catchments involved. Earlier studies carried out in order to assess the effects of such ADSs on the hydrological behaviour of Irish catchments were concentrated mainly on comparisons of unit hydrographs and relationship between flood peaks of pre- and post-drainage periods. The present study, carried out on the River Brosna catchment in Ireland, concentrates on assessing the changes in the rainfall runoff transformation process, by using the conceptual Soil Moisture Accounting and Routing Model (SMAR), one of the constituent models of the "Galway River Flow Modelling and Forecasting System (GFMFS)" software package. Hydro-meteorological data of the pre-drainage (1942--1947) and post-drainage (1954--2000) periods have been used in this study. The results of the present study show that, for similar patterns of rainfall, the catchment produces higher annual maximum daily flows, and lower annual minimum daily flows in the post-drainage period than in the pre-drainage period. Moreover, the post-drainage unit hydrographs are more "peaky" and have quicker recessions than the pre-drainage counterparts, thus confirming the findings of the earlier studies. It is also observed that, apart from the expected pre-to-post-drainage change, the nature of the catchment response throughout the post-drainage period has not remained the same as it reverted to pre-drainage-like behaviour after the first one-and-a-half decades (around 1969), indicating that the effects of the ADS had died out over that time. This behaviour was also confirmed by comparing the evolving nature of the unit hydrograph produced for a five-year moving calibration window period from 1959 to 1974. It is unclear at this point whether this change was due to the observed reduction in rainfall in the mid-seventies, inefficient maintenance of the channels, land subsidence following drainage, changes in land use, urbanization, climate change, or some other factors or combinations. The results of the present study further show that, during the nineties, the response pattern changed back again to something akin to early post-drainage-like behaviour, the reason for which is even less clear but obviously can not be attributed to the ADS. Further investigations are currently underway to try to explain such changes in the catchment response to rainfall and also to establish if similar changes occurred on other Irish catchments which also underwent arterial drainage schemes.
NASA Technical Reports Server (NTRS)
Ricko, Martina; Adler, Robert F.; Huffman, George J.
2016-01-01
Climatology and variations of recent mean and intense precipitation over a near-global (50 deg. S 50 deg. N) domain on a monthly and annual time scale are analyzed. Data used to derive daily precipitation to examine the effects of spatial and temporal coverage of intense precipitation are from the current Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 version 7 precipitation product, with high spatial and temporal resolution during 1998 - 2013. Intense precipitation is defined by several different parameters, such as a 95th percentile threshold of daily precipitation, a mean precipitation that exceeds that percentile, or a fixed threshold of daily precipitation value [e.g., 25 and 50 mm day(exp -1)]. All parameters are used to identify the main characteristics of spatial and temporal variation of intense precipitation. High correlations between examined parameters are observed, especially between climatological monthly mean precipitation and intense precipitation, over both tropical land and ocean. Among the various parameters examined, the one best characterizing intense rainfall is a fraction of daily precipitation Great than or equal to 25 mm day(exp. -1), defined as a ratio between the intense precipitation above the used threshold and mean precipitation. Regions that experience an increase in mean precipitation likely experience a similar increase in intense precipitation, especially during the El Nino Southern Oscillation (ENSO) events. Improved knowledge of this intense precipitation regime and its strong connection to mean precipitation given by the fraction parameter can be used for monitoring of intense rainfall and its intensity on a global to regional scale.
Battisti, R; Sentelhas, P C; Boote, K J
2018-05-01
Crop growth models have many uncertainties that affect the yield response to climate change. Based on that, the aim of this study was to evaluate the sensitivity of crop models to systematic changes in climate for simulating soybean attainable yield in Southern Brazil. Four crop models were used to simulate yields: AQUACROP, MONICA, DSSAT, and APSIM, as well as their ensemble. The simulations were performed considering changes of air temperature (0, + 1.5, + 3.0, + 4.5, and + 6.0 °C), [CO 2 ] (380, 480, 580, 680, and 780 ppm), rainfall (- 30, - 15, 0, + 15, and + 30%), and solar radiation (- 15, 0, + 15), applied to daily values. The baseline climate was from 1961 to 2014, totalizing 53 crop seasons. The crop models simulated a reduction of attainable yield with temperature increase, reaching 2000 kg ha -1 for the ensemble at + 6 °C, mainly due to shorter crop cycle. For rainfall, the yield had a higher rate of reduction when it was diminished than when rainfall was increased. The crop models increased yield variability when solar radiation was changed from - 15 to + 15%, whereas [CO 2 ] rise resulted in yield gains, following an asymptotic response, with a mean increase of 31% from 380 to 680 ppm. The models used require further attention to improvements in optimal and maximum cardinal temperature for development rate; runoff, water infiltration, deep drainage, and dynamic of root growth; photosynthesis parameters related to soil water availability; and energy balance of soil-plant system to define leaf temperature under elevated CO 2 .
NASA Astrophysics Data System (ADS)
Villarini, Gabriele; Khouakhi, Abdou; Cunningham, Evan
2017-12-01
Daily temperature values are generally computed as the average of the daily minimum and maximum observations, which can lead to biases in the estimation of daily averaged values. This study examines the impacts of these biases on the calculation of climatology and trends in temperature extremes at 409 sites in North America with at least 25 years of complete hourly records. Our results show that the calculation of daily temperature based on the average of minimum and maximum daily readings leads to an overestimation of the daily values of 10+ % when focusing on extremes and values above (below) high (low) thresholds. Moreover, the effects of the data processing method on trend estimation are generally small, even though the use of the daily minimum and maximum readings reduces the power of trend detection ( 5-10% fewer trends detected in comparison with the reference data).
Estimating missing daily temperature extremes in Jaffna, Sri Lanka
NASA Astrophysics Data System (ADS)
Thevakaran, A.; Sonnadara, D. U. J.
2018-04-01
The accuracy of reconstructing missing daily temperature extremes in the Jaffna climatological station, situated in the northern part of the dry zone of Sri Lanka, is presented. The adopted method utilizes standard departures of daily maximum and minimum temperature values at four neighbouring stations, Mannar, Anuradhapura, Puttalam and Trincomalee to estimate the standard departures of daily maximum and minimum temperatures at the target station, Jaffna. The daily maximum and minimum temperatures from 1966 to 1980 (15 years) were used to test the validity of the method. The accuracy of the estimation is higher for daily maximum temperature compared to daily minimum temperature. About 95% of the estimated daily maximum temperatures are within ±1.5 °C of the observed values. For daily minimum temperature, the percentage is about 92. By calculating the standard deviation of the difference in estimated and observed values, we have shown that the error in estimating the daily maximum and minimum temperatures is ±0.7 and ±0.9 °C, respectively. To obtain the best accuracy when estimating the missing daily temperature extremes, it is important to include Mannar which is the nearest station to the target station, Jaffna. We conclude from the analysis that the method can be applied successfully to reconstruct the missing daily temperature extremes in Jaffna where no data is available due to frequent disruptions caused by civil unrests and hostilities in the region during the period, 1984 to 2000.
Modeling the impact of climate variability on diarrhea-associated diseases in Taiwan (1996-2007).
Chou, Wei-Chun; Wu, Jiunn-Lin; Wang, Yu-Chun; Huang, Hsin; Sung, Fung-Chang; Chuang, Chun-Yu
2010-12-01
Diarrhea is an important public health problem in Taiwan. Climatic changes and an increase in extreme weather events (extreme heat, drought or rainfalls) have been strongly linked to the incidence of diarrhea-associated disease. This study investigated and quantified the relationship between climate variations and diarrhea-associated morbidity in subtropical Taiwan. Specifically, this study analyzed the local climatic variables and the number of diarrhea-associated infection cases from 1996 to 2007. This study applied a climate variation-guided Poisson regression model to predict the dynamics of diarrhea-associated morbidity. The proposed model allows for climate factors (relative humidity, maximum temperature and the numbers of extreme rainfall), autoregression, long-term trends and seasonality, and a lag-time effect. Results indicated that the maximum temperature and extreme rainfall days were strongly related to diarrhea-associated morbidity. The impact of maximum temperature on diarrhea-associated morbidity appeared primarily among children (0-14years) and older adults (40-64years), and had less of an effect on adults (15-39years). Otherwise, relative humidity and extreme rainfall days significantly contributed to the diarrhea-associated morbidity in adult. This suggested that children and older adults were the most susceptible to diarrhea-associated morbidity caused by climatic variation. Because climatic variation contributed to diarrhea morbidity in Taiwan, it is necessary to develop an early warning system based on the climatic variation information for disease control management. Copyright © 2010 Elsevier B.V. All rights reserved.
Simulating the effect of climate extremes on groundwater flow through a lakebed.
Virdi, Makhan L; Lee, Terrie M; Swancar, Amy; Niswonger, Richard G
2013-03-01
Groundwater exchanges with lakes resulting from cyclical wet and dry climate extremes maintain lake levels in the environment in ways that are not well understood, in part because they remain difficult to simulate. To better understand the atypical groundwater interactions with lakes caused by climatic extremes, an original conceptual approach is introduced using MODFLOW-2005 and a kinematic-wave approximation to variably saturated flow that allows lake size and position in the basin to change while accurately representing the daily lake volume and three-dimensional variably saturated groundwater flow responses in the basin. Daily groundwater interactions are simulated for a calibrated lake basin in Florida over a decade that included historic wet and dry departures from the average rainfall. The divergent climate extremes subjected nearly 70% of the maximum lakebed area and 75% of the maximum shoreline perimeter to both groundwater inflow and lake leakage. About half of the lakebed area subject to flow reversals also went dry. A flow-through pattern present for 73% of the decade caused net leakage from the lake 80% of the time. Runoff from the saturated lake margin offset the groundwater deficit only about half of that time. A centripetal flow pattern present for 6% of the decade was important for maintaining the lake stage and generated 30% of all net groundwater inflow. Pumping effects superimposed on dry climate extremes induced the least frequent but most cautionary flow pattern with leakage from over 90% of the actual lakebed area. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
Daily Weather and Children's Physical Activity Patterns.
Remmers, Teun; Thijs, Carel; Timperio, Anna; Salmon, J O; Veitch, Jenny; Kremers, Stef P J; Ridgers, Nicola D
2017-05-01
Understanding how the weather affects physical activity (PA) may help in the design, analysis, and interpretation of future studies, especially when investigating PA across diverse meteorological settings and with long follow-up periods. The present longitudinal study first aims to examine the influence of daily weather elements on intraindividual PA patterns among primary school children across four seasons, reflecting day-to-day variation within each season. Second, we investigate whether the influence of weather elements differs by day of the week (weekdays vs weekends), gender, age, and body mass index. PA data were collected by ActiGraph accelerometers for 1 wk in each of four school terms that reflect each season in southeast Australia. PA data from 307 children (age range 8.7-12.8 yr) were matched to daily meteorological variables obtained from the Australian Government's Bureau of Meteorology (maximum temperature, relative humidity, solar radiation, day length, and rainfall). Daily PA patterns and their association with weather elements were analyzed using multilevel linear mixed models. Temperature was the strongest predictor of moderate and vigorous PA, followed by solar radiation and humidity. The relation with temperature was curvilinear, showing optimum PA levels at temperatures between 20°C and 22°C. Associations between weather elements on PA did not differ by gender, child's age, or body mass index. This novel study focused on the influence of weather elements on intraindividual PA patterns in children. As weather influences cannot be controlled, knowledge of its effect on individual PA patterns may help in the design of future studies, interpretation of their results, and translation into PA promotion.
NASA Astrophysics Data System (ADS)
Bhardwaj, Alok; Ziegler, Alan D.; Wasson, Robert J.; Chow, Winston; Sharma, Mukat L.
2017-04-01
Extreme monsoon rainfall is the primary reason of floods and other secondary hazards such as landslides in the Indian Himalaya. Understanding the phenomena of extreme monsoon rainfall is therefore required to study the natural hazards. In this work, we study the characteristics of extreme monsoon rainfall including its intensity and frequency in the Garhwal Himalaya in India, with a focus on the Mandakini River Catchment, the site of devastating flood and multiple large landslides in 2013. We have used two long term rainfall gridded data sets: the Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) product with daily rainfall data from 1951-2007 and the India Meteorological Department (IMD) product with daily rainfall data from 1901 to 2013. Two methods of Mann Kendall and Sen Slope estimator are used to identify the statistical significance and magnitude of trends in intensity and frequency of extreme monsoon rainfall respectively, at a significance level of 0.05. The autocorrelation in the time series of extreme monsoon rainfall is identified and reduced using the methods of: pre-whitening, trend-free pre-whitening, variance correction, and block bootstrap. We define extreme monsoon rainfall threshold as the 99th percentile of time series of rainfall values and any rainfall depth greater than 99th percentile is considered as extreme in nature. With the IMD data set, significant increasing trend in intensity and frequency of extreme rainfall with slope magnitude of 0.55 and 0.02 respectively was obtained in the north of the Mandakini Catchment as identified by all four methods. Significant increasing trend in intensity with a slope magnitude of 0.3 is found in the middle of the catchment as identified by all methods except block bootstrap. In the south of the catchment, significant increasing trend in intensity with a slope magnitude of 0.86 for pre-whitening method and 0.28 for trend-free pre-whitening and variance correction methods was obtained. Further, increasing trend in frequency with a slope magnitude of 0.01 was identified by three methods except block bootstrap in the south of the catchment. With the APHRODITE data set, we obtained significant increasing trend in intensity with a slope magnitude of 1.27 at the middle of the catchment as identified by all four methods. Collectively, both the datasets show signals of increasing intensity, and IMD shows results for increasing frequency in the Mandakini Catchment. The increasing occurrence of extreme events, as identified here, is becoming more disastrous because of rising human population and infrastructure in the Mandakini Catchment. For example, the 2013 flood due to extreme rainfall was catastrophic in terms of loss of human and animal lives and destruction of the local economy. We believe our results will help understand more about extreme rainfall events in the Mandakini Catchment and in the Indian Himalaya.
NASA Astrophysics Data System (ADS)
Lin, B.-Z.
2012-04-01
A study of Trend and Shift on annual maximum daily data over 500 raingauges with data length of 80 years or longer in the Ohio River Basin U.S. demonstrated a significant increase in variance of the data over time. The area-average increase in standard deviation is 23% for the recent 40 years (1959 - 1998) in comparison with the earlier 40-60 years (1919 or earlier - 1958). This implies that more and more extreme hydrometeorological events such as extreme rainfalls and droughts could be observed in the future years. The centurial flood disaster of August 8-10 2009 in the mid-southern Taiwan caused by Morakot Typhoon and the extraordinary drought lasting from winter 2009 to early summer 2010 wreaking havoc of a vast area of south-west China mainland were two good examples of the extremes. This variation could attribute to climate change. It challenges the hydrologic frequency analysis. Thus, exploration of a robust and reliable approach to precipitation frequency analysis becomes an imminent issue in hydrologic design studies. This paper introduces a novel hydrometeorological approach, the Regional L-moments method (RLM), to rainfall frequency analysis. There are two fatal weaknesses in FA: 1) There is no analytical way to derive a theoretical distribution to best fit the data; 2) The theoretical true value of a frequency such as 50-y or 100-y is unknown forever. The RLM, which is developed based on the order statistics and the concept of hydrometeorological homogeneity, demonstrates unbiasedness of parameter estimates and robust to outliers, and reduces the uncertainties of frequency estimates as well via the real data in Ohio River Basin of the U.S. and in the Taihu Lake Basin of China. Further study indicated that the variation of the frequency estimates such as 10-year, 100-year, 500-year, etc. is not normal as suggested in current textbooks. Actually, the frequency estimates vary asymmetrically from positive skew to negative skew when estimates go through from common frequencies to rare frequencies. Probable Maximum Precipitation (PMP) is defined as the greatest depth of precipitation for a given duration meteorologically possible for a design watershed or a given storm area at a particular location at a particular time of year, with no allowance made for long-term climate trends (WMO, 2009). The PMP has been widely used by many hydrologists to determine the probable maximum flood (PMF) critical to the design of a variety of hydrological structures and other high profile infrastructures such as nuclear power-generation station with respect to flood-protection, for which a high level safety is required. What is the impact of climate change on PMP estimation? Actually, in the definition of PMP, there is "no allowance made for long-term climate trends" (WMO, 2009). However, when people are talking about impact of climate change on PMP estimation, two things may be taken into account practically: (1) To affect the precipitable water as a result of increase of SST; (2) Effect on the selection of the transposed storm because more extreme storms would occur due to climate change and more potential candidates to be used for storm transposition. The occurrence of a severe rainfall storm could alter the PMP estimates. A good example is the lashing of the Typhoon Morakot of 8 - 10 Aug. 2009 on Taiwan Island that set up new rainfall picture. What is the effect of topography on rainfall is another big issue in PMP estimation. Many observations of precipitation in mountainous areas show a general increase in precipitation with elevation. Practically, the effect of topography on rainfall should be taken into account in PMP estimation and implemented by the storm separation technique. The Step-Duration-Orographic-Intensification-Factor (SDOIF) Method, which was developed based on statistics analysis of extreme rainfalls in the storm area, can practically be used as storm separation technique to decouple the Morakot storm rainfalls into two components, convergence component and orographic component. Then, the convergence component can be transposed in a wider area for PMP estimation at a design location in the East Asia region. At last, this paper provides a clue for the first time on relationship between the frequency analysis and the PMP estimation in terms of hydrologic engineering design studies.
Longstreet, D A; Heath, D L; Panaretto, K S; Vink, R
2007-01-01
Diabetes accounts for a significant part of the morbidity and mortality experienced by Australian Aboriginal and Torres Strait Islander populations. Research over the past two decades has provided evidence of a clinical correlation between diabetes and low magnesium intake. Hypomagnesaemia is the most common electrolyte abnormality in diabetic outpatients and may be linked to the development of both macrovascular and microvascular diabetic complications. A diabetes risk reduction of 33%-34% has been found among those with diets highest in magnesium. This study examines the case for magnesium as a potential contributor to diabetes in Australia, especially among Aboriginal and Torres Strait Islander peoples. Specifically explored are associations between diabetes and the magnesium content of drinking water and diet, as well as climatic and socioeconomic factors that may impact on magnesium status including temperature, rainfall, education, employment and income. Queensland age-standardized death rates due to diabetes were correlated with the magnesium content of drinking water, maximum average temperature, rainfall, unemployment rate, proportion of population with post-school qualification, weekly income, and the percentage population identified as Indigenous. Multiple-pass 24-hour recalls from a convenience sample of 100 Indigenous patients at a regional centre were also analyzed to estimate dietary magnesium intake. The Indigenous nutrient intake was then compared with the Australian National Nutrition Survey estimates. Diabetes related mortality was significantly correlated to the percentage of the population identified as Indigenous (r = 0.675), to water magnesium levels (r = -.414), and to average maximum daily temperature (r = 0.579). The average daily magnesium intake in an Indigenous cohort from a regional centre was 248 mg (men: 267 mg +/- 17; women: 245 mg +/- 6 mg), significantly less than intakes observed in the 1995 National Nutrition Survey (p<.001). Although not representative of all Indigenous people, this study identified low dietary magnesium intake among an Indigenous cohort from a regional centre. We also found a significant correlation between the magnesium content of municipal water supplies and age-standardized deaths due to diabetes. We hypothesise that low magnesium dietary intake, compounded by inadequate magnesium replenishment in drinking water, may increase the risk of hypomagnesaemia in the Indigenous population of Queensland. The associations identified in this study support the hypothesis that magnesium may be a potential contributor to diabetes in Australia, especially among Indigenous people, and confirm the need for further research.
NASA Astrophysics Data System (ADS)
Barrera, A.; Altava-Ortiz, V.; Llasat, M. C.; Barnolas, M.
2007-09-01
Between the 11 and 13 October 2005 several flash floods were produced along the coast of Catalonia (NE Spain) due to a significant heavy rainfall event. Maximum rainfall achieved values up to 250 mm in 24 h. The total amount recorded during the event in some places was close to 350 mm. Barcelona city was also in the affected area where high rainfall intensities were registered, but just a few small floods occurred, thanks to the efficient urban drainage system of the city. Two forecasting methods have been applied in order to evaluate their capability of prediction regarding extreme events: the deterministic MM5 model and a probabilistic model based on the analogous method. The MM5 simulation allows analysing accurately the main meteorological features with a high spatial resolution (2 km), like the formation of some convergence lines over the region that partially explains the maximum precipitation location during the event. On the other hand, the analogous technique shows a good agreement among highest probability values and real affected areas, although a larger pluviometric rainfall database would be needed to improve the results. The comparison between the observed precipitation and from both QPF (quantitative precipitation forecast) methods shows that the analogous technique tends to underestimate the rainfall values and the MM5 simulation tends to overestimate them.
40 CFR 420.134 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... Source Performance Standards (NSPS) Pollutant Maximum daily 1 Maximum monthly avg. 1 TSS 0.00998 0.00465... operations. Subpart M—New Source Performance Standards (NSPS) Pollutant Maximum daily 1 Maximum monthly avg...
40 CFR 420.134 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... Source Performance Standards (NSPS) Pollutant Maximum daily 1 Maximum monthly avg. 1 TSS 0.00998 0.00465... operations. Subpart M—New Source Performance Standards (NSPS) Pollutant Maximum daily 1 Maximum monthly avg...
NASA Astrophysics Data System (ADS)
Omotosho, T. V.; Ometan, O. O.; Akinwumi, S. A.; Adewusi, O. M.; Boyo, A. O.; Singh, M. S. J.
2017-05-01
The tropics is characterized to have convective type of rainfall which has high occurrence of rainfall compared to the temperate regions of the world. In this paper, the accumulation of rainfall in Ota, Southwest, Nigeria (6° 42 N, 3° 14 E) has been analysed to present the one-minute rainfall rate and the predominant type of rainfall. Four years’ data used for this study was taken using the Davis Wireless vantage Pro2 weather station at Covenant University, Ota, Ogun State. The data collected were used to analyse the one-minute rainfall rate and different types of rainfall predominant in this region. For the prediction and modelling of rain attenuation at microwave frequencies for a region like the Nigeria at various percentage of time, one-minute rainfall rate is required. Nigeria falls into the P zone of 114 mm/hr. as per International Telecommunication Union - Recommendation (ITU-R). The analysis carried out indicated that the measured yearly averaged maximum one-minute rainfall rate for 2012, 2013, 2014 and 2015 are 157.7 mm/h, 148.0 mm/h, 241.2 mm/h and 157.3 mm/h respectively. It also indicated that the drizzle type of rainfall is predominant in contrast to established fact that thunderstorm occurs more in the tropics.
NASA Astrophysics Data System (ADS)
Braga, Ana Cláudia F. Medeiros; Silva, Richarde Marques da; Santos, Celso Augusto Guimarães; Galvão, Carlos de Oliveira; Nobre, Paulo
2013-08-01
The coastal zone of northeastern Brazil is characterized by intense human activities and by large settlements and also experiences high soil losses that can contribute to environmental damage. Therefore, it is necessary to build an integrated modeling-forecasting system for rainfall-runoff erosion that assesses plans for water availability and sediment yield that can be conceived and implemented. In this work, we present an evaluation of an integrated modeling system for a basin located in this region with a relatively low predictability of seasonal rainfall and a small area (600 km2). The National Center for Environmental Predictions - NCEP’s Regional Spectral Model (RSM) nested within the Center for Weather Forecasting and Climate Studies - CPTEC’s Atmospheric General Circulation Model (AGCM) were investigated in this study, and both are addressed in the simulation work. The rainfall analysis shows that: (1) the dynamic downscaling carried out by the regional RSM model approximates the frequency distribution of the daily observed data set although errors were detected in the magnitude and timing (anticipation of peaks, for example) at the daily scale, (2) an unbiased precipitation forecast seemed to be essential for use of the results in hydrological models, and (3) the information directly extracted from the global model may also be useful. The simulated runoff and reservoir-stored volumes are strongly linked to rainfall, and their estimation accuracy was significantly improved at the monthly scale, thus rendering the results useful for management purposes. The runoff-erosion forecasting displayed a large sediment yield that was consistent with the predicted rainfall.
Contributing factors to vehicle to vehicle crash frequency and severity under rainfall.
Jung, Soyoung; Jang, Kitae; Yoon, Yoonjin; Kang, Sanghyeok
2014-09-01
This study combined vehicle to vehicle crash frequency and severity estimations to examine factor impacts on Wisconsin highway safety in rainy weather. Because of data deficiency, the real-time water film depth, the car-following distance, and the vertical curve grade were estimated with available data sources and a GIS analysis to capture rainy weather conditions at the crash location and time. Using a negative binomial regression for crash frequency estimation, the average annual daily traffic per lane, the interaction between the posted speed limit change and the existence of an off-ramp, and the interaction between the travel lane number change and the pavement surface material change were found to increase the likelihood of vehicle to vehicle crashes under rainfall. However, more average daily rainfall per month and a wider left shoulder were identified as factors that decrease the likelihood of vehicle to vehicle crashes. In the crash severity estimation using the multinomial logit model that outperformed the ordered logit model, the travel lane number, the interaction between the travel lane number and the slow grade, the deep water film, and the rear-end collision type were more likely to increase the likelihood of injury crashes under rainfall compared with crashes involving only property damage. As an exploratory data analysis, this study provides insight into potential strategies for rainy weather highway safety improvement, specifically, the following weather-sensitive strategies: road design and ITS implementation for drivers' safety awareness under rainfall. Copyright © 2014 National Safety Council and Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Oo, Sungmin; Foelsche, Ulrich; Kirchengast, Gottfried; Fuchsberger, Jürgen
2016-04-01
The research level products of the Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG "Final" run datasets) were compared with rainfall measurements from the WegenerNet high density network as part of ground validation (GV) projects of GPM missions. The WegenerNet network comprises 151 ground level weather stations in an area of 15 km × 20 km in south-eastern Austria (Feldbach region, ˜46.93° N, ˜15.90° E) designed to serve as a long-term monitoring and validation facility for weather and climate research and applications. While the IMERG provides rainfall estimations every half hour at 0.1° resolution, the WegenerNet network measures rainfall every 5 minutes at around 2 km2 resolution and produces 200 m × 200 m gridded datasets. The study was conducted on the domain of the WegenerNet network; eight IMERG grids are overlapped with the network, two of which are entirely covered by the WegenerNet (40 and 39 stations in each grid). We investigated data from April to September of the years 2014 to 2015; the date of first two years after the launch of the GPM Core Observatory. Since the network has a flexibility to work with various spatial and temporal scales, the comparison could be conducted on average-points to pixel basis at both sub-daily and daily timescales. This presentation will summarize the first results of the comparison and future plans to explore the characteristics of errors in the IMERG datasets.
Average diurnal variation of summer lightning over the Florida peninsula
NASA Technical Reports Server (NTRS)
Maier, L. M.; Krider, E. P.; Maier, M. W.
1984-01-01
Data derived from a large network of electric field mills are used to determine the average diurnal variation of lightning in a Florida seacoast environment. The variation at the NASA Kennedy Space Center and the Cape Canaveral Air Force Station area is compared with standard weather observations of thunder, and the variation of all discharges in this area is compared with the statistics of cloud-to-ground flashes over most of the South Florida peninsula and offshore waters. The results show average diurnal variations that are consistent with statistics of thunder start times and the times of maximum thunder frequency, but that the actual lightning tends to stop one to two hours before the recorded thunder. The variation is also consistent with previous determinations of the times of maximum rainfall and maximum rainfall rate.
Quantification of agricultural drought occurrence as an estimate for insurance programs
NASA Astrophysics Data System (ADS)
Bannayan, M.; Hoogenboom, G.
2015-11-01
Temporal irregularities of rainfall and drought have major impacts on rainfed cropping systems. The main goal of this study was to develop an approach for realizing drought occurrence based on local winter wheat yield loss and rainfall. The domain study included 11 counties in the state of Washington that actively grow rainfed winter wheat and an uncertainty rainfall evaluation model using daily rainfall values from 1985 to 2007. An application was developed that calculates a rainfall index for insurance that was then used to determine the drought intensity for each study year and for each study site. Evaluation of the drought intensity showed that both the 1999-2000 and 2000-2001 growing seasons were stressful years for most of the study locations, while the 2005-2006 and the 2006-2007 growing seasons experienced the lowest drought intensity for all locations. Our results are consistent with local extension reports of drought occurrences. Quantification of drought intensity based on this application could provide a convenient index for insurance companies for determining the effect of rainfall and drought on crop yield loss under the varying weather conditions of semi-arid regions.
NASA Astrophysics Data System (ADS)
Rahman, Md. Rejaur; Lateh, Habibah
2017-04-01
In this paper, temperature and rainfall data series were analysed from 34 meteorological stations distributed throughout Bangladesh over a 40-year period (1971 to 2010) in order to evaluate the magnitude of these changes statistically and spatially. Linear regression, coefficient of variation, inverse distance weighted interpolation techniques and geographical information systems were performed to analyse the trends, variability and spatial patterns of temperature and rainfall. Autoregressive integrated moving average time series model was used to simulate the temperature and rainfall data. The results confirm a particularly strong and recent climate change in Bangladesh with a 0.20 °C per decade upward trend of mean temperature. The highest upward trend in minimum temperature (range of 0.80-2.4 °C) was observed in the northern, northwestern, northeastern, central and central southern parts while greatest warming in the maximum temperature (range of 1.20-2.48 °C) was found in the southern, southeastern and northeastern parts during 1971-2010. An upward trend of annual rainfall (+7.13 mm per year) and downward pre-monsoon (-0.75 mm per year) and post-monsoon rainfall (-0.55 mm per year) trends were observed during this period. Rainfall was erratic in pre-monsoon season and even more so during the post-monsoon season (variability of 44.84 and 85.25 % per year, respectively). The mean forecasted temperature exhibited an increase of 0.018 °C per year in 2011-2020, and if this trend continues, this would lead to approximately 1.0 °C warmer temperatures in Bangladesh by 2020, compared to that of 1971. A greater rise is projected for the mean minimum (0.20 °C) than the mean maximum (0.16 °C) temperature. Annual rainfall is projected to decline 153 mm from 2011 to 2020, and a drying condition will persist in the northwestern, western and southwestern parts of the country during the pre- and post-monsoonal seasons.
NASA Astrophysics Data System (ADS)
Juliana, Imroatul C.; Kusuma, M. Syahril Badri; Cahyono, M.; Martokusumo, Widjaja; Kuntoro, Arno Adi
2017-11-01
One of the attempts to tackle the problem in water resources is to exploit the potential of rainwater volume with rainwater harvesting (RWH) system. A number of rainfall data required for analyzing the RWH system performance. In contrast, the availability of rainfall data is occasionally difficult to obtain. The main objective of this study is to investigate the effect of difference rainfall data duration and time period to assess the RWH system performance. An analysis was conducted on the rainfall data based on rainfall data duration and time period. The analysis was performed considering 15, 5, 3, 2 years, average year, wet year, and dry year for Palembang city in South Sumatera. The RWH system performance is calculated based on the concept of yield before spillage algorithm. A number of scenarios were conducted by varying the tank capacity, roof area, and the rainwater demand. It was observed that the use of data with a smaller duration provides a significant difference, especially for high rainwater demand. In addition, the use of daily rainfall data would describe th e behavior of the system more thoroughly. As for time step, the use of monthly rainfall data is only sufficient for low rainwater demand and bigger tank capacity.
NASA Astrophysics Data System (ADS)
Kenabatho, P. K.; Parida, B. P.; Moalafhi, D. B.
2017-08-01
In semi-arid catchments, hydrological modeling, water resources planning and management are hampered by insufficient spatial rainfall data which is usually derived from limited rain gauge networks. Satellite products are potential candidates to augment the limited spatial rainfall data in these areas. In this paper, the utility of the Tropical Rainfall Measuring Mission (TRMM) product (3B42 v7) is evaluated using data from the Notwane catchment in Botswana. In addition, rainfall simulations obtained from a multi-site stochastic rainfall model based on the generalised linear models (GLMs) were used as additional spatial rainfall estimates. These rainfall products were compared to the observed rainfall data obtained from six (6) rainfall stations available in the catchment for the period 1998-2012. The results show that in general the two approaches produce reasonable spatial rainfall estimates. However, the TRMM products provided better spatial rainfall estimates compared to the GLM rainfall outputs on an average, as more than 90% of the monthly rainfall variations were explained by the TRMM compared to 80% from the GLMs. However, there is still uncertainty associated mainly with limited rainfall stations, and the inability of the two products to capture unusually high rainfall values in the data sets. Despite this observation, rainfall indices computed to further assess the daily rainfall products (i.e. rainfall occurrence and amounts, length of dry spells) were adequately represented by the TRMM data compared to the GLMs. Performance from the GLMs is expected to improve with addition of further rainfall predictors. A combination of these rainfall products allows for reasonable spatial rainfall estimates and temporal (short term future) rainfall simulations from the TRMM and GLMs, respectively. The results have significant implications on water resources planning and management in the catchment which has, for the past three years, been experiencing prolonged droughts as shown by the drying of Gaborone dam (currently at a record low of 1.6% full), which is the main source of water supply to the city of Gaborone and neighbouring townships in Botswana.
Comparison between Pludix and impact/optical disdrometers during rainfall measurement campaigns
NASA Astrophysics Data System (ADS)
Caracciolo, Clelia; Prodi, Franco; Uijlenhoet, Remko
2006-11-01
The performances of two couples of disdrometers based on different measuring principles are compared: a classical Joss-Waldvogel disdrometer and a recently developed device, called the Pludix tested in Ferrara, Italy, and Pludix and the two-dimensional video disdrometer (2DVD) tested in Cabauw, The Netherlands. First, the measuring principles of the different instruments are presented and compared. Secondly, the performances of the two pairs of disdrometers are analysed by comparing their rain amounts with nearby tipping bucket rain gauges and the inferred drop size distributions. The most important rainfall integral parameters (e.g. rain rate and radar reflectivity) and drop size distribution parameters are also analysed and compared. The data set for Ferrara comprises 13 rainfall events, with a total of 20 mm of rainfall and a maximum rain rate of 4 mm h - 1 . The data set for Cabauw consists of 9 events, with 25-50 mm of rainfall and a maximum rain rate of 20-40 mm h - 1 . The Pludix tends to underestimate slightly the bulk rainfall variables in less intense events, whereas it tends to overestimate with respect to the other instruments in heavier events. The correspondence of the inferred drop size distributions with those measured by the other disdrometers is reasonable, particularly with the Joss-Waldvogel disdrometer. Considering that the Pludix is still in a calibration and testing phase, the reported results are encouraging. A new signal inversion algorithm, which will allow the detection of rain drops throughout the entire diameter interval between 0.3 and 7.0 mm, is under development.
NASA Astrophysics Data System (ADS)
Zhu, Kefeng; Xue, Ming
2016-11-01
On 21 July 2012, an extreme rainfall event that recorded a maximum rainfall amount over 24 hours of 460 mm, occurred in Beijing, China. Most operational models failed to predict such an extreme amount. In this study, a convective-permitting ensemble forecast system (CEFS), at 4-km grid spacing, covering the entire mainland of China, is applied to this extreme rainfall case. CEFS consists of 22 members and uses multiple physics parameterizations. For the event, the predicted maximum is 415 mm d-1 in the probability-matched ensemble mean. The predicted high-probability heavy rain region is located in southwest Beijing, as was observed. Ensemble-based verification scores are then investigated. For a small verification domain covering Beijing and its surrounding areas, the precipitation rank histogram of CEFS is much flatter than that of a reference global ensemble. CEFS has a lower (higher) Brier score and a higher resolution than the global ensemble for precipitation, indicating more reliable probabilistic forecasting by CEFS. Additionally, forecasts of different ensemble members are compared and discussed. Most of the extreme rainfall comes from convection in the warm sector east of an approaching cold front. A few members of CEFS successfully reproduce such precipitation, and orographic lift of highly moist low-level flows with a significantly southeasterly component is suggested to have played important roles in producing the initial convection. Comparisons between good and bad forecast members indicate a strong sensitivity of the extreme rainfall to the mesoscale environmental conditions, and, to less of an extent, the model physics.
NASA Astrophysics Data System (ADS)
Akin, B. H.; Van Stan, J. T., II; Cote, J. F.; Jarvis, M. T.; Underwood, J.; Friesen, J.; Hildebrandt, A.; Maldonado, G.
2017-12-01
Trees' partitioning of rainfall is an important first process along the rainfall-to-runoff pathway that has economically significant influences on urban stormwater management. However, important knowledge gaps exist regarding (1) its role during extreme storms and (2) how this role changes as forest structure is altered by urbanization. Little research has been conducted on canopy rainfall partitioning during large, intense storms, likely because canopy water storage is rapidly overwhelmed (i.e., 1-3 mm) by short duration events exceeding, for example, 80 mm of rainfall. However, canopy structure controls more than just storage; it also affects the time for rain to drain to the surface (becoming throughfall) and the micrometeorological conditions that drive wet canopy evaporation. In fact, observations from an example extreme ( 100 mm with maximum 5-minute intensities exceeding 55 mm/h) storm across a urban-to-natural gradient in pine forests in southeast Georgia (USA), show that storm intensities were differentially dampened by 33% (tree row), 28% (forest fragment), and 17% (natural forests). In addition, maximum wet canopy evaporation rates were higher for the exposed tree row (0.18 mm/h) than for the partially-enclosed fragment canopy (0.14 mm/h) and the closed canopy natural forest site (0.11). This resulted in interception percentages decreasing from urban-to-natural stand structures (25% to 16%). A synoptic analysis of the extreme storm in this case study also shows that the mesoscale meteorological conditions that developed the heavy rainfall is expected to occur more often with projected climate changes.
Brillante, Luca; Mathieu, Olivier; Lévêque, Jean; Bois, Benjamin
2016-01-01
In a climate change scenario, successful modeling of the relationships between plant-soil-meteorology is crucial for a sustainable agricultural production, especially for perennial crops. Grapevines (Vitis vinifera L. cv Chardonnay) located in eight experimental plots (Burgundy, France) along a hillslope were monitored weekly for 3 years for leaf water potentials, both at predawn (Ψpd) and at midday (Ψstem). The water stress experienced by grapevine was modeled as a function of meteorological data (minimum and maximum temperature, rainfall) and soil characteristics (soil texture, gravel content, slope) by a gradient boosting machine. Model performance was assessed by comparison with carbon isotope discrimination (δ(13)C) of grape sugars at harvest and by the use of a test-set. The developed models reached outstanding prediction performance (RMSE < 0.08 MPa for Ψstem and < 0.06 MPa for Ψpd), comparable to measurement accuracy. Model predictions at a daily time step improved correlation with δ(13)C data, respect to the observed trend at a weekly time scale. The role of each predictor in these models was described in order to understand how temperature, rainfall, soil texture, gravel content and slope affect the grapevine water status in the studied context. This work proposes a straight-forward strategy to simulate plant water stress in field condition, at a local scale; to investigate ecological relationships in the vineyard and adapt cultural practices to future conditions.
Ehelepola, N D B; Ariyaratne, Kusalika; Buddhadasa, W M N P; Ratnayake, Sunil; Wickramasinghe, Malani
2015-09-24
Weather variables affect dengue transmission. This study aimed to identify a dengue weather correlation pattern in Kandy, Sri Lanka, compare the results with results of similar studies, and establish ways for better control and prevention of dengue. We collected data on reported dengue cases in Kandy and mid-year population data from 2003 to 2012, and calculated weekly incidences. We obtained daily weather data from two weather stations and converted it into weekly data. We studied correlation patterns between dengue incidence and weather variables using the wavelet time series analysis, and then calculated cross-correlation coefficients to find magnitudes of correlations. We found a positive correlation between dengue incidence and rainfall in millimeters, the number of rainy and wet days, the minimum temperature, and the night and daytime, as well as average, humidity, mostly with a five- to seven-week lag. Additionally, we found correlations between dengue incidence and maximum and average temperatures, hours of sunshine, and wind, with longer lag periods. Dengue incidences showed a negative correlation with wind run. Our results showed that rainfall, temperature, humidity, hours of sunshine, and wind are correlated with local dengue incidence. We have suggested ways to improve dengue management routines and to control it in these times of global warming. We also noticed that the results of dengue weather correlation studies can vary depending on the data analysis.
Observed increase in extreme daily rainfall in the French Mediterranean
NASA Astrophysics Data System (ADS)
Ribes, Aurélien; Thao, Soulivanh; Vautard, Robert; Dubuisson, Brigitte; Somot, Samuel; Colin, Jeanne; Planton, Serge; Soubeyroux, Jean-Michel
2018-04-01
We examine long-term trends in the historical record of extreme precipitation events occurring over the French Mediterranean area. Extreme events are considered in terms of their intensity, frequency, extent and precipitated volume. Changes in intensity are analysed via an original statistical approach where the annual maximum rainfall amounts observed at each measurement station are aggregated into a univariate time-series according to their dependence. The mean intensity increase is significant and estimated at + 22% (+ 7 to + 39% at the 90% confidence level) over the 1961-2015 period. Given the observed warming over the considered area, this increase is consistent with a rate of about one to three times that implied by the Clausius-Clapeyron relationship. Changes in frequency and other spatial features are investigated through a Generalised Linear Model. Changes in frequency for events exceeding high thresholds (about 200 mm in 1 day) are found to be significant, typically near a doubling of the frequency, but with large uncertainties in this change ratio. The area affected by severe events and the water volume precipitated during those events also exhibit significant trends, with an increase by a factor of about 4 for a 200 mm threshold, again with large uncertainties. All diagnoses consistently point toward an intensification of the most extreme events over the last decades. We argue that it is difficult to explain the diagnosed trends without invoking the human influence on climate.
Adjusted monthly temperature and precipitation values for Guinea Conakry (1941-2010) using HOMER.
NASA Astrophysics Data System (ADS)
Aguilar, Enric; Aziz Barry, Abdoul; Mestre, Olivier
2013-04-01
Africa is a data sparse region and there are very few studies presenting homogenized monthly records. In this work, we introduce a dataset consisting of 12 stations spread over Guinea Conakry containing daily values of maximum and minimum temperature and accumulated rainfall for the period 1941-2010. The daily values have been quality controlled using R-Climdex routines, plus other interactive quality control applications, coded by the authors. After applying the different tests, more than 200 daily values were flagged as doubtful and carefully checked against the statistical distribution of the series and the rest of the dataset. Finally, 40 values were modified or set to missing and the rest were validated. The quality controlled daily dataset was used to produce monthly means and homogenized with HOMER, a new R-pacakge which includes the relative methods that performed better in the experiments conducted in the framework of the COST-HOME action. A total number of 38 inhomogeneities were found for temperature. As a total of 788 years of data were analyzed, the average ratio was one break every 20.7 years. The station with a larger number of inhomogeneities was Conakry (5 breaks) and one station, Kissidougou, was identified as homogeneous. The average number of breaks/station was 3.2. The mean value of the monthly factors applied to maximum (minimum) temperature was 0.17 °C (-1.08 °C) . For precipitation, due to the demand of a denser network to correctly homogenize this variable, only two major inhomogeneities in Conakry (1941-1961, -12%) and Kindia (1941-1976, -10%) were corrected. The adjusted dataset was used to compute regional series for the three variables and trends for the 1941-2010 period. The regional mean has been computed by simply averaging anomalies to 1971-2000 of the 12 time series. Two different versions have been obtained: a first one (A) makes use of the missing values interpolation made by HOMER (so all annual values in the regional series are an average of 12 anomalies); the second one (B) removes the missing values, and each value of the regional series is an average of 5 to 12 anomalies. In this case, a variance stabilization factor has been applied. As a last step a trend analysis has been applied over the regional series. This has been done using two different approaches: standard least squares regression (LS) and the implementation by Zhang of the Sen slope estimator (SEN), applied using the zyp R-package. The results for the A & B series and the different trend calculations are very similar, in terms of slopes and signification. All the identified trends are significant at the 95% confidence level or better. Using the A series and the SEN slope, the annual regional mean of maximum temperatures has increased 0.135 °C/decade (95% confidence interval: 0.087 / 0.173) and the annual regional mean of minimum temperatures 0.092 °C/decade (0.050/0.135). Maximum temperatures present high values in the 1940s to 1950s and a large increase in the last decades. In contrast, minimum temperatures were relatively cooler in the 1940s and 1950s and the increase in the last decades is more moderate. Finally, the regional mean of annual accumulated precipitation decreased between 1941 and 2010 by -2.20 mm (-3.82/-0.64). The precipitation series are dominated by the high values before 1970, followed by a well known decrease in rainfall. This homogenized monthly series will improve future analysis over this portion of Western Africa.
Nystuen, Jeffrey A; Amitai, Eyal; Anagnostou, Emmanuel N; Anagnostou, Marios N
2008-04-01
An experiment to evaluate the inherent spatial averaging of the underwater acoustic signal from rainfall was conducted in the winter of 2004 in the Ionian Sea southwest of Greece. A mooring with four passive aquatic listeners (PALs) at 60, 200, 1000, and 2000 m was deployed at 36.85 degrees N, 21.52 degrees E, 17 km west of a dual-polarization X-band coastal radar at Methoni, Greece. The acoustic signal is classified into wind, rain, shipping, and whale categories. It is similar at all depths and rainfall is detected at all depths. A signal that is consistent with the clicking of deep-diving beaked whales is present 2% of the time, although there was no visual confirmation of whale presence. Co-detection of rainfall with the radar verifies that the acoustic detection of rainfall is excellent. Once detection is made, the correlation between acoustic and radar rainfall rates is high. Spatial averaging of the radar rainfall rates in concentric circles over the mooring verifies the larger inherent spatial averaging of the rainfall signal with recording depth. For the PAL at 2000 m, the maximum correlation was at 3-4 km, suggesting a listening area for the acoustic rainfall measurement of roughly 30-50 km(2).
T. P. Burt; C. Ford Miniat; S. H. Laseter; W. T. Swank
2017-01-01
A pattern of increasing frequency and intensity of heavy rainfall over land has been documented for several temperate regions and is associated with climate change. This study examines the changing patterns of daily precipitation at the Coweeta Hydrologic Laboratory, North Carolina, USA, since 1937 for four rain gauges across a range of elevations. We analyse...
NASA Astrophysics Data System (ADS)
Liu, Shulun; Li, Yuan; Pauwels, Valentijn R. N.; Walker, Jeffrey P.
2017-12-01
Rain gauges are widely used to obtain temporally continuous point rainfall records, which are then interpolated into spatially continuous data to force hydrological models. However, rainfall measurements and interpolation procedure are subject to various uncertainties, which can be reduced by applying quality control and selecting appropriate spatial interpolation approaches. Consequently, the integrated impact of rainfall quality control and interpolation on streamflow simulation has attracted increased attention but not been fully addressed. This study applies a quality control procedure to the hourly rainfall measurements obtained in the Warwick catchment in eastern Australia. The grid-based daily precipitation from the Australian Water Availability Project was used as a reference. The Pearson correlation coefficient between the daily accumulation of gauged rainfall and the reference data was used to eliminate gauges with significant quality issues. The unrealistic outliers were censored based on a comparison between gauged rainfall and the reference. Four interpolation methods, including the inverse distance weighting (IDW), nearest neighbors (NN), linear spline (LN), and ordinary Kriging (OK), were implemented. The four methods were firstly assessed through a cross-validation using the quality-controlled rainfall data. The impacts of the quality control and interpolation on streamflow simulation were then evaluated through a semi-distributed hydrological model. The results showed that the Nash–Sutcliffe model efficiency coefficient (NSE) and Bias of the streamflow simulations were significantly improved after quality control. In the cross-validation, the IDW and OK methods resulted in good interpolation rainfall, while the NN led to the worst result. In term of the impact on hydrological prediction, the IDW led to the most consistent streamflow predictions with the observations, according to the validation at five streamflow-gauged locations. The OK method performed second best according to streamflow predictions at the five gauges in the calibration period (01/01/2007–31/12/2011) and four gauges during the validation period (01/01/2012–30/06/2014). However, NN produced the worst prediction at the outlet of the catchment in the validation period, indicating a low robustness. While the IDW exhibited the best performance in the study catchment in terms of accuracy, robustness and efficiency, more general recommendations on the selection of rainfall interpolation methods need to be further explored.
NASA Astrophysics Data System (ADS)
Liu, Shulun; Li, Yuan; Pauwels, Valentijn R. N.; Walker, Jeffrey P.
2018-01-01
Rain gauges are widely used to obtain temporally continuous point rainfall records, which are then interpolated into spatially continuous data to force hydrological models. However, rainfall measurements and interpolation procedure are subject to various uncertainties, which can be reduced by applying quality control and selecting appropriate spatial interpolation approaches. Consequently, the integrated impact of rainfall quality control and interpolation on streamflow simulation has attracted increased attention but not been fully addressed. This study applies a quality control procedure to the hourly rainfall measurements obtained in the Warwick catchment in eastern Australia. The grid-based daily precipitation from the Australian Water Availability Project was used as a reference. The Pearson correlation coefficient between the daily accumulation of gauged rainfall and the reference data was used to eliminate gauges with significant quality issues. The unrealistic outliers were censored based on a comparison between gauged rainfall and the reference. Four interpolation methods, including the inverse distance weighting (IDW), nearest neighbors (NN), linear spline (LN), and ordinary Kriging (OK), were implemented. The four methods were firstly assessed through a cross-validation using the quality-controlled rainfall data. The impacts of the quality control and interpolation on streamflow simulation were then evaluated through a semi-distributed hydrological model. The results showed that the Nash–Sutcliffe model efficiency coefficient (NSE) and Bias of the streamflow simulations were significantly improved after quality control. In the cross-validation, the IDW and OK methods resulted in good interpolation rainfall, while the NN led to the worst result. In term of the impact on hydrological prediction, the IDW led to the most consistent streamflow predictions with the observations, according to the validation at five streamflow-gauged locations. The OK method performed second best according to streamflow predictions at the five gauges in the calibration period (01/01/2007–31/12/2011) and four gauges during the validation period (01/01/2012–30/06/2014). However, NN produced the worst prediction at the outlet of the catchment in the validation period, indicating a low robustness. While the IDW exhibited the best performance in the study catchment in terms of accuracy, robustness and efficiency, more general recommendations on the selection of rainfall interpolation methods need to be further explored.
Lee, Tsung-Yu; Huang, Jr-Chuan; Lee, Jun-Yi; Jien, Shih-Hao; Zehetner, Franz; Kao, Shuh-Ji
2015-01-01
Fluvial sediment export from small mountainous rivers in Oceania has global biogeochemical significance affecting the turnover rate and export of terrestrial carbon, which might be speeding up at the recognized conditions of increased rainfall intensity. In this study, the historical runoff and sediment export from 16 major rivers in Taiwan are investigated and separated into an early stage (1970-1989) and a recent stage (1990-2010) to illustrate the changes of both runoff and sediment export. The mean daily sediment export from Taiwan Island in the recent stage significantly increased by >80% with subtle increase in daily runoff, indicating more sediment being delivered to the ocean per unit of runoff in the recent stage. The medians of the runoff depth and sediment yield extremes (99.0-99.9 percentiles) among the 16 rivers increased by 6.5%-37% and 62%-94%, respectively, reflecting the disproportionately magnified response of sediment export to the increased runoff. Taiwan is facing increasing event rainfall intensity which has resulted in chain reactions on magnified runoff and sediment export responses. As the globe is warming, rainfall extremes, which are proved to be temperature-dependent, very likely intensify runoff and trigger more sediment associated hazards. Such impacts might occur globally because significant increases of high-intensity precipitation have been observed not only in Taiwan but over most land areas of the globe.
NASA Astrophysics Data System (ADS)
White, C. J.; Franks, S. W.; McEvoy, D.
2015-06-01
Meteorological and hydrological centres around the world are looking at ways to improve their capacity to be able to produce and deliver skilful and reliable forecasts of high-impact extreme rainfall and flooding events on a range of prediction timescales (e.g. sub-daily, daily, multi-week, seasonal). Making improvements to extended-range rainfall and flood forecast models, assessing forecast skill and uncertainty, and exploring how to apply flood forecasts and communicate their benefits to decision-makers are significant challenges facing the forecasting and water resources management communities. This paper presents some of the latest science and initiatives from Australia on the development, application and communication of extreme rainfall and flood forecasts on the extended-range "subseasonal-to-seasonal" (S2S) forecasting timescale, with a focus on risk-based decision-making, increasing flood risk awareness and preparedness, capturing uncertainty, understanding human responses to flood forecasts and warnings, and the growing adoption of "climate services". The paper also demonstrates how forecasts of flood events across a range of prediction timescales could be beneficial to a range of sectors and society, most notably for disaster risk reduction (DRR) activities, emergency management and response, and strengthening community resilience. Extended-range S2S extreme flood forecasts, if presented as easily accessible, timely and relevant information are a valuable resource to help society better prepare for, and subsequently cope with, extreme flood events.
Relation Between the Rainfall and Soil Moisture During Different Phases of Indian Monsoon
NASA Astrophysics Data System (ADS)
Varikoden, Hamza; Revadekar, J. V.
2018-03-01
Soil moisture is a key parameter in the prediction of southwest monsoon rainfall, hydrological modelling, and many other environmental studies. The studies on relationship between the soil moisture and rainfall in the Indian subcontinent are very limited; hence, the present study focuses the association between rainfall and soil moisture during different monsoon seasons. The soil moisture data used for this study are the ESA (European Space Agency) merged product derived from four passive and two active microwave sensors spanning over the period 1979-2013. The rainfall data used are India Meteorological Department gridded daily data. Both of these data sets are having a spatial resolution of 0.25° latitude-longitude grid. The study revealed that the soil moisture is higher during the southwest monsoon period similar to rainfall and during the pre-monsoon period, the soil moisture is lower. The annual cycle of both the soil moisture and rainfall has the similitude of monomodal variation with a peak during the month of August. The interannual variability of soil moisture and rainfall shows that they are linearly related with each other, even though they are not matched exactly for individual years. The study of extremes also exhibits the surplus amount of soil moisture during wet monsoon years and also the regions of surplus soil moisture are well coherent with the areas of high rainfall.
NASA Astrophysics Data System (ADS)
Safeeq, Mohammad; Fares, Ali
2011-12-01
Daily and sub-daily weather data are often required for hydrological and environmental modeling. Various weather generator programs have been used to generate synthetic climate data where observed climate data are limited. In this study, a weather data generator, ClimGen, was evaluated for generating information on daily precipitation, temperature, and wind speed at four tropical watersheds located in Hawai`i, USA. We also evaluated different daily to sub-daily weather data disaggregation methods for precipitation, air temperature, dew point temperature, and wind speed at Mākaha watershed. The hydrologic significance values of the different disaggregation methods were evaluated using Distributed Hydrology Soil Vegetation Model. MuDRain and diurnal method performed well over uniform distribution in disaggregating daily precipitation. However, the diurnal method is more consistent if accurate estimates of hourly precipitation intensities are desired. All of the air temperature disaggregation methods performed reasonably well, but goodness-of-fit statistics were slightly better for sine curve model with 2 h lag. Cosine model performed better than random model in disaggregating daily wind speed. The largest differences in annual water balance were related to wind speed followed by precipitation and dew point temperature. Simulated hourly streamflow, evapotranspiration, and groundwater recharge were less sensitive to the method of disaggregating daily air temperature. ClimGen performed well in generating the minimum and maximum temperature and wind speed. However, for precipitation, it clearly underestimated the number of extreme rainfall events with an intensity of >100 mm/day in all four locations. ClimGen was unable to replicate the distribution of observed precipitation at three locations (Honolulu, Kahului, and Hilo). ClimGen was able to reproduce the distributions of observed minimum temperature at Kahului and wind speed at Kahului and Hilo. Although the weather data generation and disaggregation methods were concentrated in a few Hawaiian watersheds, the results presented can be used to similar mountainous location settings, as well as any specific locations aimed at furthering the site-specific performance evaluation of these tested models.
Is there a stratospheric pacemaker controlling the daily cycle of tropical rainfall?
NASA Astrophysics Data System (ADS)
Sakazaki, T.; Hamilton, K.; Zhang, C.; Wang, Y.
2017-02-01
Rainfall in the tropics exhibits a large, 12 h Sun-synchronous variation with coherent phase around the globe. A long-standing, but unproved, hypothesis for this phenomenon is excitation by the prominent 12 h atmospheric tide, which itself is significantly forced remotely by solar heating of the stratospheric ozone layer. We investigated the relative roles of large-scale tidal forcing and more local effects in accounting for the 12 h variation of tropical rainfall. A model of the atmosphere run with the diurnal cycle of solar heating artificially suppressed below the stratosphere still simulated a strong coherent 12 h rainfall variation ( 50% of control run), demonstrating that stratospherically forced atmospheric tide propagates downward to the troposphere and contributes to the organization of large-scale convection. The results have implications for theories of excitation of tropical atmospheric waves by moist convection, for the evaluation of climate models, and for explaining the recently discovered lunar tidal rainfall cycle.
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; Brauer, C.; Overeem, A.; Sassi, M.; Rios Gaona, M. F.
2014-12-01
Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution. We investigated the effect of these spatiotemporal resolutions on discharge simulations in lowland catchments by forcing a novel rainfall-runoff model (WALRUS) with rainfall data from gauges, radars and microwave links. The hydrological model used for this analysis is the recently developed Wageningen Lowland Runoff Simulator (WALRUS). WALRUS is a rainfall-runoff model accounting for hydrological processes relevant to areas with shallow groundwater (e.g. groundwater-surface water feedback). Here, we used WALRUS for case studies in a freely draining lowland catchment and a polder with controlled water levels. We used rain gauge networks with automatic (hourly resolution but low spatial density) and manual gauges (high spatial density but daily resolution). Operational (real-time) and climatological (gauge-adjusted) C-band radar products and country-wide rainfall maps derived from microwave link data from a cellular telecommunication network were also used. Discharges simulated with these different inputs were compared to observations. We also investigated the effect of spatiotemporal resolution with a high-resolution X-band radar data set for catchments with different sizes. Uncertainty in rainfall forcing is a major source of uncertainty in discharge predictions, both with lumped and with distributed models. For lumped rainfall-runoff models, the main source of input uncertainty is associated with the way in which (effective) catchment-average rainfall is estimated. When catchments are divided into sub-catchments, rainfall spatial variability can become more important, especially during convective rainfall events, leading to spatially varying catchment wetness and spatially varying contribution of quick flow routes. Improving rainfall measurements and their spatiotemporal resolution can improve the performance of rainfall-runoff models, indicating their potential for reducing flood damage through real-time control.
WPC Excessive Rainfall Forecasts
Summaries Heat Index Tropical Products Daily Weather Map GIS Products Current Watches/ Warnings Satellite and Radar Imagery GOES-East Satellite GOES-West Satellite National Radar Product Archive WPC
Validity and extension of the SCS-CN method for computing infiltration and rainfall-excess rates
NASA Astrophysics Data System (ADS)
Mishra, Surendra Kumar; Singh, Vijay P.
2004-12-01
A criterion is developed for determining the validity of the Soil Conservation Service curve number (SCS-CN) method. According to this criterion, the existing SCS-CN method is found to be applicable when the potential maximum retention, S, is less than or equal to twice the total rainfall amount. The criterion is tested using published data of two watersheds. Separating the steady infiltration from capillary infiltration, the method is extended for predicting infiltration and rainfall-excess rates. The extended SCS-CN method is tested using 55 sets of laboratory infiltration data on soils varying from Plainfield sand to Yolo light clay, and the computed and observed infiltration and rainfall-excess rates are found to be in good agreement.
The Global Precipitation Climatology Project (GPCP): Results, Status and Future
NASA Technical Reports Server (NTRS)
Adler, Robert F.
2007-01-01
The Global Precipitation Climatology Project (GPCP) is one of a number of long-term, satellite-based, global analyses routinely produced under the auspices of the World Climate Research Program (WCRP) and its Global Energy and Watercycle EXperiment (GEWEX) program. The research quality analyses are produced a few months after real-time through the efforts of scientists at various national agencies and universities in the U.S., Europe and Japan. The primary product is a monthly analysis of surface precipitation that is globally complete and spans the period 1979-present. There are also pentad analyses for the same period and a daily analysis for the 1997-present period. Although generated with somewhat different data sets and analysis schemes, the pentad and daily data sets are forced to agree with the primary monthly analysis on a grid box by grid box basis. The primary input data sets are from low-orbit passive microwave observations, geostationary infrared observations and surface raingauge information. Examples of research with the data sets are discussed, focusing on tropical (25N-25s) rainfall variations and possible long-term changes in the 28-year (1979-2006) monthly dataset. Techniques are used to discriminate among the variations due to ENSO, volcanic events and possible long-term changes for rainfall over both land and ocean. The impact of the two major volcanic eruptions over the past 25 years is estimated to be about a 5% maximum reduction in tropical rainfall during each event. Although the global change of precipitation in the data set is near zero, a small upward linear change over tropical ocean (0.06 mm/day/l0yr) and a slight downward linear change over tropical land (-0.03 mm/day/l0yr) are examined to understand the impact of the inhomogeneity in the data record and the length of the data set. These positive changes correspond to about a 5% increase (ocean) and 3% increase (ocean plus land) during this time period. Relations between variations in surface temperature and precipitation are analyzed on seasonal to inter-decadal time scales. A new, version 3 of GPCP is being planned to incorporate new satellite information (e.g., TRMM) and provide higher spatial and temporal resolution for at least part of the data record. The goals and plans for that GPCP re-processing will be outlined.
NASA Astrophysics Data System (ADS)
Silva, W. L.; Dereczynski, C. P.; Cavalcanti, I. F.
2013-05-01
One of the main concerns of contemporary society regarding prevailing climate change is related to possible changes in the frequency and intensity of extreme events. Strong heat and cold waves, droughts, severe floods, and other climatic extremes have been of great interest to researchers because of its huge impact on the environment and population, causing high monetary damages and, in some cases, loss of life. The frequency and intensity of extreme events associated with precipitation and air temperature have been increased in several regions of the planet in recent years. These changes produce serious impacts on human activities such as agriculture, health, urban planning and development and management of water resources. In this paper, we analyze the trends in indices of climatic extremes related to daily precipitation and maximum and minimum temperatures at 22 meteorological stations of the National Institute of Meteorology (INMET) in Rio de Janeiro State (Brazil) in the last 50 years. The present trends are evaluated using the software RClimdex (Canadian Meteorological Service) and are also subjected to statistical tests. Preliminary results indicate that periods of drought are getting longer in Rio de Janeiro State, except in the North/Northwest area. In "Vale do Paraíba", "Região Serrana" and "Região dos Lagos" the increase of consecutive dry days is statistically significant. However, we also detected an increase in the total annual rainfall all over the State (taxes varying from +2 to +8 mm/year), which are statistically significant at "Região Serrana". Moreover, the intensity of heavy rainfall is also growing in most of Rio de Janeiro, except in "Costa Verde". The trends of heavy rainfall indices show significant increase in the "Metropolitan Region" and in "Região Serrana", factor that increases the vulnerability to natural disasters in these areas. With respect to temperature, it is found that the frequency of hot (cold) days and nights is increasing (reducing) with significance in almost all regions. "Região dos Lagos" has the most significant trends of increasing in temperature, thereby influencing the local production of salt and alkaline minerals in medium and long term. The goal of this research is, through the analysis of results, support studies of vulnerability and adaptation to climate change scenarios in Rio de Janeiro State.
Characteristics of Landslide Size Distribution in Response to Different Rainfall Scenarios
NASA Astrophysics Data System (ADS)
Wu, Y.; Lan, H.; Li, L.
2017-12-01
There have long been controversies on the characteristics of landslide size distribution in response to different rainfall scenarios. For inspecting the characteristics, we have collected a large amount of data, including shallow landslide inventory with landslide areas and landslide occurrence times recorded, and a longtime daily rainfall series fully covering all the landslide occurrences. Three indexes were adopted to quantitatively describe the characteristics of landslide-related rainfall events, which are rainfall duration, rainfall intensity, and the number of rainy days. The first index, rainfall duration, is derived from the exceptional character of a landslide-related rainfall event, which can be explained in terms of the recurrence interval or return period, according to the extreme value theory. The second index, rainfall intensity, is the average rainfall in this duration. The third index is the number of rainy days in this duration. These three indexes were normalized using the standard score method to ensure that they are in the same order of magnitude. Based on these three indexes, landslide-related rainfall events were categorized by a k-means method into four scenarios: moderate rainfall, storm, long-duration rainfall, and long-duration intermittent rainfall. Then, landslides were in turn categorized into four groups according to the scenarios of rainfall events related to them. Inverse-gamma distribution was applied to characterize the area distributions of the four different landslide groups. A tail index and a rollover of the landslide size distribution can be obtained according to the parameters of the distribution. Characteristics of landslide size distribution show that the rollovers of the size distributions of landslides related to storm and long-duration rainfall are larger than those of landslides in the other two groups. It may indicate that the location of rollover may shift right with the increase of rainfall intensity and the extension of rainfall duration. In addition, higher rainfall intensities are prone to trigger larger rainfall-induced landslides since the tail index of landslide area distribution are smaller for higher rainfall intensities, which indicate higher probabilities of large landslides.
NASA Astrophysics Data System (ADS)
Lashkari, A.; Salehnia, N.; Asadi, S.; Paymard, P.; Zare, H.; Bannayan, M.
2018-05-01
The accuracy of daily output of satellite and reanalysis data is quite crucial for crop yield prediction. This study has evaluated the performance of APHRODITE (Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation), PERSIANN (Rainfall Estimation from Remotely Sensed Information using Artificial Neural Networks), TRMM (Tropical Rainfall Measuring Mission), and AgMERRA (The Modern-Era Retrospective Analysis for Research and Applications) precipitation products to apply as input data for CSM-CERES-Wheat crop growth simulation model to predict rainfed wheat yield. Daily precipitation output from various sources for 7 years (2000-2007) was obtained and compared with corresponding ground-observed precipitation data for 16 ground stations across the northeast of Iran. Comparisons of ground-observed daily precipitation with corresponding data recorded by different sources of datasets showed a root mean square error (RMSE) of less than 3.5 for all data. AgMERRA and APHRODITE showed the highest correlation (0.68 and 0.87) and index of agreement (d) values (0.79 and 0.89) with ground-observed data. When daily precipitation data were aggregated over periods of 10 days, the RMSE values, r, and d values increased (30, 0.8, and 0.7) for AgMERRA, APHRODITE, PERSIANN, and TRMM precipitation data sources. The simulations of rainfed wheat leaf area index (LAI) and dry matter using various precipitation data, coupled with solar radiation and temperature data from observed ones, illustrated typical LAI and dry matter shape across all stations. The average values of LAImax were 0.78, 0.77, 0.74, 0.70, and 0.69 using PERSIANN, AgMERRA, ground-observed precipitation data, APHRODITE, and TRMM. Rainfed wheat grain yield simulated by using AgMERRA and APHRODITE daily precipitation data was highly correlated (r 2 ≥ 70) with those simulated using observed precipitation data. Therefore, gridded data have high potential to be used to supply lack of data and gaps in ground-observed precipitation data.
Impact of downward-mixing ozone on surface ozone accumulation in southern Taiwan.
Lin, Ching-Ho
2008-04-01
The ozone that initially presents in the previous day's afternoon mixing layer can remain in the nighttime atmosphere and then be carried over to the next morning. Finally, this ozone can be brought to the ground by downward mixing as mixing depth increases during the daytime, thereby increasing surface ozone concentrations. Variation of ozone concentration during each of these periods is investigated in this work. First, ozone concentrations existing in the daily early morning atmosphere at the altitude range of the daily maximum mixing depth (residual ozone concentrations) were measured using tethered ozonesondes on 52 experimental days during 2004-2005 in southern Taiwan. Daily downward-mixing ozone concentrations were calculated by a box model coupling the measured daily residual ozone concentrations and daily mixing depth variations. The ozone concentrations upwind in the previous day's afternoon mixing layer were estimated by the combination of back air trajectory analysis and known previous day's surface ozone distributions. Additionally, the relationship between daily downward-mixing ozone concentration and daily photochemically produced ozone concentration was examined. The latter was calculated by removing the former from daily surface maximum ozone concentration. The measured daily residual ozone concentrations distributed at 12-74 parts per billion (ppb) with an average of 42 +/- 17 ppb are well correlated with the previous upwind ozone concentration (R2 = 0.54-0.65). Approximately 60% of the previous upwind ozone was estimated to be carried over to the next morning and became the observed residual ozone. The daily downward-mixing ozone contributes 48 +/- 18% of the daily surface maximum ozone concentration, indicating that the downward-mixing ozone is as important as daily photochemically produced ozone to daily surface maximum ozone accumulation. The daily downward-mixing ozone is poorly correlated with the daily photochemically produced ozone and contributes significantly to the daily variation of surface maximum ozone concentrations (R2 = 0.19). However, the contribution of downward-mixing ozone to daily ozone variation is not included in most existing statistical models developed for predicting daily ozone variation. Finally, daily surface maximum ozone concentration is positively correlated with daily afternoon mixing depth, attributable to the downward-mixing ozone.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)
2002-01-01
NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. Additional information is included in the original extended abstract.
Congo Basin rainfall climatology: can we believe the climate models?
Washington, Richard; James, Rachel; Pearce, Helen; Pokam, Wilfried M.; Moufouma-Okia, Wilfran
2013-01-01
The Congo Basin is one of three key convective regions on the planet which, during the transition seasons, dominates global tropical rainfall. There is little agreement as to the distribution and quantity of rainfall across the basin with datasets differing by an order of magnitude in some seasons. The location of maximum rainfall is in the far eastern sector of the basin in some datasets but the far western edge of the basin in others during March to May. There is no consistent pattern to this rainfall distribution in satellite or model datasets. Resolving these differences is difficult without ground-based data. Moisture flux nevertheless emerges as a useful variable with which to study these differences. Climate models with weak (strong) or even divergent moisture flux over the basin are dry (wet). The paper suggests an approach, via a targeted field campaign, for generating useful climate information with which to confront rainfall products and climate models. PMID:23878328
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Subimal; Das, Debasish; Kao, Shih-Chieh
Recent studies disagree on how rainfall extremes over India have changed in space and time over the past half century, as well as on whether the changes observed are due to global warming or regional urbanization. Although a uniform and consistent decrease in moderate rainfall has been reported, a lack of agreement about trends in heavy rainfall may be due in part to differences in the characterization and spatial averaging of extremes. Here we use extreme value theory to examine trends in Indian rainfall over the past half century in the context of long-term, low-frequency variability.We show that when generalizedmore » extreme value theory is applied to annual maximum rainfall over India, no statistically significant spatially uniform trends are observed, in agreement with previous studies using different approaches. Furthermore, our space time regression analysis of the return levels points to increasing spatial variability of rainfall extremes over India. Our findings highlight the need for systematic examination of global versus regional drivers of trends in Indian rainfall extremes, and may help to inform flood hazard preparedness and water resource management in the region.« less
Truman, C C; Strickland, T C; Potter, T L; Franklin, D H; Bosch, D D; Bednarz, C W
2007-01-01
The low-carbon, intensively cropped Coastal Plain soils of Georgia are susceptible to runoff, soil loss, and drought. Reduced tillage systems offer the best management tool for sustained row crop production. Understanding runoff, sediment, and chemical losses from conventional and reduced tillage systems is expected to improve if the effect of a variable rainfall intensity storm was quantified. Our objective was to quantify and compare effects of a constant (Ic) intensity pattern and a more realistic, observed, variable (Iv) rainfall intensity pattern on runoff (R), sediment (E), and carbon losses (C) from a Tifton loamy sand cropped to conventional-till (CT) and strip-till (ST) cotton (Gossypium hirsutum L.). Four treatments were evaluated: CT-Ic, CT-Iv, ST-Ic, and ST-Iv, each replicated three times. Field plots (n=12), each 2 by 3 m, were established on each treatment. Each 6-m2 field plot received simulated rainfall at a constant (57 mm h(-1)) or variable rainfall intensity pattern for 70 min (12-run ave.=1402 mL; CV=3%). The Iv pattern represented the most frequent occurring intensity pattern for spring storms in the region. Compared with CT, ST decreased R by 2.5-fold, E by 3.5-fold, and C by 7-fold. Maximum runoff values for Iv events were 1.6-fold higher than those for Ic events and occurred 38 min earlier. Values for Etot and Ctot for Iv events were 19-36% and 1.5-fold higher than corresponding values for Ic events. Values for Emax and Cmax for Iv events were 3-fold and 4-fold higher than corresponding values for Ic events. Carbon enrichment ratios (CER) were
Jian, Sheng-Qi; Zhao, Chuan-Yan; Fang, Shu-Min; Yu, Kai; Wang, Yang; Liu, Yi-Yue; Zheng, Xiang-Lin; Peng, Shou-Zhang
2012-09-01
From May to October 2011, an investigation was conducted on the effects of rainfall and its intensity on the canopy interception, throughfall, and stemflow of Caragana korshinskii and Hippophae rhamnoides, the main shrub species commonly planted to stabilize soil and water in the Anjiagou catchment of Loess Plateau. A total of 47 rainfall events were observed, most of which were featured with low intensity, and the total amount and average intensity of the rainfalls were 208.9 mm and 2.82 mm x h(-1), respectively. As a whole, the rainfall events of 2-10 mm and 0.1-2 mm x h(-1) had the highest frequency. The canopy interception, throughfall, and stemflow of C. korshinski were 58.5 mm (28%), 124.7 mm (59.7%), and 25.7 mm (12.3%), while those of H. rhamnoides were 17.6 mm (8.4%), 153. 1 mm (73.3%), and 38.2 mm (18.3%), respectively. Regression analysis showed that the canopy interception, throughfall, and stemflow of the two shrub species all had significant positive correlations with the rainfall amount, and had exponent or power correlations with the rainfall amount and the maximum rainfall intensity in 10 minutes.
NASA Astrophysics Data System (ADS)
Liu, J.; Gao, G.; Jiao, L.; Fu, B.
2016-12-01
The rainfall amount, density and duration were commonly used to evaluate the influences of rainfall on runoff and soil loss, which could completely express the information of rainfall, especially rainfall pattern. In this study, the peak zone of rainfall intensity (PZRI) and intra-event intermittency of rainfall (IERI) were developed to detect the effects of rainfall pattern on runoff and soil loss under different land cover types in the Loess Plateau of China. The runoff and soil loss of three vegetation types (Prunus armeniaca, Artemisia sacrorum and Andropogon yunnanensis) and bare land were measured from 2012 to 2015. The PZRI was significantly correlated with average rainfall intensity (I) and maximum rainfall intensity in 30 minutes (I30). The runoff coefficient (RC) and soil loss were not significantly correlated with I, but they were significantly affected by I30 and PZRI (p<0.05). The greater value of IERI indicated more proportion of PZRI in rainfall duration, and there was positive correlation between IERI and RC. It was showed that the RC was most correlated with PZRI, whereas the correlation between soil loss and I30 was most significant under all cover types. This indicated that the changes of rainfall pattern had more effects on runoff than soil loss. In addition, the position of PZRI in the rainfall profile had an important role on runoff and soil loss. RC and soil loss under bare land was most sensitive to the occurrence period of rainfall peak, followed by Prunus armeniaca, Artemisia sacrorum and Andropogon yunnanensis.
Estimation of Rainfall Erosivity via 1-Minute to Hourly Rainfall Data from Taipei, Taiwan
NASA Astrophysics Data System (ADS)
Huang, Ting-Yin; Yang, Ssu-Yao; Jan, Chyan-Deng
2017-04-01
Soil erosion is a natural process on hillslopes that threats people's life and properties, having a considerable environmental and economic implications for soil degradation, agricultural activity and water quality. The rainfall erosivity factor (R-factor) in the Universal Soil Loss Equation (USLE), composed of total kinetic energy (E) and the maximum 30-min rainfall intensity (I30), is widely used as an indicator to measure the potential risks of soil loss caused by rainfall at a regional scale. This R factor can represent the detachment and entrainment involved in climate conditions on hillslopes, but lack of 30-min rainfall intensity data usually lead to apply this factor more difficult in many regions. In recent years, fixed-interval, hourly rainfall data is readily available and widely used due to the development of automatic weather stations. Here we assess the estimations of R, E, and I30 based on 1-, 5-, 10-, 15-, 30-, 60-minute rainfall data, and hourly rainfall data obtained from Taipei weather station during 2004 to 2010. Results show that there is a strong correlation among R-factors estimated from different interval rainfall data. Moreover, the shorter time-interval rainfall data (e.g., 1-min) yields larger value of R-factor. The conversion factors of rainfall erosivity (ratio of values estimated from the resolution lower than 30-min rainfall data to those estimated from 60-min and hourly rainfall data, respectively) range from 1.85 to 1.40 (resp. from 1.89 to 1.02) for 60-min (resp. hourly) rainfall data as the time resolution increasing from 30-min to 1-min. This paper provides useful information on estimating R-factor when hourly rainfall data is only available.
Vegetation response to rainfall seasonality and interannual variability in tropical dry forests
NASA Astrophysics Data System (ADS)
Feng, X.; Silva Souza, R. M.; Souza, E.; Antonino, A.; Montenegro, S.; Porporato, A. M.
2015-12-01
We analyzed the response of tropical dry forests to seasonal and interannual rainfall variability, focusing on the caatinga biome in semi-arid in Northeast Brazil. We selected four sites across a gradient of rainfall amount and seasonality and analyzed daily rainfall and biweekly Normalized Difference Vegetation Index (NDVI) in the period 2000-2014. The seasonal and interannual rainfall statistics were characterized using recently developed metrics describing duration, location, and intensity of wet season and compared them with those of NDVI time series and modelled soil moisture. A model of NDVI was also developed and forced by different rainfall scenarios (combination amount of rainfall and duration of wet season). The results show that the caatinga tends to have a more stable response characterized by longer and less variable growing seasons (of duration 3.1±0.1 months) compared to the rainfall wet seasons (2.0±0.5 months). Even for more extreme rainfall conditions, the ecosystem shows very little sensitivity to duration of wet season in relation to the amount of rainfall, however the duration of wet season is most evident for wetter sites. This ability of the ecosystem in buffering the interannual variability of rainfall is corroborated by the stability of the centroid location of the growing season compared to the wet season for all sites. The maximal biomass production was observed at intermediate levels of seasonality, suggesting a possible interesting trade-off in the effects of intensity (i.e., amount) and duration of the wet season on vegetation growth.
NASA Astrophysics Data System (ADS)
Licznar, Paweł; Rupp, David; Adamowski, Witold
2013-04-01
In the fall of 2008, Municipal Water Supply and Sewerage Company (MWSSC) in Warsaw began operating the first large precipitation monitoring network dedicated to urban hydrology in Poland. The process of establishing the network as well as the preliminary phase of its operation, raised a number of questions concerning optimal gauge location and density and revealed the urgent need for new data processing techniques. When considering the full-field precipitation as input to hydrodynamic models of stormwater and combined sewage systems, standard processing techniques developed previously for single gauges and concentrating mainly on the analysis of maximum rainfall rates and intensity-duration-frequency (IDF) curves development were found inadequate. We used a multifractal rainfall modeling framework based on microcanonical multiplicative random cascades to analyze properties of Warsaw precipitation. We calculated breakdown coefficients (BDC) for the hierarchy of timescales from λ=1 (5-min) up to λ=128 (1280-min) for all 25 gauges in the network. At small timescales histograms of BDCs were strongly deformed due to the recording precision of rainfall amounts. A randomization procedure statistically removed the artifacts due to precision errors in the original series. At large timescales BDC values were sparse due to relatively short period of observations (2008-2011). An algorithm with a moving window was proposed to increase the number of BDC values at large timescales and to smooth their histograms. The resulting empirical BDC histograms were modeled by a theoretical "2N-B" distribution, which combined 2 separate normal (N) distributions and one beta (B) distribution. A clear evolution of BDC histograms from a 2N-B distribution for small timescales to a N-B distributions for intermediate timescales and finally to a single beta distributions for large timescales was observed for all gauges. Cluster analysis revealed close patterns of BDC distributions among almost all gauges and timescales with exception of two gauges located at the city limits (one gauge was located on the Okęcie airport). We evaluated the performance of the microcanonical cascades at disaggregating 1280-min (quasi daily precipitation totals) into 5-min rainfall data for selected gauges. Synthetic time series were analyzed with respect to their intermittency and variability of rainfall intensities and compared to observational series. We showed that microcanonical cascades models could be used in practice for generating synthetic rainfall time series suitable as input to urban hydrology models in Warsaw.
A Bayesian Hierarchical Modeling Approach to Predicting Flow in Ungauged Basins
NASA Astrophysics Data System (ADS)
Gronewold, A.; Alameddine, I.; Anderson, R. M.
2009-12-01
Recent innovative approaches to identifying and applying regression-based relationships between land use patterns (such as increasing impervious surface area and decreasing vegetative cover) and rainfall-runoff model parameters represent novel and promising improvements to predicting flow from ungauged basins. In particular, these approaches allow for predicting flows under uncertain and potentially variable future conditions due to rapid land cover changes, variable climate conditions, and other factors. Despite the broad range of literature on estimating rainfall-runoff model parameters, however, the absence of a robust set of modeling tools for identifying and quantifying uncertainties in (and correlation between) rainfall-runoff model parameters represents a significant gap in current hydrological modeling research. Here, we build upon a series of recent publications promoting novel Bayesian and probabilistic modeling strategies for quantifying rainfall-runoff model parameter estimation uncertainty. Our approach applies alternative measures of rainfall-runoff model parameter joint likelihood (including Nash-Sutcliffe efficiency, among others) to simulate samples from the joint parameter posterior probability density function. We then use these correlated samples as response variables in a Bayesian hierarchical model with land use coverage data as predictor variables in order to develop a robust land use-based tool for forecasting flow in ungauged basins while accounting for, and explicitly acknowledging, parameter estimation uncertainty. We apply this modeling strategy to low-relief coastal watersheds of Eastern North Carolina, an area representative of coastal resource waters throughout the world because of its sensitive embayments and because of the abundant (but currently threatened) natural resources it hosts. Consequently, this area is the subject of several ongoing studies and large-scale planning initiatives, including those conducted through the United States Environmental Protection Agency (USEPA) total maximum daily load (TMDL) program, as well as those addressing coastal population dynamics and sea level rise. Our approach has several advantages, including the propagation of parameter uncertainty through a nonparametric probability distribution which avoids common pitfalls of fitting parameters and model error structure to a predetermined parametric distribution function. In addition, by explicitly acknowledging correlation between model parameters (and reflecting those correlations in our predictive model) our model yields relatively efficient prediction intervals (unlike those in the current literature which are often unnecessarily large, and may lead to overly-conservative management actions). Finally, our model helps improve understanding of the rainfall-runoff process by identifying model parameters (and associated catchment attributes) which are most sensitive to current and future land use change patterns. Disclaimer: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.
Using Conditional Analysis to Investigate Spatial and Temporal patterns in Upland Rainfall
NASA Astrophysics Data System (ADS)
Sakamoto Ferranti, Emma Jayne; Whyatt, James Duncan; Timmis, Roger James
2010-05-01
The seasonality and characteristics of rainfall in the UK are altering under a changing climate. Summer rainfall is generally decreasing whereas winter rainfall is increasing, particularly in northern and western areas (Maraun et al., 2008) and recent research suggests these rainfall increases are amplified in upland areas (Burt and Ferranti, 2010). Conditional analysis has been used to investigate these rainfall patterns in Cumbria, an upland area in northwest England. Cumbria was selected as an example of a topographically diverse mid-latitude region that has a predominately maritime and westerly-defined climate. Moreover it has a dense network of more than 400 rain gauges that have operated for periods between 1900 and present day. Cumbria has experienced unprecedented flooding in the past decade and understanding the spatial and temporal changes in this and other upland regions is important for water resource and ecosystem management. The conditional analysis method examines the spatial and temporal variations in rainfall under different synoptic conditions and in different geographic sub-regions (Ferranti et al., 2009). A daily synoptic typing scheme, the Lamb Weather Catalogue, was applied to classify rainfall into different weather types, for example: south-westerly, westerly, easterly or cyclonic. Topographic descriptors developed using GIS were used to classify rain gauges into 6 directionally-dependant geographic sub-regions: coastal, windward-lowland, windward-upland, leeward-upland, leeward-lowland, secondary upland. Combining these classification methods enabled seasonal rainfall climatologies to be produced for specific weather types and sub-regions. Winter rainfall climatologies were constructed for all 6 sub-regions for 3 weather types - south-westerly (SW), westerly (W), and cyclonic (C); these weather types contribute more than 50% of total winter rainfall. The frequency of wet-days (>0.3mm), the total winter rainfall and the average wet day rainfall amount were analysed for each rainfall sub-region and weather type from 1961-2007 (Ferranti et al., 2010). The conditional analysis showed total rainfall under SW and W weather types to be increasing, with the greatest increases observed in the upland sub-regions. The increase in total SW rainfall is driven by a greater occurrence of SW rain days, and there has been little change to the average wet-day rainfall amount. The increase in total W rainfall is driven in part by an increase in the frequency of wet-days, but more significantly by an increase in the average wet-day rainfall amount. In contrast, total rainfall under C weather types has decreased. Further analysis will investigate how spring, summer and autumn rainfall climatologies have changed for the different weather types and sub-regions. Conditional analysis that combines GIS and synoptic climatology provides greater insights into the processes underlying readily available meteorological data. Dissecting Cumbrian rainfall data under different synoptic and geographic conditions showed the observed changes in winter rainfall are not uniform for the different weather types, nor for the different geographic sub-regions. These intricate details are often lost during coarser resolution analysis, and conditional analysis will provide a detailed synopsis of Cumbrian rainfall processes against which Regional Climate Model (RCM) performance can be tested. Conventionally RCMs try to simulate composite rainfall over many different weather types and sub-regions and by undertaking conditional validation the model performance for individual processes can be tested. This will help to target improvements in model performance, and ultimately lead to better simulation of rainfall in areas of complex topography. BURT, T. P. & FERRANTI, E. J. S. (2010) Changing patterns of heavy rainfall in upland areas: a case study from northern England. Atmospheric Environment, [in review]. FERRANTI, E. J. S., WHYATT, J. D. & TIMMIS, R. J. (2009) Development and application of topographic descriptors for conditional analysis of rainfall. Atmospheric Science Letters, 10, 177-184. FERRANTI, E. J. S., WHYATT, J. D., TIMMIS, R. J. & DAVIES, G. (2010) Using GIS to investigate spatial and temporal variations in upland rainfall. Transactions in GIS, [in press]. MARAUN, D., OSBORN, T. J. & GILLETT, N. P. (2008) United Kingdom daily precipitation intensity: improved early data, error estimates and an update from 2000 to 2006. International Journal of Climatology, 28, 833-842.
Prediction of monthly rainfall in Victoria, Australia: Clusterwise linear regression approach
NASA Astrophysics Data System (ADS)
Bagirov, Adil M.; Mahmood, Arshad; Barton, Andrew
2017-05-01
This paper develops the Clusterwise Linear Regression (CLR) technique for prediction of monthly rainfall. The CLR is a combination of clustering and regression techniques. It is formulated as an optimization problem and an incremental algorithm is designed to solve it. The algorithm is applied to predict monthly rainfall in Victoria, Australia using rainfall data with five input meteorological variables over the period of 1889-2014 from eight geographically diverse weather stations. The prediction performance of the CLR method is evaluated by comparing observed and predicted rainfall values using four measures of forecast accuracy. The proposed method is also compared with the CLR using the maximum likelihood framework by the expectation-maximization algorithm, multiple linear regression, artificial neural networks and the support vector machines for regression models using computational results. The results demonstrate that the proposed algorithm outperforms other methods in most locations.
Rain rate intensity model for communication link design across the Indian region
NASA Astrophysics Data System (ADS)
Kilaru, Aravind; Kotamraju, Sarat K.; Avlonitis, Nicholas; Sri Kavya, K. Ch.
2016-07-01
A study on rain statistical parameters such as one minute rain intensity, possible number of minute occurrences with respective percentage of time in a year has been evaluated for the purpose of communication link design at Ka, Q, V bands as well as at Free-Space Optical communication links (FSO). To understand possible outage period of a communication links due to rainfall and to investigate rainfall pattern, Automatic Weather Station (AWS) rainfall data is analysed due its ample presence across India. The climates of the examined AWS regions vary from desert to cold climate, heavy rainfall to variable rainfall regions, cyclone effective regions, mountain and coastal regions. In this way a complete and unbiased picture of the rainfall statistics for Indian region is evaluated. The analysed AWS data gives insight into yearly accumulated rainfall, maximum hourly accumulated rainfall, mean hourly accumulated rainfall, number of rainy days and number of rainy hours from 668 AWS locations. Using probability density function the one minute rainfall measurements at KL University is integrated with AWS measurements for estimating number of rain occurrences in terms of one minute rain intensity for annual rainfall accumulated between 100 mm and 5000 mm to give an insight into possible one minute accumulation pattern in an hour for comprehensive analysis of rainfall influence on a communication link for design engineers. So that low availability communications links at higher frequencies can be transformed into a reliable and economically feasible communication links for implementing High Throughput Services (HTS).
NASA Astrophysics Data System (ADS)
Wu, Chunhung; Huang, Jyuntai
2017-04-01
Most of the landslide cases in Taiwan were triggered by rainfall or earthquake events. The heavy rainfall in the typhoon seasons, from June to October, causes the landslide hazard more serious. Renai Towhship is of the most large landslide cases after 2009 Typhoon Morakot (from Aug. 5 to Aug. 10, 2009) in Taiwan. Around 2,744 landslides cases with the total landslide area of 21.5 km2 (landslide ratio =1.8%), including 26 large landslide cases, induced after 2009 Typhoon Morakot in Renai Towhship. The area of each large landslides case is more than 0.1 km2, and the area of the largest case is around 0.96 km2. 58% of large landslide cases locate in the area with metamorphosed sandstone. The mean slope of 26 large landslide cases ranges from 15 degree to 56 degree, and the accumulated rainfall during 2009 Typhoon Morakot ranges from 530 mm to 937 mm. Three methods, including frequency ratio method (abbreviated as FR), weights of evidence method (abbreviated as WOE), and logistic regression method (abbreviated as LR), are used in this study to establish the landslides susceptibility in the Renai Township, Nantou County, Taiwan. Eight landslide related-factors, including elevation, slope, aspect, geology, land use, distance to drainage, distance to fault, accumulation rainfall during 2009 Typhoon Morakot, are used to establish the landslide susceptibility models in this study. The landslide inventory after 2009 Typhoon Morakot is also used to test the model performance in this study. The mean accumulated rainfall in Renai Township during 2009 typhoon Morakot was around 735 mm with the maximum 1-hr, 3-hrs, and 6-hrs rainfall intensity of 44 mm/1-hr, 106 mm/3-hrs and 204 mm/6-hrs, respectively. The range of original susceptibility values established by three methods are 4.0 to 20.9 for FR, -33.8 to -16.1 for WOE, and -41.7 to 5.7 for LR, and the mean landslide susceptibility value are 8.0, -24.6 and 0.38, respectively. The AUC values are 0.815 for FR, 0.816 for WOE, and 0.823 for LR. The study normalized the susceptibility value range of three landslide susceptibility models to 0 to 1 to deeply compare the model performance. The normalized landslide susceptibility value > 0.5 and ≦0.5 are regarded as predicted-landslide area and predicted-not-landslide area. The ratio of the area in the predicted-landslide area to the total area is 3.0% for FR, 71.4% for WOE, and 26.5% for LR. And the correct ratio is 65.5% for FR, 61.9% for WOE, 74.5% for LR. The study adopted 14 rainfall stations with more than 20 years daily rainfall data in Renai Township to estimate the 24 hrs accumulated rainfall with different RPYs. Landslide susceptibility map under 24 hrs accumulated rainfall distribution with different RPYs is used to estimate the landslide disaster location and scale. The landslide risk under different RPYs in Renai Township is calculated as 2.62 billion for 5 RPYs, 3.06 billion for 10 RPYs, 4.69 billion for 25 RPYs, 5.97 billion for 50 RPYs, 6.98 billion for 100 RPYs, and 8.23 billion for 200 RPYs, respectively.
Modelling rainfall amounts using mixed-gamma model for Kuantan district
NASA Astrophysics Data System (ADS)
Zakaria, Roslinazairimah; Moslim, Nor Hafizah
2017-05-01
An efficient design of flood mitigation and construction of crop growth models depend upon good understanding of the rainfall process and characteristics. Gamma distribution is usually used to model nonzero rainfall amounts. In this study, the mixed-gamma model is applied to accommodate both zero and nonzero rainfall amounts. The mixed-gamma model presented is for the independent case. The formulae of mean and variance are derived for the sum of two and three independent mixed-gamma variables, respectively. Firstly, the gamma distribution is used to model the nonzero rainfall amounts and the parameters of the distribution (shape and scale) are estimated using the maximum likelihood estimation method. Then, the mixed-gamma model is defined for both zero and nonzero rainfall amounts simultaneously. The formulae of mean and variance for the sum of two and three independent mixed-gamma variables derived are tested using the monthly rainfall amounts from rainfall stations within Kuantan district in Pahang Malaysia. Based on the Kolmogorov-Smirnov goodness of fit test, the results demonstrate that the descriptive statistics of the observed sum of rainfall amounts is not significantly different at 5% significance level from the generated sum of independent mixed-gamma variables. The methodology and formulae demonstrated can be applied to find the sum of more than three independent mixed-gamma variables.
Hydrologic data for Soldier Creek Basin, Kansas
Carswell, William J.
1978-01-01
Selected hydrologic data collected in the Soldier Creek basin in Kansas are available on magnetic tape in card-image format. Data on the tape include water discharge in fifteen-minute and daily time intervals; rainfall in fifteen-minute and daily time intervals; concentrations and particle sizes of suspended sediment; particle sizes of bed material; ground-water levels; and chemical quality of water in concentrations of selected constituents.
WPC Excessive Rainfall and Winter Weather Forecasts
Summaries Heat Index Tropical Products Daily Weather Map GIS Products Current Watches/ Warnings Satellite and Radar Imagery GOES-East Satellite GOES-West Satellite National Radar Product Archive WPC
Instability and its relation to precipitation over the Eastern Iberian Peninsula
NASA Astrophysics Data System (ADS)
Iturrioz, I.; Hernández, E.; Ribera, P.; Queralt, S.
2007-04-01
Synoptic situations producing rainfall at four rawinsonde observatories at eastern Spain are classified as stratiform or convective depending on dynamic and thermodynamic instability indices. Two daily radiosonde and daily-accumulated precipitation data from four observatories in Eastern Spain are used: Madrid-Barajas (MB), Murcia (MU), Palma de Mallorca (PA) and Zaragoza (ZA). We calculated two thermodynamic instability indices from radiosonde data: CAPE and LI. Likewise, from ERA40 reanalysis data we have calculated the Q vector divergence over the Iberian Peninsula and Balearic Islands, as a parameter describing dynamical instability. Synoptic situations producing rainfall were classified as convective or stratiform, satisfying a criterion based on the values of dynamic and thermodynamic indices at each observatory. It is observed that the number of days with stratiform precipitation related to the total number of precipitation days follows a consistent annual pattern.
Assessment of satellite-based precipitation estimates over Paraguay
NASA Astrophysics Data System (ADS)
Oreggioni Weiberlen, Fiorella; Báez Benítez, Julián
2018-04-01
Satellite-based precipitation estimates represent a potential alternative source of input data in a plethora of meteorological and hydrological applications, especially in regions characterized by a low density of rain gauge stations. Paraguay provides a good example of a case where the use of satellite-based precipitation could be advantageous. This study aims to evaluate the version 7 of the Tropical Rainfall Measurement Mission Multi-Satellite Precipitation Analysis (TMPA V7; 3B42 V7) and the version 1.0 of the purely satellite-based product of the Climate Prediction Center Morphing Technique (CMORPH RAW) through their comparison with daily in situ precipitation measurements from 1998 to 2012 over Paraguay. The statistical assessment is conducted with several commonly used indexes. Specifically, to evaluate the accuracy of daily precipitation amounts, mean error (ME), root mean square error (RMSE), BIAS, and coefficient of determination (R 2) are used, and to analyze the capability to correctly detect different precipitation intensities, false alarm ratio (FAR), frequency bias index (FBI), and probability of detection (POD) are applied to various rainfall rates (0, 0.1, 0.5, 1, 2, 5, 10, 20, 40, 60, and 80 mm/day). Results indicate that TMPA V7 has a better performance than CMORPH RAW over Paraguay. TMPA V7 has higher accuracy in the estimation of daily rainfall volumes and greater precision in the detection of wet days (> 0 mm/day). However, both satellite products show a lower ability to appropriately detect high intensity precipitation events.
Predicting Coastal Flood Severity using Random Forest Algorithm
NASA Astrophysics Data System (ADS)
Sadler, J. M.; Goodall, J. L.; Morsy, M. M.; Spencer, K.
2017-12-01
Coastal floods have become more common recently and are predicted to further increase in frequency and severity due to sea level rise. Predicting floods in coastal cities can be difficult due to the number of environmental and geographic factors which can influence flooding events. Built stormwater infrastructure and irregular urban landscapes add further complexity. This paper demonstrates the use of machine learning algorithms in predicting street flood occurrence in an urban coastal setting. The model is trained and evaluated using data from Norfolk, Virginia USA from September 2010 - October 2016. Rainfall, tide levels, water table levels, and wind conditions are used as input variables. Street flooding reports made by city workers after named and unnamed storm events, ranging from 1-159 reports per event, are the model output. Results show that Random Forest provides predictive power in estimating the number of flood occurrences given a set of environmental conditions with an out-of-bag root mean squared error of 4.3 flood reports and a mean absolute error of 0.82 flood reports. The Random Forest algorithm performed much better than Poisson regression. From the Random Forest model, total daily rainfall was by far the most important factor in flood occurrence prediction, followed by daily low tide and daily higher high tide. The model demonstrated here could be used to predict flood severity based on forecast rainfall and tide conditions and could be further enhanced using more complete street flooding data for model training.
NASA Astrophysics Data System (ADS)
Sahlu, Dejene; Moges, Semu; Anagnostou, Emmanouil; Nikolopoulos, Efthymios; Hailu, Dereje; Mei, Yiwen
2017-04-01
Water resources assessment, planning and management in Africa is often constrained by the lack of reliable spatio-temporal rainfall data. Satellite products are steadily growing and offering useful alternative datasets of rainfall globally. The aim of this paper is to examine the error characteristics of the main available global satellite precipitation products with the view of improving the reliability of wet season (June to September) and small rainy season rainfall datasets over the Upper Blue Nile Basin. The study utilized six satellite derived precipitation datasets at 0.25-deg spatial grid size and daily temporal resolution:1) the near real-time (3B42_RT) and gauge adjusted (3B42_V7) products of Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), 2) gauge adjusted and unadjusted Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) products and 3) the gauge adjusted and un-adjusted product of the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center Morphing technique (CMORPH) over the period of 2000 to 2013.The error analysis utilized statistical techniques using bias ratio (Bias), correlation coefficient (CC) and root-mean-square-error (RMSE). Mean relative error (MRE), CC and RMSE metrics are further examined for six categories of 10th, 25th, 50th, 75th, 90thand 95th percentile rainfall thresholds. The skill of the satellite estimates is evaluated using categorical error metrics of missed rainfall volume fraction (MRV), falsely detected rainfall volume fraction (FRV), probability of detection (POD) and False Alarm Ratio (FAR). Results showed that six satellite based rainfall products underestimated wet season (June to September) gauge precipitation, with the exception of non-adjusted PERSIANN that overestimated the initial part of the rainy season (March to May). During the wet season, adjusted CMORPH has relatively better bias ratio (89 %) followed by 3B42_V7 (88%), adjusted-PERSIANN (81%), and non-adjusted products have relatively lower bias ratio. The results from CC statistic range from 0.34 to 0.43 for the wet season with adjusted products having slightly higher values. The initial rainy season has relatively higher CC than the wet season. Results from the categorical error metrics showed that CMORPH products have higher POD (91%), which are better in avoiding detecting false rainfall events in the wet season. For the initial rainy season PERSIANN (<50%), TMPA and CMORPH products are nearly equivalent (63-67%). On the other hand, FAR is below 0.1% for all products while in the wet season is higher (10-25%). In terms of rainfall volume of missed and false detected rainfall, CMORPH exhibited lower MRV ( 4.5%) than the TMPA and PERSIANN products (11-19%.) in the wet season. MRV for the initial rainy season was 20% for TMPA and CMORPH products and above 30% for PERSIANN products. All products are nearly equivalent in the wet season in terms of FRV (< 0.2%). The magnitude of MRE increases with gauge rainfall threshold categories with 3B42-V7 and adjusted CMORPH having lower magnitude, showing that underestimation of rainfall increases with increasing rainfall magnitude. CC also decreases with gauge rainfall threshold categories with CMORPH products having slightly higher values. Overall, all satellite products underestimated (overestimated) lower (higher) quantiles quantiles. We have observed that among the six satellite rainfall products the adjusted CMORPH has relatively better potential to improve wet season rainfall estimate and 3B42-V7 that initial rainy season in the Upper Blue Nile Basin.
Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate
NASA Astrophysics Data System (ADS)
Fadhel, Sherien; Rico-Ramirez, Miguel Angel; Han, Dawei
2018-05-01
The widely used design storms in urban drainage networks has different drawbacks. One of them is that the shape of the rainfall temporal pattern is fixed regardless of climate change. However, previous studies have shown that the temporal pattern may scale with temperature due to climate change, which consequently affects peak flow. Thus, in addition to the scaling of the rainfall volume, the scaling relationship for the rainfall temporal pattern with temperature needs to be investigated by deriving the scaling values for each fraction within storm events, which is lacking in many parts of the world including the UK. Therefore, this study analysed rainfall data from 28 gauges close to the study area with a 15-min resolution as well as the daily temperature data. It was found that, at warmer temperatures, the rainfall temporal pattern becomes less uniform, with more intensive peak rainfall during higher intensive times and weaker rainfall during less intensive times. This is the case for storms with and without seasonal separations. In addition, the scaling values for both the rainfall volume and the rainfall fractions (i.e. each segment of rainfall temporal pattern) for the summer season were found to be higher than the corresponding results for the winter season. Applying the derived scaling values for the temporal pattern of the summer season in a hydrodynamic sewer network model produced high percentage change of peak flow between the current and future climate. This study on the scaling of rainfall fractions is the first in the UK, and its findings are of importance to modellers and designers of sewer systems because it can provide more robust scenarios for flooding mitigation in urban areas.
NASA Astrophysics Data System (ADS)
Taibi, S.; Meddi, M.; Mahé, G.; Assani, A.
2017-01-01
This work aims, as a first step, to analyze rainfall variability in Northern Algeria, in particular extreme events, during the period from 1940 to 2010. Analysis of annual rainfall shows that stations in the northwest record a significant decrease in rainfall since the 1970s. Frequencies of rainy days for each percentile (5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th) and each rainfall interval class (1-5, 5-10, 10-20, 20-50, and ≥50 mm) do not show a significant change in the evolution of daily rainfall. The Tenes station is the only one to show a significant decrease in the frequency of rainy days up to the 75th percentile and for the 10-20-mm interval class. There is no significant change in the temporal evolution of extreme events in the 90th, 95th, and 99th percentiles. The relationships between rainfall variability and general atmospheric circulation indices for interannual and extreme event variability are moderately influenced by the El Niño-Southern Oscillation and Mediterranean Oscillation. Significant correlations are observed between the Southern Oscillation Index and annual rainfall in the northwestern part of the study area, which is likely linked with the decrease in rainfall in this region. Seasonal rainfall in Northern Algeria is affected by the Mediterranean Oscillation and North Atlantic Oscillation in the west. The ENSEMBLES regional climate models (RCMs) are assessed using the bias method to test their ability to reproduce rainfall variability at different time scales. The Centre National de Recherches Météorologiques (CNRM), Czech Hydrometeorological Institute (CHMI), Eidgenössische Technische Hochschule Zürich (ETHZ), and Forschungszentrum Geesthacht (GKSS) models yield the least biased results.
Model for forecasting Olea europaea L. airborne pollen in South-West Andalusia, Spain
NASA Astrophysics Data System (ADS)
Galán, C.; Cariñanos, Paloma; García-Mozo, Herminia; Alcázar, Purificación; Domínguez-Vilches, Eugenio
Data on predicted average and maximum airborne pollen concentrations and the dates on which these maximum values are expected are of undoubted value to allergists and allergy sufferers, as well as to agronomists. This paper reports on the development of predictive models for calculating total annual pollen output, on the basis of pollen and weather data compiled over the last 19 years (1982-2000) for Córdoba (Spain). Models were tested in order to predict the 2000 pollen season; in addition, and in view of the heavy rainfall recorded in spring 2000, the 1982-1998 data set was used to test the model for 1999. The results of the multiple regression analysis show that the variables exerting the greatest influence on the pollen index were rainfall in March and temperatures over the months prior to the flowering period. For prediction of maximum values and dates on which these values might be expected, the start of the pollen season was used as an additional independent variable. Temperature proved the best variable for this prediction. Results improved when the 5-day moving average was taken into account. Testing of the predictive model for 1999 and 2000 yielded fairly similar results. In both cases, the difference between expected and observed pollen data was no greater than 10%. However, significant differences were recorded between forecast and expected maximum and minimum values, owing to the influence of rainfall during the flowering period.
NASA Astrophysics Data System (ADS)
Dhakal, A. S.; Adera, S.; Niswonger, R. G.; Gardner, M.
2016-12-01
The ability of the Precipitation-Runoff Modeling System (PRMS) to predict peak intensity, peak timing, base flow, and volume of streamflow was examined in Arroyo Hondo (180 km2) and Upper Alameda Creek (85 km2), two sub-watersheds of the Alameda Creek watershed in Northern California. Rainfall-runoff volume ratios vary widely, and can exceed 0.85 during mid-winter flashy rainstorm events. Due to dry antecedent soil moisture conditions, the first storms of the hydrologic year often produce smaller rainfall-runoff volume ratios. Runoff response in this watershed is highly hysteretic; large precipitation events are required to generate runoff following a 4-week period without precipitation. After about 150 mm of cumulative rainfall, streamflow responds quickly to subsequent storms, with variations depending on rainstorm intensity. Inputs to PRMS included precipitation, temperature, topography, vegetation, soils, and land cover data. The data was prepared for input into PRMS using a suite of data processing Python scripts written by the Desert Research Institute and U.S. Geological Survey. PRMS was calibrated by comparing simulated streamflow to measured streamflow at a daily time step during the period 1995 - 2014. The PRMS model is being used to better understand the different patterns of streamflow observed in the Alameda Creek watershed. Although Arroyo Hondo receives more rainfall than Upper Alameda Creek, it is not clear whether the differences in streamflow patterns are a result of differences in rainfall or other variables, such as geology, slope and aspect. We investigate the ability of PRMS to simulate daily streamflow in the two sub-watersheds for a variety of antecedent soil moisture conditions and rainfall intensities. After successful simulation of watershed runoff processes, the model will be expanded using GSFLOW to simulate integrated surface water and groundwater to support water resources planning and management in the Alameda Creek watershed.
NASA Astrophysics Data System (ADS)
Vogt, N. D.; Fernandes, K.; Pinedo-Vasquez, M.; Brondizio, E. S.; Almeida, O.; Rivero, S.; Rabelo, F. R.; Dou, Y.; Deadman, P.
2014-12-01
In this paper we investigate inter-seasonal and annual co-variations of rainfall and flood levels with Caboclo production portfolios, and proportions of it they sell and consume, in the Amazon Estuary from August 2012 to August 2014. Caboclos of the estuary maintain a diverse and flexible land-use portfolio, with a shift in dominant use from agriculture to agroforestry and forestry since WWII (Vogt et al., 2014). The current landscape is configured for acai, shrimp and fish production. In the last decade the frequency of wet seasons with anomalous flood levels and duration has increased primarily from changes in rainfall and discharge from upstream basins. Local rainfall, though with less influence on extreme estuarine flood levels, is reported to be more sporadic and intense in wet season and variable in both wet and dry seasons, for yet unknown reasons. The current production portfolio and its flexibility are felt to build resilience to these increases in hydro-climatic variability and extreme events. What is less understood, for time and costliness of daily measures at household levels, is how variations in flood and rainfall levels affect shifts in the current production portfolio of estuarine Caboclos, and the proportions of it they sell and consume. This is needed to identify what local hydro-climatic thresholds are extreme for current livelihoods, that is, that most adversely affect food security and income levels. It is also needed identify the large-scale forcings driving those extreme conditions to build forecasts for when they will occur. Here we present results of production, rainfall and flood data collected daily in households from both the North and South Channel of the Amazon estuary over last two years to identify how they co-vary, and robustness of current production portfolio under different hydro-climatic conditions.
Scaling Linguistic Characterization of Precipitation Variability
NASA Astrophysics Data System (ADS)
Primo, C.; Gutierrez, J. M.
2003-04-01
Rainfall variability is influenced by changes in the aggregation of daily rainfall. This problem is of great importance for hydrological, agricultural and ecological applications. Rainfall averages, or accumulations, are widely used as standard climatic parameters. However different aggregation schemes may lead to the same average or accumulated values. In this paper we present a fractal method to characterize different aggregation schemes. The method provides scaling exponents characterizing weekly or monthly rainfall patterns for a given station. To this aim, we establish an analogy with linguistic analysis, considering precipitation as a discrete variable (e.g., rain, no rain). Each weekly, or monthly, symbolic precipitation sequence of observed precipitation is then considered as a "word" (in this case, a binary word) which defines a specific weekly rainfall pattern. Thus, each site defines a "language" characterized by the words observed in that site during a period representative of the climatology. Then, the more variable the observed weekly precipitation sequences, the more complex the obtained language. To characterize these languages, we first applied the Zipf's method obtaining scaling histograms of rank ordered frequencies. However, to obtain significant exponents, the scaling must be maintained some orders of magnitude, requiring long sequences of daily precipitation which are not available at particular stations. Thus this analysis is not suitable for applications involving particular stations (such as regionalization). Then, we introduce an alternative fractal method applicable to data from local stations. The so-called Chaos-Game method uses Iterated Function Systems (IFS) for graphically representing rainfall languages, in a way that complex languages define complex graphical patterns. The box-counting dimension and the entropy of the resulting patterns are used as linguistic parameters to quantitatively characterize the complexity of the patterns. We illustrate the high climatological discrimination power of the linguistic parameters in the Iberian peninsula, when compared with other standard techniques (such as seasonal mean accumulated precipitation). As an example, standard and linguistic parameters are used as inputs for a clustering regionalization method, comparing the resulting clusters.
The cross wavelet analysis of dengue fever variability influenced by meteorological conditions
NASA Astrophysics Data System (ADS)
Lin, Yuan-Chien; Yu, Hwa-Lung; Lee, Chieh-Han
2015-04-01
The multiyear variation of meteorological conditions induced by climate change causes the changing diffusion pattern of infectious disease and serious epidemic situation. Among them, dengue fever is one of the most serious vector-borne diseases distributed in tropical and sub-tropical regions. Dengue virus is transmitted by several species of mosquito and causing lots amount of human deaths every year around the world. The objective of this study is to investigate the impact of meteorological variables to the temporal variation of dengue fever epidemic in southern Taiwan. Several extreme and average indices of meteorological variables, i.e. temperature and humidity, were used for this analysis, including averaged, maximum and minimum temperature, and average rainfall, maximum 1-hr rainfall, and maximum 24-hr rainfall. This study plans to identify and quantify the nonlinear relationship of meteorological variables and dengue fever epidemic, finding the non-stationary time-frequency relationship and phase lag effects of those time series from 1998-2011 by using cross wavelet method. Results show that meteorological variables all have a significant time-frequency correlation region to dengue fever epidemic in frequency about one year (52 weeks). The associated phases can range from 0 to 90 degrees (0-13 weeks lag from meteorological factors to dengue incidences). Keywords: dengue fever, cross wavelet analysis, meteorological factor
Satellite-based high-resolution mapping of rainfall over southern Africa
NASA Astrophysics Data System (ADS)
Meyer, Hanna; Drönner, Johannes; Nauss, Thomas
2017-06-01
A spatially explicit mapping of rainfall is necessary for southern Africa for eco-climatological studies or nowcasting but accurate estimates are still a challenging task. This study presents a method to estimate hourly rainfall based on data from the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI). Rainfall measurements from about 350 weather stations from 2010-2014 served as ground truth for calibration and validation. SEVIRI and weather station data were used to train neural networks that allowed the estimation of rainfall area and rainfall quantities over all times of the day. The results revealed that 60 % of recorded rainfall events were correctly classified by the model (probability of detection, POD). However, the false alarm ratio (FAR) was high (0.80), leading to a Heidke skill score (HSS) of 0.18. Estimated hourly rainfall quantities were estimated with an average hourly correlation of ρ = 0. 33 and a root mean square error (RMSE) of 0.72. The correlation increased with temporal aggregation to 0.52 (daily), 0.67 (weekly) and 0.71 (monthly). The main weakness was the overestimation of rainfall events. The model results were compared to the Integrated Multi-satellitE Retrievals for GPM (IMERG) of the Global Precipitation Measurement (GPM) mission. Despite being a comparably simple approach, the presented MSG-based rainfall retrieval outperformed GPM IMERG in terms of rainfall area detection: GPM IMERG had a considerably lower POD. The HSS was not significantly different compared to the MSG-based retrieval due to a lower FAR of GPM IMERG. There were no further significant differences between the MSG-based retrieval and GPM IMERG in terms of correlation with the observed rainfall quantities. The MSG-based retrieval, however, provides rainfall in a higher spatial resolution. Though estimating rainfall from satellite data remains challenging, especially at high temporal resolutions, this study showed promising results towards improved spatio-temporal estimates of rainfall over southern Africa.
Rainfall disaggregation for urban hydrology: Effects of spatial consistence
NASA Astrophysics Data System (ADS)
Müller, Hannes; Haberlandt, Uwe
2015-04-01
For urban hydrology rainfall time series with a high temporal resolution are crucial. Observed time series of this kind are very short in most cases, so they cannot be used. On the contrary, time series with lower temporal resolution (daily measurements) exist for much longer periods. The objective is to derive time series with a long duration and a high resolution by disaggregating time series of the non-recording stations with information of time series of the recording stations. The multiplicative random cascade model is a well-known disaggregation model for daily time series. For urban hydrology it is often assumed, that a day consists of only 1280 minutes in total as starting point for the disaggregation process. We introduce a new variant for the cascade model, which is functional without this assumption and also outperforms the existing approach regarding time series characteristics like wet and dry spell duration, average intensity, fraction of dry intervals and extreme value representation. However, in both approaches rainfall time series of different stations are disaggregated without consideration of surrounding stations. This yields in unrealistic spatial patterns of rainfall. We apply a simulated annealing algorithm that has been used successfully for hourly values before. Relative diurnal cycles of the disaggregated time series are resampled to reproduce the spatial dependence of rainfall. To describe spatial dependence we use bivariate characteristics like probability of occurrence, continuity ratio and coefficient of correlation. Investigation area is a sewage system in Northern Germany. We show that the algorithm has the capability to improve spatial dependence. The influence of the chosen disaggregation routine and the spatial dependence on overflow occurrences and volumes of the sewage system will be analyzed.
NASA Astrophysics Data System (ADS)
Lebel, T.; Janicot, S.; Redelsperger, J. L.; Parker, D. J.; Thorncroft, C. D.
2015-12-01
The AMMA international project aims at improving our knowledge and understanding of the West African monsoon and its variability with an emphasis on daily-to-interannual timescales. AMMA is motivated by an interest in fundamental scientific issues and by the societal need for improved prediction of the WAM and its impacts on water resources, health and food security for West African nations. The West African monsoon (WAM) has a distinctive annual cycle in rainfall that remains a challenge to understand and predict. The location of peak rainfall, which resides in the Northern Hemisphere throughout the year, moves from the ocean to the land in boreal spring. Around the end of June there is a rapid shift in the location of peak rainfall between the coast and around 10°N where it remains until about the end of August. In September the peak rainfall returns equatorward at a relatively steady pace and is located over the ocean again by November. The fact that the peak rainfall migrates irregularly compared to the peak solar heating is due to the interactions that occur between the land, the atmosphere and the ocean. To gain a better understanding of this complex climate system, a large international research programme was launched in 2002, the biggest of its kind into environment and climate ever attempted in Africa. AMMA has involved a comprehensive field experiment bringing together ocean, land and atmospheric measurements, on timescales ranging from hourly and daily variability up to the changes in seasonal activity over a number of years. This presentation will focus on the description of the field programme and its accomplishments, and address some key questions that have been recently identified to form the core of AMMA-Phase 2.
NASA Astrophysics Data System (ADS)
Lebel, T.; Janicot, S.; Redelsperger, J. L.; Parker, D. J.; Thorncroft, C. D.
2014-12-01
The AMMA international project aims at improving our knowledge and understanding of the West African monsoon and its variability with an emphasis on daily-to-interannual timescales. AMMA is motivated by an interest in fundamental scientific issues and by the societal need for improved prediction of the WAM and its impacts on water resources, health and food security for West African nations. The West African monsoon (WAM) has a distinctive annual cycle in rainfall that remains a challenge to understand and predict. The location of peak rainfall, which resides in the Northern Hemisphere throughout the year, moves from the ocean to the land in boreal spring. Around the end of June there is a rapid shift in the location of peak rainfall between the coast and around 10°N where it remains until about the end of August. In September the peak rainfall returns equatorward at a relatively steady pace and is located over the ocean again by November. The fact that the peak rainfall migrates irregularly compared to the peak solar heating is due to the interactions that occur between the land, the atmosphere and the ocean. To gain a better understanding of this complex climate system, a large international research programme was launched in 2002, the biggest of its kind into environment and climate ever attempted in Africa. AMMA has involved a comprehensive field experiment bringing together ocean, land and atmospheric measurements, on timescales ranging from hourly and daily variability up to the changes in seasonal activity over a number of years. This presentation will focus on the description of the field programme and its accomplishments, and address some key questions that have been recently identified to form the core of AMMA-Phase 2.
NASA Astrophysics Data System (ADS)
Marani, M.; Zorzetto, E.; Hosseini, S. R.; Miniussi, A.; Scaioni, M.
2017-12-01
The Generalized Extreme Value (GEV) distribution is widely adopted irrespective of the properties of the stochastic process generating the extreme events. However, GEV presents several limitations, both theoretical (asymptotic validity for a large number of events/year or hypothesis of Poisson occurrences of Generalized Pareto events), and practical (fitting uses just yearly maxima or a few values above a high threshold). Here we describe the Metastatistical Extreme Value Distribution (MEVD, Marani & Ignaccolo, 2015), which relaxes asymptotic or Poisson/GPD assumptions and makes use of all available observations. We then illustrate the flexibility of the MEVD by applying it to daily precipitation, hurricane intensity, and storm surge magnitude. Application to daily rainfall from a global raingauge network shows that MEVD estimates are 50% more accurate than those from GEV when the recurrence interval of interest is much greater than the observational period. This makes MEVD suited for application to satellite rainfall observations ( 20 yrs length). Use of MEVD on TRMM data yields extreme event patterns that are in better agreement with surface observations than corresponding GEV estimates.Applied to the HURDAT2 Atlantic hurricane intensity dataset, MEVD significantly outperforms GEV estimates of extreme hurricanes. Interestingly, the Generalized Pareto distribution used for "ordinary" hurricane intensity points to the existence of a maximum limit wind speed that is significantly smaller than corresponding physically-based estimates. Finally, we applied the MEVD approach to water levels generated by tidal fluctuations and storm surges at a set of coastal sites spanning different storm-surge regimes. MEVD yields accurate estimates of large quantiles and inferences on tail thickness (fat vs. thin) of the underlying distribution of "ordinary" surges. In summary, the MEVD approach presents a number of theoretical and practical advantages, and outperforms traditional approaches in several applications. We conclude that the MEVD is a significant contribution to further generalize extreme value theory, with implications for a broad range of Earth Sciences.
NASA Astrophysics Data System (ADS)
Kobayashi, Kenichiro; Otsuka, Shigenori; Apip; Saito, Kazuo
2016-08-01
This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency nonhydrostatic model (JMA-NHM) are used as the input data to a rainfall-runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolutions. A distributed rainfall-runoff model is constructed for the Kasahori dam catchment (approx. 70 km2) and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km resolution JMA-NHM ensemble simulation are more appropriate than the 10 km resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s-1, a threshold value for flood control. The inflows with the 10 km resolution ensemble rainfall are all considerably smaller than the observations, while at least one simulated discharge out of 11 ensemble members with the 2 km resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls shows much better results than the original ensemble discharge simulations.
NASA Astrophysics Data System (ADS)
Prakoso, W. G.; Murtilaksono, K.; Tarigan, S. D.; Purwanto, Y. J.
2018-05-01
An approach on flow duration and flood design estimation on the ungauged catchment with no rainfall and discharge data availability was been being develop with hydrological modelling including rainfall run off model implemented with watershed characteristic dataset. Near real time Rainfall data from multi satellite platform e.g. TRMM can be utilized for regionalization approach on the ungauged catchment. Watershed hydrologically similarity analysis were conducted including all of the major watershed in Borneo which was predicted to be similar with the Nanga Raun Watershed. It was found that a satisfactory hydrological model calibration could be achieved using catchment weighted time series of TRMM daily rainfall data, performed on nearby catchment deemed to be sufficiently similar to Nanga Raun catchment in hydrological terms. Based on this calibration, rainfall runoff parameters were then transferred to a model. Relatively reliable flow duration curve and extreme discharge value estimation were produced with reasonable several limitation. Further approach may be performed in order to deal with the primary limitations inherent in the hydrological and statistical analysis, especially to give prolongation to the availability of the rainfall and climate data with some novel approach like downscaling of global climate model.
Sensitivity of Catchment Transit Times to Rainfall Variability Under Present and Future Climates
NASA Astrophysics Data System (ADS)
Wilusz, Daniel C.; Harman, Ciaran J.; Ball, William P.
2017-12-01
Hydrologists have a relatively good understanding of how rainfall variability shapes the catchment hydrograph, a reflection of the celerity of hydraulic head propagation. Much less is known about the influence of rainfall variability on catchment transit times, a reflection of water velocities that control solute transport. This work uses catchment-scale lumped parameter models to decompose the relationship between rainfall variability and an important metric of transit times, the time-varying fraction of young water (<90 days old) in streams (FYW). A coupled rainfall-runoff model and rank StorAge Selection (rSAS) transit time model were calibrated to extensive hydrometric and environmental tracer data from neighboring headwater catchments in Plynlimon, Wales from 1999 to 2008. At both sites, the mean annual FYW increased more than 13 percentage points from the driest to the wettest year. Yearly mean rainfall explained most between-year variation, but certain signatures of rainfall pattern were also associated with higher FYW including: more clustered storms, more negatively skewed storms, and higher covariance between daily rainfall and discharge. We show that these signatures are symptomatic of an "inverse storage effect" that may be common among watersheds. Looking to the future, changes in rainfall due to projected climate change caused an up to 19 percentage point increase in simulated mean winter FYW and similarly large decreases in the mean summer FYW. Thus, climate change could seasonally alter the ages of water in streams at these sites, with concomitant impacts on water quality.
Spatial dependence of extreme rainfall
NASA Astrophysics Data System (ADS)
Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Azman, Muhammad Az-zuhri
2017-05-01
This study aims to model the spatial extreme daily rainfall process using the max-stable model. The max-stable model is used to capture the dependence structure of spatial properties of extreme rainfall. Three models from max-stable are considered namely Smith, Schlather and Brown-Resnick models. The methods are applied on 12 selected rainfall stations in Kelantan, Malaysia. Most of the extreme rainfall data occur during wet season from October to December of 1971 to 2012. This period is chosen to assure the available data is enough to satisfy the assumption of stationarity. The dependence parameters including the range and smoothness, are estimated using composite likelihood approach. Then, the bootstrap approach is applied to generate synthetic extreme rainfall data for all models using the estimated dependence parameters. The goodness of fit between the observed extreme rainfall and the synthetic data is assessed using the composite likelihood information criterion (CLIC). Results show that Schlather model is the best followed by Brown-Resnick and Smith models based on the smallest CLIC's value. Thus, the max-stable model is suitable to be used to model extreme rainfall in Kelantan. The study on spatial dependence in extreme rainfall modelling is important to reduce the uncertainties of the point estimates for the tail index. If the spatial dependency is estimated individually, the uncertainties will be large. Furthermore, in the case of joint return level is of interest, taking into accounts the spatial dependence properties will improve the estimation process.
BOREAS HYD-9 Hourly and Daily Rainfall Maps for the Southern Study Area
NASA Technical Reports Server (NTRS)
Eley, F. Joe; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Krauss, Terry S.; Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-9 team collected data on precipitation and streamflow over portions of the Northern Study Area (NSA) and Southern Study Area (SSA). This data set contains Cartesian maps of rain accumulation for one-hour and daily periods during the summer of 1994 over the SSA only (not the full view of the radar). A parallel set of one-hour maps for the whole radar view has been prepared and is available upon request from the HYD-09 personnel. An incidental benefit of the areal selection was the elimination of some of the less accurate data, because for various reasons the radar rain estimates degrade considerably outside a range of about 100 km. The data are available in tabular ASCII files. The HYD-09 hourly and daily radar rainfall maps for the SSA are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).
NASA Astrophysics Data System (ADS)
Casati, Michele; Straser, Valentino; Feron, Alessandro
2017-04-01
The purpose of this study is to verify a possible relationship between solar activity transitions (minimum and maximum), seismic activity and atmospheric circulation in a particular area. The hypothesis has already been advanced by other authors and is found in studies, for example: [Sytinsky A.D.,1980,1987,1997][Mazzarella,Palumbo, 1989][Odintsov, et al, 2006][Khachikyan, Inchin, Lozbin, 2012][Czymzik,Markus, 2013][Nedeljko,Vujović,2014]. The geographical area studied is approximately 8x13 km sq. and includes villages such as Fivizzano and Equi Terme, in north-west Tuscany, Italy, on the Lunigiana/Garfagnana border. The North Apuan Fault Zone" (NAFZ) is found in the area of study and major historical earthquakes have occurred in this area [Di Naccio Deborah, et al., 2013]. In this research, we compared the local seismicity with heavy rainfall (in quantity) that occurred in a short time frame in this area (measured by the daily rain gauge accumulations). These events occurred during the numerous floods from 2009 to 2013 (the transition between the solar cycle SC23 and SC24 solar and the rise of solar cycle SC24). The data was provided by the hydrological sector of the Tuscan Region Hydrological Service (SIR) and the LaMMA consortium. In this study we hypothesize, a slow and continuous destabilizing action on local geological structures, due to the multiple and violent atmospheric disturbances (V-shaped, flash floods, squall-line, etc..). Destabilization that led to an earthquake of magnitude Mw 5.36, which occurred on 21 June 2013. Comparing the SIDC count of sunspots with: a) the historical local seismic events catalogue with magnitude M4.5 + (CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes), b) the recent earthquakes of magnitude M 2.5+, which occurred from 1984 (ISIDe working group (2016) version 1.0), and c) the historical reconstructed maximum annual flows of the Serchio river from 1750, the daily maximum annual flows of the Magra river since 1939 (Data provided by Serchio River Authority and Aauthority and Magra Interregional River Authority), we observe that floods and/or local seismic events occur more frequently when there are solar maximum and solar minima.
Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.
2011-01-01
During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for the 25-year-recurrence, 1-hour-duration rainfall. The largest postwildfire debris-flow volumes were estimated for Carbonate Creek and Milton Creek drainage basins, for both the 5- and 25-year-recurrence, 1-hour-duration rainfalls. Results from FLO-2D modeling of the 5-year and 25-year recurrence, 1-hour rainfalls indicate that the debris flows from the four drainage basins would reach or nearly reach the Crystal River. The model estimates maximum instantaneous depths of debris-flow material during postwildfire debris flows that exceeded 5 meters in some areas, but the differences in model results between the 5-year and 25-year recurrence, 1-hour rainfalls are small. Existing stream channels or topographic flow paths likely control the distribution of debris-flow material, and the difference in estimated debris-flow volume (about 25 percent more volume for the 25-year-recurrence, 1-hour-duration rainfall compared to the 5-year-recurrence, 1-hour-duration rainfall) does not seem to substantially affect the estimated spatial distribution of debris-flow material. Historically, the Marble area has experienced periodic debris flows in the absence of wildfire. This report estimates the probability and volume of debris flow and maximum instantaneous inundation area depths after hypothetical wildfire and rainfall. This postwildfire debris-flow report does not address the current (2010) prewildfire debris-flow hazards that exist near Marble.
Comparison between weather station data in south-eastern Italy and CRU precipitation datasets
NASA Astrophysics Data System (ADS)
Miglietta, D.
2009-04-01
Monthly precipitation data in south-eastern Italy from 1920 to 2005 have been extensively analyzed. Data were collected in almost 200 weather stations located 10-20km apart from each other and almost uniformly distributed in Puglia and Basilicata regions. Apart from few years around world war II, time series are mostly complete and allow a reliable reconstruction of climate variability in the considered region. Statistically significant trends have been studied by applying the Mann-Kendall test to annual, seasonal and monthly values. A comparison has been made between observations and precipitation data given by the Climate Research Unit (CRU), University of East Anglia, with both low (30') and high (10') space resolution grid. In particular, rainfall records, time series behaviors and annual cycles at each station have been compared to the corresponding CRU data. CRU time series show a large negative trend for winter since 1970. Trend is not significant if the whole 20th century is considered (both for the whole year and for winter only). This might be considered as an evidence of recent acceleration towards increasingly dry conditions. However correlation between CRU data and observations is not very high and large percent errors are present mainly in the mountains regions, where observations show a large annual cycle, with intense precipitation in winter, which is not present in CRU data. To identify trends, therefore observed data are needed, even at monthly scale. In particular observations confirm the overall trend, but also indicate large spatial variability, with locations where precipitation has even increased since 1970. Daily precipitation data coming from a subset of weather stations have also been studied for the same time period. The distributions of maximum annual rainfalls, wet spells and dry spells were analyzed for each station, together with their time series. The tools of statistical analysis of extremes have been used in order to evaluate return values and their space distribution over the considered region. A procedure for data quality control and homogeneity test on monthly rainfall records is also being applied, while kriging techniques are being developed in order to fully understand rainfall climatology in south-eastern Italy.
Lionberger, Megan A.; Schoellhamer, David H.; Shellenbarger, Gregory; Orlando, James L.; Ganju, Neil K.
2007-01-01
This report documents the development and application of a box model to simulate water level, salinity, and temperature of the Alviso Salt Pond Complex in South San Francisco Bay. These ponds were purchased for restoration in 2003 and currently are managed by the U.S. Fish and Wildlife Service to maintain existing wildlife habitat and prevent a build up of salt during the development of a long-term restoration plan. The model was developed for the purpose of aiding pond managers during the current interim management period to achieve these goals. A previously developed box model of a salt pond, SPOOM, which calculates daily pond volume and salinity, was reconfigured to simulate multiple connected ponds and a temperature subroutine was added. The updated model simulates rainfall, evaporation, water flowing between the ponds and the adjacent tidal slough network, and water flowing from one pond to the next by gravity and pumps. Theoretical and measured relations between discharge and corresponding differences in water level are used to simulate most flows between ponds and between ponds and sloughs. The principle of conservation of mass is used to calculate daily pond volume and salinity. The model configuration includes management actions specified in the Interim Stewardship Plan for the ponds. The temperature subroutine calculates hourly net heat transfer to or from a pond resulting in a rise or drop in pond temperature and daily average, minimum, and maximum pond temperatures are recorded. Simulated temperature was compared with hourly measured data from pond 3 of the Napa?Sonoma Salt Pond Complex and monthly measured data from pond A14 of the Alviso Salt-Pond Complex. Comparison showed good agreement of measured and simulated pond temperature on the daily and monthly time scales.
Global warming induced hybrid rainy seasons in the Sahel
NASA Astrophysics Data System (ADS)
Salack, Seyni; Klein, Cornelia; Giannini, Alessandra; Sarr, Benoit; Worou, Omonlola N.; Belko, Nouhoun; Bliefernicht, Jan; Kunstman, Harald
2016-10-01
The small rainfall recovery observed over the Sahel, concomitant with a regional climate warming, conceals some drought features that exacerbate food security. The new rainfall features include false start and early cessation of rainy seasons, increased frequency of intense daily rainfall, increasing number of hot nights and warm days and a decreasing trend in diurnal temperature range. Here, we explain these mixed dry/wet seasonal rainfall features which are called hybrid rainy seasons by delving into observed data consensus on the reduction in rainfall amount, its spatial coverage, timing and erratic distribution of events, and other atmospheric variables crucial in agro-climatic monitoring and seasonal forecasting. Further composite investigations of seasonal droughts, oceans warming and the regional atmospheric circulation nexus reveal that the low-to-mid-level atmospheric winds pattern, often stationary relative to either strong or neutral El-Niño-Southern-Oscillations drought patterns, associates to basin warmings in the North Atlantic and the Mediterranean Sea to trigger hybrid rainy seasons in the Sahel. More challenging to rain-fed farming systems, our results suggest that these new rainfall conditions will most likely be sustained by global warming, reshaping thereby our understanding of food insecurity in this region.